
UCLA
UCLA Previously Published Works

Title
Boundary-anchored neural mechanisms of location-encoding for self and others.

Permalink
https://escholarship.org/uc/item/41t5m4d4

Journal
Nature, 589(7842)

ISSN
0028-0836

Authors
Stangl, Matthias
Topalovic, Uros
Inman, Cory S
et al.

Publication Date
2021

DOI
10.1038/s41586-020-03073-y
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/41t5m4d4
https://escholarship.org/uc/item/41t5m4d4#author
https://escholarship.org
http://www.cdlib.org/


Boundary-anchored neural mechanisms of location-encoding for 
self and others

Matthias Stangl1,*, Uros Topalovic1, Cory S. Inman1, Sonja Hiller1, Diane Villaroman1, Zahra 
M. Aghajan1,2, Leonardo Christov-Moore3, Nicholas R. Hasulak4, Vikram R. Rao5, Casey H. 
Halpern6, Dawn Eliashiv7, Itzhak Fried1,2,8, Nanthia Suthana1,2,9,10,*

1Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for 
Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA.

2Department of Neurosurgery, David Geffen School of Medicine, University of California Los 
Angeles, Los Angeles, CA, USA.

3Brain and Creativity Institute, University of Southern California, Los Angeles, CA, USA.

4NeuroPace Inc., Mountain View, CA, USA.

5Department of Neurology and Weill Institute for Neurosciences, University of California San 
Francisco, San Francisco, CA, USA.

6Department of Neurosurgery, School of Medicine, Stanford University, Stanford, CA, USA.

7Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA.

8Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 
Israel.

9Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA.

10Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA.

Abstract

Reprints and permissions information is available at www.nature.com/reprints.
*Correspondence and requests for materials should be addressed to M.S. or N.S. stangl@ucla.edu; nsuthana@mednet.ucla.edu.
Author contributions Conceptualization: M.S., N.S.; methodology: M.S., U.T., C.S.I., S.H., D.V., Z.M.A., L.C.-M., N.R.H., V.R.R., 
C.H.H., D.E., I.F., N.S.; software: M.S., U.T., D.V., Z.M.A., N.R.H., N.S.; data analysis: M.S., N.S.; investigation: M.S., U.T., C.S.I., 
S.H., Z.M.A., V.R.R., C.H.H., D.E., I.F., N.S.; resources: N.R.H., V.R.R., C.H.H., D.E., I.F., N.S.; data curation: M.S., U.T., S.H., 
N.R.H., V.R.R., C.H.H., I.F., N.S.; writing—original draft preparation: M.S., N.S.; writing—review and editing: M.S., U.T., C.S.I., 
S.H., D.V., Z.M.A., L.C.-M., N.R.H., V.R.R., C.H.H., D.E., I.F., N.S.; visualization: M.S.; supervision: V.R.R., C.H.H., D.E., I.F., 
N.S.; project administration: M.S., S.H., N.R.H., V.R.R., C.H.H., I.F., N.S.; funding acquisition: N.S.

Competing interests N.R.H. is an employee of NeuroPace Inc., Mountain View, CA, USA.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41586–020-03073-y.

Peer review information Nature thanks Jack Lin, Hugo Spiers and the other, anonymous, reviewer(s) for their contribution to the peer 
review of this work.

Data availability
The data that support the findings of this study are available from the corresponding authors upon reasonable request.

Code availability
The custom computer code and algorithms used to generate our results are available from the corresponding authors upon reasonable 
request.

HHS Public Access
Author manuscript
Nature. Author manuscript; available in PMC 2021 June 09.

Published in final edited form as:
Nature. 2021 January ; 589(7842): 420–425. doi:10.1038/s41586-020-03073-y.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/reprints
https://doi.org/10.1038/s41586–020-03073-y


Everyday tasks in social settings require humans to encode neural representations of not only their 

own spatial location, but also the location of other individuals within an environment. At present, 

the vast majority of what is known about neural representations of space for self and others stems 

from research in rodents and other non-human animals1–3. However, it is largely unknown how the 

human brain represents the location of others, and how aspects of human cognition may affect 

these location-encoding mechanisms. To address these questions, we examined individuals with 

chronically implanted electrodes while they carried out real-world spatial navigation and 

observation tasks. We report boundary-anchored neural representations in the medial temporal 

lobe that are modulated by one’s own as well as another individual’s spatial location. These 

representations depend on one’s momentary cognitive state, and are strengthened when encoding 

of location is of higher behavioural relevance. Together, these results provide evidence for a 

common encoding mechanism in the human brain that represents the location of oneself and 

others in shared environments, and shed new light on the neural mechanisms that underlie spatial 

navigation and awareness of others in real-world scenarios.

Environmental boundaries play a crucial part in the formation of cognitive representations of 

space, as they are essential for reorientation4, to correct noisy position estimates during 

spatial navigation5,6, and for spatial memory functions6–9. Moreover, electrophysiological 

studies in rodents have shown that boundaries have a strong influence on spatial 

representations at a single-cell level5,10–16. In humans, boundary-related neural signatures 

have been observed at the level of cell populations, using functional magnetic resonance 

imaging and intracranial electroencephalographic (iEEG) recordings17,18. Crucially, 

however, participants in these studies did not physically move, but instead navigated a 

virtual environment displayed on a computer screen. Furthermore, none of these studies 

involved tasks that required the encoding of another person’s location.

Here, we investigated whether boundary-related neural representation mechanisms are 

present during real-world spatial navigation in walking participants, and can encode not only 

one’s own location, but also the location of another person in a shared environment.

We recorded iEEG activity from the medial temporal lobe (MTL) of five individuals, in 

whom the RNS® System (NeuroPace Inc.) had been chronically implanted for the treatment 

of epilepsy19 (Fig. 1), while they performed spatial self-navigation and observation tasks 

(Fig. 2). During the self-navigation task, participants alternated between periods of 

navigating to a wall-mounted sign and searching for a hidden target location (Extended Data 

Fig. 1a). During the observation task, participants sat on a chair in a corner of the room and 

were asked to keep track of the experimenter’s location as they walked around, and to press 

a button whenever the experimenter crossed a previously learned self-navigated target 

location (see Methods for details).

We found that, during self-navigation, oscillatory activity in the MTL was modulated by the 

participants’ proximity to the boundaries of the room (Fig. 3a–c). Specifically, low-

frequency oscillatory power was significantly higher when participants were close to a 

boundary (defined as less than 1.2 m away from the wall; see Extended Data Fig. 1b for 

other distance definitions), compared with periods when they were in the inner room area. 

Interestingly, a similar effect was found during the observation task: while participants were 
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sitting, their MTL activity was modulated by the experimenter’s location, with significantly 

stronger oscillatory power seen during periods when the experimenter was close to a 

boundary compared with the inner room area. During both self-navigation and observation, 

the effect was most prominent in the theta frequency band (Fig. 3b), with the strongest 

‘boundary’ versus ‘inner’ power differences seen around 5–8 Hz for the observation task, 

and a slightly wider frequency band (around 3–12 Hz) seen during self-navigation 

(observation, P < 0.001; self-navigation, P < 0.001; number of recording channels (nCh) = 

16). Boundary-related oscillatory effects could not be explained by differences in time spent 

in the ‘boundary’ versus ‘inner’ room areas, as the amount of data within each condition was 

accounted for throughout all analyses, by iteratively selecting random subsets of size-

matched data (see Methods).

In order to ensure that results were not driven by a subset of individuals, we analysed 

boundary-related oscillatory power changes for each participant separately, finding that 

effects were consistent across participants, with each showing the expected pattern of results 

(Fig. 3d).

In line with our previous work20, theta oscillations were not continuous but occurred in 

bouts (roughly 10–20% of the time). The prevalence of these bouts, however, was not 

significantly higher near boundaries (Extended Data Fig. 1c), suggesting that boundary-

related theta power increases were driven predominantly by an increase in oscillatory 

amplitude rather than by the prevalence of bouts.

Next, we tested whether changes in momentary cognitive state had an impact on the 

observed findings. We found that during self-navigation (Fig. 4, upper panels), theta power 

was higher when participants searched for target locations (‘target search’ periods), 

compared with ‘no target search’ periods when they navigated towards a wall-mounted sign 

(P = 0.009; nCh = 16). Moreover, ‘boundary’ versus ‘inner’ theta power differed only during 

‘target search’ and not during ‘no target search’ periods (‘target search’, P = 0.003; ‘no 

target search’, P = 0.212; nCh = 16).

Interestingly, we observed a similar effect of cognitive state during the observation task (Fig. 

4, lower panels). As the experimenter walked in straight lines, their translational movements 

could be divided into two phases that differed in behavioural relevance to the participant: 

first, ‘target ahead’ periods when the experimenter walked towards a presumed target 

location (when encoding the experimenter’s momentary location was crucial for task 

completion, that is, to know when to press the button); and second, ‘no target ahead’ periods 

after the experimenter passed a presumed target location (when their momentary location 

was less important). We found that participants’ theta power was significantly higher before 

the experimenter hit a presumed target location, compared with afterwards when no 

presumed target was ahead (P < 0.001; nCh = 16). Further, ‘boundary’ versus ‘inner’ theta 

power differed before but not after a presumed target location (‘target ahead’, P < 0.001; ‘no 

target ahead’, P = 0.398; nCh = 16).

It is thus plausible that boundary-related oscillatory representations of location for self and 

others are stronger during periods when encoding one’s momentary location is of higher 
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behavioural relevance: to correctly perform the task, ‘target search’ and ‘target ahead’ 

periods require continuous updating/encoding of one’s positional estimate (relative to 

boundaries or other positional cues), as compared with a cognitively less-demanding task of 

walking towards a wall-mounted sign. Moreover, given previous work showing that theta 

power is associated with task demands21–25, it is possible that elevated theta power during 

‘target search/ahead’ periods is related to increased demands on more-general cognitive 

processes, such as attention, short-term memory, or cognitive control (see Supplementary 

Discussion 1 for more details).

To further characterize effects and exclude confounding variables (for example, differences 

in behaviour between room areas), we reanalysed the data under different conditions. First, 

we observed that theta power was significantly increased near boundaries when the 

participant or experimenter was standing still (Extended Data Fig. 2a), showing that 

differences in movement behaviour cannot explain boundary-related effects. Second, we 

found a boundary-related increase in theta power when the participant or experimenter 

walked both towards and away from a boundary (Extended Data Fig. 2a), suggesting that the 

effects are not driven by orientation relative to boundaries. Third, we excluded data from 

positions within a one-metre diameter around targets, and found that theta power was still 

significantly increased near boundaries, suggesting that the observed effects are not driven 

by oscillatory changes that occur around target locations (Extended Data Fig. 2a). Fourth, 

we investigated whether the effect of increased theta power near boundaries was modulated 

by the learning of target locations. The strength of boundary-related effects did not vary 

significantly over learning blocks, nor was it significantly different between trials with high 

versus low memory performance (Extended Data Fig. 2c–e), suggesting that boundary-

related effects are independent of learning over time. Finally, it is unlikely that increased 

theta power near boundaries solely reflected neural or behavioural processes that are specific 

to the beginning or end of a behavioural episode (such as initial planning or prediction of the 

next trajectory), as theta power was increased near boundaries even after excluding data 

from the beginning and end of behavioural episodes (Extended Data Fig. 2b).

Several other variables, in addition to proximity to boundaries and momentary cognitive 

state, could contribute to changes in theta power during self-navigation and observation. 

Therefore, we also considered movement direction, magnitude of eye movements, proximity 

to target locations during ‘target search’ periods, distance between the participant and 

experimenter during the observation task, and velocity-related variables (movement speed, 

acceleration and angular velocity) as continuous predictors of theta power. Quantifying the 

impact of each variable in a linear mixed-effect model confirmed that proximity to boundary 

and momentary cognitive state had the strongest impact on theta power, while other 

variables contributed not at all or weakly by comparison (Extended Data Fig. 3).

Interestingly, the mixed model analysis revealed that eye movements during observation 

significantly modulated theta power, consistent with findings from non-human primates26. 

Further, theta power was significantly increased during saccadic compared with fixation 

periods (Extended Data Fig. 4a). It is unlikely, however, that eye movements account for 

boundary-related theta changes: we found no differences in the magnitude of eye 

movements, the prevalence of fixations or the prevalence of saccades between ‘boundary’ 
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versus ‘inner’ room areas, and boundary-related effects on theta power were present during 

both saccade and fixation periods (Extended Data Fig. 4b, c).

Previous work has shown that theta oscillations are modulated by movement speed20,27,28. 

Our mixed model results suggest that overall movement speed does not have a substantial 

impact on theta power. However, a closer look shows that the relationship between 

movement speed and theta power depends on cognitive state (Extended Data Fig. 4d, e): 

during self-navigation, speed was positively associated with theta power (roughly 8 Hz peak) 

when participants walked towards a wall-mounted sign (‘no target search’) but not when 

they searched for a hidden target location (‘target search’). For the observation task, a 

similar pattern of results emerged, although not statistically significant.

Next, we considered the possibility that wall-mounted signs, which provide strong salient 

cues for orientation, could be encoded as objects, and that proximity to these cues (rather 

than to boundaries per se) could contribute to boundary-related effects. We estimated the 

impact of wall-mounted signs using linear mixed-effect models, and found no difference 

between the predictive power of the proximity to the nearest wall-mounted sign versus the 

nearest location in between signs, and that proximity to boundary had a higher impact on 

theta power than the proximity to the next wall-mounted sign that was approached 

(Extended Data Fig. 5). Moreover, boundary-related theta power increased during movement 

both towards and away from boundaries (Extended Data Fig. 2a), suggesting that boundary-

related effects are not solely driven by object representations, given that neuronal responses 

to objects show increased activity mainly during approach from specific orientations29 (for 

example, walking towards but not away). We note, however, that these findings do not 

exclude the possibility that object representations or other similar neural mechanisms, such 

as a reorganization of place-cell firing fields in relation to object or goal locations30–33, may 

contribute to the observed findings.

In addition to effects in the theta frequency band, we found boundary-related oscillatory 

power increases within the gamma frequency band around 60–80 Hz (Fig. 3a and Extended 

Data Fig. 6a). Although the general pattern of results for gamma power was largely similar 

to the results for the theta frequency band, including consistency across participants, gamma 

effects tended to be smaller and more variable across analyses under different behavioural 

conditions (Extended Data Fig. 6).

Given the effects in both theta and gamma frequency bands, we explored whether gamma 

oscillations were coupled with specific theta phases, as found in previous work34,35. During 

self-navigation, theta– gamma coupling was strongest for the 6–10 Hz theta phase coupled 

to the 60–80 Hz gamma amplitude (Extended Data Fig. 7). A similar pattern was evident 

during observed navigation; however, theta oscillations appeared to be coupled with lower-

frequency (40–60 Hz) gamma amplitudes. Moreover, gamma amplitude was most strongly 

coupled to a theta phase of approximately 90 degrees, and this ‘preferred’ theta phase was 

similar between self-navigation and observation.

In summary, our results show that oscillatory activity in the human MTL is modulated by 

one’s own and another individual’s spatial location. Specifically, a person’s theta and 
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gamma oscillatory power increases when observing another individual in close proximity to 

a boundary, even when the observer’s own location remains unchanged. These findings 

provide, to our knowledge, the first evidence for a mechanism in the human brain that 

encodes another person’s spatial location — essential, for example, in social situations in a 

shared environment where keeping track of another’s location is necessary. Moreover, 

boundary-anchored neural representations of location for both self and other are modulated 

by cognitive state, and strengthened when the encoding of location is of higher behavioural 

relevance.

We found that boundary-related oscillatory changes were strikingly similar between tasks 

that required self-navigation versus observation of another person. Together with recent 

findings in rats and bats, showing that a subpopulation of hippocampal place cells codes for 

both the animal’s own location as well as the location of conspecifics2,3, our results suggest 

that the mammalian brain uses common coding mechanisms to represent the location of self 

and others.

Given that the oscillatory brain signals measured here probably reflect the summed activity 

of populations of neurons, it is possible that our effects reflect a combined contribution of 

several spatially tuned cell populations, including border cells10, boundary-vector cells11, 

object-vector cells29, and increased place-cell activity near boundaries, goals or objects30–33. 

Future studies should examine the contributions of specific cell types, for example through 

single-cell recordings and experimental manipulation of boundaries and other spatial cues. 

Furthermore, while we are unable to determine whether signals are driven by specific MTL 

subregions, future work will be able to examine the precise localization of the cell 

populations responsible for these oscillations in the human brain (see also Supplementary 

Discussion 2).

Findings from a recent self-navigation study showing increased boundary-related theta 

power during navigation in a two-dimensional view-based virtual environment17 are 

consistent with our results, and suggest that similar boundary-related neural mechanisms 

support location-encoding during stationary virtual and ambulatory real-world navigation. 

However, our results further highlight the importance of gamma oscillations (around 60–80 

Hz) and theta–gamma coupling mechanisms in location-encoding for oneself as well as for 

another. It is possible that these additional effects reflect oscillatory processes specific to 

natural walking in real-world environments that are undetectable in stationary view-based 

spatial navigation studies.

Our findings open up a number of exciting research questions to be addressed in follow-up 

studies. First, future work should investigate whether similar effects are present in more-

complex scenarios, for example when the location of two or more people is encoded. 

Second, it is likely that boundary-related oscillatory changes are part of a larger set of spatial 

representations that encode another person’s location. For example, firing of place and grid 

cells, or their mesoscopic representations on the level of cell populations36, may provide 

complementary mechanisms to encode the location and movement of others. Third, it should 

be investigated whether similar oscillatory representations also encode the location of 

inanimate objects, or reflect processes independent of physical movement, such as the 
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dimensional coding of one’s attentional focus or locations in higher-order cognitive space37. 

Ultimately, these are some of the key remaining questions that will elucidate the precise 

neural mechanisms that underlie spatial navigation, spatial awareness of others, and memory 

functions in complex real-world scenarios.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, 

extended data, supplementary information, acknowledgements, peer review information; 

details of author contributions and competing interests; and statements of data and code 

availability are available at https://doi.org/10.1038/s41586–020-03073-y.

Methods

Participants

Five participants (31–52 years old; three males and two females) with pharmaco-resistant 

focal epilepsy took part in this study (Extended Data Table 1); they had previously been 

implanted with the FDA-approved RNS System (NeuroPace Inc.) for treatment of 

epilepsy19. Electrode placements were determined solely on the basis of clinical treatment 

criteria. All participants volunteered for the study by providing informed consent according 

to a protocol approved by the UCLA Medical Institutional Review Board (IRB).

Self-navigation and observation tasks

All participants took part in several experimental blocks, each of which started with about 15 

min of a self-navigation task, followed by about 15 min of an observation task. The exact 

number of blocks per participant is shown in Extended Data Table 1. Both the self-

navigation and the observation task took place within a rectangular room (about 5.9 m × 5.2 

m, or 19.4 feet × 17.1 feet), in which 20 signs (a single colour per wall, with numbers 1 to 5) 

were mounted along the 4 walls (Fig. 2). In addition, three predefined target locations (each 

named with a letter) were randomly distributed throughout the room, but not visible to 

participants (Extended Data Fig. 1a). Target locations were circular with a diameter of 0.7 

m.

In the self-navigation task, participants performed multiple trials in which they were asked 

to find and learn hidden target locations within the room. Each trial had the following 

structure. First, a computerized voice asked them to walk to one specific sign along the wall 

(for example, ‘yellow 4’). Second, after arriving at this sign, they were instructed to find one 

of the target locations (for example, target location ‘T’). Participants could either freely walk 

around searching for the cued target location, or walk directly to the target location if they 

remembered it from a previous trial. A new trial began after the participant arrived at the 

target location. The experimenter observed the participants’ movements in real-time via 

video; neither the experimenter nor any others were visible to participants during the self-

navigation task.

During the observation task, participants sat on a chair in a corner of the room (the specific 

corner varied across task blocks; see Extended Data Fig. 1a), while the experimenter walked 
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around the room. Participants were asked to continuously keep track of the experimenter’s 

location, and to press a button whenever the experimenter crossed one of the hidden target 

locations. The experimenter’s walking trajectory within the room was predefined by a 

pseudo-randomized sequence of translations between the signs on the wall and the room 

centre. The experimenter received auditory instructions on where to go next from a 

computerized voice via an in-ear Bluetooth headset; instructions were inaudible to 

participants.

Participant 1 performed a slightly modified version of the task, in which there were 4 

(instead of 3) different target locations, and these were named with numbers 1–4 (instead of 

letters).

Unity application for experimental control

The Unity game engine (version 2018.1.9f2) was used for experimental control. 

Participants’ and the experimenter’s momentary position and orientation per time point were 

recorded with a motion-tracking system (see below). The Unity application was 

programmed to read the motion-tracking data in real-time during the experiment, in order to 

trigger auditory events that depended on the participant’s momentary location. For instance, 

the Unity application was programmed to automatically detect when a participant arrived at 

a hidden target location during a ‘target search’ trial, and then to trigger the next auditory 

instruction. Next, the Unity application was programmed to detect when a participant arrived 

at the cued wall-mounted sign, at which point another auditory instruction was triggered to 

direct participants to find the next target location, and so on.

Moreover, the Unity application was programmed to trigger iEEG data storage 

automatically, and to insert a mark at specific time points in the iEEG data. These 

synchronization marks were sent at the beginning and end of each 3.5–4-min recording 

interval, allowing for synchronization of iEEG data with data from other recording 

modalities (for example, motion tracking and eye tracking). See ref. 38 for further technical 

details and specifications of this setup.

Motion tracking

The location and orientation of participants (throughout the experiment) and the 

experimenter (during the observation task) were tracked with submillimetre resolution using 

the OptiTrack system (Natural Point Inc.) and the OptiTrack MOTIVE application (version 

2.2.0). Twenty-two high-resolution infrared cameras were mounted on the ceiling, in order 

to track, with a sampling frequency of 120 Hz, the location of a rigid body-position marker 

that comprised several reflective markers mounted on the participant’s and experimenter’s 

heads (Fig. 1c). Example movement patterns in Fig. 2b show raw (non-interpolated) x/y 
position coordinates across all task blocks (one black dot per sampling point) of one 

participant during the self-navigation task and the experimenter during the observation task. 

One additional camera from the motion-tracking system recorded a wide-angle video of the 

room during the experiment.

On the basis of the motion-tracking data, movement speed was quantified as positional 

change in the horizontal plane (x/y coordinates) between two sampling points. Angular 
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velocity was quantified as angular displacement in the horizontal plane (yaw) between two 

sampling points. Acceleration was quantified as the change in movement speed between two 

sampling points.

To distinguish movement from non-movement (standing) periods, we classified periods with 

movement speeds of 0.2 m s−1 or more as movement periods, and movement speeds of less 

than 0.2 m s−1 as periods of no movement, in order to account for residual head movements 

that do not reflect positional change. Movement-onset time points indicate periods when 

movement speed changes from ‘no movement’ (speeds of less than 0.2 m s−1) to 

‘movement’ (speeds of 0.2 m s−1 or more) and then remains above 0.2 m s−1 for at least one 

second.

To distinguish movements towards versus away from boundaries, we first measured the 

distance to the nearest boundary for each sampling point, and then calculated whether this 

distance decreased (categorized as ‘towards boundary’) or increased (categorized as ‘away 

from boundary’) between two sampling points.

Eye tracking

Eye-tracking data were acquired with the Pupil Core headset for mobile eye tracking (Pupil 

Labs GmbH). Pupil movements were captured with a frequency of about 200 Hz (accuracy 

0.6°), allowing the calculation of the pupil’s position per time point within a normalized 

two-dimensional reference frame of 192 pixels by 192 pixels (video of the eye). Data were 

recorded with the Pupil Capture application (v1.11) and exported with Pupil Player (v1.11).

The magnitude of eye movements was quantified using the distance of pupil movement 

within the reference frame by Δx2 + Δy2, where Δx and Δy are the distances of pupil 

movement in x and y dimensions.

To classify eye movements per time point as saccades or fixations, we applied the Cluster 

Fix toolbox for MATLAB, which detects fixations and saccades on the basis of a k-means 

cluster analysis of distance, velocity, acceleration and angular velocity of eye movements39. 

Fixation and saccade prevalence were defined as the percentage of time when fixations/

saccades could be observed, relative to the total duration of the experiment.

iEEG data acquisition

The US Food and Drug Administration (FDA)-approved RNS System is designed to detect 

abnormal electrical activity in the brain and to respond in a closed-loop manner by 

delivering imperceptible levels of electrical stimulation intended to normalize brain activity 

before an individual experiences seizures. To avoid stimulation artefacts in the recorded 

brain activity for the duration of the experiment, stimulation was temporarily turned off with 

the participant’s informed consent, and the RNS System was used only to record iEEG 

activity.

Each participant had two implanted depth electrode leads with four electrode contacts per 

lead, and a spacing of either 3.5 mm or 10 mm between contacts (Extended Data Table 1). 

This setup allowed for continuous recording of bipolar iEEG activity (where the signal 
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reflects differential activity between two neighbouring contacts) from up to 4 channels per 

participant, with a sampling frequency of 250 Hz.

Participants had the RNS Neurostimulator model RNS-300M or the model RNS-320 

implanted. The amplifier settings were changed from clinical default settings to a 4 Hz high-

pass and 120 Hz low-pass filter for model RNS-300M, and a 1 Hz high-pass and 90 Hz low-

pass filter for model RNS-320. We note that, despite the 4 Hz cut-off frequency of the high-

pass filter in the RNS-300M model, data for a frequency window between 3 Hz and 4 Hz 

were included in some analyses. A quantification of the filter’s attenuation showed that 

amplitudes are attenuated by only about 20% between 3 Hz and 4 Hz (see also ref. 20). 

Moreover, in all plots and analyses that show time–frequency power for individual frequency 

steps (for instance, power shown separately for 3 Hz, 3.25 Hz and so on; see, for example, 

Fig. 3a), power timeseries were normalized individually for each frequency step (for 

example, 3 Hz power at any given time point was z-scored relative to all power values of the 

3 Hz timeseries), which further accounts for the bandpass filter’s attenuation of amplitudes 

below 3 Hz in model RNS-300M, and allows for a comparison of frequencies independently 

of their overall level of amplitude.

During the experiment, iEEG data were continuously monitored and recorded using near-

field telemetry with a NeuroPace Wand that was secured on the participant’s head over the 

RNS Neurostimulator implant site. Via a custom-made wand-holder, the NeuroPace Wand 

was mounted on a backpack worn by participants, allowing them to freely walk around 

during recordings (see ref. 38 for more details). Data were stored automatically (without any 

interaction between participants and the experimenter) in intervals (roughly 3.5–4 min), 

separated by short task breaks (roughly 10 s). During these breaks, participants were asked 

by a computerized voice to avoid any movements.

Note that the experimental setup did not involve a wired connection between the recording 

device (the implanted RNS Neurostimulator) and an external power source; hence it is 

highly unlikely that the oscillatory changes observed here could be attributed to resonances 

from the system, such as noise from power-line frequency. In particular, line frequency noise 

could not explain ‘boundary’ versus ‘inner’ power differences during the observation task, as 

the participants’ location did not change throughout a task block, and therefore any system-

inherent influences would be identical between periods when the experimenter was near or 

far from room boundaries.

Electrode localization

High-resolution postoperative head computed tomography was obtained in all participants. 

The precise anatomical location of each electrode contact was determined by co-registering 

this computed tomography image to a preoperative high-resolution structural magnetic 

resonance image (T1- and/or T2-weighted sequences) for each participant (Fig. 1). 

Recording contacts were located in a variety of MTL regions, including the hippocampus, 

subiculum, entorhinal cortex, parahippocampal cortex and perirhinal cortex (Extended Data 

Table 1). No recording contacts were located in the amygdala. Recording channels outside 

the MTL were excluded from further analyses.
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Detection of epileptic events

To detect epileptic events such as interictal epileptiform discharges (IEDs) individually for 

each recording channel, we applied a method described previously40, which we have used in 

previous studies with the RNS System20,41. This method uses a double thresholding 

algorithm with two criteria. iEEG data samples for which one of the following two criteria 

was met were marked as ‘IED samples’, and were excluded from further analyses: first, the 

envelope of the unfiltered signal was six standard deviations above baseline; or second, the 

envelope of the filtered signal (15–80 Hz bandpass filter after signal rectification) was six 

standard deviations above baseline. In addition, the vector of identified IED samples (a 

logical array of zeros and ones that has the same length as the number of iEEG samples for a 

given channel, with value ‘1’ marking IED samples and value ‘0’ marking all remaining 

samples) was smoothed by a one-dimensional gaussian filter with a ‘moving average’ 

window length of 0.05 s, and all samples with values of above 0.01 after smoothing were 

also marked as IED samples, to capture residual epileptic activity before or after an epileptic 

event. This procedure adds a time window of about 250 ms around each detected IED 

sample, which was then excluded from all subsequent analyses. Using this method, we 

identified an average of 1–2% of data in each participant as IED events (minimum amount, 

1.1% for participant 2; maximum amount, 2.0% for participant 1), similar to previous 

results20.

Moreover, in order to confirm that our results are not due to an insufficient time window 

added around epileptic events, we performed a control analysis in which we excluded data 

within a larger time window of 3 s around each epileptic event (1.5 s before and after each 

detected IED sample). The results using this larger time window (Extended Data Fig. 8) are 

consistent with the main results, on average across all recording channels as well as for each 

participant individually, suggesting that the presented results are not substantially affected 

by the length of the time window around epileptic events.

It is also worth noting that we deliberately recruited participants with relatively low IED 

activity (epileptic events). The RNS System allows for the viewing of a past number of 

epileptic events per day, which we used to approximate the average number of daily 

epileptic events over the prior three months. We invited participants with a low average 

number of daily events (roughly 500–800).

We further note that all participants gave informed consent to turn off the detection of 

epileptic events and consequent stimulation during the study in order to prevent stimulation 

artefacts in the iEEG recordings.

iEEG data analysis

A general overview of the main analysis pipeline for iEEG data, and how it is combined 

with behavioural data, is illustrated in Extended Data Fig. 9.

Time–frequency analyses of iEEG data were carried out using the BOSC toolbox42,43 to 

calculate oscillatory power at individual frequencies with sixth-order wavelets for individual 

frequency steps between 3 Hz and 90 Hz, with a step width of 0.25 Hz for low-frequency 

oscillations (less than 30 Hz) and a step width of 1 Hz for high-frequency oscillations (30 
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Hz or more). After calculating power timeseries for each frequency step, bandpower was 

calculated across multiple steps for specific frequency bands (for example, 5–8 Hz theta 

oscillations). Power timeseries were normalized before further analyses, by z-scoring each 

timeseries for a specific frequency or frequency band over the entire timeseries data, 

separately for each recording channel.

To detect significant oscillations (the prevalence of theta oscillations, as reported in 

Extended Data Fig. 1c), we used the BOSC toolbox to detect bouts of at least 2 cycles and 

above 95% chance level for individual frequency steps between 3 Hz and 20 Hz with a step 

width of 0.25 Hz. Prevalence of an oscillation was defined as the percentage of time (relative 

to the total duration of the experiment) when such oscillations could be observed at a given 

frequency.

To detect phase–amplitude coupling between the phase of low-frequency (theta) oscillations 

and the amplitude of high-frequency (gamma) oscillations, we calculated the ‘modulation 

index’, as described previously34. To explore the specific range of theta and gamma 

frequencies most strongly coupled to each other, we computed the modulation index for 

each theta–gamma frequency pair. We included low frequencies between 4 Hz and 16 Hz (1 

Hz steps with a frequency window of ±1 Hz; that is, 3–5 Hz, 4–6 Hz, and so on) and high 

frequencies between 40 Hz and 90 Hz (2 Hz steps with a frequency window of ±2 Hz; that 

is, 38–42 Hz, 40–44 Hz and so on). The resulting modulation index for a theta–gamma 

frequency pair was then normalized relative to a surrogate distribution (determined for each 

frequency pair by 100 iterations of calculating the coupling of gamma amplitudes with 

randomly shuffled 1-second theta phase segments), as suggested previously34. As an 

example, a normalized modulation index of 3 indicates that the observed modulation index 

for this phase–amplitude pair is 3 standard deviations higher than what would be expected 

by chance (that is, the random surrogate distribution). To determine the specific low-

frequency phase to which high-frequency amplitudes are coupled, we quantified the height 

of high-frequency amplitudes (using the Hilbert transform) for different segments of the 0 

degrees to 360 degrees low-frequency phase range (segmented into 18 phase bins of 20 

degrees each). For display purposes, heat maps illustrating phase–amplitude coupling results 

(Extended Data Fig. 7) were smoothed using MATLAB’s ‘interp2’ function with a 

‘smoothing factor’ of k = 7, which performs an interpolation for two-dimensional gridded 

data by calculating interpolated values on a refined grid formed by repeatedly halving the 

intervals k times in each dimension.

Calculation of behavioural task performance

In order to calculate a participant’s performance in the self-navigation task, we calculated a 

participant’s ‘detour’ for each ‘target search’ period (that is, their walked distance between 

presentation of the target cue and arrival at the target, relative to the direct distance between 

these two locations). For the observation task, performance was quantified for every ‘target 

ahead’ period, by the distance between the experimenter’s location in the moment of a 

participant’s keypress, relative to the distance between the experimenter and the nearest 

target location. Individual trials (that is, each ‘target search’ period during self-navigation, 

and each of the experimenter’s individual straight trajectories during the observation task) 
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were then classified as either ‘high’ or ‘low’ performance trials, based on a median split of 

performance during all trials (separately for the self-navigation and the observation task, 

respectively).

‘Boundary’ versus ‘inner’ distance threshold

The selection of an appropriate threshold for the distinction between the ‘boundary’ and 

‘inner’ areas of the room was based on an exploratory analysis, in which location-dependent 

bandpower changes were analysed using a range of thresholds (Extended Data Fig. 1b). The 

results of this analysis were used, together with illustrations of average bandpower 

differences across the room (such as heat maps, as shown for example in Fig. 3c), to identify 

an appropriate threshold for statistical analysis. Upon visual investigation of the data, we 

found that a threshold of 1.2 m captured oscillatory differences for several conditions of 

interest, that is, during both self-navigation and observation, for both theta and gamma, and 

with an amount of data (room coverage) in both room areas that allows a statistical 

comparison of ‘boundary’ versus ‘inner’ bandpower.

We note, however, that the reported effects do not depend on the selection of this threshold, 

as the exploratory analysis showed that the size of the effect is largely similar across 

alternative thresholds, and that the effects remain significant at each threshold throughout all 

tested alternatives (Extended Data Fig. 1b).

Moreover, in our linear mixed-effect model analysis that compares the impact of different 

variables on theta power, proximity to boundaries was used not as a categorical but as a 

continuous variable. The results of this analysis confirm that proximity to boundaries was a 

significant predictor of theta power, clearly stronger than other variables included in the 

model, and independent of the selected ‘boundary’ versus ‘inner’ threshold (Extended Data 

Fig. 3).

Linear mixed-effect model analysis

Linear mixed-effect models were calculated using each participant’s normalized theta 

bandpower timeseries as a ‘response variable’ and a range of ‘predictor variables’ (for 

example, proximity to boundary or movement speed at any point in time) to predict theta 

power variability over time.

All predictor variables were specified as fixed effects. Recording channel numbers were 

used as random-effect variables (‘blocking variables’), in order to control for the variation 

coming from different channels and to account for different numbers of recording channels 

between participants. Note that proximity to boundaries was specified as a continuous 

numerical variable (instead of a threshold-based ‘boundary’ versus ‘inner’ categorization); 

the model thus tests for a linear relationship between proximity to boundary and theta power, 

rather than evaluating power differences between the two room areas. Cognitive state was 

specified as a categorical variable with two states (‘target search’ versus ‘no target search’ 

for self-navigation, and ‘target ahead’ versus ‘no target ahead’ during observation). 

‘Proximity to other’ indicates the distance between the participant and the experimenter 

during the observation task. Movement direction was quantified as a categorical variable in 

12 equally sized directional bins (30 degrees each), and resulting beta estimates were 
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averaged over bins, because movement direction as a numeric variable (due to its circular 

nature) is not expected to have a linear relationship with theta power (for example, minimum 

and maximum movement direction values of 1 and 359 degrees should evoke similar 

responses). Eye movements were specified as the magnitude of eye movement per time 

point. See Methods sections on ‘Eye tracking’ and ‘Motion tracking’ for more details about 

the calculation of predictor variables related to eye movement and movement speed. All 

non-categorical predictor variables were standardized (z-scored) before model fitting, in 

order to enable a direct comparison of the impact of each variable on theta power against 

each other. The frequency range for theta was identical to the main ‘boundary’ versus ‘inner’ 

analyses (3–12 Hz for self-navigation, 5–8 Hz for observation). Each of the predictor 

variables’ impact on the response variable is reflected by the variable’s beta weight 

(standardized effect size) and corresponding t-statistic (tStat).

The ‘full model’ in Extended Data Fig. 3 indicates a single model that includes all predictor 

variables. In the full model, however, some variables’ beta estimates may become 

suppressed or enhanced because of interactions and correlations between the different 

variables in the model. We therefore calculated also ‘independent models’ (separate models 

for each predictor variable) to provide a largely unbiased estimate of each variable’s impact 

that is independent of interactions and correlations with the other variables in the model.

Separate models were also used for analyses shown in Extended Data Fig. 5, comparing the 

impact of proximity to the nearest wall-mounted sign versus proximity to the nearest 

location in between the signs, and the proximity to the next wall-mounted sign (the specific 

sign that the participant or experimenter are walking towards) versus the proximity to the 

nearest boundary.

Data subsampling for statistical analysis

Because participants and the experimenter walked freely around the environment during the 

experimental tasks, it is possible that they spent more time close to a boundary than in the 

inner room area, or vice versa, which would affect statistical comparisons (for example, 

comparisons of bandpower) between these different areas. In order to enable a reliable 

statistical comparison between the two room areas (‘boundary’ versus ‘inner’), we corrected 

for potential differences in data amount by performing calculations on 500 iteratively 

generated, equally sized subsets of data. For each participant individually, this correction 

method included the following steps. First, we calculated the amount of time (quantified by 

the number of data samples) spent in each room area. Second, from the room area in which 

more time was spent, we randomly selected a subset of data that matched the amount of data 

from the other room area. For this random data subset selection, we used MATLAB’s 

‘datasample’ function, which selects data uniformly at random, with replacement, from all 

available samples. Third, we used the selected subset of data to calculate parameters of 

interest (such as bandpower within that room area); hence calculations were carried out in 

equal data amounts for both room areas. Fourth, we ran 500 iterations of the random data 

subset selection and parameter calculation, averaged the resulting parameters across 

iterations, and used the averaged parameters for statistical comparisons and plotting.
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We used the same logic and approach to account for differences in data amount between 

other conditions, such as for statistical comparisons and plotting of bandpower during ‘target 

search’ versus ‘no target search’, as well as ‘target ahead’ versus ‘no target ahead’ 

conditions.

Statistical comparisons and illustrations

Statistical comparisons were carried out using one-sided permutation tests with 10,000 

permutations, unless otherwise noted.

To compare two paired arrays of values (for example, bandpower) between conditions, the 

permutation test calculates whether the mean difference between value pairs is significantly 

different from zero. It estimates the sampling distribution of the mean difference under the 

null hypothesis, which assumes that the mean difference between the two conditions is zero, 

by shuffling the condition assignments and recalculating the mean difference many times. 

The observed mean difference is then compared to this null distribution as a test of 

significance. The key steps of this procedure are described in more detail below.

Step 1: the observed difference between conditions is calculated, by first calculating the 

difference between conditions for each value pair (condition 1 value minus condition 2 

value), and then calculating the average difference across pairs.

Step 2: condition labels are randomly shuffled within each value pair, and the difference 

between ‘shuffled conditions’ is calculated, by first calculating the difference between 

randomly labelled conditions for each value pair (value randomly labelled with condition 1 

minus value randomly labelled with condition 2), and then calculating the average difference 

across pairs. This step is repeated nPerm times (in nPerm permutations), to generate a 

distribution of nPerm ‘random differences’ between conditions.

Step 3: the observed difference between conditions (calculated in step 1) is compared with 

the distribution of random differences from shuffling condition labels (calculated in step 2). 

The P value is calculated by the number of random differences that are larger than the 

observed difference, divided by the total number of samples in the distribution.

To determine whether the mean of an array of values is significantly different from zero, the 

permutation test uses a similar procedure to that described above. However, instead of 

randomly shuffling labels in each permutation step, the sign of each value is randomly 

assigned (as positive or negative). Repeating these steps nPerm times estimates the 

distribution of the mean under the null hypothesis, which if true would generate data values 

half of which are above zero and half of which are below. The observed mean is then 

compared with the null distribution of means as a test of significance.

When a multiple comparisons correction was performed, P values were adjusted using the 

false discovery rate (FDR44,45).

For display purposes, heat maps illustrating bandpower differences across the room area 

from a top-down perspective (for example, Figs. 3c, 4c) were smoothed as follows. The 

walkable room area was divided into a 7 × 7 grid tiling the environment, and the average 
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bandpower was calculated for each tile. The resulting map was smoothed using MATLAB’s 

‘interp2’ function with a smoothing factor of k = 7, which performs an interpolation for two-

dimensional gridded data, by calculating interpolated values on a refined grid formed by 

repeatedly halving the intervals k times in each dimension. Heat maps in Fig. 3c show mean 

values across all participants (n = 5), using data from each participant’s channel with the 

highest difference between ‘boundary’ and ‘inner’ bandpower (in order to reduce noise from 

channels with a low response to boundary proximity). Heat maps in Fig. 4c show mean 

values across all recording channels (nCh = 16).

Analysis software

Data were analysed with MATLAB 2019a (The MathWorks, Natick, MA, USA), using its 

built-in functions as well as the Curve Fitting Toolbox, Statistics and Machine Learning 

Toolbox, and Optimization Toolbox.

Statistics and reproducibility

The experiment was carried out once per participant, and was not replicated. No statistical 

methods were used to predetermine sample size. The experiment was not randomized and 

the investigators were not blinded to allocation during the experiment and outcome 

assessment.

Reporting summary

Further information on research design is available in the Nature Research Reporting 

Summary linked to this paper.
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Extended Data

Extended Data Fig. 1 |. Target locations, participants’ seating location, ‘boundary’ versus ‘inner’ 
distance thresholds, and prevalence of theta bouts.
a, Target locations (red dots) during the self-navigation task and the participants’ seating 

location (green squares) during the observation task. There were three target locations in 

each task block, except in the case of participant 1, who performed a slightly modified 

version of the task with four target locations. Target locations remained unchanged 

throughout the first three task blocks. For those participants who took part in more than three 

task blocks, new target locations were introduced in task block four. All units are in metres. 

b, Distance thresholds for ‘boundary’ versus ‘inner’ room area. Tested thresholds range 

between 0.8 m and 1.6 m. Both theta (θ) and gamma (γ) bandpowers were significantly 
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increased near boundaries, independent of the selected boundary width threshold to 

distinguish ‘boundary’ versus ‘inner’ room areas (self, P < 0.001 for all thresholds and both 

frequency bands; other, P = 0.001 for theta at thresholds 0.8 m and 1.0 m, P < 0.001 for all 

other boundary widths and both frequency bands). θ denotes the theta frequency band (self, 

3–12 Hz; other, 5–8 Hz); γ denotes the gamma frequency band (self/other, 60–80 Hz). Data 

show means ± s.e.m. from nCh = 16. Asterisks denote significant differences (P < 0.05, 

uncorrected) in a one-sided permutation test. ‘Boundary’ versus ‘inner’ comparisons and 

plots were corrected for differences in data amount between room areas (see Methods). c, 

Prevalence of theta bouts. Episodes of significant theta oscillations were detected using the 

BOSC toolbox42,43 for individual frequency steps between 3 Hz and 20 Hz with a step width 

of 0.25 Hz, separately for self-navigation (self) and observation (other). The prevalence of 

an oscillation was defined as the percentage of time (relative to the total duration of the 

experiment) when such oscillations could be observed at a given frequency (see Methods). 

Data show means ± s.e.m. from nCh = 16. Oscillation prevalence was not significantly 

different between ‘boundary’ and ‘inner’ room area for any of the tested frequencies in a 

one-sided permutation test for nCh = 16 (all P > 0.05, uncorrected).

Extended Data Fig. 2 |. Main effect and control analyses for the theta frequency band.
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a, Theta bandpower was significantly higher for ‘boundary’ versus ‘inner’ locations (‘Main 

effect’; self, P < 0.001; other, P < 0.001), shown also during periods of immobility (when 

movement periods were excluded from data analysis; ‘Standing periods’; self, P = 0.021; 

other, P = 0.008), when circular areas with a diameter of 1 m around target locations were 

excluded from data analysis (‘No target locations’; self, P < 0.001; other, P < 0.001), for 

movements towards a boundary (‘Towards boundary’; self, P < 0.001; other, P < 0.001), and 

for movements away from a boundary (‘Away from boundary’; self, P < 0.001; other, P = 

0.019). b, Theta bandpower was significantly higher for ‘boundary’ versus ‘inner’ locations, 

after excluding start and end periods per trial (where each trial is a ‘target search’ period 

during self-navigation or an individual trajectory of the experimenter during the observation 

task) from analysis. Time windows of 2 s and 5 s were excluded for self-navigation 

(‘Without trial start period (5s)’, P = 0.008; ‘Without trial start period (2s)’, P = 0.003; 

‘Without trial end period (2s), P = 0.012; ‘Without trial start & end period (2s each)’, P = 

0.020). For observation task trials, which were considerably shorter and did not have long 

breaks in between individual trajectories, only 2-s windows were excluded (‘Without trial 

start period’, P < 0.001; ‘Without trial end period’, P < 0.001; ‘Without trial start & end 

period’, P < 0.001). c, The strength of the main effect, quantified as each channel’s average 

‘boundary’ minus ‘inner’ bandpower, did not significantly differ between different task 

blocks (P > 0.05 for all pairwise comparisons, separately for ‘self’ and ‘other’ task blocks). 

d, The strength of the main effect did not significantly differ between trials with high versus 

low performance (self, P = 0.210; other, P = 0.151). Performance was classified as ‘high’ or 

‘low’ on the basis of a median split of performance during all trials (see Methods). e, Theta 

power was significantly increased near boundaries during high-performance as well as low-

performance trials, both for self-navigation (self, high performance P = 0.003; low 

performance P = 0.021) and during observation (other, high performance P < 0.001; low 

performance P = 0.012). All plots (a–e) show means ± s.e.m. from nCh = 16. Asterisks 

denote a significant difference (P < 0.05, uncorrected) in a one-sided permutation test; ns, 

non-significant. ‘Boundary’ versus ‘inner’ comparisons and plots were corrected for 

differences in data amount between room areas (see Methods).
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Extended Data Fig. 3 |. Simultaneous impact of multiple variables on theta power.
Linear mixed-effects models were calculated to predict each participant’s normalized theta 

power timeseries (response variable) by a range of predictor variables (fixed effects) that can 

simultaneously affect theta power variability over time. Proximity to boundary was specified 

as a continuous numerical variable (instead of a threshold-based ‘boundary’ versus ‘inner’ 

categorization). Cognitive state was specified as a categorical variable with two states 

(‘target search’ versus ‘no target search’ for self-navigation, and ‘target ahead’ versus ‘no 

target ahead’ during observation). Movement direction was quantified as a categorical 

variable in 12 equally sized directional bins. Eye movements were specified as the 

magnitude of eye movement per time point. ‘Proximity to other’ indicates the distance 

between the participant and the experimenter during the observation task. See Methods 

section ‘Linear mixed-effect model analysis’ for more details on how predictor variables 

were specified. All non-categorical predictor variables were standardized (z-scored) before 

model fitting. Each variable’s impact on theta power is reflected by the variable’s beta 

weight (standardized effect size; grey bars) and corresponding t-statistic (tStat; orange bars). 

The frequency range for theta was identical to the range in the main ‘boundary’ versus 
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‘inner’ analyses (3–12 Hz for self-navigation, 5–8 Hz for observation). The upper panels 

show results from a ‘full model’ including all predictor variables. Interactions and 

correlations between predictor variables (see also correlation matrices in bottom panels) can 

lead to enhancement or suppression of some variables’ beta weights (that is, overestimation 

or underestimation of the variables’ impact). Therefore, each variable’s impact was also 

calculated in ‘independent models’ (separate models for each of the predictor variables, thus 

showing each variable’s impact independently of interactions and correlations with the other 

variables). Asterisks denote a significant impact of a variable on theta power (P < 0.05, 

uncorrected). Significance was determined for each variable by testing whether the 

variable’s beta weight was significantly different from zero in a one-sided permutation test 

across participants. Diamonds denote P < 0.1 (non-significant). Data are mean beta/tStat 

values ± s.e.m. across n = 5 participants.

Extended Data Fig. 4 |. Impact of eye movements, and relationship between movement speed and 
theta power.
a, Participants’ eye movements were quantified throughout the experiment by measuring the 

pupil position on a normalized two-dimensional recording plane. Epochs of saccades and 

fixations were classified through algorithms based on a k-means cluster analysis39. Reported 

data for fixations and saccades indicate their prevalence over time (percentage of time 

throughout all task blocks). Theta power was higher during saccadic compared with fixation 

periods, for both self-navigation (P = 0.029) and observation (P < 0.001). b, Theta power 
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was increased significantly near boundaries during both saccadic and fixation periods, for 

both self-navigation (saccades, P < 0.001; fixations, P < 0.001) and observation (saccades, P 
= 0.007; fixations, P = 0.002). c, The magnitude of eye movements (in normalized units per 

time point), fixation prevalence and saccade prevalence were not significantly different 

between ‘boundary’ and ‘inner’ room areas, neither during self-navigation (eye movement 

magnitude, P = 0.190; fixations, P = 0.189; saccades, P = 0.191) nor during observation (eye 

movement magnitude, P = 0.183; fixations, P = 0.372; saccades, P = 0.502). d, Theta power 

during epochs of high movement speed and low movement speed, based on a median split of 

movement speed values across all data from the self-navigation (self) or observation (other) 

tasks. Plots show the average power during movements with low speed (below median) 

subtracted from high speed (above median); thus, positive values indicate higher power for 

fast compared with slow movements. High–low speed power was not significantly different 

after multiple comparisons correction (FDR44,45) for any of the tested frequencies, in a one-

sided permutation test for nCh = 16 (all P > 0.05, uncorrected). e, Theta power during epochs 

of high movement speed versus low movement speed, separately for ‘target search’ versus 

‘no target search’ periods during self-navigation, and for ‘target ahead’ versus ‘no target 

ahead’ periods during the observation task. Green horizontal bars indicate significant high–

low speed power differences (uncorrected) between ‘target search’ versus ‘no target search’ 

periods (self) or ‘target ahead’ versus ‘no target ahead’ (other) periods, and the inset red bars 

indicate significance after multiple comparisons correction (FDR44,45), in a one-sided 

permutation test for nCh = 16. The power difference between ‘target search/ahead’ and ‘no 

target search/ ahead’ was not significantly different between self-navigation and observation 

([NoTargetSearchself – TargetSearchself] versus [NoTargetAheadother – TargetAheadother]; P 
> 0.05 for all frequencies; P < 0.1 for frequencies between 7 Hz and 14 Hz; FDR-

corrected44,45; one-sided permutation test for each frequency in steps of 1 Hz; nCh = 16). 

Data in all plots show means ± s.e.m. from nCh = 16 (a, b, d, e) or n = 5 participants (c). 

Asterisks denote a significant difference (P < 0.05, uncorrected) in a one-sided permutation 

test; ns, non-significant. Analyses and plots of bandpower differences were corrected for 

differences in data amount between conditions (see Methods).
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Extended Data Fig. 5 |. Impact of wall-mounted signs on theta power.
Linear mixed-effect models were used to quantify the impact of wall-mounted signs and 

proximity to the boundary on theta power during self-navigation (self) and observation 

(other). The theta frequency range was identical to the main ‘boundary’ versus ‘inner’ 

analyses (self, 3–12 Hz; other, 5–8 Hz). a, Diagram of the room from the top-down 

perspective, with yellow rectangles indicating wall-mounted signs (which provided strong 

visual cues for the participants), purple dots indicating locations in between signs (which did 

not correspond to visible landmarks but were defined for post hoc analysis only), and the 

grey rectangle indicating the room boundary. The red rectangle frame indicates the next 

wall-mounted sign that the participant (during self-navigation) or the experimenter (during 

observation) was walking towards (shown here is one example; the specific sign changed 

between trials). b, Comparison between the impact of proximity to sign locations versus 

proximity to locations in between signs. The impact of proximity to sign locations on theta 

power was not significantly different from the impact of locations in between signs, either 

during self-navigation (self, P = 0.815) or during observation (other, P = 0.176). c, 

Comparison between the impact of proximity to boundary versus the next wall-mounted sign 

that the participant or experimenter was walking towards. The impact of proximity to 

boundary was numerically higher in both conditions, but the difference between the 

variables’ impact was statistically significant only during observation (other, P = 0.028) and 
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not during self-navigation (self, P = 0.059). Note that periods of walking towards the next 

wall-mounted sign during self-navigation are equivalent to ‘no target search’ periods, and 

that the proximity of the experimenter to the next wall-mounted sign during the observation 

task is generally highest during ‘no target ahead’ periods. This explains the low or negative 

relationship between theta power and proximity to the next wall sign, as theta power is 

generally decreased and there is no significant effect of boundaries on theta power during 

these periods (Fig. 4). The difference between the impact of ‘boundary’ and ‘next sign’ was 

not significantly different between self-navigation and observation ([Boundaryself – 

NextSignself] versus [Boundaryother – NextSignother], P = 0.493). Data in all plots (b, c) 

show mean beta values ± s.e.m. from n = 5 participants. The asterisk denotes a significant 

difference (P < 0.05, uncorrected) in a one-sided permutation test; the diamond denotes P < 

0.1 (non-significant); ns, P > 0.1 (non-significant).

Extended Data Fig. 6 |. Effects in the gamma frequency band.
a, Gamma (60–80 Hz) bandpower at ‘boundary’ versus ‘inner’ locations (‘Main effect’; self, 

P < 0.001; other, P < 0.001), shown also during periods of immobility (when movement 

periods were excluded from data analysis; ‘Standing periods’; self, P = 0.004; other, P = 

0.464), when circular areas with a diameter of 1 m around target locations were excluded 

Stangl et al. Page 24

Nature. Author manuscript; available in PMC 2021 June 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



from data analysis (‘No target locations’; self, P = 0.003; other, P = 0.001), for movements 

towards a boundary (‘Towards boundary’; self, P = 0.031; other, P = 0.010), and for 

movements away from a boundary (‘Away from boundary’; self, P = 0.022; other, P < 

0.001). b, Numerically higher gamma bandpower at ‘boundary’ versus ‘inner’ locations, 

shown for each participant separately. Plots show mean values across channels per 

participant (participants 1 and 5, nCh = 3; participants 2 and 4, nCh = 4; participant 3: nCh = 

2). c, During self-navigation (self), gamma bandpower was significantly lower for ‘target 

search’ versus ‘no target search’ periods (P < 0.001). During the observation task (other), 

gamma power was significantly higher for ‘target ahead’ versus ‘no target ahead’ periods (P 
< 0.001). d, For self-navigation, gamma bandpower was significantly different between 

‘boundary’ versus ‘inner’ areas during ‘target search’ (P < 0.001) but not during ‘no target 

search’ periods (P = 0.113). During the observation task, gamma bandpower was not 

significantly different between ‘boundary’ versus ‘inner’ areas of the room, both for ‘target 

ahead’ (P = 0.137) and for ‘no target ahead’ (P = 0.255) periods. The difference between 

‘boundary’ and ‘inner’ bandpower was not significantly different between ‘target search/

ahead’ and ‘no target search/ahead’ periods ([BoundaryTargetSearch/Ahead – 

InnerTargetSearch/Ahead] versus [BoundaryNoTargetSearch/Ahead – InnerNoTargetSearch/Ahead]; self, 

P = 0.087; other, P = 0.347). Data in a, c, d show means ± s.e.m. from nCh = 16. Asterisks 

denote a significant difference (P < 0.05, uncorrected) in a one-sided permutation test; ns, 

non-significant. Statistical comparisons and plots were corrected for differences in data 

amount between conditions (see Methods).
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Extended Data Fig. 7 |. Phase–amplitude coupling.
a, Phase–amplitude coupling was calculated between the phase of low-frequency (theta) 

oscillations and the amplitude of high-frequency (gamma) oscillations, following a 

procedure used previously34. The intensity of phase–amplitude coupling was quantified by 

the ‘modulation index’, calculated for each theta–gamma frequency pair individually. The 

low-frequency (theta) range was between 4 Hz and 16 Hz (in 1 Hz steps, with a frequency 

window of ±1 Hz; that is, 3–5 Hz, 4–6 Hz, and so on), and the high-frequency (gamma) 

range was between 40 Hz and 90 Hz (in 2 Hz steps, with a frequency window of ±2 Hz; that 

is, 38–42 Hz, 40–44 Hz, and so on). The modulation index was normalized relative to a 

surrogate distribution (determined for each frequency pair by 100 iterations of calculating 

the coupling of gamma amplitudes with randomly shuffled 1-s theta-phase segments). 

Warmer colours indicate stronger coupling of high-frequency amplitudes to a specific low-

frequency phase. Strong phase–amplitude coupling is evident at a low-frequency (phase) 

peak between 6 Hz and 10 Hz. b, Illustration of average gamma amplitude height for 

different segments of the 0 to 360 degrees theta-phase range (segmented into 18 phase bins 

of 20 degrees each). Theta frequency was defined as 6–10 Hz. Warmer colours indicate 

higher (normalized) high-frequency amplitude. Strong coupling of gamma amplitude to 

theta oscillations is evident at a theta phase of about 90 degrees (indicated by the black 

Stangl et al. Page 26

Nature. Author manuscript; available in PMC 2021 June 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dashed line, for visualization purpose only), during both self-navigation (self) and 

observation (other). Heat maps (a, b) were smoothed for display purposes.

Extended Data Fig. 8 |. Main effects after exclusion of an extended 3-s time window around 
epileptic events.
Control analysis confirming the main effects of increased theta (top two rows) and gamma 

(bottom two rows) bandpower near boundaries, as compared with the inner area of the room, 

during both self-navigation (self) and observation (other), after excluding data within a time 

window of 3 s around each epileptic event (1.5 s before and after each detected IED sample, 

Stangl et al. Page 27

Nature. Author manuscript; available in PMC 2021 June 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



respectively). Data in the left panel show means ± s.e.m. from nCh = 16. Data in the right 

panels show mean values across channels per participant (participants 1 and 5, nCh = 3; 

participants 2 and 4, nCh = 4; participant 3, nCh = 2).

Extended Data Fig. 9 |. Main analysis pipeline.
First, interictal epileptiform discharges were identified in the iEEG raw data and excluded 

from further analyses. Then, time–frequency analyses of the iEEG data were performed. 

Resulting power and bandpower timeseries were analysed and compared for different 

conditions, which were derived from behavioural data (motion- tracking data, eye-tracking 

data, or task-related events). See Methods for more details.

Extended Data Table 1 |

Participant and RNS System details

Participant number 1 2 3 4 5

Age 49 52 34 33 31
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Participant number 1 2 3 4 5

Gender female female male male male

Number of performed task blocks(1) 2 3 4 4 4

RNS Neurostimulator model RNS-300M RNS-300M RNS-320 RNS-300M RNS-300M

Electrode 1

Hemisphere left left left left left

Implant orientation(2) 0 0 0 L L

Contact spacing 3.5 mm 3.5 mm 10 mm 10 mm 10 mm

Number of MTL channels 2 2 1 2 2

Channel 1 localization(3) Sub/Sub Sub/Sub ERC/PRC HPP/Sub HPP/HPP

Channel 2 localization(3) HPP/PWM HPP/PRC Sub/Sub HPP/Sub

Electrode 2

Hemisphere right left right right right

Implant orientation(2) 0 L 0 L O

Contact spacing 10 mm 10 mm 10 mm 10 mm 10 mm

Number of MTL channels 1 2 1 2 1

Channel 1 localization(3) HPP/PRC HPP/HPP Sub/PRC HPP/Sub Sub/PWM

Channel 2 localization(3) HPP/HPP Sub/Sub

1
Each block comprised about 15 min of the self-navigation task, followed by about 15 min of the observation task.

2
L, along the longitudinal axis of the hippocampus; O, orthogonally to the long axis of the hippocampus.

3
Localization of two electrode contacts (+/−) per bipolar recording channel. ERC, entorhinal cortex; HPP, hippocampus 

(CA1/CA2/CA3/DG); PRC, perirhinal cortex; PWM, parahippocampal white matter; Sub, subiculum.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. RNS System and experimental setup.
a, X-ray image of a participant with a chronically implanted RNS System (NeuroPace Inc.). 

b, Preoperative magnetic resonance image (top), co-registered with a postoperative 

computed tomography image showing an implanted depth electrode (middle), and contact 

locations of two bipolar recording channels (bottom). c, iEEG data were continuously 

recorded with a NeuroPace Wand that was secured on a participant’s head, allowing the 

participant to freely walk around during recordings. Their position was tracked via motion-

tracking cameras and reflective markers on the participant’s head. Eye movements were 

tracked with a mobile eye-tracking headset. Shown is an experimenter, rather than an actual 

participant, wearing the full setup for illustrative purposes. d, Example raw iEEG signal 

(grey) from two recording channels, overlaid with bandpass-filtered low-frequency 

oscillations (purple and green; 3–12 Hz).
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Fig. 2 |. Self-navigation and observation tasks.
a, Twenty unique signs (with different combinations of colours and numbers) were mounted 

along the room walls, and target locations (each named with a letter) were distributed around 

the room but not visible to participants. In the self-navigation task, participants were 

repeatedly asked to first walk to a wall-mounted sign (for example, ‘yellow 4’) before 

searching for a target location (for example, target location ‘T’). During the observation task, 

the experimenter walked around the room, while participants sat on a chair and observed the 

experimenter’s movements from a corner of the room. Participants were asked to press a 

button whenever the experimenter crossed one of the target locations. b, Example movement 

patterns from a top-down perspective for one participant in the self-navigation task and the 

experimenter in the observation task. c, Illustration of the task setup.
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Fig. 3 |. Oscillatory power is modulated by one’s own and another individual’s location.
a, Normalized ‘boundary’–’inner’ power difference during self-navigation (‘self’) and 

observation (‘other’). Data show mean values ± s.e.m. from nCh = 16. Horizontal bars 

indicate significant differences in one-sided permutation tests for individual frequencies (P < 

0.05; green, uncorrected; red, false discovery rate (FDR) corrected). b, Higher bandpower at 

‘boundary’ versus ‘inner’ locations in 3–12 Hz (self, P < 0.001) and 5–8 Hz (other, P < 

0.001) frequency bands. Data show mean values ± s.e.m. from nCh = 16. Asterisks denote a 

significant difference (P < 0.05, uncorrected) in a one-sided permutation test. c, Bandpower 
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across room locations (top-down perspective), averaged across one channel per participant. 

White rectangle illustrates the ‘boundary’ versus ‘inner’ division. d, Numerically higher 

bandpower at ‘boundary’ versus ‘inner’ locations, shown for each participant separately. 

Data show mean values across channels per participant (participants 1 and 5, nCh = 3; 

participants 2 and 4, nCh = 4; participant 3, nCh = 2).
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Fig. 4 |. Impact of cognitive state.
a, Higher theta power during ‘target search’ versus ‘no target search’ periods (self, P = 

0.009), and ‘target ahead’ versus ‘no target ahead’ periods (other, P < 0.001). The diagrams 

at the left illustrate ‘target search/ahead’ periods (green arrows) and ‘no target search/ahead’ 

periods (orange arrows); ‘X’ denotes button presses during observation. Data show mean 

values ± s.e.m. from nCh = 16. Asterisks denote a significant difference (P < 0.05, 

uncorrected) in a one-sided permutation test. b, ‘Boundary’ versus ‘inner’ theta power was 

significantly different only during ‘target search/ahead’ periods (self, P = 0.003; other, P < 

0.001) and not during ‘no target search/ahead’ periods (self, P = 0.212; other, P = 0.398). In 

addition, the ‘boundary’–’inner’ power difference was significantly larger for ‘target search/

ahead’ than ‘no target search/ahead’ periods ([BoundaryTargetSearch/Ahead – 

InnerTargetSearch/Ahead] versus [BoundaryNoTargetSearch/Ahead – InnerNoTargetSearch/Ahead]; self, 

P = 0.012; other, P = 0.005). Data show mean values ± s.e.m. from nCh = 16. Asterisks 

denote a significant difference (P < 0.05, uncorrected) in a one-sided permutation test; ns, 

non-significant. c, Bandpower across room locations (top-down perspective), averaged 

across all channels (nCh = 16).
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