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ARTICLE

4K-memristor analog-grade passive
crossbar circuit
H. Kim 1,2, M. R. Mahmoodi 1, H. Nili 1 & D. B. Strukov 1✉

The superior density of passive analog-grade memristive crossbar circuits enables storing

large neural network models directly on specialized neuromorphic chips to avoid costly off-

chip communication. To ensure efficient use of such circuits in neuromorphic systems,

memristor variations must be substantially lower than those of active memory devices. Here

we report a 64 × 64 passive crossbar circuit with ~99% functional nonvolatile metal-oxide

memristors. The fabrication technology is based on a foundry-compatible process with etch-

down patterning and a low-temperature budget. The achieved <26% coefficient of variance in

memristor switching voltages is sufficient for programming a 4K-pixel gray-scale pattern with

a <4% relative tuning error on average. Analog properties are also successfully verified via

experimental demonstration of a 64 × 10 vector-by-matrix multiplication with an average 1%

relative conductance import accuracy to model the MNIST image classification by ex-situ

trained single-layer perceptron, and modeling of a large-scale multilayer perceptron classifier

based on more advanced conductance tuning algorithm.
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Analog-grade nonvolatile memories, such as those based on
floating-gate transistor1–3, phase-change4–6,
ferroelectric7,8, magnetic9, solid-state electrolyte10–13,

organic14,15, and metal-oxide16–28 materials, are enabling com-
ponents for mixed-signal circuits implementing vector-by-matrix
multiplication (VMM), which is the most common operation in
any artificial neural network. Most importantly, such circuits
allow for physical-level in-memory computations in the analog
domain using the fundamental Ohm and Kirchhoff laws, thus
enabling dramatically higher energy and area efficiency in com-
parison with digital solutions. The main advantages of using
passively integrated metal-oxide memristors17,22,24, which are
also referred to as resistive random-access memories (ReRAMs),
are their superior density and lower fabrication cost29. In fact, due
to excellent scaling prospects and analog properties, vertically
integrated ReRAMs might challenge much slower 3D NAND
memories in effective density to enable human-brain-scale inte-
grated electronics.

There has been substantial progress in the development of 1T-
1R memory arrays, in which a memory cell based on a two-
terminal resistive switching element (1R) also includes one
dedicated select transistor (1T), and numerous demonstrations
from academia and industry of using such active memories in
neuromorphic computing circuits—see e.g. refs., 18–20,23,25–27,
and also recent reviews30–34. Perhaps, the most impressive neu-
romorphic functionality was reported based on nonvolatile
TaO2−x devices integrated into 128 × 64 active crossbar arrays—
see details of such devices in ref. 23 and review of many experi-
mental demonstrations based on such technology in refs. 33. The
main weakness of that technology, however, is extremely large, of
the order of 2500 µm2, size of 1T1R cell, and high (mS-scale)
device conductance, which necessitates bulky and energy-hungry
peripheral circuits. In addition, the reported excellent con-
ductance tuning results are partly due to the use of the select
transistor in 1T1R cell, which inhibits half-select disturbance—
the main challenge for achieving high precision tuning in pas-
sively integrated circuits (Supplementary Fig. 1).

The progress in the most prospective, passive analog-grade
ReRAM circuits13,17,21,22,24, however, has been much slower,
mainly because of much stricter requirements for the uniformity
of memory cells’ I–V characteristics (Supplementary Fig. 1). For
example, Xpoint memory—the most advanced commercialized
technology using passively integrated memory devices—operates
in a digital mode. (Such memory is also most likely based on
phase-change materials35, which are less appealing for analog
computing applications due to larger conductance drift over
time.) A promising I–V uniformity results with very tight varia-
tions were reported for stand-alone devices based on organic15

and epitaxial11 materials. The main concern for these recently
developed analog-grade memristors is the compatibility of the
utilized fabrication flows with conventional semiconductor
foundry processes. Reference 21 describes 500-nm half-pitch
32 × 32 circuits based on W/WOx/Pd/Au devices, which were
tuned with 25% precision (estimated from Fig. S3d data) to
implement a sparse encoding algorithm. A similar device tech-
nology was recently used by the same group to demonstrate large-
scale fully integrated complementary metal-oxide-semiconductor
(CMOS)/memristor circuits25. It is not clear, however, if the
reported results in ref. 25 were obtained based on reading con-
ductances after completing the tuning process for all devices in
the crossbar circuit or just a fraction of them, as it was performed
by the same authors in ref. 12. An even more serious and related
concern is a lack of detailed statistics and, most importantly, data
on retention because similar devices were shown to be volatile
due to interfacial switching mechanisms according to the pre-
vious studies36. Another very recent work reported analog-grade

32 × 32 crossbar arrays based on passively integrated Si-alloy:Ag
electrochemical devices13. Though a very impressive 100% device
yield and highly linear state update characteristics were reported,
the main weakness of that work is also poor retention of the
devices. Additional concerns are whether the yield results
reported for 10 × 10 µm2 footprint crosspoint devices will hold for
nanoscale devices and the use of silver in the device stack, a
contaminant typically avoided in CMOS foundry processes.
Reference 28 proposed a very promising concept for a three-
dimensional memristive memory. Unfortunately, all presented
experimental results in that paper were obtained for a rather
unpractical structure based on microscale binary-switching
devices with non-overlapping footprints so that the demon-
strated three-dimensional integration does not improve the
effective memristor density.

Supplementary Table 1 summarizes experimental work on
analog-grade 1T1R and 0T1R metal-oxide memristor crossbars.
As evident from this table, the uniformity, density, and analog
properties of previously reported memristive crossbar circuits are
insufficient for making practical neuromorphic hardware, espe-
cially for running large-scale neural models. The main con-
tribution of this work is to address these challenges by developing
uniform CMOS-compatible fabrication technology for building
larger, conducive for back-end-of-the-line 3D integration cross-
bar array circuits and showing the prospects of such technology
in neuromorphic computing applications. The developed circuits
have ten times more devices and excellent uniformity allowing for
significantly better array-scale conductance tuning precision as
compared to the previous work24 that reported the largest passive
analog-grade memristive crossbar circuits with detailed char-
acterization statistics. Moreover, the demonstrated artificial
neural network is close in complexity to the state-of-the-art
neuromorphic prototypes based on (>10,000 sparser and 10×
more conductive) 1T1R ReRAM devices23,33.

Results
Device fabrication. The developed 64 × 64 crossbar circuit con-
sists of Ti/Al/TiN-based top and bottom electrodes and an Al2O3/
TiO2−x switching layer (Fig. 1). The actual crossbar array
dimensions are (64+ 2) × (64+ 2), with an additional line added
at both sides of the circuit for the top and bottom layers to
achieve better uniformity for the devices in the main array. The
bottom and top electrodes and titanium oxide layers are depos-
ited by reactive sputtering, while aluminum oxide is formed with
an atomic layer deposition (ALD) technique. The bottom elec-
trode is planarized via a combination of chemical-mechanical
polishing (CMP) and etch-back. All crossbar circuit features are
patterned using photolithography and etching process—see
“Methods” sections for more fabrication details.

Though the developed technology builds upon the previous
work on Al2O3/TiO2−x devices, several essential improvements
enable the demonstration of functional larger-scale crossbar
circuits. The similarities are, for example, in that the thin titanium
layer in the electrodes provided adhesion, and, in the case of the
top electrodes, is used to create an ohmic interface with large
oxygen vacancy concentration near the top portion titanium
oxide film17. Instead of relying on precisely controlling
stoichiometry during deposition37, we have opted for thermal
annealing to adjust the oxygen vacancy profile, which results in
the gettering of top electrode titanium metal and diffusion of
oxygen vacancies towards the bottom interface17. Such fine-
tuning of oxygen vacancy doping allows lowering conductances
of as-fabricated memristors and hence reducing voltages for the
device forming (and eliminating the forming step for some), and
is necessary for crossbar integration and improving device
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uniformity. The aluminum oxide layer, with parameters opti-
mized similarly to ref. 17, is integrated into the stack to suppress
device currents at small voltages and bottom-to-bottom line
leakages and hence improve the dynamic on-off range.

Let us stress the importance of several distinctive techniques
that improve line conductances, device uniformity, and yield and
are essential for scaling up the crossbar size. First, aluminum is
selected for its better conductivity, instead of commonly used
noble and other higher-resistance inert materials in other
works17,21,22,24. The inert titanium nitride capping is needed to
avoid aluminum oxidation. Second, patterning via reactive ion
etching, instead of the typically employed lift-off process, allows
fabricating larger (>1/2) aspect-ratio electrodes. It also improves
the quality of top electrodes, e.g., by eliminating the undesirable
formation of kinks at line edges (“rabbit ears”), which are typical
for the lift-off patterning. It also helps avoid sidewall residue
along bottom line edges (Supplementary Fig. 2), which is similar
to gate spacer residue at the Si fin channel during the FinFET
process flow38. Ultimately, the combination of etch-back and
properly calibrated CMP processes (Supplementary Fig. 3)
ensures better step coverage. (On the other hand, planarization
by CMP process only was found to cause significant damage to

the surface of bottom electrodes). It is worth mentioning that ion
milling and CMP techniques have been previously used to
fabricate 2 × 10 × 10 crossbar circuits22; however, the primary
purpose of these techniques was to enable vertical monolithic
integration, while, e.g., line resistance remained large due to the
use of small-aspect ratio Pt electrodes. In addition, there are other
essential differences in the calibration of the planarization step
(see “Methods” section).

Scanning electron microscopy images of the fabricated crossbar
array (Fig. 1i–l) confirm the top electrodes’ smooth planar
topology and their structural isolation with no noticeable sidewall
residue between them. With all the modifications, the developed
fabrication process has a low-temperature fabrication budget. It
can be adopted by silicon foundries for back-end-of-line
integration and vertical monolithic integration of multiple
crossbar arrays.

Device characterization. Current-voltage characteristics for the
as-fabricated devices, i.e., before applying the electroforming
process, are fairly uniform (Supplementary Fig. 4), which is an
essential prerequisite for lowering variations in functional
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Fig. 1 Device fabrication details. a–h Growth and patterning process steps (see “Methods” section for details). For clarity, panel e shows device cross-
section turned out-of-plane by 90 degrees with respect to drawings shown in panels a–d, f–h. Scanning electron microscopy (SEM) images of (i) patterned
bottom electrodes, (j) partially planarized bottom electrodes through chemical-mechanical polishing and etch-back, and (k) a fragment of completed
crossbar array. l SEM image of the full 64 × 64 memristor crossbar array. Bottom left and bottom right insets show, correspondingly, material layers at the
device cross-section with corresponding thicknesses in nanometers, and the packaged chip.
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memristors17,24. To electroform devices, a positive voltage is
applied to the top electrode, while all unselected lines in the
crossbar are floated17. Because of more extensive annealing
compared to previous work24, the currents via as-fabricated
devices (Supplementary Fig. 4b) are just slightly less compared to
the device’s smallest (off-state) current after forming (Fig. 2a)—
see, e.g., the highlighted curves for a specific device in both

figures. The forming voltages are only slightly higher on average
than set voltages and completely overlap for some, making such
devices effectively forming-free. The formed devices show similar
magnitude set and reset voltages (Fig. 2a and Supplementary
Fig. 5b), from 200 µA to 400 µA reset and set switching currents,
2-µA-to-50-µA dynamic current range at 0.25 V, and balanced
I–V characteristics, i.e., I(V) ≈−I(−V) at small voltages. The

Fig. 2 Device characterization results. a Representative I–V curves, measured with quasi-static DC voltage sweeps, for the 36 formed devices of the
6 × 6 subarrays located in the center of the crossbar. For clarity, the curve for one particular device is highlighted. b Retention results for 10 different
devices with data for each device shown with a specific color. The tests for each device are performed 9 times with randomly chosen initial conductance.
The evolution of the conductance was measured at 400 s intervals while continuously baking the crossbar circuit at 100 °C. c The standard deviation of the
absolute conductance change normalized to Gmax= 62.5 µS, i.e., 100% × |Ginitial− Gfinal|/Gmax, as a function of the time interval for several ranges of initial
conductances. Similar to panel b, the top axis corresponds to the measured retention data at 100 °C for 500 devices, with each device tested at 6 different
initial states, while the bottom axis shows extrapolated results. For panels b and c, the bottom axes show extrapolated time at room temperature (RT)
assuming 1.1 eV activation energy (see “Methods” section for details). d The switching endurance results for a crossbar device. The data are obtained by
repeatedly applying alternative polarity sequences of 1-ms voltage pulses. The absolute amplitude of pulse in each sequence is initially 0.8 V and then
ramped up with 0.1 V steps until the device reaches the extreme (i.e., on or off) state. Inset is a zoomed-in portion of the main panel, showing typical
continuous switching during the endurance test. The device is switched about 105 times between its extreme states during the experiment. e Measured
evolution of conductance upon application of increasing amplitude voltage pulses. All parameters of the utilized pulse sequences are similar to those shown
in Fig. 3c inset, except for the 50mV incremental step. f–h Extracted statistics of switching threshold voltages, defined as the smallest absolute voltage at
which device conductance, measured at 0.25 V, change by 20%, shown as (f) histogram and (g, h) voltage maps for (g) set and (h) reset transitions. The
conductances are measured at 0.1 V for panels b–d.
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average nonlinearities, i.e., 0.5 × I(V)/I(V/2), are ~1.1 and ~1.3 for
the on and off state, respectively, at V= 0.25 V.

Accelerated retention tests at 100 °C are performed for 500
devices, with each device tested in 9 different random states
(Fig. 2b). Post-processed experimental results and their extra-
polation for room temperature operation show very promising
retention characteristics (Fig. 2b, c). For example, the extra-
polated results predict that the normalized conductance will drift
on average by ~0.7% over one month at room temperature. In
comparison, the average spread is expected to be less than 1.6%
after two years (Fig. 1c).

Figure 2d confirms excellent switching endurance. It shows the
results of applying 1 million tuning pulses, or effectively,
switching gradually device ~105 times between its extreme on
and off states. Note that the experiment was stopped after
reaching 1M pulses because of the limitations of the experimental
setup and not due to device failure. Furthermore, decent retention
was observed even after the switching endurance experiment
(Supplementary Fig. 5c).

Figure 2e shows measured switching dynamics characteristics
for all the devices in the 64 × 64 array. These data are obtained by
first setting the conductance of each device to 14 μS with 10%
precision. Next, 1-ms-long pulses, with amplitude increased
incrementally in 50 mV steps, are applied to the device. The
device’s conductance is read between each programming pulse at
0.25 V, and the sequence of pulses is stopped once the small-
voltage conductance exceeded 50 μS. After that, we apply a
similar reset/read pulse sequence until the conductance is
switched back to 14 μS. The raw experimental data are used to
extract effective switching thresholds, defined as the smallest
amplitude of a voltage pulse at which the device conductance
changes by more than 20% compared to its initial state (Fig. 2f–h
and Supplementary Fig. 5a,b). According to Fig. 2f, the average
set and reset threshold voltages are 1.19 V and –1.39 V,
respectively, with the standard deviations of 0.31 V and 0.37 V.
Furthermore, there are only 45 (~1.125%) unswitchable devices in
the whole crossbar array. The threshold maps show that faulty
devices are distributed throughout the array and not contributed
by faulty lines but rather stand-alone defects. These failed devices
are most likely due to applying insufficiently high forming/
switching voltages, which we had to bound as a precaution for
avoiding permanent damage to the crossbar circuit. This, in part,
is supported by the tails of the distribution in the switching
threshold voltages. Interestingly, there is a weak positive linear
correlation between set and reset voltage amplitudes (Supple-
mentary Fig. 5b). Additional experimental data on switching
dynamics are collected for model development—see Supplemen-
tary Fig. 7a–d and its the discussion below.

Conductance tuning experiments. The analog properties of the
memristive crossbar circuits are tested by setting crosspoint
device conductances using the fine-tuning algorithm39. Such an
algorithm, similar to incremental step programming of flash
memory devices, is based on applying a sequence of smaller-
voltage non-disturbing read and larger-voltage write pulses, with
a sign and amplitude of write pulses are adjusted dynamically
based on the measured conductance at read pulses. An example
of applying such a write-verify algorithm is illustrated in Fig. 3a,
which shows the evolution of the low-voltage conductance of a
specific device upon its forming, resetting to 20 µS and then
tuning to 10 µS, 100 µS, and 8 µS target conductance values. Note
the polarity of the tuning pulses in the inset—while applying both
sets and reset pulses were required because of the overshooting
for tuning to 8 µS and 20 µS, only gradual resetting (setting) was
sufficient to tune to 10 µS (100 µS). In fact, the device

conductances can be precisely set to any value in a range from
~2 µS to ~100 µS—see, e.g., the results of device tuning with 1%
relative error to linearly spaced conductance values within the
lower half of the dynamic range in Fig. 3b. Figure 3c–e shows the
results of tuning conductances of all devices in the crossbar cir-
cuit, using write pulses with up to 2.5 V maximum amplitude and
4 mV/8 mV incremental step for set/reset (Fig. 3c, inset). To
reduce disturbance of already tuned half-selected devices in
passively integrated crossbar circuits, the half-biasing scheme is
adopted when applying write pulses17 (Supplementary Fig. 1).
Furthermore, to correct for a minor conductance drift in some
half-selected devices upon programming, tuning of the whole
crossbar is performed in several rounds, such that, e.g., all of the
devices are tuned, one by one, in the first round, and then those
which got disturbed beyond the specified tuning accuracy are re-
tuned in the following round(s). In particular, Fig. 3d shows the
map of target conductances, representing the gray-scale image of
Albert Einstein mapped on all devices in the 64 × 64 crossbar
array, while Fig. 3e shows their final values after three rounds of
tuning. The corresponding statistics for the relative tuning error
are shown in Fig. 3c. Excluding unswitchable devices, for which
the error is more than 95%, ~98% of the devices are tuned within
5% relative error, while the average relative error is ~3.76%.

In the previous experiment, the tuning algorithm is stopped
once the desired 5% relative tuning error is reached. Setting
conductances with even higher precision is already demonstrated
for tuning a specific device in the crossbar in Fig. 3b. The
possibility of achieving higher tuning precision at the circuit level
is indirectly indicated by the shape of the tuning error histogram
in Fig. 3c and further verified by implementing an ex-situ trained
image classifier and testing it on the common MNIST hand-
written digit benchmark40 (Fig. 4). In this experiment, we focus
on demonstrating vector-by-matrix multiplication, the core
operation in any neural network, while the functionality of
neurons, including its bias, is emulated in the software. For
simplicity, the studied network is a single-layer perceptron with
64 inputs, 10 outputs, and 640 weights. Furthermore, the original
binary 28 × 28 MNIST images are down-sampled to 8 × 8
patterns, so that they can be represented with 64-bit binary
vectors in which black/white pixels are encoded by 0 V/0.25
voltages and are applied to the vertical crossbar lines. Each weight
is implemented with one memristor using a 10 µS to 110 µS range
of conductances by shifting the range of the weights upon
mapping and adding pattern-dependent neuron bias at the post-
processing stage—see “Methods” section for more details. By
encoding network weights with the corresponding memristor
conductances G in the 64 × 10 portions of the crossbar, the
currents measured at the virtually grounded horizontal lines of
the crossbar represent the results of vector-by-matrix multi-
plication operation, while the output with the largest current
identifies the computed class of the input pattern (Fig. 4a).

The measured classifier fidelity and the software-based
performance of the same network across a 1% to 50% range of
weight import errors are shown in Fig. 4d. The results show that
the experimental data match simulation results closely. For
example, the measured classifier accuracy for the most accurate
weight import is 1.87% lower than that of the ideal software
model, while the average and standard deviation for the neuron
pre-activation errors are 0.61% and 0.37%—see additional details
in Supplementary Fig. 6b, c. Note that the goal of this experiment
is to demonstrate the conductance tuning capabilities rather than
on demonstrating high classification accuracy, which is quite low
compared to the state-of-the-art numbers because of the utilized
single-layer network and down-sampled B/W images. However, it
is worth mentioning that the high accuracy MNIST benchmark
results for the mixed-signal circuit RRAM-based implementations
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are sometimes obtained via hybrid demonstration. For example,
the reported high classification accuracy in ref. 28 was due to
using a very high complexity network in the simulations, while
the experimental results for the 0T1R circuit were only performed
for 3 × 3 filters—see, e.g., largest working demo complexity
column in the Supplementary Table 1.

Figure 4e, f provides more details on the measured data for the
two representative MNIST patterns. Specifically, the first
examples show the results of the correct classification of pattern
“7”, with the largest current measured at the 7th row of the
crossbar (Fig. 4e). On the other hand, pattern “9” in the second
example is misclassified (Fig. 4f). This is in part because of a large
tuning error at unswitchable memristors—see stuck at high-
resistance state devices at (9, 22) and (9, 24) locations in the
crossbar in Fig. 4c (and also Fig. 2g, h). It is also due to narrow
current margins between the correct class and the two closest
classes representing digits “0” and “8”, which is natural given that
correct classification, in this case, would be challenging even for
a human.

Modeling of advanced systems. We next investigate the pro-
spects for tuning algorithm improvements and algorithm’s
application in ex-situ-trained neuromorphic inference accel-
erators. To make this study more informative, we develop the
model for the conductance tuning process and then investigate
the impact of device variations on the circuit functionality. A

specific focus is on the modeling of half-select disturbance, which
is a major challenge for accurate conductance tuning, as con-
firmed by experimental work. Similar to the previous work41,
dynamic phenomenological model capturing device-to-device
variations is derived by fitting experimentally observed con-
ductance changes for 500 crossbar integrated memristors upon
application of write voltage pulses with variable amplitude—see
Supplementary Note 1 and Supplementary Fig. 7 for more details
of the model.

Using the developed model, classifier accuracy is simulated for
the ex-situ-trained 784-64-1 multilayer perceptron network imple-
mented with a hybrid CMOS/memristor circuit under various
assumptions of device-to-device switching threshold variations.
Specifically, using the differential pair encoding of the weights
(Supplementary Fig. 8a), the 785 × 64 weight layer, with the
additional input due to bias, is mapped to 24 64 × 64 and 2 17 × 64
mixed-signal VMM blocks. In addition to the memristive crossbar
array, each block hosts a digital-to-analog converter (DAC), local
sensing based on transimpedance amplifier, and programming
circuitry (Fig. 5a). Such distributed implementation is similar to a
mixed-signal architecture of the aCortex42,43, in that the output of
the local sensing circuits are currents corresponding to the partial
dot-products between the corresponding weights and inputs, while
the full dot-products are computed by the neuron’s (global sensing)
transimpedance amplifiers by summing partial product currents.
The hidden layer neurons then compute clipped rectified linear
function activation and pass the results to the second layer of the

Fig. 3 Conductance tuning results. a Forming and high-precision tuning to 20 µS, 10 µS, 100 µS, and 8 µS target conductances of a crossbar device, with 1%
relative precision. The inset shows the applied sequence of pulses during conductance tuning. Pulse sequences parameters are similar to those of panel
c, except for the utilized 50mV incremental step. b Example of device tuning with a 1% relative error to different conductance levels equally spaced from
3 µS to 45 µS. c–e Programming Einstein image to the 64 × 64 crossbar array with a 5% relative error. c Tuning statistics. Inset shows details of the write-
verify pulse sequence. d The target device conductances in the range of 10 µS to 100 µS corresponding to the gray-scale quantized image and (e) their
actual measured values after completing automated tuning. The relative tuning error is defined as 100% × |Itarget(0.25 V) − Iactual(0.25 V) | /Itarget(0.25 V).
All conductances are specified at 0.25 V. Einstein image copyright by Yousuf Karsh.
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Fig. 4 Experimental results for pattern classification. a A portion of the crossbar circuit is utilized in a 64 × 10 single-layer perceptron MNIST image
classification experiment. b Examples of target and (c) actual conductances after tuning with a 1% relative error. d Measured classification fidelity and its
comparison with simulation results as a function of weight import accuracy. In each simulation trial, the weights are selected randomly from a range of
target_value × [1− tuning_error, 1+ tuning_error]. e, f Measured output currents for all ten outputs over the 10-s interval for patterns ‘7’ and ‘9’ (shown in
the corresponding insets) for the experiment with a 1% relative tuning error. The currents are measured, one row at a time, by simultaneously applying
input voltages on all 64 columns and grounding 10 specified rows. See Fig. 3 caption for the definition of relative tuning error.
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network. A similar, though simpler due to the analog nature of
input signals, implementation is assumed for the second layer of the
network, consisting of two 64 × 10 analog VMM circuits. (Note that
the VMM block dimensions are chosen to match experimental
work and not necessarily optimal for the studied parameters of
memory devices.) More details on the network training and
modeling assumptions are provided in the “Methods” section.

In the first studied “baseline” approach, the devices are tuned
in the sequential (raster) order, similar to the experimental work.
The results for the baseline algorithm show that both the tuning
and classifier accuracies are significantly degraded due to half-
select disturbance when the device-to-device variations (i.e.,
coefficient of variation in switching threshold) are above 14%
(Fig. 5b, c, and Supplementary Fig. 9a–c). The second round of
tuning increases the accuracy significantly, though the improve-
ments with additional rounds are negligible (Supplementary
Fig. 9a). The simulated absolute tuning error at 26% device
variations is ~9.6% (Fig. 5b), which is higher than the
experimental results because of the included (unswitchable)
devices.

Three different techniques are further proposed to improve the
conductance tuning process. In the first technique, the write
voltage amplitudes are bounded within a certain range of
voltages, with the range gradually reduced with each round of
tuning (see Supplementary Fig. 9). Such an approach results in
better average tuning accuracy than the baseline approach when
device variations are higher, at the cost of abandoning tuning the
devices with larger threshold switching voltages (Fig. 5b). In the
second technique, the devices with a high (>1.75 V) set and high
(<−2 V) reset switching voltages are first identified. The high-set
threshold devices are then switched to the highest conductive
(>75 µS) state used in weight mapping, while the high-reset
devices are switching to the highest resistive (<7.5 µS) before the
tuning algorithm is applied. Such presetting significantly reduces
the use of larger amplitude write pulses throughout the tuning
process, and hence minimize half-select disturbance, especially
when applied together with the first technique—see the results for
approach #2, which utilizes both techniques in Fig. 5b. The third
technique takes advantage of the possibility to encode the same
weight with different target conductances in the differential pair
implementation, i.e., by shifting the conductances of a pair by the
same amount. In particular, when the maximum voltage
limitation of the first technique is met, the target conductances
of a pair are adjusted, and the conductance tuning of another
device in a pair is attempted instead. Application of all three
techniques (approach #3) significantly improves the tuning
accuracy, e.g., improving it by 9% compared to the baseline
approach for the case of 26% device variations. More importantly,
at such device variations, the classification accuracy of the
baseline approach is significantly improved to ~97.3%, which is
within 0.7% of the highest possible accuracy for the studied
network, while the highest amount of device variations, which can
be tolerated without losing classification accuracy is increased
from ~14% to ~20% (Fig. 5c and Supplementary Fig. 9c, f, h, l).

Discussion
The high prospective integration density of passive memristive
crossbar circuits, enabled by both aggressive lateral feature scaling
and vertical monolithic integration, would be essential for hard-
ware implementations of large neural network models, such as
those used for the end-to-end automatic speech recognition,
natural language translation, and text summarization, on a single
chip without having to perform very energy-taxing and slow data
transfer with the off-chip memory. For example, the largest
multilingual neural model for automatic translation among seven

common languages contains 640 million parameters44. The
functional performance of the transformer networks, the state-of-
the-art models for text summarization, dramatically improves
with the network scale, e.g., almost linearly improving when
increasing the number of parameters in GPT-2 model from few
hundreds to ten billion45. Furthermore, mixture-of-expert net-
works with up to 137 billion parameters have been recently
suggested to improve the functional performance of language
modeling46. Storing that many parameters on-chip could be
hardly accommodated with planar embedded memory technol-
ogies. Though the complexity of the mentioned above large-scale
neural networks might reduce with further improvements in
algorithms, it is clear that extremely large models will still be
useful. This can be indirectly evidenced by the complexity of the
human brain, which, with its ~1015 synapses, can serve as a proxy
for the complexity of the future highly cognitive neuromorphic
systems47.

The importance of memory density is indirectly confirmed by
earlier work on general-purpose neuromorphic inference “aCor-
tex” accelerator based on embedded NOR-flash technology. The
modeling results showed that memory devices could occupy up to
25% of the total area, while the remaining area was devoted to
peripheral circuits and other functions42, even though aCortex
utilizes moderate-size 64 × 64 VMM circuits. (aCortex imple-
mentation with larger VMMs circuits was less area-efficient
because of the higher amount of underutilized crossbar devices
when mapping common neural network models.) Our crude
estimates show that even with largely suboptimal technology and
moderate-size 64 × 64 VMM circuits, aCortex and fully-analog
MLP circuit implementations based on passively integrated
memristors have almost two times smaller areas compared to
those of 1T1R technology (Supplementary Note 2 and
Tables 2–4). The memory efficiency (i.e., the memory density
importance) and the performance gap between 1T1R and 0T1R
based implementations become larger when memory cell currents
and switching/forming voltages are decreased (Supplementary
Fig. 11) and/or when implementing more-specialized circuits,
such as large-scale models that do not rely on weight sharing and
could benefit from larger crossbar array implementations. Making
larger crossbar circuits would require additional technology
advances, most notably increasing the ratio of an electrode to
device conductance and improving the device uniformity. For
example, the former can be achieved by reducing leakages within
the device and between neighboring lines, e.g., by patterning the
active switching layer and scaling down device feature sizes24, and
making higher-aspect ratio electrodes, e.g., similar to those uti-
lized in DRAM memories.

While this paper is focused explicitly on analog-grade (i.e.,
multi-bit) devices, low-precision (e.g., binary weight and/or bin-
ary activation) neural network models have also received sig-
nificant attention19,20,25,28,48. However, it seems that
understanding and dealing with the impact of reduced weight and
computing precisions is still a very active area of research. For
example, though little or no loss in accuracy can be achieved
when using binary weights for some of the earlier (very redun-
dant) deep convolutional networks, such as AlexNet or VGG, 4 to
8 bits of precision for both weights and activations might be
necessary for the most advanced image classifiers49. A related
observation is that the accuracy loss can often be recovered by
increasing the network depth and/or width50,51, which, however,
naturally results in decreased physical performance. Higher pre-
cision weight can also be implemented using multiple lower-
precision memory devices52. In this case, multiple VMM circuits
are employed for different significance portions of the weight
values. VMM operation is performed by first calculating partial
VMM outputs and then properly scaling and adding such outputs
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with the peripheral circuitry to obtain the final result. Ultimately,
the prospects for lowering precision in the neural network or
employing redundant designs, which might enable using simpler
binary ReRAM devices, can only be understood by considering
both functional and physical performances at the system level53.

In summary, the general goal of this work is on increasing the
complexity of passively integrated memristive crossbars and
developing a fully CMOS-compatible process while maintaining
high yield and sufficiently low spread in current-voltage char-
acteristics of integrated metal-oxide memristors, one of the most
critical problems prohibiting practical use of this technology in
neuromorphic computing applications. Our main contributions
include the development of uniform 64 × 64 passive crossbar
circuits with almost 99% working crosspoint metal-oxide mem-
ristors based on foundry-compatible fabrication process suitable
for back-end-of-line/3D integration and experimental demon-
strations of conductance tuning with <4% relative average error
for programming 4 K gray-scale pattern and close to 1% error
when implementing 640-weight ex-situ-trained single perceptron
network. In addition, we propose the advanced tuning algorithm
and verify its effectiveness by simulating a multilayer perceptron.
We believe that our results are a significant improvement in both
complexity and analog properties over previously reported pas-
sive crossbar memories and an important step towards realizing
human-brain-scale integrated neuromorphic systems. The near-
term work should focus on improving technology to increase
yield and reduce device variations, decrease write and operating
currents of memristors, and ultimately demonstrate practical
fully integrated hybrid circuits, e.g., with back-end-of-line
fabricated memristors on top of the CMOS subsystem that
would outperform purely-CMOS counterparts. Furthermore,
theoretical efforts should focus on developing holistic circuit and
algorithm techniques for coping with device variations and faulty
devices.

Methods
Crossbar fabrication. The first step in the fabrication is the deposition of Ti
(10 nm)/Al (70 nm)/TiN (45 nm) metal stack on a 4-inch Si wafer with 200 nm of
thermally grown SiO2 using reactive sputtering (Fig. 1a, b). ~250-nm wide bottom
electrodes are then patterned by deep ultraviolet lithography stepper with an
antireflective coating (Brewer Science DUV-42P) using a negative photoresist
(Dow Chemical UV2300-0.5) and inductively coupled plasma etching process with
BCl2/Cl2/N2 chemistry to suppress sidewall re-deposition during etching (Fig. 1c).
The bottom electrodes are planarized by first depositing 300 nm of SiO2 via
plasma-enhanced chemical vapor deposition (Fig. 1d). The chemical-mechanical
polishing (CMP) process is then used to smoothen the SiO2 surface, which is
followed by etch-back with CHF3 plasma (Fig. 1h) to open bottom electrodes. The
thicknesses of the remaining SiO2 after CMP are measured by ellipsometer (unlike
calibration via slow etching and atomic force microscope imaging used in ref. 22).
The Al2O3 (1.5 nm) and TiO2−x (30 nm) of the active switching bilayer are
deposited, respectively, through atomic layer deposition and reactive sputtering
(Fig. 1g). No oxygen descum is conducted after switching layer deposition to keep
TiO2–x stoichiometry. Approximately 250-nm top electrode lines with Ti (15 nm)/
Al (90 nm)/TiN (80 nm) are deposited and patterned similarly to the bottom
electrodes (Fig. 1e, f). The switching layer outside the crossbar region is etched with
CHF3 plasma to suppress line-to-line leakages and open ends of bottom electrodes.
Ti (40 nm)/Au (400 nm) pads are formed for wire bonding and packaging. Finally,
rapid thermal annealing at 350 °C in N2 gas with 2% H2 for 1 min is performed
after the crossbar fabrication is complete.

Electrical characterization. The crossbar array circuit is wire-bonded and
mounted on a custom printer board for testing and application demonstration. The
custom-printed circuit board is connected to Keysight tools and controlled by
computer setup (Supplementary Fig. 10). All electrical measurements are per-
formed using the Keysight B1500A parameter analyzer. The connections to
crossbar inputs/outputs are steered by the Keysight 34980 A switching matrix. The
parameter analyzer and the switching matrix are connected to a personal computer
via a general-purpose interface and universal serial buses and controlled using a
custom C++ code.

Retention extrapolation. The rate of conductance change is approximated using
Arrhenius law, i.e., rate ∝ exp[−UA/(kBT)], where UA is an activation energy for
the memory mechanism, kB is a Boltzmann constant, and T is ambient tempera-
ture. Using this equation, the predicted time interval t293K for the conductance
change ΔG at room temperature (293 K) is expressed via the observed time interval
t373.15K over which the conductance was changed by the same amount at elevated
100 °C (≡373.15 K) temperature, i.e., t293K≈ t373.15K exp[UA/kB× (1/293[K]− 1/
373.15[K])]. Such an extrapolation approach is in line with previous theoretical and
experimental studies of metal-oxide memristors, which implies retention loss
through temperature-activated drift of oxygen vacancies54,55. The extrapolation
results in Fig. 2b, c are shown for UA= 1.1 eV, corresponding to the oxygen
vacancy activation energies in rutile phase titanium dioxide56.

Image classifier details. The experimental work in Fig. 4 is based on the 64 × 10
single-layer perceptron classifier. The network is trained in software on a 60,000 training
and 10,000 8 × 8 down-sampled MNIST test images using the conventional back-
propagation algorithm with 0.01 learning rate, 100 batch size, and 50% dropout rate
to find the weights (w) and biases (b). The weights are then linearly mapped to the
conductances of corresponding crossbar devices via the equation G= c1 ×w+ c2, where
c1= 10−4/Max[w−Min[w]] and c2= 10−5–10−4 ×Min[w]/Max[w−Min[w]] are
scaling constant and weight bias, respectively, which are selected to map arbitrary
dimensionless weight range to the range of conductance from 10 µS to 110 µS. Note
that the shift in the mapping requires subtracting a pattern-dependant term c2∑xi
when calculating neuron outputs. Specifically, with such implementation ∑wixi+ b ∝
∑Givi+ IB, where∑Givi is measured experimentally, as discussed in the main text, while
IB= 0.25c1b− c2∑vi is an additional current bias added to the neuron at the post-
processing stage, where the factor of 0.25 due to mapping of inputs x= 1 in the software
to the applied voltages v= 0.25 V in the experiment.

The modeling work in Fig. 5 is based on the 784-64-10 multilayer perceptron
classifier with rectify-linear hidden layer neurons. The inputs to the first layer, i.e.,
pixel intensities, are linearly mapped to [0 V, 0.1 V] voltage range, while the inputs
to the second layer are also in the same range, due to the assumed clipping of
rectified linear function at the neuron side. The classifier is trained ex-situ on a gray-
scale 60,000 training and 10,000 MNIST test images using the conventional
backpropagation algorithm with L2 regularization, 0.0005 learning rate, and 100
batch size. The software weights (w) are converted to the corresponding pair of
positive (G+) and negative (G−) conductances using differential mapping with
33.75 µS range and 41.25 µS bias, which is roughly in the middle of the dynamic
range, i.e., G±= 41.25 µS ± 16.875 µS ×w/wmax, where wmax is specific to the MLP
layer largest absolute weight value (Supplementary Fig. 8b–f). The weight import
process is simulated by first randomly initializing conductances of all memristors
according to the normal distribution with a 36.25 µS average and 9 µS standard
deviations. A tuning algorithm based on 5-mV-step increasing amplitude
pulses, starting from 0.5 V, is then applied with a 1% desired tuning accuracy, which
is sufficient for achieving the highest classification accuracy with no device-to-device
variations. To limit each device’s tuning time, the number of times for switching the
write pulse polarity (when overshooting the target conductance) is limited to 5.

Data availability
The data that support the plots within this paper and are available from the
corresponding author upon reasonable request.
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