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Abstract

Novel approaches are required to address the urgent need to develop lipid-based carriers of 

paclitaxel (PTX) and other hydrophobic drugs for cancer chemotherapy. Carriers based on cationic 

liposomes (CLs) with fluid (i.e., chain-melted) membranes (e.g., EndoTAG-1®) have shown 

promise in preclinical and late-stage clinical studies. Recent work found that the addition of a 

cone-shaped poly(ethylene glycol)-lipid (PEG-lipid) to PTX-loaded CLs (CLsPTX) promotes a 

transition to sterically stabilized, higher-curvature (smaller) nanoparticles consisting of a mixture 

of PEGylated CLsPTX and PTX-containing fluid lipid nanodiscs (nanodiscsPTX). These CLsPTX 

and nanodiscsPTX show significantly improved uptake and cytotoxicity in cultured human cancer 

cells at PEG coverage in the brush regime (10 mol% PEG-lipid). Here, we studied the PTX 

loading, in vivo circulation half-life, and biodistribution of systemically administered CLsPTX and 

nanodiscsPTX and assessed their ability to induce apoptosis in triple-negative breast cancer-bearing 

immunocompetent mice. We focused on fluid rather than solid lipid nanodiscs because of the 

significantly higher solubility of PTX in fluid membranes. At 5 and 10 mol% of a PEG-lipid 

(PEG5K-lipid, molecular weight of PEG 5000 g/mol), the mixture of PEGylated CLsPTX and 

nanodiscsPTX was able to incorporate up to 2.5 mol% PTX without crystallization for at least 20 

h. Remarkably, compared to preparations containing 2 and 5 mol% PEG5K-lipid (with the PEG 
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chains in the mushroom regime), the particles at 10 mol% (with PEG chains in the brush regime) 

showed significantly higher blood half-life, tumor penetration and proapoptotic activity. Our study 

suggests that increasing the PEG coverage of CL-based drug nanoformulations can improve their 

pharmacokinetics and therapeutic efficacy.

Graphical Abstract

Keywords

Chemotherapy; Paclitaxel; Cationic Liposome; PEGylation; Fluid Lipid Disc Bicelle; Tumor 
Penetration; Triple-Negative Breast Cancer

Introduction

Many chemotherapeutic agents are poorly soluble in aqueous solutions and must be 

formulated with vectors (carriers) to enable their use. A prime example of this is paclitaxel 

(PTX) – a potent cytotoxic drug that targets tubulin to block mitotic spindle assembly, 

chromosome segregation, and cell division.1–4 PTX is highly hydrophobic with very 

low water solubility, and ineffective in its crystalline form. Nonetheless, PTX is one of 

the most commonly used anti-cancer drugs, with multi-billion dollar sales each year.5,6 

Currently, the most widely used formulations of PTX are Taxol® (where PTX is solubilized 

using nonionic Kolliphor EL surfactant) and Abraxane® (where PTX is formulated in 

albumin nanoparticles).5,7–9 Serious side effects, both due to vector-related toxicity and 

the indiscriminate delivery of PTX throughout the body, are common and dose-limiting 

for currently used PTX formulations.10–12 Efforts are therefore underway to develop 

improved PTX formulations with reduced side effects: novel carrier materials to avoid the 

hypersensitivity reactions associated with the use of Kolliphor EL (formerly Cremophor EL, 

polyoxyethylated castor oil), carriers with higher efficacy to allow administration of lower 

total doses of PTX, and precision-guided platforms to increase specificity of delivery of 

PTX to malignant tissues.13–19
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Liposomes are widely used biocompatible carriers of payloads ranging from hydrophilic 

drugs and biologicals (nucleic acids and proteins) to hydrophobic drugs.5,20–26 A prominent 

example of a liposomal carrier of a hydrophobic drug is Doxil®,27 the formulation of 

another commonly used chemotherapeutic agent (doxorubicin). However, the chemical 

properties of doxorubicin enable efficient loading of the aqueous interior of the liposomes 

with the drug by using a transmembrane pH gradient – a process not transferable to most 

other drugs including PTX.28

Cationic liposomes [CLs; consisting of mixture of cationic (or ionizable) and neutral lipids] 

are prevalent nonviral vectors for the delivery of therapeutic nucleic acids (NAs), as recently 

demonstrated for the mRNA vaccines against COVID-19.29,30 In addition, CLs are suitable 

carriers for hydrophobic drugs. EndoTAG®-1, a cationic lipid formulation of PTX currently 

undergoing phase III clinical testing, is based on fluid-phase DOTAP/DOPC CLs with 3 

mol% PTX.13,17,25,31 (DOTAP, N-[2,3-dioleoyloxy-1-propyl]-trimethylammonium chloride, 

is a univalent cationic lipid; DOPC, 1,2-dioleoyl-sn-glycerophospho-choline, is a naturally 

occurring neutral phospholipid.) EndoTAG-1 is taken up in endothelial cells in solid tumors 

via electrostatic interactions with cell surface anionic sulfated proteoglycans.26,31–35 To 

achieve PTX loading into liposomal membranes beyond the 3 mol% viewed as the maximal 

loading in most preclinical efficacy studies and clinical trials to date,13,17,25,31,33 the lipid 

tails that interact with PTX can be modified.36 Additionally, in vivo selectivity of systemic 

lipid carriers can be improved by conjugating the poly(ethylene glycol)-lipids (PEG-lipids) 

with affinity targeting ligands such as homing peptides.37,38

Modification of the lipids and the lipid composition can drive structural transitions of 

fluid-phase CL vectors,21,39–43 including the spontaneous formation of PEGylated fluid 

lipid micelles (discs, cylinders and spheroids) coexisting with vesicles.44,45 We recently 

reported that increasing the density of PEG-lipids strongly reduces the average size of 

DOTAP/DOPC CLs.45 Above a critical concentration near the mushroom–brush transition, 

the PEG-lipid component provides steric stabilization that suppresses the aggregation of 

nonPEGylated CLs and triggers the formation of nanometer-scale disc-shaped bicelles (fluid 

lipid nanodiscs). Figure 1 illustrates the effect of PEGylation on the morphology of CL-

based vectors of PTX as revealed by cryogenic TEM. In a formulation with composition 

identical to that of EndoTAG-1 (Figure 1A), large vesicles of a variety of sizes coexist 

with smaller vesicles and occasional discs. In contrast, in a formulation that differs from 

EndoTAG-1 by replacement of a part of the neutral DOPC with PEG2K-lipid (to a total of 

10 mol%), larger vesicles have disappeared completely and only an abundance of very small 

vesicles together with a large number of nanodiscsPTX are observed (Figure 1B).

Membrane physics of a multicomponent fluid lipid system provides a rationale for 

explaining a regime of coexistence of spherical vesicles and discoidal micelles. In our 

ternary lipid system, the majority components DOTAP and DOPC are cylindrically shaped 

lipids which prefer flat bilayer membranes with spontaneous curvature C0=0 (Figure 1C). 

The cone-shaped PEG-lipid, which prefers positive high curvature surfaces with C0>0 

(Figure 1D), is the minority component. At low concentrations of PEG-lipid, with PEG 

chains in the mushroom conformation, the lipids remain mixed with maximal entropy. With 

increasing molar fraction of PEG-lipid near the brush regime (i.e. where PEG chains in 
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the mushroom conformation begin to overlap), the formation of an alternative morphology, 

namely, lipid discs, begins to become increasingly favorable. Here, lipid phase separation 

and segregation of the cone-shaped PEG-lipids to the high curvature edges of discs takes 

place, reducing the curvature elastic energy cost of edge formation48,49 (i.e. compared to 

forming edges containing cylindrical shaped DOPC or DOTAP lipids) and stabilizing discs.

A number of previous studies have characterized the structure and properties of solid lipid 

nanodiscs.50–53 In these systems, the (charge-neutral or slightly anionic) lipid assemblies 

with saturated tails were studied in the chain-ordered “gel” phase with very low chain 

mobility, giving rise to 2D crystalline membranes.54 In our work, we focused on fluid 
lipid nanodiscs where the lipid tails contained one cis double bound, thus forming the chain-

melted “fluid phase” with high chain mobility in the temperature range studied (between 

room temperature and ~37 °C). The main motivation for using fluid versus solid lipid 

nanodiscs is the significantly higher solubility of PTX in the nonpolar tail region of the 

membrane. Prior work has shown that membranes consisting of lipids containing one55,56 

or two36 cis double bonds can accommodate much higher molar fractions of PTX than 

membranes consisting of lipids with saturated tails.25,55,57–59

Compared to formulations similar to the benchmark EndoTAG-1, the PEGylated lipid 

vectors consisting of mixtures of PEGylated CLsPTX and PTX-containing fluid lipid 

nanodiscs (nanodiscsPTX), with PEG chains in the brush state, show a significant PEG 

concentration-dependent enhancement of cellular uptake and cytotoxicity (i.e., efficacy).45 

Thus, size, stabilization, and shape of the PEGylated lipid vectors have profound effects on 

their cellular uptake and payload delivery.

The observation that incorporating PEG-lipids yields fluid-phase CL carriers of PTX 

with stable micellar structures and improved in vitro efficacy prompted us to study the 

in vivo performance of systemically administered PEGylated PTX-loaded CLs. Here, we 

characterized the in vivo biodistribution and proapoptotic activity of a series of PEGylated 

CL vectors of PTX in triple-negative breast cancer (TNBC) mice. Compared to vectors with 

2 and 5 mol% PEG5K-lipid, lipid nanoparticle vectors containing 10 mol% PEG5K-lipid 

possessed longer plasma circulation half-life and resulted in significantly improved TNBC 

accumulation, tumor extravasation, and activation of proapoptotic caspase-3.

Materials and Methods

Samples for cryogenic TEM were prepared and imaged as described previously.45

Materials

A stock solution of carboxyfluorescein-labeled DOPE (1,2-dioleoyl-sn-glycero-3-

phosphoethanolamine-N-(carboxyfluorescein), DOPE-FAM) in chloroform was purchased 

from Avanti Polar Lipids. Other lipid stock solutions were prepared by dissolving DOPE-

PEG5000, DOTAP, and DOPC, purchased from Avanti Polar Lipids, in chloroform at 3.64, 

41.93, and 31.8 mM, respectively. A stock solution of PTX in chloroform was prepared by 

dissolving solid PTX (Biotang Inc.) in chloroform at 10 mM.
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Liposome preparation

Mixed solutions of lipid and PTX were prepared in chloroform:methanol (3:1, v/v) in small 

glass vials at 1 mM for PTX solubility, biodistribution, and caspase activation experiments 

and at 16.75 mM for lipid solubility experiments. The chloroform:methanol solvent was 

evaporated under a nitrogen stream for 10 min and the lipid was further dried in a 

vacuum for 16 h. The resultant film was resuspended in PBS to 1 mM for PTX solubility, 

biodistribution, and caspase activity experiments or 67 mM for lipid solubility experiments. 

This suspension was sonicated with a tip sonicator (30 W output) for 7 min.

Differential Interference Contrast (DIC) microscopy

For PTX solubility experiments, 2 μL each of cationic lipid formulations containing 10 

mol% PEG5K-lipid and 2, 2.5, or 3 mol% PTX were placed on glass microscope slides 

and covered by glass coverslips secured by parafilm cutouts. All remaining samples were 

incubated at room temperature (RT) for 20 h and 2 μL were again used for imaging. 

For lipid solubility experiments, 2 μL each of samples of formulations with 2, 5, and 10 

mol% PEG5K-lipid were placed on glass microscope slides and again covered by coverslips 

secured by parafilm cutouts. All slides were imaged at 40× magnification on an inverted 

Ti2-E (Nikon) microscope.

Determination of the half-life of PEGylated, PTX-containing CL vectors

The animal experiments were performed according to protocols approved by the Estonian 

Ministry of Agriculture, Committee of Animal Experimentation (projects #159 and #160). 

Eight week-old immunocompetent female BALB/c mice were intravenously (i.v.) injected 

with 100 μL of PEGylated cationic liposome formulations of PTX containing 2, 5, or 10 

mol% PEG5K-lipid. After 15, 30, 60, 180, 360, and 1440 min circulation, 5 μL of blood 

was extracted from the tail vein and mixed with 50 μL of phosphate buffered saline (PBS, 

pH 7.4) with heparin at 4 °C. The samples were centrifuged at 300 g at 4 °C for 5 min. 

The fluorescence of the supernatant was measured at 490 nm/535 nm (excitation/emission) 

using a Victor X5 Multilabel Microplate Reader (Perkin Elmer, USA). The data were fitted 

to a curve using a biexponential decay formula to obtain the half-life of the PEGylated 

formulations using the Origin 2022b software.

Detection of tumor accumulation of PEGylated PTX-containing CL vectors and cleaved 
caspase-3 immunostaining

TNBC cells (106 4T1 cells in 50 μL of PBS) were orthotopically injected into the mammary 

gland of 8 week-old immunocompetent female BALB/c mice. One week later, 100 μL of 

PEGylated CL formulations of PTX were i.v. administered into the tail vein, and 24 h later, 

the mice were anesthetized, perfused with PBS, and the tumor and organs were excised 

and kept in 4% paraformaldehyde (PFA) solution in PBS at 4 °C overnight. PFA-fixed 

tissues were washed and immersed in PBS at RT for 1 h. Then, the tissues were incubated 

in 15% sucrose solution in PBS at 4 °C overnight. The following day, the 15% sucrose 

solution was replaced with 30% sucrose solution in PBS and incubated at 4 °C overnight. 

The cryoprotected tissues were frozen in OCT (optimal cutting temperature) compound and 

cryosectioned at 20 μm. The sections were air-dried at RT for 1 h, permeabilized with 
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PBS containing 0.2% Triton-X for 15 min, washed with PBS containing 0.05% Tween-20 

(PBST), and blocked with PBST containing 5% bovine serum albumin (BSA), 5% fetal 

bovine serum (FBS), and 5% goat serum for 1 h. The tissue sections were incubated at 

4 °C overnight with rat anti-mouse CD31 (cat. no. 553370, BD Biosciences) and rabbit 

anti-cleaved Caspase-3 (cat. no. 9661, Cell Signaling Technology) as primary antibodies in 

blocking buffer diluted 1 in 5 in PBST (antibody dilution 1/200 and 1/400, respectively). 

Alexa 647-conjugated goat anti-rabbit IgG (cat. no. A21245, Thermo Fischer Scientific) and 

Alexa 546-conjugated goat anti-rat IgG (cat. no. A11081, Thermo Fischer Scientific) were 

used as secondary antibodies (antibody dilution 1/300). The slides were incubated with the 

secondary antibodies at RT for 2 h. The sections were washed with PBST and PBS, and 

the nuclei were stained with 1 μg/mL DAPI in PBS for 5 min. Stained slides were mounted 

with mounting medium and the coverslips were sealed with nail polish. The tissues were 

imaged using a fluorescence confocal microscope (FV1200MPE, Olympus), and the images 

analyzed using the Olympus FluoView Ver.4.2a Viewer program. To quantify the intensity of 

the FAM signal from PEGylated lipid vectors and cleaved caspase-3, confocal images were 

analyzed using ImageJ. Three to 6 random areas per tumor were chosen from 3 different 

planes and this was repeated for 3 tumors for each treatment group.

Statistical tests

The statistical analyses were performed using the one-way ANOVA and Fisher LSD tests.

Results and Discussion

PTX membrane solubility in PEGylated fluid-phase CLs

Because PTX is incorporated into the hydrophobic environment formed by the lipid tails 

rather than in the aqueous interior of liposomes, the initial encapsulation efficiency in 

CLs is ≈100%. However, it is essential for the efficacy of PTX-loaded CLs that PTX 

remains soluble in the fluid membrane. We previously found that the membrane solubility 

of PTX is slightly lower in PEGylated CLs than in bare CLs.45,56 To determine the optimal 

PTX content for the CLs in the current study, we assessed the solubility of PTX in CLs 

containing 10 mol% PEG5K-lipid, the highest PEG-lipid content used. The formation 

of therapeutically inert PTX crystals, due to PTX self-association in the membrane and 

subsequent phase separation, is an indicator of PTX insolubility.56,60 Thus, we assessed 

PTX solubility in the PEGylated CL formulations by monitoring PTX crystal formation 

with DIC microscopy.45,56 Representative DIC micrographs of sonicated CLs containing 10 

mol% PEG5K-lipid and 2 to 3 mol% PTX are displayed in Figure 2. Insoluble PTX formed 

crystals in the samples with 3 mol% PTX at RT after 20 h (Figure 2, top right panel, yellow 

arrow), whereas PTX remained soluble at 2 and 2.5 mol% (Figure 2, middle and bottom 

right panels). PTX remained soluble for days at 2 mol% PTX, which prompted us to choose 

this PTX loading for the biodistribution experiments.

PEGylation increases solubility of fluid-phase CLs at high lipid concentrations

The size distribution of nanoparticles has an important effect on pharmacokinetics and 

biodistribution, with a preferred particle size between 5 and 100 nm.61 At the low total lipid 

concentration used in the PTX solubility (Figure 2) and biodistribution (see below) studies, 
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no particles were visible by DIC microscopy for any of the formulations investigated, 

meaning that the size of the lipid assemblies is below the diffraction limit of a few 

hundred nm. The small vesicles and discs visible in cryogenic TEM were undetectable 

by optical microscopy due to this reason. For systemic therapy, however, PTX-loaded 

CLs must be prepared at total lipid concentrations of ≥50 mg/mL to achieve sufficiently 

high PTX dosage.62,63 Therefore, we prepared sonicated CL suspensions with varying 

degrees of PEGylation at a total lipid concentration of 50 mg/mL. At this concentration, 

formulations with 2 mol% PEG5K-lipid contained spontaneously formed giant multilamellar 

structures, greater than ~100 μm in size, that were visible in DIC microscopy (Figure 3, 

left panel). These giant multilamellar structures are likely to be poorly suited for in vivo 
applications. However, such large structures were not found in CLs containing 5 and 10 

mol% PEG5K-lipid (Figure 3, center and right panels), consistent with our previous finding 

that PEG-lipid incorporation suppresses the formation of larger CLs and stabilizes small 

unilamellar vesicles and bicelles.45 The few remaining visible structures in samples prepared 

with 10 mol% PEG5K-lipid were spherical, while those observed for CLs containing 5 

mol% PEG5K-lipid exhibited a more elongated morphology.

Increased PEGylation extends the blood half-life of PTX-loaded fluid-phase CL vectors

Generation of stealth nanoparticles with a prolonged circulation half-life is an important 

prerequisite for enhanced tumor targeting. To assess the potential of PEGylated CL 

vectors of PTX for in vivo applications, we first studied the effect of differential 

PEGylation (at 2, 5, or 10 mol% of PEG5K-lipid) on the blood clearance of CL vectors 

following i.v. administration in immunocompetent healthy mice. The molar composition of 

the formulations was PEG5K-lipid:DOTAP:DOPC:PTX=xPEG5K-lipid:50:48–xPEG5K-lipid:2. 

Compared to the plasma half-lives of the formulations containing 2 and 5 mol% of PEG5K-

lipid (39 and 34 min respectively), the half-life of the formulation with 10% of PEG-lipid 

was extended to 90 min (Figure 4). This increase in half-life was likely due to escape from 

the surveillance by the reticuloendothelial system, because of an increase in the “stealth” 

properties of the particles and/or the modulation of the CL shape. Nanoparticle uptake 

by phagocytic cells is known to be affected by the shape of the particles, a phenomenon 

attributed to shape- and aspect ratio-dependent activation of different endocytic pathways.64

The formulation with 10 mol% PEG5K-lipid, with the conformation of the PEG chains far 

in the brush regime, consists of a mixture of small CLsPTX and in particular fluid-phase 

nanodiscsPTX. The formulation at 5 mol% PEG5K-lipid also consists of a mixture of 

PEGylated CLsPTX and fluid-phase nanodiscsPTX. However, the PEG chains in this case 

are in the mushroom conformation near the transition to the brush conformation and offer 

lower levels of steric stabilization compared to the 10 mol% PEG5K-lipid formulation. The 

2 mol% PEG5K-lipid formulation, with PEG chains in the mushroom regime far from the 

brush regime, is not sterically stabilized (consistent with the DIC images in Figure 3).

Increased PEGylation potentiates tumor accumulation and proapoptotic activity

We next studied the effects of differential PEGylation of PTX-loaded CLs on biodistribution 

and tumor accumulation. Mice bearing 50–75 mm3 orthotopic 4T1 TNBC lesions were i.v. 

injected with formulations of FAM-labeled CL vectors of PTX at a PEG5K-lipid content 
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of 2, 5, and 10 mol%. Twenty-four hours later, the tumors were collected, cryosectioned, 

and imaged by confocal fluorescence microscopy (Figure 5A and Figures S5–S14 in the 

Supporting Information). We observed that the FAM signal in the tumors correlated with 

the PEG5K-lipid density of the CLs. Specifically, the tumor accumulation of the lipid 

formulations containing 10 mol% of PEG5K-lipid (PEGylated CLsPTX and coexisting 

nanodiscsPTX, with the brush conformation of PEG conferring enhanced steric stabilization), 

was ~10- and ~35-fold higher than that of the formulations containing 5 and 2 mol% of 

PEG5K-lipid, respectively (Figure 5B). At 24 h following their injection, the CL vectors 

were no longer detected in the blood, as shown in Figure 4. However, they were detected 

in the tumor tissue, especially in the case of the CLs containing 10 mol% PEG5K-lipid. 

This result shows that the CLs enter the tumor and are retained there 24 hours after 

administration, even as they are already cleared from the blood.

The uptake and distribution of drugs and nanoparticles is profoundly affected by the tumor 

architecture and microenvironment, in particular by the structure and functional status of 

the tumor vasculature. We next analyzed the fluorescence of the CL vectors in the context 

of tumor vascular tree (visualized by staining of blood vessels with anti-CD31 antibody) 

and cellular density (visualized by staining of nuclei with DAPI). We observed that the 

ability of CL formulations to exit blood vessels and to penetrate into tumor parenchyma 

was potentiated by the degree of PEGylation. Lipid formulations containing 10 mol% of 

PEG5K-lipid showed the most extensive extravasation and accumulation of CLs in the 

tumor parenchyma (Figure 5A insets and Figures S5–S14 in the Supporting Information; 

white arrows point to the signal from CLs outside the blood vessels). Tumor-driven vascular 

permeability, commonly seen in rapidly growing solid tumors (including in the TNBC 

model used in this work),65,66 accompanies tumor progression and impacts drug delivery. 

The small CLsPTX and in particular the fluid-phase nanodiscsPTX in the formulation with 

10 mol% PEG5K-lipid, because of their small size and discoidal shape, are expected 

to have easier access through fenestrated tumor blood vessels than the larger particles 

in formulations with lower PEGylation density. This, in combination with the extended 

circulation half-life at 10 mol% PEG5K-lipid, likely accounts for the observed higher 

extravasation and parenchymal accumulation in the tumor tissue at 10 mol% PEG5K-lipid.

Next, we studied if the increased tumor accumulation of the lipid vector formulation with 10 

mol% PEG5K-lipid translated into potentiated in vivo anticancer activity. PTX is a mitotic 

poison that binds to the β subunit of the tubulin heterodimer to prevent depolymerization of 

microtubules and causes apoptosis.2,3,67 In 4T1 TNBC cells, the levels of PTX-induced 

caspase-3 enzymatic activity correlate with tumor sensitivity to the drug and serve as 

indicator for susceptibility to PTX.68 TNBC tumors from mice treated with the PEGylated 

lipid vectors loaded with PTX were stained for cleaved caspase-3. Whereas a baseline 

signal of cleaved caspase-3 was observed in the tumors treated with the lipid formulations 

containing 2 and 5 mol% PEG5K-lipid (Figure 5, panels A and C, and Figures S15–S23 in 

the Supporting Information), the tumors treated with lipid formulations containing 10 mol% 

of PEG5K-lipid showed a ~2-fold upregulation of cleaved caspase-3 immunoreactivity 

(Figure 5C). The apoptosis activity correlated with the tumor homing, suggesting that 

the increased accumulation of the CL vectors with 10 mol% PEG5K-lipid translated into 

higher tumor accumulation of PTX and subsequent cell death. This difference did not reach 
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statistical significance, possibly due to the low single PTX dose administered and the short 

follow-up time point. The apoptotic effect in the tumors treated with lipid formulations 

containing 10 mol% of PEG5K-lipid was due to the PTX, as particles without PTX did 

not show an increased signal for cleaved caspase-3 (Figure 5C and Figures S24–S26 in the 

Supporting Information). Further corroborating the ability of the 10 mol% of PEG5K-lipid 

to efficiently release PTX and trigger cell apoptosis was our observation that caspase-3 

was detected in the areas overlapping or adjacent to the fluorescent signal of the lipid 

formulation (Figure 5A, 4th row, and Figures S15–S23 in the Supporting Information).

Conclusion

We showed that increasing the content of PEG5K-lipid in CL-based vectors of PTX to the 

degree that the PEG chains are in the brush conformation not only increases the solubility 

of the formulation but also the blood half-life, tumor accumulation and tumor penetration 

of the vector and the anticancer activity of the loaded PTX. The formulation containing 

CLs with 10 mol% PEG5K-lipid may also be suitable for increasing the solubility of other 

hydrophobic drugs and potentially find use as a therapeutic carrier for the treatment of solid 

tumors. To this end, efforts to improve the solubility of PTX in the membranes of CL-based 

formulations with a high degree of PEGylation are underway. The findings reported here 

are expected to have far-reaching implications for drug delivery in vivo where size, shape, 

and size stability are critical factors for therapeutic efficacy. Furthermore, a fraction of the 

pendant PEG moieties may be modified with targeting ligands to achieve active cell-specific 

targeting.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Cryogenic TEM images of PTX-loaded CLs with and without PEGylation, lipid shapes and 

curvature, and schematic of a lipid nanodisc. (A) Sonicated liposomes at the EndoTAG-1 

composition (DOTAP/DOPC/PTX=50/47/3 molar ratio), exhibiting both larger and smaller 

vesicles with few discs. (B) Sonicated PTX-loaded CLs with 10 mol% PEG2K-lipid 

(DOTAP/DOPC/PEG2K-lipid/PTX=50/37/10/3 molar ratio), lacking vesicles above ~50 

nm in size and showing a prevalence of very small vesicles and lipid discs. Scale bars: 

200 nm. The images are previously unpublished micrographs of formulations investigated 

in ref.45. See Figures S1–S4 in the Supporting Information for uncropped versions and 

additional micrographs. (C, D) Two common shapes of lipid molecules which result in 

membrane spontaneous curvature C0=0 (C, e.g., DOPC; cylindrical shape yielding flat 

bilayers) and C0>0 (D, e.g., PEG-lipids; cone shape yielding micellar monolayer assemblies 

or high-curvature bilayers).46,47 (E) Schematic depiction of a disc micelle, with PEG-lipid 

segregated to the high-curvature edges.
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Figure 2. 
Solubility of PTX in PEGylated CLs at different drug loadings. DIC micrographs of 

sonicated CLs containing 10 mol% PEG5K-lipid, loaded with 2 (left column), 2.5 (center 

column), and 3 (right column) mol% PTX, imaged immediately (bottom row) and 20 h 

(top row) after resuspension in PBS. Whereas PTX crystals were not present in any of the 

samples immediately following resuspension (or at 20 h time point in the case of 2 or 2.5 

mol% PTX), PTX crystal formation was evident 20 h after resuspension for CLs containing 

3 mol% PTX (top right panel; the yellow arrow points to a representative crystal). The inset 

at the bottom left corner of each micrograph shows an enlarged view of an object in the 

plane of focus (PTX crystals for 3 mol% PTX after 20 h, liposomes for all other samples). 

CL composition: PEG5K-lipid:DOTAP:DOPC:PTX=10:50:40–xPTX:xPTX molar ratio, with 

xPTX the PTX content in mol%. Scale bars: 200 μm.

Simón-Gracia et al. Page 15

ACS Appl Mater Interfaces. Author manuscript; available in PMC 2023 December 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Solubility of highly concentrated lipid formulations as a function of PEG5K-lipid content. 

DIC microscopy images of sonicated liposomes containing 2, 5, and 10 mol% PEG5K-lipid 

taken 2 h after rehydration at 67 mM in PBS. Few aggregates or particles greater than 

~5 μm (marked by arrows) were observed in liposomes containing 5 and 10 mol% PEG5K-

lipid (center and right panels), with the 10 mol% PEG5K-lipid formulation showing the 

least number of aggregates (i.e., providing strong steric stabilization of lipid particles). In 

contrast, many aggregates greater than ~5 μm and some greater than 50 μm were present 

in CLs containing 2 mol% PEG5K-lipid (left panel). In the micrographs showing CLs 

containing 5 and 10 mol% PEG5K-lipid, the inset (bottom left) shows an enlarged view 

of a representative area (dashed box) where particles are visible. CL molar composition: 

PEG5K-lipid, DOTAP, DOPC, PTX (xPEG5K-lipid:50:48-xPEG5K-lipid:2). Scale bars: 50 μm.
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Figure 4. 
The plasma half-life of PTX-loaded CLs increases with PEGylation. Plasma half-life of i.v. 

administered FAM-labeled PEGylated PTX-loaded cationic liposome vectors containing 2, 

5, and 10 mol% of PEG5K-lipid in healthy immunocompetent BALB/c mice. Mice (n=3) 

were i.v. injected with indicated formulations, blood samples were collected at different 

time points, and the fluorescence of the plasma was measured. The data were fitted using 

a biexponential decay formula (solid lines) to obtain the half-life. Error bars indicate the 

standard error of the mean (±SEM).

Simón-Gracia et al. Page 17

ACS Appl Mater Interfaces. Author manuscript; available in PMC 2023 December 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Increased density of PEG5K-lipid in PTX-loaded CLs potentiates accumulation in breast 

tumors and increases apoptotic cell death. A: Representative images of tumor homing 

and caspase-3 activation by PEGylated CLPTX vectors containing 2, 5, and 10 mol% 

PEG5K-lipid assessed by immunofluorescence microscopy. The different formulations were 

administered i.v. in 4T1 tumor-bearing mice; 24 h later the mice were perfused with 

PBS, tumors excised, cryosectioned, and immunostained for CD31 (blood vessels; red) 

and cleaved caspase-3 (white), and stained with DAPI nuclear counterstain (blue); the 

green signal represents the FAM fluorescence of the PEGylated CL vectors of PTX. The 
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FAM signal (lipid vector) observed in the tumors from mice injected with the formulation 

containing 10 mol% PEG5K-lipid is stronger than that for the formulations with 2 and 5 

mol% PEG5K-lipid. In addition, this signal appears to be further from the blood vessels, 

indicating higher extravasation (white arrows). Scale bars: 200 μm. B and C: Quantification 

of FAM (B) and cleaved caspase-3 (C) signal, normalized to nontreated tumors from panel 

A. At least 3 different areas per tumor from 3 different planes and from 3 tumors per groups 

were analyzed. Error bars indicate the SEM, statistical test: ANOVA one way, Fisher LSD.

Simón-Gracia et al. Page 19

ACS Appl Mater Interfaces. Author manuscript; available in PMC 2023 December 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Graphical Abstract
	Introduction
	Materials and Methods
	Materials
	Liposome preparation
	Differential Interference Contrast (DIC) microscopy
	Determination of the half-life of PEGylated, PTX-containing CL vectors
	Detection of tumor accumulation of PEGylated PTX-containing CL vectors and cleaved caspase-3 immunostaining
	Statistical tests

	Results and Discussion
	PTX membrane solubility in PEGylated fluid-phase CLs
	PEGylation increases solubility of fluid-phase CLs at high lipid concentrations
	Increased PEGylation extends the blood half-life of PTX-loaded fluid-phase CL vectors
	Increased PEGylation potentiates tumor accumulation and proapoptotic activity

	Conclusion
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.



