
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Formal Verification of AI-Controlled Cyber-Physical Systems Using Polynomial
Approximations: Constraints Solver, Model Checkers, and Applications

Permalink
https://escholarship.org/uc/item/41t4b6w9

Author
Fatnassi, Wael

Publication Date
2024

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/41t4b6w9
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Formal Verification of AI-Controlled Cyber-Physical Systems Using Polynomial
Approximations: Constraints Solver, Model Checkers, and Applications

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Electrical and Computer Engineering

by

Wael Fatnassi

Dissertation Committee:
Associate Professor Yasser Shoukry, Chair

Associate Professor Aparna Chandramowlishwaran
Assistant Professor Yanning Shen

2024

© 2024 Wael Fatnassi

DEDICATION

To my wife, for her love, patience, and unwavering support
To my family for their endless encouragement.

To my dog Leo, whose joyful presence brought laughter into my days.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES vi

LIST OF TABLES x

LIST OF ALGORITHMS xi

ACKNOWLEDGMENTS xii

VITA xiii

ABSTRACT OF THE DISSERTATION xiv

I Using Machine Learning to Design Novel Solvers For Analyz-
ing Complex Cyber-Physical Systems 1

1 PolyAR: A Highly Parallelizable Solver For Polynomial Inequality Con-
straints Using Convex Abstraction Refinement 2
1.1 Introduction . 3
1.2 Problem Formulation . 5

1.2.1 Notation . 5
1.2.2 Main Problem . 5

1.3 Abstraction Refinement of Higher Order Polynomials Using Quadratic Poly-
nomials . 6

1.4 Algorithm Architecture . 8
1.4.1 Early Termination Using Conv Solver: 10
1.4.2 Abstraction Refinement Using Abst Refin: 13
1.4.3 Highly Parallelizable Analysis of Ambiguous Regions using Solver Parallel 17

1.5 Extension to SMT solving . 18
1.6 NUMERICAL RESULTS . 19

1.6.1 Static Output Feedback Controller Synthesis for Linear Time Invariant
Systems . 20

1.6.2 Non-Linear Controller Design for a Duffing Oscillator 23
1.6.3 Designing Switching Signals for Continuous-Time Linear

Switching Systems . 26

iii

2 PolyARBerNN: A Neural Network Guided Solver and Optimizer for Bounded
Polynomial Inequalities 31
2.1 Introduction . 32
2.2 Problem Formulation . 35

2.2.1 Notation: . 35
2.2.2 Main Problem: . 36

2.3 Convex Abstraction Refinement: Benefits and Drawbacks 37
2.3.1 Overview of Convex Abstraction Refinement 37
2.3.2 Drawbacks of Convex Abstraction Refinement 39

2.4 Neural Network Guided Convex Abstraction Refinement 40
2.4.1 On the relation between the NN architecture and the characteristics

of the polynomials: . 41
2.4.2 Bernstein Polynomials: A Robust Representation of Polynomials . . . 49

2.5 Taming the Complexity of Computing Bernstein Coefficients 51
2.5.1 Range Enclosure Property of Bernstein polynomials 52
2.5.2 Zero Crossing Estimation using only a few Bernstein Coefficients . . . 53
2.5.3 Search Space pruning using Bernstein Coefficients 54

2.6 Algorithm Architecture and Implementation Details 54
2.7 Generalization to polynomial optimization problems: 57
2.8 Numerical Results - NN Training . 60

2.8.1 Training data collection and pre-processing 61
2.8.2 NN’s evaluation . 62

2.9 Numerical Results - Scalability Results . 64
2.9.1 Scalability of PolyARBerNN against other SMT Solvers 64
2.9.2 Scalability of PolyARBerNN against other Bernstein-based solvers . . 66
2.9.3 Scalability of PolyAROpt against other solvers 67

2.10 Numerical Results - Use Cases . 68
2.10.1 Use Case 1: Nonlinear Controller Design for a Duffing Oscillator . . . 68
2.10.2 Use Case 2: Reachability analysis of a discrete polynomial dynamical

systems . 69

II Designing scalable Model Checkers to analyze correctness of
Deep Neural Networks 73

3 BERN-NN: Tight Bound Propagation For Neural Networks Using Bern-
stein Polynomial Interval Arithmetic 74
3.1 Introduction . 75
3.2 Problem Formulation . 77

3.2.1 Notation: . 77
3.2.2 Main Problem: . 78

3.3 Tight bounds of ReLU Functions Using Bernstein Polynomials 79
3.3.1 Over-Approximating ReLU functions using Bernstein Polynomials . . 81
3.3.2 Under-approximating ReLU functions using Bernstein polynomials . . 82

iv

3.3.3 Comparing Bernstein Approximation Against Widely Used Approxi-
mations . 84

3.4 Encoding Basic Bernstein Polynomial Operations Using Multi-Dimensional
Tensors . 85
3.4.1 Multi-dimensional tensor representation of Bernstein polynomials . . 86
3.4.2 Multiplication of two multi-variate Bernstein polynomials 87
3.4.3 Addition between two Bernstein polynomials 88

3.5 BERN-NN algorithm . 89
3.5.1 Propagating bounds through single neuron 90
3.5.2 Propagating the bounds through one layer 92
3.5.3 Mechanism of BERN-NN Polynomial Interval Arithmetic 93
3.5.4 GPU Implementation Details . 95

3.6 Numerical Results . 96
3.6.1 Ablation study . 97
3.6.2 Comparison against other tools . 102

4 BERN-NN-IBF: Enhancing Neural Network Bound Propagation Through
Implicit Bernstein Form and Optimized Tensor Operations 105
4.1 Introduction . 106
4.2 Neural Network Bound Propagation Using Bernstein Polynomials 107

4.2.1 Bernstein Polynomials: . 109
4.2.2 Interval Bound Propagation Using Bernstein Polynomials 109

4.3 Memory-Efficient Representation Of Bernstein Polynomials 112
4.4 Efficient Multiplication of Implicit Bernstein Polynomials 116

4.4.1 Monomial Bernstein Polynomial Multiplication 116
4.4.2 Multi-variate Bernstein polynomial Multiplication 117

4.5 Efficient Summation of Implicit Bernstein Polynomials 118
4.5.1 Monomial Bernstein Polynomial Summation 118
4.5.2 Multi-variate Bernstein Polynomial Summation 119

4.6 Optimal under-approximation of ReLU Functions Using Quadratic Polynomials120
4.7 Ablations . 121
4.8 Tools Comparison . 125

4.8.1 POLAR . 125
4.8.2 ACAS Xu . 128

4.9 GPU Algorithms for Bernstein Polynomial Extrema 128
4.9.1 Implicit Form Min-Max Computation 128
4.9.2 Quadrant-Constrained Min-Max Computation 130

4.10 Scaling BERN-NN-IBF Across Multiple GPUs 132
4.10.1 Distribution Strategy and Challenges 132
4.10.2 Strong Scaling Experiments . 132

Bibliography 134

Appendix A Proof of Optimal Under-approximation of ReLU 143

v

LIST OF FIGURES

Page

1.1 Abstraction Refinement of higher order polynomial using quadratic approxi-
mations: (top) first iteration and (bottom) second iteration. 8

1.2 Framework of PolyAR. 8
1.3 Polytopic under-approximation of a 2−dimensional ellipse sublevel set L−

0 (pj). PN

presents the under-approximate polytope inscribed in L−
0 (pj), and BN represents

the axis-aligned box of maximum volume inscribed in PN 14
1.4 Results of controlling the Duffing oscillator with different n (left) evolution of the

states x1(k) and x2(k) for the solvers in the state-space, (right) evolution of the

execution time of solvers during the 20 seconds. The timeout is equal to 1s. Tra-

jectories are truncated once the solver exceeds the timeout limit. 27
1.5 The trajectory that starts from an initial state x (0) = [40, 30]T and reaching

a final state x (3) ∈ Goal while avoiding the obstacles. The goal and the
obstacles are represented with a red and yellow rectangle, respectively. 28

2.1 Exemplary cases where abstracting higher order polynomial (black curves)
using convex approximations fails to provide helpful information: Top-Left:
under-approximation (green curve) is entirely negative and hence fails to iden-
tify any subsets of L+

0 (p). Top-Right: over-approximation (red curve) is
entirely positive and hence fails to identify subsets of L−

0 (p). Bottom: un-
der/over approximations failed to identify polynomials that are consistently
positive (left) or negative (right). 39

2.2 The architecture of the neural network NN(ap, In) used to prove the Theorem
2.2. 45

2.3 The architecture of the trained NN that is used to guide the abstraction
refinement process within PolyARBerNN. We used a fully connected NN that
contains an input layer with 4 neurons, three hidden layers with 40 neurons
each, and one output layer with three neurons. All neurons are ReLU-based
except for the output neurons which uses SoftMax non-linearity. 56

2.4 Percentage in reduction of the volume of ambiguous regions along with the
NN output number (the number is at the top of histograms) for 20 samples
for 6 evaluation benchmarks described in Table II. 62

vi

2.5 Scalability results of PolyARBerNN in the UNSAT case for 1, 5, and 10 con-
straints. (left) evolution of the execution time in seconds as a function of the
order of the polynomials, (right) evolution of the execution time in seconds as
a function of the number of variables. The timeout is equal to 1 hour.. . . . 65

2.6 Scalability results of PolyARBerNN for multivariate polynomial equation sys-
tem over the interval In = [−1, 1]n. (left) evolution of the execution time in
seconds as a function of the order of the polynomial with the number of vari-
ables n = 3. (right) evolution of the execution time in seconds as a function
of the number of variables with maximum order equal to 3. The timeout is
equal to 1 hour. 67

2.7 Scalability results of PolyAROpt for unconstrained optimization over the in-
terval In = [−1, 1]n. (left) evolution of the execution time in seconds as a
function of the polynomial order. (right) evolution of the execution time in
seconds as a function of the number of variables. The timeout is equal to 1
hour. 67

2.8 Results of controlling the Duffing oscillator with different n (left) evolution of
the states x1(k) and x2(k) for the solvers in the state-space, (right) evolution
of the execution time of solvers during the 12 seconds. The timeout is equal
to 60s. Trajectories are truncated once the solver exceeds the timeout limit. 69

2.9 Reachability computation for the FitzHugh-Nagumo neuron model. Left:
using PolyAROpt for number of steps K = 50. Center: using Sapo for
number of steps K = 50. Right: using Flowstar for number of steps K = 50. 70

2.10 The volume of the reachable set of states that are obtained using PolyAROpt,
Sapo, and Flowstar (left) FitzHugh-Nagumo, (center) Duffing oscillator, and
(right) Jet flight. 71

3.1 (Left) Bernstein polynomial approximations of ReLU activation for different
approximation’s order L ∈ {1, 2, 8, 16}, in the interval I1 (−6, 10) =

[
−6, 10

]
.

(Right) Bernstein polynomial approximations of ReLU and their associated
approximation errors for different approximation’s order L ∈ {1, 2, 8, 16} in
the interval I1 (−6, 10) =

[
− 6, 10

]
. 81

3.2 Illustrations of the over-approximation sets (shaded in gray) of the ReLU acti-
vation functions in the interval

[
−6, 10

]
using different approaches: Bernstein

approach (Left), triangulation approach (Center), and zonotope approach
(Right). Green (Red)-colored curves represent the over-approximation (under-
approximation) curves for every approach, respectively. Ai, i ∈ {1, 2, 3}, rep-
resents the over-approximation set’s area for every approach. 84

3.3 Mechanism of BERN-NN Polynomial Interval Arithmetic. 93
3.4 Effect of varying the ReLU’s order of approximation L for a NN architecture

[2, 20, 20, 1] on the execution time of our tool (top) and the relative volume
of the output set (bottom). We set n = 2, In = [−1, 1]n, and Lin = 0.
The weights and biases are generated randomly following uniform distribution
between −5 and 5. The reported results are generated for 50 experiments. . 98

vii

3.5 Effect of varying the input’s dimension n for a NN architecture [n, 20, 20, 1]
on the execution time our tool. We set L = 2, In = [−1, 1]n, and Lin = 0.
The weights and biases are generated randomly following uniform distribution
between −5 and 5. The reported results are generated for 50 experiments. . 99

3.6 Effect of varying the number of neurons per layer Ne for a NN architec-
ture [2, Ne, Ne, 1] on the execution time of our tool. We set n = 2, L = 2,
In = [−1, 1]n, and Lin = 0. The weights and biases are generated randomly
following uniform distribution between −5 and 5. The reported results are
generated for 50 experiments. 100

3.7 Effect of varying the number of hidden layers nh, for a NN architecture
[2, 20, .., 20, 1] with 20 neurons in every hidden layer on the execution time
of our tool. We set n = 2, L = 2, In = [−1, 1]n, and Lin = 0. The weights
and biases are generated randomly following uniform distribution between −5
and 5. The reported results are generated for 50 experiments. 101

3.8 Scalability of the Bern-NN tool as a function of increasing the total number
of neurons. 101

3.9 Performance results in terms of average execution times (sec) (left) and rela-
tive volume (right) for BERN-NN, SIA, and alpha-CROWN for different input
spaces. The NN’s architecture is [2, 20, 20, 1]. The ReLU’s order of approxima-
tion is L = 4, and Lin = 0. The weights and biases are generated randomly
following uniform distribution between −5 and 5. Input1 = In = [−5, 5]2,
Input2 = In = [−10, 10]2, Input3 = In = [−20, 20]2, Input4 = In = [−40, 40]2. 103

3.10 Performance results in terms of average execution times (sec) (left) and rela-
tive volume (right) for BERN-NN, SIA, and alpha-CROWN for input’s dimen-
sions n. The NN’s architecture is [n, 20, 20, 1]. the input’s space is [−10, 10]n.
The ReLU’s order of approximation is L = 4, Lin = 0. The weights and
biases are generated randomly following uniform distribution between −5 and
5. dim1 = n = 2, dim2 = n = 3, dim3 = n = 4. 103

4.1 Illustrations of the over/under-approximation of the ReLU activation func-
tions in the interval

[
− 6, 10

]
using different approaches: Higher-order poly-

nomials (Left), triangulation (Center), and zonotope (Right). The area of
the shaded set A1, A2, A3 represents the approximation error for each of the
approaches (chapter 3) [36]. 107

4.2 BERN-NN propagates the interval bounds using the dense representation of
Bernstein polynomials (chapter 3) [36]. 112

4.3 (a) State-of-the-art over- and under-approximations of ReLU functions σ (x) us-

ing high-order polynomials. (b) Proposed optimal over- and under-approximation

of ReLU functions σ (x). The figure shows the area between the two curves A,

indicating the approximation error. 121
4.4 Execution time vs. hidden dimension. 122
4.5 Volume vs. hidden dimension. 123
4.6 Execution time vs. total number of layers. 123
4.7 Volume vs. total number of layers. 124

viii

4.8 Execution time vs. the total number of neurons. Each layer has 100 neurons
and we successively add one layer. 124

4.9 Execution time vs. total number of layers. 125
4.10 Volume vs. total number of layers. 125
4.11 We compare the execution time and relative volume as a function of the

model’s hidden dimension. The time and volume reported are the averages of
10 trials on randomized models. We find that BERN-NN-IBF strikes a good
balance between performance and tightness. 126

4.12 We compare the execution time and relative volume as a function of the
models inptu dimension. Again, we see that BERN-NN-IBF is fast and able
to provide tight bounds. 127

4.13 Average Execution time of Crown and BERN-NN-IBF on the ACAS Xu
benchmark. Error bars represent the standard deviation. 129

4.14 Average bound of five neurons across 10 specifications from the ACAS Xu
benchmark. 129

4.15 Strong Scaling up to eight Nvidia A100 GPUs. We use a fixed model with
an input dimension of five, two hidden layers with 100 neurons each, and an
output dimension of one. The dashed line represents the ideal strong scaling.
The red crosses are the average runtime of 20 trials with the corresponding
GPU count. We found that the 95% confidence intervals of the mean runtimes
are all within 5% of the mean, so we exclude them from the plot. 133

ix

LIST OF TABLES

Page

2.1 Evaluation of three trained neural networks on three different benchmarks for
the different polynomial basis. Each benchmark has 10000 samples. The coef-
ficients of the polynomial within each basis are generated following a uniform
distribution given in the table. 51

2.2 Evaluation of the trained NN on the six different benchmarks. 63

3.1 The area of the over-approximation set of the ReLU activation functions in
the interval

[
− 6, 10

]
using different Bernstein approach for different approx-

imation order L. 84
3.2 Performance results in terms of average execution times and volume for BERN-

NN, SIA, alpha-CROWN, and POLAR, for 5 different input’s spaces In
(
d, d
)

for 6 benchmarks [53]. The ReLU’s order of approximation is L = 2, Lin = 0. 103

4.1 POLAR Benchmark Model sizes . 127
4.2 Performance results for execution time and volume for Sia, alpha-CROWN,

BERN-NN, and BERN-NN-IBF. These results are the average of five hyper-
rectangles with radius r ∈ {1, 1.5, 2, 2.5, 3} for each of the six POLAR bench-
marks. Sia is the fastest model, but provides relatively loose bounds. BERN-
NN-IBF is always the second fastest model, but consistently provides some of
the tightest bounds. All times are reported in seconds. 127

x

LIST OF ALGORITHMS

Page
1 PolyAR(F) . 11
2 Conv Solver (Neg,List pols) . 13
3 Abst Refin (Neg, pj) . 16
4 Solver Parallel (Ambig, Pm) . 17
5 PolyARBerNN . 55
6 PolyAROpt . 59
7 BERN-NN Algorithm for Neural Network Bound Propagation 112
8 Quadratic Coefficients for ReLU Under-approximation 122
9 Computing the Extrema of a Bernstein Polynomial in Implicit Form 131

xi

ACKNOWLEDGMENTS

I am profoundly thankful for the guidance, support, and trust bestowed upon me by my
advisor, Prof. Yasser Shoukry. He accepted me into the Ph.D. program, believed in my
potential, and provided invaluable advice across technical, professional, and personal realms.
His mentorship has been a cornerstone of my journey, shaping me into the researcher and
individual I am today.

My gratitude extends to my committee members, Prof. Aparna Chandramowlishwaran
and Prof. Yanning Shen. Their insightful feedback and rigorous review of my work have
significantly contributed to its depth and quality.

I am also indebted to my colleagues at the Resilient Cyber-Physical Systems Lab. Special
thanks to Ulices Santa Cruz Leal, Haitham Khedr, Momina Sajid, James Ferlez, Kohei
Tsujio, Mahmoud ElFar, Goli Vaisi, and Jaejeong Park for sharing this journey and for the
camaraderie that has made this experience truly enriching.

Above all, my deepest gratitude is for my family, whose unconditional love and unwavering
support have been my bedrock. Their faith in me through every high and low has been the
light guiding me forward. I am because of them.

xii

VITA

Wael Fatnassi

Ph.D. degree in Electrical and Computer Engineering 2024
University of California, Irvine

Research and Teaching Assistant 2019–2024
University of California, Irvine

Winter Internship Winter 2024
HRL Laboratories

Master of Science in Electrical Engineering 2017–2019
University of Idaho

Graduate and Professional Student Association (GPSA) Award 2018
University of Idaho

Summer Research Internship Summer 2018
Idaho National Laboratory (INL)

Bachelor of Science in Telecommunication Engineering 2013–2016
Higher School of Communications (Sup’Com)

Engineering Internship Summer 2016
HTWK Leipzig

Deutscher Akademischer Austauschdienst (DAAD) Scholarship 2016
HTWK Leipzig

xiii

ABSTRACT OF THE DISSERTATION

Formal Verification of AI-Controlled Cyber-Physical Systems Using Polynomial
Approximations: Constraints Solver, Model Checkers, and Applications

By

Wael Fatnassi

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Irvine, 2024

Associate Professor Yasser Shoukry, Chair

The last decade’s advancement in machine learning (ML) for controlling cyber-physical sys-

tems has heralded a new era in autonomous technology, driving innovations from self-driving

cars to smart infrastructure. However, these systems often grapple with challenges related

to safety, reliability, and the ability to generalize across different scenarios. This disser-

tation aims to bridge the gap between the scalability and flexibility of ML-based control

systems and the rigorous safety and reliability guarantees provided by formal methods and

control theory. It introduces novel methodologies that leverage machine learning to enhance

the design, verification, and optimization of AI-controlled cyber-physical systems, ensuring

they meet high-level specifications while managing such systems’ inherent complexity and

non-linearity.

The contributions of this thesis are multi-fold. 1) We proposed a highly efficient and paral-

lelizable solver called PolyAR, which aims to solve general multivariate polynomial inequality

constraints. PolyAR uses convex polynomials as an abstraction for highly nonlinear poly-

nomials. Such abstractions were previously shown to be powerful to prune the search space

and restrict the usage of sound and complete solvers to small search space. We compared

the scalability of PolyAR against state-of-the-art solvers such as Z3 8.9 and Yices 2.6 on

xiv

complex design and verification problems. The experiment results show that the PolyAR

solver drastically outperformed Z3 8.9 and Yices 2.6 regarding execution time. 2) We de-

veloped PolyARBerNN, an enhancement to PolyAR that employs neural networks (NN) to

guide the abstraction refinement procedure that helps to select the right abstraction out

of a set of pre-defined abstractions and a Bernstein polynomial-based search space pruning

mechanism. These enhancements together made PolyARBerNN capable of solving complex

instances and scaling more favorably compared to the state-of-the-art nonlinear real arith-

metic solvers while maintaining the soundness and completeness of the resulting solver. In

addition, we proposed an efficient optimizer called PolyAROpt that transforms polynomial

objective functions into polynomial constraints (on the gradient of the objective function)

whose solutions are guaranteed to be close to the global optima. PolyAROpt optimizer uses

PolyARBerNN to solve constrained polynomial optimization problems. Numerical results

show that PolyAROpt can solve high-dimensional and high-order polynomial optimization

problems faster than the built-in optimizer in the Z3 8.9 solver. 3) We proposed an effi-

cient algorithm called BERN-NN that employs polynomial interval arithmetic, where tight

over/under approximations of the NN’s activation functions are computed using Bernstein

polynomials. These polynomials have several interesting mathematical proprieties. One par-

ticular property is called the sharpness propriety, which allows us to obtain extremely tight

bounds that are tighter than those currently exist in the literature (e.g., interval arithmetic,

crowns, linear programming, and many centered forms). Moreover, we exploited the math-

ematical proprieties of Bernstein polynomials to convert the proposed polynomial interval

arithmetic operations into add-and-multiply operations, which are easily implemented using

GPUs. Thanks to those GPUs, our tool’s execution time is drastically reduced. Experimen-

tal results show that our method approximates NN’s outputs tighter than state-of-the-art

NN verification tools by several orders of magnitude. 4) We proposed BERN-NN-IBF, a

significant enhancement of the Bernstein-polynomial-based bound propagation algorithms.

BERN-NN-IBF offers three main contributions: (i) a memory-efficient encoding of Bernstein-

xv

polynomials to scale the bound propagation algorithms, (ii) optimized tensor operations for

the new polynomial encoding to maintain the integrity of the bounds while enhancing com-

putational efficiency, and (iii) tighter under-approximations of the ReLU activation function

using quadratic polynomials tailored to minimize approximation errors. Through compre-

hensive testing, we demonstrate that BERN-NN-IBF achieves tighter bounds and higher

computational efficiency than the original BERN-NN and state-of-the-art methods, includ-

ing linear programming and convex used within the winner of the VNN-COMPETITION.

xvi

Part I

Using Machine Learning to Design

Novel Solvers For Analyzing Complex

Cyber-Physical Systems

1

Chapter 1

PolyAR: A Highly Parallelizable

Solver For Polynomial Inequality

Constraints Using Convex

Abstraction Refinement

This chapter presents PolyAR, a highly parallelizable solver for polynomial inequality con-

straints. PolyAR provides several key contributions. First, it uses convex relaxations of the

problem to accelerate the process of finding a solution to the set of the non-convex multi-

variate polynomials. Second, it utilizes an iterative convex abstraction refinement process

which aims to prune the search space and identify regions for which the convex relaxation

fails to solve the problem. Third, it allows for a highly parallelizable usage of off-the-shelf

solvers to analyze the regions in which the convex relaxation failed to provide solutions. We

compared the scalability of PolyAR against Z3 8.9 and Yices 2.6 on control designing prob-

lems. Finally, we demonstrate the performance of PolyAR on designing switching signals for

continuous-time linear switching systems.

2

1.1 Introduction

Advances in constraints programming have opened several venues for control system syn-

thesis and verification of hybrid systems. For instance, linear programming and convex

optimization are heavily used in a multitude of control system design and analysis tools.

Recent surveys [39, 76] showed that such numerical tools had changed the control system

design philosophy.

Nevertheless, linear and convex programming are limited in their ability to problems with

specific structures. In several hybrid system design and verification problems, constraints are

neither linear nor convex. This calls for efficient solvers that can reason about general multi-

variate polynomial constraints. In that regard, Cylindrical Algebraic Decomposition (CAD)

has long been one of the most influential algorithms capable of solving general multivariate

polynomial constraints. The first CAD algorithm was introduced by [21]. However, the use

of CAD is often limited by the number of variables in the input polynomials, a reflection

of its worst-case complexity that grows in a doubly exponential fashion in the number of

variables [31].

To alleviate the CAD’s doubly exponential issue, we introduce PolyAR, a highly paral-

lelizable solver that uses convex programming and abstraction refinement to solve general

multivariate polynomial inequality constraints. The main novel contributions of this chapter

can be summarized as follows:

1. We propose PolyAR, a highly parallelizable solver that uses a combination of convex

programming and abstraction refinement to solve multivariate polynomial inequality

constraints.

2. PolyAR uses a novel convex abstraction refinement process where the original problem

is iteratively relaxed into a series of convex programming problems with the aim to find

3

the solution and prune the search space. Second, it refines such abstraction where it

becomes tighter with each iteration of the algorithm. Finally, it examines in parallel all

the identified small volume regions left from the abstraction using off-the-shelf solvers

(e.g., Z3 and Yices) to search for a solution in these regions.

3. We validate our approach by comparing the scalability of the proposed PolyAR solver

with respect to the latest versions of state-of-art non-linear real arithmetic solvers, such

as Z3 8.9 and Yices 2.6, on synthesizing stabilizing static output feedback controller

(SOF) for linear time-invariant (LTI) continuous systems and designing non-parametric

controller for the non-linear Duffing oscillator.

4. We demonstrate the performance of PolyAR on the problem of designing switching

signals for continuous-time linear switching systems.

The remainder of the chapter is organized as follows: After the problem formulation in Sec-

tion 1.2, we present the abstraction refinement of higher order polynomials using quadratic

polynomials in Section 1.3. In Section 1.4, we introduce the the algorithm architecture of

PolyAR. In Section 1.5, we provide the extension of multivariate polynomial constraints to a

Satisfiability Modulo Theory (SMT) solving. Experimental results are given in Section 1.6.

Related work: The original CAD algorithm that was introduced by [21] was the first algo-

rithm that solves general polynomial inequality constraints. However, due to Collins CAD’s

high time complexity, there have been improvements to this algorithm. [52] proposed an

improvement of the projection operator in Collins CAD. However, the execution time of the

modified version of the algorithm is still limited by the number of variables. [68] introduced a

new projection operator which is a subset of Hong projection operator, removing redundant

polynomials. However, McCallum proved that lifting over a sign-invariant CAD with this

projection set is not sufficient to guarantee sign-invariance which makes the algorithm prone

to error. The ABsolver tool proposed by [9] leverages a generic nonlinear optimization tool

4

for solving non-linear constraints. However, generic optimization tool may produce incom-

plete results, and possibly incorrect, due to the local nature of the solver. [23] introduced

Z3 which is another solver that implements an efficient nonlinear real arithmetic solver, that

provide support for nonlinear polynomial arithmetic. However, it is still affected a lot by

the increase in the number of variables in the polynomials. Because of the high complexity

of existing approaches, we propose a highly parallelizable, efficient, and complete solver that

uses the advantage and the simplicity of convex optimizations and abstraction refinement

to solve higher order polynomial inequality constraints. To the best of our knowledge, this

approach is new and has not been highlighted before.

1.2 Problem Formulation

1.2.1 Notation

We denote by x =
(
x1, x2, · · · , xn

)
∈ Rn the set of real-valued variables, where xi ∈ R. We

denote by In =
[
d1, d1

]
×· · ·×

[
dn, dn

]
⊂ Rn the n-dimensional region. We denote the space

of polynomials with n variables and coefficients in R by R[(x1, x2, · · · , xn)]. We denote by

∧ the Boolean conjunction. A set of the form L−
0 (f) = {

(
x1, · · · , xn

)∣∣f(x1, · · · , xn

)
≤ 0}

(L+
0 (f) = {

(
x1, · · · , xn

)∣∣f(x1, · · · , xn

)
≥ 0}) is called zero sublevel (superlevel) set of f ,

respectively.

1.2.2 Main Problem

In this chapter, we focus on polynomial inequality constraints with input ranges as closed

boxes which are described in the following definition:

Definition 1.1. A polynomial inequality constraint F = In ∧ Pm consists of:

5

• a set of interval constraints:

In =
n∧

i=1

xi ∈ [di, di], (1.1)

• a polynomial constraint:

Pm =
m∧
i=1

pi (x1, · · · , xn) ≤ 0, (1.2)

where pi (x) = pi (x1, · · · , xn) ∈ R[(x1, x2, · · · , xn)] is a polynomial over variables x1, · · · , xn.

Without loss of generality,
m∧
i=1

pi
(
x
)
≥ 0 and

m∧
i=1

pi (x) = 0 can be encoded in constraint

number (1.2).

We are now in a position to state the problem that we will consider in this chapter.

Problem 1.1. ∃x = (x1, · · · , xn) subject to F = In ∧ Pm.

1.3 Abstraction Refinement of Higher Order Polyno-

mials Using Quadratic Polynomials

Traditional techniques for solving Problem 1.1 focus on finding all the n roots of the m poly-

nomials and check all the regions between two successive roots to assign a positive/negative

sign for each of these regions. Therefore, solving Problem 1.1 is known to be a doubly com-

binatorial problem in n with a total running time that is bounded by (md)2
n

[31], where d

is the maximum degree among polynomials in Pm.

In problems that are doubly exponential in the input space n, it is beneficial to isolate subsets

of the search space in which the solution is guaranteed not to exist. Recall that Problem 1.1

asks for an x in Rn for which all the polynomials are negative. Therefore, a solution does not

6

exist in subsets of Rn at which one of the polynomials is always positive. Similarly, isolating

regions of the input space for which some of the polynomials are negative is also beneficial

to finding the solution faster.

Our tool’s main novelty is to use “convex abstractions” of the polynomials to find subsets

of L+
0 (p) and L−

0 (p) efficiently. Indeed such “abstractions” may not be able to identify

all regions for which the polynomial is positive or negative, which calls for an “abstraction

refinement” process in which these “convex abstractions” become tighter with each iteration

of the algorithm.

Figure 2.1(top) visualizes the proposed abstraction refinement process. Starting from a

polynomial p(x) ∈ R[x] and an interval In ⊂ Rn, we compute two quadratic polynomials:

Op
1(x) ≥ p(x), Up

1 (x) ≤ p(x), ∀x ∈ In,

where O and U stands for Over-approximate and Under-approximate quadratic polynomials,

respectively, and the subscript in Op
1(x) and Up

1 (x) encodes the iteration index of the abstrac-

tion refinement process. Computing such upper and lower abstractions can be carried out

efficiently using Taylor approximation. Please refer to the example depicted in Figure 2.1

(top) for a visualization of Op
1(x) and Up

1 (x) for one dimensional higher order polynomial

(order ≥ 3) defined in the closed interval [d, d] ⊂ R.

It is clear from Figure 2.1(top) that the abstractions Op
1(x) and Up

1 (x) fails to identify

all subsets of L−
0 (p) and L+

0 (p). Therefore, the next step is to compute tighter over and

under approximations of p(x). Such a refinement process can be carried out by removing

the zero superlevel and the zero sublevel sets, i.e., L+
0 (Up

1) and L−
0 (Op

1), identified using

the previous abstraction and computing new over and lower approximation, as shown in

Figure 2.1(bottom). The process of abstraction refinement can continue until the remaining

subsets of the search space, in which case we call them ambiguous regions, and with some

7

Figure 1.1: Abstraction Refinement of higher order polynomial using quadratic approxima-
tions: (top) first iteration and (bottom) second iteration.

Figure 1.2: Framework of PolyAR.

abuse of notation, denoted them by L
+/−
0 (p), are small enough to be analyzed using off-the-

shelf solvers. More details about the proposed abstraction refinement process are given in

the next section.

1.4 Algorithm Architecture

In this section, we describe the different steps used by our solver PolyAR to solve Problem

1.1.

8

Our design methodology for the PolyAR tool aims to reduce the number of the required

abstraction refinement and tries to find a solution early on in the process. To that end,

the tool starts by computing a set of convex (quadratic or linear) polynomials Opi
0 (x), i =

1, . . . ,m, that over approximate the original polynomials. The next step is to solve a convex

feasibility problem aiming to find a solution that satisfy the constraints:

∃x = (x1, . . . , xn) s.t. Opi
0 (x) ≤ 0, i = 1, . . . ,m.

Indeed, if such a convex problem is feasible, the tool terminates and returns the solution

found by the convex feasibility problem above (Conv Solver, Line 5 in Algorithm 1). If not,

then the tool selects one polynomial pj (Select Poly, Line 10) to perform the abstraction

refinement process. Indeed, several heuristics can be applied to select which polynomial

will be selected. In the PolyAR tool, we opt-out to select the polynomial with the highest

Lipschitz constant. Our intuition is that the higher the Lipschitz constant, the harder to

obtain a tight over-approximation that can be used to find the solution.

Once a polynomial pj is selected, the next step is to apply the abstraction refinement process

on pj (Abst Refin, Line 11 in Algorithm 1). The objective of the abstraction refinement

process is to identify subsets of the positive regions L+
0 (pj) and negative regions L−

0 (pj).

Indeed, such abstraction refinement may not be able to identify all positive and negative

regions, and hence a remaining portion of the search space may not be identified to belong

to either L+
0 (pj) or L−

0 (pj) in which case it belongs to the ambiguous region L
+/−
0 (pj).

The abstraction refinement process of the polynomial pj ensure that the volume of such

ambiguous regions are below a certain user defined threshold.

The process of using the convex solver to find the solution and abstracting one polynomial

continues. Since a solution of Problem 1.1 needs to lie in a negative region for all the poly-

nomials, we confine the tool attention to the negative regions identified by the abstraction

9

refinement in the previous iterations (Line 16 in Algorithm 1) to accelerate the process of

searching for the solution.

While excluding the positive regions identified in previous iterations does not affect the tool

(since a solution is guaranteed not to exist in such regions), excluding the ambiguous regions

from the next iterations may affect the correctness of the tool. Therefore, the last step in

the PolyAR tool is to examine all the identified ambiguous regions using off-the-shelf solvers

(e.g., Z3 and Yices) to search for a solution in these regions (Solver Parallel, Line 20

in Algorithm 1). Because the volume of these ambiguous regions is smaller than a user-

defined threshold, the execution time of running off-the-shelf tools on such small volume

regions is shorter than solving the original problem. This reflects that the number of roots

for each polynomial is limited in small regions. Moreover, searching for a solution in these

ambiguous regions can be highly parallelized, leading to an extra level of efficiency. This

process is summarized in Algorithm 1 and Figure 1.2. We describe in detail each block

algorithm that constitutes Algorithm 1 in the next subsections.

1.4.1 Early Termination Using Conv Solver:

The objective of the Conv Solver (Algorithm 2) is to search for a solution to Problem 1

using the information of (i) a set of closed convex regions Neg identified by the previous

iterations of the abstraction refinement process and (ii) a list of polynomials (List pols) that

have not yet been processed by the abstraction refinement process.

Our approach is to compute a convex over-approximation of the polynomials in List pols

using Taylor approximation. To that end, we recall the definition of Taylor polynomials:

Definition 1.2. Let f : Rn → R be two times differentiable in open interval around a point

a ∈ Rn, then f (x) can be written in terms of first and second order Taylor polynomials ,

10

Algorithm 1 PolyAR(F)

Input: F = In ∧ Pm

Output: STATUS, xSol

1: Neg = {In}
2: Ambig = {}
3: List pols = {p1, . . . , pm}
4: while List pols ̸= ∅ do
5: xSol := Conv Solver (Neg,List pols)
6: if xSol ̸= None then
7: STATUS=SAT
8: return STATUS, xSol

9: end if
10: pj = Select Poly (List pols)

11: L−
0 (pj) , L

+
0 (pj) , L

+/−
0 (pj)

:= Abst Refin (Neg, pj)

12: Ambig.add
(
L
+/−
0 (pj)

)
13: if L−

0 (pj) == ∅ then
14: break
15: end if
16: Neg = L−

0 (pj)
17: List pols = List pols \ pj
18: end while
19: if List pols ̸= ∅ then
20: STATUS, xSol := Solver Parallel (Ambig, Pm)
21: return STATUS, xSol

22: else
23: STATUS=SAT
24: xSol = center (Neg)
25: return STATUS, xSol

26: end if

11

T1 (x) and T2 (x), around the neighborhood of a, as follows:

f (x) = (x− a)T Df (a) +R1 (c1)

= T1 (x) +R1 (c1) , (1.3)

f (x) = (x− a)T Df (a)

+
1

2
(x− a)T Hf (a) (x− a) +R2 (c2)

= T2 (x) +R2 (c2) , (1.4)

where T1 (x) = (x− a)T Df (a) and T2 (x) = (x− a)T Df (a) +
1
2
(x− a)T Hf (a) (x− a).

Df (a) and Hf (a) denote the Gradient vector and the Hessian matrix of f at the point a.

R1 (c1) and R2 (c2) are reminders that depend on a and two points c1 ∈ Rn and c2 ∈ Rn that

are located in the neighborhood of a. We upper-bound R1 (c1) and R2 (c2) by M1 ∈ R+ and

M2 ∈ R+, i.e., |R1 (c1)| ≤M1 and |R2 (c2)| ≤M2. Hence:

T1(x)−M1 ≤ f(x) ≤ T1(x) +M1, T2(x)−M2 ≤ f(x) ≤ T2(x) +M2.

Next, we check the convexity of the obtained second Taylor approximation and use it to

compute the over-approximation function Opi whenever it is convex (Line 4 in Algorithm 2).

Otherwise, we use the first Taylor approximation instead (Line 6 in Algorithm 2). Finally,

for each region in the set of negative regions (Neg), we solve the following convex feasibility

problem:

xSol := argmin
x∈region

1 s.t. Opi (x) ≤ 0, i ∈ List pols. (1.5)

12

Algorithm 2 Conv Solver (Neg,List pols)

Input: Neg, List pols
Output: xSol

1: for region ∈ Neg do
2: for i ∈ List pols do
3: if Taylorover (pi (x) , 2) is convex then
4: Opi (x) = Taylorover (pi (x) , 2)
5: else
6: Opi (x) = Taylorover (pi (x) , 1)
7: end if
8: end for
9: xSol := argmin

x∈region
1 s.t. Opi (x) ≤ 0 (see eq. (1.5)))

10: return xSol

11: end for

1.4.2 Abstraction Refinement Using Abst Refin:

Given the set of negative regions Neg identified by the previous abstraction refinement

process along with the polynomial pj selected by the Select Poly algorithm, the objective

of the Abst Refin algorithm is to find subsets of the zero sublevel sets of pj that lie inside

Neg. The output of this algorithm are subsets of L−
0 (pj) and L+

0 (pj). The remainder of Neg

is then considered to be part of the ambiguous regions L
+/−
0 (pj). To do so, for every region

in Neg, the tool initiates a list of ambiguous regions List Ambig reg, which will contain all

the ambiguous regions from the abstraction refinement (Line 4 in Algorithm 3). Next, it

selects one element from these ambiguous regions (Line 5 in Algorithm 3) and performs the

abstraction refinement on this region iteratively until the volume of the remaining ambiguous

region is smaller than a user-defined threshold (Line 6 in Algorithm 3). During the iterative

abstraction refinement, all the identified zero sublevel and superlevel subsets are stored in

the sets L−
0 (pj) and L+

0 (pj), respectively.

While the zero sublevel (superlevel) sets of the quadratic over-approximation (under-approxi

mation) are ellipsoid or hyperboloid in general, we opt to represent all the subsets of L−
0 (pj)

13

and L+
0 (pj) as n−dimensional hypercubes. This choice reflects the fact that off-the-shelf

solvers (e.g., Z3 and Yices) can exploit the geometry of hypercubes to accelerate their com-

putations. The process of finding these hypercubes can be summarized as follows:

1. Step 1: Compute the largest polytope inside the ellipsoid or hyperboloid represent-

ing the zero sublevel (superlevel) sets of the quadratic over-approximation (under-

approximation) of pj. To that end, we use a set of user-defined templates for the

polytope.

2. Step 2: The previous step uses user-defined templates to find the polytope, such

templates may fail and return an infeasible solution. In such scenarios, we split the

ambiguous region into two (along the longest dimension) until a polytope is found.

3. Step 3: Finally, we under approximate the computed polytope with hypercubes.

This process is visualized in Figure 1.3. The details of each of these steps are given in the

following subsections.

Figure 1.3: Polytopic under-approximation of a 2−dimensional ellipse sublevel set L−
0 (pj). PN

presents the under-approximate polytope inscribed in L−
0 (pj), and BN represents the axis-aligned

box of maximum volume inscribed in PN .

14

Step 1: Computing the largest polytope subset of L−
0 (pj) and L+

0 (pj)

Given the over-approximation Opj computed using Taylor polynomials (detailed in Section

4.1) and a convex ambiguous region (Ambig reg), we start by computing a set of n + 1

vertices vN1 , . . . , vNn+1 that are inscribed in the ambiguous region Ambig reg. Each vertex

can be computed by solving the following convex optimization problem:

vNi = argmin
vi∈Ambig reg

(
lTi vi

)
s.t. Opj(vi) ≤ 0, (1.6)

where li is a user defined normal vector (or template) (see Figure 1.3 for graphical repre-

sentation of such normal vectors). Using these vertices, we can obtain the polytope PN

as:

PN = Convex Hull
(
vN1 , . . . , vNn+1

)
.

Thanks to the constraints in the optimization problem (1.6) along with the convexity of

L−
0 (pj), it is direct to conclude that the polytope PN satisfy PN ⊂ L−

0 (pj). We compute the

polytope PP ⊂ L+
0 (pj) in a similar fashion using the under-approximation Upj (Line 23 in

Algorithm 3).

Step 3: Under approximate the polytopes with axis aligned boxes:

To compute the largest axis-aligned hypercube BN inscribed inside the polytope PN , we

solve the following convex optimization problem [10]:

argmax
(lN1 ,uN

1 ,...,lNn ,uN
n)∈R2n

n∑
k=1

log
(
uN
k − lNk

)
s.t.

n∑
k=1

(
pN,+
ik uN

k − pN,−
ik lNk

)
≤ cNi , i = 1, · · · , np, (1.7)

15

Algorithm 3 Abst Refin (Neg, pj)

Input: Neg, pj
Output: L−

0 (pj), L
+
0 (pj), L

+/−
0 (pj)

1: L−
0 (pj) = { }, L+

0 (pj) = { }, L+/−
0 (pj) = { }

2: for region ∈ Neg do
3: verticesN = { }, verticesP = { }
4: List Ambig reg = {region}
5: Ambig reg = Select region (List Ambig reg)
6: while Volume (Ambig reg) > Volthreshold do
7: List Ambig reg = List Ambig reg \ Ambig reg
8: for i ∈

(
1, · · · , n+ 1

)
do

9: vNi = argmin
vi∈Ambig reg

(
lTi vi

)
s.t. Opj(vi) ≤ 0.

10: if vNi ̸= None then
11: verticesN .add

(
vNi
)

12: end if
13: vPi = argmin

vi∈Ambig reg

(
lTi vi

)
s.t. Upj(vi) ≤ 0.

14: if vPi ̸= None then
15: verticesP .add

(
vPi
)

16: end if
17: end for
18: if

(
verticesN == ∅ and verticesP == ∅

)
then

19: Ambig reg1, Ambig reg2
:= Half Div (Ambig reg)

20: List Ambig reg.add (Ambig reg1, Ambig reg2)
21: else if

(
verticesN ̸= ∅ and verticesP ̸= ∅

)
then

22: PN = Convex Hull
(
verticesN

)
23: PP = Convex Hull

(
verticesP

)
24: BN = Box

(
PN
)
; BP = Box

(
PP
)

25: L−
0 (pj) .add

(
BN
)
; L+

0 (pj) .add
(
BP
)

26: Ambig reg = Ambig reg \
(
BN ∪ BN

)
27: List Ambig reg.add

(
Ambig reg

)
28: end if
29: Ambig reg = Select region (List Ambig reg)
30: end while
31: L

+/−
0 (pj) .add (List Ambig reg)

32: end for
33: return L−

0 (pj), L
+
0 (pj), L

+/−
0 (pj)

where (lN1 , u
N
1 , . . . , l

N
n , u

N
n) ∈ R2n is the representation of the box BN with (lk, uk) is the

lower/upper limit of the box in the kth dimension, pN,+
ik = max{pNik, 0}, p

N,−
ik = max{−pNik, 0},

16

Algorithm 4 Solver Parallel (Ambig, Pm)

Input: Ambig, Pm

Output: STATUS, xSol

1: The tool runs off-the-shelf solvers such as Z3 or Yices on small-volume ambiguous regions
in Ambig in parallel:

2: STATUS, xSol := Z3/Yices Parall (Ambig, Pm)
3: return STATUS, xSol

and pNik, c
N
i are the rows of the half-space matrix/vector representation of the polytope PN .

1.4.3 Highly Parallelizable Analysis of Ambiguous Regions using

Solver Parallel

Once all the ambiguous regions are identified, the next step is to analyze all of them using

off-the-shelf solvers. In particular, PolyAR supports the use of the latest versions Z3 8.9 and

Yices 2.6 solvers. Thanks to the fact that all the ambiguous regions are hypercubes, both

these solvers can exploit the geometry of the region to accelerate their computations. Also,

thanks to the fact that the volume of all ambiguous regions is lower than a user-defined

threshold, the CAD algorithm can run efficiently. To that end, PolyAR tool runs multiple

instances of Z3 or Yices to analyze all these ambiguous regions in parallel as summarized in

Algorithm 4.

17

1.5 Extension to SMT solving

We extend the PolyAR solver described in the previous sections to account for combinations

of Boolean and Polynomial inequality constraints of the form:

∃(b1, . . . , bo, x1, . . . , xn) ∈ Bo × Rn,

subject to:

pi(x1, . . . , xn) ≤ 0, i = 1, . . . ,m (1.8)

xk ∈ [dk, dk], k = 1, . . . , n (1.9)

φj(b1, . . . , bo) ←→ TRUE, j = 1, . . . , r (1.10)

bl ←→
(
pl+m(x1, . . . , xn) ≤ 0

)
, l = 1, . . . , h (1.11)

where φj(b1, . . . , bo) is any combinations of Boolean and pseudo-Boolean predicates.

We can create a Satisfiability Modulo Theory (SMT) solver by combining a SAT solver

for Boolean and pseudo-Boolean constraints and a theory solver (PolyAR) for interval and

polynomial constraints on real numbers by following the lazy SMT paradigm [7]. The SAT

solver solves the combination of Boolean and pseudo-Boolean constraints using the David-

Putnam-Logemann-Loveland (DPLL) algorithm and suggests satisfying assignments for the

Boolean variables b and thus suggesting which polynomial constraints should jointly satisfied

(or unsatisfied). The theory solver (PolyAR) checks the validity of the given assignments

and provides an explanation of the conflict, i.e., an UNSAT certificate, whenever a conflict

is found. Each certificate is a new Boolean constraint that will be used by the SAT solver

to prune the search space.

While in the lazy SMT paradigm, the PolyAR solver needs to be executed multiple times

with a different set of polynomial constraints, we modify the PolyAR solver to perform all

the abstraction refinement for all the polynomials as a pre-processing step. This eliminates

18

the need to re-compute the same abstraction refinement every time the PolyAR solver is

executed.

Whenever the SAT solver assigns one of the Boolean variables bl in (1.11) to zero, then the

PolyAR solver needs to guarantee that the corresponding polynomial pl+m satisfy pl+m(x) >

0 or equivalently −pl+m(x) ≤ 0. To eliminate the need to apply the convex abstraction

refinement process for both pl+m(x) and −pl+m(x), the PolyAR solver computes the negative

and positive boxes (BN and BP) only for pl+m(x) and flips their usage for −pl+m(x).

1.6 NUMERICAL RESULTS

In this section, we compare the performance of PolyAR to the state-of-the-art solvers Z3 8.9

and Yices 2.6. The objective of this comparison is to study the performance on:

• Problems that appear naturally in parametric controller synthesis. In particular, we

focus on the problem of designing stabilizing SOF controllers for LTI systems [4].

• Problems that appear in non-parametric controller synthesis for non-linear systems. In

particular, we focus on the problem of designing a controller for the nonlinear Duffing

oscillator [42].

• Additionally, we demonstrate the performance of PolyAR on designing a hybrid switch-

ing system; a problem which state-of-the-art tools are incapable of handling.

All the experiments were executed on an Intel Core i7 2.6-GHz processor with 16 GB of

memory.

19

1.6.1 Static Output Feedback Controller Synthesis for Linear Time

Invariant Systems

In this subsection, we assess the scalability of the PolyAR solver compared to state-of-the-art

solvers on control synthesis problems. In particular, we consider the problem of synthesizing

a parametric controller for the following continuous LTI system:

ẋ = Ax+Bu, y = Cx,

where x ∈ RnA is the system state, u ∈ RnB is the system control input, y ∈ RnC is the

system output, and the matrices A ∈ RnA×nA , B ∈ RnA×nB and C ∈ RnC×nA are the system

matrices. We are interested in designing a static output feedback controller of the form:

u = Ky,

such that the resulting closed loop system:

ẋ = (A+BKC)x,

is stable, i.e., the matrix A+BKC is Hurwitz.

We follow the steps detailed in [4] to pose the problem of designing the static output feedback

controller as a set of polynomial constraints using the Routh-Hurwitz stability criteria. The

Routh-Hurwitz stability criteria result in a set of nA polynomials in the elements of the

controller matrix K. We consider five instances of the controller synthesis problem with the

following parameters:

• Example 1: nA = 3, nB = 4, nC = 4 which results in 3 polynomial constraints with

16 variables and max polynomial order of 4. We restrict the elements of the controller

20

matrix to be inside [−4, 7].

• Example 2: nA = 3, nB = 5, nC = 5 which results in 3 polynomial constraints with

25 variables and max polynomial order of 3. We restrict the elements of the controller

matrix to be inside [−0.5, 1].

• Example 3: nA = 2, nB = 6, nC = 6 which results in 2 polynomial constraints with

36 variables and max polynomial order of 3. We restrict the elements of the controller

matrix to be inside [0, 5].

• Example 4: nA = 2, nB = 7, nC = 7 which results in 2 polynomial constraints with

49 variables and max polynomial order of 2. We restrict the elements of the controller

matrix to be inside [−10, 0].

• Example 5: nA = 5, nB = 4, nC = 4 which results in 5 polynomial constraints with

16 variables and max polynomial order of 4. We restrict the elements of the controller

matrix to be inside [−4, 7]. In addition, we want to enforce the following controller

structure:

k21 × k22 × k23 < 0, k21 + k22 + k23 < −1

, which can be encoded using the additional SMT constraints:

b1 ∧ b2 ←→ True,

b1 → k21 × k22 × k23 < 0,

b2 → k21 + k22 + k23 < −1,

where kij are the elements of the controller matrix K.

For each of these examples, we generate random system matrices from a zero-mean normal

distribution and feed them to four versions of our solver PolyAR:

21

Table 1: Experiment results for SOF design. The timeout is set by 3600 s.

Example
Times (seconds)

Z3 8.9 Yices 2.6 PolyAR+Z3 PolyAR+Z3 PolyAR+Yices PolyAR+Yices
(1 thread) (max threads) (1 thread) (max threads)

1 timeout timeout timeout 7.552 2.405 2.442
2 timeout timeout 83.776 114.453 timeout 3.766
3 timeout timeout 23.551 23.970 timeout 8.725
4 timeout timeout 0.718 0.729 0.416 0.432
5 timeout timeout 3.636 3.768 0.621 0.498

Problems 0 0 4 5 3 5
Solved

Total Time timeout timeout 111.681 150.472 3.442 15.863
(seconds)

• PolyAR + Z3 (1 thread): This version uses one instance of Z3 to analyze all the

ambiguous regions.

• PolyAR + Z3 (max threads): This version uses a separate instance of Z3 to analyze

each of the ambiguous regions. All Z3 instances are running in parallel.

• PolyAR + Yices (1 thread): This version uses one instance of Yices to analyze all the

ambiguous regions.

• PolyAR + Yices (max thread): This version uses a separate instance of Yices to analyze

each of the ambiguous regions. All Yices instances are running in parallel.

We compare the execution times of these four solvers with Z3 8.9 and Yices 2.6. Table 1

shows the execution time for all the solvers. As evident by the results in Table 1, off-the-shelf

solvers are incapable of solving all the five examples and they time out after one hour. On

the other hand, and thanks to the abstraction refinement process, the PolyAR solver is able

to solve all the instances in a few seconds, leading to 240X speed up in the total execution

time in the PolyAR+Yices (max threads) case, evidence of the scalability of the proposed

approach.

In the following, we give the stabilizing controller matrices K1, K2, K3, K4, K5, and the two

22

Boolean variables b1 and b2 that PolyAR (Yices) returned for Examples 1, 2, 3, 4, and 5:

K1 =

−4 −2 −2 1

1 1 1 1

1 1 1 1

1 4 1 1

, K2 =

0 1 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

,

K3 =

1 1 3 3 2 2

2 2 2 2 2 2

2 0 0 2 2 5

0 0 2 2 0 2

2 2 0 0 2 5

5 2 2 2 2 2

, K4 =

−8, i = 1, j = 1,

−5, 2 ≤ i, j ≤ 7,

K5 =

−2 4 −2 7

1 −3.5 1 1

5 6 1 1

1 6.99 1 1

, b1 = True, b2 = True.

It is easily to note that the solutions given by PolyAR (Yices) satisfies the two Boolean

constraints, i.e., k21 × k22 × k23 = −3.5 < 0 and k21 + k22 + k23 = −1.5 < −1.

In conclusion, PolyAR+Yices (max thread) solver outperforms all the other solvers due to

the effectiveness of Yices in reasoning about problems with small volumes.

1.6.2 Non-Linear Controller Design for a Duffing Oscillator

In this subsection, we assess the scalability of PolyAR solver compared to state-of-the-art

solvers on synthesizing a non-parametric controller for a Duffing oscillator reported by [42].

23

The dynamics of the oscillator is given by the higher-order differential equation:

y(n)(t)+· · ·+y(2)(t)+2ζy(1)(t)+y(t)+y(t)3=u (t) , (1.12)

where y ∈ R is the continuous state variable and u ∈ R is the control input. The parameter ζ

is the damping coefficient. The objective of the control is to regulate the state to the origin.

To derive the discrete-time model, forward difference approximation is used (with sampling

period of h = 0.05 time units). The resulting state space model with discrete state vector

x = [x1, x2, · · · , xn]
T = [y, y(1), · · · , y(n−1)]T ∈ Rn−1 and input u ∈ R is:

x1

x2

...

xn

+

=

1 h 0 · · · · · · 0

0 1 h 0 · · · 0

...
...

...
...

...
...

−h −2ζh −h . . . −h 1−h

x1

x2

...

x2

+

0

0

...

h

u+

0

0

...

−hx3
1

. (1.13)

The previous equation is written in the form of x (k + 1) = Ax (k) + Bu (k) + E (x), which

includes a nonlinear term E (x) =

[
0, · · · ,−hx3

1 (k)

]T
. Our objective is to design a non-

parametric controller. To that end, we encode the controller as the solution of a feasibility

problem of several constraints that capture the system dynamics, state/input constraints,

and stability constraints as discussed below.

First, to enforce the stability of the resulting non-parametric controller, we consider the

candidate quadratic Lyapunov function V (x) = xTPx with the symmetric positive definite

matrix P is a solution of the discrete-time Lyapunov equation APAT + P + Q = 0 and is

a positive definite matrix. Thanks to the fact that E(x) satisfies lim∥x∥→0
∥E(x)∥
∥x∥ = 0 along

with the Lyapunov’s indirect method in [58], one can directly conclude that V (x) is indeed

a Lyapunov function. For simplicity, we pick Q = In, where In is the identity matrix of size

n.

24

Moreover, to ensure the smoothness of the resulting controller signals, we add additional

filters in the form of high order polynomial L(x, u) ≤ 0. In addition, we consider the state-

constraints of the form ∥x (k)∥∞ ≤ 0.6.

The final non-parametric controller is then encoded as the solution of the following feasibility

problem:

∃x1(k), . . . xn(k), x1(k + 1), . . . xn(k + 1), u(k)

subject to :

x (k + 1) = Ax (k) +Bu (k) + E (x) ,

V (x (k + 1))− V (x (k)) ≤ −ϵ,

L (x (k) , u(k)) ≤ 0,

∥x (k)∥∞ ≤ 0.6. (1.14)

Since the PolyAR solver only handles polynomial inequalities, hence, we transform the equal-

ity constraint x (k + 1) = Ax (k) + Bu (k) + E (x) above into two inequalities x (k + 1) −

Ax (k) + Bu (k) + E (x) ≤ ϵ ∧ x (k + 1)− Ax (k) + Bu (k) + E (x) ≥ −ϵ, where ϵ ∈ R is a

small value.

We consider three instances of the controller synthesis problem for the Duffing oscillator

with the following parameters:

• n = 2, ζ = 0.3, x (0) = [0.4, 0.1]T , L (x (k) , u (k)) = x11
1 (k) + x11

2 (k) − u10 (k), which

results in 6 polynomial constraints with 3 variables and max polynomial order of 11.

• n = 3, ζ = 1.0, x (0) = [0.1, 0.1, 0.1]T , L (x (k) , u (k)) = x5
1 (k)+x5

2 (k)+x5
3 (k)+u5 (k),

which results in 8 polynomial constraints with 4 variables and max polynomial order

of 5.

25

• n = 4, ζ = 1.75, x (0) = [0.1, 0.1, 0.01, 0.1]T , L (x (k) , u (k)) = x4
1 (k)+x4

2 (k)+x4
3 (k)+

x4
4 (k) − u4 (k), which results in 10 polynomial constraints with 5 variables and max

polynomial order of 4.

We feed the resultant polynomial inequality constraint to PolyAR+Yices, PolyAR+Z3,

Yices, and Z3. We solve the feasibility problem for n = 2, n = 3, and n = 4. We set

the timeout to be 1s. Figure 2.8 (left) shows the state-space evolution of the controlled

Duffing oscillator for different solvers for number of variables n of 2, 3, and 4. Figure 2.8

(right) shows the evolution of the execution time of the solvers during the 20 seconds. As

it can be seen from Fig. 4, our solver PolyAR+ Yices succeeded to find a control input u

that regulates the state to the origin for all n. However, off-the-shelf solvers are incapable of

solving all the three instances and they early time out after one second out of the simulated

20 seconds.

1.6.3 Designing Switching Signals for Continuous-Time Linear

Switching Systems

In this subsection, we show how to use the PolyAR solver to successfully design a controller

for a continuous-time linear switching system. In particular, we consider the following switch-

ing dynamics:

ẋ = Aσ(t)x, σ(t) = {1, 2, 3},

with x(t) ∈ X ⊂ R2 is the system state at time t and the matrices A1, A2, and A3 ∈ R2×2

represents three modes for the switching system. Consider the state space in Figure 1.5. The

objective is to design a switching signal σ(t) that can steer the state of the system to the goal

set Goal ⊂ X while avoiding entering the obstacle set Obstacle ⊂ X . For simplicity, we

confine our attention to step-wise switching signals σ(t). That is, we assume the switching

signal σ(t) will be constant for some amount of time t1, t2, . . . , tL. Our objective is then to

26

n State Space Execution Time Evolution over time

2

0.0 0.1 0.2 0.3 0.4
x1(t)

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

x 2
(t)

PolyAR+ Yices
PolyAR+Z3
Yices

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t

0.0

0.2

0.4

0.6

0.8

1.0

Ev
ol
ut
io
n
Ti
m
e
(s
ec

on
ds

)

PolyAR+ Yices
PolyAR+Z3
Yices

3

−0.10 −0.05 0.00 0.05 0.10 0.15
x1(t)

−0.10

−0.05

0.00

0.05

0.10

x 2
(t)

PolyAR+ Yices
PolyAR+Z3
Yices
Z3

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t

0.0

0.2

0.4

0.6

0.8

1.0

Ev
ol
ut
io
n
Ti
m
e
(s
ec

on
ds

)

PolyAR+ Yices
PolyAR+Z3
Yices
Z3

4

0.00 0.05 0.10 0.15 0.20
x1(t)

−0.100

−0.075

−0.050

−0.025

0.000

0.025

0.050

0.075

0.100

x 2
(t)

PolyAR+ Yices
PolyAR+Z3
Yices
Z3

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t

0.0

0.2

0.4

0.6

0.8

1.0

Ev
ol
ut
io
n
Ti
m
e
(s
ec

on
ds

)

PolyAR+ Yices
PolyAR+Z3
Yices
Z3

Figure 1.4: Results of controlling the Duffing oscillator with different n (left) evolution of the
states x1(k) and x2(k) for the solvers in the state-space, (right) evolution of the execution time
of solvers during the 20 seconds. The timeout is equal to 1s. Trajectories are truncated once the
solver exceeds the timeout limit.

27

−40 −20 0 20 40 60 80 100
−30

−20

−10

0

10

20

30

40

x(0)

x(1)

x(2)
x(3)

Obstacle

Goal

Figure 1.5: The trajectory that starts from an initial state x (0) = [40, 30]T and reaching
a final state x (3) ∈ Goal while avoiding the obstacles. The goal and the obstacles are
represented with a red and yellow rectangle, respectively.

design the switching times and the associated system mode that leads to the satisfaction of

the reach-avoid specifications. To that end, we define a set of Boolean variables bij such that

bij is equal to 1 whenever the jth mode is active during ti. Given the initial condition of

the system x(0), we can use these Boolean variables to encode the problem of designing the

28

switching signal as the following SMT constraints:

∃b11, . . . , b13, . . . , bL1, . . . , bL3, x(1), . . . , x(L), t1, . . . , tL

subject to:

b11 → x (1) = exp (A1t1) x (0) ,

b12 → x (1) = exp (A2t1) x (0) ,

b13 → x (1) = exp (A3t1) x (0) ,

b11 + b12 + b13 = 1,

...

bL1 → x (L) = exp (A1tL) x (L− 1) ,

bL2 → x (L) = exp (A2tL) x (L− 1) ,

bL3 → x (L) = exp (A3tL) x (L− 1) ,

bL1 + bL2 + bL3 = 1,

x (1) , . . . , x (L− 1) /∈ Obstacle,

x (L) ∈ Goal, (1.15)

where the constraint bi1 + bi2 + bi3 = 1 is a pseudo-Boolean constraint that enforces the

consistency between the Boolean variables such that only one of the three modes A1, A2

and A3 can be selected during the period tj−1 < t ≤ tj. Since PolyAR solver only handles

polynomial inequalities, we approximate the exponential matrix exp (Aitj) ≈ I2 + tjAi +

t2jA
2
i

2
+

t3jA
3
i

6
, i, j = 1, · · · , L, where I2 is the identity matrix of size 2 and An

i = Ai × · · · ×Ai.

Furthermore, we transform the equality x (i) = exp (Aitj) x (i− 1), i, j = 1, · · · , L, into two

inequalities x (i)− exp (Aitj) x (i− 1) ≤ ϵ∧ x (i)− exp (Aitj) x (i− 1) ≥ −ϵ, where ϵ ∈ R is

a small value.

In our experiments, we pick the horizon L = 3 and the modes A1 =

 −1, 2
−2,−2

, A2 =

29

 −1, 3
−3,−1

, and A3 =

 0, 2

−2, 0

, and we start with an initial state x (0) = [40, 30]T . We

restrict the states to be inside X ∈ [−100, 100]. We feed the resultant polynomial inequality

constraint to PolyAR+Yices, and as it can be seen from Fig.1.5, the solver succeeded to find

the right modes (b11 = b22 = b33 = 1) and the necessary times t1 = 0.391s, t2 = 0.5s, and

t3 = 0.25s that ensures that x (3) reaches a Goal while the intermediate states x (2) , x (1)

avoid Obstacles. In addition, we remark that the trajectory between x (0) and x (2) is making

its way to the equilibrium point [0, 0]T . This is explained by the fact that the matrices A1

and A2 are stables. Our solver computes the necessary time t3 that ensures that the final

state x (3) ∈ Goal and does not converge to the equilibrium point.

30

Chapter 2

PolyARBerNN: A Neural Network

Guided Solver and Optimizer for

Bounded Polynomial Inequalities

In this chapter, we introduce a solver named PolyARBerNN, an enhancement to PolyAR

introduced in chapter 1, which uses convex polynomials as abstractions for highly nonlinear

polynomials. Such abstractions were previously shown to be powerful to prune the search

space and restrict the usage of sound and complete solvers to small search spaces. Com-

pared with the previous efforts on using convex abstractions, PolyARBerNN provides three

main contributions namely (i) a neural network guided abstraction refinement procedure that

helps selecting the right abstraction out of a set of pre-defined abstractions, (ii) a Bernstein

polynomial-based search space pruning mechanism that can be used to compute tight esti-

mates of the polynomial maximum and minimum values which can be used as an additional

abstraction of the polynomials, and (iii) an optimizer that transforms polynomial objective

functions into polynomial constraints (on the gradient of the objective function) whose solu-

tions are guaranteed to be close to the global optima. These enhancements together allowed

31

the PolyARBerNN solver to solve complex instances and scales more favorably compared

to the state-of-art nonlinear real arithmetic solvers while maintaining the soundness and

completeness of the resulting solver. In this chapter, we show in test benches that Pol-

yARBerNN achieved 100X speedup compared with Z3 8.9, Yices 2.6, and PVS (a solver

that uses Bernstein expansion to solve multivariate polynomial constraints) on a variety

of standard test benches. In this chapter, we implement an optimizer called PolyAROpt

that uses PolyARBerNN to solve constrained polynomial optimization problems. Numerical

results show that PolyAROpt is able to solve high-dimensional and high order polynomial

optimization problems with higher speed compared to the built-in optimizer in the Z3 8.9

solver.

2.1 Introduction

Constraint solvers and optimizers have been used heavily in the design, synthesis, and ver-

ification of cyber-physical systems [95, 104, 2, 13, 6, 105, 28, 67, 60, 80, 75]. Examples in-

cludes verification of neural network controlled autonomous systems [88], formal verification

of human-robot interaction in healthcare scenarios [62], automated synthesis for distributed

cyber-physical systems [79], design for cyber-physical systems under sensor attacks [84], air

traffic management of unmanned aircraft systems [71], software verification for the next

generation space-shuttle [73], and conflict detection for aircraft [72].

In this chapter, we will focus on the class of general multivariate polynomial constraints (also

known as nonlinear real arithmetic). Multivariate polynomial constraints appear naturally

in the design, synthesis, and verification of these systems. It is not then surprising that the

amount of attention given to this problem in the last decade, as evidenced by the amount

of off-the-self solvers that are designed to solve feasibility and optimization problems over

general multivariate polynomial constraints, including Z3 [23], Coq [65], Yices [26], PVS [70],

32

Cplex, [66], CVXOPT [94], and Quadprog [50]. Regardless of their prevalence in several

synthesis and verification problems, well-known algorithms—that are capable of solving a

set of polynomial constraints—are shown to be doubly exponential [31], placing a significant

challenge to design efficient solvers for such problems.

Recently, neural networks (NNs) have shown impressive empirical results in approximating

unknown functions. This observation motivated several researchers to ask how to use NNs to

tame the complexity of NP-hard problems. Examples are the use of NNs to design scalable

solvers for program synthesis [24], traveling salesman problem [11], first-order theorem prov-

ing [54], higher-order theorem proving [56], and Boolean satisfiability (SAT) problems [82].

While several of these solvers sacrifice either soundness or correctness guarantees, we are

interested in this chapter on using such empirically powerful NNs to design a sound and

complete solver for nonlinear real arithmetic.

In addition to NNs, polynomials constitute a rich class of functions for which several approxi-

mators have been studied. Two of the most famous approximators for polynomials are Taylor

approximation and Bernstein polynomials. These two approximators have been successfully

used in solvers like Coq and PVS [15, 70]. This opens the question of how to combine all

those approximation techniques, i.e., NNs, Taylor, and Bernstein approximations, to come

up with a scalable solver that can reason about general multivariate polynomial constraints.

We introduce PolyARBerNN, a novel sound and complete solver for polynomial constraints

that combines these three function approximators (NNs, Taylor, and Bernstein) to prune

the search space and produce small enough instances in which existing sound and complete

solvers (based on the well-known Cylindrical Algebraic Decomposition algorithm) can easily

reason about. In general, in this chapter, we provide the following contributions:

1. We introduce a novel NN-guided abstraction refinement process in which a NN is

used to guide the use of Taylor approximations to find a solution or prune the search

33

space. We analyzed the theoretical characteristics of such a NN and provided empirical

evidence on the generalizability of the trained NN in terms of its ability to guide

the abstraction refinement process for unseen polynomials with various numbers of

variables and orders.

2. We complement the NN-guided abstraction refinement with a state-space pruning

phase using Bernstein approximations that accelerates the process of removing por-

tions of the state space in which the sign of the polynomial does not change.

3. We validate our approach by first comparing the scalability of the proposed Pol-

yARBerNN solver with respect to PVS, a library that uses Bernstein expansion to

solve polynomial constraints. Second, we compared the execution times of the pro-

posed tool with the latest versions of the state-of-the-art nonlinear arithmetic solvers,

such as Z3 8.9, Yices 2.6 by varying the order, the number of variables, and the number

of the polynomial constraints for instances when a solution exists and when a solution

does not exist. We also compared the scalability of the solver against Z3 8.9 and Yices

2.9 on the problem of synthesizing a controller for a cyber-physical system.

4. We propose PolyAROpt, an optimizer that uses PolyARBerNN to solve constrained

multivariate polynomial optimization problems. The theoretical analysis shows that

PolyAROpt is capable of providing solutions that are ϵ close to the global optima (for

any ϵ > 0 chosen by the user). Numerical results show that PolyAROpt solves high-

dimensional and high-order optimization problems with high speed compared to the

built-in optimizer in Z3 8.9 solver. We also validate the effectiveness of PolyAROpt on

the problem of computing the reachable sets of polynomial dynamical systems.

Related work: Cylindrical algebraic decomposition (CAD) was introduced by Collins [21]

in 1975 and is considered to be the first algorithm to effectively solve general polynomial

inequality constraints. Several improvements were introduced across the years to reduce the

34

high time complexity of the CAD algorithm [52, 68, 16]. Although the CAD algorithm is

sound and complete, it scales poorly with the number of polynomial constraints and their

order. Other techniques to solve general polynomial inequality constraints include the use of

transformations and approximations to scale the computations. For instance, the authors in

[70] incorporated Bernstein polynomials in the Prototype Verification System (PVS) theorem

prover; these developments are publicly available in the NASA PVS Library. The library

uses the range enclosure propriety of Bernstein polynomials to solve quantified polynomial

inequalities. However, the library is not complete for non-strict inequalities [70] and is not

practical for higher dimensional polynomials.

Another line of work that is related to our work is the use of machine learning to solve

combinatorial problems [48, 82]. In particular, the authors in [48] proposed a graph convo-

lutional neural network (GCNN) to learn heuristics that can accelerate mixed-integer linear

programming (MILP) solvers.

Similarly, the NeuroSAT solver [82] uses a message-passing neural network (MPNN) to solve

Boolean SAT problems. The authors of [82] showed that NeuroSAT generalizes to novel

distributions after training only on random SAT problems. Nevertheless, NeuroSAT is not

competitive with state-of-art SAT solvers and it does not have a correctness guarantee.

2.2 Problem Formulation

2.2.1 Notation:

We use the symbols N and R to denote the set of natural and real numbers, respectively. We

denote by x =
(
x1, x2, · · · , xn

)
∈ Rn the vector of real-valued variables, where xi ∈ R. We

denote by In(d, d) =
[
d1, d1

]
× · · ·×

[
dn, dn

]
⊂ Rn the n-dimensional hyperrectangle where

35

d = (d1, · · · , dn) and d =
(
d1, · · · , dn

)
are the lower and upper bounds of the hyperrectangle,

respectively. For a real-valued vector x =
(
x1, x2, · · · , xn

)
∈ Rn and an index-vector K =

(k1, · · · , kn) ∈ Nn, we denote by xK ∈ R the scalar xK = xk1
1 · · ·xkn

n . Given two multi-indices

K = (k1, · · · , kn) ∈ Nn and L = (l1, · · · , ln) ∈ Nn, we use the following notation throughout

this paper: K + L = (k1 + l1, · · · , kn + ln),
(
L
K

)
=
(
l1
k1

)
· · ·
(
ln
kn

)
, and

∑
K≤L

=
∑

k1≤l1

· · ·
∑

kn≤ln

. A

real-valued multivariate polynomial p : Rn → R is defined as:

p(x1, . . . , xn) =

l1∑
k1=0

l2∑
k2=0

. . .

ln∑
kn=0

a(k1,...,kn)x
k1
1 xk2

2 . . . xkn
n =

∑
K≤L

aKx
K ,

where L = (l1, l2, . . . , ln) is the maximum degree of xi for all i = 1, . . . , n. We denote by

ap = (a(0,0,...,0), . . . , a(l1,l2,...,ln)) the vector of all the coefficients of polynomial p. We denote

the space of multivariate polynomials with coefficients in R by R[x1, x2, · · · , xn]. Given a

real-valued function f : Rn → R, we denote by L−
0 (f) and L+

0 (f) the zero sublevel and zero

superlevel sets of f, i.e.,:

L−
0 (f) = {x ∈ Rn

∣∣f(x) ≤ 0}, L+
0 (f) = {x ∈ Rn

∣∣f(x) ≥ 0}.

Finally, a function f : Rn → Rm is called Lipschitz continuous if there exists a positive real

constant ωf ≥ 0 such that, for all x1 ∈ Rn and x2 ∈ Rn, the following holds:

∥f(x1)− f(x2)∥ ≤ ωf ∥x1 − x2∥

.

2.2.2 Main Problem:

In this chapter, we focus on two problems namely (Problem 1.1) the feasibility problems

that involve multiple polynomial inequality constraints with input ranges confined within

36

closed hyperrectangles (it was introduced in chapter 1) and (Problem 2.1) the constrained

optimization problem which aims to maximize (or minimize) a polynomial objective function

subject to other polynomial inequality constraints and input range constraints.

Given a polynomial objective function p(x) ∈ R[x1, x2, · · · , xn], we define the optimization

problem as:

Problem 2.1.

min
x∈In(d,d)

p (x) [or max
x∈In(d,d)

p (x)]

subject to: p1 (x1, · · · , xn) ≤ 0,

...

pm (x1, · · · , xn) ≤ 0

2.3 Convex Abstraction Refinement: Benefits and Draw-

backs

In this chapter, we overview our previously reported framework for using convex abstraction

refinement in chapter 1 along with some drawbacks that motivate the need for the proposed

framework.

2.3.1 Overview of Convex Abstraction Refinement

Sound and complete algorithms that solve Problem 1.1 are known to be doubly exponential

in n with a total running time that it is bounded by
(
m deg

)2n
[31], where deg is the

maximum degree among the polynomials p1, . . . , pm. Since the complexity of the problem

37

grows exponentially, it is useful to remove (or prune) subsets of the search space in which

the solution is guaranteed not to exist. Since Problem 1.1 asks for an x in Rn for which all

the polynomials are negative, a solution does not exist in subsets of Rn at which one of the

polynomials pi is always positive (i.e., L
+
0 (pi)). In the same way, finding regions of the input

space for which some of the polynomials are negative L−
0 (pi) helps with finding the solution

faster.

To find subsets of L+
0 (pi) and L−

0 (pi) efficiently, the use of “convex abstractions” of the

polynomials was proposed in chapter 1. Starting from a polynomial pi(x) ∈ R[x] and a

hyperrectangle In ⊂ Rn, the framework in [106] computes two quadratic polynomials Opi
j

and Upi
j such that:

Upi
j (x) ≤ p(x) ≤ Opi

j (x), ∀x ∈ In, (2.1)

where O and U stands for Over-approximate and Under-approximate quadratic polynomi-

als, respectively, and the subscript j in Opi
j (x) and Upi

j (x) encodes the iteration index of the

abstraction refinement process. It is easy to notice that the zero superlevel set of Upi
j (x) is a

subset of L+
0 (pi), i.e., L

+
0 (U

pi
j) ⊆ L+

0 (pi). Similarly, the zero sublevel set of Opi
j (x) is a subset

of L−
0 (pi), i.e., L

−
0 (O

pi
j) ⊆ L−

0 (pi). Moreover, being convex polynomials, identifying the zero

superlevel sets and zero sublevel sets of Opi
j (x) and Upi

j (x) can be computed efficiently using

convex programming tools. By iteratively refining these upper and lower convex approxima-

tions, the framework in chapter 1 was able to rapidly prune the search space until regions

with relatively small volumes are identified, at which sound and complete tools such as Z3

8.9 and Yices 2.6 (which are based on the Cylindrical Algebraic Decomposition algorithm)

are used to search these small regions, efficiently, to find a solution. It is important to notice

that these solvers (especially Yices) are optimized for the cases when the search space is a

bounded hyperrectangle.

38

Figure 2.1: Exemplary cases where abstracting higher order polynomial (black curves) using
convex approximations fails to provide helpful information: Top-Left: under-approximation
(green curve) is entirely negative and hence fails to identify any subsets of L+

0 (p). Top-
Right: over-approximation (red curve) is entirely positive and hence fails to identify subsets
of L−

0 (p). Bottom: under/over approximations failed to identify polynomials that are
consistently positive (left) or negative (right).

2.3.2 Drawbacks of Convex Abstraction Refinement

Although the prescribed convex abstraction refinement process was shown to provide several

orders of magnitude speedup compared to the state-of-the-art [106], it adds unnecessary

overhead in certain situations. In particular, and as shown in Figure 2.1, the quadratic

abstractions Opi
j (x) and Upi

j (x) may fail to identify meaningful subsets of L−
0 (pi) and L+

0 (pi).

One needs to split the input region to tighten the over-/under-approximation in such cases.

Indeed, applying the convex abstraction refinement process, above, may lead to several

unnecessary over-approximations or under-approximations until a tight one that prunes the

search space is found. These drawbacks call for a methodology that is capable of:

1. Guiding the abstraction refinement process: To reduce the number of unnecessary

computations of over/under approximations, one needs a heuristic that guides the

39

convex abstraction refinement process. In particular, such a heuristic needs to consider

the properties of the polynomials and the input region to estimate the volume of the

sets that the convex under/over-approximation will identify.

2. Alternative Abstraction: As shown in Figure 2.1 (bottom), abstracting high-order

polynomials using convex ones may fail to identify easy cases when the polynomial

is strictly positive or negative. Therefore, it is beneficial to use alternative ways to

abstract high-order polynomials that can augment the convex abstractions.

Designing a strategy that addresses the two requirements above is the main topic for the

following two sections.

2.4 Neural Network Guided Convex Abstraction Re-

finement

In this section, we are interested in designing and training a Neural Network (NN) that can

be used to guide the abstraction refinement process. Such NN can be used as an oracle by the

solver to estimate the volume of the zero super/sub-level sets (for each polynomial) within

a given region In(d, d) and select the best approximation strategy out of three possibilities

namely: (i) apply convex under-approximation, (ii) apply convex over-approximation, and

(iii) split the region to allow for finer approximations in the subsequent iterations of the

solver. In this section, we aim to develop a scientific methodology that can guide the design

of such NN.

40

2.4.1 On the relation between the NN architecture and the char-

acteristics of the polynomials:

In this subsection, we aim to understand how the properties of the polynomials affect the

design of the NN. We start by reviewing the following result from the machine learning

literature:

Theorem 2.1 (Theorem 1.1 [83]). There exists a Rectifier Linear Unit (ReLU)-based neural

network ϕ that can estimate a continuous function f such that the estimation error is bounded

by:

||ϕ− f || ≤ ωf

√
d O(N−2/dL−2/d)

where N,L, d are the neural network depth, the neural network width, and the number of neu-

ral network inputs, respectively, and ωf is the Lipschitz constant of the function f . Moreover,

this bound is nearly tight.

The above result can be interpreted as follows. The depth N and width L of a neural network

depend on the rate of change of the underlying function (captured by its Lipschitz constant

ωf). That is, if we use a NN to estimate a function with a high ωf , then one needs to increase

the depth N and width L of the NN to achieve an acceptable estimation error.

Now we aim to connect the result above with the characteristics of the polynomials. To that

end, we recall the definition of “condition numbers” of a polynomial [34]:

Definition 2.1. Given a polynomial p (x) =
∑
K

aKx
K and a root x0 of p, the quantity

Cap (x0) is called the condition number for the root x0. The condition number characterizes

the sensitivity of the root x0 to a perturbation of the coefficients ap. That is, if we allow a

random perturbation of a fixed relative magnitude ϵ = | δaK
aK
| in each coefficient aK in ap, then

the magnitude of the maximum displacement δx0 of a root x0 is bounded as: |δx0| ≤ Cap (x0) ϵ.

For a polynomial with multiple roots, then we define the condition number of the polynomial

41

Cap as the largest Cap (x0) among all roots, i.e., Cap = supx0∈{x|p(x)=0}Cap (x0).

We are now ready to present our first theoretical result that connects the condition number

of polynomials to the NN architecture. As stated before, we are interested in designing an

NN that can estimate the zero sub/super level volume set within a given region. We show

that the larger the condition number, the larger the neural network depth and width, as

captured by the following result.

Theorem 2.2. Given a polynomial p with coefficients ap, a region In(d, d), and an estimate’s

quality of the volume of zero sub/super level sets l. There exists a neural network NN(ap, In)

that estimates the volume of zero sub/super level sets from the polynomial coefficients ap. The

Lipschitz constant of this NN(ap, In), denoted by ωNN is bounded by O(nrnrCap) where Cap

is the condition number of the polynomial p, nr = max(l
1
n , nr) and nr is the number of roots

of the polynomial p.

To prove the result, we will proceed with an existential argument. We will show that a

NN that matches the properties above exists without constructing such a NN. As shown

in Figure 2.2, the neural network NN(ap, In) consists of multiple sub-neural networks. In

particular, the first sub-neural network NNap→X0 computes all the roots X0 = (x1
0, . . . , x

nr
0)

of the polynomial (where nr is the number of roots) from the coefficients ap, i.e.:

X0 = NNap→X0(ap). (2.2)

Note that NNap→X0 does not depend on the region In and hence the roots X0 may not lie

inside the region In. Moreover, Theorem 2.2 asks for a NN that estimates the volume of the

zero sub/super level sets and not the location of the roots. To that end, our strategy is to

split the region In into sub-regions of fixed volume and check if a root lies within each of

these sub-regions. If a sub-region does not have a root (i.e., there is no zero crossing inside

this sub-region) and the evaluation of the polynomial at any point in this region turns to be

42

positive, then this sub-region belongs to the super level set of p and similarly for the sublevel

set of p. By counting the number of the sub-regions with no zero crossings and multiplying

this count by the volume of these sub-regions, we can provide an estimate of the sub/super

level sets. Such a process can be performed using the following three sub-neural networks:

• The sub-neural network NNIn→Iin
splits the region In into l sub-regions I1n, . . . , I

l
n and

return the bounds of the ith sub-region, i.e.:

(di, d
i
) = NNIn→Iin

(In), i ∈ {1, . . . , l}. (2.3)

• The sub-neural network NNX0→ZCi
checks the location of the roots (x1

0, . . . , x
nr
0) and

returns a binary indicator variable ZCi that indicates whether a zero-crossing takes

place within the ith sub-region or whether the polynomial is always positive/negative

within the ith sub-region, i.e.:

ZCi(ap, I
i
n) = NNX0→ZCi

(
NNap→X0(ap), NNIn→Iin

(In)
)
. (2.4)

• The final output NN(ap, In) is computed using the sub-neural network NNZC→L+/L−

which counts the number of regions that has no zero-crossing (using the indicators

ZC1, . . . , ZCl) and compute the estimate of the zero sub/super level sets, i.e.:

NN(ap, In) = NNZC→L+/L−
(
ZC1(ap, I

1
n), . . . , ZCl(ap, I

l
n)
)
. (2.5)

The Lipschitz constants of these sub-neural networks are captured by the following four

propositions whose proof can be found in the appendix.

Proposition 2.1. Consider the sub-neural network NNap→X0(ap) defined in (2.2). The

Lipschitz constant of NNap→X0(ap) is bounded by O(nrCap).

43

Proof. Note that NNap→X0(ap) is a vector-valued function which returns the roots X0 =

(x1
0, x

2
0, · · · , xnr

0) of the polynomial p. Therefore, to upper bound the Lipschitz constant of

NNap→X0(ap), we will start by upper bounding the Lipschitz constant of its components

functions NN j

ap→xj
0

(ap), 1 ≤ j ≤ nr. To that end, consider two polynomials with coefficients

ap and a′p such that
∥∥ap − a′p

∥∥ ≤ ϵ. Therefore:

∥∥∥NN j

ap→xj
0

(ap)−NN j

ap→xj
0

(a′p)
∥∥∥
2
=
∥∥xj

0(ap)− xj
0(a

′
p)
∥∥
2
≤ Cap(x

j
0)
∥∥ap − a′p

∥∥ ≤ Capϵ

(2.6)

where xj
0(ap) and xj

0(a
′
p) are the location of the jth root for the polynomials with coefficients

ap and a′p, respectively. The last two inequalities follow from the definition of the condition

number (Definition 2.1). Now,

∥∥NNap→X0(ap)−NNap→X0(a
′
p)
∥∥
2
=

√√√√ nr∑
j=1

∥∥∥NN j

ap→xj
0

(ap)−NN j

ap→xj
0

(a′p)
∥∥∥2
2

(2.7)

≤
√

nrC
2

apϵ
2 =
√
nrCapϵ. (2.8)

From which we conclude that the Lipschitz constant ofNNap→X0(ap) is bounded by
√
nrCap =

O(nrCap).

Proposition 2.2. Consider the sub-neural network NNIn→Iin
defined in (2.3). The Lipschitz

constant of NNIn→Iin
is bounded by O(l 1

n).

Proof. We assume that the number of sub-regions l is fixed for each dimension n, and

l
1
n = k ∈ N. Partitioning the input space into l sub-regions occurs by dividing the interval

for each dimension into k sub-intervals. Without loss of generality, the sub-neural network

44

Figure 2.2: The architecture of the neural network NN(ap, In) used to prove the Theorem
2.2.

NNIn→Iin
(In) for n = 1 can be defined as:

(di, d
i
) = NNIn→Iin

(In) = NNIn→Iin
(d, d) =

(
d+

i

k

(
d− d

)
, d+

i+ 1

k

(
d− d

))

=

 1 + i/k −i/k

−(i+ 1)/k 1 + (i+ 1)/k

d
d

 (2.9)

A generalization to a higher dimension is straightforward by replacing i with a multi-index

in each dimension. Note that NNIn→Iin
(In) is a multivariate linear function in its inputs

and hence its Lipschitz constant can be computed as the largest singular value. Indeed, the

linear function depends only on the constant k (which depends on the constant l and the

dimension n) from which we conclude that the Lipschitz constant of NNIn→Iin
is O(l 1

n).

Proposition 2.3. Consider the sub-neural network NNX0→ZCi
(X0, I

i
n) defined in (2.4). The

Lipschitz constant of NNX0→ZCi
(X0, I

i
n) is bounded by O(nr).

Proof. It follows from equations (2.2)-(2.4) that the sub-neural network NNX0→ZCi
can be

45

written as:

ZCi(ap, I
i
n) = NNX0→ZCi

(
NNap→X0(ap), NNIn→Iin

(In)
)

= NNX0→ZCi

(
(x1

0, . . . , x
nr
0), (di, d

i
)
)
. (2.10)

The indicator variable ZCi should be set to zero whenever all the roots xj
0 lies outside the

hyperrectangle I in(d
i, d

i
). First note that a root xj

0 lies outside I in(d
i, d

i
) if and only if the

following condition holds:

xj
0 ̸∈ I in(d

i, d
i
) ⇐⇒

k=n∑
k=1

∣∣∣∣xj
0,k − dik

∣∣∣∣+ ∣∣∣∣xj
0,k − d

i

k

∣∣∣∣− n∑
k=1

(
d
i

k − dik

)
> 0 (2.11)

where xj
0,k, d

i
k, and d

i

k are the kth element in the vectors xj
0, d

i and d
i
, respectively. Hence,

the indicator variable ZCi should be set to zero whenever the following conditions hold:

ZCi(ap, I
i
n) = 0 ⇐⇒

maxj∈{1,...,nr}

(
k=n∑
k=1

∣∣∣∣xj
0,k − dik

∣∣∣∣+ ∣∣∣∣xj
0,k − d

i

k

∣∣∣∣− n∑
k=1

(
d
i

k − dik

))
= 0

(2.12)

Before we compute the Lipschitz constant of NNX0→ZCi
in Equation (2.12), we recall the

following identities. Consider two functions f(x) and g(x) with Lipschitz constants Lf and

Lg, respectively. Then:

• The Lipschitz constant of max(f(x), g(x)) is bounded by Lf + Lg.

• The Lipschitz constant of f(x) + g(x) is bounded by max(Lf , Lg).

Now notice that |xj
0,k−dik| = max(xj

0,k−dik, 0)+max(−xj
0,k +dik, 0). Applying the identities

above along with the fact that the Lipschitz constant of xj
0,k − dik is O(1), we conclude that

46

the Lipschitz constant of |xj
0,k − dik| is O(1). Hence, the Lipschitz constant of

k=n∑
k=1

∣∣∣∣xj
0,k −

dik

∣∣∣∣ + ∣∣∣∣xj
0,k − d

i

k

∣∣∣∣ − n∑
k=1

(
d
i

k − dik

)
is also O(1). Finally, the Lipschitz constant of the right

hand side of Equation (2.12) is O(nr). We conclude our proof by noticing that all the

operators in Equation (2.12)—namely the absolute value, the max operator, summation,

and checking the final value against a constant—can be implemented exactly using ReLU

neural networks [38] and hence the neural network NNX0→ZCi
will also have a Lipschitz

constant equal to O(nr).

Proposition 2.4. Consider the sub-neural network NNZC→L+/L− defined in (2.5). The

Lipschitz constant of NNZC→L+/L− is bounded by O(1).

Proof. This result follows directly by noticing that NNZC→L+/L− can be computed as a linear

function:

NNZC→L+/L−(ZC1, . . . , ZCl) = v
l∑

i=1

(1− ZCi) (2.13)

where v is a constant that depends on the volume of the hyperrecatngle In. Since l is a

constant, we conclude the result.

Proof of Theorem 2.2. Consider the NN shown in Figure 2.2 and defined using equations (2.2)-

(2.5). To bound the Lipschitz constant of NN(ap, In), we consider two sets of inputs (ap, In)

47

and (a′p, I
′
n) as follows:

∥∥NN(a′p, I
′
n)−NN(ap, In)

∥∥
2

=
∥∥NNZC→L+/L−

(
ZC1(a

′
p, I

′1
n), . . . , ZCl(a

′
p, I

′l
n)
)

−NNZC→L+/L−
(
ZC1(ap, I

1
n), . . . , ZCl(ap, I

l
n)
)∥∥

2
, (2.14)

≤ O(1)
∥∥(ZC1(a

′
p, I

′1
n)− ZC1(ap, I

1
n), · · · , ZCl(a

′
p, I

′l
n)− ZCl(ap, I

l
n)
)∥∥

2
, (2.15)

= O(1)
(l∑

i=1

∥∥ZCi(a
′
p, I

′i
n)− ZCi(ap, I

i
n)
∥∥2
2

) 1
2

. (2.16)

where (2.15) follows from Proposition 2.4. Now, we upper bound
∥∥ZCi(a

′
p, I

′i
n)− ZCi(ap, I

i
n)
∥∥
2

as follows:

∥∥ZCi(a
′
p, I

′i
n)− ZCi(ap, I

i
n)
∥∥2
2

=
∥∥NNX0→ZCi

(
NNap→X0(a

′
p), NNIn→Iin

(I ′n)
)

−NNX0→ZCi

(
NNap→X0(ap), NNIn→Iin

(In)
)∥∥2

2
(2.17)

≤ O(nr)
∥∥(NNap→X0(a

′
p)−NNap→X0(ap), NNIn→Iin

(I ′n)−NNIn→Iin
(In)

)∥∥2
2
, (2.18)

= O(nr)
(∥∥(NNap→X0(a

′
p)−NNap→X0(ap)

)∥∥2
2
+
∥∥NNIn→Iin

(I ′n)−NNIn→Iin
(In)

∥∥2
2

)
,

≤ O(nr)
(
O(nrCap)

∥∥a′p − ap
∥∥2
2
+O(l

1
n) ∥I ′n − In∥22

)
(2.19)

= O(nrnrCap)
∥∥(a′p, I ′n)− (ap, In)

∥∥2
2
. (2.20)

where (2.18) follows from Proposition 2.3; (2.19) follows from Propositions 2.2 and 2.1 along

with the definition of nr = max(l
1
n , nr). Substituting (2.20) in (2.16) and noticing that l is

a constant that does not depend on n yields:

48

∥∥NN(a′p, I
′
n)−NN(ap, In)

∥∥
2
≤ O(nrnrCap)

∥∥(a′p, I ′n)− (ap, In)
∥∥
2
, (2.21)

from which we conclude that the Lipschitz constant ofNN(ap, In) is in the order ofO(nrnrCap)

which concludes the proof of Theorem 2.2.

According to Theorem 2.1, the depth and width of an NN must be increased to achieve

an acceptable estimation error proportional to the NN’s Lipschitz constant. Additionally,

Theorem 2.2 establishes that the Lipschitz constant of NN (ap, In) is upper-bounded by a

constant dependent on the condition number of the polynomial Cap . Consequently, we can

deduce from Theorem 2.1 and Theorem 2.2 that higher condition numbers of polynomials

necessitate larger network widths and depths for accurate estimation of zero sub/super level

set volumes. Notably, the power basis representation (i.e., representing the polynomial as

a summation
∑

K≤L aKx
K) has been identified to possess an unstable nature with signif-

icantly large condition numbers [34], thereby demanding neural networks with substantial

architectural complexities which motivates the need to use other polynomial representations.

2.4.2 Bernstein Polynomials: A Robust Representation of Poly-

nomials

Motivated by the challenge above, we seek a representation of polynomials that is more robust

to changes in coefficients, i.e., we seek a representation in which the roots of the polynomial

change slowly with changes in the coefficients (and hence smaller condition numbers Cap

and a smaller NN to estimate the volume of the sub/super level sets). We start with the

following definition.

49

Definition 2.2. Let p (x) =
∑
K≤L

aKx
K ∈ R[x1, . . . , xn] be a multivariate polynomial over a

hyperrectangle In(d, d) and of a maximal degree L = (l1, · · · , ln) ∈ Nn. The polynomial:

Bp,L (x) =
∑
K≤L

bK,LBerK,L (x) , (2.22)

is called the Bernstein polynomial of p, where BerK,L (x) and bK,L are called the Bernstein

basis and Bernstein coefficients of p, respectively, and are defined as follows:

BerK,L (x) =

(
L

K

)
xK (1− x)L−K , bK,L =

K∑
J=(0,...,0)

(
K
J

)(
L
J

) (d− d
)J L∑

I=J

(
I

J

)
dI−JaI .

(2.23)

The Bernstein representation is known to be the most robust representation of polynomials

which is captured by the next result [34].

Theorem 2.3 (Theorem [34]). The Bernstein basis is optimally stable, i.e. there exists

no other basis with a condition number smaller than the condition number of the Bernstein

coefficients Cbp, where bp = (b(0,0,...,0),L, . . . , b(l1,l2,...,ln),L) is the vector of all the Bernstein

coefficients of polynomial p.

Theorems 2.1-2.3 point to the optimal way of designing the targeted neural network. Such a

neural network needs to take as input the Bernstein coefficients bp instead of the power basis

coefficients ap. To validate this conclusion, we report empirical evidence in Table 2.1. In

this numerical experiment, we trained two neural networks with the same exact architecture,

using the same exact number of data points, and both networks have the same number of

inputs. Both neural networks are trained to estimate whether a zero-crossing occurs in a

region (recall from our analysis in Theorem 2.2 that the Lipschitz constant of this NN is equal

to the condition number of the polynomial). The only difference is that one neural network

is trained using power basis coefficients ap (column 3 of Table 2.1) while the second is trained

50

Table 2.1: Evaluation of three trained neural networks on three different benchmarks for
the different polynomial basis. Each benchmark has 10000 samples. The coefficients of the
polynomial within each basis are generated following a uniform distribution given in the
table.

Benchmark Coefficients Power Basis Bernstein Basis Reduced Bernstein Basis
Accuracy Overhead Accuracy Overhead Accuracy Overhead

1 U (−0.1, 0.1) 46% 0 [s] 91% 0.01 [s] 82% 0.002 [s]
2 U (−0.5, 0.5) 32% 0 [s] 87% 0.03 [s] 79% 0.005 [s]
3 U (−1, 1) 30% 0 [s] 88% 0.04 [s] 80% 0.007 [s]

using Bernstein basis coefficients bp (column 5 of Table 2.1). The coefficients are randomly

generated via a uniform distribution between −0.1 and 0.1, i.e., U (−0.1, 0.1). We generated

40000 training samples and 10000 validation samples for both bases. We evaluate the trained

NN on three different benchmarks for the two bases. Each evaluation benchmark has 10000

samples. The results are summarized in Table 2.1. As it can be seen from Table 2.1, the

NN trained with Bernstein coefficients generalizes better than the NN trained with power

basis coefficients as reflected by the empirical “Accuracy” during evaluation. This empirical

evidence matches our analysis in Theorem 2.2 along with the insights of Theorem 2.1 and

Theorem 2.3.

2.5 Taming the Complexity of Computing Bernstein

Coefficients

In section 4, we concluded that Bernstein’s representation has a smaller condition compared

to other representations, which helps build a more efficient NN. Nevertheless, computing

this representation adds a significant overhead even by using the most efficient algorithms

to calculate these coefficients [85, 77].

For example, computing all the Bernstein coefficients of a 6th-dimensional polynomial with

7th order using Matrix method and Garloff’s methods [85, 77] require 1.1e07 and 7.1e06

51

summation and multiplication operations [77].

To exacerbate the problem, the Bernstein coefficients depend on the region In and need to be

recomputed in every iteration of the abstraction refinement process. Reducing such overhead

is the main focus of this section.

2.5.1 Range Enclosure Property of Bernstein polynomials

Given a multivariate polynomial p (x) that is defined over the n-dimensional box In(d, d), we

can bound the range of p (x) over In(d, d) using the range enclosure property of Bernstein

polynomials as follows:

Theorem 2.4 (Theorem 2 [44]). Let p be a multivariate polynomial of degree L over the

n-dimensional box In(d, d) with Bernstein coefficients bK,L, 0 ≤ K ≤ L. Then, for all x ∈ In,

the following inequality holds:

min
K≤L

bK,L ≤ p (x) ≤ max
K≤L

bK,L. (2.24)

The traditional approach to computing the range enclosure of p is to compute all the Bern-

stein coefficients of p to determine their minimum and maximum [45, 46, 107]. However,

computing all the coefficients has a complexity of O ((lmax + 1)n), where lmax = max
1≤i≤n

li,

which increases exponentially with the dimension n. Luckily, the Bernstein coefficients en-

joy monotonicity properties, whenever the region In(d, d) is restricted to be an orthant (i.e.,

the sign of xi does not change within In(d, d), for each i ∈ {1, . . . , n}) [85]. Using such

monotonicity properties, one can compute the minimum and maximum Bernstein coeffi-

cients (denoted by Bp,L, Bp,L) with a time complexity of O
(
2 (lmax + 1)2

)
which does not

depend on the dimension n.

52

2.5.2 Zero Crossing Estimation using only a few Bernstein Coef-

ficients

Now we discuss how to use the range enclosure property above to reduce the number of

computed Bernstein coefficients. First, we note that the zero crossing of a polynomial p

in a given input region In depends on its estimate range given by Bp,L and Bp,L. More

specifically, if Bp,L > 0 (Bp,L < 0), then the entire polynomial is positive (negative), which

means that there is no zero-crossing. If Bp,L and Bp,L have different signs, and because of the

estimation error of these bounds, the polynomial p may still be positive, negative, or have a

zero crossing in the region. In this case, we need additional information such as the bounds

of the gradient of the polynomial p within the input region, that are given by B∇p,L and

B∇p,L (which can be computed efficiently thanks to the fact that gradients of polynomials

are polynomials themselves). Such additional information about the worst-case gradient of

the polynomial leads to a natural estimate of whether a zero crossing occurs in a region.

Due to space constraints, we omit the analysis of bounding the estimation error introduced

by relying only on the maximum and minimum of the polynomial Bp,L and Bp,L along with

the maximum and minimum of the gradient B∇p,L and B∇p,L. Instead, we support our

claim using the empirical evidence shown in Table 2.1. Using the same benchmarks used

in Section 4.2, we train a third neural network that takes as input only the four inputs

Bp,L, Bp,L, B∇p,L, B∇p,L and compare its generalization performance (column 7 of Table 2.1).

As shown in the table, the third neural network sacrifices some accuracy compared to the

ones that use all Bernstein coefficients. But on the other side, it reduces the overhead to

compute the Bernstein coefficients by order of magnitude as can be seen by comparing the

“execution overhead” reported in columns 4, 6, and 8 for the power basis, the Bernstein

basis, and the reduced Bernstein basis, respectively.

53

2.5.3 Search Space pruning using Bernstein Coefficients

The range enclosure property and the discussion above open the door for a natural solution

of the “alternative abstraction” problem mentioned in Section 3.2. The maximum and

minimum Bernstein coefficients can be used as an abstraction (in addition to convex upper

and lower bounds) of high-order polynomials. Such abstractions can be refined with every

iteration of the solver. They can be used to identify portions of the search space for which

one of the polynomials is guaranteed to be positive (and hence a solution does not exist).

More details about integrating this abstraction and the convex abstraction are given in the

implementation section below.

2.6 Algorithm Architecture and Implementation De-

tails

In this section, we describe the implementation details of our solver PolyARBerNN. As a

pre-processing step, the tool divides the input region In into several regions such that each

one is an orthant. This allows the tool to process each orthant in parallel or sequentially.

The tool keeps track of all regions for which the sign of a polynomial is not fixed. These

regions are called ambiguous regions, and they are stored in a list called Ambig. As long as

the volume of the regions in this list is larger than a user-defined threshold ϵ, then our tool

will continuously use abstractions to identify portions in which one of the polynomials is

always positive (and hence removed from the search space) or negative (and hence the tool

will give higher priority for this region). The abstraction refinement is iteratively applied in

Lines 5-17 of Algorithm 1. In each abstraction refinement step, the tool picks a polynomial

p and a region region based on several heuristics (Lines 6-7). In lines 8-14, we compute the

maximum/minimum Bernstein coefficients followed by checking the sign of the polynomial

54

Algorithm 5 PolyARBerNN

Input: In(d, d), p1, p2, . . . , pm, ϵ, Output: xSol

1: orthants := Partition Region(In)
2: Neg := {}
3: Ambig := {orthants}
4: List pols := {p1, . . . , pm}
5: while Compute Maximum Volume(Ambig) ≥ ϵ do
6: p := Select Poly (List pols, Neg)
7: region := Remove Ambiguous Region From List (Ambig)
8:

(
Bp,L, Bp,L, B∇p,L, B∇p,L

)
:= Compute Bern Coeff(p, region)

9: if Bp,L > 0 then
10: break
11: else if Bp,L < 0 then
12: Neg := Neg ∪ (p, L−

0 (p))
13: break
14: end if
15: (under approx, over approx, split) := NN(Bp,L, Bp,L, B∇p,L, B∇p,L, region

)
16: action := Select best action(under approx, over approx, split)

17: L−
0 (p) , L+

0 (p) , L
+/−
0 (p) := Convex Abst Refin PolyAR (p, action, region)

18: Ambig := Amibg ∪ L
+/−
0 (p)

19: Neg := Neg ∪ (p, L−
0 (p))

20: end while
21: if is List Empty(Ambig) then
22: if A negative region in Neg has all the polynomials then
23: xSol := any point in the negative region
24: else
25: return the problem is UNSAT
26: end if
27: else
28: xSol := CAD Solver Parallel (Ambig, p1, . . . , pm)
29: end if

within this region. Suppose the Bernstein coefficients indicate that the polynomial is always

positive in this region. In that case, this provides a guarantee that a solution does not exist

in this region (recall that Problem 1 searches for a point where all polynomials are negative).

Similarly, if the polynomial is always negative, then it will be added to the list of negative

regions. For those polynomials for which the Bernstein abstraction failed to identify their

signs, we query the trained neural network to estimate the best convex abstraction possible

55

Figure 2.3: The architecture of the trained NN that is used to guide the abstraction refine-
ment process within PolyARBerNN. We used a fully connected NN that contains an input
layer with 4 neurons, three hidden layers with 40 neurons each, and one output layer with
three neurons. All neurons are ReLU-based except for the output neurons which uses Soft-
Max non-linearity.

(Lines 15-16). Based on the neural network suggestion, we use the PolyAR tool [106] to

compute the convex abstraction (Line 17), which returns portions of this region that are

guaranteed to belong to the zero sublevel set L−
0 (p), those who belong to the zero superlevel

set L+
0 (p), and those remain ambiguous L

+/−
0 (p). The process of using Bernstein abstraction

and the convex abstraction (which is guided by the trained neural network) continues until

all remaining ambiguous regions are smaller than a user-defined threshold ϵ in which case it

will be processed in parallel using a sound and complete tool that implements Cylindrical

Algebraic Decomposition (CAD) such as Z3 and Yices (line 28 in Algorithm 1).

The neural network itself is trained using randomly generated, quadratic, two-dimensional

polynomials where the coefficients follow a uniform distribution between −1 and 1. For

each randomly generated polynomial, we used PolyAR to compute the volumes of the

L+
0 (p), L

−
0 (p), L

+/−
0 (p) regions. We use a fully connected NN that contains an input layer,

three hidden layers, and one output layer (shown in Figure 2.3). The input layer has four

56

neurons, the hidden layers have 40 neurons each, and the output layer has three neurons.

We use a dropout of probability 0.5 in the first and second hidden layers to avoid overfitting.

We use the ReLU activation function for all the hidden layers and the Softmax activation

function for the output layer. We use Adam as an optimizer and cross-entropy as a loss

function. Although the neural network is trained on simple quadratic two-dimensional poly-

nomials, we observed it generalizes well to higher-order polynomials with several variables.

This will become apparent during the numerical evaluation in which polynomials of different

orders and several variables will be used to evaluate the tool.

Correctness Guarantees: We conclude our discussion with the following result which

captures the correctness guarantees of the proposed tool:

Theorem 2.5. The PolyARBerNN solver is sound and complete.

Proof. This result follows from the fact that search space is pruned using sound abstractions

(convex upper bounds or Bernstein-based). The neural network and the convex lower bound

polynomials are just used as heuristics to guide the refinement process. Finally, CAD-based

algorithms (which are sound and complete) are used to process the portions of the search

space which are not pruned by the abstraction refinement.

2.7 Generalization to polynomial optimization prob-

lems:

In this section, we focus on providing a solution to Problem 2.1. Our approach is to turn

the optimization problem (Problem 2.1) into a feasibility problem (Problem 1.1). First, we

recall that the gradient of p, ∇p = [∂p
∂x1

, · · · , ∂p
∂xn

], where ∂p
∂xi

is the partial derivative of p with

respect to xi, is a vector of n polynomials. The optimal value of p occurs either (i) when

57

the vector of partial derivatives are all equal to zero or (ii) at the boundaries of the input

region.

To find the critical points x∗ of p where ∇p (x∗) = 0, we add the n polynomial constraints

∂p
∂xi
≤ 0, 1 ≤ i ≤ n and − ∂p

∂xi
≤ 0, 1 ≤ i ≤ n to the constraints of the optimization

problem. Now, we modify the PolyARBernNN solver to output all possible regions in which

all the constraints are satisfied. This can be easily computed by taking the intersections

within the regions stored in the data structure Neg in Algorithm 5. These regions enjoy

the property that all points in these regions are critical points of p. In addition, we modify

PolyARBernNN to output all the remaining ambiguous regions whose volumes are smaller

than the user-specified threshold ϵ and for which the CAD-based solvers returned a solution.

These regions enjoy the property that there exists a point inside these regions which is a

critical point. These modifications are captured in (Line 2 of Algorithm 6).

Since the minimum/maximum of p may occur at the boundaries of the region In
(
d, d
)
, our

solver samples from the boundaries of the region In
(
d, d
)
(Line 4 in Algorithm 6). The solver

uses δ = 2
√
n(ϵ)1/n as sampling distance between two successive boundary samples—recall

ϵ is a user-defined parameter and was used in Algorithm 1 as a threshold on the refinement

process. Next, we evaluate the polynomial p in the obtained samples (line 5 Algorithm 6).

Then, we take the minimum and the maximum over the obtained values (Line 7 in Algorithm

6). All the details can be found in Algorithm 6.

We conclude our discussion with the following result which captures the error between the

solutions provided by PolyAROpt and the global optima.

Theorem 2.6. Let p∗min and p∗max be the global optimal points for the solution of Problem 2.

The solutions obtained by Algorithm 2, denoted by p̂min and p̂max satisfy the following:

|p̂min − p∗min| ≤ ωpδ, |p̂max − p∗max| ≤ ωpδ, (2.25)

58

Algorithm 6 PolyAROpt

Input: In(d, d), p, p1, p2, . . . , pm, ϵ
Output: p̂min, p̂max

1: ∇p = Grad Poly(p)
2: ˆreglist = PolyARBerNN(In(d, d),∇p, p1, . . . , pm, ϵ)
3: x̂list = center(ˆreglist)
4: xend

list = Sample boundaries(In(d, d), ϵ)
5: p̂list = p(x̂list); pendlist = p(xend

list)
6: plist = p̂list ∪ pendlist

7: p̂min = min(plist); p̂max = max(plist)

where ωp is the Lipschitz constant of the polynomial p, δ = 2
√
n(ϵ)1/n is the sampling dis-

tance, and ϵ > 0 is a user-defined error.

Proof. Let us denote by xlist the input domain points that correspond to plist. Let us denote

by xmin = min
x∈xlist

∥x− x∗
min∥ and xmax = min

x∈xlist

∥x− x∗
max∥, the nearest point to the actual

optimal points x∗
min and x∗

max. We note that there are three cases that Algorithm 2 uses to

compute the set of critical points, xlist:

1. Using the center of the regions in the Neg list

2. Using the center of the regions in the Ambig list

3. Using samples from the boundaries

We proceed by case analysis. Case 1: First, we note that all the points within the Neg

regions satisfy that ∇p = 0 and hence the value of the polynomial takes the same exact value

overall the region, hence the value of p at the center x̂ of the region is the same at the global

optima x∗. Case 2 and Case 3: First, we can show that xmin and xmax are bounded from

the actual optimal points x∗
min and x∗

max by:

∥xmin − x∗
min∥ ≤ δ ∥xmax − x∗

max∥ ≤ δ (2.26)

59

where δ = 2
√
n(ϵ)1/n. To show that inequalities (2.26) hold we proceed by case analysis.

However (2.26) follow directly in Case 2 from the fact that Ambig regions have a volume

that is smaller than ϵ (Line 7 in Algorithm 1) and hence the distance between any two points

within the regions is bounded by δ = 2
√
n(ϵ)1/n. Similarly, Case 3 follows from the fact that

Algorithm 2 samples from the boundaries with a maximum distance between the samples

that is equal to δ = 2
√
n(ϵ)1/n. Second, we obtain (2.25) as follows:

p̂min ≤ p(xmin)⇒ |p̂min − p∗min| ≤ |p(xmin)− p∗min| ≤ ωpδ, (2.27)

where 2.27 comes from the definition of p̂min, the Lipschitz continuity of polynomial p, and

2.26. The inequality for |p̂max − p∗max| is obtained in a similar manner.

2.8 Numerical Results - NN Training

In this section, we show the details of training and evaluating the NN used to help Pol-

yARBerNN selecting the best convex abstraction. We evaluate the trained NN on six differ-

ent benchmarks. The benchmarks are different than the training benchmarks with respect

to the input region, the degree of the polynomial, and the number of variables of the poly-

nomial. All the experiments were executed on an Intel Core i7 2.6-GHz processor with 16

GB of memory.

60

2.8.1 Training data collection and pre-processing

Data collection

To collect the data, we generated random quadratic two-dimensional polynomials:

q (x1, x2) = c1x
2
1 + c2x2 + c3x1x2 + c4x2 + c5y + c6,

where the coefficients c1, . . . , c6 follow a uniform distribution between −1 and 1.The random

generated polynomials are defined over the domain I2 =
[
− 2, 2

]2
. For each randomly gen-

erated polynomial, we perform the abstraction refinement on the domain I2, iteratively. In

every iteration, we perform under-approximation, over-approximation of the original poly-

nomial over a selected ambiguous region, and a split of the ambiguous region. Next, we

compute the volume of the remaining ambiguous region after each action was implemented.

The labels are a one-hot vector of dimension three where each component represents the

action that leads to the maximum reduction in the volume of the ambiguous region, either

under-approximation, over-approximation or divide the region into two regions.

We ran the abstraction refinement process on all the generated polynomials to collect the

data
(
Bi

pj ,L
, Bi

pj ,L, B
i
∇pj ,L

, Bi∇pj ,L

)
, where i denote the index of the sample. We generate

50000 samples for training, 10000 samples for validation, and 10000 for testing.

Data Normalization

In the literature of NN [61], it is important to normalize the data when the data vary

across a wide range of values. This normalization leads to faster training and improves the

generalization performance of the NN [61]. Therefore, we normalize all the input data to

a zero mean and unit variance by adopting a simple affine transformation data sample ←

61

Figure 2.4: Percentage in reduction of the volume of ambiguous regions along with the NN
output number (the number is at the top of histograms) for 20 samples for 6 evaluation
benchmarks described in Table II.

data sample−µ
σ

, where µ and σ are the mean of the data and its standard deviation. The µ and

σ parameters are initialized with respectively the empirical mean and standard deviation of

the dataset and they are computed offline before the training.

2.8.2 NN’s evaluation

We evaluated the NN on 6 different benchmarks as follows:

• In the first and second benchmarks, we generate the same random quadratic polyno-

mials but in a different domain:
[
− 4, 4

]2
and

[
− 10, 10

]2
. This choice is made to test

the generalization of the NN outside the data domains that were used in its training.

This is important since the Bernstein coefficients of a polynomial (the input to the

NN) depend on the input region In.

62

Table 2.2: Evaluation of the trained NN on the six different benchmarks.

Benchmark p (x) n order region Accuracy

1 c1x
2
1 + c2x2 + c3x1x2 + c4x2 + c5y + c6 2 2 [−4, 4]2 95%

2 c1x
2
1 + c2x2 + c3x1x2 + c4x2 + c5y + c6 2 2 [−10, 10]2 93%

3 c1x
4
1 + c2x

3
2 + c3x

4
1x

3
2 + c4x

3
1 + c5 2 4 [−2, 2]2 88%

4 c1x
10
1 + c2x

5
2 + c3x

5
1x

3
2 + c4x

5
1 + c5 2 10 [−2, 2]2 87%

5 c1x
3
1 + c2x

3
2 + c3x

3
3 + c4x

3
4 4 3 [−2, 2]4 81%

6 c1x
3
1 + c2x

3
2 + c3x

3
3 + c4x

3
4 + c5x

3
5 + c6x

3
6 + c7x

3
7 7 3 [−2, 2]7 80%

• In the third and fourth benchmarks, we generated random polynomials with degrees

4 and 10 over the domain
[
− 2, 2

]2
. These benchmarks are used to validate the

generalization of the NN to polynomials of orders higher than the ones used in its

training.

• Finally, in the fifth and sixth benchmarks, we generated random polynomials with

higher dimensions, i.e., with dimension n = 4 and n = 7.

In summary, these benchmarks will help us to answer the following question: can the trained

NN generalize to new data with different domains (benchmarks 1 and 2), higher orders

(benchmarks 3 and 4), and higher dimensions (benchmarks 5 and 6)? More detail about the

different benchmarks is shown in Table 2.2.

Figure 2.4 shows the performance of the trained NN over 20 random samples of each of the

six benchmarks. For each sample, we used the framework in [106] to compute the ground-

truth percentage in the reduction of the volume of ambiguous regions after applying every

action under-approximation, over-approximation, or split. We then evaluated the NN on

each sample and reported in Figure 2.4 both the ground-truth reduction of the ambiguous

regions (as bars) against the index of the action suggested by the NN (as the text above the

bars). As it can be seen from Figure 2.4, except for the second sample of the first benchmark,

the NN outputs represent the actions that lead to the maximum reduction of the ambiguous

region’s volume.

63

Finally, we ran the same experiment for 1000 samples and report the percentage of samples

for which the NN was able to predict the action that leads to the maximum reduction in

the ambiguous region’s volume. As it can be seen from Table 2.2, the trained NN is able to

generalize on the different benchmarks. For instance, evaluating the NN on different domains

results in the lowest accuracy of 93%. Furthermore, evaluating the NN on polynomials with

higher-order results in an accuracy of 87%. Finally, the NN achieves 80% on higher dimension

benchmarks.

2.9 Numerical Results - Scalability Results

In this section, we study the scalability of PolyARBerNN in terms of execution times by

varying the order, the number of variables, and the number of the polynomial constraints

for instances when a solution exists (the problem is Satisfiabile or SAT for short) and when

a solution does not exist (or UNSAT for short). We will perform this study in comparison

with state-of-the-art solvers including our previous solver PolyAR, Z3 8.9, and Yices 2.6.

Next, we compare the performance of PolyARBerNN against a theorem prover named PVS

which implements a Bernstein library to solve multivariate polynomial constraints [70].

Finally, we compare the scalability of the PolyAROpt optimizer against the built-in opti-

mization library in Z3 8.9 to solve an unconstrained multivariate polynomial optimization

problem with varying order and number of variables.

2.9.1 Scalability of PolyARBerNN against other SMT Solvers

In this experiment, we compare the execution times of PolyARBerNN against the PolyAR

tool [106], Z3 8.9, and Yices 2.6. We consider two instances of Problem 1: an UNSAT and

SAT problems. For each instance, we consider three scenarios, m = 1, m = 5, and m = 10

64

m SAT/UNSAT Execution times vs Polynomial Order Execution times vs Number of Variables

1

UNSAT

0 200 400 600 800 1000
order

0

100

200

300

Ex
ec

ut
io
n
tim

e
(s
)

0 25 50 75 100 125 150 175 200
number of variables

0

10

20

30

40

50

Ex
ec

ut
io
n
tim

e
(s
)

SAT

0 200 400 600 800 1000
order

0

100

200

300

Ex
ec

ut
io
n
tim

e
(s
)

0 25 50 75 100 125 150 175 200
number of variables

0

10

20

30

40

50

Ex
ec

ut
io
n
tim

e
(s
)

5

UNSAT

0 200 400 600 800 1000
order

0

100

200

300

Ex
ec

ut
io
n
tim

e
(s
)

0 25 50 75 100 125 150 175 200
number of variables

0

10

20

30

40

50

Ex
ec

ut
io
n
tim

e
(s
)

SAT

0 200 400 600 800 1000
order

0

100

200

300

Ex
ec

ut
io
n
tim

e
(s
)

0 25 50 75 100 125 150 175 200
number of variables

0

10

20

30

40

50

Ex
ec

ut
io
n
tim

e
(s
)

10

UNSAT

0 200 400 600 800 1000
order

0

100

200

300

Ex
ec

ut
io
n
tim

e
(s
)

0 25 50 75 100 125 150 175 200
number of variables

0

10

20

30

40

50

Ex
ec

ut
io
n
tim

e
(s
)

SAT

0 200 400 600 800 1000
order

0

100

200

300

Ex
ec

ut
io
n
tim

e
(s
)

0 25 50 75 100 125 150 175 200
number of variables

0

10

20

30

40

50

Ex
ec

ut
io
n
tim

e
(s
)

Figure 2.5: Scalability results of PolyARBerNN in the UNSAT case for 1, 5, and 10 con-
straints. (left) evolution of the execution time in seconds as a function of the order of the
polynomials, (right) evolution of the execution time in seconds as a function of the number
of variables. The timeout is equal to 1 hour..

wherem is the number of polynomial constraints. First, we vary the order of the polynomials

from 0 to 1000 while fixing the number of variables (and hence the dimension of the search

space) to two. Alternatively, we also fix the order of the polynomials to 30 while varying the

number of variables from 1 to 200.

65

We set the timeout of the simulations to be 1 hour. Figure 2.5 reports the execution times

for all the experiments whenever the problem is UNSAT and SAT.

As evidenced by the figures, PolyARBerNN succeeded to solve the instances of Problem 1

for all orders and numbers of variables in a few seconds. For instance, solving 10 polynomial

constraints with 200 variables and a maximum order of 30 took around 20 s leading to a

speed-up of 200× compared to Z3 and Yices. On the other hand, other solvers are incapable

of solving the polynomial constraints for all orders or number of variables and they time out

after one hour.

These results show the scalability of the proposed approach by including Bernstein coeffi-

cients to prune the search space and a NN to guide the abstraction refinement.

2.9.2 Scalability of PolyARBerNN against other Bernstein-based

solvers

PolyARBerNN was compared against Bernstein-based solvers such as PVS [70] and Real-

root [69] on computing a root/solution for the following multivariate polynomial equation

system. The scalability was evaluated by fixing the number of variables, changing the maxi-

mum order, fixing the maximum order, and varying the number of variables. PolyARBerNN

successfully solved the systems for all orders and variables, while Realroot and PVS en-

countered timeouts. The execution times are shown in Figure 2.6 for both scenarios, with

PolyARBerNN outperforming the other solvers.

66

0 10 20 30 40 50 60 70
order

0

100

200

300
Ex

ec
ut
io
n
tim

e
(s
) PolyARBerNN

realroot
PVS

0 10 20 30 40 50
n

0

100

200

300

400

500

Ex
ec

ut
io
n
tim

e
(s
) PolyARBerNN

realroot
PVS

Figure 2.6: Scalability results of PolyARBerNN for multivariate polynomial equation system
over the interval In = [−1, 1]n. (left) evolution of the execution time in seconds as a function
of the order of the polynomial with the number of variables n = 3. (right) evolution of the
execution time in seconds as a function of the number of variables with maximum order
equal to 3. The timeout is equal to 1 hour.

2.9.3 Scalability of PolyAROpt against other solvers

We compare the scalability results of PolyAROpt with the Z3 solver since Z3 has a built-in

optimization library, Bernstein-based optimizer Borderbasix [93], and SOSTool [1]. Unfor-

tunately, Yices does not have such an optimizer. We set the timeout of the experiment

to be 1 hour. Figure 2.7 reports the execution times of two experiments that compute

unconstrained optimization’s minimum and maximum. As evidenced by the two figures,

PolyAROpt succeeded in solving the unconstrained optimization problem for all orders and

numbers of variables. For instance, solving the unconstrained optimization problem with 70

variables and a maximum order of 3 took around 50 seconds. On the other hand, the Z3

Borderbasix, SOSTool solvers cannot solve the unconstrained optimization problem for all

orders or number of variables and time out.

0 20 40 60 80 100
order

0

50

100

150

200

250

Ex
ec

ut
io
n
tim

e
(s
) PolyAROpt

Z3
SOSTool
Borderbasix

0 10 20 30 40 50 60 70
n

0

100

200

300

400

Ex
ec

ut
io
n
tim

e
(s
) PolyAROpt

Z3
SOSTool
Borderbasix

Figure 2.7: Scalability results of PolyAROpt for unconstrained optimization over the interval
In = [−1, 1]n. (left) evolution of the execution time in seconds as a function of the polynomial
order. (right) evolution of the execution time in seconds as a function of the number of
variables. The timeout is equal to 1 hour.

67

2.10 Numerical Results - Use Cases

In this section, we provide two engineering use cases. The first one focuses on the use of

PolyARBerNN to synthesize stabilizing non-parametric controllers for nonlinear dynamical

systems. The second use case focuses on the use of PolyAROPT to perform reachability

analysis of polynomial dynamical systems.

2.10.1 Use Case 1: Nonlinear Controller Design for a Duffing Os-

cillator

In this subsection, we assess the scalability of the PolyARBerNN solver compared to state-of-

the-art solvers for synthesizing a non-parametric controller for a Duffing oscillator reported

by [42]. All the details of the dynamics of the oscillator and how we generated the polynomial

constraints can be found in chapter 1. We denote by n the dimension of the Duffing oscillator.

We consider two instances of the controller synthesis problem for the Duffing oscillator with

the following parameters:

• n = 3, ζ = 1.0, x (0) = [0.15, 0.15, 0.15], L1 (x (k) , u (k)) = (−x3
1 (k) + x3

3 (k)

+ u (k)− 2)51, L2 (x (k) , u (k)) = x51
1 (k)x7

3 (k) + x9
1 (k)x

5
3 (k)− 5x4

2 (k)− x2
2 (k)u

2 (k),

which results in 9 polynomial constraints with 4 variables and max polynomial order

of 153.

• n = 4, ζ = 1.75, x (0) = [0.1, 0.1, 0.01, 0.1], L1 (x (k) , u (k)) = x4
1 (k) + x4

2 (k) +

x4
3 (k) + x4

4 (k) − u4 (k), L2 (x (k) , u (k)) = −x51
1 (k)x20

3 (k) − 5x4
2 (k) − x2

2 (k)u
2 (k),

L3 (x (k) , u (k)) = (x1x
2
2 − u (k)− 100)

41
, which results in 12 polynomial constraints

with 5 variables and max polynomial order of 82.

68

n State Space Execution Time Evolution over time

3

−0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30
x1(t)

−0.1

0.0

0.1

0.2

x 2
(t)

PolyARBerNN
Yices
Z3

0 2 4 6 8 10 12
t

0

5

10

15

Ev
ol
ut
io
n
Ti
m
e
(s
ec

on
ds

)

PolyARBerNN
Yices
Z3

4

−0.05 0.00 0.05 0.10 0.15 0.20 0.25
x1(t)

−0.1

0.0

0.1

0.2

x 2
(t)

PolyARBerNN
Yices
Z3

0 2 4 6 8 10 12
t

0

10

20

30

Ev
ol
ut
io
n
Ti
m
e
(s
ec

on
ds

)

PolyARBerNN
Yices
Z3

Figure 2.8: Results of controlling the Duffing oscillator with different n (left) evolution of the
states x1(k) and x2(k) for the solvers in the state-space, (right) evolution of the execution
time of solvers during the 12 seconds. The timeout is equal to 60s. Trajectories are truncated
once the solver exceeds the timeout limit.

We feed the resultant polynomial inequality constraint to PolyARBerNN, Yices, and Z3. We

solve the feasibility problem for n = 3 and n = 4. We set the timeout to be 60s. Figure 2.8

(left) shows the state-space evolution of the controlled Duffing oscillator for different solvers

for number of variables n of 3 and 4. Figure 2.8 (right) shows the evolution of the execution

time of the solvers during the 12 seconds. As it can be seen from Figure 7, our solver

PolyARBerNN succeeded to find a control input u that regulates the state to the origin for

all n. However, off-the-shelf solvers are incapable of solving all two instances, and they early

time out after 60 seconds out of the simulated 12 seconds. This shows the scalability of the

proposed approach.

2.10.2 Use Case 2: Reachability analysis of a discrete polynomial

dynamical systems

In this section, we show how to use PolyAROpt to compute the reachable set of states for

discrete-time polynomial systems. We consider a discrete polynomial dynamical system of

69

the following form:

xk+1 = f (xk) , k ∈ N, x0 ∈ Q0, (2.28)

where f : Rn → Rn is a multivariate polynomial map of a maximum degree L = (l1, · · · , ln),

and Q0 is a bounded polyhedron in Rn. In this subsection, we consider a bounded-time reach-

ability analysis of the system in (2.28). Computing the exact reachability sets of this type of

dynamic system is hard. Therefore, we overapproximate the exact set with a simplified set

such as bounded polyhedra. Bounded polyhedra are easy to handle and analyze. Computing

the reachability set, after a finite time K, involves computing sequentially the reachability

set at every time step k using the following relation Qk+1 = f (Qk) , k = 0, · · · , K− 1, where

Qk is a bounded polyhedra. A bounded polyhedra is represented with an H-representation

Qk = (Ak, bk) = {x ∈ Rn|Akx ≤ bk}, where the inequality is a point-wise inequality. The

template Ak represents the directions of Qk’s faces and bk represents their positions. Given

a polyhedra Qk = (Ak, bk), we need to compute Qk+1 = f (Qk). We assume that Ak ∈ Rm×n

is given. Now, we need to compute bk+1 ∈ Rm which can be obtained through the following

optimization problem [12]:

− bk+1,i ≤ uk+1,i = min
x∈Qk

−Ak+1,if (x) ,∀i = 1, · · · ,m, (2.29)

Figure 2.9: Reachability computation for the FitzHugh-Nagumo neuron model. Left: using
PolyAROpt for number of steps K = 50. Center: using Sapo for number of steps K = 50.
Right: using Flowstar for number of steps K = 50.

70

0 10 20 30 40 50
Step

0.00

0.05

0.10

0.15

0.20

vo
lu
m
e

PolyAROpt
Sapo
Flowstar

0 10 20 30 40 50
Step

0

100

200

300

400

500

600

vo
lu
m
e

PolyAROpt
Sapo
Flowstar

0 10 20 30 40 50
Step

0

20

40

60

80

100

vo
lu
m
e

PolyAROpt
Sapo
Flowstar

Figure 2.10: The volume of the reachable set of states that are obtained using PolyAROpt,
Sapo, and Flowstar (left) FitzHugh-Nagumo, (center) Duffing oscillator, and (right) Jet
flight.

where Ak+1,i and bk+1,i are the ith row and component of the templates Ak+1 and bk+1,

respectively. In every step k ∈ N, we compute an upper bound for −bk+1,i, by solving

the optimization problem (2.29) using PolyAROpt and then an overapproximation of the

reachability set Qk+1 is computed. In order to use PolyAROpt to solve (2.29), we need to

overapproximate the polyhedra Qk with a hyperreactangle Rk. Therefore, the optimization

problem (2.29) is modified as follows:

− bk+1,i ≤ uk+1,i = min
x∈Rk

−Ak+1,if (x) ,∀i = 1, · · · ,m,

subject to x ∈ Qk. (2.30)

We implemented the reachability computation method and tested it on three dynamical

systems:

• FitzHugh-Nagumo Neuron: is a polynomial dynamic systems that models the electrical

activity of a neuron [41]. We performed reachability analysis for K = 50 time steps

with the initial set of states Q0 = [0.9, 1.1]× [2.4, 2.6],

• Duffing Oscillator: is a discrete-time version of a nonlinear oscillator model [106]. We

performed reachability analysis for K = 50 time steps with the initial set of states

71

Q0 = [2.49, 2.51]× [1.49, 1.51],

• Jet Flight: is a discrete-time version of a jet flight model [18]. We performed reachabil-

ity analysis forK = 50 time steps with the initial set of states Q0 = [0.9, 1.2]×[0.9, 1.2].

All the details of the dynamics of the three dynamical systems and how we generated the

polynomial constraints can be found in [12, 41, 106, 18]. We computed the reachable sets

for these dynamical systems and compared our results with Sapo [25] and Flowstar [19].

Sapo is a tool proposed for the reachability analysis of the class of discrete-time polynomial

dynamical systems. Sapo linearizes the optimization problem (2.29) using the Bernstein

form of the polynomial and was shown to outperform state-of-the-art reachability analysis

tools like Flowstar [19]. Flowstar [19] is a tool used in the ARCH workshop competition

for hybrid systems’ reachability. This tool is a state-of-the-art reachability analysis that

uses Taylor models to compute the reachable sets. Figure 2.9 shows the reachable sets

computed by PolyAROpt compared to Sapo and Flowstar for the FitzHugh-Nagumo Neuron

model. Inspecting the results in Figure 2.9 qualitatively shows that PolyAROpt is capable of

computing tighter sets compared to Sapo and Flowstar. Flowstar stopped the computation

of reachable sets at the 10 − th step due to large overestimation errors. To quantitatively

compare the results of PolyAROpt, Sapo, and Flowstar, we compute the volume of each

reachable set (for different time steps). Figure 2.10 shows these volumes for all the three

dynamical systems mentioned above. As evident by the results in Figure 2.10, PolyAROpt

results in reachable sets that are tighter than the one obtained from the Sapo and Flowstar

thanks to PolyAROpt’s ability to solve the polynomial optimization problem without any

relaxations or using Taylor models. Such ability to avoid relaxation results in several orders

of magnitude reduction in the volume of the reachable sets compared to Sapo and Flowstar;

a significant improvement in the analysis of such dynamical systems.

72

Part II

Designing scalable Model Checkers to

analyze correctness of Deep Neural

Networks

73

Chapter 3

BERN-NN: Tight Bound Propagation

For Neural Networks Using Bernstein

Polynomial Interval Arithmetic

In this chapter, we present BERN-NN as an efficient tool to perform bound propagation of

Neural Networks (NNs). Bound propagation is a critical step in wide range of NN model

checkers and reachability analysis tools. Given a bounded input set, bound propagation

algorithms aim to compute tight bounds on the output of the NN. So far, linear and convex

optimizations have been used to perform bound propagation. Since neural networks are

highly non-convex, state-of-the-art bound propagation techniques suffer from introducing

large errors. To circumvent such drawback, BERN-NN approximates the bounds of each

neuron using a class of polynomials called Bernstein polynomials. Bernstein polynomials

enjoy several interesting properties that allow BERN-NN to obtain tighter bounds compared

to those relying on linear and convex approximations. BERN-NN is efficiently parallelized on

graphic processing units (GPUs). Extensive numerical results show that bounds obtained by

BERN-NN are orders of magnitude tighter than those obtained by state-of-the-art verifiers

74

such as linear programming and linear interval arithmetic. Moreoveer, BERN-NN is both

faster and produces tighter outputs compared to convex programming approaches like alpha-

CROWN.

3.1 Introduction

Neural Networks (NNs) have become an increasingly central component of modern, safety-

critical, cyber-physical systems like autonomous driving, autonomous decision-making in

smart cities, and even autonomous landing in avionic applications. Thus, there is an in-

creasing need to verify the safety and correctness [89, 90, 43] of NNs when they are used to

control physical systems.

The problem of NN Verification has been well studied in literature [63]. Most NN verifiers

rely mainly on either using linear relaxation and optimization [96, 30, 100, 51, 59, 98] to

falsify a given property or prove its satisfaction, or reachability analysis to compute an over-

approximation of the output set. The latter is specifically important for control applications

where the property of interest is defined over a time horizon. Both techniques rely on

overapproximation, hence, having tight output bounds is at the core of NN verification as it

allows reasoning about NN properties in an efficient manner. For example, model checking

the robustness of NNs against adversarial perturbations can be done by simply comparing the

tight bounds of the outputs of the network. Moreover, networks used in control applications

often involve multi-step reachability, and hence computing tight bounds is crucial to harness

the accumulation of the error and hence be able to efficiently reason about the safety of the

system.

Due to the non-convexity and non-linearity of NNs, the problem of finding the exact bounds

of NN outputs is NP-hard[57]. Different tools have been proposed to find tight overap-

75

proximations of NN outputs. MILP-based methods [27, 14, 91, 8, 17, 40, 3, 20] encode the

non-linear activations as linear and integer constraints. Reachability methods [102, 101, 49,

97, 92, 55, 37] use layer-by-layer reachability analysis (exact or overapproximation) of the

network. Most of these methods either rely on convex linear relaxation of the non-linear ac-

tivation functions to overapproximate the output of the NN, or try to find the exact bounds

which are often intractable.

In this work, we explore using polynomials to approximate non-linear activations (e.g.

ReLU). More specifically, we approximate non-linear activations using Bernstein polyno-

mials which are constructed as a linear combination of the Bernstein basis polynomials [33].

The use of Bernstein polynomials is motivated by two reasons. First, based on the Stone-

Weierstrass approximation theorem [22], Bernstein polynomials can uniformly approximate

continuous activation functions. Second and most importantly, bounding a Bernstein poly-

nomial is computationally cheap based on the interesting properties of Bernstein polynomials

discussed in section 3.3. The goal of using higher-order polynomials versus linear relaxation

is to get tight bounds on NNs which is crucial for verifying a large class of formal proper-

ties. This idea of using polynomials has inspired other researchers [29, 32, 53], however, the

proposed tools suffer from scalability issues.

The main contributions of this chapter can be summarized as follows:

1. We propose a tool that uses Bernstein polynomials to approximate ReLU activations

and hence compute tighter NN bounds than state-of-the-art.

2. The tool is designed with scalability in mind; hence, the entire operations can be

accelerated using GPUs.

3. We show that by using the proposed approximation, we are able to compute tighter out-

put sets than alpha-Crown (winner of VNN22’ competition[5] for Formal Verification

of NNs) and other state-of-the-art bounding methods. For instance, BERN-NN ap-

76

proximations are twice reduced compared to alpha-Crown for actual NN’s controllers.

Moreover, Numerical results showed that Bern-NN can process neural networks with

more than 1000 neurons in less than 2 minutes

3.2 Problem Formulation

3.2.1 Notation:

General notation: We use the symbols N and R to denote the set of natural and real

numbers, respectively. We denote by x =
(
x1, x2, · · · , xn

)
∈ Rn the vector of n real-valued

variables, where xi ∈ R. We denote by In(d, d) =
[
d1, d1

]
× · · ·×

[
dn, dn

]
⊂ Rn the n-

dimensional hyperrectangle where d = (d1, · · · , dn) and d =
(
d1, · · · , dn

)
are the lower and

upper bounds of the hyperrectangle, respectively. We denote by xT and AT the transpose

operation of the vector x and the matrix A. We denote by 0n a vector that contains n zero

values and by 0n×m the matrix of shape n ×m that contains zeros. Finally, A ∗ B stands

for the element-wise product between the multi-dimensional tensors A and B, and A ⊗ B

stands for the Kronecker product between the matrices A and B.

Notation pertaining to multivariate polynomials: For a real-valued vector x =
(
x1, x2,

· · · , xn

)
∈ Rn and an index-vector K = (k1, · · · , kn) ∈ Nn, we denote by xK ∈ R the scalar

xK = xk1
1 × . . .× xkn

n . Given two multi-indices K = (k1, · · · , kn) ∈ Nn and L = (l1, · · · , ln) ∈

Nn, we use the following notation throughout this paper:

K + L = (k1 + l1, · · · , kn + ln) ,(
L

K

)
=

(
l1
k1

)
× · · · ×

(
ln
kn

)
,∑

K≤L

=
∑
k1≤l1

· · ·
∑
kn≤ln

77

Finally, a real-valued multivariate polynomial p : Rn → R is defined as:

p(x1, . . . , xn) =

l1∑
k1=0

l2∑
k2=0

. . .
ln∑

kn=0

a(k1,...,kn)x
k1
1 xk2

2 . . . xkn
n

=
∑
K≤L

aKx
K ,

where L = (l1, l2, . . . , ln) is the maximum degree of xi for all i = 1, . . . , n.

Notation pertaining to neural networks: In this paper, we consider H-layer, feed-

forward, ReLU-based neural networks NN : Rn → Ro defined as:

NN (x) = W (H)z(H−1) + b(H)

z(H−1) = σ
(
W (H−1)z(H−2) + b(H−1)

)
...

z(1) = σ
(
W (1)x+ b(1)

)
where σ is the ReLU activation function (i.e., σ(z) = max(0, z)) that operates element-wise,

W (i) ∈ Rhi×hi−1 and b(i) ∈ Rhi with i ∈ {1, · · · , H} are the weights and the biases of the

network. For simplicity of notation, we use ẑ
(i)
j and z

(i)
j to denote the pre-activation (input)

and the post-activation (output) of the j-th neuron in the i-th layer.

3.2.2 Main Problem:

In this paper, we seek to find polynomials that upper and lower approximate the NN’s

outputs NN (x) whenever the NN’s input x is confined within a pre-defined hypercube, i.e.

x ∈ In(d, d).

Problem 3.1. Given a neural network NN : Rn → Ro and an input domain hypercube

In(d, d) ⊂ Rn. Find lower and upper approximate polynomials
(
pNN ,1

(x), pNN ,1(x)
)

78

, . . .
(
pNN ,o

(x), pNN ,o(x)
)
, such that:

pNN ,1
(x) ≤ NN1(x) ≤ pNN ,1(x)

...

pNN ,o
(x) ≤ NNo(x) ≤ pNN ,o(x),

where with some abuse of notation, we use NNi(x) to denote the ith output of the neural

network NN .

Note that the lower/upper bound polynomials
(
pNN ,1

(x), pNN ,1(x)
)
, . . .

(
pNN ,o

(x), pNN ,o(x)
)

depend on the input domain In. That is, for each value of In, we need to find different

lower/upper bound polynomials. However, for the sake of simplicity of notation, we drop

the dependency on In.

3.3 Tight bounds of ReLU Functions Using Bernstein

Polynomials

To solve Problem 3.1, we rely on a class of polynomials called Bernstein polynomials which

are defined as follows:

Definition 3.1. (Bernstein Polynomials) Given a continuous function g : Rn → R, an input

79

domain (hypercube) In(d, d) ⊂ Rn, and a multi-index L = (l1, · · · , ln) ∈ Nn, the polynomial:

Bg,L (x) =
∑
K≤L

bgK,LBerK,L (x) , (3.1)

BerK,L (x) =

(
L

K

)
(x− d)K

(
d− x

)L−K(
d− d

)L , (3.2)

bgK,L = g

((
d1 − d1

) k1
l1

+ d1, · · · ,
(
dn − dn

) kn
ln

+ dn

)
, (3.3)

is called the Lth order Bernstein polynomial of g, where BerK,L (x) and bgK,L are called the

Bernstein basis and Bernstein coefficients of g, respectively.

Bernstein polynomials are known to be capable of approximating any continuous function.

That is, Bernstein approximation has an advantage compared to Taylor approximation be-

cause the latter relies on the function being differentiable. In this case, Taylor model can

not approximate ReLU activation functions because they are not differentiable which makes

Bernstein polynomials a good option to approximate ReLU functions. Bernstein polynomi-

als have an interesting and useful property called range enclosing property which is defined

as follows:

Definition 3.2. (Range Enclosing Property [86]) Given a multi-dimensional polynomial

p (x) of order L that it defined over the region In
(
d, d
)
with its Bernstein polynomial Bp,L =∑

K≤L

bpK,L (x)BerK,L (x). The following holds for all x ∈ In
(
d, d
)
:

min
K≤L

bpK,L ≤ p (x) ≤ max
K≤L

bpK,L. (3.4)

The range enclosing property states that the minimum (maximum) over all the Bernstein

coefficients is a lower (upper) bound for the polynomial p over the region In
(
d, d
)
. These

bounds provided by the Bernstein coefficients are generally tighter than those given by

interval arithmetic and many centered forms [87]. Note that the range enclosing property

80

Figure 3.1: (Left) Bernstein polynomial approximations of ReLU activation for different
approximation’s order L ∈ {1, 2, 8, 16}, in the interval I1 (−6, 10) =

[
− 6, 10

]
. (Right)

Bernstein polynomial approximations of ReLU and their associated approximation errors
for different approximation’s order L ∈ {1, 2, 8, 16} in the interval I1 (−6, 10) =

[
− 6, 10

]
.

applies only when the Bernstein polynomial is used to approximate other polynomials p

and other continuous functions g. Nevertheless, as we show in Section 4, these bounds will

be helpful to provide tight bounds on the polynomials used to over/under approximate the

individual neurons and hence obtain tight polynomial bounds on the NN’s outputs.

3.3.1 Over-Approximating ReLU functions using Bernstein Poly-

nomials

We now study how to use Bernstein polynomials to over-approximate the ReLU function

σ : R → R defined as σ(x) = max(0, x). While Bernstein polynomials can approximate

any continuous function g, there is no guarantee that this Bernstein approximation is either

over-approximation or under-approximation. The next result establishes an order between

the ReLU function σ and its Bernstein approximation.

Proposition 3.1. Given an interval I1
(
d, d
)
=
[
d, d
]
, where 0 ∈

[
d, d
]
and any approxima-

81

tion order L ≥ 1. The following holds for all x ∈ I1:

σ(x) ≤ Bσ,L(x) = Bσ,L(x).

Proof. This follows directly by substituting the function σ in the definition of Bernstein

polynomials (4.1)-(3.3).

In other words, Proposition 3.1 states that the Bernstein polynomial of σ is a guaranteed

over-approximation of σ. This even holds for any approximation order L. Moreover, since

the approximation error between a function g and its Bernstein approximation Bg,L is known

to decrease as L increases [44]. Then another consequence of Proposition 3.1 is that Bernstein

polynomials produce a tighter over-approximation for ReLU functions as L increases.

Figure 3.1 emphasizes these conclusions pictorially where we show the Bernstein polynomials

of σ with orders L = 1, 2, 8, 16. As shown in Figure 3.1 (Left), the Bernstein polynomials

Bσ,L(x) for L ∈ {1, 2, 8, 16} over-approximate the ReLU activation function over the entire

input range. Furthermore, the over-approximation gets tighter to the actual ReLU by in-

creasing the approximation order L. We note that using L = 1, the resulting Bernstein

polynomial produces the well-studied linear convexification of the ReLU function which is

used in state-of-the-art algorithms for bounding neural networks including Symbolic Interval

Arithmetic (SIA) [96] and alpha-CROWN [103]. In other words, Bernstein polynomials can

be seen as a generalization of these techniques.

3.3.2 Under-approximating ReLU functions using Bernstein poly-

nomials

In addition to the over-approximation of the ReLU function σ, it is essential to establish a

Bernstein under-approximation of σ which is captured by the following result.

82

Proposition 3.2. Given an interval I1
(
d, d
)
=
[
d, d
]
, where 0 ∈

[
d, d
]
, then the following

holds for all x ∈ I1:

Bσ,L(x) = Bσ,L(x)−Bσ,L(0) ≤ σ(x).

Proof. To prove the result, we define the approximation error ϵσ,L as:

ϵσ,L(x) = Bσ,L(x)− σ(x).

We bound the maximum estimation error satisfies as follows:

max
x∈[d,d]

ϵσ,L(x) = max
x∈[d,d]

(
Bσ,L(x)− σ(x)

)
(3.5)

(a)
= max

x∈[d,0]
Bσ,L(x) (3.6)

(b)
= Bσ,L(0) (3.7)

where (a) follows from the fact that σ(x) = 0 for x ∈ [d, 0] and σ(x) ≥ 0 for x ∈ [0, d]

and hence the maximum of the equation is attained whenever σ(x) = 0. Equation (b) holds

from the monotonicity of Bσ,L(x) when x ∈ [d, 0]—the monotonicity follows directly from

the definition of Bσ,L(x)—and hence the maximum is attained when x = 0. It follows from

the definition of ϵσ,L(x) that:

σ(x) = Bσ,L(x)− ϵσ,L(x) ≥ Bσ,L(x)− max
x∈[d,d]

ϵσ,L(x)

= Bσ,L(x)−Bσ,L(0) = Bσ,L

which concludes the proof.

Proposition 3.2 shows that the maximum error between the Bernstein over-approximation

polynomial Bσ,L and the ReLU activation function σ is equal to the value of the Bernstein

83

polynomial at 0, i.e., Bσ,L(0). This result has a direct consequence on the efficiency of our

tool. It is enough to propagate over-approximation of the ReLU function and one can get

an under-approximation directly by shifting the over-approximation polynomial.

Figure 3.1 (Right) emphasizes this fact pictorially. As it is shown in the figure, the maximum

error ϵσ,L(x) = Bσ,L − σ(x) is reached at x = 0 and is equal to Bσ,L (0).

Figure 3.2: Illustrations of the over-approximation sets (shaded in gray) of the ReLU acti-
vation functions in the interval

[
− 6, 10

]
using different approaches: Bernstein approach

(Left), triangulation approach (Center), and zonotope approach (Right). Green (Red)-
colored curves represent the over-approximation (under-approximation) curves for every
approach, respectively. Ai, i ∈ {1, 2, 3}, represents the over-approximation set’s area for
every approach.

Table 3.1: The area of the over-approximation set of the ReLU activation functions in the
interval

[
− 6, 10

]
using different Bernstein approach for different approximation order L.

Approx. Triangulation Zonotope Bernstein poly
Method L = 2 L = 3 L = 8
error 80.0 80.0 37.5 28.1 16.9

3.3.3 Comparing Bernstein Approximation Against Widely Used

Approximations

The major advantage of using Bernstein polynomials is that they produce a tighter approxi-

mation for the response function of ReLU compared to the other state-of-the-art techniques.

In particular, existing techniques focus on “convexifying” the response of the ReLU func-

tion through linear approximation/triangulation (Figure 4.1-middle) or zonotopes (Figure

84

4.1-right). Unlike these techniques, Bernstein polynomials lead to tighter non-convex ap-

proximations of the non-convex ReLU function. While it is direct to obtain a closed-form

expression for the difference in the approximation error between Bernstein polynomials and

triangulation/zonotope approximations, we, instead support our conclusions with the nu-

merical example shown in Table 3.1 and highlighted in Figure 4.1. In this example, we

compute the approximation error (highlighted in gray) which captures the quality of the

over and under-approximations. As captured by this example, it is direct to see that Bern-

stein polynomials lead to tighter approximation. Moreover, such approximation gets tighter

as the approximation order L increases.

3.4 Encoding Basic Bernstein Polynomial Operations

Using Multi-Dimensional Tensors

While using Bernstein polynomials to approximate individual ReLU functions provides

tighter bounds compared to other techniques, computing Bernstein polynomials via its defi-

nition in (4.1)-(3.3) is time-consuming. That is why state-of-the-art techniques have focused

on linear (or convex) relaxations to obtain tractable computations. Nevertheless, in this

section, we show that technological advances in Graphics Processing Units (GPUs) can be

used to perform all the required operations to efficiently compute Bernstein polynomial ap-

proximations of individual neurons along with propagating these polynomials from one layer

of the neural network to the next layer. Our main contribution of this section is to en-

code all necessary operations over Bernstein polynomials into additions and multiplication

of multi-dimensional tensors that can be easily performed using GPUs.

85

3.4.1 Multi-dimensional tensor representation of Bernstein poly-

nomials

We represent the Bernstein polynomial:

Bg,L (x) =
∑
K≤L

bgK,LBerK,L (x)

of function g and order L as a multi-dimensional tensor Ten(Bg,L) of n dimensions, and of

a shape of L = (l1 + 1, · · · , ln + 1), where the K = (k1, · · · , kn) component of Ten(Bg,L) is

equal to the Bernstein coefficient bgK,L. The multi-dimensional tensor Ten(Bg,L) represent all

the Bernstein coefficients bgK,L of g, ∀K ≤ L.

Example 3.1. Consider the two-dimensional Bernstein polynomial:

Bg,L (x1, x2) =
2∑

k1=0

3∑
k2=0

bg(k1,k2),LBer(k1,k2),L (x1, x2)

with orders L = (2, 3). Its two-dimensional tensor representation is written as follows:

Ten (Bg,L) =

bg(0,0),L bg(0,1),L bg(0,2),L bg(0,3),L

bg(1,0),L bg(1,1),L bg(1,2),L bg(1,3),L

bg(2,0),L bg(2,1),L bg(2,2),L bg(2,3),L

 . (3.8)

In a similar manner, we represent a multi-dimensional polynomial of order L written in the

power series form p (x) =
∑
K≤L

aKx
K as a multi-dimensional tensor Ten (p) of n dimensions,

and of a shape of L = (l1 + 1, · · · , ln + 1), where the K = (k1, · · · , kn) component of Ten (p)

is equal to the coefficient aK .

86

3.4.2 Multiplication of two multi-variate Bernstein polynomials

Multiplying two polynomials represented in the power series form on GPUs has been widely

studied in the literature. Unlike power series, multiplying two Bernstein polynomials need

extra handling [81]. In this subsection, we propose how to encode the multiplication of Bern-

stein polynomials using GPU implementations that were designed for power-series polyno-

mials.

Given two multivariate polynomials written in a power series form, p1 =
∑

K≤L1

a1Kx
K and

p2 =
∑

K≤L2

a2Kx
K , and their tensor representation, Ten (p1) and Ten (p2), we use an effi-

cient algorithm [74] that performs multivariate polynomial multiplications. We denote by

Prod (Ten (p1) ,Ten (p2)) the tensor resulting from such multiplication, i.e.:

Ten (p1p2) = Prod (Ten (p1) ,Ten (p2)) .

Applying power-series-based algorithms to multiply two Bernstein polynomials produce in-

correct results. Different algorithms were proposed for the case when the Bernstein polyno-

mials are functions of one variable x1 [35] and two variables x1, x2 [81]. Below, we generalize

the procedure in [81] to account for Bernstein polynomials in n variables.

Proposition 3.3. Given two multivariate Bernstein polynomials Bg1,L1 (x) =
∑

K≤L1

bg1K,L1

BerK,L1 (x) and Bg2,L2 (x) =
∑

K≤L2

bg2K,L2
BerK,L (x). The tensor representation of the Bern-

stein polynomial Bg1,L1(x)Bg2,L2(x) can be computed as follows:

Ten
(
B̃g1,L1

)
= Ten (Bg1,L1) ∗ CL1 , (3.9)

Ten
(
B̃g2,L2

)
= Ten (Bg2,L2) ∗ CL2 , (3.10)

Ten (Bg1,L1Bg2,L2) =
1

CL1+L2

∗Prod
(
Ten

(
B̃g1,L1

)
,Ten

(
B̃g2,L2

))
. (3.11)

where CL is the multi-dimensional binomial tensor where its Kth component is equal to

87

(
L
K

)
, i.e., (CL)K =

(
L
K

)
. With some abuse of notation, we use 1/CL to denote the multi-

dimensional binomial tensor where its Kth component is equal to 1

(L
K)

.

The proof of Proposition 3.3 generalizes the argument in [81] to multi-dimensional inputs

and is omitted for brevity. The Bernstein polynomials in (4.16) and (4.17) are called scaled

Bernstein polynomials [81] and enjoy the fact that their multiplication corresponds to the

multiplication of power series polynomials. Hence we can use the power series Prod in (4.19)

followed by the element-wise multiplication with the 1
CL1+L2

tensor to remove the effect of

the scaling. Recall that we use A ∗B to denote the element-wise multiplication between the

tensors A and B, which can also be carried over using GPUs efficiently which renders all the

steps in equations (4.16)-(4.19) to be efficiently implementable on GPUs. We refer to the

equations (4.16)-(4.19) as Prod Bern(Bg1,L1 , Bg2,L2).

Using Prod Bern, one can compute the tensor corresponding to raising the function g to

power i, where i ∈ N is an integer power, denoted by Ten(Bgi,L) by applying the Prod Bern

procedure i times. We refer to this procedure as Pow Bern(Ten(Bg,L), i).

3.4.3 Addition between two Bernstein polynomials

The authors in [35] studied how to add two Bernstein polynomials. However, their study is

restricted to one-dimensional polynomials which are defined over the unity interval I1 (x) =

[0, 1]. We extend the argument to the general case with n inputs and any interval In(d, d)

using the following result.

Proposition 3.4. Given two Bernstein polynomials Bg1,L1 (x) and Bg2,L2(x) with two dif-

ferent orders L1 = (l11, · · · , l1n) and L2 = (l21, · · · , l2n). Define Lsum = max(L1, L2), where

the max operator is applied element-wise. The tensor representation of Bg1+g2,Lsum can be

88

computed as:

Lsum = (max(l11, l
2
1), . . . ,max(l1n, l

2
n)) (3.12)

Ten (Bg1,Lsum) = Prod Bern (Ten (Bg1,L1) , 1Lsum−L1+1) (3.13)

Ten (Bg2,Lsum) = Prod Bern (Ten (Bg2,L2) , 1Lsum−L2+1) (3.14)

Ten (Bg1+g2,Lsum) = Ten (Bg1,Lsum) + Ten (Bg2,Lsum) (3.15)

where 1Le−L+1 is a multi-dimensional tensor of a shape Le − L+ 1 that contains just ones.

The proof of Proposition 4.3 generalizes the argument in [35] and is omitted for brevity.

The operation in (4.21) and (4.22) is referred to as degree elevation in which we change the

dimensions of the tensors ... Once both tensors are of the same dimension, we can add them

element-wise. We denote by Sum Bern the procedure defined by (4.20)-(4.23). Again, we

note that all the operations in the Sum Bern entail tensor element-wise multiplication and

addition

3.5 BERN-NN algorithm

In this section, we provide the details of our tool, named BERN-NN. BERN-NN uses the

tensor encoding discussed in Section 4 to propagate Bernstein polynomials that over- and

under-approximate the different neurons in the network until over- and under-approximation

polynomials for the final output of the network are computed.

89

3.5.1 Propagating bounds through single neuron

We first discuss how to propagate over- and under-approximations through neurons. Recall

our notation that we use ẑ
(i)
j and z

(i)
j to denote the input and output of the j-th neuron in

the i-th layer. For ease of notation, we drop the i and j from the notation in this subsection.

Assume that we already computed the over- and under-approximations for the input of one

of the hidden neurons, denoted by B ẑ,Lẑ
(x) and B ẑ,Lẑ

(x), respectively. The objective is to

compute the over- and under-approximations for the output of such a neuron, denoted by

Bz,Lz(x) and Bz,Lz
(x), respectively. We proceed as follows.

Step 1: Compute input bounds for the neuron. Recall that the Bernstein coefficients

depend on the input bounds of the function it aims to approximate. Since our aim is to

approximate the scalar ReLU function of a neuron, we start by computing the bounds on

the input to that neuron as follows:

lo = min
x∈In(d,d)

B ẑ,Lẑ
(x), hi = max

x∈In(d,d)
B ẑ,Lẑ

(x) (3.16)

Thanks to the enclosure property (3.4), we can solve the optimization problems (3.16) by

finding the minimum and the maximum coefficients of B ẑ,Lẑ
and B ẑ,Lẑ

.

Step 2: Compute the polynomials Bσ,L and Bσ,L that approximate the ReLU

function. Given a user-defined approximation order L, the next step is to compute the

Bernstein polynomials that over- and under-approximate the ReLU activation function σ

denoted by Bσ,L and Bσ,L. These polynomials can be computed using the knowledge of

lo and hi along with the definition of the Bernstein polynomial in (3.3). To facilitate the

computations of the next step, we need to convert these polynomials into the corresponding

90

power series form. This can be done by following the procedure in [78] to obtain:

pBσ,L
(x) =

∑
K≤L

a
Bσ,L

K xK , pBσ,L
(x) =

∑
K≤L

a
Bσ,L

K xK (3.17)

Step 3: Propagate the bounds through the decomposition of polynomials. First,

note that the following holds due to the monotonicity of the ReLU function σ and the fact

that z = σ(ẑ):

B ẑ,Lẑ
(x) ≤ ẑ(x) ≤ B ẑ,Lẑ

(x)⇒ (3.18)

Bz,Lz
(x) ≤ σ

(
B ẑ,Lẑ

(x)
)
≤ σ

(
ẑ(x)

)
︸ ︷︷ ︸

z(x)

≤ σ
(
B ẑ,Lẑ

(x)
)
≤ Bz,Lz(x) (3.19)

In other words, the post-bounds of the neuron, denoted by Bz,Lz(x) and Bz,Lz
(x) can be

computed by composing the function σ with the under- and over-approximations of the

neuron input B ẑ,Lẑ
(x) and B ẑ,Lẑ

(x). Indeed such composition is hard to compute due to

the nonlinearity in σ. Instead, we perform such composition with the over- and under-

approximations of σ, pBσ,L
and pBσ,L

, computed in Step 2, as:

Bz,Lz
(x) =

∑
K≤L

a
Bσ,L

K

(
B ẑ,Lẑ

(x)
)K

(3.20)

Bz,Lz(x) =
∑
K≤L

a
Bσ,L

K

(
B ẑ,Lẑ

(x)
)K

(3.21)

Given the tensor representation Ten(B ẑ,Lẑ
) and Ten(B ẑ,Lẑ

), we can use the Pow Bern

and Sum Bern procedures to perform the computations in (3.20) and (3.21) to calculate

Ten(Bz,Lz
) and Ten(Bz,Lz) with Lz = Lẑ ∗ L.

91

3.5.2 Propagating the bounds through one layer

Next, we discuss how to propagate the under- and over-approximation polynomials of the

outputs of the i−1 layer denoted by B
z
(i−1)
j , Lz

, B
z
(i−1)
j , Lz

, j ∈ {1, . . . , hi−1} to compute under-

and over-approximation of the inputs of the neurons in the ith layer B
ẑ
(i)
m , Lẑ

, B
z
(i)
m , Lẑ

,m ∈

{1, . . . , hi} of the neural network. Such bound propagation entails composing the under- and

over-approximation polynomials B
z
(i−1)
j , Lz

, B
z
(i−1)
j , Lz

with the weights of the ith layer of the

neural network W (i), b(i). To that end, we define the set of positive and negative weights as:

W
(i)
+ = max

(
W (i), 0i×(i−1)

)
W

(i)
− = min

(
W (i), 0i×(i−1)

)
.

Similarly, for the outputs of the i − 1 layer of the network, we define the vector of over-

approximation polynomials and vector of the under-approximation polynomials as:

Bz(i−1), Lz
=

[
B

z
(i−1)
1 ,Lz

. . . , B
z
(i−1)
hi−1

,Lz

]T
,

Bz(i−1), Lz
=

[
B

z
(i−1)
1 ,Lz

. . . , B
z
(i−1)
hi−1

,Lz

]T
,

and for the inputs of the ithe layer as:

B ẑ(i), Lẑ
=

[
B

ẑ
(i)
1 ,Lẑ

. . . , B
ẑ
(i)
hi

,Lẑ

]T
B ẑ(i), Lẑ

=

[
B

ẑ
(i)
1 ,Lẑ

. . . , B
ẑ
(i)
hi

,Lẑ

]T

Hence, the over- and under-approximations of the inputs of the ith layer can be efficiently

computed as:

92

Figure 3.3: Mechanism of BERN-NN Polynomial Interval Arithmetic.

Ten
(
B ẑ(i),Lẑ

)
=W

(i)
+ ×Ten

(
Bz(i−1),Lz

)
+W

(i)
− ×Ten

(
Bz(i−1),Lz

)
+ b(i) (3.22)

Ten
(
B ẑ(i),Lẑ

)
=W

(i)
+ ×Ten

(
Bz(i−1),Lz

)
+W

(i)
− ×Ten

(
Bz(i−1),Lz

)
+ b(i) (3.23)

3.5.3 Mechanism of BERN-NN Polynomial Interval Arithmetic

We finally describe the proposed BERN-NN Polynomial Interval Arithmetic algorithm, de-

picted in Figure 3.3. For a neural network with n inputs x1, . . . , xn, we initialize an over-

and under-approximation Bernstein polynomials for each of the inputs, i.e.,:

B
z
(0)
i ,1

= B
z
(0)
i ,1

= B
z
(0)
i ,1

i ∈ {1, . . . , n}.

Note that in the equation above, we used z
(0)
i as a replacement of xi to unify the notation

with the remainder of the operations (see Figure 3.3). To compute the Bernstein polynomials

B
z
(0)
i ,1

and B
z
(0)
i ,1

, we recall that the coefficients of such polynomials depend on the input

domain. Hence, given a hypercube In(d, d) that bounds the input x of the neural network,

93

we compute the tensor representation of these polynomials as:

Ten
(
B

z
(0)
1 ,1

)
= Ten

(
B

z
(0)
1 ,1

)
=

d1
d1

⊗
1
1

⊗ . . .⊗

1
1

 (3.24)

Ten
(
B

z
(0)
2 ,1

)
= Ten

(
B

z
(0)
2 ,1

)
=

1
1

⊗
d2
d2

⊗ . . .⊗

1
1

 (3.25)

...

Ten
(
B

z
(0)
n ,1

)
= Ten

(
B

z
(0)
n ,1

)
=

1
1

⊗
1
1

⊗ . . .⊗

dn
dn

 (3.26)

Next, we propagate these over- and under-approximation polynomials to the inputs of the

first layer in the neural network using (4.2) and (4.3). Given a user-defined approximation or-

der L, we propagate the polynomial approximations through the ReLU function using (3.20)

and (3.21) for each of the neurons in layer 1. The produced over- and under-approximations

of the outputs of all neurons are aggregated together in one tensor which is then propagated to

the next layer. This process continues until we compute the over- and under-approximation

polynomials of the outputs of the neural network, denoted by B
z
(H)
j ,LH−1(x), Bz

(H)
j ,LH−1(x)

for j = 1, . . . , o. These polynomials are used as the solution of Problem 1.

It is important to note that the final Bernstein polynomials B
z
(H)
j ,LH−1(x), Bz

(H)
j ,LH−1(x) have

orders of LH−1 where L is the user-defined order of approximation of the ReLU function and

H is the number of layers. This polynomial order increases exponentially with the number of

hidden layers. Similarly, the shape of their multi-dimensional tensor representations is equal

to LH−1+1 which increases exponentially with the number of hidden layers. To alleviate this

problem, we introduce a parameter called Lin. Based on this parameter, we drop the orders

of the post-bound over- and under-approximation polynomials to [1, · · · , 1]. In other words,

we linearize the approximation polynomials every Lin hidden layers. We use the algorithm

94

in [47] to perform such linearization of the Bernstein polynomial. Luckily, this algorithm,

like all the other operations in our BERN-NN involves tensor multiplications and additions

and hence can be parallelized over GPUs efficiently.

Finally, note that one can always obtain absolute bounds on the inputs or outputs of any of

the neurons (including the outputs of the neural network), thanks to the enclosure property

of Bernstein polynomials (3.4). Such absolute bounds are useful for reachability analysis and

model checkers.

3.5.4 GPU Implementation Details

To get the performance increase of GPUs without the complications of low-level languages,

we implemented this tool in PyTorch. As mentioned above, we represent n-dimensional

Bernstein polynomials as dense n-dimensional tensors. The tool becomes memory bound

very quickly as the number of input nodes increases, making the number of dimensions in

the tensors larger. In order to combat this, we use as many in-place operations as possible

to avoid repeatedly allocating large chunks of memory during computation. Similarly, the

multinomial coefficients used for degree elevation are used multiple times throughout the

tool, and we cache each the first time they are generated to avoid spending time re-doing

calculations and allocating additional memory.

We parallelized the tool on a node level: at each layer, the outputs of the last layer are

passed to each node, which then can run independently of each other on separate GPUs.

However, because the tensors become large very quickly, the gains in computation time only

offset the overhead of copying tensors between GPUs when the neural network is particularly

large. We collect and stack the outputs of all the nodes in one tensor and pass it to the next

layer. When the polynomials are being composed with the ReLU approximation, each term

is elevated to the highest degree expected of a composition between these two polynomials.

95

This both ensures that the outputs of all the neurons can be stacked, as they are all the same

shape and size, and also allows the multiplication of the stacked outputs of the last layer

by the incoming weights to be a simple broadcasting multiplication, which is then easily

parallelizable on a GPU.

We achieved additional performance gains by rewriting for-loops as element-wise tensor oper-

ations and by batching linear algebra operations like matrix multiplications and calculating

the least-square solutions of matrices, both of which allow operations to be easily parallelized

on GPUs and reduce the amount of time spent allocating many small patches of memory,

instead doing a single large allocation.

3.6 Numerical Results

In this section, we perform a series of numerical experiments to evaluate the scalability and

effectiveness of our tool. First, we conduct an ablation study to check the effect of varying

different parameters (e.g., neural network width, neural network depth, ReLU approximation

order) on the performance of our tool. We utilize two metrics:

• Execution time: which measures the time (in seconds) needed to compute the final

Bernstein polynomials. Indeed, smaller values indicate better performance.

• Relative volume of the output set: this metric measures the “tightness” of the

produced over- and under-approximation polynomials. Without loss of generality, we

96

focus on neural networks with one output z(H) and we compute this metric as:

Vol relative =
Vol Output

Vol Input
(3.27)

Vol Input =
n∏

i=1

(
di − di

)
(3.28)

Vol Output =

∫
· · ·
∫
In

(
Bz(H)(x)−Bz(H)(x)

)
dx1 . . . dxn (3.29)

Indeed, smaller values of this metric indicate tighter approximations of the output set.

After the ablation study, we compare our tool with a set of state-of-the-art bound compu-

tation tools—including the winner of the last 2022 Verification of Neural Network (VNN)

competition [5]—to study the relative performance.

Setup: We implemented our tool in Python3.9 using PyTorch for all tensor arithmetic.

We run all our experiments using a single GeForce RTX 2080 Ti GPU and two 24-core

Intel(R) Xeon(R). We like to note that the throughput of the tool can be increased by

utilizing multiple GPU to process different neurons in parallel in a batch-processing fashion.

However, in this section, we focus on using only one GPU and we leave the generalization of

our algorithm to utilize multiple GPUs for future work.

3.6.1 Ablation study

The effect of varying the ReLU’s order of approximation:

We study the effect of varying the ReLU’s order of approximation L for a fixed NN archi-

tecture on the execution time and the output’s relative volume space of our tool. In Figure

3.4, we report the statistical results for 50 random networks of a fixed architecture. Figure

3.4 (top) shows that increasing the approximation order increases the execution time. On

97

2 3 4 5 6
0

2

4

6

Execution time (seconds) vs ReLU approx. order L

2 3 4 5 6

1,000

2,000

3,000

4,000

Relative volume vs ReLU approx. order L

Figure 3.4: Effect of varying the ReLU’s order of approximation L for a NN architecture
[2, 20, 20, 1] on the execution time of our tool (top) and the relative volume of the output
set (bottom). We set n = 2, In = [−1, 1]n, and Lin = 0. The weights and biases are
generated randomly following uniform distribution between −5 and 5. The reported results
are generated for 50 experiments.

the other hand, Figure 3.4 (bottom) shows that the relative volume of the output set sig-

nificantly decreases with increasing the order of approximation. The results of both figures

highlight the trade-off between the tightness of the output bounds and the execution time

as a function of the ReLU approximation order L.

The effect of varying the input’s dimension:

We study the effect of varying the input’s dimension n, for a fixed NN architecture on the

execution time of our tool. Figure 3.5 shows that the execution time for computing the

98

2 3 4 5 6 7 8
0

2

4

6

Execution time (seconds) vs input dimension n

Figure 3.5: Effect of varying the input’s dimension n for a NN architecture [n, 20, 20, 1] on
the execution time our tool. We set L = 2, In = [−1, 1]n, and Lin = 0. The weights
and biases are generated randomly following uniform distribution between −5 and 5. The
reported results are generated for 50 experiments.

output set grows linearly for smaller values of n but seems to grow more rapidly after n = 7.

This suggests that the proposed tool can be used efficiently for many control applications.

The effect of increasing the number of neurons per layer:

We study the effect of varying the number of neurons per layer Ne, for a fixed NN architec-

ture [3, Ne, Ne, 1] on the execution time of our tool. Figure 3.6 summarizes the execution

times with a varying number of neurons per layer. The results show that increasing the

number of neurons per layer highly affects the execution time. This is due to the expensive

arithmetic and memory operations for large tensors that represent the Bernstein polynomi-

als. Nevertheless, this increase in execution time can be harnessed by using multiple GPUs

to compute bounds for different nodes in parallel along with using the same GPU to process

multiple nodes simultaneously.

99

10 20 40 60 80 100
0

10

20

Execution time (seconds) vs number of neurons per layer Ne

Figure 3.6: Effect of varying the number of neurons per layer Ne for a NN architecture
[2, Ne, Ne, 1] on the execution time of our tool. We set n = 2, L = 2, In = [−1, 1]n, and
Lin = 0. The weights and biases are generated randomly following uniform distribution
between −5 and 5. The reported results are generated for 50 experiments.

The effect of increasing the number of hidden layers:

We study the effect of varying the number of hidden layers nh, with 20 neurons in every

hidden layer, on the execution time of our tool. Unlike the effect of increasing the number

of neurons per layer, the results in Figure 3.7 show that the execution time almost grows

linearly with the number of hidden layers.

Scalability analysis of Bern-NN:

We finally try to study the execution time of Bern-NN for relatively large neural networks.

In this study, we add extra layers with 100 neurons each and report the execution time in

Figure 3.8 for random neural networks. As shown in the figure, Bern-NN can process neural

networks with more than 1000 neurons in less than 2 minutes.

100

1 2 3 4 5
0

2

4

6

Execution time (seconds) vs number of layers nh

Figure 3.7: Effect of varying the number of hidden layers nh, for a NN architecture
[2, 20, .., 20, 1] with 20 neurons in every hidden layer on the execution time of our tool.
We set n = 2, L = 2, In = [−1, 1]n, and Lin = 0. The weights and biases are generated ran-
domly following uniform distribution between −5 and 5. The reported results are generated
for 50 experiments.

100 200 300 400 500 600 700 800 900 1,000 1,100
0

50

100

Execution time (seconds) vs total number of neurons

Figure 3.8: Scalability of the Bern-NN tool as a function of increasing the total number of
neurons.

101

3.6.2 Comparison against other tools

In this subsection, we compare the performance of our tool in terms of execution time and

the output set’s relative volume compared to bound propagation tools such as Symbolic

Interval Analysis (SIA)[96], alpha-CROWN [103], and reachability analysis tool such as

POLAR [53]. We note that alpha-CROWN [103] was the winner of the 2022 VNN com-

petition and we compare Bern-NN against the bound propagation algorithm used within

alpha-CROWN as a representative tool for all the bound propagation techniques. Moreover,

alpha-CROWN is also designed to harness the computational powers of GPUs. We compare

Bern-NN against POLAR since it also uses polynomials (Taylor Model with a Bernstein error

correction) to compute bounds on the output of neural networks. POLAR [53] outperforms

other reachability-based tools and hence is a representative tool for such techniques.

Comparison against SIA and alpha-CROWN for random NN

We compare the performance of our tool to SIA and alpha-CROWN for random neural

networks with [2, 20, 20, 1] architecture for different hyperrectangle input spaces (Figure 3.9).

We also compare the performance as the input dimension of the network increases (Figure

3.10). The results show that SIA is the fastest in terms of execution time for all different

input hyperrectangles due to the simplicity of its computations. However, its relative volume

is the highest. On the other hand, Bern-NN’s relative volume is the smallest for all different

input spaces thanks to its tight higher-order ReLU approximations. Compared to alpha-

CROWN (which also runs on GPUs), Bern-NN is both faster and produces tighter bounds

leading to an average of 25% reduction in execution time with an average of 10% reduction in

the relative volume metric. This shows the practicality of Bern-NN for control applications.

102

input1 input2 input3 input4

0

2

4
A
ve
ra
ge

ex
ec
u
ti
on

ti
m
e

SIA CROWN BERN-NN

input1 input2 input3 input4

0

0.5

1

1.5
·105

A
ve
ra
ge

re
la
ti
ve

vo
lu
m
e

SIA CROWN BERN-NN

Figure 3.9: Performance results in terms of average execution times (sec) (left) and relative
volume (right) for BERN-NN, SIA, and alpha-CROWN for different input spaces. The NN’s
architecture is [2, 20, 20, 1]. The ReLU’s order of approximation is L = 4, and Lin = 0. The
weights and biases are generated randomly following uniform distribution between −5 and
5. Input1 = In = [−5, 5]2, Input2 = In = [−10, 10]2, Input3 = In = [−20, 20]2, Input4 =
In = [−40, 40]2.

dim1 dim2 dim3

0

2

4

A
ve
ra
ge

ex
ec
u
ti
on

ti
m
e

SIA alpha-CROWN BERN-NN

dim1 dim2 dim3

2

4

6

·104
A
ve
ra
ge

re
la
ti
ve

vo
lu
m
e

SIA CROWN BERN-NN

Figure 3.10: Performance results in terms of average execution times (sec) (left) and relative
volume (right) for BERN-NN, SIA, and alpha-CROWN for input’s dimensions n. The NN’s
architecture is [n, 20, 20, 1]. the input’s space is [−10, 10]n. The ReLU’s order of approxima-
tion is L = 4, Lin = 0. The weights and biases are generated randomly following uniform
distribution between −5 and 5. dim1 = n = 2, dim2 = n = 3, dim3 = n = 4.

Table 3.2: Performance results in terms of average execution times and volume for BERN-
NN, SIA, alpha-CROWN, and POLAR, for 5 different input’s spaces In

(
d, d
)
for 6 bench-

marks [53]. The ReLU’s order of approximation is L = 2, Lin = 0.

Tool
Benchmark 1 Benchmark 2 Benchmark 3 Benchmark 4 Benchmark 5 Benchmark 6
[2,20,20,1] [2,20,20,1] [2,20,20,1] [3,20,20,1] [3,100,100,1] [4,20,20,20,1]

time volume time volume time volume time volume time volume time volume

SIA 0.01 2.544 0.02 6.05 0.01 1.02 0.01 9.41 0.02 53.38 0.02 2.03
CROWN 2.9 3.1 3.49 5.50 3.54 0.73 3.13 17.04 3.80 77.72 4.10 2.4

Bern−NN 0.84 1.62 1.30 5.4 1.09 0.81 1.15 6.21 41.7 35.85 3.25 1.38
POLAR 0.21 25.43 0.284 51.80 0.29 18.81 0.42 33.32 5.52 432.75 0.81 7.00

103

Case Study for Control Benchmarks

In this experiment, we test different tools on benchmarks of NN controllers (used by PO-

LAR) to evaluate the tightness of their estimated bounds. POLAR and BERN-NN use

different Bernstein polynomials to approximate ReLU functions. Proposition 2 shows the

maximum error of ReLU’s Bernstein overapproximation equals the Bernstein approximation

at 0. This error is the smallest for ReLU’s Bernstein overapproximation. However, POLAR

approximates the ReLU using samples and adds a symmetric error bound estimated using

the Lipschitz constant of ReLU functions. Such a method is conservative and leads to addi-

tional errors for each ReLU function. Table 4.2 represents six standard benchmarks used by

the authors in [53] to evaluate the POLAR tool. Every benchmark represents a trained NN

controller for a closed-loop system. Numbers in the square brackets refer to NN architecture,

e.g., [2,20,20,1] means the NN has an input layer of two neurons, two hidden layers of 20

neurons, and an output layer of 1 neuron. Table 4.2 summarizes the performance of the tools

with respect to the average execution time and average relative volume for six control bench-

marks. The results show that Bern-NN provides the tightest estimate for the output set for

all benchmarks except Benchmark 3. We would like to highlight that the tight approximation

provided by Bern-NN is important for control applications because the specification of inter-

est is usually defined over a time horizon and require multi-step reachability, hence, tighter

bounds at each step are crucial. Lastly, Bern-NN is faster than alpha-CROWN over all

benchmarks except Benchmark 5. However, SIA and POLAR are faster than Bern-NN but

provide looser bound estimates. Each benchmark is run with five different hyperrectangles

that are all centered around zero and have a radius r ∈ {1, 1.5, 2, 2.5, 3}.

104

Chapter 4

BERN-NN-IBF: Enhancing Neural

Network Bound Propagation Through

Implicit Bernstein Form and

Optimized Tensor Operations

In this chapter, we present a significant enhancement of the Bernstein-polynomial-based

bound propagation algorithm BERN-NN that it is introduced in chapter 3. BERN-NN-IBF

offers three main contributions: (i) a memory-efficient encoding of Bernstein-polynomials

to scale the bound propagation algorithms, (ii) optimized tensor operations for the new

polynomial encoding to maintain the integrity of the bounds while enhancing computa-

tional efficiency, and (iii) tighter under-approximations of the ReLU activation function using

quadratic polynomials tailored to minimize approximation errors. Through comprehensive

testing, we demonstrate that BERN-NN-IBF achieves tighter bounds and higher computa-

tional efficiency compared to the original BERN-NN and state-of-the-art methods, including

linear programming and convex used within the winner of the VNN-COMPETITION.

105

4.1 Introduction

As neural networks (NNs) take the driver’s seat in powering critical cyber-physical systems,

the urgency to validate their reliability and safety escalates [89, 90, 43]. From steering

autonomous vehicles to orchestrating smart cities technologies and managing complex avionic

systems, these networks operate at the heart of applications where error margins must be near

non-existent. The intricate task of NN verification hinges on precise bound propagation - a

process challenged by the networks’ non-linear and non-convex nature, making exact output

bound determination an NP-hard problem [57].

Previous methodologies leaned heavily on either linear relaxation techniques [27, 14, 91, 8,

17, 40, 3, 20] or reachability analysis [102, 101, 49, 97, 92, 55, 37], both of which often culmi-

nate in substantial over-approximations. BERN-NN (chapter 3) [36], took a detour from a

traditional practices by harnessing Bernstein polynomials’ power for more accurate approx-

imations of non-linear activations. While BERN-NN marked a significant leap forward, the

quest for enhanced precision and efficiency remained ongoing.

In this chapter, we introduce BERN-NN-IBF, an improvement tool of BERN-NN. BERN-

NN-IBF introduces the implicit Bernstein form (IBF), a novel representation that employs

2D tensors for bounds, sidestepping the computational hurdles synonymous with the n-

dimensional tensors used in BERN-NN.

Moreover, we have designed new operations specific to the IBF format, enhancing essential

functions like summations, multiplications, and power, which are implemented efficiently

using specialized CUDA routines, contributing significantly to the tool’s overall speed.

Finally, we proposed in BERN-NN-IBF an approach for calculating the coefficients of a

quadratic polynomial that under-approximates the ReLU function more accurately. We

achieve the lowest approximation error by formulating and solving a dedicated optimization

106

Figure 4.1: Illustrations of the over/under-approximation of the ReLU activation functions
in the interval

[
− 6, 10

]
using different approaches: Higher-order polynomials (Left), trian-

gulation (Center), and zonotope (Right). The area of the shaded set A1, A2, A3 represents
the approximation error for each of the approaches (chapter 3) [36].

problem, ensuring even tighter bounds on the NN’s outputs. This sophisticated method

surpasses the Bernstein approximation used in BERN-NN.

Our extensive evaluations confirm that BERN-NN-IBF does not just outpace its predeces-

sor BERN-NN but also sets new benchmarks in tight bound attainment, overshadowing

traditional methods and even acclaimed tools like those used in the winner of the VNN-

COMPETITON (alpha-beta-CROWN [99]).

4.2 Neural Network Bound Propagation Using Bern-

stein Polynomials

In this chapter, we seek to find higher-order polynomials that upper and lower approximate

the outputs of a ReLU-based Neural Network NN(x) whenever the NN’s input x is confined

within a pre-defined hypercube, i.e., x ∈ In(d, d). As shown in chapter 3 [36] and visualized

in Figure 4.1, higher-order polynomial approximation of ReLU functions outperform state-of-

the-art approaches of using linear approximations (e.g., triangulation, crown, and zonotopes)

in terms of approximation errors. Albeit promising, the propagation of bounds encoded as

higher-order polynomials across different NN layers is computationally challenging compared

to linear approximations. In this section, we review the basics of higher-order polynomial

107

approximation of ReLU functions and discuss their challenges.

General notation: We use the symbols N and R to denote the set of natural and real

numbers, respectively. We denote by x =
(
x1, x2, · · · , xn

)
∈ Rn the vector of n real-valued

variables, where xi ∈ R. We denote by In(d, d) =
[
d1, d1

]
× · · ·×

[
dn, dn

]
⊂ Rn the n-

dimensional hyperrectangle where d = (d1, · · · , dn) and d =
(
d1, · · · , dn

)
are the lower and

upper bounds of the hyperrectangle, respectively.

For a real-valued vector x =
(
x1, x2, · · · , xn

)
∈ Rn and an index-vector K = (k1, · · · , kn) ∈

Nn, we denote by xK ∈ R the scalar xK = xk1
1 × . . . × xkn

n . Given two multi-indices K =

(k1, · · · , kn) ∈ Nn and L = (l1, · · · , ln) ∈ Nn, we use the following notation throughout this

paper:

K + L = (k1 + l1, · · · , kn + ln) ,(
L

K

)
=

(
l1
k1

)
× · · · ×

(
ln
kn

)
,∑

K≤L

=
∑
k1≤l1

· · ·
∑
kn≤ln

Finally, a real-valued multivariate polynomial p : Rn → R is defined as:

p(x1, . . . , xn) =

l1∑
k1=0

l2∑
k2=0

. . .
ln∑

kn=0

a(k1,...,kn)x
k1
1 xk2

2 . . . xkn
n

=
∑
K≤L

aKx
K ,

where L = (l1, l2, . . . , ln) is the maximum degree of xi for all i = 1, . . . , n.

108

4.2.1 Bernstein Polynomials:

Definition 4.1. (Bernstein Polynomials) Consider a continuous polynomial p : Rn → R,

defined over an input domain (hypercube) In(d, d) ⊆ Rn, and a multi-index L = (l1, . . . , ln) ∈

Nn. The Lth order Bernstein polynomial of p is given by:

Bp,L(x) =
∑
K≤L

bpK,L ·BerK,L(x), (4.1)

BerK,L(x) =

(
L

K

)
· (x− d)K(d− x)L−K

(d− d)L
,

where BerK,L(x) denotes the Bernstein basis and bpK,L represents the Bernstein coefficients

of p.

Bernstein polynomials are particularly noted for their capacity to approximate any continu-

ous function on a closed interval. This property is crucial when dealing with functions that

are not differentiable, as is the case with certain activation functions in neural networks,

such as the Rectified Linear Unit (ReLU).

4.2.2 Interval Bound Propagation Using Bernstein Polynomials

The BERN-NN framework employs Bernstein polynomials for accurately propagating inter-

val bounds through neural networks (NNs). Illustrated in Figure 4.2, a simple NN example

with two input neurons, a hidden layer of two neurons, and a single output neuron demon-

strates the process. The NN operates within an input domain x ∈ I2(d, d), with specified

weights W = [W (1),W (2)] and biases b = [b(1), b(2)]. Initially, BERN-NN calculates lower and

upper Bernstein bounds for the input, designated as

 Den(Bi)

Den(Bi)

 for i = 0, 1. These bounds

are then propagated to the hidden layer using positive and negative weight partitions, W
(1)
+

109

and W
(1)
− , according to:

 Den
(
B2

)
Den

(
B3

)
=W

(1)
+ ×

 Den
(
B0

)
Den

(
B1

)
+W

(1)
− ×

 Den (B0)

Den (B1)

+ b(1) (4.2)

 Den (B2)

Den (B3)

=W
(1)
+ ×

 Den (B0)

Den (B1)

+W
(1)
− ×

 Den
(
B0

)
Den

(
B1

)
+ b(1) (4.3)

where

W
(1)
+ = max

(
W (i), 0i×(i−1)

)
,W

(i)
− = min

(
W (i), 0i×(i−1)

)
denote the set of positive and negative weights between the (i− 1)th layer to the ith layer.

Next, BERN-NN over/under-approximate the ReLU σ using Bernstein polynomials Bσ,L and

Bσ,L. After that, it propagates these bounds through the ReLU bounds as follows:

Den
(
B4

)
= Bσ,L

(
Den

(
B2

))
(4.4)

Den
(
B5

)
= Bσ,L

(
Den

(
B3

))
(4.5)

Den (B4) = Bσ,L (Den (B2)) (4.6)

Den (B5) = Bσ,L (Den (B3)) (4.7)

Finally, BERN-NN propagates the resultant bounds to the output neuron. These final

Bernstein bounds represent bound the NN’s actual output:

110

[
Den

(
B6

)]
=W

(2)
+ ×

 Den
(
B4

)
Den

(
B5

)
+W

(2)
− ×

 Den (B4)

Den (B5)

+ b(2) (4.8)

[
Den (B6)

]
=W

(2)
+ ×

 Den (B4)

Den (B5)

+W
(2)
− ×

 Den
(
B4

)
Den

(
B5

)
+ b(2) (4.9)

BERN-NN uses two algorithms for the summation Sum Bern and multiplicationProd Bern

to perform these computations over the dense representation of Bernstein polynomials (chap-

ter 3) [36]. Algorithm 7 represents the BERN-NN algorithm (chapter 3) [36].

In the following proposition, we show how the dense representation of Bernstein polynomial

scales with respect to the dimension n and order L.

Proposition 4.1. Given n-dimenstional Bernstein polynomial of order L = (l1, · · · , ln),

Bp,L (x). Its dense representation Den (Bp,L) is n−dimensional tensor of a size (l1+1, · · · , ln+

1) (chapter 3) [36]. The total components of the dense representation is O (lnmax), where

lmax = max
1≤i≤n

li.

Proof. The total components of the dense representation is
n∏

i=1

(li + 1) (chapter 3) [36]. By

picking lmax = max
1≤i≤n

li, we get the results.

Proposition 4.1 shows that the dense representation scales exponentially with the dimension

n which makes BERN-NN inconvenient for higher-dimensional input space. In the next

section, we introduce a new representation called Implicit representation that circumvent

this problem.

111

Figure 4.2: BERN-NN propagates the interval bounds using the dense representation of
Bernstein polynomials (chapter 3) [36].

Algorithm 7 BERN-NN Algorithm for Neural Network Bound Propagation

Input: Neural network input space In
(
d, d
)
, approximation order L, NN’s weights and

biases W and b.
Output: Over- and under-approximation Bernstein polynomials of network outputs.

1: Compute over- and under-approximation Bernstein polynomials for network inputs
2: for each layer i from 1 to H do
3: for each neuron j in layer i do
4: Propagate bounds through every jth neuron in the ith layer using Eqs. 3-7.
5: end for
6: Propagate bounds to next layer using Eqs 2-3.
7: end for

4.3 Memory-Efficient Representation Of Bernstein Poly-

nomials

Building upon the dense representation discussed earlier, we now explore the implicit rep-

resentation, which offers a more memory-efficient approach, particularly beneficial for high-

dimensional scenarios. Given a multivariate polynomial p of order L = (l1, · · · , ln), that

consists of t terms, as follows:

112

p (x1, · · · , xn) =
∑
K≤L

aKx
K (4.10)

where K ∈ {K1, · · · , Kt}, and 0 ≤ Kj ≤ L, 1 ≤ ∀j ≤ t.

Now, the polynomial p consists of t terms: aKj
xK = aKj

x
K1

j

1 · · · x
Kn

j
n , whereKj =

(
K1

j , · · · , Kn
j

)
.

Let us denote by term (Kj) = aKj
x
K1

j

1 · · ·x
Kn

j
n , the jth term of p. Let us denote by var

(
Ki

j

)
=

x
Ki

j

i , 1 ≤ i ≤ n, the ith variable in the j term.

We represent all the Bernstein coefficients for var
(
Ki

j

)
as Imp

(
Bvar(Ki

j),li

)
which is shown

as follows:

Imp
(
Bvar(Ki

j),li

)
=

[
b
var(Ki

j)
0,li

, · · · , bvar(K
i
j)

li,li

]
. (4.11)

We call Imp
(
Bvar(Ki

j),li

)
in (4.14) the implicit form representation (IBF) of one single vari-

able var
(
Ki

j

)
which is the Bernstein coefficients for that variable. Because the order of this

var
(
Ki

j

)
is li, we can have up to li + 1 Bernstein coefficients.

Now, computing all the Bernstein of the j term, term (Kj), is equal to the cartesian product

of the Bernstein coefficients of every single variable Imp
(
Bvar(Ki

j),li

)
and multiply the resul-

tant multi-dimensional tensor by the coefficient aKj
. However, this process is not memory

efficient because the Cartesian product will result into a multi-dimensional tensor which is

the drawback of the dense representation. Instead, we compute the IBF of the jth term,

term (Kj), by stacking the IBF of every single variable Imp
(
Bvar(Ki

j),li

)
row-wise. After

that, we multiply the coefficient aKj
by just the first row. All this is summarized in the

following equation:

113

Imp
(
Bterm(Kj),L

)
=

aKj

Imp
(
Bvar(K1

j),l1

)
...

Imp
(
Bvar(Kn

j),ln

)
 . (4.12)

The length of ith row in Imp
(
Bterm(Kj),L

)
is equal to li + 1, 1 ≤ i ≤ n. We denote by

lmax = max
1≤i≤n

li. The size of the IBF of the jth term, term (Kj), Imp
(
Bterm(Kj),L

)
, is equal

to n× (lmax + 1), where we pad the rows of lengths li < lmax with lmax − li + 1 zeros at the

right side.

Now, the total Bernstein coefficients of the whole polynomial p is the summation of Bernstein

coefficients of every term term (Kj), 1 ≤ j ≤ t. This translates to the IBF of the whole

polynomial p is by stacking the IBF of every term as follows:

Imp (Bp,L) =

Imp

(
Bterm(K1),L

)
...

Imp
(
Bterm(Kn),L

)
 . (4.13)

Now the total size of Imp (Bp,L) is equal to nt × (lmax + 1). Let see the following example

to see how this works.

Example 4.1. Consider the multivariate polynomial p(x1, x2) = x3
1x

2
2−30x1x2, defined over

the domain I2 = [1, 2]× [2, 4], with L = (3, 2).

The IBF of x3
1, x

2
2, x1, and x2 are as follows:

114

Imp
(
Bvar(Ki

j),li

)
=

[
1, 2, 4, 8

]
Imp

(
Bvar(Ki

j),li

)
=

[
4, 8, 16

]
Imp

(
Bvar(Ki

j),li

)
=

[
− 1,−4/3,−5/3,−2

]
Imp

(
Bvar(Ki

j),li

)
=

[
2, 3, 4

]
. (4.14)

Using (4.12) and (4.13), the IBF of the polynomial p is written as follows:

Imp(Bp,L) =

1 2 4 8

4 8 16 0

−30 −40 −50 −60

2 3 4 0

. (4.15)

This example illustrates that if a polynomial p comprises t terms, and each term is repre-

sented by n rows, the total number of rows in the implicit representation amounts to nt.

The length of each row is given by lmax+1 = max
1≤i≤n

(li)+ 1. Therefore, the overall size of the

implicit representation matrix is determined by the dimensions nt× (lmax + 1), which leads

us to the following proposition:

Proposition 4.2. Given n-dimenstional Bernstein polynomial of a polynomial p that com-

prises of t terms and of order L = (l1, · · · , ln), Bp,L (x). Its implicit representation Imp (Bp,L)

is 2−dimensional tensor of a size nt× (lmax + 1). The total components of the implicit rep-

resentation is O (n).

Proof. The total components of the implicit representation is nt× (lmax + 1) which is O (n).

115

From propositions 4.1 and 4.2, we can notice that the implicit representation reduced the scal-

ing to just be linear with respect to the dimension n compared to the exponential scaling in

the dense representation which makes the implicit representation ideal for higher dimensions.

In addition the IBF representation is always a 2D tensor no matter what is the dimension

or the order of the polynomial compared to its counterpart the dense representation which

represents the polynomial as a multi-dimensional tensor.

4.4 Efficient Multiplication of Implicit Bernstein Poly-

nomials

4.4.1 Monomial Bernstein Polynomial Multiplication

In this section, we present a generalized method for the multiplication of implicit Bernstein

polynomials in multi-variable settings. This approach extends the techniques for univariate

and bivariate cases as described in [35] and [81], respectively. We focus initially on polyno-

mials comprising a single term. Consider two monomials q1(x) = a1x
k1 and q2(x) = a2x

k2 ,

with k1 ≤ L1 and k2 ≤ L2. The implicit representations of their Bernstein polynomials,

Imp(Bq1,L1) and Imp(Bq2,L2), each form a block of size n × N . The implicit representa-

tion of the product of these polynomials, Imp(Bq1,LBq2,L), is computed using the following

procedure:

116

Imp
(
B̃q1,L1

)
= Imp (Bq1,L1) ∗ CL1 , (4.16)

Imp
(
B̃q2,L2

)
= Imp (Bq2,L2) ∗ CL2 , (4.17)

Imp (Bq1,L1Bq2,L2) =
1

CL1+L2

∗Conv
(
Imp

(
B̃q1,L1

)
, Imp

(
B̃q2,L2

))
. (4.18)

where CL denotes the multi-dimensional binomial tensor, with its Kth component in the ith

row defined as (CL)
i
K =

(
li
K

)
. With some abuse of notation, we use 1/Cli to denote the multi-

dimensional binomial tensor where its Kth component in the ith row is equal to 1

(liK)
. The

notation ∗ represents element-wise multiplication, while Conv (A,B) denotes the row-wise

convolution between matrices A and B. The above formulation efficiently generalizes the

concept of scaled Bernstein polynomials [81] to n-dimensional inputs. The efficient imple-

mentation of these operations on GPUs, leveraging element-wise and convolution operations,

ensures high computational performance. We denote the process in Equations (4.16)-(4.19)

as Prod Bern Imp(Bp1,L1 , Bp2,L2).

4.4.2 Multi-variate Bernstein polynomial Multiplication

The method can be extended to handle the multiplication of implicit representations of Bern-

stein polynomials consisting of multiple terms. Consider two polynomials, p1 =
∑

K≤L1
a1Kx

K

and p2 =
∑

K≤L2
a2Kx

K , with t1 and t2 terms, respectively. Their implicit representations are

denoted as Imp(Bp1,L1) and Imp(Bp2,L2). The multiplication of these polynomials in their

implicit Bernstein form is given by:

117

Imp (Bp1,L1Bp2,L2) =

...

Prod Bern Impl (Impi (Bp1,L1) , Impj (Bp2,L2))

...

 ,

1 ≤ i ≤ t1, 1 ≤ j ≤ t2. (4.19)

Here, Impi(Bp1,L1) and Impj(Bp2,L2) represent the ith and jth sub-matrices (terms) in

Imp(Bp1,L1) and Imp(Bp2,L2), respectively. These sub-matrices are obtained by segment-

ing the original implicit representations into t1 and t2 sub-matrices along their rows. This

formulation reveals that multiplying multivariate polynomials in implicit Bernstein form

effectively boils down to multiplying terms from one polynomial with those from another.

4.5 Efficient Summation of Implicit Bernstein Polyno-

mials

4.5.1 Monomial Bernstein Polynomial Summation

Building upon the foundational work in [35], which addresses the addition of one-dimensional

Bernstein polynomials over the unit interval, this section introduces an advanced and gen-

eralized approach for the summation of implicit Bernstein polynomials in a multivariate

framework. Our extension caters to scenarios with n variables over any specified interval

In(d, d). Initially, we focus on monomials of the form q1(x) = a1x
k1 and q2(x) = a2x

k2 ,

where k1 ≤ L1 and k2 ≤ L2. Their respective implicit Bernstein polynomial representa-

tions, Imp(Bq1,L1) and Imp(Bq2,L2), are conceived as n×N blocks. The summation of these

polynomials in their implicit form, Imp(Bq1+q2,Lsum), is delineated through the following

118

proposition:

Proposition 4.3. Given two Bernstein polynomials Bq1,L1 (x) and Bq2,L2(x) with two dif-

ferent orders L1 = (l11, · · · , l1n) and L2 = (l21, · · · , l2n). Define Lsum = max(L1, L2), where the

max operator is applied element-wise. The implicit tensor representation of Bq1+q2,Lsum can

be computed as:

Lsum = (max(l11, l
2
1), . . . ,max(l1n, l

2
n)) (4.20)

Imp (Bq1,Lsum) = Prod Bern Imp (Imp (Bq1,L1) , 1Lsum−L1+1) (4.21)

Imp (Bq2,Lsum) = Prod Bern Imp (Imp (Bq2,L2) , 1Lsum−L2+1) (4.22)

Imp (Bq1+q2,Lsum) =

Imp (Bq1,Lsum)

Imp (Bq2,Lsum)

 (4.23)

Here, 1Le−L+1 signifies a two-dimensional tensor with dimensions n×(Le−L+1), exclusively

containing ones.

The proof, which extends the argument in [35], is not presented for brevity. In this con-

text, operations (4.21) and (4.22) are recognized as degree elevation processes, where tensor

dimensions are suitably altered. The final summation, defined by (4.23), is executed by ver-

tically concatenating both tensors once they align dimensionally. We denote this procedure

by Sum Bern Imp.

4.5.2 Multi-variate Bernstein Polynomial Summation

We further extend the method to accommodate summation of implicit Bernstein polyno-

mial representations containing multiple terms. Consider polynomials p1 =
∑

K≤L1
a1Kx

K

and p2 =
∑

K≤L2
a2Kx

K , with t1 and t2 terms, respectively, denoted as Imp(Bp1,L1) and

Imp(Bp2,L2). To sum these polynomials in their implicit Bernstein form, we first dissect

119

Imp(Bp1,L1) and Imp(Bp2,L2) along their primary dimension into t1 and t2 sub-matrices,

respectively, as Impi(Bp1,L1) and Impj(Bp2,L2). Subsequent to applying degree elevation

via (4.21) and (4.22) to each sub-matrix, we amalgamate the resulting matrices vertically in

accordance with (4.23). This efficient and elegant approach encapsulates the core principle

of multivariate Bernstein polynomial summation in a multiterm context.

4.6 Optimal under-approximation of ReLU Functions

Using Quadratic Polynomials

The BERN-NN model (chapter 3) [36] utilizes a downwards translation of the Bernstein over-

approximation of the Rectified Linear Unit (ReLU) σ activation function to achieve its under-

approximation. While the over-approximation is optimal (chapter 3) [36]—i.e., produces

the tightest over-approximation of the ReLU function—this under-approximation may not

always be optimal, especially when the negative side of the pre-input bounds significantly

outweighs the positive side. To address this issue, we confine our attention to the use of

quadratic polynomials and we formulate the “optimal ReLU under-approximation problem”

as an optimization problem defined as follows:

minimize
a,b,c

A(x) =

∫ d

d

(
σ (x)−

(
ax2 + bx+ c

))
dx

subject to ax2 + bx+ x ≤ σ (x) ,

x ∈ [d, d], (4.24)

where σ (x) is a ReLU function defined on an interval [d, d]. The optimization problem

presented above addresses the problem of finding the coefficients a, b, and c for a quadratic

polynomial q(x) = ax2 + bx + x, which provides a tight under-approximation of a given

ReLU σ(x). The goal is to minimize the area A(x) between the ReLU curve and the under-

120

Figure 4.3: (a) State-of-the-art over- and under-approximations of ReLU functions σ (x) using
high-order polynomials. (b) Proposed optimal over- and under-approximation of ReLU functions
σ (x). The figure shows the area between the two curves A, indicating the approximation error.

approximation curve over the interval [d, d], where d and d are the lower and upper bounds

of the ReLU’s domain, respectively. By solving this optimization problem, we can obtain a

quadratic under-approximation of the ReLU function that accurately captures its behavior

over the specified domain. We propose the following algorithm to determine the coefficients

for the quadratic polynomial under-approximation of the ReLU function over a given interval.

The proofs of this algorithm are detailed in Appendix A. Figure 4.3 vividly illustrates that

the approximation error area from the quadratic polynomial is significantly smaller than

that of the original under-approximation (chapter 3) [36].

4.7 Ablations

For the ablation studies, we compare the performance and bounds attained by BERN-NN

and BERN-NN-IBF. For these comparisons, we attempt to push the approaches to their

limits.

The effect of increasing the hidden dimension. Next, we consider a four layer model

and keep the input dimension fixed to two and output size one. Each trial varies the dimen-

121

Algorithm 8 Quadratic Coefficients for ReLU Under-approximation

Input: I = [d, d]
Output: Coefficients a, b, c for the quadratic polynomial under-approximating ReLU

Function: get quad coeffs under(I = [d, d])

1: f1 ← 0

2: f2 ← 2×d
2−d×d−d2

6.0

3: f3 ← d
2−d2

2.0

4: if max(f1, f2, f3) == f1 then
5: return a = b = c = 0
6: else if max(f1, f2, f3) == f2 then
7: return a = 1

d−d
, b = −d

d−d
, c = 0

8: else
9: return a = 0, b = 1, c = 0
10: end if

sions of each hidden layer. We see from Figures 4.4 and 4.5 that the performance scaling is

similar between the two versions. However, the volume of BERN-NN-IBF is much smaller

than BERN-NN. Resulting in a bound that is at least 2x smaller than BERN-NN.

10 20 30 40 5010 20 30 40 5010 20 30 40 5010 20 30 40 5010 20 30 40 5010 20 30 40 5010 20 30 40 50
Hidden dimension

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ex
ec

ut
io

n
Ti

m
e

(s
)

BERN-NN
IBF 1 GPUs
IBF 2 GPUs
IBF 4 GPUs

Figure 4.4: Execution time vs. hidden dimension.

The effect of increasing the total number of layers. To study the effect of increasing

layers, we keep the input dimension fixed to two with a variable number of layers that each

have a hidden size of 5: [2, 5, . . . , 5, 1]. Again, we can see that BERN-NN-IBF achieves

better scaling than the original BERN-NN. As we increase the number of layers, we see a

122

10 20 30 40 50 60
Hidden dimension

102

103

Vo
lu

m
e

BERN-NN
BERN-NN-IBF

Figure 4.5: Volume vs. hidden dimension.

more obvious performance win for BERN-NN-IBF. Even with this narrow network, we are

able to achieve reasonable speedup by distributing over multiple GPUs Results are shown in

Figures 4.6 and 4.7

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10
Hidden Layers

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ex
ec

ut
io

n
Ti

m
e

(s
)

BERN-NN
IBF 1 GPUs
IBF 2 GPUs
IBF 4 GPUs

Figure 4.6: Execution time vs. total number of layers.

Increasing the total number of neurons. In figure 4.8, we compute the bounds for

progressively larger models to compare the performance of Bern-NN with and without the

implicit representation. Again, we observe better scaling with BERN-NN-IBF.

Assuming data is orthant. It is very common that input data can be normalized to fall

in the positive quadrant. For instance, in computer vision applications, pixel values may

123

2 4 6 8 10
Hidden Layers

100

101

102

103

104

Vo
lu

m
e

BERN-NN
BERN-NN-IBF

Figure 4.7: Volume vs. total number of layers.

200 400 600 800 1000
Total number of neurons

0

20

40

60

80

100

Ex
ec

ut
io

n
tim

e
(s

)

BERN-NN
BERN-NN-IBF

Figure 4.8: Execution time vs. the total number of neurons. Each layer has 100 neurons
and we successively add one layer.

be normalized to the range [0, 1]. Making the assumption that data falls into the positive

quadrant greatly simplifies finding the minimum and maximum of Bernstein polynomials, as

we no longer need to convert to the explicit form. Results are shown in Figures 4.9 and 4.10.

These experiments use a network with a input dimension of 10 and a hidden layer of varying

dimension. We see that making the orthant assumption results in a massive performance

boost, with relatively little effect on the resulting bounds in this case.

124

10 20 30 40 50 6010 20 30 40 50 6010 20 30 40 50 60
Hidden dimension

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Ex
ec

ut
io

n
Ti

m
e

(s
)

BERN-NN
IBF 1 GPUs

Figure 4.9: Execution time vs. total number of layers.

10 20 30 40 50 60
Hidden dimension

101

102

Vo
lu

m
e

BERN-NN
BERN-NN-IBF

Figure 4.10: Volume vs. total number of layers.

4.8 Tools Comparison

4.8.1 POLAR

In this experiment, we conducted a comprehensive assessment of various tools applied to

benchmarks derived from NN controllers, specifically utilized by POLAR, to determine the

precision of their estimated bounds. The architecture of the networks employed in each

benchmark is detailed in Table 4.1. Furthermore, Table 4.2 encapsulates the performance

metrics of these tools, focusing on average execution time and average relative volume across

125

5 10 20 40
0

1

2

Ex
ec

ut
io

n
tim

e
(s

)

Sia Crown BERN-NN BERN-NN-IBF

5 10 20 40
Hidden dimension

0

5

10

Re
la

tiv
e

vo
lu

m
e 1e4

Figure 4.11: We compare the execution time and relative volume as a function of the model’s
hidden dimension. The time and volume reported are the averages of 10 trials on randomized
models. We find that BERN-NN-IBF strikes a good balance between performance and
tightness.

six control benchmarks. Notably, BERN-NN-IBF consistently emerged as the second quick-

est tool, yet it invariably provided the most accurate bounds. This accuracy is particularly

significant for control applications, where the specification of interest often spans a time

horizon and necessitates multi-step reachability analysis; therefore, achieving finer bounds

at each stage is imperative. Moreover, BERN-NN-IBF outperformed CROWN in terms

of speed across all benchmarks, with the exception of Benchmark 5. While SIA exhibited

faster performance than BERN-NN-IBF, it compromised on the precision of bound estimates.

Each benchmark was subjected to tests with five distinct hyperrectangles, all centered at

zero, with radii varying within 1, 1.5, 2, 2.5, 3, to ensure a robust evaluation. This rigorous

testing methodology underscores the effectiveness of BERN-NN-IBF in delivering precise

and computationally efficient solutions for control applications, highlighting its superiority

in optimizing both speed and accuracy in bound estimation.

126

[5, 5]2 [10, 10]2 [20, 20]2
0

1

2

Ex
ec

ut
io

n
tim

e
(s

) Sia Crown BERN-NN BERN-NN-IBF

[5, 5]2 [10, 10]2 [20, 20]2

Input space

0

2

4

6

Re
la

tiv
e

vo
lu

m
e 1e4

Figure 4.12: We compare the execution time and relative volume as a function of the models
inptu dimension. Again, we see that BERN-NN-IBF is fast and able to provide tight bounds.

Table 4.1: POLAR Benchmark Model sizes

Model Dimensions
Benchmark 1 [2, 20, 20, 1]
Benchmark 2 [2, 20, 20, 1]
Benchmark 3 [2, 20, 20, 1]
Benchmark 4 [3, 20, 20, 1]
Benchmark 5 [4, 100, 100, 1]
Benchmark 6 [4, 20, 20, 20, 1]

Table 4.2: Performance results for execution time and volume for Sia, alpha-CROWN,
BERN-NN, and BERN-NN-IBF. These results are the average of five hyper-rectangles with
radius r ∈ {1, 1.5, 2, 2.5, 3} for each of the six POLAR benchmarks. Sia is the fastest model,
but provides relatively loose bounds. BERN-NN-IBF is always the second fastest model, but
consistently provides some of the tightest bounds. All times are reported in seconds.

Benchmark 1 Benchmark 2 Benchmark 3 Benchmark 4 Benchmark 5 Benchmark 6
Time (s) Vol Time Vol Time Vol Time Vol Time Vol Time Vol

Sia 0.013 2.549 0.010 9.790 0.010 1.032 0.010 8.549 0.014 53.391 0.012 2.798
Crown 2.389 3.641 2.860 8.574 2.875 0.735 2.674 15.869 2.912 77.734 3.077 3.264

BERN-NN 0.551 1.442 0.846 9.629 0.844 1.106 0.916 8.921 18.367 54.810 1.338 3.454
BERN-NN-IBF 0.218 1.719 0.475 9.003 0.357 0.835 0.304 7.161 7.664 42.747 0.540 2.141

127

4.8.2 ACAS Xu

In this comprehensive experiment, we meticulously assess the efficacy of BERN-NN-IBF

in contrast to CROWN within the context of the unmanned Airborne Collision Avoidance

System (ACAS Xu) benchmark, as detailed in [64]. This benchmark encompasses ten distinct

properties across 45 neural networks that are instrumental in generating turn advisories

for aircraft to avert collisions. Each network comprises 300 neurons distributed over six

layers, utilizing ReLU activation functions. The networks are designed with five inputs

that represent the states of the aircraft and produce five outputs, with the system adopting

the minimum output value as the turn advisory. Further insights into this benchmark are

elaborated in the paper [64].

Empirical data presented in Figures 4.13 and 4.14 underscore the superior performance of

BERN-NN-IBF over CROWN, both in terms of computational speed and the precision of the

volume estimations across all ten specifications. This enhancement in performance is pivotal,

particularly in the high-stakes domain of collision avoidance, where the rapid and accurate

computation of turn advisories is critical for ensuring the safety of the airspace. BERN-

NN-IBF’s ability to outperform CROWN in these key areas demonstrates its potential to

significantly improve the reliability and efficiency of neural network-based decision-making

systems in safety-critical applications.

4.9 GPU Algorithms for Bernstein Polynomial Extrema

4.9.1 Implicit Form Min-Max Computation

The BERN-NN-IBF algorithm involves determining the minimum and maximum values of

a Bernstein polynomial stored in implicit form. This can be achieved by computing the

128

2 4 6 8 10
Specification

0

1

2

3

4

5

Av
er

ag
e

ex
ec

ut
io

n
tim

e
(s

)
CROWN Time
BERN-IBF Time

Figure 4.13: Average Execution time of Crown and BERN-NN-IBF on the ACAS Xu bench-
mark. Error bars represent the standard deviation.

1 2 3 4 5 6 7 8 9 10
Specification

10 2

10 1

100

101

102

103

Bo
un

ds

True
CROWN
BERN-IBF

Figure 4.14: Average bound of five neurons across 10 specifications from the ACAS Xu
benchmark.

corresponding minimum and maximum coefficients in the polynomials explicit form. This

conversion can be computationally demanding and memory-intensive, especially for large

degrees d and number of variables v. The explicit Bernstein form, denoted by Den(Bq,L), is

a represented as tensor T ∈ Rd×···×d = Rdv , where the number of axes corresponds to the

number of variables. To address potential inefficiencies, we aim to avoid materializing the

tensor explicitly.

Algorithm 9 uses the CUDA programming model to efficiently compute the Bernstein poly-

nomial’s extrema. Recall that we can index into a tensor T (i, j, k, . . .), which is stored

129

contiguously, by directly accessing memory locations offset by the axis sizes: T [idv−1 +

jdv−2 + kdv−3 + . . .]. Each CUDA thread, is associated with an ID, ebf id in Algorithm 9,

that is mapped to a unique set of indices {i, j, k, . . . } to access and compute elements in the

explicit Bernstein form. As t, d, and v are known, this mapping is achieved through a set of

iterative equations:

i = ⌊t/dv−1⌋,

j = ⌊t/dv−2⌋ − id,

k = ⌊t/dv−3⌋ − id2 − jd

. . .

(4.25)

The indices are computed on-the-fly within the algorithm, eliminating the need for storage.

This iteration corresponds to lines 12 − 14 of Algorithm 9. Precomputed powers dr−1 for

r ∈ [v] are stored in constant global memory and all the threads in a warp compute the

same power in each iteration, which ensures low-latency access. Algorithm 9 returns the

extrema for the portion of the tensor T that is covered by a CUDA block. Then, we apply

an additional reduction to compute the global extrema.

4.9.2 Quadrant-Constrained Min-Max Computation

In models where the polynomials variable are constrained to a single quadrant, specifically

when all the variables are positive, we can significantly streamline the computation for both

the min and max values. This constraint allows for a simplified kernel, where the computation

narrows down to evaluating only two points in the Explicit Bernstein Form (EBF) tensor.

This simplification effectively eliminates the need for a loop over the entire EBF tensor,

130

Algorithm 9 Computing the Extrema of a Bernstein Polynomial in Implicit Form

Input: T = Imp(Bp,L), a 3D array representing a Bernstein polynomial. E, the number of
elements in the explicit bernstein form
Output: min(Bp,L),max(Bp,L) for each CUDA block

Function: ibf-extrema(T = Imp(Bp,L))

1: block ebf sum← zeros(E, gridDim.y)
2: ebf id← global thread id
3: while ebf id < E do
4: tsum← 0
5: term id← blockIdx.y
6: while term id < nterms do
7: accum← 1
8: tracker← 0
9: for v ∈ [nvars] do
10: p← lookup dnvars−v−1

11: index← ⌊ebf id/p⌋ − tracker
12: accum← accum ∗ T [term id][v][index]
13: tracker← (tracker + index) ∗ d
14: end for
15: tsum← tsum + accum
16: term id← term id + gridDim.y
17: end while
18: block ebf sum[ebf id][blockIdx.y]← tsum
19: ebf← ebf id + gridDim.x
20: end while
21: return block ebf sum

reducing the computational complexity to a single iteration over the terms.

This optimization is particularly valuable in scenarios where the positivity of variables can

be guaranteed, as is often the case in image data.

131

4.10 Scaling BERN-NN-IBF Across Multiple GPUs

4.10.1 Distribution Strategy and Challenges

Distributing BERN-NN-IBF across multiple GPUs is essential for handling large models that

may not fit within the memory constraints of a single GPU. Our approach involves having

each GPU compute bounds for a batch of nodes in a layer, followed by an allgather operation

to ensure that all GPUs have the input bounds necessary for processing the subsequent layer.

We leverage PyTorch Distributed with the NCCL backend for efficient GPU communication.

For the allgather operation, we use torch.distributed.all gather object. This choice

is motivated by the need to communicate Python objects, specifically tensors of different

shapes, as part of the bounding process. However, this flexibility comes at a cost of com-

munication inefficiencies because it involves transferring tensors from the GPU to the CPU

during the pickling process (i.e., serialization of Python objects into a byte stream which

operates on CPU memory). This additional data transfer can be an overhead and impact

performance, particularly when working with large polynomials and frequent communica-

tion between GPUs. Since all gather object cannot efficiently communicate objects over

NVLink for direct GPU-to-GPU communication, we are likely to encounter a bottleneck

that saturates the available communication bandwidth. Thus, our implementation provides

an upper bound on strong scaling.

4.10.2 Strong Scaling Experiments

To demonstrate the scalability of our approach, we perform strong scaling experiments on 8

Nvidia A100 GPUs. Results are shown in Figure 4.15.

The batch-parallel computation of node bounds across GPUs accelerates BERN-NN-IBF

132

Figure 4.15: Strong Scaling up to eight Nvidia A100 GPUs. We use a fixed model with an
input dimension of five, two hidden layers with 100 neurons each, and an output dimension
of one. The dashed line represents the ideal strong scaling. The red crosses are the average
runtime of 20 trials with the corresponding GPU count. We found that the 95% confidence
intervals of the mean runtimes are all within 5% of the mean, so we exclude them from the
plot.

while preserving the bounds accuracy. This enables bounding larger models, where interme-

diate computations do not fit in a single GPU’s memory.

Despite the limitations of allgather with pickling, we expect strong scaling due to the compu-

tational complexity of computing bounds for each layer. In future work, exploring alternative

communication strategies or optimizations tailored for large polynomial data transfers may

be essential to further enhance the efficiency and scalability of distributed BERN-NN-IBF.

133

Bibliography

[1] A. Papachristodoulou, J. Anderson, G. Valmorbida, S. Prajna, P. Seiler, P. A. Par-
rilo, M. M. Peet and D. Jagt. SOSTOOLS: Sum of squares optimization toolbox for
MATLAB, 2021.

[2] J. An, N. Zhan, X. Li, M. Zhang, and W. Yi. Model checking bounded continuous-time
extended linear duration invariants. In Proceedings of the 21st International Conference
on Hybrid Systems: Computation and Control (part of CPS Week), pages 81–90, 2018.

[3] R. Anderson, J. Huchette, W. Ma, C. Tjandraatmadja, and J. P. Vielma. Strong
mixed-integer programming formulations for trained neural networks. Mathematical
Programming, 183(1):3–39, 2020.

[4] M. Bahavarnia, Y. Shoukry, and N. C. Martins. Controller Synthesis subject to Logical
and Structural Constraints: A Satisfiability Modulo Theories (SMT) Approach. In
2020 American Control Conference (ACC), pages 5281–5286, 2020.

[5] S. Bak, C. Liu, and T. T. Johnson. The second international verification of
neural networks competition (VNN-COMP 2021): Summary and results. CoRR,
abs/2109.00498:1–15, 2021.

[6] S. Bak, H.-D. Tran, and T. T. Johnson. Numerical verification of affine systems with
up to a billion dimensions. In Proceedings of the 22nd ACM International Conference
on Hybrid Systems: Computation and Control, pages 23–32, 2019.

[7] C. Barrett and C. Tinelli. Satisfiability modulo theories. In Handbook of Model Check-
ing, pages 305–343. Springer, 2018.

[8] O. Bastani, Y. Ioannou, L. Lampropoulos, D. Vytiniotis, A. Nori, and A. Criminisi.
Measuring neural net robustness with constraints. In Advances in Neural Information
Processing Systems, volume 29, pages 2613–2621, Barcelona, Spain, 2016. Association
for Computing Machinery.

[9] A. Bauer, M. Pister, and M. Tautschnig. Tool-support for the analysis of hybrid sys-
tems and models. In 2007 Design, Automation Test in Europe Conference Exhibition,
pages 1–6, 2007.

[10] M. Behroozi. Largest Inscribed Rectangles in Geometric Convex Sets. CoRR,
abs/1905.13246, 2019.

134

[11] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio. Neural combinatorial opti-
mization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

[12] M. A. Ben Sassi, R. Testylier, T. Dang, and A. Girard. Reachability analysis of
polynomial systems using linear programming relaxations. In International Symposium
on Automated Technology for Verification and Analysis, pages 137–151. Springer, 2012.

[13] M. Boreale. Algorithms for exact and approximate linear abstractions of polynomial
continuous systems. In Proceedings of the 21st International Conference on Hybrid
Systems: Computation and Control (part of CPS Week), pages 207–216, 2018.

[14] E. Botoeva, P. Kouvaros, J. Kronqvist, A. Lomuscio, and R. Misener. Efficient verifi-
cation of relu-based neural networks via dependency analysis. Proceedings of the AAAI
Conference on Artificial Intelligence, 34(4):3291–3299, 2020.

[15] N. Brisebarre, M. Joldeş, É. Martin-Dorel, M. Mayero, J.-M. Muller, I. Paşca,
L. Rideau, and L. Théry. Rigorous polynomial approximation using Taylor models
in Coq. In NASA Formal Methods Symposium, pages 85–99. Springer, 2012.

[16] C. W. Brown. Improved projection for cylindrical algebraic decomposition. Journal of
Symbolic Computation, 32(5):447–465, 2001.

[17] R. Bunel, J. Lu, I. Turkaslan, P. Kohli, P. Torr, and P. Mudigonda. Branch and bound
for piecewise linear neural network verification. Journal of Machine Learning Research,
21(42):1–39, 2020.

[18] X. Chen. Reachability analysis of non-linear hybrid systems using taylor models. PhD
thesis, Fachgruppe Informatik, RWTH Aachen University, 2015.

[19] X. Chen, E. Ábrahám, and S. Sankaranarayanan. Flow*: An analyzer for non-linear
hybrid systems. In International Conference on Computer Aided Verification, pages
258–263. Springer, 2013.

[20] C.-H. Cheng, G. Nührenberg, and H. Ruess. Maximum resilience of artificial neural
networks. In D. D’Souza and K. Narayan Kumar, editors, Automated Technology for
Verification and Analysis, pages 251–268, N/A, 2017. Springer, N/A.

[21] G. E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic
decomposition. In Automata Theory and Formal Languages 2nd GI Conference Kaisers
lautern, May 20–23, 1975, pages 134–183. Springer, 1975.

[22] L. De Branges. The stone-weierstrass theorem. Proceedings of the American Mathe-
matical Society, 10(5):822–824, 1959.

[23] L. De Moura and N. Bjørner. Z3: An efficient SMT solver. In International conference
on Tools and Algorithms for the Construction and Analysis of Systems, pages 337–340,
2008.

135

[24] J. Devlin, J. Uesato, S. Bhupatiraju, R. Singh, A.-r. Mohamed, and P. Kohli. Robust-
fill: Neural program learning under noisy i/o. In International conference on machine
learning, pages 990–998. PMLR, 2017.

[25] T. Dreossi. Sapo: Reachability computation and parameter synthesis of polynomial
dynamical systems. In Proceedings of the 20th International Conference on Hybrid
Systems: Computation and Control, pages 29–34, 2017.

[26] B. Dutertre. Yices 2.2. In International Conference on Computer Aided Verification,
pages 737–744. Springer, 2014.

[27] S. Dutta, X. Chen, S. Jha, S. Sankaranarayanan, and A. Tiwari. Sherlock-a tool for
verification of neural network feedback systems: demo abstract. In Proceedings of the
22nd ACM International Conference on Hybrid Systems: Computation and Control,
pages 262–263, N/A, 2019. N/A.

[28] S. Dutta, X. Chen, and S. Sankaranarayanan. Reachability analysis for neural feedback
systems using regressive polynomial rule inference. In Proceedings of the 22nd ACM
International Conference on Hybrid Systems: Computation and Control, pages 157–
168, 2019.

[29] S. Dutta, X. Chen, and S. Sankaranarayanan. Reachability analysis for neural feedback
systems using regressive polynomial rule inference. In Proceedings of the 22nd ACM
International Conference on Hybrid Systems: Computation and Control, pages 157–
168, N/A, 2019. N/A.

[30] K. Dvijotham, R. Stanforth, S. Gowal, T. A. Mann, and P. Kohli. A dual approach to
scalable verification of deep networks. In A. Globerson and R. Silva, editors, Uncer-
tainty in Artificial Intelligence, volume 1, pages 550–559, N/A, 2018. N/A.

[31] M. England and J. H. Davenport. The complexity of cylindrical algebraic decompo-
sition with respect to polynomial degree. In International Workshop on Computer
Algebra in Scientific Computing, pages 172–192. Springer, 2016.

[32] J. Fan, C. Huang, X. Chen, W. Li, and Q. Zhu. Reachnn*: A tool for reachability
analysis of neural-network controlled systems. In International Symposium on Auto-
mated Technology for Verification and Analysis, pages 537–542, N/A, 2020. Springer,
N/A.

[33] R. T. Farouki. The bernstein polynomial basis: A centennial retrospective. Computer
Aided Geometric Design, 29(6):379–419, 2012.

[34] R. T. Farouki and V. Rajan. On the numerical condition of polynomials in Bernstein
form. Computer Aided Geometric Design, 4(3):191–216, 1987.

[35] R. T. Farouki and V. Rajan. Algorithms for polynomials in Bernstein form. Computer
Aided Geometric Design, 5(1):1–26, 1988.

136

[36] W. Fatnassi, H. Khedr, V. Yamamoto, and Y. Shoukry. Bern-nn: Tight bound propa-
gation for neural networks using bernstein polynomial interval arithmetic. In Proceed-
ings of the 26th ACM International Conference on Hybrid Systems: Computation and
Control, pages 1–11, 2023.

[37] M. Fazlyab, A. Robey, H. Hassani, M. Morari, and G. Pappas. Efficient and accurate
estimation of lipschitz constants for deep neural networks. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 32, pages 11423–11434, N/A, 2019. Curran
Associates, Inc.

[38] J. Ferlez and Y. Shoukry. AReN: assured ReLU NN architecture for model predictive
control of LTI systems. In Proceedings of the 23rd International Conference on Hybrid
Systems: Computation and Control, pages 1–11, 2020.

[39] H. J. Ferreau, S. Almér, H. Peyrl, J. L. Jerez, and A. Domahidi. Survey of indus-
trial applications of embedded model predictive control. In 2016 European Control
Conference (ECC), pages 601–601. IEEE, 2016.

[40] M. Fischetti and J. Jo. Deep neural networks and mixed integer linear optimization.
Constraints, 23(3):296–309, 2018.

[41] R. FitzHugh. Impulses and physiological states in theoretical models of nerve mem-
brane. Biophysical journal, 1(6):445–466, 1961.

[42] I. A. Fotiou, P. Rostalski, P. A. Parrilo, and M. Morari. Parametric optimization and
optimal control using algebraic geometry methods. International Journal of Control,
79(11):1340–1358, 2006.

[43] D. J. Fremont, J. Chiu, D. D. Margineantu, D. Osipychev, and S. A. Seshia. Formal
analysis and redesign of a neural network-based aircraft taxiing system with verifai. In
International Conference on Computer Aided Verification, pages 122–134, N/A, 2020.
Springer, N/A.

[44] J. Garloff. Convergent bounds for the range of multivariate polynomials. In Interna-
tional Symposium on Interval Mathematics, pages 37–56. Springer, 1985.

[45] J. Garloff. Convergent bounds for the range of multivariate polynomials. In Interna-
tional Symposium on Interval Mathematics, pages 37–56. Springer, 1985.

[46] J. Garloff and A. P. Smith. An improved method for the computation of affine lower
bound functions for polynomials. In Frontiers in Global Optimization, pages 135–144.
Springer, 2004.

[47] J. Garloff and A. P. Smith. Guaranteed affine lower bound functions for multivariate
polynomials. In PAMM: Proceedings in Applied Mathematics and Mechanics, volume 7,
pages 1022905–1022906, N/A, 2007. Wiley Online Library, N/A.

137

[48] M. Gasse, D. Chételat, N. Ferroni, L. Charlin, and A. Lodi. Exact Combinatorial
Optimization with Graph Convolutional Neural Networks. In Advances in Neural
Information Processing Systems 32, 2019.

[49] T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, and M. Vechev.
AI2: Safety and robustness certification of neural networks with abstract interpreta-
tion. In 2018 IEEE Symposium on Security and Privacy (SP), pages 3–18, N/A, 2018.
IEEE, N/A.

[50] D. Goldfarb and A. Idnani. A numerically stable dual method for solving strictly
convex quadratic programs. Mathematical programming, 27(1):1–33, 1983.

[51] P. Henriksen and A. Lomuscio. Deepsplit: An efficient splitting method for neural
network verification via indirect effect analysis. In IJCAI, pages 2549–2555, N/A,
2021. N/A.

[52] H. Hong. An Improvement of the Projection Operator in Cylindrical Algebraic De-
composition. In Proceedings of the International Symposium on Symbolic and Algebraic
Computation, ISSAC ’90, page 261–264, New York, NY, USA, 1990. Association for
Computing Machinery.

[53] C. Huang, J. Fan, X. Chen, W. Li, and Q. Zhu. Polar: A polynomial arithmetic
framework for verifying neural-network controlled systems. In International Symposium
on Automated Technology for Verification and Analysis, pages 414–430, N/A, 2022.
Springer, N/A.

[54] G. Irving, C. Szegedy, A. A. Alemi, N. Eén, F. Chollet, and J. Urban. Deepmath-deep
sequence models for premise selection. Advances in Neural Information Processing
Systems, 29:2235–2243, 2016.

[55] R. Ivanov, J. Weimer, R. Alur, G. J. Pappas, and I. Lee. Verisig: verifying safety
properties of hybrid systems with neural network controllers. In Proceedings of the
22nd ACM International Conference on Hybrid Systems: Computation and Control,
HSCC ’19, pages 169–178, New York, NY, USA, 2019. Association for Computing
Machinery.

[56] C. Kaliszyk, F. Chollet, and C. Szegedy. Holstep: A machine learning dataset for
higher-order logic theorem proving. arXiv preprint arXiv:1703.00426, 2017.

[57] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer. Reluplex: An Effi-
cient SMT Solver for Verifying Deep Neural Networks. In R. Majumdar and V. Kunčak,
editors, Computer Aided Verification, Lecture Notes in Computer Science, pages 97–
117, N/A, 2017. Springer International Publishing.

[58] H. K. Khalil. Nonlinear systems; 3rd ed. Prentice-Hall, Upper Saddle River, NJ, 2002.

[59] H. Khedr, J. Ferlez, and Y. Shoukry. Peregrinn: Penalized-relaxation greedy neural
network verifier. In A. Silva and K. R. M. Leino, editors, Computer Aided Verification,
pages 287–300, Cham, 2021. Springer International Publishing.

138

[60] N. Kochdumper and M. Althoff. Reachability analysis for hybrid systems with nonlin-
ear guard sets. In Proceedings of the 23rd International Conference on Hybrid Systems:
Computation and Control, pages 1–10, 2020.

[61] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller. Efficient backprop. In Neural
networks: Tricks of the trade, pages 9–48. Springer, 2012.

[62] L. Lestingi, M. Askarpour, M. M. Bersani, and M. Rossi. Formal verification of human-
robot interaction in healthcare scenarios. In International Conference on Software
Engineering and Formal Methods, pages 303–324. Springer, 2020.

[63] C. Liu, T. Arnon, C. Lazarus, C. Strong, C. Barrett, M. J. Kochenderfer, et al. Algo-
rithms for verifying deep neural networks. Foundations and Trends® in Optimization,
4(3-4):244–404, 2021.

[64] D. M. Lopez, T. T. Johnson, S. Bak, H.-D. Tran, and K. Hobbs. Evaluation of neural
network verification methods for air to air collision avoidance. AIAA Journal of Air
Transportation (JAT), 2022.

[65] A. Mahboubi. Programming and certifying a CAD algorithm in the Coq system. In
Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2006.

[66] C. U. Manual. Ibm ilog cplex optimization studio. Version, 12:1987–2018, 1987.

[67] T. Marcucci and R. Tedrake. Mixed-integer formulations for optimal control of
piecewise-affine systems. In Proceedings of the 22nd ACM International Conference
on Hybrid Systems: Computation and Control, pages 230–239, 2019.

[68] S. McCallum. An improved projection operation for cylindrical algebraic decomposi-
tion. In Quantifier Elimination and Cylindrical Algebraic Decomposition, pages 242–
268. Springer, 1998.

[69] B. Mourrain and J. P. Pavone. Subdivision methods for solving polynomial equations.
Journal of Symbolic Computation, 44(3):292–306, 2009.

[70] C. Munoz and A. Narkawicz. Formalization of Bernstein polynomials and applications
to global optimization. Journal of Automated Reasoning, 51(2):151–196, 2013.

[71] C. A. Munoz. Formal Methods in Air Traffic Management: The Case of Unmanned
Aircraft Systems. In International Colloquium on Theoretical Aspects of Computing
(ICTAC 2015), 2015.

[72] A. Narkawicz and C. A. Munoz. Formal Verification of Conflict Detection Algorithms
for Arbitrary Trajectories. Reliab. Comput., 17:209–237, 2012.

[73] S. D. Nelson and C. Pecheur. Formal verification for a next-generation space shuttle. In
International Workshop on Formal Approaches to Agent-Based Systems, pages 53–67.
Springer, 2002.

139

[74] D. A. Popescu and R. T. Garcia. Multivariate polynomial multiplication on GPU.
Procedia Computer Science, 80:154–165, 2016.

[75] M. Rabi. Piece-wise analytic trajectory computation for polytopic switching between
stable affine systems. In Proceedings of the 23rd International Conference on Hybrid
Systems: Computation and Control, pages 1–11, 2020.

[76] A. V. Rao. A survey of numerical methods for optimal control. Advances in the
Astronautical Sciences, 135(1):497–528, 2009.

[77] S. Ray and P. Nataraj. A Matrix Method for Efficient Computation of Bernstein
Coefficients. Reliab. Comput., 17(1):40–71, 2012.

[78] S. Ray and P. Nataraj. A Matrix Method for Efficient Computation of Bernstein
Coefficients. Reliab. Comput., 17(1):40–71, 2012.

[79] D. Roy, M. Balszun, T. Heurung, and S. Chakraborty. Multi-Domain Coupling for Au-
tomated Synthesis of Distributed Cyber-Physical Systems. In 2018 IEEE International
Symposium on Circuits and Systems (ISCAS), pages 1–5. IEEE, 2018.

[80] S. Sadraddini and R. Tedrake. Robust output feedback control with guaranteed con-
straint satisfaction. In Proceedings of the 23rd International Conference on Hybrid
Systems: Computation and Control, pages 1–10, 2020.

[81] J. Sánchez-Reyes. Algebraic manipulation in the Bernstein form made simple via
convolutions. Computer-Aided Design, 35(10):959–967, 2003.

[82] D. Selsam, M. Lamm, B. Bünz, P. Liang, L. de Moura, and D. L. Dill. Learning
a SAT Solver from Single-Bit Supervision. In International Conference on Learning
Representations, 2019.

[83] Z. Shen, H. Yang, and S. Zhang. Deep network approximation characterized by number
of neurons. arXiv preprint arXiv:1906.05497, 2019.

[84] Y. Shoukry, M. Chong, M. Wakaiki, P. Nuzzo, A. Sangiovanni-Vincentelli, S. A. Seshia,
J. P. Hespanha, and P. Tabuada. SMT-based observer design for cyber-physical systems
under sensor attacks. ACM Transactions on Cyber-Physical Systems, 2(1):1–27, 2018.

[85] A. P. Smith. Fast construction of constant bound functions for sparse polynomials.
Journal of Global Optimization, 43(2):445–458, 2009.

[86] A. P. Smith. Fast construction of constant bound functions for sparse polynomials.
Journal of Global Optimization, 43(2):445–458, 2009.

[87] V. Stahl. Interval methods for bounding the range of polynomials and solving systems
of nonlinear equations. PhD thesis, Johannes Kepler University Linz, 1995.

[88] X. Sun, H. Khedr, and Y. Shoukry. Formal verification of neural network controlled
autonomous systems. In Proceedings of the 22nd ACM International Conference on
Hybrid Systems: Computation and Control, pages 147–156, 2019.

140

[89] X. Sun, H. Khedr, and Y. Shoukry. Formal verification of neural network controlled
autonomous systems. In Proceedings of the 22nd ACM International Conference on
Hybrid Systems: Computation and Control, pages 147–156, N/A, 2019. N/A.

[90] X. Sun and Y. Shoukry. Neurosymbolic motion and task planning for linear temporal
logic tasks. arXiv preprint arXiv:2210.05180, N/A(N/A):N/A, 2022.

[91] V. Tjeng, K. Y. Xiao, and R. Tedrake. Evaluating robustness of neural networks with
mixed integer programming. In International Conference on Learning Representations,
number N/A, page N/A, N/A, 2019. N/A.

[92] H.-D. Tran, X. Yang, D. Manzanas Lopez, P. Musau, L. V. Nguyen, W. Xiang, S. Bak,
and T. T. Johnson. Nnv: The neural network verification tool for deep neural net-
works and learning-enabled cyber-physical systems. In S. K. Lahiri and C. Wang,
editors, Computer Aided Verification, pages 3–17, N/A, 2020. Springer International
Publishing.

[93] P. Trébuchet, B. Mourrain, and M. A. Bucero. Border Basis for Polynomial System
Solving and Optimization. pages 212–220, 2016.

[94] L. Vandenberghe. The CVXOPT linear and quadratic cone program solvers. Online:
http://cvxopt. org/documentation/coneprog. pdf, 2010.

[95] A. P. Vinod and M. M. Oishi. Scalable underapproximative verification of stochastic
LTI systems using convexity and compactness. In Proceedings of the 21st International
Conference on Hybrid Systems: Computation and Control (Part of CPS Week), pages
1–10, 2018.

[96] S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana. Efficient formal safety analysis
of neural networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 31, pages 6367–6377, N/A, 2018. N/A.

[97] S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana. Formal security analysis of neu-
ral networks using symbolic intervals. In Proceedings of the 27th USENIX Conference
on Security Symposium, SEC’18, pages 1599–1614, N/A, 2018. USENIX Association.

[98] S. Wang, H. Zhang, K. Xu, X. Lin, S. Jana, C.-J. Hsieh, and J. Z. Kolter. Beta-
CROWN: Efficient bound propagation with per-neuron split constraints for neural
network robustness verification. In Advances in Neural Information Processing Sys-
tems, number N/A, page N/A, N/A, 2021. N/A.

[99] S. Wang, H. Zhang, K. Xu, X. Lin, S. Jana, C.-J. Hsieh, and J. Z. Kolter. Beta-crown:
Efficient bound propagation with per-neuron split constraints for neural network ro-
bustness verification. Advances in Neural Information Processing Systems, 34:29909–
29921, 2021.

141

[100] E. Wong and Z. Kolter. Provable defenses against adversarial examples via the convex
outer adversarial polytope. In International conference on machine learning, pages
5286–5295, N/A, 2018. N/A.

[101] W. Xiang, H.-D. Tran, and T. T. Johnson. Output reachable set estimation and
verification for multilayer neural networks. IEEE transactions on neural networks and
learning systems, 29(11):5777–5783, 2018.

[102] W. Xiang, H.-D. Tran, J. A. Rosenfeld, and T. T. Johnson. Reachable set estimation
and safety verification for piecewise linear systems with neural network controllers. In
2018 Annual American Control Conference (ACC), pages 1574–1579, N/A, 2018. N/A.

[103] K. Xu, H. Zhang, S. Wang, Y. Wang, S. Jana, X. Lin, and C.-J. Hsieh. Fast and
complete: Enabling complete neural network verification with rapid and massively
parallel incomplete verifiers. In ICLR, number N/A, page N/A, N/A, 2021. N/A.

[104] B. Xue, M. Fränzle, and N. Zhan. Under-approximating reach sets for polynomial
continuous systems. In Proceedings of the 21st International Conference on Hybrid
Systems: Computation and Control (part of CPS Week), pages 51–60, 2018.

[105] B. Xue, Q. Wang, N. Zhan, and M. Fränzle. Robust invariant sets generation for
state-constrained perturbed polynomial systems. In Proceedings of the 22nd ACM
international conference on hybrid systems: Computation and control, pages 128–137,
2019.

[106] W. F. Yasser Shoukry. PolyAR: A Highly Parallelizable Solver For Polynomial In-
equality Constraints Using Convex Abstraction Refinement. In IFAC-PapersOnLine,
volume 54, pages 43–48, 2021.

[107] M. Zettler and J. Garloff. Robustness analysis of polynomials with polynomial param-
eter dependency using Bernstein expansion. IEEE Transactions on Automatic Control,
43(3):425–431, 1998.

142

Appendix A

Proof of Optimal

Under-approximation of ReLU

To ensure that the quadratic polynomial under-approximates the ReLU function over the

entire interval [d, d], the optimization problem in (4.24) includes the constraint q(x) =

ax2 + bx + c ≤ σ(x), ∀x ∈ [d, d]. This constraint guarantees that the under-approximation

curve always lies below the ReLU curve. This quadratic constraint depends on the variable

x, making it harder to solve the optimization problem. In the following theorem, we lin-

earize this constraint and remove this dependency so that it depends only on the polynomial

coefficients a, b, and c:

Proposition A.1. The following conditions are sufficient to ensure that the quadratic poly-

nomial q (x) = ax2 + bx + c is an under approximation of the ReLU function—i.e., q(x) ≤

143

σ (x):

q (d) = ad2 + bd+ c ≤ 0

q (0) = c ≤ 0

q
(
d
)
= ad

2
+ bd+ c ≤ d

0 ≤ a

(A.1)

Proof. Our goal is to show that q(x) ≤ σ(x) for all x ∈ [d, d], subject to the given conditions.

We divide the interval [d, d] into two cases:

Case 1: For x ∈ [d, 0], we have ax2 ≤ ad2. If b ≥ 0, then q(x) = ax2 + bx + c ≤ q(d) =

ad2 + c ≤ ad2 + bd+ c ≤ 0. If b ≤ 0, then q(x) = ax2 + bx+ c ≤ q(d) = ad2 + bd+ c ≤ 0. In

either case, we have q(x) ≤ σ(x) for all x ∈ [d, 0].

Case 2: For x ∈ [0, d], we define l(x) = m1x +m2, where m1 =
q(d)−q(0)

d
and m2 = q(0). It

is clear that l(0) = q(0) and l(d) = q(d). Furthermore, the quadratic polynomial q is convex

because a ≥ 0. Therefore, q(x) ≤ l(x) for all x ∈ [0, d]. To complete the proof, we must

show that l(x) ≤ x for all x ∈ [0, d].

We define ldiff (x) = l(x) − x = q(d)−q(0)−d

d
x + q(0). Then, we have ldiff (0) = q(0) ≤ 0

and ldiff (d) = q(d) − d ≤ 0. Since ldiff is a line defined over [0, d] and ldiff (0) ≤ 0 and

ldiff (d) ≤ 0, we conclude that ldiff (x) ≤ 0 for all x ∈ [0, d]. Therefore, l(x) ≤ x for all

x ∈ [0, d]. Consequently, we have q(x) ≤ σ(x) for all x ∈ [0, d].

Thus, we have shown that q(x) ≤ σ(x) for all x ∈ [d, d], as required.

Proposition A.1 enables us to transform the optimization problem’s non-linear constraint

144

into four linear constraints. We reformulate the optimization problem (4.24) as:

minimize
a,b,c

A(x) =

∫ d

d

(
σ (x)−

(
ax2 + bx+ c

))
dx

subject to ad2 + bd+ c ≤ 0,

ad
2
+ bd+ c ≤ d,

c ≤ 0,

0 ≤ a. (A.2)

The objective function A(x) of the optimization problem can be expressed in the following

form:

A(x) =

∫ d

d

(
σ (x)−

(
ax2 + bx+ c

))
=

∫ d

d

σ (x) dx−
∫ d

d

(
ax2 + bx+ c

)
dx

=
d

2
−
(
a

(
d
3 − d3

3

)
+ b

(
d
2 − d2

2

)
+ c
(
d− d

))
. (A.3)

By examining eq. (A.3), it becomes apparent that the objective function is linear with

respect to the coefficients a, b, and c. Hence, we can transform the optimization problem in

(4.24) into a linear programming (LP) problem:

maximize
a,b,c

a

(
d
3 − d3

3

)
+ b

(
d
2 − d2

2

)
+ c
(
d− d

)
subject to ad2 + bd+ c ≤ 0,

ad
2
+ bd+ c ≤ d,

c ≤ 0,

0 ≤ a. (A.4)

145

We now focus on optimizing the problem further. A critical observation based on the in-

equalities d
3−d3

3
≥ 0, d

2−d2

2
≥ 0, d − d ≥ 0, and c ≤ 0, allows us to consider the following

inequality:

∀a, b, and c ∈ R :

a

(
d
3 − d3

3

)
+ b

(
d
2 − d2

2

)
+ c(d− d)

≤ a

(
d
3 − d3

3

)
+ b

(
d
2 − d2

2

)
.

The right side of the inequality is attained when c = 0. This adjustment simplifies our linear

program (LP) by effectively reducing the number of variables, thereby transforming it into

a more manageable form. The revised LP, with c = 0, is:

maximize
a,b

a

(
d
3 − d3

3

)
+ b

(
d
2 − d2

2

)

subject to ad2 + bd ≤ 0,

ad
2
+ bd ≤ d,

0 ≤ a. (A.5)

This step is crucial as it reduces the LP’s dimensionality from three to two, making the

problem less complex and more approachable. The number of constraints also drops from four

to three, further simplifying the solution process. These reductions are strategic, streamlining

the problem without sacrificing the integrity of the solution space.

We concentrate on solving the LP problem delineated in (A.5). For simplification, let’s define

the function f(a, b) representing our objective:

f (a, b) = a
(

d
3−d3

3

)
+ b
(

d
2−d2

2

)

146

The problem’s feasible region is notably a triangle, defined by three vertices: v1 = (0, 0),

v2 =
(

1
d−d

, −d

d−d

)
, and v3 = (0, 1). Our goal is to identify the maximum value of f(a, b) at

these specific points, which correspond to potential solutions of the LP.

We proceed by evaluating f at each vertex and comparing these values. The optimal solution

is determined based on which vertex yields the maximum value. Here are the conditions:

let us define: f1 = f(v1), f2 = f(v2), and f3 = f(v3). If f1 is the maximum among f1, f2,

and f3, then the optimal values are a = 0, b = 0, and c = 0. If f2 is the maximum, then

the optimal solution becomes a = 1
d−d

, b = −d

d−d
, and c = 0. If f(v3) is the maximum, we set

a = 0, b = 1, and c = 0 for the optimal solution. You can find more details in Algorithm 1.

This approach simplifies the solution process by reducing the problem to comparisons of

function values at specific points rather than requiring a more extensive search through a

continuous space. The solutions adapt based on the vertex yielding the highest function

value, guiding the parameters a, b, and c accordingly.

147

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	I Using Machine Learning to Design Novel Solvers For Analyzing Complex Cyber-Physical Systems
	PolyAR: A Highly Parallelizable Solver For Polynomial Inequality Constraints Using Convex Abstraction Refinement
	Introduction
	Problem Formulation
	Notation
	Main Problem

	Abstraction Refinement of Higher Order Polynomials Using Quadratic Polynomials
	Algorithm Architecture
	Early Termination Using Conv_Solver:
	Abstraction Refinement Using Abst_Refin:
	Highly Parallelizable Analysis of Ambiguous Regions using Solver_Parallel

	Extension to SMT solving
	NUMERICAL RESULTS
	Static Output Feedback Controller Synthesis for Linear Time Invariant Systems
	Non-Linear Controller Design for a Duffing Oscillator
	Designing Switching Signals for Continuous-Time Linear Switching Systems

	PolyARBerNN: A Neural Network Guided Solver and Optimizer for Bounded Polynomial Inequalities
	Introduction
	Problem Formulation
	Notation:
	Main Problem:

	Convex Abstraction Refinement: Benefits and Drawbacks
	Overview of Convex Abstraction Refinement
	Drawbacks of Convex Abstraction Refinement

	Neural Network Guided Convex Abstraction Refinement
	On the relation between the NN architecture and the characteristics of the polynomials:
	Bernstein Polynomials: A Robust Representation of Polynomials

	Taming the Complexity of Computing Bernstein Coefficients
	Range Enclosure Property of Bernstein polynomials
	Zero Crossing Estimation using only a few Bernstein Coefficients
	Search Space pruning using Bernstein Coefficients

	Algorithm Architecture and Implementation Details
	Generalization to polynomial optimization problems:
	Numerical Results - NN Training
	Training data collection and pre-processing
	NN's evaluation

	Numerical Results - Scalability Results
	Scalability of PolyARBerNN against other SMT Solvers
	Scalability of PolyARBerNN against other Bernstein-based solvers
	Scalability of PolyAROpt against other solvers

	Numerical Results - Use Cases
	Use Case 1: Nonlinear Controller Design for a Duffing Oscillator
	Use Case 2: Reachability analysis of a discrete polynomial dynamical systems

	II Designing scalable Model Checkers to analyze correctness of Deep Neural Networks
	BERN-NN: Tight Bound Propagation For Neural Networks Using Bernstein Polynomial Interval Arithmetic
	Introduction
	Problem Formulation
	Notation:
	Main Problem:

	Tight bounds of ReLU Functions Using Bernstein Polynomials
	Over-Approximating ReLU functions using Bernstein Polynomials
	Under-approximating ReLU functions using Bernstein polynomials
	Comparing Bernstein Approximation Against Widely Used Approximations

	Encoding Basic Bernstein Polynomial Operations Using Multi-Dimensional Tensors
	Multi-dimensional tensor representation of Bernstein polynomials
	Multiplication of two multi-variate Bernstein polynomials
	Addition between two Bernstein polynomials

	BERN-NN algorithm
	Propagating bounds through single neuron
	Propagating the bounds through one layer
	Mechanism of BERN-NN Polynomial Interval Arithmetic
	GPU Implementation Details

	Numerical Results
	Ablation study
	Comparison against other tools

	BERN-NN-IBF: Enhancing Neural Network Bound Propagation Through Implicit Bernstein Form and Optimized Tensor Operations
	Introduction
	Neural Network Bound Propagation Using Bernstein Polynomials
	Bernstein Polynomials:
	Interval Bound Propagation Using Bernstein Polynomials

	Memory-Efficient Representation Of Bernstein Polynomials
	Efficient Multiplication of Implicit Bernstein Polynomials
	Monomial Bernstein Polynomial Multiplication
	Multi-variate Bernstein polynomial Multiplication

	Efficient Summation of Implicit Bernstein Polynomials
	Monomial Bernstein Polynomial Summation
	Multi-variate Bernstein Polynomial Summation

	Optimal under-approximation of ReLU Functions Using Quadratic Polynomials
	Ablations
	Tools Comparison
	POLAR
	ACAS Xu

	GPU Algorithms for Bernstein Polynomial Extrema
	Implicit Form Min-Max Computation
	Quadrant-Constrained Min-Max Computation

	Scaling BERN-NN-IBF Across Multiple GPUs
	Distribution Strategy and Challenges
	Strong Scaling Experiments

	Bibliography
	Appendix Proof of Optimal Under-approximation of ReLU

