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Abstract: Global warming, alterations of ecosystems, and sunk investments

all imply irreversible changes with uncertain future costs and benefits. Two

concepts measure how this combination of uncertainty and irreversibility

changes the value of preserving an ecosystem or postponing an investment.

First, the environmental and resource economics literature developed the

Arrow-Fisher-Hanemann-Henry quasi-option value. Second, the real options

literature developed the Dixit-Pindyck option value. This paper clarifies

the precise differences between the two approaches in a simple two period

model. We explain that the quasi-option value captures the value of learning

conditional on preservation, while the Dixit-Pindyck option value captures

the net value of preservation under learning. We show how either of the two

concepts alters the common net present value decision rule. We illustrate

similarities, differences, and the decision rules in two instructive examples.
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What’s the Option?

1 Introduction

Climate change propels irreversible change to a new order of magnitude:

global warming can annihilate ice sheets, coral reefs, the Amazon, and is-

lands, and it can permanently alter ocean currents, ecosystems, and human

habitats. On a smaller scale, man’s altering of his environment has long in-

cluded irreversible changes, including species extinction as well as the spread-

ing of invasive species. Irreversible changes pose a challenge to conventional

benefit cost analysis when the consequences of these changes are not fully

understood and cannot be priced with certainty at the time of action. In

the presence of irreversibility, postponement or omission of a project can be

optimal even if the expected net present value is positive.

Arrow & Fisher (1974), Henry (1974) and Hanemann (1989) realized the

shortcoming of conventional cost benefit analysis and developed the Arrow-

Fisher-Hanemann-Henry quasi-option value, which attaches value to envi-

ronmental preservation in the presence of irreversibility. This option value in

environmental and resource economics developed independently from a re-

lated concept in the finance literature, until Dixit & Pindyck (1994) spread

the work on real options analysis to a broad audience. Fisher (2000) tried

to establish the equivalence between Dixit-Pindyck’s option value and the

quasi-option value. However, Mensink & Requate (2005) clarified that the

two option values differ.

The current paper demonstrates that the quasi-option value captures the

value of learning conditional on preservation, while the Dixit-Pindyck option

value captures the (net) value of preservation under learning. We establish

the general relation between the two option values, extending Mensink &

Requate’s (2005) result regarding their difference. Getting at the interaction

between option values and decision rules, we show how each of the two option

values changes the common net present value rule for project evaluation.

Combing general results and instructive illustrations, the paper also sets

out to introduce the theory of option value in environmental and resource

economics to a broader audience.
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2 Irreversibility and Learning

This section introduces the setting and the optimal decision anticipating

learning under an irreversibility constraint. Subsequently, it defines different

present values from undertaking or postponing the project in the presence or

absence of learning. These present values will later help to define, interpret,

and relate the option values.

2.1 The Setting

We need two periods for deriving our insights on the option and the quasi-

option value. In the first period, the decision maker faces the discrete decision

to either preserve or alter an ecosystem. We denote preservation in the first

period by x1 = 0 and alteration by x1 = 1. If the decision maker preserves

the ecosystem in the first period, he again has the option to either preserve

the system (x2 = 0) or to alter it (x2 = 1) in the second period. However,

if the decision maker decides to alter the system in the first period, then

this change is irreversible (x1 = 1 ⇒ x2 = 1). In the first period, the

decision maker is uncertain about the costs and benefits of his actions. By the

beginning of the second period, this uncertainty has resolved. Alternatively,

the decision variable x can specify a sunk investment determining uncertain

future payoffs. In this case, the decision maker can either invest irreversibly

in the first period (x1 = 1 ⇒ x2 = 1) or, if he does not invest in the first

period, he can still do so in the second period.

The function v(x1, x2, θ̃) = u1(x1) + u2(x1, x2, θ̃) characterizes welfare.

The random variable θ̃ represents the uncertain component of the problem,

i.e., the value of the ecosystem, the value of the investment, the importance of

particular climate functions, and/or the cost of global temperature increase.

The true value of θ̃ is revealed between period 1 and period 2. None of the

subsequent analysis relies on the additive separability assumed in the welfare

function.1 Note that the welfare function allows stock effects to carry over

1The reader can literally replace u1(x1)+u2(x1, x2, θ̃) with v(x1, x2, θ̃) in the remaining
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from one period to the next. In many applications, including the original

definition by Dixit & Pindyck (1994), the utility functions are replaced by

monetary payoffs to describe risk neutral firms. Similarly to Mensink &

Requate (2005), we extend Dixit & Pindyck’s (1994) option value to permit

more general welfare effects.

A fully sophisticated decision maker anticipates in the first period that

his decision in the second period will be based on better information. Once

in the second period, he will max
x2∈{x1,1}

u2(x1, x2, θ) for a given x1 and a given

realization θ̃ = θ. The irreversibility constraint restricts his second period

choice variable to the set {x1, 1}: if x1 = 1 the project has been carried out

already and cannot be undone. Anticipating the second period action, the

first period decision maker optimizes the expected payoff over x1:

max
x1∈{0,1}

IE max
x2∈{x1,1}

v(x1, x2, θ̃)= max
x1∈{0,1}

u1(x1) +IE max
x2∈{x1,1}

u2(x1, x2, θ̃). (1)

In summary, the optimal decision first maximizes second period welfare for

every possible realization of θ̃ and x1, and only then takes expectations and

optimizes over the first period choice variable x1.

2.2 Present Values

To define, interpret, and relate the different option values, we make use of

a set of present values. They differ in the amount of information or sophis-

tication that they incorporate. First, we denote the value of preserving the

ecosystem in the first period to a decision maker who anticipates learning

(“l”) by

V l(0) = u1(0) + IE max
x2∈{0,1}

u2(0, x2, θ̃) .

equations. The general form incorporates that currently experienced welfare can depend

on the future welfare distribution.
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We denote his value of developing the ecosystem in the first period by

V l(1) = u1(1) + IE max
x2∈{1}

u2(1, x2, θ̃) = u1(1) + IEu2(1, 1, θ̃) .

Second, we spell out the present values for a decision maker who does

not anticipate learning about the realization of the random variable before

choosing x2. Preserving the ecosystem in the first period then yields the

present value

V p(0) = u1(0) + max
x2∈{0,1}

IEu2(0, x2, θ̃) ,

while altering the system implies

V p(1) = u1(1) + IEu2(1, 1, θ̃) .

In these definitions, the index “p” denotes the possibility of postponing the

decision on ecosystem development (or investment).

Third, the decision maker considers only the possibility of developing (or

investing) now or never (“n”). In this case we have

V n(0) = u1(0) + IEu2(0, 0, θ̃) ,

for the value of future welfare if not developing the valley (not investing),

and

V n(1) = u1(1) + IEu2(1, 1, θ̃) ,

describing the value of developing the valley (investing) in the first period.

Alternatively, we can think about the last setting as describing a naive deci-

sion maker who uses the simplest form of a net present value calculation to

decide whether to invest today or not to invest today.

We note the trivial relationship that V n(1) = V p(1) = V l(1) because a

first period development implies that there is no more choice to be taken

in the second period. Making use of the present values defined above, the
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decision rule (1) tells us that altering the ecosystem or undertaking the in-

vestment in the present period is optimal if and only if

V l(1)− V l(0) > 0 . (2)

3 The option values

This section introduces the Arrow-Fisher-Hanemann-Henry quasi-option value

and the Dixit-Pindyck option value. We elaborate their interpretations and

state some preliminary observations regarding their informational content.

3.1 Learning Conditional on Postponement:

The Quasi-Option Value

The most common evaluation approach for investments, or ecosystem im-

pacts, is the expected net present value (NPV) approach. It takes the dif-

ference between the expected aggregate costs and benefits in present value

terms.2 The approach stipulates that we carry out the project if the net

present value is positive. In our notation, this decision rule suggests invest-

ing if, and only if,

NPV ≡ V n(1)− V n(0) ≥ 0 .

Arrow & Fisher (1974), Henry (1974), and Hanemann (1989) point out that

this naive decision rule does not optimize welfare in the case of irreversibility

and learning. They show the existence of an additional value when preserving

an ecosystem, or postponing an investment, a value not captured in the net

present value calculation. This additional value received the name quasi-

option value (QOV).

2Making u1 a money metric utility in the analyzed changes trivially translates the

welfare units into consumption units, if desired.
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In our setting, the quasi-option value is captured by the difference between

the value from preserving the ecosystem under learning, and the value from

preserving the ecosystem without anticipating new information:

QOV = V l(0)− V p(0) . (3)

Our notation fleshes out that the quasi-option value specifies the value of

learning conditional on postponement. We evaluate both present values in

the defining equation (3) for a postponement of the project (i.e. zero). Hence,

the QOV captures a difference that is conditional on postponement. The first

term, V l(0), takes into account the anticipation of learning, while the second

term, V p(0), only incorporates the option to postpone, but does not take

into account that future decisions can incorporate new information. Observe

that the quasi-option value is always (weakly) positive: the ability to (or

anticipation of) learning cannot reduce the present value.

We make the following observation. Considering a postponement of the

project, the full value of sophisticated decision making is given by the dif-

ference V l(0) − V n(0). This full value of sophistication can be larger than

the mere quasi-option value. We decompose this full value of sophistication

conditional on not carrying out the project in the first period as follows

V l(0)− V n(0)︸ ︷︷ ︸
full sophistication

= V l(0)− V p(0)︸ ︷︷ ︸
quasi-option value (QOV)

+ V p(0)− V n(0)︸ ︷︷ ︸
simple option value (SOV)

. (4)

The last term will feature prominently in the modified decision rules and the

relationship between the quasi-option value and the Dixit-Pindyck option

value. We named it the simple option value. It captures the value of the

option to postpone the project without incorporating new information. We

can paraphrase it as the value of the option to carry out the project in the

second period, conditional on not carrying out the project in the first period,

in the absence of information flow. The simple option value, like the other

option values, is always (weakly) positive: the option to carry out the project

in the second period cannot reduce welfare.
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3.2 Postponement under Learning:

The Dixit-Pindyck Option Value

A different concept of option value is defined by Dixit & Pindyck (1994),

who develop the similarity between investment projects and financial options.

This perspective is known as the real options approach. Translated into our

slightly more general welfare setting, Dixit & Pindyck (1994, 97) define the

value of the option to postpone the project as

DPOV ≡ max{V l(1), V l(0)} −max{V n(1), V n(0)} . (5)

The Dixit-Pindyck option value (DPOV) is the maximal value that can be

derived from the option to invest now or later (incorporating learning) less

the maximal value that can be derived from the possibility to invest now or

never. Also, the Dixit-Pindyck option value is always positive.3

In the following, we show that the DPOV captures the net value of project

postponement conditional on learning. For this purpose, we express the

DPOV in terms of the present values defined in section 2.2. The following

notation from the option value literature proves useful:

[x]+ = max{x, 0} and [x]− = min{x, 0} .

This notation allows us to rewrite the Dixit-Pindyck option value as

DPOV = V l(1) +
[
V l(0)− V l(1)

]
+
−

{
V n(1) + [V n(0)− V n(1)]+

}
=

[
V l(0)− V l(1)

]
+
− [V n(0)− V n(1)]+ . (6)

Limiting the value to its positive domain, the [·]+ operation turns a value

into an option value: the option to postpone cannot reduce (expected) welfare

because it is only an option, not an obligation. The heart of the DPOV is the

first term in the equation (6). It states the option value of postponement,

given learning in an irreversible environment.

3We know that V l(1) = V n(1) and V l(0) ≥ V n(0).
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The second term in equation (6) characterizes the value of the option

never to invest. The option to never invest has a positive value if and only

if the net present value of the project is negative. The DPOV subtracts this

value from the value of the option to postpone under learning. In conse-

quence, the DPOV captures only that part of the option value from post-

poning that exceeds a potential net present value loss. We can flesh out this

intuition by rewriting equation (6) as

DPOV =
[
V l(0)− V l(1)

]
+
+ [NPV ]− . (7)

If the net present value is positive, the DPOV characterizes the value of the

option to postpone under learning
[
V l(0)− V l(1)

]
+
. If the net present value

is negative, we subtract the expected loss − [NPV ]− from the value of the

postponement option, and only capture the collectible value of postponement

in the DPOV.4 Therefore, the DPOV is a net value from postponement

conditional on learning.

4 Relating Option Values and Decisions

Sections 3.1 and 3.2 defined and explained the different content of the Arrow-

Fisher-Hanemann-Henry quasi-option value and the Dixit-Pindyck option

value. The first captures the value of learning conditional on postponement,

while the second captures the value of postponement under learning. We

now proceed to show how these two net present values alter the common net

present value decision rule. Subsequently, we state the general relationship

between the two different option values, extending a result by Mensink &

Requate (2005).

4Note that the first term is always weakly greater than the absolute of [NPV ]−.
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4.1 Decisions on Project Execution versus Postpone-

ment

How do the insights provided by Arrow, Fisher, Hanemann, Henry, Dixit,

and Pindyck change the simple, most common decision rule of cost benefit

analysis? We now state how either of the two option values modifies the

simple net present value rule stating that a project is to be carried out if

and only if NPV > 0. First, we show how Arrow, Fisher, Hanemann, and

Henry’s insights on the quasi-option value interact with the net present value

in an optimal decision rule.

Proposition 1 (Quasi-Option Value): The sophisticated decision maker

who anticipates learning is

i) strictly better off undertaking the project in the present if, and only

if,

NPV > QOV + SOV , (8)

ii) strictly better off postponing the project if, and only if,

QOV + SOV > NPV ,

iii) and indifferent to the timing otherwise.

A necessary condition for undertaking a project in the present is now that the

net present value NPV exceeds the quasi-option value QOV . A necessary

and sufficient condition for optimality of present action is that the net present

value exceeds the sum of the quasi-option value and the simple option value

SOV . The quasi-option value only captures the value of learning conditional

on postponement; the complete right hand side of equation (8) captures the

full value of sophistication conditional on postponing the project. This full

value is composed of the value of learning as well as the mere value of having

the option to carry out the project in the second period (as opposed to a now

or never decision). The simple option value captures that the opportunity

cost of dismissing the project today is not the NPV itself, but rather the
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cost of delaying the NPV (without learning). If the (net) payoff from a

delayed project and the value of learning by delaying the project exceed the

net present value, then the policy maker should postpone the project.

Second, we show how Dixit Pindyck’s option value qualifies the net present

value rule.

Proposition 2 (Dixit-Pindyck Option Value): The sophisticated deci-

sion maker who anticipates learning is

i) better off undertaking the project in the present if

NPV > 0 and DPOV = 0 ,

ii) strictly better off postponing the project if

DPOV > 0 ,

iii) and better off never undertaking the project otherwise.

Using the Dixit-Pindyck option value, a sufficient condition for undertaking

the project in the present is that the net present value is strictly positive

and the DPOV is zero. Whenever the DPOV is strictly positive, the policy

maker is better off postponing the project.

We point out two implications of Proposition 2 that easily slips the at-

tention. First, when the Dixit-Pindyck option value is zero, both can be

strictly welfare increasing: undertaking the project in the present, and never

undertaking the project, i.e., postponing it forever (statement ii is if, not

only if). Second, even if the DPOV is zero and the NPV is strictly positive,

the policy maker might be as well off from postponing the project as from

undertaking the project in the present (statement i is a weakly rather than

a strictly better off). This happens in the situation where the value of full

sophistication under postponement equals the net present value.

The intuition why the cases in Proposition 2 differ from those in Proposi-

tion 1 is the following. Whenever there is an additional value to waiting, then

QOV +SOV > 0. Whenever this value is larger than the value of undertak-

ing the project in the present, then QOV + SOV > NPV . So, quasi-option
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and simple option value measure the immediate value from waiting. If, and

only if, this value is greater than the value of not waiting, the policy maker

should postpone the project. In contrast, the Dixit-Pindyck option value

only measures the value from postponement that is due to sophistication

and collectible. If the value of waiting is strictly dominated by the value

of undertaking the project QOV + SOV < NPV , the Dixit-Pindyck option

value is zero. But also if QOV + SOV > NPV , the Dixit-Pindyck option

value can be zero if postponing, or better discarding, the project is optimal

even for the naive net present value maximize NPV < 0.

4.2 The Relationship Between QOV and DPOV

The quasi-option value measures the value of learning under postponement.

The Dixit-Pindyck option value measures the collectible net benefit from

postponement under learning. The following proposition states the precise

relationship between these distinct option values.

Proposition 3: The Dixit-Pindyck option value (DPOV) and the Arrow-

Fisher-Hanemann-Henry quasi-option (QOV) value relate as

DPOV = QOV + SOV − [NPV ]+ −
[
V l(0)− V l(1)

]
− . (9)

We first assume that the value of postponement under learning is positive,

implying both
[
V l(0)− V l(1)

]
− = 0 and DPOV > 0. In addition, let the net

present value of the project be zero. Then, the Dixit-Pindyck option value

measures jointly QOV + SOV , the value from learning conditional on post-

ponement and the value from a postponed implementation in the absence

of learning (as opposed to no implementation at all). If the only value of a

postponed project stems from learning (SOV = 0), then the Dixit-Pindyck

and the quasi-option value coincide. See section 5.1 for an example. More

interesting is the case where the net present value of the project is strictly

positive. Then, the Dixit-Pindyck option value only measures the surplus
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that postponement creates over direct implementation, and we have to sub-

tract the NPV of the project from the value achieved under postponement

QOV + SOV . If the net present value is negative, then the DPOV does

not add this loss from implementing the project in the present to the value

of postponement, but only measures the surplus from postponement over

dismissing the project.

Second, we assume that the value of postponement under learning is neg-

ative, implying
[
V l(0)− V l(1)

]
− < 0. Then, even under learning, the best

option is to carry out the project straight away (assuming NPV > 0). The

quasi-option value and the simple option value can still both be positive:

conditional on not undertaking the project today, there can still be a posi-

tive value from learning and from carrying out the project tomorrow. These

values, however, are not large enough to make postponement worthwhile;

they don’t outweigh the benefit from carrying out the project straight away,

QOV + SOV − NPV < 0. Then, the option of postponement will be dis-

missed and the Dixit-Pindyck option value is zero rather than negative: the

formula in equation (9) subtracts the negative value of postponement under

learning.

We briefly relate equation (9) to a closely related result by Mensink &

Requate (2005). The authors derive the relationshipDPOV = QOV +PPV ,

where PPV stands for pure postponement value. In our setting, we find

PPV = V p(0) − V n(1) = SOV − NPV . The pure postponement value

directly captures the net surplus, in the absence of learning, from carrying

out the project in the second period as opposed to carrying it out in the

present. As the authors note, the PPV can also be negative and, thus, is

not an option value. To derive this most interesting special case of the general

relationship (9), Mensink & Requate (2005) assume that the first maximum

in equation (5), defining the DPOV , is taken on by V l(0), and that the

second maximum in equation (5) is taken on by V n(1). These assumptions

navigates elegantly around the option nature of the DPOV, which introduces
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the modification in the general relationship (5).5

5 Examples

This section illustrates the different option values and their applications.

The first example illustrates how the Arrow-Fisher-Hanemann-Henry quasi-

option value makes postponement worthwhile. It also serves as an example

where QOV and DPOV coincide. The second example illustrates the case

where QOV and DPOV differ.

5.1 Coinciding QOV and DPOV

We assume two possible states of the world. In the state θ̃ = θ, preservation

of an ecosystem has a high payoff, e.g. because it performs important climate

regulating functions, or because its biodiversity inspired important pharma-

ceuticals. If θ̃ = θ, preservation has a low payoff. Similarly, an irreversible

investment could either result in a successful new technology or a flop. When

the project is not carried out, welfare is zero independent of the period and

the state of the world: u1(0) = u2(0, 0, θ) = u2(0, 0, θ) = 0. If the policy

maker decides to undertake the project in the present, he pays an immedi-

ate cost, yielding u1(1) = −1. In the high payoff state, he faces the welfare

u2(1, 1, θ) = 2; in the low payoff state, he faces the welfare u2(1, 1, θ) = 0. If

5In comparing our setting to Mensink & Requate (2005), note that the NPV abbrevi-

ation in their setting does not truly measure the net present value of the project, which is

the expected present value difference between carrying out and dismissing the project. In-

stead, the authors define the NPV to be the maximum of either the absolute welfare when

presently carrying out the project, or the absolute welfare when dismissing the project for

all time. In consequence, if e.g., the welfare in the baseline without the project is larger

than zero, then their NPV is also strictly positive, no matter what the project costs or

pays. This peculiarity is of no further relevance in their paper, as they do not analyze

how the option values alter the net present value decision rule, but could be potentially

confusing if the reader tries to relate their formulas to the corresponding special case of

our setting.
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the policy maker undertakes the project in the second period, he discounts

both upfront cost and future benefits at the discount factor β, implying

u2(0, 1, θ) = β(−1 + 2) = β and u2(0, 1, θ) = −β.6

The example implies an expected net present value NPV = 0, as well

as a simple option value SOV = 0: Without learning, also a postponed

implementation of the project has a zero expected net value.7 Without the

anticipation of learning, the decision maker would be indifferent between

carrying out or postponing the project. However, Arrow-Fisher-Hanemann-

Henry teach us that we have to take into account our ability to learn when

postponing the project. Their quasi-option value, QOV = 1
2
β, captures the

value of learning under postponement and, here, tells the policy maker that

postponement of the project is strictly better than carrying out the project

in the present: QOV + SOV > NPV .

The Dixit-Pindyck option value gives us directly the total value of post-

ponement, in a setting with learning. We calculate DPOV = 1
2
β and learn

once more that postponement of the project increases welfare. In this ex-

ample, the value of postponing the project is entirely due to the value of

learning. Therefore, Dixit and Pindyck’s option value coincides with the

quasi-option value of Arrow-Fisher-Hanemann-Henry.

We close the first example with a slight variation. We reduce the welfare

in the high payoff state from 2 to 3
2
, creating a negative NPV = −1

4
.8 The

trivial finding is that SOV = 0 > NPV = −1
2
now implies that the quasi-

option value insight is no longer needed to realize that dismissing the project

in the first period is welfare increasing. Obviously, given NPV < 0, the

6Note that u2 already discounts second period welfare to the present. Carrying out

the project in the present, we think of w+ = u2(1, 1, θ̃) as the infinite stream of welfare

changes following the upfront investment w− = u1(1), both measured in present value

welfare units. Undertaking the project only in the second period, the policy maker in

the second period faces the welfare change of u2(0, 1, θ̃) = w− + w+, and these values are

discounted to first period welfare using the discount factor β.
7We find V n(1) = V p(1) = V l(1) = 0, V n(0) = V p(0) = 0, and V l(0) = 1

2β.
8The reduction of welfare in the high payoff state implies u2(1, 1, θ) =

3
2 and simulta-

neously u2(0, 1, θ) = β(−1 + 3
2 ) =

1
2β.
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decision maker does not even have to realize the possibility of postponement

in order to take the right decision. More interestingly, we note that the

QOV and the DPOV continue to coincide. The value of learning under

postponement is now QOV = 1
4
β. The gross value of postponement, in a

setting with learning, is V l(0) − V l(1) = 1+β
4
. It is larger than the mere

value of learning conditional on postponement captured by the QOV : even

without learning and/or any sophistication, the policy maker gains −NPV =
1
4
from not carrying out the project. However, the DPOV only captures the

collectible net value of postponement, i.e., the value exceeding the option

to entirely dismiss the project. Subtracting the loss from undertaking the

project in the present from the gain of postponement yieldsDPOV = V l(0)−
V l(1) + [NPV ]− = 1

4
β.

5.2 Distinct QOV and DPOV

We modify the example in section 5.1 to yield a positive NPV . Let the

payoff in the high state θ be u2(1, 1, θ) = 4 instead of 2 as above. To be

consistent, we also increase the payoff from the high realization when carrying

out the project in the second period: u2(0, 1, θ) = β(−1 + 4) = 3β. We find

NPV = 1 and SOV = β.9 Here, the SOV is simply the discounted expected

value from carrying out the project in the second period. We assume a

strictly positive discount rate (β < 1). Neglecting the value of learning under

postponement, the policy maker would now strictly prefer to undertake the

project in the present: SOV < NPV . However, given the policy maker has

read Arrow-Fisher-Hanemann-Henry, he finds that postponement comes with

an additional value from learning: QOV = 1
2
β. As long as his discount factor

satisfies β > 2
3
, he can increase welfare by postponing the project because

SOV +QOV > NPV .

How does a policy maker address the project if he read Dixit and Pindyck

instead of Arrow-Fisher-Hanemann-Henry? He calculatesDPOV= [3
2
β − 1]+.

9We calculate V n(1) = V p(1) = V l(1) = 1, V n(0) = 0, V p(0) = β, and V l(0) = 3
2β.
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Realizing that DPOV > 0 as long as β > 2
3
, the Dixit-Pindyck reader draws

the same conclusion as the policy maker of the previous paragraph: the value

of postponement, in a setting with learning, is positive and postponement

increases his welfare.

In the current example, the Dixit-Pindyck option value differs from the

Arrow-Fisher-Hanemann-Henry quasi-option value. Our change with respect

to section 5.1 has driven two wedges between these two option values. First,

the simple option value SOV is now positive: the option to carry out the

project in the second period, if it is postponed, is now valuable even without

learning. Collecting the total value from postponement, the DPOV picks up

the SOV as well. Second, undertaking the project in the first period now has

a strictly positive payoff. The DPOV only measures the collectible value of

the option to postpone. It therefore subtracts the value from carrying out

the project right away (NPV = 1) from the gross value of postponement

(QOV + SOV = 3
2
β).

Finally, assuming β < 2
3
introduces a third wedge, [V l(0) − V l(1)]− =

3
2
β−1 < 0, between the DPOV and the QOV, implying that all terms in equa-

tion (9) contribute non-trivially. The value of postponement V l(0)− V l(1)

becomes negative. Full sophistication conditional on postponement still has

the positive value QOV + SOV . However, this value no longer outweighs

the benefits NPV from carrying out the project right away. Then, the

option to postpone is not exercised, and we have to subtract the negative

[V l(0)− V l(1)]− from QOV + SOV −NPV to keep Dixit-Pindyck’s option

value at zero (as opposed to a strictly negative net value of a postponement

obligation).

6 Conclusion

We have explored the differences and similarities between Arrow, Fisher,

Hanemann, and Henry’s concept of quasi-option value and the Dixit-Pindyck

option value in a simple, but general, two period welfare model. The Dixit-
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Pindyck option value captures the collectible net value from postponing a

project under learning. The Arrow-Fisher-Hanemann-Henry quasi-option

value captures the value of learning conditional on the project’s postpone-

ment. We showed how these values differ in general, and how they relate in

examples.

We explained how these option value concepts change the common net

present value decision rule. Using Dixit-Pindyck’s option value, we first

have to check the option value’s sign. If it is positive, we postpone the

project. If it is zero, we use the usual expected net present value decision

rule: we undertake the project if the NPV is positive, and dismiss it if

the NPV is negative. Using the quasi-option value instead, we compare its

magnitude directly to the NPV . If the quasi-option value dominates the

NPV , we increase welfare by postponing the project. If, however, the quasi-

option value does not dominate the NPV , we have to calculate an additional

quantity, which we called the simple option value. This additional quantity

captures the value of postponing the project as opposed to dismissing it,

ignoring informational changes. Only if the NPV dominates the sum of this

simple option value and the quasi-option value is it optimal to carry out the

project in the present.

As a mere decision rule, the Dixit-Pindyck option value is likely to be

the most straightforward approach, capturing directly the net welfare gain

from a sophisticated postponement. If the option values should also convey

information about the trade-offs at stake, then the quasi-option value ap-

proach, in combination with the simple option value, is likely more useful:

it pinpoints directly the gain from learning as well as the opportunity cost

from waiting without learning.
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Appendix

Proof of Proposition 1: Using V n(1) = V p(1) = V l(1) and equation (4)

we find

V l(0)− V l(1) = V l(0)− V n(0) + V n(0)− V l(1)

= QOV + SOV −NPV . (10)

The proposition follows immediately from combining equation (10) with the

optimality rule (2). 2

Proof of Proposition 2:

i) Given NPV > 0, equation (7) implies DPOV =
[
V l(0)− V l(1)

]
+

= 0

⇒ V l(1) ≥ V l(0). Thus, the sophisticated decision maker gains the highest

expected welfare from carrying out the project in the current period. Note

that in the subcase, where V n(1) = V l(1) = V l(0) > V n(0), the decision

maker is indifferent. As we expect from Proposition 1, in this subcase, the

value of full sophistication under postponement V l(0)−V n(0) equals the net

present value V n(1)− V n(0).

i) If the Dixit-Pindyck option value is strictly positive we know from equa-

tion (7) that
[
V l(0)− V l(1)

]
+
> 0 and, thus, equation (2) is satisfied, im-

plying optimality of postponing the investment project.

iii) The remaining case is DPOV = 0 and NPV ≤ 0. From equations (6)

and (7) we then find[
V l(0)− V l(1)

]
+
= [V n(0)− V n(1)]+ = −[NPV ]− ≥ 0 . (11)

Let us first assume a strict inequality. Then V l(0) = V n(0) > V l(1) = V n(1).

It follows immediately that postponement is optimal. It also follows from

V l(0) = V n(0) that in all states of the world the choice x2 = 0 is (weakly)

maximizing welfare. Thus it is optimal never to carry out the project. Now

let us assume that equation (11) holds with equality. If V l(0) = V l(1), then

everything goes through as above (because we know that V n(0)−V n(1) ≥ 0
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from NPV ≤ 0). The remaining case where V l(0) < V l(1) would imply

V l(0) < V l(1) = V n(1) ≤ V n(0). But this statement contradicts the tautol-

ogy V l(0) ≥ V n(0) and therefore the case is the empty set. 2

Proof of Proposition 3: Using (7), we find

V l(0)− V l(1) = DPOV − [NPV ]− +
[
V l(0)− V l(1)

]
− . (12)

Equating the right hand sides of equations (10) and (12), we obtain

DPOV = QOV + SOV −NPV + [NPV ]− −
[
V l(0)− V l(1)

]
− .

Employing the relation [NPV ]− −NPV = −[NPV ]+ leads to the equation

stated in the proposition. 2
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