
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
The interaction between structure and meaning in sentence comprehension:Recurrent 
neural networks and reading times

Permalink
https://escholarship.org/uc/item/41v0w9z5

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 41(0)

Authors
Frank, Stefan L.
Hoeks, John C. J.

Publication Date
2019
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/41v0w9z5
https://escholarship.org
http://www.cdlib.org/


The interaction between structure and meaning in sentence comprehension:
Recurrent neural networks and reading times

Stefan L. Frank (s.frank@let.ru.nl)
Centre for Language Studies, Radboud University

Erasmusplein 1, 6525 HT Nijmegen, The Netherlands

John C. J. Hoeks (j.c.j.hoeks@rug.nl)
Faculty of Arts, University of Groningen

Oude Kijk in ’t Jatstraat 26, 9712 EK Groningen, The Netherlands

Abstract

Recurrent neural network (RNN) models of sentence process-
ing have recently displayed a remarkable ability to learn as-
pects of structure comprehension, as evidenced by their ability
to account for reading times on sentences with local syntac-
tic ambiguities (i.e., garden-path effects). Here, we investi-
gate if these models can also simulate the effect of semantic
appropriateness of the ambiguity’s readings. RNN-based esti-
mates of surprisal of the disambiguating verb of sentences with
an NP/S-coordination ambiguity (as in ‘The wizard guards the
king and the princess protects ...’) show identical patters to hu-
man reading times on the same sentences: Surprisal is higher
on ambiguous structures than on their disambiguated counter-
parts and this effect is weaker, but not absent, in cases of poor
thematic fit between the verb and its potential object (‘The
teacher baked the cake and the baker made ...’). These results
show that an RNN is able to simultaneously learn about struc-
tural and semantic relations between words and suggest that
garden-path phenomena may be more closely related to word
predictability than traditionally assumed.

Keywords: garden-path sentences; self-paced reading; read-
ing time; thematic fit; recurrent neural network; LSTM; sur-
prisal

Introduction
Garden-path phenomena, in which a local structural ambigu-
ity results in comprehension difficulty upon disambiguation,
have been studied extensively in psycholinguistics. Tradi-
tionally, the garden-path effect has been explained in terms
of syntactic structure building: When the ambiguity is en-
countered, the parser chooses the structure that later turns
out to be incorrect, triggering a process of syntactic reanal-
ysis (e.g., Frazier & Rayner, 1982). Nowadays, this pro-
cess is often expressed in probabilistic terms: The syntac-
tic interpretation of the sentence-so-far takes the form of a
probability distribution over (all) possible structures, and pro-
cessing a word comes down to redistributing the probabil-
ity mass in light of the incoming linguistic information. In
case of a garden-path sentence, the incorrect reading of the
ambiguity receives a (much) higher probability than the cor-
rect one, which means that a lot of probability mass needs to
be redistributed upon encountering the disambiguating word
(Brouwer, Fitz, & Hoeks, 2010; Hale, 2001; Levy, 2008).
This corresponds to high cognitive processing load.

In the probabilistic account of sentence processing
sketched above, the amount of update in the probability dis-
tribution due to processing a word can be shown to equal the

word’s surprisal, which has therefore been proposed as rele-
vant measure of cognitive processing difficulty during incre-
mental language comprehension (Hale, 2001; Levy, 2008).
Indeed, word surprisal correlates with word reading time in
general, as long as it is estimated by an accurate-enough
probabilistic language model. The model’s underlying archi-
tecture does not appear to matter much: It can be a prob-
abilistic grammar (Boston, Hale, Patil, Kliegl, & Vasishth,
2008; Demberg & Keller, 2008), a recurrent neural network
(Goodkind & Bicknell, 2018; Monsalve, Frank, & Vigliocco,
2012), or even a simple n-gram model (Frank, 2017; Smith
& Levy, 2013). However, it stands to reason that surprisal
must be estimated by a model that builds syntactic structure
(like a probabilistic grammar does) if it is to account for the
garden-path phenomenon. After all, the garden-path effect is
(allegedly) caused by structural reanalysis. Hence, a model
that does not engage in structure building should not be able
to explain the effect.

Recent results from Long Short-Term Memory models
(LSTM; Hochreiter & Schmidhuber, 1997) cast doubt on this
assumption. An LSTM is a recurrent neural network in which
the flow of activation is controlled by gates with learned
weights, making it better at learning long-distance dependen-
cies than Elman’s (1990) well-known Simple Recurrent Net-
work. LSTMs have shown remarkable capability to deal with
long-term structure (Gulordava, Bojanowski, Grave, Linzen,
& Baroni, 2018), including correct predictions of reading-
time effects in garden-path sentences. Van Schijndel and
Linzen (2018) had an LSTM estimate surprisal on the dis-
ambiguating verb phrase in sentences such as ‘The employee
understood [that] the contract would be ...’ (NP/S ambiguity;
critical word in italics) and ‘Even though the girl phoned[,]
the instructor was ...’ (NP/Z ambiguity). They found higher
surprisal in the locally ambiguous sentences than in their un-
ambiguous counterparts.1 Futrell, Wilcox, Morita, and Levy
(2018) show that an LSTM model can account for the garden-
path effect in sentence pairs such as ‘The witness [that was]
examined by the lawyer’ (RR/MV ambiguity). Moreover, the
model correctly predicts the absence of a garden-path effect
when the subject noun is inanimate, as in ‘The evidence [that

1Futrell et al. (2019), however, report that LSTMs predict a
weaker NP/Z garden-path effect when the ambiguous region is
longer, contrary to what has been observed in human readers (Tabor
& Hutchins, 2004).
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was] examined by the lawyer’. This suggests that the LSTM
learned not only the relative frequencies of the different struc-
tures but also how these frequencies interact with a lexical
semantic property.

The current study goes beyond this work by looking at a
different local structural ambiguity and, more importantly, its
interaction with the thematic fit between an action (i.e., verb)
and its potential patient (i.e., syntactic object). That is, we
investigate the sensitivity of LSTMs to a semantic relation as
opposed to a single word’s semantic property.

Garden paths and thematic fit
Sentence (1a) is structurally ambiguous when the third noun
phrase (‘the princess’) in encountered: It can be understood
as part of the larger NP ‘the king and the princess’ or as
the beginning of a new sentence clause. This is known as
the NP/S-coordination ambiguity. The upcoming verb (‘pro-
tects’) disambiguates towards the S-coordination structure,
which causes comprehension difficulty compared to the un-
ambiguous variant (1b). In other words, (1a) is a garden-path
sentence because readers initially prefer the NP-coordination
reading (Frazier, 1987).

(1a) The wizard guards the king and the princess
protects the prince with her life.

(1b) The wizard guards the king, and the princess
protects the prince with her life.

Sentence pairs (2a) and (2b) are structurally identical to
(1a) and (1b) but differ in an important respect: The NP-
coordination reading, in which the teacher bakes both the
cake and the baker, is semantically anomalous: Bakers are not
usually baked objects. Would such poor thematic fit lead to an
immediate S-coordination interpretation and, consequently,
remove any comprehension difficulty in (2a) compared to
(2b)?

(2a) The teacher baked the cake and the baker
made twelve breads for the coming holidays.

(2b) The teacher baked the cake, and the baker
made twelve breads for the coming holidays.

In an eye-tracking experiment, Hoeks, Hendriks, Vonk,
Brown, and Hagoort (2006) investigated the processing of
sentences with NP/S coordination ambiguities in Dutch,
which is structurally identical to English in this respect. They
found the expected garden-path effect in the Good Fit con-
dition: Reading times were longer on sentences such as (1a)
than on (1b). When thematic fit was poor (sentence pair 2a/b)
the picture was less clear, but the authors concluded that there
is also a garden-path effect in this condition, albeit weaker
than that for the sentences with good thematic fit.

However, the reliability of this result is questionable be-
cause the garden-path effect on Poor Fit sentences never
reached statistical significance on any of the investigated
reading time measures; it was at best marginally significant
for total reading time. Hoeks et al.’s conclusion was based on
the presence of a main effect of Ambiguity (i.e., whether or

not the sentence had a comma) in combination with the ab-
sence of a significant interaction with Thematic Fit. Hence,
the claim that the garden-path effect also occurred in the Poor
Fit sentences is in fact based on accepting the null hypothesis
that there is no interaction.

The current study
We trained LSTM models on Dutch text corpora after which
they estimated surprisal of the critical words in the experi-
mental sentences of the Hoeks et al. (2006) study. In addition,
we analysed unpublished self-paced reading data on these
same sentences. Bayesian mixed-effects regression analyses
revealed similar patterns for the surprisal values and reading
times (RTs): They are larger in the locally ambiguous than
unambiguous sentences and this difference is smaller (but not
zero) in case of poor thematic fit than for sentence with good
thematic fit. These findings demonstrate that poor thematic fit
indeed reduces, but not completely removes, the garden-path
effect caused by the NP/S-coordination ambiguity; and that
these effects can be explained by the statistical word-order
patterns that recurrent neural networks are able to learn from
text corpora.2

Method
Self-paced reading experiment
Stimuli The stimulus set was identical to that of Hoeks et
al. (2006). It consisted of 120 experimental sentences with
a local NP/S coordination ambiguity. In 60 of the 120 sen-
tences, the two nouns of the (potential) NP coordination were
animates, making them semantically plausible objects of the
verb. These were the Good Thematic Fit sentences (Example
1a, translated from Dutch). In the 60 Poor Fit sentences, in
contrast, the verb had a strong selectional preference for an
inanimate object and only the first noun of the potential NP
coordination was inanimate (see 2a). Items were not matched
between the Good Fit and Poor Fit conditions.

The sentence’s critical word was the second verb (italicized
in Examples 1 and 2), which always disambiguated towards
the S-coordination reading. Unambiguous versions of the
sentences were constructed by simply introducing a comma
after the second noun (Examples 1b and 2b).

In addition to the experimental sentences, there were 200
filler sentences, 80 of which had unambiguous conjoined ob-
ject NPs. In half of these fillers sentences, both object nouns
were animate; in the other half the first object noun was inan-
imate and the second one animate, mimicking the order of
inanimate/animate nouns in the Poor Fit condition. The other
120 fillers contained relative clauses.

Forty items were paired with a simple comprehension
question in the form of a statement about the sentence. These
were intended to ensure participants would read for compre-
hension.

2The LSTM models, self-paced reading data, and analysis code
are available from https://osf.io/npzc7.
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Participants One hundred and three native Dutch speaking
undergraduate students from Radboud University participated
in the experiment. The data from seven participants were ex-
cluded from analysis because they answered more than 20%
of the comprehension questions incorrectly.3 This left 96 par-
ticipants with analysed data.

Procedure Each participant read 120 experimental sen-
tences, 30 in each of the 2×2 (Ambiguity × Thematic Fit)
conditions. Stimuli were presented using word-by-word,
non-cumulative, moving window self-paced reading. The
sentence appeared when the participant pressed a button, but
only the first word was visible initially. All other characters
(including the comma but excluding spaces and the end-of-
sentence period) were replaced by hyphens. On each sub-
sequent button press, the next word would be revealed and
the previous word changed back to hyphens. If, after com-
pleting the sentence, a comprehension question appeared, the
participant had to indicate by button press whether or not the
statement was correct.

Neural network models
Training corpus Training sentences were selected from the
NLCOW2014 corpus (Schäfer, 2015) which contains individ-
ual Dutch sentences crawled from the web. It is divided into
seven slices with approximately 37 million sentences each.
NLCOW14 treats punctuation marks as individual tokens,
meaning that they are separated from the preceding and the
following word. Because this is incorrect in case of the apos-
trophe, we preprocessed the corpus, reattaching apostrophes
to the word to which they belong.4

For each slice, we extracted the 20,000 most frequent
words without distinguishing between upper- and lower-case
and ignoring any string containing a non-letter other than
the hyphen or apostrophe. Next, this frequent-word list was
joined with the set of word types in the Hoeks et al. (2006)
stimuli. We then selected only and all corpus sentences that
contain only words from the combined word list.5 These sen-
tences form the training data from that slice. The seven train-
ing sets comprised between 8.57 and 9.00 million sentences
(108 to 115 million tokens) each.

Model architecture We trained one LSTM network on
each of the seven training data sets for two epochs. All net-
works had a 300-dimensional input embedding layer, a 600-
unit recurrent layer, a 300-unit non-recurrent layer between
the recurrent and output layers, and softmax output layer with

3There were in fact two versions of the experiment, which dif-
fered only in whether or not the comprehension questions were pre-
sented. Fifty-five of the the 103 participants took part in the version
that included the questions. The data from the two experiment ver-
sions are combined in our analysis.

4In Dutch orthography, apostrophes can occur in the plural suf-
fix -’s and in unstressed forms of pronouns (e.g., m’n, ‘my’) and
determiners (e.g., ’n, ‘a’).

5Single-word sentences and sentences containing over 50 words
were excluded, as were sentences containing a punctuation token
other than the period, comma, exclamation point, and question mark.

one unit for each word type in the training set. No attempt
was made to optimize this architecture. The seven networks
differed only in their output layer sizes and random initial
connection weights.

After processing the first t − 1 words of a sentence, the
network’s output activation for word unit w is its estimate
of P(wt |w1...t−1): the probability that word w will occur at
position t given the word sequence (sentence context) w1 to
wt−1. The surprisal of the actually occurring next word is de-
fined as the negative logarithm of its occurrence probability:
surprisal(wt) =− logP(wt |w1...t−1).

Test sentences All seven networks estimated surprisal on
all experimental sentences in both the Ambiguous (comma
absent) and Unambiguous (comma present) condition. How-
ever, in spite of the training sentence selection method de-
scribed above, 22 of the 120 experimental stimuli sentences
contained one or more words not present in all seven training
data sets. We replaced these words by semantically congru-
ent words from the same syntactic category that did occur in
all training sets. For example, in De politie traceerde de dief
(‘The police traced the thief’) the verb traceerde was changed
to achtervolgde (‘chased’).

Data analysis
We analysed the effect of Ambiguity on surprisal and RT by
fitting Bayesian mixed-effects regression models using the R
package brms (Bürkner, 2018). A positive regression coeffi-
cient for Ambiguity (i.e., βambiguity > 0) indicates higher sur-
prisal or RT on Ambiguous than Unambiguous sentences, that
is, a (predicted) garden-path effect.

The prior for βambiguity was an improper flat distribution
over the real numbers, as is the default in brms. For the RT
analysis, it would have been justified to have the prior be in-
formed by the Hoeks et al. (2006) results. However, we opted
for a flat prior so that exactly the same analysis could be run
for surprisal as for RT. The dependent variable was normal-
ized so the intercept of the regression line is guaranteed to be
0. Hence, we set the strong prior of N (0,0.1) over the in-
tercept. We chose the Exponentially modified Gaussian fam-
ily because of the positive skew in the dependent variables’
distributions. The regression model included as random ef-
fects by-network and by-item random intercepts and random
slopes of Ambiguity. Random-effect priors were the brms
defaults.

Separate analyses were run for the Good and Poor Fit con-
ditions, in addition to analyses including the factors Ambi-
guity, Fit, and their interaction. Both the Ambiguity and Fit
factors were effect coded (±0.5) with positive values for the
Ambiguous and Good Fit conditions. Priors on the Fit and
interaction coefficients were the default improper flat distri-
bution.

Because self-paced reading often leads to so-called
spillover effects, where comprehension difficulty on a word
results in reading slowdown at a later word, we analysed RT
on both the critical word and the immediately following word.
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For completeness, we did the same for the surprisal analysis
even though there is no reason why surprisal effects would
spill over to the next word.

RTs below 50ms or over 4000ms were considered outliers
and removed from analysis, but there were only four such
data points (three on the critical word, one on the post-critical
word).

Results

Effects of ambiguity and thematic fit

The two upper panels of Figure 1 show the posterior proba-
bility densities for the effect of Ambiguity on RT, in the Good
and Poor Fit conditions. The reading time pattern is consis-
tent with the conclusions Hoeks et al. (2006) draw from eye-
tracking data on the same items: The ambiguity leads to a
garden-path effect that is stronger in the Good than Poor Fit
condition. The latter is apparent from the fact that, in Poor Fit
sentences, the effect of Ambiguity occurs only on the critical
word whereas it spills over to (and is even stronger on) the
following word of Good Fit sentences. Table 1 presents the
probability that there is indeed a garden-path effect in each
of the Thematic Fit conditions, as well as the probability of
an interaction such that the Ambiguity effect is larger in the
Good Fit than Poor Fit condition.

This RT pattern is correctly predicted by the LSTM, as can
be seen in the lower panels of Figure 1 as well as in Table 1.
There is a clear effect of Ambiguity on surprisal in both the
Good and Poor Fit conditions, and the evidence for an inter-
action between Ambiguity and Fit is very strong. Surprisal
effects appear on the critical word rather than the post-critical
word, which supports the claim that the post-critical RT ef-
fects are due to spillover of comprehension difficulty that
arises at the critical word.

Effect of network training

As shown in Figure 2, it takes about 1 to 3 million training
sentences for the garden-path effect and its interaction with
thematic fit to appear. These effects continue to grow in size
with additional training.

Table 1: Posterior probabilities of positive coefficients (i.e.,
P(β > 0)) of Ambiguity and its interaction with Thematic Fit.

Word position
Coefficient Fit Dep. Var. Critical Post-crit.
βambiguity Good RT .98 > .99

surprisal > .99 .18
Poor RT .93 .69

surprisal > .99 .32
βambiguity×fit RT .78 > .99

surprisal > .99 .36

Item-level analysis
To investigate whether LSTM surprisal accounts for garden-
path effects at the item level, surprisal was averaged per
sentence over the seven fully trained networks, and log-
transformed RTs were averaged per sentence over partici-
pants as well as over the critical and post-critical words. Fig-
ure 3 shows a scatter plot of average surprisal against aver-
age log-RT, excluding the 22 sentences that were adapted for
LSTM processing. Clearly, the surprisal estimates are unable
to explain garden-path effects at the level of individual sen-
tences.

Discussion
Surprisal and reading time
Patterns of surprisal on the critical word matched the self-
paced-reading results (as well as Hoeks et al.’s, 2006, eye-
tracking data) albeit not at the individual item level. When
comparing between experimental conditions, surprisal was
higher when the sentence contained a local ambiguity (e.g.,
the LSTMs predict a garden-path effect) and this effect of
Ambiguity was reduced (but not absent) when poor thematic
fit between the verb and a following noun made the correct
S-coordination reading more semantically appropriate before
the disambiguating word. These results again demonstrate
the power of RNNs to learn fairly subtle structural and se-
mantic aspects of language, and thereby account for human
processing behaviour.

The absence of effects on surprisal at the post-critical word
supports the interpretation that the effect on RT here is caused
by spillover from the critical word, as Hoeks et al. (2006) also
conclude on the basis of their eye-tracking data. In that study,
the authors found the garden-path effect to be more short-
lived on Poor compared to Good Thematic Fit sentences. Our
analysis of self-paced RTs shows the same pattern, in that the
effect has disappeared on the post-critical word in the Poor
Fit but not in the Good Fit condition. This suggests there
may be a qualitative difference in the garden-path effects be-
tween the Thematic Fit conditions, that is not captured by the
unidimensional surprisal measure.

Structural processing in RNNs
As explained in the Introduction, garden-path effects have
been explained in terms of syntactic reanalysis, or probabilis-
tically in terms of the redistribution of probability mass over
syntactic structures. However, RNNs do not encode syntac-
tic structure, at least not explicitly, so why did our networks
correctly predict the garden-path effect?

One possibility is that the correspondence between sur-
prisal and reading time is just an artefact of the experimen-
tal items. Possibly, the mere presence of a comma speeds up
reading at the critical word, but less so in the Poor Fit Sen-
tences, without any relation to the garden-path phenomenon.
However, even if this is the case, it leaves unexplained why at
least three other garden-path effects have been explained by
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Figure 1: Posterior probability densities of the Ambiguity coefficient. Top: effect on RT; bottom: effect on word surprisal. Left:
effect at critical word; right: effect at post-critical word.

Figure 2: Estimated coefficient of Ambiguity at the critical
verb in the surprisal analysis, as a function of number of train-
ing sentences and thematic fit. Shaded areas represent 95%
Credible Intervals.

LSTM surprisal (Futrell et al., 2018; Van Schijndel & Linzen,
2018).

Alternatively, garden-path effects could be merely due
to incorrect next-word prediction, as reflected in high sur-
prisal on the disambiguating word. This would imply that
there is no qualitative difference between comprehension dif-
ficulty due to a garden-path and due to an unlikely word
co-occurrence. However, this seems implausible consider-
ing that ERP studies have shown that garden-pathing leads
to a P600 effect (Osterhout & Holcomb, 1992; Osterhout,
Holcomb, & Swinney, 1994) while higher surprisal in non-
garden-path sentences corresponds to a stronger N400 com-

Figure 3: Garden-path effects in surprisal estimates and log-
transformed RT, with regression line per Thematic Fit condi-
tion.

ponent (Delaney-Busch, Morgan, Lau, & Kuperberg, 2019;
Frank, Otten, Galli, & Vigliocco, 2015). Moreover, the ini-
tially preferred, but incorrect, reading of the ambiguity in
a garden-path sentence can ‘linger’ (Christianson, Holling-
worth, Halliwell, & Ferreira, 2001; Patson, Darowski, Moon,
& Ferreira, 2009) which shows that such an interpretation was
indeed entertained.

Possibly, being led up the garden path also results in in-
correct next-word prediction and the reading time effect that
comes with garden pathing actually reflects the resulting sur-
prisal increase rather than the update of a structure or inter-
pretation. However, this is not a particularly satisfying expla-
nation as it would mean that the cognitive work of reanalysis
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is itself not reflected in longer reading time.
Hence, we tentatively conclude that the LSTMs learn rep-

resentations that capture relevant aspects of sentence struc-
tures/interpretations. As words come in, the network per-
forms probabilistic, incremental reinterpretation, and gener-
ates word surprisal values that reflect the amount of represen-
tation update required to incorporate the word into the sen-
tence representation under construction.

Conclusion
Word surprisal values estimated by LSTM models mirrored
human reading times on garden-path sentences, predicting
both the garden-path effect itself and its interaction with the
manipulation of thematic fit between a verb and its potential
object noun. This finding yet again demonstrates LSTMs’
ability to extract structural aspects of language by learning to
do next-word prediction in flat, unannotated text. Investiga-
tions of the neural networks’ internal state are needed to sub-
stantiate this claim. If such an investigation fails to reveal evi-
dence of structure representations in the networks, this would
raise doubt about the necessity for structure building and re-
vision in an explanation of garden-path phenomena.
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