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Abstract 
 

ATOMIC COOLING VIA AC STARK SHIFT 

 

by 

 

Jennifer Black 

 

 

Described in this thesis is a new all optical approach to atomic cooling [1]. 

This approach is ideally suited for waveguide based atom photonic platforms and here 

we present two design methods to achieving cooling of sodium (Na) atoms using anti-

resonant reflecting optical waveguides (ARROWs). The proposed devices could cool 

Na atoms to 1.47 K corresponding to a mean speed of 40 m/s which is comparable to 

Zeeman based cooling techniques. The methods presented here however are 

amenable to free space setups as well as other waveguide devices and are applicable 

to other atomic species.  
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Chapter 1  

 

Introduction 
 
 

Decades ago, radiation pressure was found to create observable forces on 

particles and near resonant atoms [2], [3]. However, the application to atoms did not 

receive much interest until the advent of tunable lasers with higher powers and in 

1975 Hänsch and Schawlow [4] proposed that such light sources could be used to 

cool atoms. Eventually, an independent research field based on optical slowing and 

trapping of atoms for applications in precision metrology and fundamental studies of 

quantum matter developed [5]. 

One of the earliest techniques, single beam cooling, relies on the repeated 

resonant absorption of photons from a directed beam that opposes the atom’s motion. 

The momentum change afforded by isotropic re-radiation via spontaneous emission 

slows and thus cools the atom down. In practice, this cooling beam needs to be red 

shifted from the atomic transition frequency in order to account for the Doppler shift 

of 
    

 
 where    is the atom’s initial speed and   the laser wavelength. The problem 

is that as an atom slows, the Doppler shifted frequency of the beam falls from 

resonance, and the atom will eventually be unable to absorb any more photons.  

There are two common remedies to compensate for this dynamic Doppler 

shift   D. One solution is to chirp the laser to progressively higher frequencies in 
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order to keep it on resonance [6]. The second method uses a spatially varying 

magnetic field along z, the direction of deceleration, to move the atom’s energy levels 

via the Zeeman Effect [7]. Here, we introduce a new all-optical method for Doppler 

compensation in atomic cooling based on a spatially varying AC Stark shift. Our goal 

is to attain final speeds comparable to Zeeman slowers which could be used to load a 

magneto-optical trap without the additional required apparatus to create a suitable 

inhomogeneous magnetic field [8]. The AC Stark shift,   AC, is an intensity based 

shift that lowers the electronic ground state for a red-tuned beam [9]. Therefore, an 

AC Stark beam can increase the atomic resonance frequency to compensate for the 

apparent lowering due to the Doppler shift, and the atoms can continually cool if 

  AC      D      is satisfied.   

 This thesis is structured as follows: Chapter 2 presents theoretical background 

on atomic physics and light-matter interactions necessary to understanding our 

proposed devices. Chapter 3 discusses the principles of anti-resonant reflecting 

optical waveguides (ARROWs) and how loss calculations in such waveguides are 

performed. In Chapter 4, the principle for an AC Stark slower is described and two 

waveguide designs using ARROWs are presented using the theoretical framework 

built in previous sections. Finally, Chapter 5 presents future outlooks of this 

technology and concludes this thesis.  
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Chapter 2  

 

Light-Matter Interactions  

 
 

The following chapter introduces several theoretical concepts necessary in 

understanding AC Stark cooling. Here we also describe two common methods to 

atomic cooling that are currently used in order to highlight the motivation for our 

proposed technique. 

 

2.1 Radiation Pressure 
 

Radiation pressure in atoms is a result of scattering photons (cycles of 

absorption and emission). Consider an atom that is counter-propagating with a laser 

of wavevector   
  

 
 | ⃗⃗ | as seen in Fig. 2.1. If the laser’s wavelength is near 

atomic resonance then it can be absorbed by the atom, and via conservation of 

momentum the atom’s new momentum is given by      . Consequently, the atom 

decelerates and is then able to spontaneously emit the photon which again results in a 

momentum change of magnitude    as the atom falls back to the ground state. The 

net change in momentum from spontaneous emission over many scattering cycles is 

zero, thus allowing for the atom to decelerate. However, spontaneous emission may 

contribute to increasing velocities transverse to the direction of deceleration (or 
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transverse heating), which if not ameliorated, will distort the atomic beam’s 

collimation. Transverse heating will be discussed further in section 2.7.  

 

Fig. 2.1: An atom with momentum   ⃗⃗  can absorb a counter-propagating photon of 

momentum   ⃗⃗  if its frequency appears on resonance.  

The atom’s change in velocity after absorption of one photon is called the 

recoil velocity,   
  

 
. Considering Sodium (Na) atoms absorbing light near its    

hyperfine resonance,          nm with mass,    0.3818 x 10-25 kg, we find 

   2.9461 cm/s. Though this is a small change in speed, Na is able to absorb many 

photons in a short amount of time. The rate at which an atom can go through this 

scattering cycle is aptly named the scattering rate and is given by [10] 

  (
 

 
)

(     
⁄ )

   (  ⁄ )
 
 (     

⁄ )
           

Where   is the lifetime of an atomic transition,         is the detuning of the 

laser,     from resonance,       is the intensity of the light and      the saturation 

intensity given by 

     
    

   

 | ̂   ⃗ | 
           

Where c is the speed of light,   is the reduced Plank constant,    the permittivity of 

free space,  ̂ is the polarization unit vector and  ⃗  is the atomic dipole moment for the 

relevant transition. When a high intensity beam is present (      ), the scattering 
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rate (2.1) goes to 
 

 
. The magnitude of deceleration of an atom due to this scattering 

process is   
|  ⃗⃗ |

   
 

  

  
 which goes to 

  

   
 in the saturated limit. For the Na    

hyperfine transitions, the magnitude of saturation limited deceleration is 9.0643 x 

105 
 

  
.  

The mean speed of atoms at a given temperature is expressed as 

  √
    

  
           

Where   is the mass,    is the Boltzmann constant and   is the temperature in 

Kelvin. So, Na atoms at room temperature (T ~ 300 K) have a mean velocity of 525.6 

m/s. In order to slow them to a final velocity of 10 m/s, the Na atoms must absorb 

  
              

  
  1.75 x 10

4
 photons which in the saturated limit will take 0.54 

ms. Using the Galilean equations of motion, we can also determine the necessary 

length, L, needed to slow atoms from room temperature speeds to 10 m/s:   

          

                 
  15.23 cm. Thus, the lengths necessary for the slowing of Na atoms 

to speeds of tens of meters per second are achievable on the chip scale. The relevant 

values for Na mentioned above are summarized in appendix A.  

 

2.2 Doppler Shift 
 

To an atom, the apparent detuning of a laser from an atomic resonance is 

dependent on the atom’s velocity relative to the direction of propagation of the laser. 
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This difference in frequency from the lab’s perspective is known as the Doppler shift. 

The amount of detuning seen by the atom is given by 

      ⃗               

Where    is the detuning of the laser in the lab reference frame and the Doppler shift 

is given by   ⃗    . The scenario described above for atomic cooling consisted of an 

atom counter-propagating with a laser and as the atom absorbs the photons, it will 

slow. However, in order for the atom to be able to absorb the atoms, the laser must 

appear near resonance. If a laser which in the lab frame is locked to resonance for a 

Na atom’s transition, it will appear blue shifted to an atom moving in the opposite 

direction of the beam because  ⃗        So, as seen in Fig. 2.2, one must set the laser 

frequency,    to be red-detuned by the Doppler shift (  ⃗    ) in order to make the 

laser appear on resonance. 

𝜔𝐿 

| ⃗    | 

Fig. 2.2: A counter-propagating laser can be absorbed if it is red-detuned by 

the Doppler shift, thus making it appear on resonance. 
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Since a Na atom near room temperature has a speed  of 500 m/s, one finds a 

non-negligible Doppler shift (~        GHz) and thus the Doppler cooling beam 

must be red shifted in the lab frame (    ) in order to compensate for the Doppler 

shift. Then, as its speed is reduced, the required Doppler shift will change 

continuously as the atom slows down and the atom will eventually be unable to 

absorb any more photons as the atom now sees the laser closer to its red shifted 

frequency chosen in the lab reference frame. There are two common remedies to this 

problem: Zeeman assisted cooling and chirping of the cooling beam. The proposed 

AC Stark slowing presented here is analogous to Zeeman slowing where instead of 

using a magnetic field to provide an appropriate shift in the ground state, a detuned 

electric field can be used whose intensity is proportional to the ground state energy 

shift.  
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2.3 Zeeman Slowing 

Zeeman assisted cooling uses a fixed frequency Doppler cooling beam and a 

spatially varying magnetic field [11]. The Doppler cooling beam can either be chosen 

at an atomic transition’s resonance or detuned. The purpose of the magnetic field is to 

provide an appropriate Zeeman shift of the ground state in order to make the Doppler 

cooling beam continually appear on resonance as the atom slows. If the Doppler 

cooling beam is on resonance in the lab frame, then a counter-propagating atom will 

see the beam blue shifted as described in the previous section. Thus, the atom will see 

the beam blue shifted as seen in Fig. 2.3.a. If an appropriate Zeeman shift is present 

then the ground state can be lowered and the seemingly blue shifted cooling beam can 

be absorbed as seen in Fig. 2.3.b. 

Fig. 2.3: (a) No magnetic field present. Apparent cooling frequency blue shifted 

due to the counter-propagating velocity induced Doppler shift. (b) Magnetic field 

present. Zeeman shift of the ground state allows the blue shifted cooling beam to 

appear on resonance. 
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 As the atom cools, the Doppler shift changes and thus the Zeeman shift must 

also vary along the direction of deceleration,  . In order to achieve such an 

inhomogeneous magnetic field, an intricate solenoid is constructed. The strength of 

the magnetic field at a given position along   is determined by the number of coils 

( ) a wire makes in the radial direction from  . In order to determine what the 

magnetic field profile must look like, we must first determine the Doppler shift as a 

function of  . In the saturated limit, the deceleration due to absorption of the cooling 

beam goes to  | ⃗ |  
  

   
 as described in section 2.1. Assuming constant deceleration 

(continued absorption) along    one can write the atom’s velocity along   as      

√  
      where    is determined by the initial temperature of the atoms (equation 

2.3). Then the Doppler shift can be written: 

       
 

 
      

 

 
√  

                

The desired Zeeman shift (   ) must satisfy the following condition in order to 

ensure constant deceleration: 

         D               

 The linear Zeeman shift can be found using the interaction Hamiltonian: 

         ⃗  
  

 
(   ⃗            )   ⃗           

Where    is the Bohr magneton,   is the reduced Planck constant,       and    are 

the electron orbital, spin and nuclear Landé g-factors respectively. Taking the 

magnetic field to be along the z-direction we can write 
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Where   |    ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗| and             (see section 2.6). Using first order 

perturbation theory, we can find the Zeeman light shift via [10], [12]: 

    ⟨    |    |    ⟩  
  

 
   ⟨    |  |    ⟩                   

Using this along with equation 2.5 and 2.6, the magnetic field along   must take the 

following form: 

      
  

       

√  
                 

Now that the magnetic field profile is specified, one must construct such a 

field. Using the Biot-Savart Law one can determine the number of loops the wire 

must make along the slowing axis within a step along z thus defining the shape of the 

taper the solenoid must make along  . A rough schematic of such a Zeeman slower is 

shown in Fig. 2.4 after [5]. 

 

Fig. 2.4: A schematic of a typical Zeeman slower along with the corresponding 

inhomogeneous magnetic field along the direction of cooling, z. From ref [5]. 
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2.4 Chirped Slowing 

 Another method for Doppler cooling involves the chirping of the cooling 

beam. This means that the cooling beam’s frequency is shifted in time in order to 

compensate for the dynamic Doppler shift. In this orientation, the beam is originally 

red-shifted to match the initial Doppler shift and then the beam is chirped to 

increasingly higher frequencies in order to keep it on resonance as the atom cools. If 

the laser is chirped at a high enough rate then the atoms at different velocities will see 

an on resonance photon and can cool. Results from [13] are shown in Fig. 2.5 for a 

chirping experiment with varying scanning rates. Later chirping experiments resulted 

in stopped (and even reverse velocity) atoms [6]. 
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Fig. 2.5: Na atom velocity distributions for (a) no cooling laser, (b) cooling laser with 

no chirp, (c) chirped at 480 MHz and (d) chirped at 750 MHz. From [13]. 

 

 

 

2.5 AC Stark Light Shift 
 

 In this thesis, we present a new method for Doppler shift compensation using 

an energy level shift (or light shift) analogous to the Zeeman light shift. This all 

optical approach uses two lasers, one counter-propagating Doppler cooling and 

another co-propagating laser which provides an appropriate AC Stark light shift 

which is proportional to the intensity of the optical field which takes the role of the 

magnetic field in the more common Zeeman slower. This allows for comparable final 
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speeds (temperatures) of atoms as in the Zeeman slower but without the need for a 

complicated solenoid. Instead, we would need to create an appropriate 

inhomogeneous intensity along the path of deceleration. In later chapters two 

theoretical approaches to all optical cooling in an anti-resonant reflecting optical 

waveguide (ARROW) are described. Using ARROW structures allows us to tailor the 

intensity with particular design parameters and thus engineer a waveguide which 

could cool atoms to final speeds of        with two fixed frequency input lasers.  

 An expression for the AC Stark light shift can be found using second-order 

perturbation theory [14]. Consider a two level atom with a ground state, |   and 

excited state, |  . If it is illuminated by a laser with wavelength λ >> r, where r is 

the atom’s radius, then the interaction Hamiltonian is given by     ̂   ⃗  (the 

Dipole approximation) where  ̂      (Dipole moment) and   is the electron charge.  

The resulting energy shift is given by 

    
|  | |  | 

 
| ⃗ |

 
  

   
 

 
| ⃗ |

 
            

Where       ⃗     (equation 2.4) and        is the detuning of the laser in 

the lab frame with        and   being the angular frequency of the incoming laser 

light. For near resonant beams, the   signs correspond to the excited (-) and ground 

state (+) shifts respectively. Thus, if the light is red shifted (   ) then the excited 

and ground states get pushed further apart. Using       | ⃗ |
 
 we can rewrite the 

light shift as 
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We find that the light shift is dependent on the intensity,   of the light and inversely 

proportional to the detuning from resonance,  .  

 However, atomic energy systems are of course more complicated than a 

simple two level model. Alkali atom’s hyperfine energy levels are often used for the 

relevant energy levels in cooling experiments. In the next section, a discussion on 

hyperfine energy levels in alkali atoms is described and the appropriate multi-level 

AC Stark light shift is presented.  

 

2.6 Fine and Hyperfine Structure 

 As electrons orbit an atomic nucleus they create a loop current and thus a 

magnetic field with a resulting magnetic moment. This magnetic moment has a 

corresponding orbital angular momentum,  ⃗  which will couple to the electron’s 

intrinsic spin angular momentum,   . This so called spin-orbit coupling creates a sort 

of internal Zeeman splitting of the energy levels known as the fine structure with total 

electron angular momentum     ⃗    . The magnitude of the total electron angular 

momentum,   lies within |   |    |   |. Alkali atoms (which we will be 

concerned with) all have one electron outside of their other filled shells. Therefore, 

they act similar to hydrogen with one large core and a single orbiting electron in the 

outer shell. Their ground states have     and        . The first excited state 

has     and S     leaving two possibilities for       ,   .  
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 Common nomenclature for the energy levels consist of the principle quantum 

number,   and   and the “term.” For example, the ground state for the alkali Na  

would be written as        where the first number is the principle quantum number of 

the outer shell electron, the superscript is called the term and is equal to       

where here    ∑     is the sum of the spin for each electron in the system.   

corresponds to the angular momentum     and the subscript is  . Other letters for 

corresponding angular momentum are                    

 The hyperfine structure consists of even smaller energy spacing and are a 

result of the coupling between    and the total nuclear angular momentum,   ⃗⃗  The 

resulting total atomic angular momentum is given by          and has values lying 

within |   |    |   |. Na has      , so its ground state (         ) 

has      . Its excited states have either               ,  
      ) and are known 

as the    and    levels and transitions respectively. The associated hyperfine 

transitions are       for    and           for   . The hyperfine transitions for 

Na are seen in Fig. 2.6. The associated wavelengths for these transitions are 589.6 nm 

for    and 589.2 nm for    which are both easily accessible with modern lasers and 

are commonly used in experimental physics.  

 Since the hyperfine structure for an atom can consist of many closely spaced 

energy levels, then the simple two-level light shift derived in the previous section is 

not adequate. One must instead sum up the light shifts over the different unperturbed 

levels with the relevant detunings of the laser from each transition: 
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Fig. 2.6: The    and    hyperfine structure of Na (not drawn the scale). 

    
 

    
∑

   
 

   
 

            

To make this task easier, we can consider the transition strength coefficients 

for the different energy levels,    , the square of which denotes the line strengths of 

each transition. Using these strength transitions, the dipole moment can be re-written 
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as           (via the Wigner-Eckart Theorem [15]) where    is determined by the 

excited hyperfine transitions (      corresponding to     ).  If the detuning of the 

transition is greater than the hyperfine splittings then we can approximate the ground 

state energy shift by 

   
   

 

        
∑   

             

 

Where F designates the ground state,       again designates the excited state 

hyperfine level corresponding to the    transition and      is the detuning from the 

center of the hyperfine transition to the     ground state. Therefore, we need only 

sum over the transition strengths for a particular excited state. When the detuning of a 

linearly polarized ( -polarized) laser is largely detuned (         then ∑   
   

 

 
. 

All this considered, we can write the above light shift for  -polarized far detuned 

light as 

   
   

 

        
            

Using the relationship between dipole moment and the decay rate: 

   
  

 

       
  

             

Where    is the angular frequency for the transition, we can write the light shift as 
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2.7 Transverse Heating 

 Random photon emission results in heating of the atoms because as they 

spontaneously re-emit a photon they pick up a velocity known as a recoil velocity 

    
  ⃗ 

 
. We can determine the recoil temperature    via the recoil energy    

     
 

 
   

  
     

  
. The rate at which an atom scatters a photon (thus picking up 

the above recoil velocity) is determined via the scattering rate (equation 2.1). There is 

equal probability that the photon will be emitted in one of three dimensions, therefore 

the probability of the recoil velocity happening in the transverse direction (not in the 

direction of atomic cooling) is   ⁄ .  

 Such transverse speeds become non-negligible when cooling times increase. 

The average speed picked up in the transverse direction is 〈 〉  
    

 
. Since the final 

cooling velocity is typically much lower than the initial velocity we can write 

〈 〉           √
    

  
. Setting these expressions equal to one another we find 

that   √  which we can plug back into the expression for the average speed in the 

transverse direction. Doing so, we find that 〈 〉       . Thus, the transverse heating 

is less of a problem for heavier atoms. Transverse heating can be ameliorated with the 

use of additional cooling beams (say 6 lasers, 2 counter-propagating beams for each 

of the 3 spatial dimensions) or via other methods (e.g. using the gradient force) as we 

will see in the next section.   
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2.8 Gradient Force 
  

 Consider the cross section of a tightly collimated Gaussian laser beam. The 

center of the beam contains the highest intensity and as one travels radially from the 

center of the beam, the intensity decreases. Therefore, the magnitude of the above 

described AC Stark shift will be larger in the center of the beam and will decrease in 

the radial direction. Also, note that the gradient force does not saturate with intensity. 

If the laser is detuned, then as described above, the AC Stark shift effectively changes 

only the ground state energy. Thus, a potential well or wall can be created within the 

laser beam depending on the sign of the detuning. Red-detuned light would create a 

potential well (    ) and blue-detuned light would result in a potential wall 

(    ) as seen in Fig. 2.7.a. Thus, the gradient force can be used to confine atoms 

to move along the direction parallel with the collimated laser and prevent transverse 

de-collimation if a red-shifted beam is used as seen in Fig. 2.7.b. Conversely, atoms 

can be pushed away from a blue-shifted beam as seen in 2.7.c [16]. One can also 

understand this force in the context of optically induced dipoles and it is therefore 

also known as the dipole force. The gradient force is very effective in waveguides due 

to the ability to sustain large gradients (small beam diameters) over long distances 

and has been used to perform atom optics experiments in waveguides as we will see 

in the next section.  
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Fig. 2.7: (a) Visualization of the Gradient force for a collimated Gaussian beam. The 

radially dependent AC Stark shift (     ) is plotted for both the red and blue-

detuned beams. (b) shows increased atomic concentration with a red detuned beam 

where the curves “a”, “b” and “c” represent laser powers of 0, 250 and 25 mW 

respectively. (c) shows atomic repulsion where “a” and “b” represent a blue detuned 

beam with power 0 and 160 mW. (b) and (c) from [16]. 

(a) 

(b) 

(c) 
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2.9 Atoms in Waveguides 
 

Hollow-core (HC) waveguides such as HC photonic crystal fiber (PCF) and 

HC anti-resonant reflecting optical waveguides (ARROW) have become popular 

platforms for guiding light in low index media. Typical atomic experiments use large 

glass bulk cells with dimensions on the order of centimeters. As a comparison, Fig. 

2.8 shows an image of a Rubidium filled standard bulk cell of length 75 mm (Triad 

Technology Inc. model TT-RB87-75-V-Q) and a Rubidium filled HC-ARROW chip. 

Though miniaturization of atomic cells is appealing, it provides its own obstacles. 

Notably, atoms often stick to the walls of the cells. Since smaller cells provide the 

opportunity for more frequent collisions, atoms will quickly accumulate on the walls 

of the cell leaving it unusable after a short amount of time. 

 

Fig. 2.8: In the upper left is a commercial bulk cell of 87Rb atoms (Triad Technology 

Inc.) and in the bottom right is a Rb filled HC-ARROW chip sitting on a US quarter. 

 Methods to prevent atoms sticking to the walls of cells include coatings (e.g. 

PDMS, ODMS, paraffin, etc. [17]) and using the above described gradient force [18]. 

Using the gradient force allows one to use an optical waveguide for light-matter 

experiments as the light propagates in the hollow core waveguide which doubles as 
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an atomic cell. If the intensity and detunings of the propagating frequencies are 

designed appropriately then the gradient force can provide sufficient transverse 

confinement to prevent unwanted collisions with the walls.  

Initially proposed by Ol’Shanii et al. [19], Renn et al. were the first to 

optically guide Rb atoms through hollow-core fiber [18] and show that the dipole 

potential created by the mode profile is sufficient for transverse confinement of the 

atoms, producing a potential well of 71mK depth (which has a corresponding 

transverse capture velocity of 3.7m/s) in different size (inner diameter (ID) 40 and 10 

µm) fibers. Since then, several examples of optical guiding and trapping in hollow-

core photonic crystal fiber (HC-PCF) have been demonstrated [20], [21], [22], [23], 

[24]. Linear and nonlinear spectroscopy as well as electromagnetically induced 

transparency (EIT) has also been demonstrated in HC-PCF with Rb [25], [26], [27] 

and acetylene [28]. More recently, chip-based approaches to waveguide-based atomic 

spectroscopy have emerged. Our group has introduced self-contained silicon chips 

based on ARROWs, and demonstrated atomic spectroscopy, EIT, and slow light in 

Rb-filled waveguides [29][30]. Stern et al. introduced a chip platform based on 

evanescent fields from solid-core waveguides interacting with near-surface atoms 

[31]. 
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Chapter 3  

 

Anti-Resonant Reflecting Optical 

Waveguides 
 

 Here a theoretical treatment of anti-resonant reflecting optical waveguides 

(ARROWs) is presented. The anti-resonant condition used for guiding in low index 

media and the transfer matrix formalism is presented which is used for subsequent 

waveguide designs.  

  

3.1 Theory 
 

 Most waveguides use total internal reflection in order to guide light. Total 

internal reflection uses a core medium with a higher index of refraction than the outer 

cladding material. The reversal of the index profile makes guiding light in low index 

media difficult and thus a different approach is necessary. The alkali gases that we are 

here interested in suffer the same problem as they have a low index of refraction 

(n  ). Other low index media (e.g. water) share a similar problem though 

waveguides which guide in water typically result in lower loss than air/alkali cores.  

 Such low index guiding is achievable with interferometric confinement by 

structuring the high cladding index. Examples include Bragg fibers [32], photonic 

bandgap fibers [33] and photonic crystal slab waveguides [34]. Anti-resonant 

reflecting optical waveguides (ARROWs) were first proposed by Duguay [35] and 
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use an anti-resonance condition in order to guide leaky modes since these structures 

result in radiation losses as the mode propagates (finite reflectivity at each boundary). 

The following distinction will be made between the two types of ARROWs as 

follows: solid core (SC-ARROW) and hollow core (HC-ARROW). However, the 

anti-resonant condition is central to both.  

First, we will discuss HC-ARROWs. Consider the structure found in Fig. 3.1. 

There is a low index core (  ) with thickness    surrounded by two layers of 

dielectric with indices    and thicknesses    where   indicates the     layer from the 

core outward. The mode wavevector,   can be decomposed into transverse 

components (  ) and a component along   ( ). The layers surrounding the core are 

each designed as Fabry-Pérot reflectors thus allowing propagation in the core.     

Fig. 3.1: HC-ARROW cross sections (a) in the y-x plane and (b) in the y-z plane.  

 

 The modes in an ARROWs can be either transverse electric (TE) or transverse 

magnetic (TM). For x-polarized light the TE mode lies in the y-direction and the TM 

in the x-direction. For y-polarized light the TE mode lies in the x-direction and the 
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TM mode in the y-direction. The anti-resonant condition is that the entire transverse 

round trip phase shift is equal to an odd multiple of  . Explicitly, the condition that 

needs to be satisfied in the     layer is the following: 

                           

Where          and    is the total phase shift picked up at the layer boundaries. 

The    total phase shift needs to be carefully considered for different polarizations 

and index sequences.  

 Consider light propagating in a material with index    which is incident on the 

boundary with material of index   . Reflected TM light will acquire a   phase shift if 

the incident angle is less than the Brewster angle: 

       (
  

  
)          

TE light will acquire a   phase shift if       and a 0 phase shift if      . The 

total phase shift,    in the     layer is then the sum of the phase shifts at each of the 

boundaries. For HC-ARROWs the total phase shift in the core is always       as 

the core is a low index material. For              the total TE phase shift is 

     and for                  . We use the latter index sequence for our first 

ARROW layers in order to keep the same TE anti-resonance condition for all layers 

as      or       results in the condition that       is equal to some odd integer 

of     

The total TM phase shift is more complicated as it is dependent on the 

incident angle. Consider light guiding in a HC-ARROW with core index    with 
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incident angle          on a       (      ) layer. The light refracted into the 

      layer will have an angle                if the core is filled with air (    ), 

water (       ). If the next ARROW layer is made of      (       ) then the 

Brewster angle is        
       and a TM mode will acquire a phase shift of   for 

air and 0 for water. The reflected light will then be incident upon the core layer again 

                   for air, water. At this boundary neither TM mode will pick up a 

phase shift. Thus, for the air core waveguide we find        and for the water core 

       which changes the anti-resonance condition! The thickness of the     

ARROW layer can be determined via [35]: 

   
  

 √  (
  

  
)
 

 (
 

     
)
 

   {
                  

            
           

SC-ARROWs also use the anti-resonant condition but only on one side of the 

waveguide as seen in Fig. 3.2. Since the core is made with     medium (typically 

    ), it guides via total internal reflection on the sides in which it is exposed to air. 

This allows a system of solid and hollow planar waveguides to be fabricated together 

on a wafer.  
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Fig. 3.2: SC-ARROW cross sections (a) in the y-x plane and (b) in the y-z plane. 

Light is guided in the core via the anti-resonance condition in the –y direction and via 

total internal reflection otherwise.  

 

3.2 Loss 
  

The theoretical loss in our ARROWs is calculated using a transfer matrix formalism 

[36]. Fig. 3.3 shows one thin layer of dielectric material in which we will examine the 

passage of light. Light is propagating in the positive x-direction and originates in 

medium 1 with index   . The propagating electric field can be written as 

                                       

Where   is the wave vector in the x-direction,        is the wave traveling in the 

right direction and        in the left. The right and left traveling coefficients in Fig. 

3.3 are defined as: 
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Fig. 3.3: Schematic of a thin dielectric medium in which light propagates.  

 

We desire to know the output electric field amplitudes (    and    ) after passing 

through medium 2. We can express the field amplitudes as vectors: 
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)    
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)     (
  

 

  
 
) 

Where    is called a dynamical matrix and is found by considering the continuity of 

the electric and magnetic fields at a boundary [36]: 

   {
(

  
               

)    

(
          

     
)    

 

   adds the appropriate phase shift (      ) picked up in medium 2 where 

   
        

 
. Using the above dynamical matrices, we can express the transmission 

matrices,    : 
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Therefore, we can relate the input and output field amplitudes by: 

(
  

  
)    

        
    (

   
   

)           

The above transfer matrix formalism can be applied to a stack of   dielectric layers 

as seen in Fig. 3.4. 
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Fig. 3.4: A stack of   dielectric layers. 

For the multilayer system, the relationship between the input and output field 

amplitudes is given by: 

(
  

  
)  (

      

      
) (

   
   

)            

Where     (
      

      
)    

   ∏       
   

                  

Our task then is to calculate the dynamical matrices for a given structure. From this, 

we can calculate the reflectivity: 

  |
   

   
|
 

            

The loss then is calculated as [37]: 

  
        

          √    
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Where    is the reflectivity of the     surface,    is the core thickness (or width 

depending on what direction you are calculating the loss for) and   is the angle of 

incidence from the core on the dielectric stack. Using this approach we can calculate 

both x and y-polarized TE and TM loss for an ARROW design. Note that in practice, 

fabrication imperfections and surface roughness result in a higher loss than the 

theoretical value. A minimum loss value has been derived for both TE and TM modes 

if         : 

        (
  

    
 

  
    

 
)

   

              

        (
  

   

    
 
)

 

      
            

   
    

    
 √  

    
 
            

Where   is the number of anti-resonant layers and          is the mode order. 

Though these are minimum loss values, we can note several important considerations 

when designing an ARROW. First note that TM loss is greater than TE loss by a 

factor (
  

   

    
 )

 

. Also, loss is decreased with the addition of ARROW layers, 

ARROWs guide with lower loss for lower wavelengths, loss is inversely proportional 

to the core index and has a   
  

 dependence. For our typically fabricated HC-

ARROW structures [29], we have      and             (corresponding to the 

   hyperfine transitions in Rubidium). Our proposed ARROW structure for atomic 
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cooling of Na atoms (described in the following chapter) has      layers at 

            for low loss propagation.  

 

 

Chapter 4  

 

Atomic Slower Designs 
 

Our aim is to engineer an ARROW which will provide an appropriate AC 

Stark light shift along   in order to cool atoms all optically. As we’ve seen in chapter 

2, ARROW structures are lossy by an amount which is very dependent on design 

parameters. The loss will then determine the optical power along   and the size of the 

hollow core area will determine the mode area. Therefore, for the following designs 

we are concerned with engineering appropriate mode areas and losses in order to 

provide the needed AC Stark shift.  

Here two approaches to designing AC light shift cooling HC-ARROWs are 

presented. Our aim is to cool Na atoms to final mean speeds comparable to Zeeman 

slowers (tens of meters per second). As seen in Fig. 4.1 (a), two beams are used: a 

counter-propagating on resonance fixed frequency Doppler cooling beam and a co-

propagating AC Stark beam in order to dynamically move the ground state and allow 

for continual cooling. The relevant hyperfine transitions for Na are shown in Fig. 4.1 

(b) and the detuning of the AC Stark beam from the center of the    hyperfine 

transitions is denoted as   . Note that in practice, the use of a re-pump beam would 



33 
 

be necessary to prevent population depletion for the ground state via optical pumping 

[5]. A brief discussion on optical pumping can be found in Appendix B. This 

approach is analogous to Zeeman cooling which was described in section 2.3 but 

instead uses the AC Stark shift which is proportional to optical intensity as described 

in section 2.5. We use the far detuned form of the AC Stark shift as discussed in 

section 2.6 (equation 2.17). The loss of the HC-ARROW is determined via the matrix 

formalism described in section 3.2 and is dependent on relevant design parameters. 

Our simulations step along the z direction and extract relevant parameters in order to 

satisfy the equation: 

  AC      D                

 

 

Fig. 4.1: (a) Example beam geometry. Doppler “cool” beam counter-propagates while 

an “AC” Stark beam co-propagates with the atom. (b) The relevant hyperfine 

transitions for Na cooling. 
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The Matlab script developed for the following waveguide designs can be found in 

Appendix C. 

 

4.1 Waveguide Design 
 

 For the atom we are investigating, Na, the AC Stark cooling beam is near the 

   hyperfine transition which is 589.1583 nm. The waveguide must therefore guide at 

this wavelength and was designed using two oxides that we currently use to fabricate 

chips:      which has an index of 1.46 and       whose index is 2.107. Our 

proposed waveguide consists of twelve ARROW layers as seen in Fig. 4.2 and whose 

thicknesses were determined from the anti-resonance condition as described in 

section 3.2. The hollow core has a 10 µm thickness and the width (w) varies for the 

following designs. From the core outward, the ARROW layers consist of alternating 

Ta2O5 (thickness 79nm) and SiO2 (thickness 138nm) dielectrics with the exception of 

the final top oxide whose thickness varies in the designs below.   
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Fig. 4.2: Cross section of twelve layer HC-ARROW design. The top oxide thickness 

and the hollow core width, w, are the parameters to be varied in the following 

waveguide designs.   

   

For continual cooling, our designs must satisfy equation 4.1 where   AC    is 

proportional to intensity,     . Expressing power in a lossy waveguide along   via the 

Beer-Lambert law we can write: 

     
    

      

    
           

Which can be tailored by changing the loss,       or the fundamental mode are,     . 

We can then write the AC Stark shift for our HC-ARROW using equation 4.2 

combined with equation 2.17:  

        
    

   
 (

 

    
)
    

      

    
           

 In what remains of this chapter, we will discuss two specific approaches to 

implementing the new cooling scheme with Na atoms in HC-ARROW structures. In 
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current chip designs [29],[30] atoms are introduced into the waveguides by heating 

metal reservoirs of ~2mm ID. The waveguide itself with its ~12 µm x 5 µm cross 

section acts as the aperture producing a directed beam of ~3mrad divergence, 

comparable to or better than previously reported examples [11], [38]. By integrating 

the Maxwell thermal velocity distribution (initial temperature of     ) up to the 

transverse capture velocity for our waveguides, we estimate guided atom fluxes on 

the order of ~10
4
Hz [18]. Note that though we present two ARROW based AC Stark 

slowers, the experiment could in principle be performed in free space or in other 

waveguides and though we propose slowing Na atoms, the methods presented here 

are not limited to any particular atomic species.  

 

4.2 Varying Width 
 

 The first example waveguide is designed by changing the width of the 

waveguide along the direction of deceleration,  . Changing the width ( ) will effect 

both the loss and the fundamental mode area which means we need to determine 

     and     . In order to extract these equations, a waveguide with a 10 µm core 

height and varying width (between 3 and 60 µm) were simulated. The loss for each 

width was determined via Matlab script which uses the previously described transfer 

matrix formalism (section 2.3). The fundamental mode area was calculated using 

FIMMWAVE software. These values were plotted (Fig. 4.3) and fit so that we could 

then use these functions in the waveguide design simulation (appendix C.1). The fits 

produced the following functions of waveguide width: 
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Where      is in units      and      in    . The fits are found to be good with 

        for both.  

 

 
Fig. 4.3: Calculated loss and fundamental mode areas as a function of waveguide 

width. These results were fit and used for the simulations discussed in the text. 
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Using these fits and the Beer-Lambert law we can re-write equation 4.3 as a 

function of z and  : 

          
    

   
 (

 

    
)
    

      

    
           

The above is then used with the Doppler shift (equation 2.5) in order to satisfy 

equation 4.1. To do so, we choose an initial waveguide width which determines the 

power input      and then solve for waveguide width at small steps along z. With 

appropriate initial parameters, the intensity along z can be sustained with varying 

width such that equation 4.1 is satisfied along the entire waveguide length (to final 

speed of 40 m/s). We designed such waveguides for varying initial temperatures, To. 

The waveguide designs (  vs. z) for To= 30, 50, 70, 90, 110 and 130  are plotted in 

Fig. 4.4 (blue, green, red, light blue, purple and gold respectively). A top down view 

of the waveguide can be seen in the inset of Fig. 4.4 for To= 50 . 
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Fig. 4.4: w(z) for To= 30, 50, 70, 90, 110 and 130  (blue, green, red, light blue, 

purple and gold respectively). Arrow indicates increasing To and the inset shows a top 

down view of the spatially varying hollow core width for     50   

 

For          (recall equation 2.4:          ⃗    ),     was found to be 

2.59, 2.81, 3.02, 3.29, 3.58 and 3.88mW for     30, 50, 70, 90, 110 and 130 , 

respectively. The lengths that we considered correspond to a final temperature of 

1.47K or equivalently a final mean speed            which is comparable to final 

speeds obtained by Zeeman slowers. Notice that higher    requires a longer 

waveguide to cool to the same   . Also, notice that near the end of the waveguide the 

width increases dramatically which is due to the necessity to rapidly decrease 

     
 

    
. Lateral confinement to guard against transverse atom loss is provided by 

𝑤 
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the dipole force from the AC Stark beam as described in section 2.8. For the present 

mode profiles and optical powers, we calculate potential well depths on the order of 

50 mK corresponding to maximum transverse capture velocities of ~6 m/s for our AC 

Stark beam. This provides sufficient lateral confinement along the waveguide [6]. 

 

4.3 Varying Top Oxide Thickness 
 

The second approach is to tailor only the loss, for example by varying the 

thicknesses of the ARROW layers. The simplest approach is to vary one thickness, 

the top oxide (   ), because it is exposed post fabrication, it is the thickest layer and 

the loss profile is very sensitive to changes in its thickness. Using equations 2.5 and 

4.3, we extract the necessary      in order to satisfy equation 4.1 (see appendix C.2). 

Note that this condition with a constant mode area,   , allows for the derivation of an 

analytic expression for        

     (
 

 
)   (

         

       
    √  

     
)                          

Fig. 4.5.a plots      for the same range of initial temperatures for Na in a HC-

ARROW with        and         . We are then able to design     to the 

appropriate thickness along   using the transfer matrix formalism in order to achieve 

the desired loss. 

The necessary loss coefficients to achieve         
 

 
 were found accessible 

in the range of     between 5.98 and 6.05 μm. For          ,     was found to 

be 3.43, 3.59, 3.75, 3.90, 4.06 and 4.21mW for     30, 50, 70, 90, 110 and 130    
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respectively. Fig. 4.5.b shows the resulting waveguide design (    vs.  ). Fig. 4.5.c 

plots the mean speed along z for the same initial temperatures to           . Note 

that with this design procedure we are able to cool Na atoms further to their Doppler 

temperature,    
  

   
 = 235 μK (         ) [10] which we were unable to 

achieve with the previous method due to design limitations (recall that in the previous 

design approach the width of the waveguide increased when approaching cooler 

temperatures. Therefore, in order to achieve the Doppler temperature with the varying 

width method, one would need a final width of unpractical size). This is the lowest 

temperature that we can obtain because HC-ARROWs can only guide linear 

polarizations over substantial lengths. This differs from free space experiments where 

polarization dependent sub-Doppler cooling techniques could be used to reach lower 

temperatures [10].  
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Fig. 4.5: (a)      for To= 30, 50, 70, 90, 110 and 130  (colors and arrow same as in 

Fig. 4.3). (b)    (z) for varying To. (c)      for varying To. 
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Chapter 5  

 

Summary and Future Work 
 

Here we have presented a new all optical method for cooling of atoms. 

Necessary theoretical framework was presented and then our AC Stark cooling 

approach was described. Further, we presented two designs which utilize a planar 

waveguide system comprised of ARROWs in order to theoretically cool Na atoms to 

speeds comparable to those of modern Zeeman slowers. With all optical AC Stark 

shift cooling, no frequency scanning is necessary and no inhomogeneous magnetic 

field is required, eliminating the need of a complicated solenoid.  

The next steps would of course involve the realization of the proposed slower 

experimentally. A vision of what such an ARROW based AC Stark cooler could look 

like is found in Fig. 5.1. The waveguide as designed in the previous sections would 

lie between the Na Reservoirs. The reservoir on the top left of the drawing could be 

heated and the Na vapor would then co-propagate along the length of the waveguide 

with the AC Stark beam. The counter propagating cooling beam would be launched 

from the other end of the chip. Both beams could be coupled from free space or butt-

coupled from fiber to a solid core waveguide on the chip. This solid core waveguide 

would bend around the Na reservoir and then reach the HC-ARROW where the light-

matter interactions would take place. Several perpendicular SC-ARROWs could be 

fabricated which then intersect the HC-ARROW to collect fluorescence of the atoms 
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along  . Other approaches to AC Stark cooling could involve free space setups or 

other waveguides (e.g. hollow core photonic bandgap fiber). Also, other atoms could 

be used in such a cooling setup (e.g. alkalis like rubidium or cesium). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AC Stark 

Cool 

Na Reservoirs 

SC-ARROW HC-ARROW 
Fig. 5.1: Sketch of proposed ARROW platform AC Stark cooler. The AC Stark and 

Doppler cooling beams enter either side of the platform via a SC-ARROW. This 

waveguide bends around the Na reservoirs and leads to the HC-ARROW where the 

experiment takes place. Perpendicular SC-ARROWs could also be fabricated to 

intersect the HC-ARROW to detect fluorescence along the length of the cooler. 
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Appendices  

 
 

Appendix A: Sodium Numbers [10] 
 

Atomic Number 11 

Atomic Mass 22.9898u  

3.8175x10
-26

 kg 

 

D1 

Lifetime τ 16.2992 ns 

Decay Rate (FWHM) Γ 2 (9.765) MHz  

Wavelength λ 508.3325 nm 

Frequency   2 (508.3325) THz 

Recoil Velocity    2.9431 cm/s 

 

D2 

Lifetime τ 16.2492 ns 

Decay Rate (FWHM) Γ 2 (9.795) MHz  

Wavelength λ 589.1583 nm 

Frequency   2 (508.8487) THz 

Recoil Velocity    2.9461 cm/s 
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Appendix B: Optical Pumping 
 

 Optical pumping is an effect where atomic ground state polarization 

(accumulation of electrons in a particular energy level) is created when in the 

presence of laser light. Optical pumping is a non-linear light-matter interaction and 

can be useful or detrimental to an experiment. For instance, let us consider a two level 

atomic transition among fine states     to      as seen in Fig. 2.4. Assuming 

there is no magnetic field present then the ground state is degenerate with magnetic 

sublevels           . Before an atomic ensemble is illuminated with light, the 

atoms will have equally distributed ground state levels. The polarization of the light 

that excites an electron to the       will determine from what ground state sublevel 

the electron is taken (due to selection rules).  

For example, if the light is linearly polarized ( ) then electrons will move 

from the      sublevel (selection rule      ) as seen in Fig. B.a and if the light 

is right circularly polarized (  ) then electrons will move from the       level 

(selection rule       ) [14] as seen in Fig. B.b. After excitation, the atoms have 

equal probability (the decay rate divided by three: 
 

 
) to then decay back to either 

           ground states. Thus, after several cycles of absorption and re-

emission the atoms are depleted from the sublevel connected to the excited state for a 

particular polarization as seen in Fig. B.c and Fig. B.d. This state is known as a dark 

state and the light is now allowed to pass by the atom without being absorbed. Note 
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that in reality there are other mechanisms which will redistribute the atoms to all of 

the ground state sublevels (e.g. atomic collisions).  

 

Fig. B: (a)   polarized (b)    polarized light excites an ensemble of atoms between 

magnetic fine sublevels according to quantum selection rules. After several cycles, 

the         sublevel is depleted for (c)  , (d)   polarized light respectively due 

to the equal probability (
 

 
) of the atoms to relax back to any of the sublevels. This 

creates a so called “dark state” as the light can no longer interact with the atoms. 

 

So we see that optical pumping can result in dark states in which the atoms 

can no longer interact with incoming light. This must be carefully considered in any 

optical experiment. Also, the situation is often much more complicated than the above 

example. For the hyperfine atomic transitions that we are here considering, the atoms 

can often decay to a lower ground state from a shared excited state. In such an 
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experiment, one may consider using a “re-pump” beam. This re-pump would excite 

the lower and excited state in order to redistribute the population to the upper ground 

state. Therefore, the lasers and their frequencies used for a particular experiment must 

be carefully chosen in any optical experiment to prevent unwanted population 

distribution.    

In the above theoretical exercise, we considered cooling Na atoms via a 

Doppler cooling beam and an AC Stark beam. The relevant hyperfine transitions can 

be found in Fig. 4.1 (b). However, the observant reader will note that after re-

emission of a photon, the atom can decay not only to the     ground state but also 

to the     ground state (not shown in Fig. 4.1). Therefore, a re-pump beam in the 

experiment would connect the     ground state with the         excited state. 

This would keep the atoms from evolving into the dark state for the cooling beam (i.e. 

they can keep absorbing and thus cooling!). The power and detuning of this re-

pumping beam would need to be properly designed to prevent loss of transverse 

guiding after each re-pumping event.  
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Appendix C: Simulation Code 
 

C.1 Varying Width 
 
function [ L,dubYa,dE_aCee,dE_D,Pin,Rsquare,LAC,EacStark,diFF,Ldop] 

= ACstarkNa_3( T,wO,delta2) 
% AC Stark/Doppler Cooling Model  
% Want to determine what sort of loss needs to be created in 

waveguide in 
% order to slow atoms to a stop. Inputs: T = Temp (Celcius); wO = 

initial 
% waveguide width, delta2 = cooling laser's detuning from D2 

transition. 
% T input is in Celcius, so we convert to Kelvin: 
T=T+273.15; 

  
% Acceleration = (Change in velocity from collision w/ 1 

photon)/(Time 
% between scattering events); tau = (hbar*2*pi)/(M*wavelength*tau) -

- m/s^2 
a=-9.0643e5; %THIS IS FOR Na! 

  
% For the stopping length!:  
kb=1.3806503e-23; %Boltzman Constant! [m^2kg/Ks^2] 
M=.3818e-25; %Na 
v0=sqrt((8*kb*T)/(pi*M)) 
vF = 40; %m/s design goal: comparable to MOT cooling! 
lMax=abs((((vF^2-v0^2)/(2*a))*1e2)) % [cm]  

  

  
tTot=((vF-v0)/a)/1e-3 

  
lMax=lMax*1e4; % Convert to [um]'s 
deltaT=abs(((2*a*lMax*1e-6*M)/(3*kb))); 
Tmin=T-deltaT; 
vmin = sqrt((3*kb*Tmin)/M); 
% Some values that we'll need: 
hbar=1.0546e-34; %You know! [J*s] 
kb=1.3806503e-23; %Boltzman Constant! [m^2kg/Ks^2] 
c=3e8; %THE speed limit! [m/s] 
gamma=2*pi*9.765e6; % For Na angular frequency 
w0=(2*pi*c)/589.6e-9; % D2 Angular frequency of hyperfine splitting 

(See Dan Steck) 
NumbR=(1e12*pi*c^2*gamma)/(2*w0^3); % This is necessary to find 

power in from detuning (normalized from "stuff" with given input 

width);  
% The 1e12 factor in NumbR is b/c Int0 will be in um^-2 and need to 

convert 
% to SI units at end to extract correct Pin with given detuning from 

D2 
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% lines (delta2). Delta 2 is related to the detuning from the D1 

lines by a 
% value deltaF (below): 
Isat = 11.45*(10000/1e-3) %Saturation intensity for relevant D2 Na 

transition... [W/m^2] 

  
k=(2*pi)/589.16e-9; % k for Na D2 

  

  
% TIME!:::: 
% t=linspace(0,180e-9); 

  
%% Doppler Broadening: 
% 
% Angular frequency Difference: dW=kv (Change of apparent resonance 

angular 
% frequency = wave#*velocity of atom) 
% 
% Velocity of the atom: v=v0+at (= initial velocity + 

acceleration*time) 

  
L=linspace(0,lMax*1e-6,100); % The Doppler shift equations are in SI 

units 
% So we need to go back to [m]'s! 
t=(-v0+sqrt(v0.^2+2*a.*L))./a; 
% timeP=t(numel(t)) 

  
% THUS! 
v=v0+a.*t; 
% All tohhhhhgether: 
dW=k.*v; 
% Doppler shifted Resonant Energy: 
dE_D=hbar.*dW; % [Joules] 
OG=dE_D(1); 
% dE_D=dE_D1.*6.24e18; % [eV] 
% figure(3);plot(L.*1e2,dE_D); 
% xlabel('length (cm)','FontSize',16) 
% ylabel('Energy (Joules)','FontSize',16) 

  
Ldop=L.*1e2; % Back into [cm]'s.. You know, for plots and whatnot 

  

  
%% AC Stark Shift: 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
length = Ldop.*1e4; % The following equations require that we're in 

[um]'S 

  
w=wO; 
numBr = numel(w); 
wEND=w(numBr); 
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% Loss for the waveguide design as a function of width: 
alpha = 1*(0.074798 + 188.77.*exp(-0.68094.*w)); %[1/cm] WITH input 

w in um's! -- Na [3] Fit = Na[2] + 10um core height 

  
% Mode area vs. waveguide width:  
Area = (1.2504 + 4.4383.*w); %[um^2] 

  
Int0=exp(-alpha.*length.*1e-4)./Area; % [um^-2] Note: length is 

multiplied by 
% 1e-4 to get it from um's to cm's which we must use because alpha 

is in 
% 1/cm and we need the argument of exp to be unitless :) Area as 

stated 
% above is in um^2... Thus, this normalization factor (to be used 

below) 
% has the units um^-2... Need to keep this in mind for extraction of 

power 
% at the end of the code 

  
stuff=-(OG.*((1/(delta2-dW(1))))^-1)/(Int0(1)); %NOTE: 

stuff=(1e12*Pin*(pi*c^2*gamm)/(2*w0^3))*(2/delta2 + 1/delta1) ...  
% 1e12 prefactor is due to Int0 being in units of um^-3, not SI 

units...  

  
% 

figure(2);plot(LAC,EacStark./(1e9*hbar),'r',Ldop,dE_D./(1e9*hbar),'b

'); 
% xlabel('length (cm)','FontSize',16); 
% ylabel('Detuning (GHz)','FontSize',16) 

  
%% Fitting for width along the direction of deceleration: 
L=length.*1e-4; 

  
Width=linspace(20,5);     
endvalW=numel(Width); 
endvalL=numel(L); 

  
DiF=1e-24; 
for i=1:endvalL 
    lL=L(i); 

   
fitAC=@(varz)(abs(dE_D(i)+stuff.*((1./(delta2-dW(i)))).*exp( -

(0.074798 + 188.77.*exp(-0.68094.*varz(1))).*lL )./ ((1.2504 + 

4.4383.*varz(1))))); 
guess=[30]; 
options=optimset('TolX',0.1e-25); 
dubYa(i) = fminsearch(fitAC,guess,options); 

  
end 
    figure(42); plot(L,dubYa./2,'b',L,-dubYa./2,'b'); 
    xlabel('length (cm)','FontSize',16); 
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    ylabel('Design (\mum)','FontSize',16) 

     
    endWidth=dubYa(numel(dubYa)) 

     
    dE_aCee=(stuff.*((1./(delta2-dW))).*exp( -(0.074798 + 

188.77.*exp(-0.68094.*dubYa)).*L ))./ ((1.2504 + 4.4383.*dubYa)); 
%    figure(5); plot(L,dE_aCee,'r-*',L,-dE_D,'b') 
    Pin=(stuff/NumbR)*1e3 

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Potential Well 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% 
% WellTemp=(dE_aCee./1.3806488e-23)./1e-3; % This is the energy 

shift/boltzmann const in J/K. Temp in mK!!!  
% % This will give a potential well depth in Kelvin! Renn et al PRL 

75, 18 (1995) 
%  
%  
% Fin=numel(WellTemp); 
% GuideTimMin=abs(dE_aCee(Fin)*2*M)/(hbar^2*k^2*(gamma/2)) % This is 

the diffusion time for a given  
% % Potential well.  
%  
% FWHM=13.294; %From FIMMWAVE FWHM mode [um] 
% ce=FWHM/(2*sqrt(2*log(2))); %Convert to std dev for Gaussian 

function below 
% Rfin=25/2; 
%  
% R=linspace(0,Rfin); 
%  
% NormG=exp(-(R.^2)./(2*ce^2)); 
%  
% for i=1:numel(L) 
%  
% RadWell(i,:)=WellTemp(i).*NormG; 
% end 
%  
% figure(99);mesh(R,L,RadWell) 

  
Uac=(dE_aCee./1.3806488e-23).*1e3; % This is the energy 

shift/boltzmann const in J/K. Temp in mK!!!  
Ud=(WELL(Isat,dW/(2*pi),589.16e-9,gamma/(2*pi)))*1e3; % Potential 

well from doppler cooling beam at saturation intensity in mK  
Utot=Uac+Ud; 

  
figure(111);plot(L,Uac) 
%  
% figure(8);plot(L,WellTemp) 
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%     xlabel('Length (cm)','FontSize',16); 
%     ylabel('Potential Depth (mK)','FontSize',16) 

     
% vTmax=sqrt((2.*abs(dE_aCee))./M); 
% figure(9);plot(L,vTmax); 
%     xlabel('Length (cm)','FontSize',16); 
%     ylabel('Max Transverse Capture Velocity (m/s)','FontSize',16) 

     
% DIFF = abs(dE_aCee - dE_D); 
% figure(17); plot(L,DIFF); 
%     xlabel('Length (cm)','FontSize',16); 
%     ylabel('\delta(\DeltaE) (MHz)','FontSize',16) 

  
end 
  

 

 

  

C.2 Varying Top Oxide Thickness 
 
function [ Ldop,TOthick,dE_D,dEac,alpha ] = NaSlowerConstantW( T,w ) 
% AC Stark/Doppler Cooling Model  
% Want to determine what sort of loss needs to be created in 

waveguide in 
% order to slow atoms to a stop. Inputs: T = Temp (Celcius); w = 

width (um) 
% T input is in Celcius, so we convert to Kelvin: 
T=T+273.15; 
Area = (1.2504 + 4.4383.*w); %[um^2] 
alpha = 1*(0.074798 + 188.77.*exp(-0.68094.*w)); %[1/cm] WITH input 

w in um's! -- Na [3] Fit = Na[2] + 10um core height 
Int0=exp(-alpha.*0.*1e-4)./Area; 

  

  
% For the stopping length!:  
kb=1.3806503e-23; %Boltzman Constant! [m^2kg/Ks^2] 
M=.3818e-25; %Na 
v0=sqrt((8*kb*T)/(pi*M)); 
a=-9.0643e5; %THIS IS FOR Na! 
Td=235e-6; %Doppler temp in K 
vF=40; % 40m/s final velocity goal (for paper) 
vfinal = vF; 
lMax=abs(((vfinal^2-v0^2)/(2*a))*1e2); % [cm] = max length 

considered (input vfinal = vd or vF for desired final velocity) 

  
lMax=lMax*1e4; % Convert to [um]'s 
deltaT=abs(((2*a*lMax*1e-6*M)/(3*kb))); 
Tmin=T-deltaT; 
% Some values that we'll need: 
hbar=1.0546e-34; %You know! [J*s] 
kb=1.3806503e-23; %Boltzman Constant! [m^2kg/Ks^2] 
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c=3e8; %THE speed limit! [m/s] 
gamma=2*pi*9.765e6; % For Cs 
w0=(2*pi*c)/589.16e-9; % D2: Angular frequency of hyperfine 

splitting (See Dan Steck) 
NumbR=(1e12*pi*c^2*gamma)/(2*w0^3); % This is necessary to find 

power in from detuning (normalized from "stuff" with given input 

width);  
% The 1e12 factor in NumbR is b/c Int0 will be in um^-2 and need to 

convert 
% to SI units at end to extract correct Pin with given detuning from 

D2 
% lines (delta2). Delta 2 is related to the detuning from the D1 

lines by a 
% value deltaF (below): 
deltaF=0.517e12; % Detuing between D1 and D2 fine splitting in Na 

(See Dan Steck); 

  
k=(2*pi)/589.16e-9; % k for CS D2 

  

  
% TIME!:::: 
% t=linspace(0,180e-9); 

  
%% Doppler Broadening: 
% 
% Angular frequency Difference: dW=kv (Change of apparent resonance 

angular 
% frequency = wave#*velocity of atom) 
% 
% Velocity of the atom: v=v0+at (= initial velocity + 

acceleration*time) 

  
%  
% Acceleration = (Change in velocity from collision w/ 1 

photon)/(Time 
% between scattering events); tau = (hbar*2*pi)/(M*wavelength*tau) -

- m/s^2 
a=-9.0643e5; %THIS IS FOR Na! 

  
L=linspace(0,lMax*1e-6,100); % The Doppler shift equations are in SI 

units 
% So we need to go back to [m]'s! 
t=(-v0+sqrt(v0.^2+2*a.*L))./a; 
% THUS! 
v=v0+a.*t; 
% All tohhhhhgether: 
dW=k.*v; 
% Doppler shifted Resonant Energy: 
dE_D=hbar.*dW; % [Joules] 
endval=numel(dE_D);  
% dE_D=dE_D1.*6.24e18; % [eV] 
% figure(3);plot(L.*1e2,dE_D); 
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% xlabel('length (cm)','FontSize',16) 
% ylabel('Energy (Joules)','FontSize',16) 

  

  
[p,S] = polyfit((L),dE_D,1); 
Output = polyval(p,(L)); 
slopeDoppler=p(1); 
intDoppler=p(2); 
OG=dE_D(1); 

  
delta2=-8e9; 
stuff=-(OG.*((1/(delta2-dW(1))))^-1)/(Int0(1)); %NOTE: 

stuff=(1e12*Pin*(pi*c^2*gamm)/(2*w0^3))*(2/delta2 + 1/delta1) ... 

1e12 prefactor is due to Int0 being in 
% units of um^-3, not SI units...  
Ldop=L.*1e2; % Back into [cm]'s.. You know, for plots and whatnot 

  
%% AC Stark: Calculate alpha as a function of length with a given 

width 
L=Ldop; 

  
endvalL=numel(L); 

  
DiF=1e-24; 
for i=2:endvalL 
    lL=L(i); 

    
fitAC=@(varz)(abs(dE_D(i)+((stuff.*((1./(delta2-dW(i)))).*exp( -

varz(1).*lL ))./ (Area)))); 
guess=[.30]; 
options=optimset('TolX',0.1e-25); 
alpha(i) = fminsearch(fitAC,guess,options); 

  
end 
alpha(1)=alpha(2); 
figure(1); plot(Ldop,alpha) 
xlabel('length (cm)','FontSize',16) 
ylabel('\alpha (1/cm)','FontSize',16) 

  
[TopO,AlphaSim]=AlphaVsTOthickness(5.9535,6.155,w);  
endvalA=numel(alpha); 

  
for i=1:endvalA 
    diff = abs(AlphaSim-alpha(i)); 
    [minZ,INdZ]=min(diff); 

  
    TOthick(i)=TopO(INdZ); 
    MinZs(i)=minZ; 
end 

  
dEac=(stuff.*((1./(delta2-dW))).*exp(-alpha.*Ldop))./Area; 
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DIFF = abs(dEac - dE_D); 
figure(4); plot(Ldop,-dE_D,'r',Ldop,dEac,'*-b'); 

  
figure(2); plot(Ldop,TOthick); 
xlabel('length (cm)','FontSize',16) 
ylabel('Top Oxide Thickness (um)','FontSize',16) 

  
% figure(3); plot(Ldop,MinZs); 
% xlabel('length (cm)','FontSize',16) 
% ylabel('Difference in \alpha','FontSize',16) 

  
% figure(5); plot(Ldop,DIFF./1e6); 
%     xlabel('Length (cm)','FontSize',16); 
%     ylabel('\delta(\DeltaE) (MHz)','FontSize',16) 

  
    delta2=-8e9; 
    deltaF=0.517e12;  
    NumbR=(1e12*pi*c^2*gamma)/(2*w0^3);  
    Pin=(stuff/NumbR)*1e3 

     

     
    WellTemp=(dEac./1.3806488e-23)./1e-3; % This is the energy 

shift/boltzmann const in J/K. Temp in mK!!!  
% This will give a potential well depth in Kelvin! Renn et al PRL 

75, 18 (1995) 
initialPotWell=WellTemp(1); 

  
% figure(23);plot(L,WellTemp) 

  
Fin=numel(WellTemp); 
GuideTimMin=abs(dEac(Fin)*2*M)/(hbar^2*k^2*(gamma/2)); 

  
FWHM=13.294; %From FIMMWAVE FWHM mode [um] 
ce=FWHM/(2*sqrt(2*log(2))); %Convert to std dev for Gaussian 

function below 
Rfin=25/2; 

  
R=linspace(0,Rfin); 

  
NormG=exp(-(R.^2)./(2*ce^2)); 

  
for i=1:numel(L) 

  
RadWell(i,:)=WellTemp(i).*NormG; 
end 
% figure(99);mesh(R,L,RadWell)     
end 
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