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RESEARCH

Variability of temperature measurements 
recorded by a wearable device by biological sex
Lauryn Keeler Bruce1, Patrick Kasl2, Severine Soltani3, Varun K. Viswanath4, Wendy Hartogensis5, 
Stephan Dilchert6, Frederick M. Hecht5, Anoushka Chowdhary5, Claudine Anglo5, Leena Pandya5, 
Subhasis Dasgupta8, Ilkay Altintas7,8, Amarnath Gupta7,8, Ashley E. Mason5† and Benjamin L. Smarr2,7*†    

Abstract 

Background  Females have been historically excluded from biomedical research due in part to the documented 
presumption that results with male subjects will generalize effectively to females. This has been justified in part 
by the assumption that ovarian rhythms will increase the overall variance of pooled random samples. But not all 
variance in samples is random. Human biometrics are continuously changing in response to stimuli and biological 
rhythms; single measurements taken sporadically do not easily support exploration of variance across time scales. 
Recently we reported that in mice, core body temperature measured longitudinally shows higher variance in males 
than cycling females, both within and across individuals at multiple time scales.

Methods  Here, we explore longitudinal human distal body temperature, measured by a wearable sensor device 
(Oura Ring), for 6 months in females and males ranging in age from 20 to 79 years. In this study, we did not limit 
the comparisons to female versus male, but instead we developed a method for categorizing individuals as cyclic 
or acyclic depending on the presence of a roughly monthly pattern to their nightly temperature. We then compared 
structure and variance across time scales using multiple standard instruments.

Results  Sex differences exist as expected, but across multiple statistical comparisons and timescales, there 
was no one group that consistently exceeded the others in variance. When variability was assessed across time, 
females, whether or not their temperature contained monthly cycles, did not significantly differ from males 
both on daily and monthly time scales.

Conclusions  These findings contradict the viewpoint that human females are too variable across menstrual cycles 
to include in biomedical research. Longitudinal temperature of females does not accumulate greater measurement 
error over time than do males and the majority of unexplained variance is within sex category, not between them.

Highlights 

•	 Sex does not separate more and less variable individuals, as measured in continuous body temperature.
•	 Analysis of high-resolution, longitudinal temperature detailed here supports the inclusion of females in biomedi-

cal research.
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Background
Females represent roughly half of humanity, and as such, 
are worth equal consideration in health research. Never-
theless, there persists an underrepresentation of females 
in both animal research [1–4] and human clinical trials 
[5–8]. As researchers themselves reported in anonymous 
surveys, this resistance to using female subjects, despite 
policies of inclusion, partially stems from the assumption 
that including female subjects will increase the heteroge-
neity of study results by virtue of having ovarian rhythms 
(estrus or menses, respectively) [4]. Coupled with the 
assumption that results from males will generalize to 
females, this lack of inclusion leads to serious inequalities 
in female health outcomes and available treatments (e.g., 
[9–11]).

The assumption that females are more variable than 
males has been explored in mice and rats [1, 4, 12]. Vari-
ability has not been found to be significantly greater in 
females than males for most traits. On the contrary, for 
many traits, variability was substantially greater in males 
over a range of behavioral, neurobiological, and physi-
ological traits [12–15]. Continuous activity and core 
body temperature (CBT) in mice also revealed higher 
intra- and inter-individual variability in male mice than 
in females by a range of statistical comparisons [16, 17]. 
Quantitative comparisons in rodent models refute the 
common assumption of greater variability in female sub-
jects. Analogous efforts in humans using online activity 
data as a proxy for biological rhythms have aligned with 

the animal literature, finding small differences that evince 
males as marginally more variable than females across 
timescales [18].

Human biometrics are not static, but continuously 
change in response to stimuli, and/or as part of dynamic 
equilibria driven by variable-cycle feedback loops [19, 
20]. These changes occur across timescales, including 
daily rhythms and sometimes longer hormonal rhythms, 
as in menses. The exact dynamics are driven by the expe-
rience of the individual, and as such differ from person 
to person. While actigraphy is commonly used for lon-
gitudinal assessment in animal models and in humans, 
underlying physiological dynamics may continue oscil-
lating while activity remains at 0 during inactivity; activ-
ity rhythms may also be masked by behavioral and social 
impositions (i.e., school or work schedules, etc.). We have 
found body temperature to be a superior modality of 
continuous monitoring, with ties to hormonal changes, 
daily rhythms, and women’s health states [21–25].

Body temperature changes over time, as well as with 
gender, age, environment, stage of menstruation, etc. 
[24]. Mean sex differences in body temperature are docu-
mented, but population means do not describe variability 
over multiple timescales or across individuals comprising 
a population [26, 27]. To date, studies have not been car-
ried out using longitudinal physiology data to assess how 
these variables change within individual humans over 
time, and how such changes impact the results of statisti-
cal comparisons.

•	 Cycling female variance in temperature is more structured across days and months than males, but most variance 
is within groups, and not between them.

•	 This work includes methods for identifying cycles in participant data without pre-existing labels.

Plain English Summary 

Women are still excluded from research disproportionately, due in part to documented concerns that menstrual 
cycles make them more variable and so harder to study. In the past, we have challenged this claim, finding it 
does not hold for animal physiology, animal behavior, or human behavior. Here we are able to show that it does 
not hold in human physiology either. We analyzed 6 months of continuously collected temperature data measured 
by a commercial wearable device, in order to determine if it is true that females are more variable or less predict-
able than males. We found that temperatures mostly vary as a function of time of day and whether the individual 
was awake or asleep. Additionally, for some females, nightly maximum temperature contained a cyclical pattern 
with a period of around 28 days, consistent with menstrual cycles. The variability was different between cycling 
females, not cycling females, and males, but only cycling female temperature contained a monthly structure, making 
their changes more predictable than those of non-cycling females and males. We found the majority of unexplained 
variance to be within each sex/cycling category, not between them. All groups had indistinguishable measurement 
errors across time. This analysis of temperature suggests data-driven characteristics might be more helpful distin-
guishing individuals than historical categories such as binary sex. The work also supports the inclusion of females 
as subjects within biological research, as this inclusion does not weaken statistical comparisons, but does allow more 
equitable coverage of research results in the world.
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Here, we use data from an off-the-shelf wearable device 
(Oura Ring, Oura Health Oy, Oulu, Finland) gathered 
under the umbrella of the TemPredict study to develop 
COVID-19 detection capabilities [28]. We analyze 300 
females and 300 age-matched males from this data set. 
We use continuous temperature to generate representa-
tive statistical measures of inter- and intra-individual 
variability across multiple timescales to assess the extent 
to which female sex correlates to increased variability in 
all of these instances, and the extent to which differences 
between sexes impede statistical comparisons in one 
group relative to another.

Results
Average and standard deviation of hourly temperature 
confirmed daily variation in temperature by both sexes 
when asleep or awake (Fig.  1A, B). A monthly pattern 
of variation in temperature was also present in some 
females (Fig.  1C, solid blue line), indicating ovulatory 
dependency of temperature as expected, and allow-
ing for classification of individuals as cyclic or acyclic. 
Through hierarchical clustering of autocorrelation pro-
files (Fig. 1D), we found three clusters (Fig. 1E), with all 
cyclic female individuals (n = 72) in the first cluster, all 

acyclic individuals (female n = 195; male n = 299) in the 
second cluster, and both female cyclic individuals with 
lower amplitude autocorrelation values (n = 33) and a sin-
gle acyclic male in the third. The single male in the third 
cluster was assigned as acyclic after visual inspection, as 
no 28-day oscillation of temperature was present, despite 
their distance value determined by dynamic time warp-
ing having automatically placed them in cluster three. 
Based on this clustering, individuals were assigned to 
one of three categories: cyclic females (all females from 
clusters 1 and 3), acyclic females (all females from clus-
ter 2), and acyclic males (all males). Ovarian cycle-like 
20–30  day oscillations of nightly temperature [29] were 
consistently detected in cyclic females but acyclic females 
and males lacked such periodicity (Fig. 1F, G).

Minute-level data for a single month allowed for visual 
comparison of temperature variance across timescales 
(Fig. 2A, left). All individuals showed a wider variance in 
temperature while awake, but the distribution of awake 
temperature values was distributed fairly evenly for 
the acyclic female, skewed lower for cyclic females, and 
skewed higher for males (Fig. 2A, right). We found differ-
ences in mean temperature for each sex/cyclicity group 
at three time scales (24 h, when asleep, and when awake; 

Fig. 1  A Heatmap of % of male (red, top) and female (blue, bottom) individuals in sleep per hour during the example week of April 11, 2020 
to April 18, 2020. B Mean ± standard deviation of hourly temperature deviation over 300 females (blue) and 300 males (red) covering a single 
week (mean line ± standard deviation fill). C Temperature maximums for two females (blue apparently cyclic: solid; apparently acyclic: dashed) 
and one male (red) over 3 months. D Hierarchical clustering performed to classify individuals as cyclic or acyclic using dynamic time warping 
distance of autocorrelation of nightly temperature maximum. E Autocorrelation profiles for individuals within each cluster resulted in classification 
of individuals as cyclic, acyclic, and cyclic for clusters 1, 2, and 3, respectively. F Heatmap of 3 months of nightly maximum temperature data 10 
cyclic female (chosen from the 300 for their rough cycle alignment to illustrate the cyclicity), acyclic female, and acyclic males. G Mean and standard 
error of the 26- to 32-day power band from the wavelet power spectra generated from temperature max data for each category (cyclic females: 
blue; acyclic females: teal; males: red)
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Fig.  2B). Males had significantly higher mean tempera-
ture than acyclic females for 24 h temperature (p = 0.003, 
U = 2.5e4); males had significantly higher wake tempera-
tures than both cyclic and acyclic females (cyclic vs. male 
p = 6.5e−5, acyclic female vs. male p = 8.6e−5, U = 2.3e4); 
cyclic females had significantly higher sleep tempera-
tures than acyclic females, who were significantly higher 
than males (cyclic vs. male p = 5.6e−27, U = 2.6e4; acyclic 
female vs. male p = 3.2e−7, U = 3.7e4; cyclic vs. acyclic 
female p = 2.5e−12, U = 1.5e4; Fig.  2D, Table  1). Vari-
ance across 24  h was significantly lower in males than 
in cyclic or acyclic females (p = 1.1e−7, U = 2.1e4 and 
p = 1.6e−4, U = 3.5e4, respectively). Only cyclic females 
had significantly higher wake temperature variance than 
males (p = 3.1e−4, U = 1.9e4, Fig. 2C). Analysis of means 
and standard deviations of distal body temperature for 
females and males, separated into six age bins, revealed 
no significant differences between age bins for males 
(data not shown). By contrast, in the female subset, sig-
nificant differences were only seen between bin pairs 
where one was below 50  years old and the other above 
50 years old (statistics in Table 1; Fig. 2D).

The kernel density estimates of temperature mean for 
each category (Fig. 2E–G) showed large overlaps between 
categories. For awake mean temperature, Cohen d’s effect 
sizes were small to medium for each pairwise compari-
son: cyclic female vs. acyclic female = − 0.07, cyclic female 
vs acyclic male = − 0.41, and acyclic female vs. acyclic 
male = − 0.33. Effect sizes for comparing awake mean 
temperatures were the largest between cyclic females 
and acyclic males: cyclic female vs. acyclic female = 0.85, 
cyclic female vs acyclic male = 1.40, and acyclic female vs. 
acyclic male = 0.41. Categorical distributions of the vari-
ance (Fig.  2F and H) also substantially overlapped, with 
lower overall effect sizes in each pairwise comparison 
(awake temperature variance: cyclic female vs. acyclic 
female = 0.16, cyclic female vs acyclic male = 0.31, and 
acyclic female vs. acyclic male = 0.17; asleep temperature 
variance: cyclic female vs. acyclic female = 0.08, cyclic 
female vs acyclic male = 0.12, and acyclic female vs. acy-
clic male = 0.06).

Three submetrics of daily variability were assessed per 
individual per category. Coefficient of variation (CV) 
showed significant differences between female and male 

categories for the 24 h and awake time frames, with cyclic 
and acyclic females showing higher mean levels of dis-
persion, while the male population showed greater inter-
individual variability of CV (24  h: cyclic female vs male 
p = 3.8e−7, U = 2.1e4; acyclic female vs male p = 1.5e−4, 
U = 3.5e4. Wake: cyclic female vs male p = 1.8e−4, 
U = 2e4; acyclic female vs male p = 5.4e−3, U = 3.4e4; Fig-
ure 3A). The proportional variability (PV) index, showed 
similar results, with the mean PV of cyclic females only 
higher than males at the 24-h timescale (24  h: cyclic 
female vs male p = 3e−7, U = 2.1e4; acyclic female vs 
male p = 1.9e−5, U = 3.6e4. sleep: acyclic female vs male 
p = 2.5e−4, U = 3.5e4 Fig. 3B). A variable sensitive to tem-
poral autocorrelation, the consecutive disparity index (D) 
was low for all populations, and was significantly differ-
ent between the female and male groups for the 24 h and 
awake time points (24 h: cyclic female vs male p = 2.4e−5, 
U = 2e4; acyclic female vs male p = 2.4e−6, U = 3.7e4. 
Wake: cyclic female vs male p = 5.0e−5, U = 2e4; acyclic 
female vs male p = 9.7e−6, U = 3.6e4) but during sleep, 
cyclic females were not significantly different from the 
male group and instead were different from acyclic 
females (cyclic vs acyclic female p = 0.002, U = 8.1e3; acy-
clic female vs male p = 8.8e−4, U = 3.4e4; Fig. 3C).

Quantification of accumulated distance from popula-
tion mean (termed “cumulative error” [16]) for each pop-
ulation (cyclic female, acyclic female, and male) revealed 
no significant differences between categories across 
5-min resolution data for 7 and 28 days (Fig. 4, Bonfer-
roni corrected p-value significance threshold is set to 
0.0025 to account for the 4 comparisons, Fig. 4A: p-value: 
0.43, U = 1.7; Fig.  4B: p-value = 0.03, U = 7.1). Cumula-
tive error taken at nightly resolution across 2 months also 
resulted in no significant differences between categories 
(Fig.  4C: p-value: 0.57, U = 1.13; Fig.  4D: p-value = 0.43, 
U = 1.68). This held whether females were aligned by 
real world date (and so non-aligned by time of cycle) or 
by phase of the menstrual cycle (Fig. 4C, D). In the latter 
case, the error can be seen to take on a roughly 28  day 
wave pattern (Fig.  4D, blue shaded region), but with or 
without alignment by cycle, cyclic females show the 
least interindividual variance of cumulative error across 
months. In no case did cyclicity result in significant dif-
ferences in cumulative error of distal body temperature 

Fig. 2  Daily temperature profiles (A) for a representative individual from the cyclic female (blue), acyclic female (teal), and acyclic male (red) 
categories. Temperatures when asleep (darker shades) show higher distal body temperature with a smaller range than when awake. Violin plot 
of mean temperature by category (B) and variance (C) across all 24 h (left), only wake times (center), and only sleep times (right). Violin plot 
of nightly maximum temperature (D) for females subset by age bin, split by cyclic status, with quantiles in white. Kernel density estimate for average 
temperature by category during wake (E) and sleep (G). Kernel density estimate for temperature variance by category during wake (F) and sleep 
(H). Bonferroni corrected p-value annotations for 9 comparisons: *: 1.00e−3 < p <  = 6.00e−3, **: 1.00e−4 < p, ***: 1.00e−5 < p, ****: p <  = 1.00e−5

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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from acyclic females or males when compared against a 
static population mean.

Discussion
Analysis of variability in high resolution, continuous and 
longitudinal body temperature from large populations do 
not support the exclusion of females, cyclic or otherwise, 
from statistical analyses. Female participants did show 
significantly higher variability at daily timescales—a 
result of greater differentiation between sleep and wake—
but in no case was this associated with a substantial effect 
size. Furthermore, this higher variance may in fact result 
from greater stability; wider night–day variance could 
be understood to reflect greater daily structure in these 
females. By comparison, males showed more overlap 
between night and day, which suggests less overall vari-
ance in temperature can be accounted for by time of day 
or sleep state in males. Consistent with this interpreta-
tion, males and females showed comparable amounts of 
cumulative error across timescales, despite the presence 
of menstrual cycles in some females. This work then con-
tinues to add similar findings to the literature of animal 
analogs, in which—despite ovulatory cyclicity—males 
are generally as variable as females. Whether this means 
male variance is truly less structured (more random) 
in time—or whether in other modalities beyond tem-
perature the reverse is true—is likely dependent on the 
modality measured, and the species or population. Given 
the importance to future efforts at building time series-
based algorithms for health, this question is worthy of 
deeper investigation in humans.

The numerical value of female temperature over time 
is highly dependent on whether or not their temperature 
is cycling, due to menstruation but possibly also due to 
other factors such as birth control methods. This analy-
sis confirms that ovarian rhythms do affect temperature. 
This analysis does not suggest that these rhythms make 
any given measurement more prone to error. Even when 

comparing dynamic temperatures to a single, static mean 
for the population, error accumulation in all groups had 
no significant differences.

The analyses presented here suggest that there is sub-
stantial work still to do to develop reliable methods of 

Table 1  Bonferroni corrected Mann–Whitney–Wilcoxon two-
sided test p-values (U test statistics) of comparisons of median 
nightly maximum temperature between females in age groups 
below and above 50 years old

Bonferroni corrected p-value annotations for 15 comparisons: *: 
6.7e−4 < p <  = 3.00e−3, **: 6.7e−5 < p, ***: 6.7e−6 < p, ****: p <  = 6.7e−6

Age Bins 50–59 60–69 70–79

20–29 5.7e−8****
(2e3)

5.5e−6****
(1.9e3)

1.7e−8****
(2.1e3)

30–39 5.7e−8****
(2e3)

2.7e−6****
(1.9e3)

2.2e−8****
(2.1e3)

40–49 1.9e−3*
(1.7e3)

0.01
(1.62e3)

5.7e−4**
(1.8e3)

Fig. 3  Violin plot of average A coefficient of variation (CV), B 
proportional variability index (PV), and C consecutive disparity index 
(D) for cyclic females (blue), acyclic females (teal), and males (red) 
for timepoints for all 24 h, only when awake, or only when asleep. 
Bonferroni corrected p-value annotations for 9 comparisons: *: 
1.0e-3 < p <  = 6.00e−3, **: 1.0e−4 < p, ***: 1.0e−5 < p, ****: p <  = 1.0e−5
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characterizing variance over time in different human 
populations. It is worth noting, for example, that when 
categories showed differences, they were not always as 
might stereotypically be expected (e.g., temperature 
in cyclic females > acyclic females > males; or acyclic 
females = acyclic males). Furthermore, in all compari-
sons, the variance within each category vastly exceeds the 
differences between categories. This is consistent with 
a view in which traditional demographics (here, binary 
sex and decade of life) fail to account for the majority of 
the physiological variability, which appears to be within 
each category, rather than across categories. In the mean-
time, categories are still a useful construct, but many cat-
egories would benefit from longitudinal characterization. 
For example, we observed a difference between younger 
and older cycling females. This is presumed to be due 
to menopausal transitions, but as of this writing, there 
is no comparably high-resolution data-driven definition 
of perimenopause, nor description of how physiological 

changes (hot flashes, sleep disruption, chronotype, 
etc.) emerge in such data that could support separating 
individuals by “types” of perimenopause-related physi-
ological patterns. Such descriptions would make topics 
like perimenopause, pregnancy, and menarche acces-
sible to modern data modeling and precision predictive 
approaches.

We developed a method for labeling female partici-
pants as cyclic or acyclic using hierarchical clustering 
on the pairwise distance of time series temperature 
autocorrelation values. This tool is usable in data with-
out participant-generated labels, which may be the case 
in many retrospective data analyses. Despite this, align-
ing multiple females by time of cycle still remains a 
challenge, as menstrual cycles vary in length and can 
be shifted due to environmental and hormonal factors, 
pregnancy, and birth control methods. We encourage 
future studies to gather additional information such as 
birth control methods (hormonal, IUD, etc.) and other 

Fig. 4  Cumulative error of 5-min resolution data for cyclic females (blue), acyclic females (teal), and males (red) when compared to a single static 
mean for 7 days (A) and 28 days (B) and 60 days (C) with cycling females either unaligned (natural cyclic phase distribution; C) or aligned by cyclic 
phase (D)
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reproductive conditions such as polycystic ovarian syn-
drome, pregnancy, and pregnancy complications such as 
preeclampsia.

Perspectives and significance
We found no evidence to support the exclusion of female 
participants on statistical grounds. Individuals within 
groups were more different from each other than the 
groups were from each other. As a result, sex alone did 
not directly correlate with biological variance analyzed 
here. We demonstrate techniques for classifying indi-
viduals based on patterns in their physiology, and this 
approach could be adopted to identify new groups that 
have more in common than those grouped by older but 
less data-driven categories, like a binary “sex”.

Conclusion
This work supports the use of sex as a biological vari-
able in biomedical research, while not supporting the 
still-commonly held concern that including females as 
subjects increases variance and weakens analysis power. 
Not only do cyclic females not accumulate greater meas-
urement error over time than do males, but the major-
ity of unexplained variance is within sex category, not 
between them. There are no doubt situations—like breast 
cancer or pregnancy—where sex differences create large 
effects, but these differences cannot be used to relegate 
research on females to these special cases. Females still 
need to be more routinely included in research, and we 
find no statistical evidence that doing so would negatively 
affect study power. Physiological data-driven categoriza-
tions are likely to control for structured variance more 
precisely over time than are traditional demographic 
variables (i.e., sex, age, among others). For this reason, 
all subjects are worthy of inclusion in more time series 
analyses.

Methods
Data source and preprocessing
All data were part of the TemPredict Study [30]. This 
included physiological data generated using the wear-
able device Oura Ring (Oura Health Oy, Oulu, Finland), 
as well as survey data such as self-reported sex and age. 
Nightly aggregated and high-resolution (per minute or 
per 5  min) data were provided and stored in large par-
quet files on the San Diego supercomputer (SDSC) and 
accessed via the Nautilus Portal [31].

For each participant, a single parquet file for nightly 
data, also referred to as sleep summary data, contains 
sleep-related data fields (sleep time start, sleep time end) 
and the aggregated data fields: temperature max, tem-
perature trend deviation. A single row with the longest 
sleep duration value for each date was chosen to ensure 

a single set of measurements per night. High-resolution 
physiological data contain distal body temperature and 
metabolic activity metrics (MET) recorded at 1-min 
intervals 24 h per day. Preprocessing required the crea-
tion of date-time indexing, normalization of indexes to a 
‘local-time’, removal of duplicate time points, filtering of 
values below the 0.5 quantile and above 0.95 quantile for 
each participant, and annotation of awake or asleep based 
on information contained in the nightly summary data. 
Temperature values for timepoints where correspond-
ing MET recordings were lower than 0.5 were dropped 
to remove potential artifacts from the data caused when 
a user was not wearing the device, either when charging 
the device, as elevated temperatures are often recorded at 
the start of charging, or for other unknown reasons.

Subjects
63,153 owners of an Oura Ring were identified as having 
suitable wearable data. From these, 62,653 also had asso-
ciated survey responses to the question “What is your 
biological sex? Male, Female, Other (please describe).” 
From this data set, 39.9% identified as female and 83.4% 
as white (Table  2). To generate a cohort with little data 
missingness, participants were chosen only if all data 
type files were available and if temperature data were 
present for all months between January and November 
2020 (n = 7915). Further filtering eliminated participants’ 
whose temperature data showed less than 70% average 
daily completeness. From the filtered participant list, 
we generated a cohort of 600 self-reporting females and 
males, such that the ages of participants generated an 
even distribution across six age bins spanning from 20 to 
80 years old, with 50 individuals per age bin.

Analysis methods
Autocorrelation clustering
Autocorrelation is the correlation of a time series signal 
that is linearly related to a lagged version of itself and is 
often used to find repeating patterns such as periodic 
signals. In the case of continuous temperature monitor-
ing, the nightly aggregated temperature trend devia-
tion autocorrelation signal for cyclic individuals shows 
a wave-like pattern, whereas the same analyses for acy-
clic individuals do not. To automate classification of the 
signal as cyclic or acyclic, autocorrelation was calculated 
for each individual using 6 months of nightly summary 
data and pairwise distances of each signal was calculated 
with dynamic time warping. Hierarchical clustering was 
performed next to systematically separate participants 
based solely on the distance between the autocorrela-
tion series. Autocorrelation was performed with the acf 
tool in the statsmodels (version 0.13.5, https://​www.​stats​
models.​org/) python package [32]. Pairwise distances of 

https://www.statsmodels.org/
https://www.statsmodels.org/
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each signal was calculated using the dynamic time warp-
ing tool fastdtw (version 0.3.4, https://​pypi.​org/​proje​ct/​
fastd​tw/) [33], and hierarchical clustering was performed 
using the cluster.hierarchy.linkage from the scipy [34] 
package (version 1.10.1, https://​scipy.​org/).

Wavelet analysis
Wavelet transform is a signal processing technique for 
detecting dominant modes of variability and the time 
dependence of those variations of power in time–fre-
quency space [35]. Following identification of acyclic and 
strongly cyclic participants through clustering and iden-
tification of weakly cyclic individuals by manual inspec-
tion of autocorrelation plots, we performed wavelet 
transforms with sleep summary temperature maximum 
data, by a sampling of once per day to generate the power 
spectra (package pywt (version 0.4.0b0, https://​pywav​

elets.​readt​hedocs.​io/) [36], Morlet mother wavelet). 
Average power for each participant was calculated for 
the 26- to 32-day band and average and standard error of 
each category was calculated and plotted for comparison.

Mean and variance of temperature by sex
Temperature mean and variance was calculated for each 
participant at three different time states (24  h, when 
awake, and when asleep) by sub-setting to each time 
state, generating an hourly rolling average, and then cal-
culating either the average or overall variance. The aver-
age and standard deviation of either mean or variance 
was calculated for each category (cyclic female, acyclic 
female, acyclic male) and statistical significance between 
groups was calculated using the Mann–Whitney–Wil-
coxon two-sided test with Bonferroni correction for 9 
comparisons using the add_stat_annotation function 
from the statannot (version 0.2.3, https://​pypi.​org/​proje​
ct/​stata​nnota​tions/) python package.

Mean temperature by age bin
Using the individually calculated mean temperature 
described above, the mean and standard deviation of 
each age bin group was calculated and compared using 
a Mann–Whitney–Wilcoxon two-sided test with Bonfer-
roni correction for 15 comparisons.

Cohen’s d
To measure the magnitude of the difference between the 
temperature mean and variance of the three categories 
(cyclic female, acyclic female, and acyclic male), we cal-
culated the Cohen’s d effect size [37] using the compute_
effsize function in the pingouin (version 0.5.3, https://​
pingo​uin-​stats.​org/) library [38].

Coefficient of variation (CV)
A common metric for assessing temporal variability, 
CV is a measurement of dispersion and determines the 
variability of measurements relative to the mean of the 
population, a ratio of the standard deviation to the mean; 
CV = standard deviation x mean−1 [39].

Proportional variability index (PV)
The proportional variability (PV) index, a metric devel-
oped to measure temporal variability without some of the 
shortcomings of CV, such as dependence on the mean of 
the measurements and sensitivity to rare events, quanti-
fies variability as an average percent difference between 
all possible combinations of measurements in a time 
series [39–42]; PV = 2 [ ∑z(1 −  (min(zi, zj)/max(zi,zj))]/
(n(n − 1)), where n = total number values, z = a list of val-
ues on which pairwise comparisons are calculated, i and 
j = indices of any two different values.

Table 2  Demographics of the full cohort and 300 F/M cohort

Demographic variables Full cohort 300 F/M cohort

n 62,653 600

Age, mean (SD) 44.3 (12.3) 49.4 (16.4)

Sex, n (%)

 Female 25,001 (39.9) 300 (50.0)

 Male 37,597 (60.0) 300 (50.0)

 Other 55 (0.1) 0 (0.0)

Race, n (%)

 African 98 (0.02) 1 (0.2)

 Asian 3292 (5.3) 18 (3.1)

 Black 882 (1.4) 6 (1.0)

 Ethnic other 2232 (3.6) 27 (4.5)

 Middle eastern 602 (1.0) 3 (0.5)

 Multiple 1688 (2.7) 15 (2.5)

 Native American 85 (0.1) 0 (0.0)

 Native Hawaiian 126 (0.2) 1 (0.2)

 South Asian 936 (1.5) 2 (0.3)

 White 50,012 (79.8) 511 (85.16)

 Missing 2700 (4.3) 16 (2.7)

Hispanic ethnicity, n (%)

 No 58,509 (93.4) 575 (95.8)

 Yes 3709 (5.9) 19 (3.2)

 Skipped 435 (0.7) 6 (1.0)

Age bin, n (%)

 18–19 245 (0.4) 0 (0.0)

 20–29 6958 (11.1) 100 (16.7)

 30–39 16,737 (26.7) 100 (16.7)

 40–49 18,103 (28.9) 100 (16.7)

 50–59 12,941 (20.7) 100 (16.7)

 60–69 5857 (9.3) 100 (16.7)

 70–79 1684 (2.7) 100 (16.7)

 80+ 128 (0.2) 0 (0.0)

https://pypi.org/project/fastdtw/
https://pypi.org/project/fastdtw/
https://scipy.org/
https://pywavelets.readthedocs.io/
https://pywavelets.readthedocs.io/
https://pypi.org/project/statannotations/
https://pypi.org/project/statannotations/
https://pingouin-stats.org/
https://pingouin-stats.org/
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Consecutive disparity index (D)
The consecutive disparity index (D) determines the 
average rate of change between consecutive values in a 
time series [39] and accounts for the shortcomings of 
CV along with keeping the ordering of measurements 
in time; D = (1/(n − 1)) ∑i-1

n−1 |ln (pi + 1 / pi)|, n = length 
of time series, pi = value in series at time i).

Cumulative error rates
As previously described [16], if random error equals 
a distance between a measurement and the expected 
value of the measurement, cumulative error represents 
the error accumulated over time when compared to the 
expected value, here defined as greater than one stand-
ard deviation (SD) from a comparative mean. This was 
designed to simulate the likelihood of an individual 
receiving only a single randomly timed measurement 
being more than 1 SD from the mean of the population 
to which they are being compared. For assessing cumu-
lative static error for the three groups, cyclic females, 
acyclic females, and acyclic males, error was calcu-
lated over several time durations. For each individual, 
static error is calculated by subtracting the mean of 
the individual’s population (mp) from the tempera-
ture measurement at each time point (ti), then divid-
ing by the mean standard deviation of the population 
(sp) (SE = ((ti − mp)/sp) − 1). Individual cumulative error 
for each timepoint is simply the sum of all time points 
prior to the current measurement. Kruskal–Wallis test 
was performed with the scipy (version 1.10.1, https://​
scipy.​org/) package stats.kruskal test to compare the 
final cumulative sums of the individuals within the 
three groups [34]. Bonferroni correction was applied 
to the threshold of significance by dividing 0.01 by 4 to 
account for the 4 different comparisons.
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