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Abstract

High-Performance Training Algorithms and Architectural Optimization of Spiking

Neural Networks

by

Wenrui Zhang

The spiking neural network (SNN) is an emerging brain-inspired computing paradigm

with the more biologically realistic spiking neuron model. As the third generation of

artificial neural networks (ANNs), SNNs are theoretically shown to possess greater com-

putational power than the conventional non-spiking ANNs and are well suited for spatio-

temporal information processing and implementation on ultra-low power event-driven

neuromorphic hardware. This dissertation aims to usher SNNs into the mainstream

practice by addressing two key roadblocks: lack of high-performance training algorithms

and lack of systematic exploration of computationally-powerful recurrent SNNs.

First, existing SNNs training algorithms suffer from major limitations in terms of

learning performance and efficiency. To handle these challenges, we proposed a compre-

hensive set of solutions including synaptic plasticity (SP) and intrinsic plasticity (IP)

to embrace energy-efficient SNNs with high performance. To enable SP based training

algorithms, we developed two innovative backpropagation (BP) methods to boost the

performance of SNNs. We proposed a Spike-Train level RSNNs Backpropagation (ST-

RSBP) algorithm for training deep recurrent SNNs (RSNNs) while addressing the training

difficulty introduced by non-differentiability of spiking activation function and improv-

ing training efficiency at the spike-train level. To allow for learning temporal sequences

with precise timing, we propose a BP method called Temporal Spike Sequence Learning

Backpropagation (TSSL-BP), breaking down error backpropagation across two types of

ix



inter/intra-neuron dependencies and precisely capturing the temporal dependencies with

ultra-low latency. To train a given SNN using IP, we proposed a method called SpiKL-

IP based on a rigorous information-theoretic approach for maintaining homeostasis and

shaping the dynamics of neural circuits.

While recurrence is prevalent in the brain, designing practical recurrent spiking neural

networks (RSNNs) is challenging due to the intracity introduced by recurrent connections

both in time and space. RSNNs are often randomly generated without optimization in

the current practice, which however fails to fully exploit the computational potential of

RSNNs. We explored and proposed a family of RSNN architectures aiming at building

scalable large-scale RSNNs with high performance We first demonstrated a new type

of RSNNs called Skip-Connected Self-Recurrent SNN (ScSr-SNN) which contain self-

recurrent connections in each recurrent layer and skip connections across non-adjacent

layers. It achieves improved performance over existing randomly generated RSNNs. In-

spired by the potential of self-recurrent connectivity, we proposed another novel struc-

ture called the Laterally-Inhibited Self-Recurrent Unit (LISR), which consists of one

excitatory neuron with a self-recurrent connection wired together with an inhibitory

neuron through excitatory and inhibitory synapses. SNNs leveraging the LISR as a ba-

sic building block significantly improve performance over feedforward SNNs trained by

the BP method with similar computational costs. Finally, we developed a systematic

optimization-based neural architecture search framework to synthesize high-performance

globally-feedforward and locally-recurrent multi-layer RSNNs.

The proposed work achieves the state-of-the-art performances on various image and

speech datasets such as MNIST, FashionMNIST, CIFAR10, TI46 and common neuro-

morphic datasets including NMNIST, NTIDIGITS, DVS-Gesture.
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Chapter 1

Introduction

The biological neocortex is remarkable in perceiving, learning, and adapting to the chang-

ing environment. The brain provides an extraordinary reference for building new com-

puting systems with powerful performance and energy-efficient computation. As a brain-

inspired computational model, spiking neural networks (SNNs) are considered as the

third generation of artificial neural networks (ANNs) with the more biologically realistic

spiking neuron model. There is theoretical evidence supporting that SNNs possess greater

computational power over traditional ANNs [1]. In ANNs, neurons process continuous-

valued inputs with continuous outputs generated through an activation function. How-

ever, the spiking neurons mimic the biological neurons’ behavior and explicitly model

the all-or-none firing spikes across both spatial and temporal domains. The spike-based

operational principles of SNNs not only allow information coding based on efficient tem-

poral codes and give rise to promising spatiotemporal computing power but also render

energy-efficient VLSI neuromorphic chips such as Spinnaker [2], Neurogrid [3], IBM’s

TrueNorth [4], Intel’s Loihi [5] and so on.

In this chapter, we introduce the two aspects of SNNs, the learning algorithms and

network architectures. Most learning algorithms of SNNs can be categorized as either
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Introduction Chapter 1

synaptic plasticity or intrinsic plasticity. We first introduce synaptic plasticity which

trains the synaptic weight and is the major workhorse of network training. Then, we in-

troduce intrinsic plasticity which maintains homeostasis and regulates network dynamics

by adjusting neuronal parameters. Finally, for the network architecture, we discuss the

existing recurrent spiking neural networks (RSNNs) and their limitations.

1.1 Synaptic Plasticity

Inspired by the biological process in the brain [6, 7], spike-timing-dependent plasticity

(STDP) is one of the most prevalent synaptic plasticity rules adopted in SNNs. STDP

explores the correlation between the firing activities of a pair of presynaptic and post-

synaptic neurons and tunes the synaptic weight locally in an unsupervised manner [8].

More specifically, synapses through which a presynaptic spike arrived before (respectively

after) a postsynaptic one are reinforced (respectively depressed). Based on the idea of

correlating presynaptic spikes and postsynaptic spikes, various supervised/unsupervised

methods are proposed by extending the standard STDP rule [9, 10, 11]. The advantages

of STDP-based methods are mainly the biological plausibility, hardware efficiency, and

easy implementation. However, due to its local and unsupervised nature, the learning

performance of STDP is low and cannot fully exploit the powerful computational ability

of SNNs.

Backpropagation (BP) is the workhorse for training deep ANNs [12]. Its success in

the ANN world has made BP a target of intensive research for SNNs. Various SNNs BP

methods have emerged, aiming at attaining the same level of performance [13, 14, 15, 16,

17, 18, 19, 20, 21].

It is possible to train an ANN and then convert it to an SNN [22, 23, 24]. However,

this suffers from conversion approximations and gives up the opportunity in exploring

2
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SNNs’ temporal learning capability. One of the earliest attempts to bridge the gap be-

tween discontinuity of SNNs and BP is the SpikeProp algorithm [13]. However, SpikeProp

is restricted to single-spike learning and has not yet been successful in solving real-world

tasks.

Recently, training SNNs using BP under a firing rate (or activity level) coded loss

function has been shown to deliver competitive performances [14, 15, 20, 17]. Neverthe-

less, [14] does not consider the temporal correlations of neural activities and deals with

spiking discontinuities by treating them as noise. [17] gets around the non-differentiability

of spike events by approximating the spiking process via a probability density function

of spike state change. [15], [20], and [19] capture the temporal effects by performing

backpropagation through time (BPTT) [25]. Among these, [19] adopts a smoothed spik-

ing threshold and a continuous differentiable synaptic model for gradient computation,

which is not applicable to widely used spiking neuron models such as the leaky integrate-

and-fire (LIF) model. Similar to [14], [15] and [20] compute the error gradient based on

the continuous membrane waveforms resulted from smoothing out all spikes. In these

approaches, computing the error gradient by smoothing the microscopic membrane wave-

forms may lose sight of the all-or-none firing characteristics of the SNN that defines the

higher-level loss function and lead to inconsistency between the computed gradient and

target loss, potentially degrading training performance [16].

Although many appealing results are achieved by these methods, developing SNNs

BP training methods that are on a par with the mature BP tools widely available for

training ANNs today is a nontrivial problem [26]. Training of SNNs via BP is challenged

by two fundamental issues. First, from an algorithmic perspective, the complex neural

dynamics in both spatial and temporal domains make the BP process obscure. More-

over, the errors are hard to be precisely backpropagated due to the non-differentiability

of discrete spike events. Second, a large number of time steps and step-by-step backprop-

3



Introduction Chapter 1

agation are typically required for emulating and training SNNs in time to achieve decent

performance, leading to high latency and rendering spike-based computation unscalable

to deep architectures.

In this dissertation, we propose two types of BP methods to alleviate the difficulties

of training SNNs. First, motivated by the lack of powerful supervised training of general

RSNNs and the fact that existing SNN research has limited scope in exploring sophis-

ticated learning architectures like deep RSNNs with multiple feedforward and recurrent

layers hybridized together, we proposed a novel Spike-Train level RSNNs Backpropa-

gation (ST-RSBP) algorithm which is applicable to RSNNs with an arbitrary network

topology. ST-RSBP is rigorously derived and can handle arbitrary recurrent connections

in various RSNNs. While capturing the temporal behavior of the RSNN at the spike-train

level, ST-RSBP directly computes the gradient of a rate-coded loss function w.r.t tunable

parameters without incurring approximations resulted from altering and smoothing the

underlying spiking behaviors.

On the other hand, we propose a new SNNs BP method, called temporal spike se-

quence learning via BP (TSSL-BP), to learn any target output temporal spiking se-

quences. TSSL-BP acts as a universal training method for any employed spike codes

(rate, temporal, and combinations thereof). To tackle the above difficulties, TSSL-BP

breaks down error backpropagation across two types of inter-neuron and intra-neuron de-

pendencies, leading to improved temporal learning precision. It captures the inter-neuron

dependencies within an SNN by considering the all-or-none characteristics of firing ac-

tivities through presynaptic firing times. It also considers the internal evolution of each

neuronal state through time, capturing how the intra-neuron dependencies between dif-

ferent firing times of the same presynaptic neuron impact its postsynaptic neuron.

Both of these two methods achieve highly efficient and precise learning on feedfor-

ward and recurrent SNNs. For ST-RSBP, it can train RSNNs without costly unfolding

4
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the network through time and performing BP time point by time point, offering faster

training and avoiding vanishing/exploding gradients for general RSNNs. For TSSL-BP, it

can not only precisely capture the temporal dependencies but also allow ultra-low latency

inference and training over only five time steps while achieving excellent accuracy.

1.2 Intrinsic Plasticity

Intrinsic plasticity (IP) is a widely used self-adaptive mechanism that maintains home-

ostasis and shapes the dynamics of neural circuits. Behaviors of IP have been discovered

in brain areas of many species, and IP has been shown to be crucial in shaping the dy-

namics of neural circuits [27]. In particular, [28] observed the exponentially distributed

neuron responses in visual cortical neurons. Such responses may aim at allowing neu-

rons to transmit the maximum amount of information, e.g., measured by the highest

entropy, to their outputs with a constrained level of firing activity. Discovered in indi-

vidual biological neurons, IP changes the excitability of neurons through modification of

voltage-gated channels [29].

One of the early biological IP models was explored on the Hodgkin-Huxley type neu-

rons where a number of voltage-gated conductances were considered [30]. Since then,

many IP mechanism researches have been conducted for different kinds of artificial neu-

rons. It was shown that an improvement in performance could be obtained when the

reservoir of an echo state network (ESN) is adapted using IP such that the neurons in

the network can autonomously tune themselves to the desired output distribution [31].

[32] first proposed a mathematical approach to derive an IP rule based on the sigmoid

neuron model. This work used the Kullback–Leibler (KL) divergence from an exponen-

tial distribution to the actual output firing rate distribution to derive an adaptation rule

for the neuron to generate responses following the exponential distribution. Based on

5



Introduction Chapter 1

the same principle, an IP rule for hyperbolic tangent neurons was also proposed [31].

Developing effective IP mechanisms for SNNs is a challenging problem. Several empir-

ical IP rules were proposed for SNNs, however, without a rigorous theoretical foundation.

The most straightforward idea of IP, also known as dynamic thresholding, is boosting

the neuron’s activity if the neuron rarely fires and depressing the neuron if it fires too

frequently. [33] presented an IP rule by which a spiking neuron’s firing threshold voltage

changes by a fixed value per update based on whether the neuron fired or not. However,

this method cannot precisely determine when and how much the firing threshold voltage

should be changed in different situations, and there is no clear understanding of the op-

timality of the resulting IP behavior. In [34], IP was proposed to control average firing

activity and aid synapses to undergo Hebbian modification via STDP depending upon

their history of use. [35] presented an approach in which the parameters of the IP rule

derived for sigmoid neurons in [36] were empirically mapped to ones for spiking neurons.

Since this rule is derived based on the sigmoid neuron model which is significantly dif-

ferent from the spiking neuron model, the property of this IP rule remains elusive when

it is applied to adapt the output firing activity of spiking neurons. [37] proposed an IP

rule according to the inter-spike-interval (ISI). However, similar to [33], this method only

constraints the ISI into a certain range but does not have a rigorous target for adapting

the output response. Moreover, [38] proposed another homeostasis mechanism called

Non-Hebbian Plasticity which decays synaptic weights based on the activity of postsy-

naptic neurons. It can control the reservoir neurons’ responses to match the firing rate

profile of the input and also avoid weight crowding caused by STDP. This non-Hebbian

plasticity is based on synaptic plasticity which is different from IP, the intrinsic neuronal

plasticity. As discussed in [34], both intrinsic plasticity and non-Hebbian plasticity are

homeostatic plasticity mechanisms and observed in biological neurons. They can work

together for homeostatic regulation. The mechanism of the dynamic threshold method

6
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is the same as the adaptive LIF (ALIF) neuron model in [20], which adapts the firing

rate by adjusting the threshold.

While IP based learning has been attempted for spiking neuron models, the existing

IP rules are either ad hoc in nature or not applied particularly towards enabling real-life

learning tasks. In this dissertation, we proposed a novel IP method named SpiKL-IP.

First, we derive a differentiable transfer function bridging the input current strength

and output firing rate when the input level is fixed based on the leaky integrate-and-

fire(LIF) model. This transfer function is referred to as the firing-rate transfer function

(FR-TF). It shall be noted that FR-TF can correlate the dynamic evolution of the output

firing activity measured as averaged firing rate as a function of a received input over a

sufficiently long timescale. Next, with this transfer function, we derive an information-

theoretical intrinsic plasticity rule for spiking neurons, dubbed SpiKL-IP, to minimize

the KL-divergence from the exponential distribution to the output firing rate distribu-

tion. We further present an online version of the SpiKL-IP rule for minimizing our

KL-divergence based loss function in a way analogous to the stochastic gradient descent

(SGD) method, which is widely adopted for training deep learning neural networks. Fi-

nally, we address two practical issues to ensure the proper operation and robustness of

the proposed online IP rule. Among the two issues, it is desirable to apply the proposed

IP tuning using the instantaneous input current and the measured output firing rate,

allowing seamless consideration of the potentially dynamically changing current input.

However, this creates a mismatch to the underlying FR-TF transfer function, which is

addressed by making the online IP rule dependent only on the output firing rate such

that the LIF model parameters are tuned based on the input/output activities of long

timescales. Under various settings, the outputs of targeted spiking neurons converge

robustly to the desirable exponential distribution under the proposed SpiKL-IP rule.

7
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1.3 Spiking Neural Networks Architecture

The architectures of spiking neural networks (SNNs) can be categorized as feedforward

networks and recurrent networks. Fig. 1.1A shows two SNN architectures often explored

in neuroscience: single layer (top) and liquid state machine (bottom) networks. Fig. 1.1B

demonstrates the multi-layer feedforward network. Each hidden layer in the feedforward

network can be either a dense layer or a convolutional layer. The inter-layer connections

can be sparse or fully connected. Several BP methods have demonstrated promising

results on feedforward SNNs [14, 15, 16, 17]. Fig. 1.1C presents a more complicated deep

recurrent SNNs (RSNNs) with multiple recurrent hidden layers. Unlike the feedforward

SNNs which are well studied with much recent effort aiming at improving its performance,

the exploration of RSNNs architectures and learning methods is still limited.

Reservoir

Input 

Layer

Output 

Layer

STDP/No Training

Winner Take All/ 
Single layer 

supervised learning

Input 

Layer

Output 

Layer

A B

Input 
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Hidden 
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Hidden 
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Backpropagation

Input 
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Hidden 
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Hidden 
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Hidden 
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C

Recurrent
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Recurrent
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Hidden 
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Figure 1.1: Various SNN networks: (A) one layer SNNs and liquid state machine; (B)
multi-layer feedforward SNNs; (C) deep hybrid feedforward/recurrent SNNs.

In the brain, recurrent connectivity is indispensable and maintains dynamics, func-

tions, and oscillations of the network [39]. As a brain-inspired computational model,

SNNs are well suited for processing spatiotemporal information [1]. In particular, RSNNs

can well mimic microcircuits in the biological brain and induce rich behaviors that are

critical for memory formation and learning. Recurrence has been explored in conven-

tional non-spiking artificial neural networks (ANNs) in terms of Long Short Term Mem-
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ory (LSTM) [40], Echo State Networks (ESN) [41], Deep RNNs [42], Gated Recurrent

Units (GRU) [43], and Legendre Memory Units (LMU) [44]. While recurrence presents

unique challenges and opportunities under the context of spiking neural networks, RSNNs

are yet to be well explored.

Most existing works in RSNNs adopt recurrent layers or reservoirs with randomly

generated connections. The Liquid State Machine (LSM) [45] is one of the most widely

used RSNN architectures with one or multiple recurrent reservoirs and an output readout

layer wired up using feedforward synapses [46, 47, 48]. However, there lack principled

approaches for setting up the recurrent connections in a reservoir for which ad-hoc ran-

domly generated wiring patterns are adopted, e.g. a synapse between two neurons is

established probabilistically based on a preset connectivity probability. The recurrent

weights in the reservoirs are typically either fixed or trained by unsupervised learning

methods like spike-timing-dependent plasticity (STDP) [49] while the readout layer is

trained by supervision [50, 46, 9]. [20] proposed an architecture called long short-term

memory SNNs (LSNNs). The recurrent layer contains a regular spiking portion with

both inhibitory and excitatory spiking neurons and an adaptive neural population. [51]

demonstrated a new reservoir with multiple groups of excitatory neurons and a central

group of inhibitory neurons. However, the recurrent connections in all of these works are

randomly generated with certain probabilities. Randomly generated connections without

any optimization may hinder learning performance and cannot fully exploit the power of

RSNNs.

Systemic RSNN architecture design and optimization remain as an open problem.

Current studies suffer from two major limitations: (1) lack of powerful supervised train-

ing of general RSNNs and limited scope in exploring sophisticated learning architectures

like deep RSNNs with multiple feedforward and recurrent layers hybridized together; (2)

randomly generated recurrent connections without connectivity optimization or specific

9
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design.

In this dissertation, from the algorithmic point of view, we proposed two BP meth-

ods, ST-RSBP and TSSL-BP, which are applicable to RSNNs with an arbitrary network

topology. From an architectural perspective, we first propose a new RSNN structure

called Skip-Connected Self-Recurrent SNN (ScSr-SNN) to offer a simple and structured

approach for designing high-performance RSNNs and mitigating the training challenges

resulted from random recurrent connections as in the prior works. Recurrence in ScSr-

SNN is introduced in a stereotyped manner by adding self-recurrent connections to spik-

ing neurons. The SNNs with self-recurrent connections can realize recurrent behaviors

similar to those of more complex RSNNs while the error gradients can be more straight-

forwardly calculated due to the mostly feedforward nature of the network. The network

dynamics is enriched by skip connections between nonadjacent layers.

Then, we proposed a novel recurrent structure for SNNs called Laterally-Inhibited

Self-Recurrent Unit (LISR) which consists of one excitatory neuron with a self-recurrent

connection wired together with an inhibitory neuron through excitatory and inhibitory

synapses. The self-recurrent connection of the excitatory neuron mitigates the infor-

mation loss caused by the firing-and-resetting mechanism and maintains the long-term

neuronal memory. The lateral inhibition from the inhibitory neuron to the corresponding

excitatory neuron, on the one hand, adjusts the firing activity of the latter. On the other

hand, it plays as a forget gate to clear the memory of the excitatory neuron. This pro-

posed connectivity not only offers a structured approach for designing high-performance

RSNNs but also mitigates the training challenges resulting from random recurrent con-

nections as in the existing works.

Finally, to enable the systemic design of large RSNNs, we proposed a novel layer

architecture and an alternating two-step architectural optimization method. Firstly, we

compose RSNNs based on a layer architecture called Sparsely-Connected Recurrent Mo-

10
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tif Layer (SC-ML) that consists of multiple small recurrent motifs wired together by

sparse lateral connections. The small size of the motifs and sparse inter-motif connec-

tivity leads to an RSNN architecture scalable to large network sizes. We argue that

composing RSNNs based on well-optimized building blocks small in size, or recurrent

motifs, can lead to an architectural solution scalable to large networks while achieving

high performance. Secondly, we propose a method called Hybrid Risk-Mitigating Ar-

chitectural Search (HRMAS) to systematically optimize the topology of the proposed

recurrent motifs and SC-ML layer architecture. HRMAS is an alternating two-step op-

timization process by which we mitigate the risk of network instability and performance

degradation caused by architectural change by introducing a novel biologically-inspired

“self-repairing” mechanism through intrinsic plasticity. The intrinsic plasticity is in-

troduced to the second step of each HRMAS iteration and acts as unsupervised fast

self-adaption to structural and synaptic weight modifications introduced by the first step

during the RSNN architectural “evolution”. To the best of the our knowledge, this is the

first work that performs systematic architectural optimization of RSNNs.

We also demonstrate that both the proposed architectural optimization method and

our manually design RSNN architectures can significantly outperform the best-reported

performance obtained from the existing works over various speech and neuromorphic

datasets.

1.4 Outline

The rest of this dissertation is organized as follows: In Chapter 2, we introduce the

background knowledge such as the spiking neuron model, datasets, and so on. In Chapter

3, we propose the new IP rule named SpiKL-IP to address the theoretical and practical

limitations of the existing works. In Chapter 4, we present a novel Spike-Train level

11



Introduction Chapter 1

RSNNs Backpropagation (ST-RSBP) algorithm for training deep RSNNs. In Chapter

5, we demonstrate a novel Temporal Spike Sequence Learning Backpropagation (TSSL-

BP) method for training deep SNNs, which breaks down error backpropagation across

two types of inter-neuron and intra-neuron dependencies and leads to improved temporal

learning precision. In Chapter 6, we propose a new type of RSNNs called Skip-Connected

Self-Recurrent SNN (ScSr-SNN). Then, we further demonstrate a novel recurrent struc-

ture called the Laterally-Inhibited Self-Recurrent Unit (LISR), which consists of one ex-

citatory neuron with a self-recurrent connection wired together with an inhibitory neuron

through excitatory and inhibitory synapses. In Chapter 7, we present a novel layer ar-

chitecture called Sparsely-Connected Recurrent Motif Layer (SC-ML) that consists of

multiple small recurrent motifs wired together by sparse lateral connections. Then, we

present a method called Hybrid Risk-Mitigating Architectural Search (HRMAS) to sys-

tematically optimize the topology of the proposed recurrent motifs and SC-ML layer

architecture. Chapter 8 concludes this dissertation and provides discussions of potential

future work.

12



Chapter 2

Background

2.1 Spiking Neuron Model

Spiking neural networks (SNNs) employ more biologically plausible spiking neuron

models compared to traditional artificial neural networks (ANNs). In this dissertation,

we adopt the leaky integrate-and-fire (LIF) neuron model and first order synaptic model

[52].

Consider the input spike train from presynaptic neuron j to neuron i: sj(t) =∑
t
(f)
j
δ(t− t(f)j ), where t

(f)
j denotes a particular firing time of presynaptic neuron j. The

incoming spikes are converted into an (unweighted) postsynaptic current (PSC) aj(t)

through a synaptic model. The neuronal membrane voltage ui(t) at time t for neuron i

is given by

τm
dui(t)

dt
= −ui(t) +R

∑
j

wijaj(t) + ηi(t), (2.1)

where R and τm are the effective leaky resistance and time constant of the membrane, wij

is the synaptic weight from presynaptic neuron j to neuron i, aj(t) is the PSC induced

by the spikes from presynaptic neuron j, and ηi(t) denotes the reset function.

13
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The PSC and the reset function can be written as

aj(t) = (ε ∗ sj)(t), ηi(t) = (ν ∗ si)(t), (2.2)

where ε(·) and ν(·) are the spike response and reset kernel, respectively. We adopt a first

order synaptic model as the spike response kernel which is expressed as:

τs
aj(t)

dt
= −aj(t) + sj(t), (2.3)

where τs is the synaptic time constant. The reset kernel reduces the membrane potential

by a certain amount ∆R, where ∆R is equal to the firing threshold right after the neuron

fires. Considering the discrete time steps simulation, we use the fixed-step first-order

Euler method to discretize (2.1) to

ui[t] = (1− 1

τm
)ui[t− 1] +

∑
j

wijaj[t] + ηi[t]. (2.4)

The ratio of R and τm is absorbed into the synaptic weight. The reset function ηi[t]

represents the firing-and-resetting mechanism of the neuron model. Moreover, the firing

output of the neuron is expressed as

si[t] = H (ui[t]− Vth) , (2.5)

where Vth is the firing threshold and H(·) is the Heaviside step function.
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2.2 Datasets

To demonstrate the effectiveness of the proposed methods, we adopt various types

of datasets for the experiments including images, speeches, neuromorphic images, neuro-

morphic speeches, and neuromorphic videos. In this section, we introduce all the datasets

and their preprocessing steps applied in this dissertation.

2.2.1 MNIST

The MNIST [53] digit dataset consists of 60, 000 samples for training and 10, 000 for

testing, each of which is a 28× 28 grayscale image. For the fully-connected feedforward

networks, the inputs are encoded from each 28 × 28 × Nt image into a 2D 784 × Nt

matrix where Nt is the simulation time steps. Each input sample is normalized to the

same mean and standard deviation. In the experiments of the ST-RSBP, we convert each

pixel value of an MNIST image into a spike train using Poisson sampling based on which

the probability of spike generation is proportional to the pixel intensity. For all other

experiments, each pixel value of an MNIST image is converted into a real-valued input

current.

2.2.2 Fashion-MNIST

The Fashion-MNIST dataset [54] contains 28x28 grey-scale images of clothing items,

meant to serve as a much more difficult drop-in replacement for the well-known MNIST

dataset. It contains 60,000 training examples and 10,000 testing examples with each

image falling under one of the 10 classes. Similar to MNIST, for the ST-RSBP, using

Poisson sampling, we encode each 28× 28 image into a 2D 784×L binary matrix, where

L = 400 represents the duration of each spike sequence in ms, and a 1 in the matrix

represents a spike. However, for all other methods, the pixel values are directly used as

15



Background Chapter 2

the real-valued input current at each time step.

2.2.3 CIFAR10

The CIFAR-10 [55] dataset contains 60, 000 32 × 32 color images in 10 different

types of objects. There are 50, 000 training images and 10, 000 testing images. The

pixel intensity of each channel is converted into a real-valued input. Similar to what is

commonly adopted for preprocessing, the dataset is normalized, and random cropping

and horizontal flipping are applied for data augmentation. In addition, dropout layers

with a rate of 0.2 are also applied during the training of CIFAR10.

2.2.4 TI46-Alpha

TI46 speech corpus [56] contains spoken English alphabets and digits audios from

16 speakers. In our experiments, the full alphabets subset of the TI46 is used. We

name this subset TI46-Alpha in the rest of the paper. The TI46-Alpha has 4142 and

6628 spoken English examples in 26 classes for training and testing, respectively. The

continuous temporal speech waveforms are preprocessed by Lyon’s ear model [57]. The

sample rate of this dataset is 12.5 kHz. The decimation factor of Lyon’s ear model is 125.

The Matlab implementation of Lyon’s ear model is available online [58]. Each sample is

encoded into 78 channels. In our experiments, the preprocessed real-value intensities are

directly applied as the inputs.

2.2.5 N-MNIST

The N-MNIST dataset [59] is a neuromorphic version of the MNIST dataset generated

by tilting a Dynamic Version Sensor (DVS) [60] in front of static digit images on a

computer monitor. The movement induced pixel intensity changes at each location are
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encoded as spike trains. Since the intensity can either increase or decrease, two kinds

of ON and OFF spike events are recorded. Due to the relative shifts of each image, an

image size of 34 × 34 is produced. Each sample of the N-MNIST is a spatio-temporal

pattern with 34× 34× 2 spike sequences lasting for 300ms with the resolution of 1us. It

means there are 300000 time steps in the original N-MNIST dataset. In our experiments,

we reduce the time resolution of the N-MNIST samples by 3000 times to speed up the

simulation. Therefore, the preprocessed samples only have about 100 time steps. We

determine that a channel has a spike at a certain time step of the preprocessed sample

if there’s at least one spike among the corresponding 3000 time steps of the original

sample.

2.2.6 N-TIDIGITS

The N-TIDIGITS [61] is the neuromorphic version of the speech dataset Tidigits [62].

The original audios are processed by a 64-channel CochleaAMS1b sensor and recorded as

the spike responses. The dataset contains both single-digit samples and connected-digit

sequences with a vocabulary consisting of 11 digits including “oh,” “zero” and the digits

“1” to “9”. In the experiments, only the single-digit samples are used. In total, there are

55 male and 56 female speakers with 2475 single-digit samples for training and the same

number of samples for testing. In the original dataset, each sample has 64 input channels

and takes about 0.9 s. To speed up the simulation, each sample is reduced to 300 time

steps by compressing the time resolution from 1 us to 3 ms. During the compression,

a channel has a spike at a certain time step in the preprocessed sample if it contains at

least one spike in the corresponding time window of the original sample.
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2.2.7 DVS-Gesture

The DVS-Gesture dataset [63] consists of recordings of 29 different individuals (sub-

jects) performing hand and arm gestures. The spikes are generated from natural motion.

There are 122 trials in total. Each trial contains the recording for one subject by a dy-

namic vision sensor (DVS) camera under one of the three different lighting conditions.

In each trial, 11 hand and arm gestures of the subject are recorded. We follow the same

preprocessing procedures in [17]. Samples from the first 23 subjects are used for training

and the other 6 subjects for testing. During preprocessing, the trials are separated into

individual actions (gestures). The task is to classify the action sequence video into an

action label. Each action (sample) lasts for about 6 s. In addition, two channels with

128 × 128 pixels in each channel are recorded. In the experiments, only the first 1.5 s

of action video for each sample are used. We compress the temporal resolution to 5 ms

which means it takes 300 time steps for each sample. Similar to the preprocessing of N-

TIDIGITS, the input pixel has a spike at a certain time step in the preprocessed sample

if it contains at least one spike in the corresponding 5 ms time window of the original

sample.
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Chapter 3

Information-Theoretic Intrinsic

Plasticity

As a self-adaptive mechanism, intrinsic plasticity (IP) plays an important role in main-

taining homeostasis and shaping the dynamics of neural circuits. From a computational

point of view, IP has the potential in enabling promising non-Hebbian learning in arti-

ficial neural networks. While IP-based learning has been attempted for spiking neuron

models, the existing IP rules are ad hoc in nature and the practical success of their

application has not been demonstrated particularly towards enabling real-life learning

tasks. In this chapter, we aim to address the theoretical and practical limitations of

the existing works by proposing a new IP rule named SpiKL-IP. SpiKL-IP is developed

based on a rigorous information-theoretic approach where the target of IP tuning is to

maximize the entropy of the output firing rate distribution of each spiking neuron. This

goal is achieved by tuning the output firing rate distribution towards a targeted optimal

exponential distribution. Operated on a proposed firing-rate transfer function, SpiKL-IP

adapts the intrinsic parameters of a spiking neuron while minimizing the KL-divergence

from the targeted exponential distribution to the actual output firing rate distribution.
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In addition, SpiKL-IP can robustly operate in an online manner under complex input

and network settings.

3.1 Firing-Rate Transfer Function

From the LIF model in (2.1), we denote the total input to the neuron as x. Then,

the LIF neuron model can be expressed as

τm
du(t)

dt
= −u(t) +Rx. (3.1)

Once the membrane potential u(t) exceeds the firing threshold Vth, the neuron generates

a spike and the membrane potential is reset to the resting potential, which is 0 V in our

case. In this chapter, a refractory period of duration tr is also considered after a spike is

generated during which u(t) is maintained at 0 V .

Before presenting the proposed SpiKL-IP rule for spiking neurons, we shall first es-

tablish the relationship between the input current and the resulting output firing rate.

This relationship is not obvious since the response is in the form of spikes and it depends

on the cumulative effects of all the past input. As a result, it is difficult to evaluate the

output firing rate of spiking neurons at each time point under a varying input. We deal

with this difficulty by deriving the proposed firing-rate transfer function (FR-TF) where

the input is assumed to be constant. In other words, FR-TF correlates the dynamic

evolution of the output firing activity measured as averaged firing rate as a function of a

received input over a sufficiently long time scale.

Now, we assume that the input current x0 is constant and an output spike has occurred

at time t = t(1). By integrating (3.1) with the initial condition that u
(
t(1)
)

= 0, it gives
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the expression of the membrane potential before the next output spike

u(t) = Rx0

[
1− exp

(
−t− t

(1) − tr
τm

)]
, t > t(1) + tr. (3.2)

Assume that the next output spike occurs at t = t(2), i.e. u(t(2)) = Vth. Let the interspike

interval be Tisi = t(2) − t(1), we get

Vth = Rx0

[
1− exp

(
−Tisi − tr

τm

)]
(3.3)

which leads to

Tisi = tr + τmln
Rx0

Rx0 − Vth
, Rx0 > Vth. (3.4)

where the constraint of Rx0 > Vth comes from the fact that only when the constant input

current is sufficient large, the neuron can generate spikes. Since both the input x0 and

Tisi are constant, the mean output firing rate of the spiking neuron is given by

y =
1

Tisi
=

1

tr + τmln
Rx0

Rx0−Vth

, Rx0 > Vth. (3.5)

In this way, we obtain the transfer function of spiking neurons under the condition

that it has constant input so that this relation between input and output can be used

in the deriving process. Since this function can only represent spiking neurons with a

fixed input, in order to distinguish the spiking neurons and this transfer function, when

referring to firing-rate model neurons, it means the neurons with this firing-rate transfer

function (3.5).

Figure 3.1 shows two tuning curves of the firing-rate transfer function where the input

current level is swept while either the leaky resistance R or the membrane time constant

τm is held at a specific value. As shown in Figure 3.1A, changing R while fixing τm
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Figure 3.1: The firing-rate transfer function (FR-TF): (A) as a function of the leaky
resistance R, and (B) as a function of the membrane time constant τm.

modifies both the bias and curvature of the tuning curve. Figure 3.1B illustrates that

τm controls the curvature of the tuning curve when R is fixed. In the following part, the

proposed SpiKL-IP Rule is based on tuning R and τm.

3.2 The Basic SpiKL-IP

Based on the presented firing-rate transfer function (3.5), we now take an information-

theoretical approach to derive the SpiKL-IP rule to minimize the KL-divergence from the

exponential distribution to the output firing rate distribution.

We consider the information processing of a given spiking neuron as it receives stimuli

from external inputs or other neurons in the same network over a dataset, mimicking

part of the lifespan of the biological counterpart. We define the input and output firing

rate probability distributions for each spiking neuron in the following way. As shown

in Figure 3.2, the input current level X varies across different time points, it forms an

input probability distribution over the course of the entire process denoted by fx(x).

Accordingly, the output firing rate Y varies over time and forms an output probability

distribution denoted by fy(y).

The goal of the SpiKL-IP rule is to obtain an approximately exponential distribution
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Figure 3.2: The mapping from the input current distribution to the output firing rate
distributing of a neuron.

of the output firing rate at a fixed level of metabolic costs. In a biological perspective,

exponential distributions of the output firing rate have been observed in mammalian

visual cortical neurons responding to natural scenes and allow the neuron to transmit

the maximum amount of information given a fixed level of metabolic costs [28].

From an information-theoretic point of view, [64] argued that a neuron may self-adapt

to maximize the mutual information of the input X and the output Y , a measure for the

amount of information about the input obtained from the output, or vice versa

I(Y,X) = H(Y )−H(Y |X), (3.6)

where H(Y ) is the entropy of the output while H(Y |X) represents the amount of entropy
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(uncertainty) of output that does not come from the input. Since H(Y |X) is the intrinsic

uncertainty of Y which does not depend on neural parameters and the input, maximizing

I(Y,X) is equivalent to maximizing H(Y ). To this end, it is instrumental to note when

the mean of the distribution is kept constant, the exponential distribution corresponds to

the largest entropy among all probability distributions of a non-negative random variable.

This leads to the conclusion that the exponential distribution with a targeted mean

shall be the optimal distribution for the output firing rate, where the mean specifies the

practical constraint on energy expenditure. The exponential distribution is given by

f(x) = µexp(−µx), x >= 0, (3.7)

where µ is the mean of the distribution.

Inspired by the IP rule for sigmoid neurons in [32], we derive the SpiKL-IP rule for

spiking neurons while minimizing the KL-divergence from a targeted exponential distri-

bution to the actual output firing rate distribution, where Kullback–Leibler divergence

(KL-divergence) is used as a difference measure as follows

D = d (fy(y)||fexp) =

∫
fy(y)log

(
fy(y)

1
µ
exp(−y

µ
)

)
dy

=

∫
fy(y)log(fy(y))dy +

∫
fy(y)

(
y

µ

)
dy +

∫
fy(y)logµdy,

(3.8)

where y and fy(y) denote the output and the output firing rate distribution, respectively,

and µ is the mean value of the targeted exponential distribution. The smaller the KL-

divergence D is, the closer the exponential distribution is to the output distribution. In

(3.8), since
∫
fy(y)dy = 1 the third integral evaluates to a fixed value of logµ. Minimizing

KL-Divergence D by adapting R and τm reduces to minimize the first two integrals, giving
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rise to the following loss function

L =

∫
fy(y)log(fy(y))dy +

∫
fy(y)

(
y

µ

)
dy

= E

[
log(fy(Y )) +

Y

µ

]
.

(3.9)

Overall loss

Loss at each time point

Figure 3.3: Online SpiKL-IP learning: minimization of the KL divergence at each
time point during the training process.

Note that (3.9) is in terms of an expectation over the entire output distribution. Now,

we convert (3.9) into an online form that is analogous to the stochastic gradient descent

method with a batch size of one. To make SpiKL-IP amenable for online training, using a

proper stepsize we discretize the entire training process into multiple small time intervals

each in between two adjacent time points as shown in Fig 3.3. The input level to the

spiking neuron at each time point is considered as an individual observation or training

example. In this way, the adjustment of the tunable parameters is not delayed until the

output firing rate distribution is collected after the entire dataset is applied to the neuron

(or neural network). Instead, these parameters are adjusted as the neuron experiences a

given input example at each time point in an online manner. To do this, the following

loss function that corresponds to the received input example is minimized at each time
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point t

L(t) = log(fy(y(t))) +
y(t)

µ
, (3.10)

where y(t) denotes the output firing rate Y observed at time t. From now on, we drop

the explicit dependency of y(t) and x(t) (observed input level at t) on t for notational

simplicity. Recognizing that the output probability distribution relates to the input

counterpart by [65]

fy(y) =
fx(x)
∂y
∂x

(3.11)

and substituting it into (3.10) leads to

L(t) = log(fx(x))− log
(
∂y

∂x

)
+
y

µ
, (3.12)

which can be further simplified to

L̂(t) = −log
(
∂y

∂x

)
+
y

µ
, (3.13)

as log(fx(x)) is a function of the input probability distribution and does not depend on

R and τm.

The online SpiKL-PI rule is based upon the partial derivatives of (3.10) with respect

to x, R and τm. We first shall compute the derivatives of the output firing rate y(t)

with respect to x, R, τm. We make use of the firing rate transfer function (3.5) whose

application at each time point t is justified if the input x(t) changes slowly with respect
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to the chosen stepsize and the averaged output firing rate measure is used, and obtain

∂y

∂x
=

y2τmVth
x(Rx− Vth)

∂y

∂R
=

y2τmVth
R(Rx− Vth)

∂y

∂τm
=
try

2 − y
τm

.

(3.14)

Taking (3.14) into account, the partial derivatives of the loss function (3.10) with

respect to R and τm are found to be

∂L

∂R
=

∂

∂R

(
−log

(
∂y

∂x

)
+
y

µ

)
=

∂

∂R

(
−(2log(y)− log(Rx− Vth)) +

y

µ

)

=

(
y2

µ
− 2y

)
τmVth +Rx

R(Rx− Vth)

(3.15)

and

∂L

∂τm
=

∂

∂τm

(
−log

(
∂y

∂x

)
+
y

µ

)
=

∂

∂τm

(
−(2log(y) + logτm) +

y

µ

)
=

1 + 1
µ
(try

2 − y)− 2try

τm
,

(3.16)

respectively, which gives the following online IP rule

R = R− η1
∂L

∂R
= R + η1

(
2y − y2

µ

)
τmVth −Rx

R(Rx− Vth)
, Rx > Vth (3.17)

and

τm = τm − η2
∂L

∂τm
= τm + η2

2try − 1− 1
µ
(try

2 − y)

τm
, Rx > Vth. (3.18)
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where η1 and η2 are learning rates, µ the constant value depending on the desired mean of

the output firing rate. The condition Rx > Vth comes from the transfer function (3.5).

3.3 Practical Considerations and Final SpiKL-IP

While (3.17, 3.18) has the key elements of the proposed online IP rule, its direct

implementation, however, has been experimentally shown to be unsuccessful, i.e. it can

neither train spiking neurons to generate output firing rates following the exponential

distribution nor improve SNN learning performance for real-world classification tasks.

The problem has to do with the fact that one underlying assumption behind the firing

rate transfer function (FR-TF) (3.5) and hence the IP rule (3.17, 3.18) is that the input

current is constant or changes over a sufficiently slow timescale. However, in a practical

setting, the total postsynaptic input received by a spiking neuron does vary in time

and the rate of change depends on the frequency of firing activities of its presynaptic

neurons. With the internal dynamics, the output firing level of a spiking neuron cannot

immediately follow the instantaneous current input, e.g. it is possible that the output

firing rate is still low while the input current has increased to a high level. As a result,

the assumption on the input current is rather constraining and its violation leads to

ineffectiveness of IP tuning.

On the other hand, it is worth noting that the FR-TF captures the correlation be-

tween the average input current and output firing rate over a long time scale. In the

meantime, the proposed IP rule aims to adapt spiking neurons to produce a desirable

probability distribution of the output firing rate. In other words, the objective is not

to tune each instance of the output firing rate. Instead, it is to achieve desirable collec-

tive characteristics of the output firing rate measured by an exponential distribution. In

some sense, the FR-TF correlates the input and output correspondence in a way that is
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meaningful for the objective of online IP tuning.

To find a solution to the above difficulty, we remove the dependency on the instanta-

neous input current from the IP rule of (3.17, 3.18) by substituting the input x using the

output firing rate y with the transfer function (3.5). More specifically, a new variable W

is defined by W = Rx− Vth, which can be expressed using y based on (3.5) as

W =
Vth

e(
1
τm

( 1
y
−tr)) − 1

. (3.19)

Making use of (3.19), (3.17, 3.18) is converted to a form which only depends on y

R = R + η1
2yτmVth −W − Vth − 1

µ
τmVthy

2

RW
, y > 0.

τm = τm + η2
2try − 1− 1

µ
(try

2 − y)

τm
.

(3.20)

As can be seen, the rule in (3.20) adjusts the two parameters only based on the output

firing rate y. Substituting the instantaneous value of x by the firing rate y based on

the firing rate transfer function effectively operates the IP rule based on the averaged

input/output characteristics over a longer time scale.

Note that the condition that Rx > Vth in (3.17, 3.18) is changed to an equivalent form

of y > 0 in (3.20). A closer examination of Figure 3.1 shows that the firing rate transfer

functions are not differentiable around y = 0 (Rx = Vth). Interpreting differently, the

proposed IP tuning can operate only when the output firing rate is nonzero. To further

improve the robustness of the proposed IP rule, the tuning in (3.20) is only activated

when y > δ with δ being small such as 1 Hz. When y ≤ δ, R and τm are decreased

and increased, respectively, to bring up the output firing activity. Putting everything
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together, the final SpiKL-IP rule is

R = {
R + η1

2yτmVth−W−Vth− 1
µ
τmVthy

2

RW
, y > δ

R + η1α1, y ≤ δ

τm = {
τm + η2

2try−1− 1
µ
(try2−y)

τm
, y > δ

τm − η2α2, y ≤ δ

(3.21)

where α1 and α2 are chosen to be small.
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Figure 3.4: Tuning characteristics of one-time application of SpiKL-IP at different
output firing rate levels starting from a chosen combination of R and τm values R
and τm: (A) Tuning of the leaky resistance R, and (B) tuning of the membrane time
constant τm.

To provide an intuitive understanding of the proposed SpiKL-IP rule, Figure 3.4

shows how R and τm are altered by the one-time application of SpiKL-IP at different

output firing rate levels starting from a chosen combination of R and τm values.

3.4 Experiments and Results

To demonstrate the mechanisms and performances of the proposed SpiKL-IP rule, we

conduct three types of experiments by applying SpiKL-IP to a single neuron as well as a
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group of spiking neurons as part of a neural network. First, we show that when applied

to a single neuron whose behavior is governed by the firing-rate transfer function (3.5)

the proposed rule can tune the neuron to produce the targeted exponential distribution

of the output firing rate even under a time-varying input. Then, we apply SpiKL-IP to a

single spiking neuron as well as a group of spiking neurons to demonstrate that our rule

can robustly produce the desired output firing distribution in all tested situations even

although it is derived from the FR-TF which is based on assumption that the input is

constant. Finally, we demonstrate the significant performance boosts achieved by SpiKL-

IP when applied to real-world speech and image classification tasks. Furthermore, we

compare SpiKL-IP with two existing IP rules for spiking neurons [33, 35]. In this article,

we name the IP rule in [33] as the Voltage-Threshold IP rule and one in [35] as the RC

IP rule.

The following experimental setups are adopted in the experiments of this section. We

simulate the continuous-time LIF model (2.1) using a fixed discretization time step of

1ms according to which all neuronal activities are evaluated in lockstep. To measure

the firing rate of each spiking neuron as a continuous-valued quantity over time under

a constant of varying input, we use the intracellular calcium concentration Ccal(t) as a

good indicator of the averaged firing activity over a chosen time scale

dCcal(t)

dt
= −Ccal(t)

τcal
+
∑
i

δ(t− ti), (3.22)

where τcal is the time constant and the output firing spikes are presented by a series of

Dirac delta functions. According to (3.22), the calcium concentration increases by one

unit when an output spike is generated, and decays with a time constant τcal [66]. The
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time-varying output firing rate is measured using the normalized calcium concentration

y(t) =
Ccal(t)

τcal
. (3.23)

3.4.1 Single Neurons Modeled by FR-TF

We apply the proposed SpiKL-IP rule to a single neuron modeled based on the firing-

rate transfer function (3.5). The parameters of the neuron and SpiKL-IP are are set as

follows: Vth = 20mV , tr = 2ms, and µ = 0.2KHz. In addition, the tuning ranges for R

and τm are set to [1Ω, 1024Ω] and [1ms, 1, 024ms] with R and τm initialized to 64Ω and

64ms, respectively. The input current level at each time point is randomly generated

according to a Gaussian distribution with the mean of 7mA and variance of 1mA as well

as a uniform distribution between [0.5mA, 5.5mA] in a way that is similar to the setups

in [32, 35]. For both cases, a total of 10, 000 time points are considered.
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Figure 3.5: The output firing-rate distributions of a single neuron characterized us-
ing the firing-rate transfer function and driven by randomly generated current input
following a Gaussian or Uniform distribution: (A) Gaussian input without IP tuning,
(B) Gaussian input with the SpiKL-IP rule, (C) uniform input without IP tuning,
and (D) uniform input with the SpiKL-IP rule. The red curve in each plot represents
the exponential distribution that best fits the actual output firing rate data.
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In Figure 3.5, we compare the recorded output firing rate distribution when no IP

tuning is used with the one that is produced by the proposed SpiKL-IP rule under two

random input distributions. In each plot of Figure 3.5, we fit the actual firing histogram

with to the closest exponential distribution (red curve). It is evident from 3.5A and 3.5C

that without IP tuning the output firing distribution is far from the targeted optimal

exponential distribution with the maximum entropy. With the application of SpiKL-

IP, however, the output distribution can be trained to almost converge to the desirable

exponential distribution under two dramatically different input distributions. Note that

since the simulation time step size is 1ms, the output firing rate is bound by 1KHz.

This creates a subtle difference between the actual and the exponential distribution at

the tails of the two distributions, which is negligible in practice. These results indicate

that the proposed IP rule can robustly maximize the information contained in the output

firing rate distribution by tuning it towards the exponential distribution regardless of the

input distribution.

3.4.2 Leaky Integrate-and-Fire Spiking Neurons

Since SpiKL-IP is based on the firing-rate transfer function which only characterizes

the behavior of LIF neurons over a large timescale, it is interesting to test SpiKL-IP using

LIF neurons. The parameters for the spiking neurons and SpiKL-IP are set as follow:

Vth = 20mV , tr = 2ms, µ = 0.2KHz, τc = 64ms with R and τm initialized to 64Ω and

64ms, respectively. The tuning ranges for R and τm are again set to [1Ω, 1024Ω] and

[1ms, 1, 024ms], respectively.

First, we apply SpiKL-IP to a single LIF neuron whose input is a spike (Dirac delta)

train randomly generated according to a Poisson process with a mean firing rate of 160

Hz for 1000 ms. The details of input generation are described in [67]. The output firing
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Figure 3.6: Output firing rate distributions of a single spiking neuron: (A) without
IP tuning, (B) with proposed SpiKL-IP rule, (C) with the Voltage Threshold IP rule,
and (D) with the RC IP rule. The red curve in each plot represents the exponential
distribution that best fits the actual output firing rate data.

rate is evaluated by the normalized intracellular calcium concentration in (3.23). Figure

3.6 compares the output firing distributions generated with no IP and with the three IP

rules. Clearly, the proposed rule produces an output distribution close to the desired

exponential distribution while without IP tuning the neuron is unable to generate an

exponentially distributed output. As shown in Figure 3.6C, the Voltage Threshold IP

rule [33] can only alter the average output firing rate rather than tuning the shape of the

output firing rate distribution towards that of an exponential distribution. Figure 3.6D

shows that it is also tricky for the RC IP rule [35] to train the neuron to generate an

output whose distribution is close to the exponential distribution.

Next, more interestingly, we examine the behavior of IP tuning in a spiking neural

network. In this case, we set up a fully connected recurrent network of 100 LIF neurons.

There are 30 external inputs with each being a Poisson spike train with a mean rate

of 80Hz and a duration of 1, 000ms. Each input is connected to 30 neurons through

synaptic whose weights are set to -8 or 8 with equal probability. The synaptic weights
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between the reservoir neurons in the network are uniformly distributed between -1 and

1. This neural network is similar to the reservoir network used in [31].
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Figure 3.7: Output firing rate distributions of one spiking neuron in a fully connected
network: (A) without IP tuning, (B) with proposed SpiKL-IP rule, (C) with the
Voltage Threshold IP rule, and (D) with the RC IP rule. The red curve in each plot
represents the exponential distribution that best fits the actual output firing rate data.

We randomly choose one neuron and record its output firing rate for a demonstra-

tion. As can be seen in Figure 3.7A, without IP tuning the output distribution is quite

different from any exponential distributions. As shown in 3.7C and 3.7D, neither the

Voltage Threshold IP rule nor the RC IP rule can produce an output distribution that

is reasonably close to an exponential distribution. In contrast, the proposed SpiKL-IP

rule leads to excellent results, generating an output distribution that is very close to an

exponential distribution. These experiments demonstrate that SpiKL-IP maintains its

effectiveness in the more complex network setting where spiking neurons interact with

each other while receiving external spike inputs.

35



Information-Theoretic Intrinsic Plasticity Chapter 3

3.4.3 Real World Classification Tasks on Liquid State Machine

Although intrinsic plasticity has been studied for a very long time with many different

IP rules proposed, rarely any rule is tested on real-world learning tasks. As a result, it is

not clear whether IP tuning is capable of improving the performance of more meaningful

tasks. In this paper, we realize several spiking neural networks based on the bio-inspired

Liquid State Machine (LSM) network model and evaluate the performance of IP tuning

using realistic speech recognition datasets TI46-Alpha [56].

LSM is a biologically plausible spiking neural network model with embedded recurrent

connections [45]. The LSM has an input layer, a recurrent reservoir, and a readout layer.

The reservoir has a recurrent structure with a group of excitatory and inhibitory spiking

neurons randomly connected in a way approximating the spatial distribution of biological

neurons [45]. Typically, the synaptic weights between the reservoir neurons are fixed.

The input spike trains generate spatiotemporal firing patterns in the reservoir, which are

projected onto the readout layer through full connectivity. In this paper, the feedforward

plastic synapses between the reservoir neurons and readout are adjusted according to a

bio-inspired spike-based online learning rule [46]. Several LSMs with different sizes are

set up to evaluate the potential impact of an IP rule on classification performance.

For the networks evaluated using TI46-Alpha, the input layer has 78 neurons. These

networks have 135(3*3*5), 270(3*3*30), 540(6*6*15) reservoir neurons, respectively, where

each input neuron is randomly connected to 16, 24, 32 reservoir neurons with the weights

set to 2 or -2 with equal probability, respectively. Among the reservoir neurons, 80% are

excitatory, and 20% are inhibitory. The reservoir is composed of all types of synaptic

connections depending on the pre-neuron and post-neuron types including EE, EI, IE,

II, where the first letter indicates the type of the presynaptic neuron, and the second

letter the type of the postsynaptic neuron, and E and I mean excitatory and inhibitory
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neurons, respectively. The probability of a synaptic connection from neuron a to neuron

b in the reservoir is defined as C ·e−(D(a,b)/λ)2 , where λ is 3, C is 0.3(EE), 0.2(EI), 0.4(IE),

0.1(II) and D(a, b) is the Euclidean distance between neurons a and b [45]. The synaptic

weights in the reservoir are fixed to 1(EE, EI) or -1(IE, II). For the readout layer, the

reservoir neurons are fully connected to 26 readout neurons with the weights randomly

generated from -8 to 8 following the Gaussian distribution. All the readout synapses

are plastic and trained according to [46]. When testing an IP rule, it is only applied

to the reservoir neurons. The parameters of each neuron are: Vth = 20mV , tr = 2ms,

µ = 0.2KHz, τc = 64ms, η1 = η2 = 5, and α1 = α2 = 0.1. R and τm are initialized to

64Ω and 64ms, respectively. The tuning ranges for R and τm are again set to [32Ω, 512Ω]

and [32ms, 512ms], respectively. A five-fold cross-validation scheme is adopted to obtain

classification performances. Five hundred epochs are simulated, and the best results are

reported.

Table 3.1: The performances of LSM-based speech recognition with and without the
proposed SpiKL-IP rule evaluated using the single and multi-speaker subsets of the
TI46 Speech Corpus.

Dataset Size Reservoir Size Without IP With IP

260(1 Speaker)
90 88.46% 97.31%
135 92.30% 98.46%

520(2 Speakers)
135 86.15% 92.31%
270 89.04% 95.58%

1040(4 Speakers)
135 79.04% 87.69%
270 84.62% 93.37%

2080(8 Speakers)
270 72.69% 86.95%
540 76.59% 91.96%

3120(12 Speakers)
270 72.17% 84.25%
540 77.49% 90.64%

4160(16 Speakers)
270 70.76% 83.98%
540 76.19% 88.58%
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Table 3.1 demonstrates the classification accuracy for a number of LSMs of different

amounts of reservoir neurons with and without the proposed SpiKL-IP rule based on

different subsets of the TI46 speech corpus. The 260-samples subset is a single speaker

subset while the ones with 520, 1,040, 2,080, 3,120, 4,160 samples contain 2, 4, 8, 12, and

16 speakers, respectively. It shall be noted that as the number of speakers increases, the

recognition task becomes increasingly challenging. To the best knowledge of the authors,

there exists no prior reported success in recognizing multiple-speaker subsets using spiking

neural networks. As shown in Table 3.1, the recognition performs drops rapidly as the

number of speakers increases without SpiKL-IP. In comparison, the use of SpiKL-IP

can significantly boost the recognition accuracy by up to more than 16%. Moreover,

SpiKL-IP leads to higher performance boosts as it is applied to smaller networks or more

challenging subsets of greater numbers of speakers and samples.

From the LSM with 135 reservoir neurons, we randomly choose six neurons and record

their firing responses on one of the speech samples after a few initial training iterations.

Figure 3.8 shows that most neurons’ responses can follow the exponential distribution,

demonstrating that the proposed SpiKL-IP rule can tune neurons to generate outputs

with a distribution close to the exponential distribution in a complicated network.

Figure 3.9 compares the recognition performances of several LSMs all with 135 reser-

voir neurons reported in related works. The performances are evaluated based upon the

single-speaker subset with 260 samples. We adopt the LSM in [46] which makes use of

a spike-based supervised learning rule for training the readout synapses and has no IP

tuning as a baseline. The LSM in [9] adds the spike-timing-dependent-plasticity (STDP)

rule to the baseline to train the synaptic weights between reservoir neurons. On top of

the baseline, we further implement the Voltage Threshold IP rule [33], the RC IP rule

[35], or the SpiKL-IP rule to tune the reservoir neurons. The proposed rule produces the

highest recognition accuracy improvement of more than 6% over the baseline LSM.
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Figure 3.8: The output firing distributions of six reservoir neurons in an LSM after the
reservoir is trained. The red curve in each plot represents the exponential distribution
that best fits the actual output firing rate data.

3.5 Summary and Discussions

While intrinsic plasticity (IP) was attempted for spiking neurons in the past, the prior

IP rules lacked a rigorous treatment in their development, and the efficacy of these rules

was not verified using practical learning tasks. In this chapter, we address the theoretical

and practical limitations of the existing works by proposing the SpiKL-IP rule. SpiKL-IP

is based upon a rigorous information-theoretic perspective where the target of IP tuning

is to produce the maximum entropy in the resulting output firing rate distribution of each
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Figure 3.9: Speech recognition performances of various learning rules when applied
to a LSM with 135 reservoir neurons. The performance evaluation is based on the
single-speaker subset of the TI46 Speech Corpus. (1) LSM (Baseline): with the set-
tings and supervised readout learning rule in [46] and no reservoir tuning. All other
compared networks add additional mechanisms to the baseline. (2) LSM+Proposed
IP Rule: with additional reservoir neurons tuning using SpiKL-IP. (3) LSM+STDP:
with additional reservoir neurons tuning using the STDP rule in [9]; (4) LSM+Voltage
Threshold IP Rule: with additional reservoir neurons tuning using the IP rule in [33].
(5) LSM+RC IP Rule: with additional reservoir neurons tuning using the IP rule in
[35].

spiking neuron. The maximization of output entropy, or information transfer from the

input to the output, is realized by producing a targeted optimal exponential distribution

of the output firing rate.

More specifically, SpiKL-IP aims to tune the intrinsic parameters of a spiking neuron

while minimizing the KL-divergence from the targeted exponential distribution to the

actual output firing rate distribution. However, several challenges must be addressed as

we work toward achieving the above goal. First, we rigorously relate the output firing

rate with the static input current by deriving the firing-rate transfer function (FR-TF).
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FR-TF provides a basis for allowing the derivation of the SpiKL-IP rule that minimizes

the KL-divergence. Furthermore, we cast SpiKL-IP in a suitable form to enable the

online application of IP tuning. Finally, we address one major challenge associated

with applying SpiKL-IP under realistic contexts where the input current to each spiking

neuron may be time-varying, which leads to the final IP rule that has no dependency on

the instantaneous input level and effectively tuning the neural model parameters based

upon averaged firing activities.
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Chapter 4

Spike-Train Level Backpropagation

for Recurrent Spiking Neural

Networks

In Chapter 3, we demonstrate an unsupervised learning method SpiKL-IP. However,

biologically inspired unsupervised learning has limited capability in boosting the perfor-

mance of spiking neural networks (SNNs). SNNs well support spatio-temporal learning

and energy efficient event-driven hardware neuromorphic processors. As an important

class of SNNs, recurrent spiking neural networks (RSNNs) possess great computational

power. However, the practical application of RSNNs is severely limited by challenges in

training. Inspired by the success of error backpropagation (BP) and its variants in train-

ing conventional deep neural networks (DNNs), various SNNs BP methods have emerged,

aiming at attaining the same level of performance [13, 14, 15, 16, 17, 18, 19, 20, 21]. Al-

though many appealing results are achieved by these methods, developing SNNs BP

training methods that are on a par with the mature BP tools widely available for train-

ing ANNs today is a nontrivial problem [26]. Existing backpropagation (BP) methods
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suffer from high complexity of unfolding in time, vanishing and exploding gradients, and

approximate differentiation of discontinuous spiking activities when applied to RSNNs.

For example, backpropagation through time (BPTT) in principle may be applied to train-

ing RSNNs [20], but bottlenecked with several challenges in: (1) unfolding the recurrent

connections through time, (2) backpropagating errors over both time and space, and (3)

backpropagating errors over non-differentiable spike events.

This chapter is motivated by: 1) lack of powerful supervised training of general

RSNNs, and 2) an immediate outcome of 1), i.e. the existing SNN research has limited

scope in exploring sophisticated learning architectures like deep RSNNs with multiple

feedforward and recurrent layers hybridized together. As a first step towards addressing

these challenges, we propose a novel biologically non-plausible Spike-Train level RSNNs

Backpropagation (ST-RSBP) algorithm which is applicable to RSNNs with arbitrary net-

work topology and achieves state-of-the-art performances on several widely used datasets.

The proposed ST-RSBP employs spike-train level computation similar to what is adopted

in the recent hybrid macro/micro level BP (HM2-BP) method for feedforward SNNs [16],

which demonstrates encouraging performances and outperforms BPTT such as the one

implemented in [15].

Fig. 4.1 compares BPTT and ST-RSBP, where we focus on a recurrent layer since

the feedforward layer can be viewed as a simplified recurrent layer. To apply BPTT, one

shall first unfold an RSNN in time to convert it into a larger feedforward network without

recurrent connections. The total number of layers in the feedforward network is increased

by a factor equal to the number of times the RSNN is unfolded, and hence can be very

large. Then, this unfolded network is integrated in time with a sufficiently small time step

to capture the dynamics of the spiking behavior. BP is then performed spatio-temporally

layer-by-layer across the unfolded network based on the same time step size used for

integration as shown in Fig. 4.1. In contrast, ST-RSBP is rigorously derived and can
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Figure 4.1: Backpropagation in recurrent SNNs: BPTT vs. ST-RSBP.

handle arbitrary recurrent connections in various RSNNs. While capturing the temporal

behavior of the RSNN at the spike-train level, ST-RSBP directly computes the gradient

of a rate-coded loss function w.r.t tunable parameters without incurring approximations

resulted from altering and smoothing the underlying spiking behaviors. ST-RSBP is

able to train RSNNs without costly unfolding the network through time and performing

BP time point by time point, offering faster training and avoiding vanishing/exploding

gradients for general RSNNs. Moreover, since ST-RSBP more precisely computes error

gradients than HM2-BP [16], it can achieve better results than HM2-BP even on the

feedforward SNNs.
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4.1 Spike-train Level postsynaptic Potential

Spike-train Level postsynaptic Potential (S-PSP) captures the spike-train level inter-

actions between a pair of pre/postsynaptic neurons and can be defined for any neural

models with all-or-none spiking characteristics and any synaptic models [16]. Without

loss of generality, we describe S-PSP using the LIF model and the first order synaptic

model introduced in (2.1) and (2.3), respectively.

The integration of (2.1) and (2.3) leads to the spike response model (SRM) [52]:

ui(t) =
∑
j

wij
∑
t
(f)
j

ε
(
t− t̂(f)i , t− t(f)j

)
, (4.1)

where t̂
(f)
i denotes the last firing time of the neuron i and t

(f)
j denotes a particular firing

time of the neuron j. ε(s, t) specifies the normalized time course of the postsynaptic

potential evoked by a single firing spike of the presynaptic neuron:

ε(s, t) =
1

C

∫ s

0

exp

(
− t′

τm

)
αi (t− t′) dt′. (4.2)

Through integration, (4.2) can be re-written as:

ε(s, t) =
e(−max(t−s,0)/τs)

1− τs
τm

[
e(−

min(s,t)
τm

) − e(−
min(s,t)
τs

)
]
H(s)H(t), (4.3)

where H(t) is the Heaviside step function.

Note that each neuron fires whenever its postsynaptic potential reaches the firing

threshold. We now sum up the contributions of the presynaptic neuron j’s spike train

to the (normalized) postsynaptic potential of the neuron i right before all the neuron i’s
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firing times as illustrated in Fig. 4.2:

eij =
∑
t
(f)
i

∑
t
(f)
j

ε(t
(f)
i − t̂(f)i , t

(f)
i − t(f)j ), (4.4)

defining the (normalized) spike-train level postsynaptic potential (S-PSP) from the

neuron j to the neuron i.

The significance of S-PSPs lies in that it characterizes the aggregated effect of the

spike train of the presynaptic neuron j on the membrane potential of the postsynaptic

neuron i and its firing activities. Employing S-PSPs in the proposed ST-RSBP algorithm

is beneficial; it allows efficient consideration of the temporal dynamics and recurrent

connections of an RSNN across all firing events at the spike-train level without expensive

unfolding in time and backpropagation time point by time point, which are required by

BPTT.

Neuron j

Neuron i

{· · · , t(f)j , · · · }

{· · · , t(f)i , · · · }

ǫ(t
(f)
i − t̂

(f)
i , t

(f)
i − t

(f)
j )

 Post-synaptic potential from a pair of 
pre/post-synaptic spikes 

} S-PSP

Figure 4.2: The computation of the S-PSP.

The sum of the weighted S-PSPs from all presynaptic neurons of the neuron i is

defined as the total postsynaptic potential (T-PSP) αi, relating to the neuron i’s
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firing count oi via the firing threshold ν:

ai =
∑
j

wij eij, oi = g(αi) ≈
ai
ν
. (4.5)

ai and oi are analogous to the pre-activation and activation in the traditional ANNs,

respectively, and g(·) can be considered as an activation function converting the T-PSP

to the output firing count.

Note that, in this chapter, we use a to denote T-PSP while in other chapters a

represents the postsynaptic current (PSC) defined in (2.2) which is induced by the spikes

from the presynaptic neuron through the synaptic kernel.

4.2 Proposed ST-RSBP

We use the generic recurrent spiking neural network with a combination of feedforward

and recurrent layers to derive ST-RSBP. For the spike-train level activation of each neuron

l in the layer k + 1, (4.5) is modified to include the recurrent connections explicitly if

necessary:

ak+1
l =

Nk∑
j=1

wk+1
lj ek+1

lj +

Nk+1∑
p=1

wk+1
lp ek+1

lp , ok+1
l = g(ak+1

l ) ≈ ak+1
l

νk+1
. (4.6)

Nk+1 and Nk are the number of neurons in the layers k+1 and k, wk+1
lj is the feedforward

weight from the neuron j in the layer k to the neuron l in the layer k + 1, wk+1
lp is the

recurrent weight from the neuron p to the neuron l in the layer k+1, which is non-existent

if the layer k+ 1 is feedforward, ek+1
lj and ek+1

lp are the corresponding S-PSPs, νk+1 is the

firing threshold at the layer k + 1, ok+1
l and ak+1

l are the firing count and pre-activation

(T-PSP) of the neuron l at the layer k + 1, respectively.
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The rate-coded loss is defined at the output layer as:

E =
1

2
||o− y||22 =

1

2
||a
ν
− y||22, (4.7)

where y, o and a are vectors of the desired output neuron firing counts (labels) and

actual firing counts, and the T-PSPs of the output neurons, respectively. Differentiating

(4.7) with respect to each trainable weight wkij incident upon the layer k leads to:

∂E

∂wkij
=
∂E

∂aki

∂aki
∂wkij

= δki
∂aki
∂wkij

with δki =
∂E

∂aki
, (4.8)

where δki and
∂aki
∂wkij

are referred to as the back propagated error and differentiation

of activation , respectively, for the neuron i. ST-RSBP updates wkij by ∆wkij = η ∂E
∂wkij

,

where η is a learning rate.

4.2.1 Back Propagated Errors

When the layer k is the output layer, the back propagated error at the ith neuron of

the layer is given by differentiating the loss defined in (4.7):

δki =
∂E

∂aki
=

(oki − yki )

νk
, (4.9)

where oki is the actual firing count, yki the desired firing count (label), and aki the corre-

sponding T-PSP.

For the hidden layer case, at each hidden layer k, by applying the chain rule, the back

propagated error δki for the neuron i can be expressed as:

δki =
∂E

∂aki
=

Nk+1∑
l=1

∂E

∂ak+1
l

∂ak+1
l

∂aki
=

Nk+1∑
l=1

δk+1
l

∂ak+1
l

∂aki
. (4.10)
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Nk+1 is the number of neurons in the layer k + 1. Define two error vectors δk+1 and δk

for the two layers: δk+1 = [δk+1
1 , · · · , δk+1

Nk+1
], and δk = [δk1 , · · · , δkNk ], respectively for the

layers k + 1 and k, where Nk is the number of the neurons in the layer k. Assuming

δk+1 is given, which is the case for the output layer based on (4.9), the goal is to back

propagate from δk+1 to δk. Clearly, this entails to compute
∂ak+1
l

∂aki
in (4.10).

[Backpropagation from a Hidden Recurrent Layer] Now consider that case

that the errors are back propagated from a recurrent layer k+ 1 to its preceding layer k.

Note that the S-PSP elj from any presynaptic neuron j to a post-synpatic neuron l is a

function of both the rate and temporal information of the pre/post spike trains, which

can be made explicitly via some function f :

elj = f(oj, ol, t
(f)
j , t

(f)
l ), (4.11)

where oj, ol, t
(f)
j , t

(f)
l are the presynaptic/postsynaptic firing counts and firing times,

respectively.

Now based on (4.6),
∂ak+1
l

∂aki
is split also into two summations:

∂ak+1
l

∂aki
=

Nk∑
j

wk+1
lj

dek+1
lj

daki
+

Nk+1∑
p

wk+1
lp

dek+1
lp

daki
, (4.12)

where the first summation sums over all presynaptic neurons in the previous layer

k while the second sums over the presynaptic neurons in the current recurrent layer as

illustrated in Fig. 4.3.

On the right side of (4.12),
dek+1
lj

daki
is given by:

dek+1
lj

daki
=


1
νk

∂ek+1
li

∂oki
+ 1

νk+1

∂ek+1
lj

∂ok+1
l

∂ak+1
l

∂aki
j = i

1
νk+1

∂ek+1
lj

∂ok+1
l

∂ak+1
l

∂aki
j 6= i,

(4.13)

49



Spike-Train Level Backpropagation for Recurrent Spiking Neural Networks Chapter 4
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Figure 4.3: Connections for a recurrent layer neuron and the dependencies among its S-PSPs.

where νk and νk+1 are the firing threshold voltages for the layers k and k+1, respectively,

and we have used that oki ≈ aki /ν
k and ok+1

l ≈ ak+1
l /νk+1 from (4.5). Importantly, the

last term on the right side of (4.13) exists due to ek+1
lj ’s dependency on the postsynaptic

firing rate ok+1
l per (4.11) and ok+1

l ’s further dependency on the presynaptic activation

oki (hence pre-activation aki ), as shown in Fig. 4.3.

On the right side of (4.12),
dek+1
lp

daki
is due to the recurrent connections within the layer

k + 1 and is given by:

dek+1
lp

daki
=

1

νk+1

∂ek+1
lp

∂ok+1
l

∂ak+1
l

∂aki
+

1

νk+1

∂ek+1
lp

∂ok+1
p

∂ak+1
p

∂aki
. (4.14)

The first term on the right side of (4.14) is due to ek+1
lp ’s dependency on the post-

synaptic firing rate ok+1
l per (4.11) and ok+1

l ’s further dependence on the presynaptic

activation oki (hence pre-activation aki ). Per (4.11), it is important to note that the sec-

ond term exists because ek+1
lp ’s dependency on the presynaptic firing rate ok+1

p , which
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further depends on oki (hence pre-activation aki ), as shown in Fig. 4.3.

Putting (4.12), (4.13), and (4.14) together leads to:

∂ak+1
l

∂aki
=wk+1

li

1

νk
∂ek+1

li

∂oki
+

1

νk+1

∂ak+1
l

∂aki

(
Nk∑
j

wk+1
lj

∂ek+1
lj

∂ok+1
l

+

Nk+1∑
p

wk+1
lp

∂ek+1
lp

∂ok+1
l

)

+

Nk+1∑
p

wk+1
lp

1

νk+1

∂ek+1
lp

∂ok+1
p

∂ak+1
p

∂aki
.

(4.15)

Now, (4.15) is rearranged to:

(
1− 1

νk+1

(
Nk∑
j

wk+1
lj

∂ek+1
lj

∂ok+1
l

+

Nk+1∑
p

wk+1
lp

∂ek+1
lp

∂ok+1
l

))
∂ak+1

l

∂aki
=

wk+1
li

1

νk
∂ek+1

li

∂oki
+

Nk+1∑
p

wk+1
lp

1

νk+1

∂ek+1
lp

∂ok+1
p

∂ak+1
p

∂aki
.

(4.16)

It is evident that all Nk+1×Nk partial derivatives involving the recurrent layer k+ 1

and its preceding layer k, i.e.
∂ak+1
l

∂aki
, l = [1, Nk+1], i = [1, Nk], form a coupled linear system

via (4.16), which is written in a matrix form as:

Ωk+1,k · P k+1,k = Φk+1,k + Θk+1,k · P k+1,k, (4.17)

where P k+1,k ∈ RNk+1×Nk contains all the desired partial derivatives, Ωk+1,k ∈ RNk+1×Nk+1

is diagonal, Θk+1,k ∈ RNk+1×Nk+1 , Φk+1,k ∈ RNk+1×Nk , and

Ωk+1,k
ij =


1− 1

νk+1

(∑Nk
m wk+1

lm
∂ek+1
lm

∂ok+1
l

+
∑Nk+1

p wk+1
lp

∂ek+1
lp

∂ok+1
l

)
i = j

0 i 6= j

P k+1,k
ij =

∂ak+1
i

∂akj
Φk+1,k
ij = wk+1

ij

1

νk
∂ek+1

ij

∂okj
Θk+1,k
ij = wk+1

ij

1

νk+1

∂ek+1
ij

∂ok+1
j

.

(4.18)
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The partial derivatives of the S-PSP with respect to the presynaptic and postsynaptic

firing counts, i.e.
∂ek+1
ij

∂okj
and

∂ek+1
ij

∂ok+1
i

as needed in (4.18) will be determined in Section 4.2.3.

Solving the linear system in (4.17) gives all
∂ak+1
i

∂akj
:

P k+1,k = (Ωk+1,k −Θk+1,k)−1 ·Φk+1,k. (4.19)

Note that since Ω is a diagonal matrix, the cost in factoring the above linear system can

be reduced by approximating the matrix inversion using a first-order Taylor’s expansion

without performing any matrix factorization.

All Nk errors at the layer k back propagated from the layer k + 1 per (4.10) is put

into a vector form: δk = [δk1 , · · · , δkNk ], and is given by:

δk = (P k+1,k)T · δk+1, (4.20)

where δk+1 is the error vector at the layer k + 1.

[Backpropagation from a Hidden Feedforward Layer] Consider the much sim-

pler case of backpropagating errors from a feedforward layer k + 1 to its preceding layer

k. Due to non-existence of recurrent connections in the layer k + 1, (4.19) is simplified

to:

P k+1,k = (Ωk+1,k)−1 ·Φk+1,k. (4.21)

Since Ωk+1,k is diagonal, each
∂ak+1
l

∂aki
can be directly computed:

∂ak+1
l

∂aki
=

1
νk
wk+1
li

∂ek+1
li

∂oki

1− 1
νk+1

∑Nk
p=1w

k+1
lp

∂ek+1
lp

∂ok+1
l

. (4.22)
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4.2.2 Differentiation of Activation

Per (4.8), we derive the differentiation of activation
∂aki
∂wij

under two cases.

[Backpropagation from a Hidden Feedforward Layer] For a feedforward layer

k and based on (4.6), differentiation of each activation is given by:

∂aki
∂wkij

=
∂

∂wkij

(
Nk−1∑
l

wkil e
k
il

)
= ekij +

1

νk
∂aki
∂wkij

Nk−1∑
l

wkil
∂ekil
∂oki

. (4.23)

The first term on the right side of (4.23) reflects the direct dependency of aki on wkij while

the second term captures the dependency of each S-PSP ekil on the post-synaptic firing

count oki , which further depends on wij according to (4.11). The derivative
∂aki
∂wkij

on the

right side of (4.23) is precisely considered in ST-RSBP. However, HM2-BP [16] does not

consider the hidden dependency of ekij on wkij when deriving (4.23). As a result, the
∂aki
∂wkij

term on the right side of (4.23) is approximated to ekij.

(4.23) gives the desired differentiation of activation as:

∂aki
∂wkij

=
ekij

1− 1
νk

∑Nk−1

l wkil
∂ekil
∂oki

. (4.24)

[Recurrent Layers] For the activation aki of the neuron i at the recurrent layer k,

we further consider the recurrent connections and get

∂aki
∂wkij

=
∂

∂wkij

(
Nk−1∑
l

wkil e
k
il +

Nk∑
p

wkip e
k
ip

)
= ekij +

∂aki
∂wkij

1

νk

(
Nk−1∑
l

wkil
∂ekil
∂oki

+

Nk∑
p

wkip
∂ekip
∂oki

)
,

leading to:

∂aki
∂wij

=
ekij

1− 1
νk

(∑Nk−1

l wkil
∂ekil
∂oki

+
∑Nk

p wkip
∂ekip
∂oki

) . (4.25)
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4.2.3 Differentiation of S-PSP w.r.t Pre/PostSynaptic Firing

Counts

Before presenting the final ST-RSBP algorithm, we shall determine the partial deriva-

tives
∂eij
∂oj

and
∂eij
∂oi

of an S-PSP eij with respect to the firing counts of the pre-synaptic

neuron j and post-synaptic neuron i, respectively, as needed in (4.18), (4.22), (4.24), and

(4.25). As discussed in Section 4.1, S-PSPs serve as a bridge between neuron-level firing

timings and spike-train level firing count and allow backpropagating errors defined for a

rate-coded loss at the spike-train level.

In [16], the HM2-BP computes the two partial derivatives by assuming that each

S-PSP eij is approximately linear in both oj and oi.

To examine this assumption, we evaluate the S-PSP from the neuron j to neuron

i via a synapse. The LIF neuron model of (2.1) and the synaptic model of (2.3) with

τm = 64ms, τs = 8ms are adopted in this analysis. The simulation duration is set

to 600ms and the first-order Euler method with a fixed stepsize of 1ms is used for

simulation. To cover a wide range of interactions between the two neurons, we consider

all combinations of the firing rates of two neurons oi and oj when they are swept widely

from 1 to 50. For each combination of oi and oj values, we generate the spike trains

of the two neurons by randomly choosing oi and oj numbers of random spiking times,

respectively, and compute the S-PSP eij according to (4.4). We repeat this process 500

times and take the average value of eij.

We plot the relation between the pre/post-synaptic firing counts oj and oi and the

average eij in Fig. 4.4A. Fig. 4.4B shows that with oi fixed eij increases rather linearly
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in oj, consistent with [16], and hence we have:

∂eij
∂oj
≈ eij
oj
. (4.26)

However, Fig. 4.4C shows that with oj fixed, eij is not linear in a wide range of oi,

suggesting that the assumption made in [16] can lead to errors when the postsynaptic

firing rates vary a lot. Based on the data collected for Fig. 4.4A, for each fixed oj, we

instead fit eij as a third-order polynomial in oi to obtain the corresponding values for the

derivative
∂eij
∂oi

. The characterization of
∂eij
∂oi

occurs offline prior to the training process. In

this approach, ST-RSBP can more precisely measure the differentiation of S-PSP w.r.t

firing counts than HM2-BP [16]. Therefore, ST-RSBP may achieve better results even

on feedforward networks like spiking CNNs.

oioj

eij eij eij

oj oi

oi = 10 oj = 10A B C

Figure 4.4: (A) The average S-PSP value vs. pre and post-synaptic firing counts; (B)
The average eij vs. oj when the post-synaptic firing count is fixed (oi = 10); (C) The
average eij vs. oi when the pre-synaptic firing count is fixed (oj = 10).

4.2.4 The Final Proposed ST-RSBP Algorithm

For each layer k, denote the error vector by δk ∈ RNk , the matrix of differentiation

of activation by F k,k−1 ∈ RNk×Nk−1 , and the weight matrix from the layer k − 1 to layer

k by W k,k−1 ∈ RNk×Nk−1 , respectively. P k+1,k ∈ RNk+1×Nk contains all derivatives of

∂ak+1
l

∂aki
obtained from (4.19) or (4.22). If the layer k is recurrent layer, we additionally use
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F k,k ∈ RNk×Nk and W k,k ∈ RNk×Nk to denote the matrix of differentiation of activation

and the weight matrix of recurrent connections within the layer k. Putting everything

together, the complete ST-RSBP algorithm with a learning rate η is as follows:


∆W k,k−1 = η ∇E

∇W k,k−1 = η · diag(δk) · F k,k−1 for feedforward connections

∆W k,k = η ∇E
∇W k,k = η · diag(δk) · F k,k for recurrent connections

F k,k−1
ij =

ekij

1− 1
νk

∑Nk−1

l wkil
∂ekil
∂oki

F k,k
ij =

ekij

1− 1
νk

(∑Nk−1

l wkil
∂ekil
∂oki

+
∑Nk

p wkip
∂ekip
∂oki

)


δki =

oki−yki
νk

if layer k is the output

δk = (P k+1,k)T · δk+1 if layer k+1 is feedforward

δk = ((Ωk+1,k −Θk+1,k)−1 ·Φk+1,k)T · δk+1 if layer k+1 is recurrent

Ωk+1,k
ij =


1− 1

νk+1

(∑Nk
m wk+1

lm
∂ek+1
lm

∂ok+1
l

+
∑Nk+1

p wk+1
lp

∂ek+1
lp

∂ok+1
l

)
i = j

0 i 6= j

Φk+1,k
ij = wk+1

ij

1

νk
∂ek+1

ij

∂okj
Θk+1,k
ij = wk+1

ij

1

νk+1

∂ek+1
ij

∂ok+1
j

P k+1,k
ij =

1
νk
wk+1
ij

∂ek+1
ij

∂okj

1− 1
νk+1

∑Nk
p=1w

k+1
ip

∂ek+1
ip

∂ok+1
i

.
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The application of ST-RSBP follows the typical backpropagation steps. First, the SNN is

simulated layer-by-layer based on chosen synaptic/neural models such as the LIF model

(2.1). Second, the firing counts of the output layer are compared with the desirable firing

labels to compute the output error δk. After that, the error vector in the output layer

is propagated backwards to determine the gradient, based on which both the recurrent

synapses weights and the weights between layers are trained.

4.3 Experiments and Results

4.3.1 Experimental Settings

The experimented SNNs are based on the LIF model and weights are randomly ini-

tialized by following the uniform distribution U [−1, 1]. Fixed firing thresholds are used

in the range of 5mV to 20mV depending on the layer. Exponential weight regulariza-

tion [14], lateral inhibition in the output layer [14] and Adam [68] as the optimizer are

adopted. The parameters like the desired output firing counts, thresholds and learning

rates are empirically tuned. Table 4.1 lists the typical constant values adopted in the

proposed ST-RSBP learning rule in our experiments. The simulation step size is set to

1 ms. The batch size is 1 which means ST-RSBP is applied after each training sample

to update the weights. Each experiment reported below is repeated five times to obtain

the mean and standard deviation (STD) of the accuracy.

Table 4.1: Parameters settings

Parameter Value Parameter Value

Time Constant of Voltage τm 64 ms Threshold ν 10 mV
Time Constant of Synapse τs 8 ms Synaptic Time Delay 1 ms
Refractory Period 2 ms Reset Membrane Voltage Vreset 0 mV
Batch Size 1 Learning Rate η 0.001
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4.3.2 TI46-Alpha Speech Dataset

In this experiment, we use the full set of the TI46-ALpha which contains 4,142 and

6,628 spoken English examples in 26 classes for training and testing, respectively.

Table 4.2: Comparison of different SNN models on TI46-Alpha

Algorithm Hidden Layersa # Params Mean STD Best

HM2-BP [16] 800 83,200 89.36% 0.30% 89.92%
HM2-BP [16] 400-400 201,600 89.83% 0.71% 90.60%
HM2-BP [16] 800-800 723,200 90.50% 0.45% 90.98%
Non-spiking BPb [69] LSM: R2000 52,000 78%

ST-RSBP (this work) R800 86,280 91.57% 0.20% 91.85%
ST-RSBP (this work) 400-R400-400 363,313 93.06% 0.21% 93.35%
a We show the number of neurons in each hidden layer. R represents recurrent layer.
b An LSM model. The state vector of the reservoir is used to train the single readout layer by BP.

Table 4.2 compares ST-RSBP with several other algorithms on TI46-Alpha. The

result from [69] shows that only training the single readout layer of a recurrent LSM is

inadequate for this challenging task, demonstrating the necessity of training all layers

of a recurrent network using techniques such as ST-RSBP. ST-RSBP outperforms all

other methods. In particular, ST-RSBP is able to train a three-hidden-layer RSNN with

363,313 weights to increase the accuracy from 90.98% to 93.35% when compared with

the feedforward SNN with 723,200 weights trained by HM2-BP.

4.3.3 N-TIDIGITS Neuromorphic Speech Dataset

In this experiment, the full N-TIDIGITS dataset is applied. Table 4.3 shows that

proposed ST-RSBP achieves excellent accuracies up to 93.90%, which is significantly

better than that of HM2-BP and the non-spiking GRN and LSTM in [61]. With a

similar/less number of tunable weights, ST-RSBP outperforms all other methods rather

significantly.
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Table 4.3: Comparison of different models on N-TIDIGITS

Algorithm Hidden Layers # Params Mean STD Best

HM2-BP [16] 250-250 81,250 89.69%
GRN (NSa) [61] 2× G200-100b 109,200 90.90%
Phased-LSTM (NS) [61] 2× 250Lc 610,500 91.25%

ST-RSBP (this work) 250-R250 82,050 92.94% 0.20% 93.13%
ST-RSBP (this work) 400-R400-400 351,241 93.63% 0.27% 93.90%
aNS represents non-spiking algorithm; bG represents a GRN layer; cL represents an LSTM layer.

4.3.4 Spiking Convolution Neural Networks for the MNIST

ST-RSBP can more precisely compute gradients error than HM2-BP even for the

case of feedforward CNNs. We demonstrate the performance improvement of ST-RSBP

over several other state-of-the-art SNN BP algorithms based on spiking CNNs using the

MNIST dataset. The spiking CNN trained by ST-RSBP consists of two 5×5 convolutional

layers with a stride of 1, each followed by a 2 × 2 pooling layer, one fully connected

hidden layer and an output layer for classification. In the pooling layer, each neuron

connects to 2 × 2 neurons in the preceding convolutional layer with a fixed weight of

0.25. In addition, we use elastic distortion [70] for data augmentation which is similar to

[14, 15, 16]. In Table 4.4, we compare the results of the proposed ST-RSBP with other

BP rules on similar network settings. It shows that ST-RSBP can achieve an accuracy of

99.62%, surpassing the best previously reported performance [16] with the same model

complexity.

4.4 Summary and Discussions

In this chapter, we present the novel spike-train level backpropagation algorithm

ST-RSBP, which can transparently train all types of SNNs including RSNNs without

unfolding in time. The employed S-PSP model improves the training efficiency at the
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Table 4.4: Performances of Spiking CNNs on MNIST

Algorithm Hidden Layers Mean STD Best

Spiking CNN [14] 20C5-P2-50C5-P2-200a 99.31%
STBP [15] 15C5-P2-40C5-P2-300 99.42%
SLAYER [17] 12C5-p2-64C5-p2 99.36% 0.05% 99.41%
HM2-BP [16] 15C5-P2-40C5-P2-300 99.42% 0.11% 99.49%

ST-RSBP (this work) 12C5-p2-64C5-p2 99.50% 0.03% 99.53%
ST-RSBP (this work) 15C5-P2-40C5-P2-300 99.57% 0.04% 99.62%
a 20C5: convolution layer with 20 of the 5× 5 filters. P2: pooling layer with 2× 2 filters.

spike-train level and also addresses key challenges of RSNNs training in handling tem-

poral effects and gradient computation of loss functions with inherent discontinuities for

accurate gradient computation. The spike-train level processing for RSNNs is the start-

ing point for ST-RSBP. After that, we have applied the standard BP principle while

dealing with specific issues of derivative computation at the spike-train level.

More specifically, in ST-RSBP, the given rate-coded errors can be efficiently computed

and back-propagated through layers without costly unfolding the network in time and

through expensive time point by time point computation. Moreover, ST-RSBP handles

the discontinuity of spikes during BP without altering and smoothing the microscopic

spiking behaviors. The problem of network unfolding is dealt with accurate spike-train

level BP such that the effect of all spikes is captured and propagated in an aggregated

manner to achieve accurate and fast training. As such, both rate and temporal informa-

tion in the SNN are well exploited during the training process.

Using the efficient GPU implementation of ST-RSBP, we demonstrate the best perfor-

mances for both feedforward SNNs, RSNNs, and spiking CNNs over the speech datasets

TI46-Alpha, and N-TIDIGITS and the image dataset MNIST, outperforming the current

state-of-the-art SNN training techniques. Moreover, ST-RSBP outperforms conventional

ANN models like LSTM, GRN, and traditional non-spiking BP on the same datasets.
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We expect this work would advance the research on spiking neural networks and neuro-

morphic computing.
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Chapter 5

Temporal Spike Sequence Learning

via Backpropagation

In Chapter 4, we propose ST-RSBP which can handle temporal effects and gradient

computation of loss functions with inherent discontinuities for accurate gradient compu-

tation. However, most existing SNN error backpropagation (BP) methods lack proper

handling of spiking discontinuities and suffer from low performance compared with the

BP methods for traditional artificial neural networks. In addition, a large number of

time steps are typically required, including the proposed ST-RSBP method, to achieve

decent performance, leading to high latency and rendering spike-based computation un-

scalable to deep architectures. We present a novel Temporal Spike Sequence Learning

Backpropagation (TSSL-BP) method for training deep SNNs, which breaks down error

backpropagation across two types of inter-neuron and intra-neuron dependencies and

leads to improved temporal learning precision. It captures inter-neuron dependencies

through presynaptic firing times by considering the all-or-none characteristics of firing

activities and captures intra-neuron dependencies by handling the internal evolution of

each neuronal state in time. TSSL-BP efficiently trains deep SNNs within a much short-
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ened temporal window of a few steps while improving the accuracy for various image

classification datasets including CIFAR10.

5.1 Forward Pass
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Figure 5.1: Forward evaluation pass of SNNs.

Without loss of generality, we consider performing BP across two adjacent layers l−1

and l with Nl−1 and Nl neurons, respectively, in a fully-connected feedforward SNNs as

shown in Figure 5.1. The procedure can be also applied to convolutional and pooling lay-

ers. Denote the presynaptic weights by W (l) =
[
w

(l)
1 , · · · ,w(l)

Nl

]T
, where w

(l)
i is a column

vector of weights from all the neurons in layer l−1 to the neuron i of layer l. In addition,

we also denote PSCs from neurons in layer l − 1 by a(l−1)[t] =
[
a
(l−1)
1 [t], · · · , a(l−1)Nl−1

[t]
]T

,

spike trains output of the l − 1 layer by s(l−1)[t] =
[
s
(l−1)
1 [t], · · · , s(l−1)Nl−1

[t]
]T

, membrane

potentials and the corresponding output spike trains of the l layer neurons respectively by

u(l)[t] =
[
u
(l)
1 [t], · · · , u(l)Nl [t]

]T
and s(l)[t] =

[
s
(l)
1 [t], · · · , s(l)Nl [t]

]T
, where variables associated

with neurons in the layer l have l as the superscript.

From the discretized LIF neuron model (2.4), the forward propagation between the
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two layers is described as

a(l−1)[t] = (ε ∗ s(l−1))[t],

u(l)[t] = (1− 1

τm
)u(l)[t− 1] +W (l)a(l−1)[t] + (ν ∗ s(l))[t],

s(l)[t] = H
(
u(l)[t]− Vth

)
.

(5.1)

In the forward pass, the spike trains s(l−1)[t] of the l − 1 layer generate the (un-

weighted) PSCs a(l−1)[t] according to the synaptic model. Then, a(l−1)[t] are multiplied

the synaptic weights and passed onto the neurons of layer l. The integrated PSCs alter

the membrane potentials and trigger the output spikes of the layer l neurons when the

membrane potentials exceed the threshold.

5.2 Backward Pass

5.2.1 The Loss Function

The goal of the proposed TSSL-BP method is to train a given SNN in such a way

that each output neuron learns to produce a desired firing sequence arbitrarily specified

by the user according to the input class label. Denote the desired and the actual spike

trains in the output layer by d = [d[t0], · · · ,d[tNt ]] and s = [s[t0], · · · , s[tNt ]] where Nt is

the number of the considered time steps, d[t] and s[t] the desired and actual firing events

for all output neurons at time t, respectively.

The loss function L can be defined using any suitable distance function measuring

the difference between d and s by the square error for each output neuron at each time

step:

L =
Nt∑
k=0

E[tk] =
1

2

Nt∑
k=0

(d[tk]− s[tk])
2 =

1

2
||d− s||22, (5.2)
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where E[t] is the error at time t.

In this work, we use the spike response kernel, defining the error at each time step as

E[t] =
1

2
((ε ∗ d)[t]− (ε ∗ s)[t])2 =

1

2
(ad[t]− as[t])

2. (5.3)

ε(·) is a kernel function which measures the so-called Van Rossum distance between the

actual spike train and desired spike train.

5.2.2 Backpropagation Flow

From the loss function (5.3), we define the error E[tk] at each time step. E[tk] is

based on the output layer firing spikes at tk which further depend on all neuron states

u[t], t ≤ tk.

We adopt (5.3) to define the total loss

L =
Nt∑
k=0

E[tk] =
1

2

Nt∑
k=0

(ad[tk]− as[tk])
2. (5.4)

For the neurons in layer l, the error gradient with respect to the presynaptic weights

matrix W (l) is

∂L

∂W (l)
=

Nt∑
k=0

∂E[tk]

∂W (l)
. (5.5)

(5.1) reveals that the values of u(l) at time tk have contribution to all future fires and

losses. Using the chain rule, we get

∂L

∂W (l)
=

Nt∑
k=0

k∑
m=0

∂E[tk]

∂u(l)[tm]

∂u(l)[tm]

∂W (l)
. (5.6)
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By changing the order of summation, (5.6) can be written as

∂L

∂W (l)
=

Nt∑
m=0

∂u(l)[tm]

∂W (l)

Nt∑
k=m

∂E[tk]

∂u(l)[tm]
=

Nt∑
m=0

a(l−1)[tm]
Nt∑
k=m

∂E[tk]

∂u(l)[tm]
. (5.7)

We use δ to denote the back propagated error at time tm as δ(l)[tm] =
∑Nt

k=m
∂E[tk]

∂u(l)[tm]
.

Therefore, the weights update formula (5.7) can be written as

∂L

∂W (l)
=

Nt∑
m=0

a(l−1)[tm]δ(l)[tm]. (5.8)

where a(l−1)[tm] is analogous to the pre-activation in the traditional ANNs which can be

easily obtained from (5.1) in the forward pass. δ(l)[tm] is considered in two cases.

[l is the output layer.] The δ(l)[tm] can be computed from

δ(l)[tm] =
Nt∑
k=m

∂E[tk]

∂a(l)[tk]

∂a(l)[tk]

∂u(l)[tm]
. (5.9)

From (5.4), the first term of (5.9) is given by

∂E[tk]

∂a(l)[tk]
=

1

2

∂(ad[tk]− a(l)[tk])
2

∂a(l)[tk]
= a(l)[tk]− ad[tk]. (5.10)

[l is a hidden layer.] δ(l)[tm] is derived using the chain rule and (5.1).

δ(l)[tm] =
Nt∑
j=m

j∑
k=m

∂a(l)[tk]

∂u(l)[tm]

(
∂u(l+1)[tk]

∂a(l)[tk]

∂E[tj]

∂u(l+1)[tk]

)
. (5.11)

It is obtained from the fact that membrane potentials u(l) of the neurons in layer

l influence their (unweighted) corresponding postsynaptic currents (PSCs) a(l) through

fired spikes, and a(l) further affect the membrane potentials u(l+1) in the next layer.By
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changing the order of summation, maps the error δ from layer l + 1 to layer l.

δ(l)[tm] =
Nt∑
k=m

∂a(l)[tk]

∂u(l)[tm]

Nt∑
j=k

∂u(l+1)[tk]

∂a(l)[tk]

∂E[tj]

∂u(l+1)[tk]

=
Nt∑
k=m

∂a(l)[tk]

∂u(l)[tm]

Nt∑
j=k

W (l+1) ∂E[tj]

∂u(l+1)[tk]

=
Nt∑
k=m

∂a(l)[tk]

∂u(l)[tm]
(W (l+1))Tδ(l+1)[tk]

= (W (l+1))T
Nt∑
k=m

∂a(l)[tk]

∂u(l)[tm]
δ(l+1)[tk].

(5.12)

As shown above, for both the output layer and hidden layers, once ∂a(l)[tk]

∂u(l)[tm]
(tk ≥ tm)

are known, the error δ can be back propagated and the gradient of each layer can be

calculated. In the next section, we analyze the main difficulties and derive the TSSL-BP

method to handle these challenges.

5.3 TSSL-BP Method

5.3.1 Key challenges in SNN BackPropagation

The dependencies of the PSCs on the corresponding membrane potentials of the

presynaptic neurons reflected in ∂a(l)[tk]

∂u(l)[tm]
(tk ≥ tm) are due to the following spiking neural

behaviors: a change in the membrane potential may bring it up to the firing thresh-

old, and hence activate the corresponding neuron by generating a spike, which in turn

produces a PSC. Computing ∂a(l)[tk]

∂u(l)[tm]
(tk ≥ tm) involves the activation of each neuron,

i.e. firing a spike due to the membrane potential’s crossing the firing threshold from

below. Unfortunately, the all-or-none firing characteristics of spiking neurons makes the
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activation function nondifferentiable, introducing several key challenges.

Figure 5.2: “Fictitious” smoothing of activation.

A typical strategy in dealing with the non-differentiability of the activation is to

smooth the activation function by approximating it using a differentiable curve [15] as

shown in the Figure 5.2, or a continuous probability density function [17], which is sim-

ilar to the former approach in spirit. However, these approaches effectively spread each

discrete firing spike continuously over time, converting one actual spike to multiple “fic-

titious” spikes and also generating multiple “fictitious” PSCs displaced at different time

points. We stress that while smoothing circumvents the numerical challenges brought by

non-differentiability of the spiking activation, it effectively alters the underlying spiking

neuron model and firing times, and leads to degraded accuracy in the error gradient

computation. It is important to reflect that spike timing is the hallmark of spiking neu-

ral computation, altering firing times in BP can hamper precise learning of the targeted

firing sequences as pursued in this paper.

68



Temporal Spike Sequence Learning via Backpropagation Chapter 5

Figure 5.3: Inter/Intra neuron dependencies.

5.3.2 The Main Ideas Behind TSSL-BP

TSSL-BP addresses the two key limitations of the prior BP methods: lack proper

handling of spiking discontinuities (leading to loss of temporal precision) and need for

many time steps (i.e. high latency) to ensure good performance. TSSL-BP computes

∂a(l)[tk]

∂u(l)[tm]
across two categories of spatio-temporal dependencies in the network: inter-

neuron and intra-neuron dependencies. As shown in Figure 5.3, our key observations

are: 1) temporal dependencies of a postsynaptic neuron on any of its presynaptic neurons

only take place via the presynaptic spikes which generate PSCs to the postsynaptic

neuron, and shall be considered as inter-neuron dependencies; 2) furthermore, the timing

of one presynaptic spike affects the timing of the immediately succeeding spike from the

same presynaptic neuron through the intra-neuron temporal dependency. The timing

of the first presynaptic spike affects the PSC produced by the second spike, and has

additional impact on the postynaptic neuron through this indirect mechanism. In the

following, we show how to derive the
∂a

(l)
i [tk]

∂u
(l)
i [tm]

for each neuron i in layer l. We denote

φ
(l)
i (tk, tm) =

∂a
(l)
i [tk]

∂u
(l)
i [tm]

= φ
(l)<1>
i (tk, tm) + φ

(l)<2>
i (tk, tm), where φ

(l)<1>
i (tk, tm) represents
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the inter-neuron dependencies and φ
(l)<2>
i (tk, tm) is the intra-neuron dependencies.

5.3.3 Inter-Neuron Backpropagation

Unweighted Postsynaptic Current 
(to the next layer):
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𝒖𝒊
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Figure 5.4: PSC dependencies on presynaptic potential.

Instead of performing the problematic activation smoothing, we critically note that

the all-or-none characteristics of firing behavior is such that a PSC waveform is only

triggered at a presynaptic firing time. Specially, as shown in Figure 5.4, a perturbation

∆u
(l)
i of u

(l)
i [tm], i.e, due to weight updates, may result in an incremental shift in the

firing time ∆t, which in turn shifts the onset of the PSC waveform corresponding to the

shifted spike, leading to a perturbation ∆a
(l)
i of a

(l)
i [tk]. We consider this as an inter-

neuron dependency since the change in PSC (∆a
(l)
i ) alters the membrane potential of the

postsynaptic neuron in the next layer.

We make two important points: 1) we shall capture the inter-neuron dependencies via

(the incremental changes of) the presynaptic firing times, which precisely corresponds to

how different neurons interact with each other in an SNN; and 2) the inter-neuron depen-

dency of each neuron i’s PSC a
(l)
i at tk on its membrane potential u

(l)
i at tm happens only

if the neuron fires at tm. In general, a
(l)
i [tk]’s inter-neuron dependencies on all preceding

firing times shall be considered. Figure 5.5 shows the situation where a
(l)
i [tk] depends

on two presynaptic firing times tm and tp. Conversely, the inter-neuron dependencies

φ
(l)<1>
i (tk, tm) = 0 if tk < tm or there is no spike at tm. Assuming that the presynaptic
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Figure 5.5: Inter-neuron dependencies.

neuron i spikes at tm, The inter-neuron dependencies is

φ
(l)<1>
i (tk, tm) =

∂a
(l)
i [tk]

∂tm

∂tm

∂u
(l)
i [tm]

, (5.13)

where, importantly, the chain rule is applied through the presynaptic firing time tm.

From (2.2), the two parts part of (5.13) can be calculated as

∂a
(l)
i [tk]

∂tm
=
∂(ε ∗ s(l)i [tm])[tk]

∂tm
,

∂tm

∂u
(l)
i [tm]

=
−1

∂u
(l)
i [tm]

∂tm

, (5.14)

where
∂u

(l)
i [tm]

∂tm
is obtained by differentiating (2.4).

5.3.4 Intra-Neuron Backpropagation

Now we consider the intra-neuron dependency φ
(l)<2>
i (tk, tm) defined between an ar-

bitrary time tk and a presynaptic firing time tm (tm < tk). From Section 5.3.3, the

presynpatic firing at time tm invokes a continuous PSC which has a direct impact on the

postsynaptic potential at time tk, which is an inter-neuron dependency. On the other

hand, φ
(l)<2>
i (tk, tm) corresponds to an indirect effect on the postsynaptic potential via
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Figure 5.6: Intra-neuron dependencies.

the intra-neuron dependency.

We consider φ
(l)<2>
i (tk, tm) specifically under the context of the adopted LIF model,

which may occur if the presynaptic neuron spikes at tp immediately following tm such

that tm < tp < tk. In this case, the presynatpic membrane potential at tm not only

contributes to a PSC due to the neuron firing, but also affects the membrane potential

at the next spike time tp resulted from the reset occurring at tm as described in (2.4).

The PSC a
(l)
i [tk] has an inter-neuron dependency on membrane potential u

(l)
i [tp] while

u
(l)
i [tp] is further affected by the immediately preceding firing time tm due to the reset of

the presynaptic potential at tm. Recall s
(l)
i [t] = 1 if neuron i fires at t as in (2.5). More

precisely, φ
(l)<2>
i (tk, tm) takes this indirect intra-neuron effect on a

(l)
i [tk] into consideration

if ∃tp ∈ (tm, tk) such that s
(l)
i [tp] = 1 and s

(l)
i [t] = 0 ∀t ∈ (tm, tp), i.e. no other presynaptic

spike exists between tm and tp

φ
(l)<2>
i (tk, tm) =

∂a
(l)
i [tk]

∂u
(l)
i [tp]

∂u
(l)
i [tp]

∂tm

∂tm

∂u
(l)
i [tm]

= φ
(l)
i (tk, tp)

∂(ν ∗ s(l)i [tm])[tp]

∂tm

∂tm

∂u
(l)
i [tm]

,

(5.15)
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where ν(·) is the reset kernel and ∂tm

∂u
(l)
i [tm]

is evaluated by (5.14). In (5.15), φ
(l)
i (tk, tp)

would have been already computed during the backpropagation process since tp is a

presynaptic firing time after tm.

5.3.5 Final TSSL-BP Rule

To sum it up, we obtain the derivative of loss with respect to weight according to

TSSL-BP method as follows:

∂L

∂W (l)
=

Nt∑
m=0

a(l−1)[tm]δ(l)[tm],

δ(l)[tm] =


∑Nt

k=m(a(l)[tk]− ad[tk])φ
(l)
i (tk, tm) for output layer,

(W (l+1))T
∑Nt

k=m φ
(l)
i (tk, tm)δ(l+1)[tk] for hidden layers,

φ
(l)
i (tk, tm) =

0 s
(l)
i [tm] = 0, s

(l)
i [tp] = 0 ∀tp ∈ (tm, tk),

∂a
(l)
i [tk]

∂tm
∂tm

∂u
(l)
i [tm]

s
(l)
i [tm] = 1, s

(l)
i [tp] = 0 ∀tp ∈ (tm, tk),

∂a
(l)
i [tk]

∂tm
∂tm

∂u
(l)
i [tm]

+ φ
(l)<2>
i (tk, tm) s

(l)
i [tm] = 1,∃tp such that

s
(l)
i [tp] = 1, s

(l)
i [t] = 0 ∀t ∈ (tm, tp).

(5.16)

There are two key distinctions setting our approach apart from the aforementioned

activation smoothing. First, the inter-neuron dependencies are only considered at pre-

synaptic firing times as opposed to all prior time points, latter of which is the case when

the activation smoothing is applied with BPTT. The handling adopted in TSSL-BP is

a manifestation of the all-or-none firing characteristics of spiking neurons. Second, as

in Figure 5.4, the key step in backpropagation is the consideration of the incremental

change of spiking times, which is not considered in recent SNNs BP works.
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5.4 Experiments and Results

In this section, we test the proposed TSSL-BP method on four datasets MNIST [53],

N-MNIST [59], FashionMNIST [54] and CIFAR10 [55]. We first explain experimental

settings and the details of practical simulation issues. Then, we compare TSSL-BP with

several state-of-the-art results with the same or similar network sizes including different

SNNs BP methods, converted SNNs, and traditional AfNNs.

5.4.1 Experimental Settings

The experimented SNNs are based on the LIF model described in (2.4). The simula-

tion step size is set to 1 ms. Only a few time steps are used to demonstrate low-latency

spiking neural computation. The parameters like thresholds and learning rates are em-

pirically tuned. Table 5.1 lists the typical constant values adopted in our experiments.

For the time constant, we vary the membrane time constant from 2ms to 16ms. The

same performance level has been observed. This indicates that the proposed method

can train SNNs with dynamical behaviors across different timescales and the empirically

observed results are not very sensitive to the choice of membrane time constant. No

axon and synaptic delay or refractory period is used nor is normalization. Dropout is

only applied for the experiments on CIFAR10. Adam [68] is adopted as the optimizer.

The network models we train or compare with are either fully connected feedforward

networks or convolutional neural networks (CNNs). The mean and standard deviation

(STD) of the accuracy reported are obtained by repeating the experiments five times.

5.4.2 Handling of Practical Issues

Two practical circumstances need to be taken into consideration as for other spike-

time based BP methods like SpikeProp [13, 71]. First, when a spike is produced by the
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Table 5.1: Parameters settings.

Parameter Value Parameter Value

simulation step size 1 ms Learning Rate η 0.005
Time Constant of Voltage τm 4 ms Time Constant of Synapse τs 2 ms
Threshold Vth 1 mV Batch Size 50

membrane potential u[t] that barely reaches the threshold, the derivative of u[t] w.r.t

time is very small. Numerically, this can make (5.14) large and result in an undesirable

large weight update. To mitigate, we set a bound for this derivative. Second, absence of

firing activities in spiking neurons due to low initial weight values block backpropagation

through these neurons. We use a warm-up mechanism to bring up the firing activity of

the network before applying the BP method. In the warm-up mechanism, we detect the

firing events of each neuron. If there’s at least one spike within a certain time window,

TSSL-BP is applied directly. Otherwise, warm-up is applied, which uses the continuous

sigmoid function of membrane potential to approximate the activation function so that

the error can be propagated back even when there is no spike.

The desired output spike trains (labels) for different classes are manually selected

without much optimization effort. In the experiments with 5 time steps, we set two fixed

sequences [0, 1, 0, 1, 1] and [0, 0, 0, 0, 0] where 1 represents a spike and 0 means no

spike at a given time step. We adopted a simple scheme: the number of output neurons

is same as the number of classes. For each class, the first sequence is chosen to be the

target of one (distinct) neuron corresponding to the class, and the second sequence is

targeted for all other output neurons.
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5.4.3 MNIST

On MNIST [53], we compares the accuracies of the spiking CNNs trained by the

TSSL-BP method with ones trained by other algorithms in Table 5.2. In our method,

the pixel intensities of the image are converted into real-valued spike current to the inputs

within a short time window. The proposed TSSL-BP delivers up to 99.53% accuracy and

outperforms all other methods except for the ST-RSBP which we proposed in Section 4.

However, compared to ST-RSBP, TSSL-BP can train high-performance SNNs with only 5

time steps, achieving 80× reduction of step count (latency). The accuracy of ST-RSBP

drops below that of TSSL-BP noticeably under short time windows. In addition, no

data augmentation is applied in this experiment, which is adopted in HM2BP [16] and

ST-RSBP.

Table 5.2: Performances of Spiking CNNs on MNIST.

Methods Network Time steps Mean STD Best

Spiking CNN [14] 20C5-P2-50C5-P2-200 > 200 99.31%
STBP [15] 15C5-P2-40C5-P2-300 > 100 99.42%
SLAYER [17] 12C5-p2-64C5-p2 300 99.36% 0.05% 99.41%
HM2BP [16] 15C5-P2-40C5-P2-300 400 99.42% 0.11% 99.49%
ST-RSBP 15C5-P2-40C5-P2-300 400 99.57% 0.04% 99.62%
This work 15C5-P2-40C5-P2-300 5 99.50% 0.02% 99.53%

20C5: convolution layer with 20 of the 5× 5 filters. P2: pooling layer with 2× 2 filters.

5.4.4 N-MNIST

We test the proposed method on N-MNIST dataset [59], the neuromorphic version

of the MNIST. The inputs to the networks are spikes rather than real value currents.

Table 5.3 compares the results obtained by different models on N-MNIST. The SNN

trained by our proposed approach naturally processes spatio-temporal spike patterns,
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achieving the start-of-the-art accuracy of 99.40%. It is important to note that our pro-

posed method with the accuracy of 99.28% outperforms the best previously reported

results in [17], obtaining 10 times fewer time steps which leads to significant latency

reduction.

Table 5.3: Performances on N-MNIST.

Methods Network Time steps Mean STD Best

HM2BP [16] 400− 400 600 98.88% 0.02% 98.88%
SLAYER [17] 500− 500 300 98.89% 0.06% 98.95%
SLAYER [17] 12C5-P2-64C5-P2 300 99.20% 0.02% 99.22%
This work 12C5-P2-64C5-P2 100 99.35% 0.03% 99.40%
This work 12C5-P2-64C5-P2 30 99.23% 0.05% 99.28%

All the experiments in this table train the N-MNIST for 100 epochs

5.4.5 FashionMNIST

We compare several trained fully-connected feedforward SNNs and spiking CNNs on

FashionMNIST [54], a more challenging dataset than MNIST. In Table 5.4, TSSL-BP

achieves 89.80% test accuracy on the fully-connected feedforward network of two hidden

layers with each having 400 neurons, outperforming the HM2BP method of [16], which is

the best previously reported algorithm for feedforward SNNs. TSSL-BP can also deliver

the best test accuracy with much fewer time steps. Moreover, TSSL-BP achieves 92.83%

on the spiking CNN networks, noticeably outperforming the same size non-spiking CNN

trained by a standard BP method.

5.4.6 CIFAR10

Furthermore, we apply the proposed method on the more challenging dataset of CI-

FAR10 [55]. As shown in Table 5.5, our TSSL-BP method achieves 89.22% accuracy with
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Table 5.4: Performances on FashionMNIST.

Methods Network Time steps Mean STD Best

ANN 400− 400 89.01%
HM2BP [16] 400− 400 400 88.99%
This work 400− 400 5 89.75% 0.03% 89.80%

ANN [54] 32C5-P2-64C5-P2-1024 91.60%
This work 32C5-P2-64C5-P2-1024 5 92.69% 0.09% 92.83%

a mean of 88.98% and a standard deviation of 0.27% under five trials on the first CNN

and achieves 91.41% accuracy on the second CNN architecture. TSSL-BP delivers the

best result among a previously reported ANN, SNNs converted from pre-trained ANNs,

and the spiking CNNs trained by the STBP method of [72]. CIFAR10 is a challenging

dataset for most of the existing SNNs BP methods since the long latency required by

those methods makes them hard to scale to deeper networks. The proposed TSSL-BP not

only achieves up to 3.98% accuracy improvement over the work of [72] without the addi-

tional optimization techniques including neuron normalization and population decoding

which are employed in [72], but also utilizes fewer time steps.

Table 5.5: Performances of CNNs on CIFAR10.

Methods Network Time steps Epochs Accuracy

Converted SNN [73] CNN 1 80 83.52%
STBP [72] CNN 1 8 150 85.24%
This work CNN 1 5 150 89.22%

ANN [72] CNN 2 90.49%
Converted SNN [74] CNN 2 200 87.46%
STBP (without NeuNorm) [72] CNN 2 8 150 89.83%
STBP (with NeuNorm) [72] CNN 2 8 150 90.53%
This work CNN 2 5 150 91.41%

CNN 1: 96C3-256C3-P2-384C3-P2-384C3-256C3-1024-1024

CNN 2: 128C3-256C3-P2-512C3-P2-1024C3-512C3-1024-512

78



Temporal Spike Sequence Learning via Backpropagation Chapter 5

5.4.7 Firing Sparsity

As presented, the proposed TSSL-BP method can train SNNs with low latency. In

the meanwhile, the firing activities in well-trained networks also tend to be sparse. To

demonstrate firing sparsity, we select two well-trained SNNs, one for the CIFAR10 and

the other for the N-MNIST.

Figure 5.7: Firing activity on CIFAR10.

The CIFAR10 network is simulated over 5 time steps. We count the percentage of

neurons that fire 0, 1, . . . , 5 times, respectively, and average the percentages over 100

testing samples. As shown in Figure 5.7, the network’s firing activity is sparse. More

than 84% of neurons are silent while 12% of neurons fire more than once, and about 4%

of neurons fire at every time step.

Figure 5.8: Firing activity on N-MNIST.
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The N-MNIST network demonstrated here is simulated over 100 time steps. The

firing rate of each neuron is logged. The number of neurons with a certain range of firing

rates is counted and averaged over 100 testing samples. Similarly, as shown in Figure

5.8, the firing events of the N-MNIST network are also sparse and more than 75% of

neurons keep silent. In the meanwhile, there are about 5% of neurons with a firing rate

of greater than 10%.

5.5 Summary and Discussions

In this chapter, we present the novel temporal spike sequence learning via a back-

propagation (TSSL-BP) method to train deep SNNs. Unlike all prior SNNs BP methods,

TSSL-BP improves temporal learning precision by circumventing the non-differentiability

of the spiking activation function while faithfully reflecting the all-or-none firing charac-

teristics and the underlying structure in the dependencies of spiking neural activities in

both space and time.

TSSL-BP provides a universal BP tool for learning arbitrarily specified target firing

sequences with high accuracy while achieving low temporal latency. This is in contrast

with most of the existing SNN BP methods which require hundreds of time steps for

achieving decent accuracy. The ability in training and inference over a few time steps

results in significant reductions of the computational cost required for training large/deep

SNNs, and the decision time and energy dissipation of the SNN model when deployed on

either a general-purpose or a dedicated neurormorphic computing platform.
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Chapter 6

Optimal Structured Recurrent

Spiking Neural Networks

In Chapter 4 and Chapter 5, we propose two backpropagation methods for SNNs which

can precisely handle time dependency and train the network with high efficiency. How-

ever, a high-performance and complex SNN cannot be achieved by only applying pow-

erful learning. The network architecture and synaptic connectivity also play important

roles in network dynamics and performance, especially for the recurrent SNNs (RSNNs).

Recurrence is ubiquitous in the brain and involved in most of the brain’s dynamics.

Recurrent connections between neurons play diverse functional roles for storing spatial

patterns in memory [75, 76], winner-take-all decision making [77, 78], oscillations of mul-

tiple types [39], object recognition in the visual system [79, 80], and so on. Inspired by

the connectivity in the brain, recurrent connections have been widely applied in artifi-

cial neural networks (ANNs). However, unlike recurrence in traditional ANNs that has

been well studied with various structures proposed, the exploration of RSNNs is still

immature due to the complex spatial-temporal dynamics. Most RSNNs suffer from two

problems. 1. Due to the lack of architectural guidance, random recurrent connectivity
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is often adopted, which does not guarantee good performance. 2. Training of RSNNs is

in general challenging, bottlenecking achievable model accuracy. As introduced in sec-

tion 1.3, the recurrent connections in most existing works of RSNNs are sparsely and

randomly generated. However, the randomly generated connections may not be optimal

and thus limit the performance. In addition, the complex network dynamics created by

the random recurrent connections also hinder the network training from learning tools

and severely limit the practical application of RSNNs.

In this chapter, we propose two structured approaches for designing high-performance

RSNNs and mitigating the training challenges resulted from random recurrent connec-

tions as in the prior works.

The first RSNN architecture is called Skip-Connected Self-Recurrent SNN (ScSr-

SNN). Recurrence in ScSr-SNN is introduced in a stereotyped manner by adding self-

recurrent connections to spiking neurons. The SNNs with self-recurrent connections

can realize recurrent behaviors similar to those of more complex RSNNs while the error

gradients can be more straightforwardly calculated due to the mostly feedforward nature

of the network. In addition, the network dynamics is further enriched by skip connections

between nonadjacent layers.

In the recurrent layer of ScSr-SNN, each recurrent neuron only has a self-recurrent

connection to the neuron itself. Although such a structure is easy to implement, its

connections are so simple that it cannot exploit the full power of recurrence. There-

fore, we further propose a novel recurrent structure called the Laterally-Inhibited Self-

Recurrent Unit (LISR), which consists of one excitatory neuron with a self-recurrent

connection wired together with an inhibitory neuron through excitatory and inhibitory

synapses. The self-recurrent connection of the excitatory neuron mitigates the infor-

mation loss caused by the firing-and-resetting mechanism and maintains the long-term

neuronal memory. The lateral inhibition from the inhibitory neuron to the correspond-
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ing excitatory neuron, on the one hand, adjusts the firing activity of the latter. On the

other hand, it plays as a forget gate to clear the memory of the excitatory neuron. The

connectivity of LISR and ScSr-SNN not only offers a structured approach for design-

ing high-performance RSNNs but also mitigates the training challenges resulting from

random recurrent connections as in the prior works.

For better illustration, we rewrite the discretized LIF neuron model in (2.4). The

neuronal membrane voltage up[t] of postsynaptic neuron p at time t is given by

up[t] = θmup[t− 1](1− sp[t− 1]) +
∑
q

wpqaq[t], (6.1)

where wpq is the synaptic weight from presynaptic neuron q to postsynaptic neuron p,

and aq[t] the PSC induced by the spikes from neuron q. θm = 1− 1
τm

and the 1− sp[t−1]

term reflects the effect of firing-and-resetting mechanism. The spiking neuron generates

an output spike when up[t] reaches the predetermined threshold Vth and reset the up[t]

to the rest potential.

6.1 ScSr-SNN Architecture

In this section, we first propose the self-recurrent architecture for SNNs. The recur-

rence is only introduced by self-recurrent connections of individual spiking neurons, i.e.,

there exist no lateral connections between different neurons within a layer. We demon-

strate that, with self-recurrent connections, SNNs are able to realize recurrent behaviors

similar to those of more complex RSNNs while the error gradients can be more straight-

forwardly calculated due to the mostly feedforward nature of the network. Then, we show

that the skip connections can help the formation of recurrent structures,introduce more

tunability, and thus improve performance. In this section, we apply the same expression
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as introduced in 5.1 to describe the activity of the forward pass between two adjacent

feedforward layers. For clear demonstration, we rewrite the equation here:

a(l−1)[t] = (1− 1

τs
)a(l−1)[t− 1] + s(l−1)[t],

u(l)[t] = θmu
(l)[t− 1] +W (l)a(l−1)[t],

s(l)[t] = H
(
u(l)[t]− Vth

)
,

(6.2)

where W (l) is the presynaptic weights, a(l−1)[t] presynaptic potentials (PSCs) from neu-

rons in layer l− 1 at time t, s(l−1)[t] output spike trains of the l− 1 layer at time t, u(l)[t]

membrane potentials of the l layer neurons at time t, and Nl the number of neurons at

layer l.

6.1.1 Self-recurrent Architecture

The idea of connecting neurons back to themself in ANNs was introduced in [81].

It presented that by introducing constraints on the recurrent weight matrix, RNNs can

learn longer-term patterns with standard stochastic gradient descent. More specifically,

it claimed that a kind of longer-term memory can be formed by making part of the re-

current weight matrix close to the identity matrix. It is the same as adding self-recurrent

connections to part of hidden neurons. After that, [82] proposed an independently re-

current neural network (IndRNN) with self-recurrent connections where neurons in one

layer are independent of each other. It is shown that multiple IndRNNs can be stacked

to construct a deep network especially combined with residual connections over layers,

and the deep ANNs can be trained robustly. In this chapter, we apply a similar idea to

SNNs. We show that applying self-recurrence to SNNs can realize recurrent behaviors

similar to those of more complex RSNNs. In addition, the self-recurrent connection can

also improve local memory.
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For simplicity, we adopt the method in [19] to replace the threshold and synaptic

model with a gate function g(). Thus, the PSC is defined as

a(l)[t] = g
(
u(l)[t]

)
, (6.3)

g() reveals the relation between the membrane potential and the postsynaptic PSC. It is

introduced here to simplify the analysis. In the experiments, we still use (6.2) to simulate

the network activities.

In a single layer, the computation of each neuron is independent while neurons are cor-

related through multiple layers. Neurons in the same self-recurrent layer only recurrently

connected to themselves and can be described as

u(l)[t] = θmu
(l)[t− 1]

+W (l)a(l−1)[t] +W (l)
s ◦ g

(
u(l)[t− 1]

)
,

(6.4)

where W
(l)
s =

[
w

(l)
s,1, · · · , w(l)

s,Nl

]
is a vector weight matrix of self-recurrent connections

in layer l , w
(l)
s,i the weight of neuron i’s self-recurrent connection in layer l, and ◦ the

Hadamard product.

Two self-recurrent layers can work similarly to the fully connected recurrent layer.

To illustrate this, we approximately derive the behavior of two self-recurrent layers and

compare it with a fully connected recurrent layer.

Figure 6.1 presents the layer l and layer l + 1 of a network while layer l has self-
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Figure 6.1: Self-recurrent pass of SNNs.

recurrent connections. In this case, the behavior can be expressed as

u(l)[t] = θmu
(l)[t− 1]

+W (l)a(l−1)[t] +W (l)
s ◦ g

(
u(l)[t− 1]

)
,

u(l+1)[t] = θmu
(l+1)[t− 1] +W (l+1)g

(
u(l)[t]

)
.

(6.5)

More aggressively, we approximate the g(v) as a linear function g(v) = hv. h is a

constant value to represent the proportion from membrane potential to the postsynaptic

PSC. Then, the Eq.(6.5) can be combined as

u(l+1)[t] = θmu
(l+1)[t− 1] +W (l)a(l−1)[t]

+W
(l)
1 a

(l+1)[t− 1] +W
(l)
2 a

(l+1)[t− 2],

W
(l)
1 = W (l+1)(

θm
h

+W (l)
s )(W (l+1))−1

W
(l)
2 = −θmW (l)

1 .

(6.6)
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The behavior of two layers network illustrated in Eq.(6.6) is similar to the single fully

connected recurrent layer which is described as

u(l)[t] = θmu
(l)[t− 1] +W (l)a(l−1)[t] +W (l)

r a
(l)[t− 1], (6.7)

where W
(l)
r is recurrent connection weights matrix.

Compared to the Eq.(6.7), two layers self-recurrent structure can be viewed as a single

recurrent layer with two groups of recurrent connections which have the delay of 1 and

2 time steps. Eq.(6.6) also indicates the constraints of two layers self-recurrent structure

that: 1. the recurrent weights W
(l)
1 and W

(l)
2 should be diagonalizable; 2. W

(l)
2 is the

negative of W
(l)
1 with the scalar θm.

Moreover, by including the reset mechanism and self-recurrent connections, Eq.(6.4)

can be written as

u(l)[t] = θmu
(l)[t− 1](1− s(l)[t− 1]) +W (l)a(l−1)[t] +W (l)

s ◦ a(l)[t− 1]. (6.8)

As shown in the first right term, a neuron will lose previous information after it

fires and resets the membrane potential. With the self-recurrent connections, the output

signals are passed back to the original neurons. From the neuronal perspective, positive

feedback can be viewed as compensation for the information loss caused by the firing-

and-resetting mechanism. On the other hand, negative feedback can control the neuron’s

firing activity and regulate the network dynamics.

To sum it up, a two layers self-recurrent structure behaves similarly to a fully con-

nected recurrent layer. However, compared to the existing random connected RSNNs,

ScSr-SNN brings several benefits from the self-recurrent connections:

• ScSr-SNN have a simpler but more structured architecture than the randomly gen-
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erated RSNNs.

• ScSr-SNN simplify the forward and backward computation in the recurrent struc-

ture. The error gradients can be calculated straightforwardly in ScSr-SNN due to

the mostly feedforward nature of the network. Thus, the straightforward calcula-

tion also cost less computational resources.

• Since the self connections are local within the layer, they can be not only applied

to fully connected SNNs but also applicable to other structures like spiking CNNs.

6.1.2 Skip Connections

Figure 6.2: Skip-connected pass of SNNs.

As shown in Figure 6.2, we adopt the skip connections which directly connect two

non-adjacent layers to enrich the network dynamics. The skip connections benefit the

network for three reasons. First, two layers with self-recurrent connections can work

similarly to a fully connected recurrent layer. Therefore, in Figure 6.2, we can view layer

l and l + 1 as a recurrent layer while the l + 1 and l + 2 layers also form an equivalent
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recurrent layer. With the additional skip connections from layer l to l + 2, these two

layers can also be treated as an approximate recurrent layer. The skip connections bring

more possibilities and dynamics to form different structures.

Second, the skip connections pass high-layer information to a certain layer and in-

troduce more features. Third, during training, the skip connections form an alternative

path for the calculation of backpropagated error gradient and provide additional tunabil-

ity for the network. Owing to these three features, in Section 6.6.2, we demonstrate that

the performance improvement and faster convergence speed are achieved by applying the

skip connections.

6.2 LISR architecture

In this section, we present the structure for the proposed Laterally-Inhibited Self-

Recurrent Unit (LISR). It has clear and structured recurrent connections which can

benefit the network in several aspects.

Figure 6.3: Laterally-Inhibited Self-Recurrent unit.

In the recurrent layer, neurons are grouped into pairs. Each LISR consists of one

excitatory neuron (E) with a self-recurrent connection and its corresponding inhibitory
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neuron (I). As shown in Fig. 6.3, there are three recurrent connections in a LISR, including

a self-recurrent connection of E, an excitatory recurrent connection from E to I, and an

inhibitory recurrent connection from I to E. Among these recurrent connections, the self-

recurrent connection is trained by the learning rule while the weights of the other two

connections are fixed. In addition, the neurons of two adjacent layers are fully connected.

In this chapter, we suppose all the recurrent connections have delay of 1 time step and

feedforward connections have no delay.

In the rest of this chapter, we use e and i in the subscript to denote the variables of

the excitatory neuron and inhibitory neuron, respectively. For the inhibitory neuron, by

introducing the excitatory recurrent connection, the expression of the LIF neuron model

changes from (6.1) to

ui[t] = θmui[t− 1](1− si[t− 1]) + Ii[t] + weae[t− 1] (6.9)

where we is the fixed weight of the excitatory connection and ae[t − 1] the PSC of the

excitatory neuron.

Similarly, the membrane potential of the excitatory neuron can be concluded as

ue[t] = θmue[t− 1](1− se[t− 1]) +
∑
q

weqaq[t]

+ wsae[t− 1] + wiai[t− 1]

(6.10)

where ws is the weight of self-recurrent connection, wi the fixed weight of the inhibitory

connection, and ai[t− 1] the PSC of the inhibitory neuron.

In the proposed LISR, the excitatory neuron with self-recurrent connection plays

a major role in information processing and feature extraction while receiving lateral

inhibition from the inhibitory neuron. Thus, the following analysis is focused on the
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excitatory neuron.

As we introduced in Section 6.1, [81], [82], and our proposed ScSr-SNN have applied

the self-recurrent connection and demonstrated it as an effective structure for recurrent

networks. In this approach, the self-recurrent connection is only applied to the excitatory

neuron. As expressed in (6.10), the neuron resets its membrane potential to 0 after firing.

All the previous information accumulated in this neuron is lost. Despite the fact that the

firing-and-resetting mechanism keeps the dynamics and oscillation of the network [39],

there are still situations in which maintaining long-term memories of neurons is beneficial.

Thus, self-recurrent connection plays the role of refreshing the memory. In this chapter,

the self-recurrent connection is initialized to be a non-negative value then is trained

by the learning algorithm. After training, the weights of self-recurrent connections are

learned to determine how much previous information should be kept. Although the self-

recurrent connections have other benefits as demonstrated in [82], in the proposed LISR,

they are mainly used to mitigate the information loss caused by the firing-and-resetting

mechanism. Thus, the temporal contextual information is refreshed and held in the

internal states of the recurrent structure.

On the other hand, the excitatory neuron also accepts inhibition from the inhibitory

neuron. Its membrane potential is depressed by a fixed amount when a spike comes from

the inhibitory connection. In other words, while previous information is kept through

the self-recurrent connection, the inhibitory connection determines when the existing

information should be abandoned. Therefore, the inhibition serves as a gating mechanism

to control the flow of information through neurons. In the meanwhile, the inhibitory

neuron accepts inputs from presynaptic layer and the corresponding excitatory neuron.

The weights connected to presynaptic layer are trained to learn when the inhibition should

be generated. From the network perspective, the inhibitory connections also play roles

such as filtering input signals, regulating network activities, and maintaining network
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dynamics [39, 83].

Moreover, the proposed LISR only contains recurrent connections inside itself. Thus,

unlike most existing RSNN works that the networks only have one recurrent layer, this

structured unit can be readily exploited as a basic building block for constructing multi-

layered networks. Fig. 6.4 demonstrates a deep SNN implementing the proposed LISR.

The network has l + 1 hidden layers with full connections between the adjacent layers.

Each layer is constructed by repeating LISRs. The LISRs of the same layer are inde-

pendent without recurrent connections between each other. In addition, each LISR has

three recurrent connections as introduced in this section.

Figure 6.4: Deep SNN based on LISR.

6.3 Backpropagation for ScSr-SNN

We adopt the TSSL-BP method proposed in Chapter 5 to train both the ScSr-SNN

and the LISR. TSSL-BP captures the error backpropagation across two types of inter-

neuron and intra-neuron dependencies and leads to state-of-the-art performance with

extremely low latency. In the Chapter 5, we only derive the TSSL-BP for feedforward

SNNs. In this chapter, we extend its applicability to the proposed structures.
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Same as the definition of TSSL-BP in Section 5.2.2, the loss function adopt in this

chapter is

L =
Nt∑
k=0

E[tk] =
Nt∑
k=0

1

2
((ε ∗ d)[tk]− (ε ∗ s)[tk])

2, (6.11)

where ε(·) is a kernel function. d = [d[t0], · · · ,d[tNt ]] and s = [s[t0], · · · , s[tNt ]] are the

desired and the actual spike trains in the output layer, respectively.

In this section, we consider the backpropagation in three cases: 1. feedforward layer,

2. self-recurrent layer, 3. self-recurrent layer with skip-connections to a post layer. In

the rest of this chapter, variables associated with neurons in the layer l have (l) as the

superscript.

6.3.1 Feedforward Layer

For the feedforward layer, the backpropagation flow is derived in Section 5.2.2. For

completeness, we conclude the major part of the derivation. From (6.1), the error gradient

with respect to the presynaptic weight wpq from neuron q in the layer l − 1 to neuron p

in the layer l can be defined as

∂L

∂wpq
=

Nt∑
k=0

∂E[tk]

∂wpq
=

Nt∑
k=0

k∑
m=0

∂E[tk]

∂u
(l)
p [tm]

∂u
(l)
p [tm]

∂wpq

=
Nt∑
m=0

a(l)q [tm]
Nt∑
k=m

∂E[tk]

∂u
(l)
p [tm]

=
Nt∑
m=0

a(l)q [tm]δ(l)p [tm],

(6.12)

where δ
(l)
p [tm] denotes the error for neuron p of layer l at time tm and is defined as:

δ(l)p [tm] =
Nt∑
k=m

∂E[tk]

∂u
(l)
p [tm]

=
Nt∑
k=m

∂E[tk]

∂a
(l)
p [tk]

∂a
(l)
p [tk]

∂u
(l)
p [tm]

. (6.13)

In this approach, the neurons in the output layer are regular feedforward neurons

without recurrent connection. Therefore, the weights of output neuron o are updated by

93



Optimal Structured Recurrent Spiking Neural Networks Chapter 6

∂L

∂woq
=

Nt∑
m=0

aq[tm]
Nt∑
k=m

∂E[tk]

∂ao[tk]

∂ao[tk]

∂uo[tm]
, (6.14)

where ∂E[tk]
∂ao[tk]

depends on the choice of the loss function.

For hidden layer without recurrent connection, the backpropagated error δ
(l)
p [tm] of

neuron p in layer l can be derived from the error δ of the post layer:

δ(l)p [tm] =
Nt∑
k=m

Nt∑
j=k

∂a
(l)
p [tk]

∂u
(l)
p [tm]

N(l+1)∑
h=1

(
∂u

(l+1)
h [tk]

∂a
(l)
p [tk]

∂E[tj]

∂u
(l+1)
h [tk]

)

=
Nt∑
k=m

∂a
(l)
p [tk]

∂u
(l)
p [tm]

N(l+1)∑
h=1

whpδ
(l+1)
h [tk].

(6.15)

where N (l+1) denotes the number of neurons in the layer l + 1.

The calculation of the key term ∂a[tk]
∂u[tm]

is included in Chapter 5. We do not repeat the

steps but treat it as a known term in this chapter.

6.3.2 Self-recurrent Layer

The structure of the self-recurrent layer is shown in Figure 6.1. Similar to the feedfor-

ward case, the weights of the incoming synapses can be calculated according to Eq.(6.12).

Based on Eq.(6.4), the error gradient with respect to the self-recurrent weight ws,p of

neuron p in the lth layer can be expressed as:

∂L

∂ws,p
=

Nt∑
m=1

a(l)p [tm − 1]δ(l)p [tm]. (6.16)

Compared to the feedforward case, the main difference of the self-recurrent case comes

from the derivation of δp[tm]. Except the error signals from the post layer, we also need to

take the errors backpropagated from self-recurrent connections into consideration. Thus,
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the error δp[tm] is calculated by:

δ(l)p [tm] =
Nt∑
k=m

Nt∑
j=k

∂a
(l)
p [tk]

∂u
(l)
p [tm]

N(l+1)∑
h=1

(
∂u

(l+1)
h [tk]

∂a
(l)
p [tk]

∂E[tj]

∂u
(l+1)
h [tk]

)

+
Nt∑
k=m

Nt∑
j=k+1

∂a
(l)
p [tk]

∂u
(l)
p [tm]

(
∂u

(l)
p [tk + 1]

∂a
(l)
p [tk]

∂E[tj]

∂u
(l)
p [tk + 1]

)

=
Nt∑
k=m

∂a
(l)
p [tk]

∂u
(l)
p [tm]

N(l+1)∑
h=1

whpδ
(l+1)
h [tk] + w(l)

s,p

Nt−1∑
k=m

∂a
(l)
p [tk]

∂u
(l)
p [tm]

δ(l)p [tk + 1].

(6.17)

In Eq.(6.17), the first term is the same as Eq.(6.15) which represent the error back-

propagated from the post layer. The second term is caused by self-recurrent connections.

It reveals that membrane potentials u
(l)
p of the neuron p in layer l influence its (un-

weighted) PSCs a
(l)
p through fired spikes, and a

(l)
p further affect the membrane potentials

of u
(l)
p at the next time step.

6.3.3 Self-recurrent Layer with skip connections

As shown in Figure 6.2, we suppose layer l has self-recurrent connections. In addition,

it also connects to layer l+1 the same as the feedforward layer and layer l+2 through the

skip connections. The changes of BP method still come from the derivation of δ
(l)
p [tm].

In this case, the output (unweighted) PSCs a
(l)
p of layer l further directly affects the

membrane potentials of neurons at layer l + 2.

Similar to the derivation of Eq.(6.17), an additional term should be added when the

skip connections are taken into account. Therefore, the δ
(l)
p [tm] can be derived as

δ(l)p [tm] =
Nt∑
k=m

∂a
(l)
p [tk]

∂u
(l)
p [tm]

N(l+1)∑
h=1

whpδ
(l+1)
h [tk] + w(l)

s,p

Nt−1∑
k=m

∂a
(l)
p [tk]

∂u
(l)
p [tm]

δ(l)p [tk + 1]

+
Nt∑
k=m

∂a
(l)
p [tk]

∂u
(l)
p [tm]

N(l+2)∑
g=1

wgpδ
(l+2)
h [tk],

(6.18)
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where Wgp represents weight of skip connection from neuron p of layer l to neuron g of

layer l + 2.

Figure 6.5 summarizes the forward pass and backward pass of the proposed ScSr-

SNN at the single-neuron level. In the figure, neurons in layer l have skip connections

to neurons in layer l + q. Neurons in layer l − p and l + 1 are also connected through

skip connections. As shown, at the spatial level, the neuron communicates with neurons

of different layers via regular feedforward connections and skip connections. However,

within the same layer, the neuron only depends on itself at the temporal level via intrinsic

parameter and self-recurrent connection. This simple structure results in efficient learning

with rich neural dynamics.

Figure 6.5: Forward and backward pass of ScSr-SNN.
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6.4 Backpropagation for LISR

In LISR, the backpropagation for feedforward layers including the output layer is the

same as the one for ScSr-SNN in Section 6.3. For the neurons in the hidden layer, we

derive the learning rule for the excitatory neuron e and the inhibitory neuron i in the

layer l separately.

The weights update of neuron e and neuron i still follows the (6.12). However, due

to their special recurrent connections, the derivations of δ
(l)
e and δ

(l)
i , the error backprop-

agated from postsynaptic layer, are different.

For the excitatory neuron, in addition to the error signals from the postsynaptic layer,

the error backpropagated from the self-recurrent connection and the excitatory recurrent

connection should also be taken into consideration. Thus, the backpropagated error can

be calculated by:

δ(l)e [tm] =
Nt∑
k=m

Nt∑
j=k

∂a
(l)
e [tk]

∂u
(l)
e [tm]

N(l+1)∑
p=1

(
∂u

(l+1)
p [tk]

∂a
(l)
e [tk]

∂E[tj]

∂u
(l+1)
p [tk]

)

+
Nt∑
k=m

Nt∑
j=k+1

∂a
(l)
e [tk]

∂u
(l)
e [tm]

(
∂u

(l)
e [tk + 1]

∂a
(l)
e [tk]

∂E[tj]

∂u
(l)
e [tk + 1]

)

+
Nt∑
k=m

Nt∑
j=k+1

∂a
(l)
e [tk]

∂u
(l)
e [tm]

(
∂u

(l)
i [tk + 1]

∂a
(l)
e [tk]

∂E[tj]

∂u
(l)
i [tk + 1]

)
.

(6.19)

where N (l+1) denotes the number of neurons in the layer l + 1.

(6.19) can be written as

δ(l)e [tm] =
Nt∑
k=m

∂a
(l)
e [tk]

∂u
(l)
e [tm]

N(l+1)∑
p=1

wpeδ
(l+1)
p [tk]

+
Nt−1∑
k=m

∂a
(l)
e [tk]

∂u
(l)
e [tm]

wsδ
(l)
e [tk + 1] +

Nt−1∑
k=m

∂a
(l)
e [tk]

∂u
(l)
e [tm]

weδ
(l)
i [tk + 1],

(6.20)

97



Optimal Structured Recurrent Spiking Neural Networks Chapter 6

where δ
(l+1)
p [tk] is the error of the neuron p in the layer l + 1 at time tk, δ

(l)
e [tk + 1] and

δ
(l)
i [tk + 1] the errors of the excitatory neuron itself and the inhibitory neuron at time

tk + 1 respectively.

(6.20) reveals that membrane potential u
(l)
e of the excitatory neuron in layer l influ-

ences its (unweighted) PSC a
(l)
e through spikes, and a

(l)
e further affects the membrane

potentials of its postsynaptic neurons. Its first term reflects that the error of the excita-

tory neuron is accumulated from the errors of all postsynaptic layer neurons. The second

and third terms indicate that the errors are also backpropagated from the excitatory

neuron itself and the inhibitory neuron.

Similarly, the error of inhibitory neuron can be obtained by

δ
(l)
i [tm] =

Nt∑
k=m

∂a
(l)
i [tk]

∂u
(l)
i [tm]

N(l+1)∑
p=1

wpiδ
(l+1)
p [tk] +

Nt−1∑
k=m

∂a
(l)
i [tk]

∂u
(l)
i [tm]

wiδ
(l)
e [tk + 1], (6.21)

where the first term represents errors from postsynaptic layer and second term is the

error from the excitatory neuron.

6.5 Experiments and Results

In this chapter, we test the proposed ScSr-SNN and LISR on the speech dataset

TI46-Alpha [56] and the neuromorphic speech dataset N-TIDIGITS [61]. In addition,

the proposed LISR structure is also evaluated on the neuromorphic video dataset DVS-

Gesture [63]. The LISR networks in the experiments are formed such that all the hidden

layers are composed of LISRs. In other words, a hidden layer with n neurons has n
2

LISRs

with n
2

excitatory neurons and n
2

inhibitory neurons.
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6.5.1 Parameter Settings

The simulation step size is set to 1 ms. The parameters like threshold and learning

rate are empirically tuned. Table 6.1 lists the typical values adopted for each dataset.

AdamW [84] is adopted as the optimizer. The simulation step size is set to 1 ms. The

hyperparameters and weights initialization are empirically tuned.

Parameter TI46-Alpha N-TIDIGITS DvsGesture

τm 16 ms 64 ms 64 ms
τs 8ms 8 ms 8 ms

learning rate 0.0005 0.0002 0.0001
Threshold Vth 1 mV 1 mV 1 mV

Batch Size 50 50 5
Time steps 100 300 300

Epochs 400 400 100

Table 6.1: Parameters settings.

In ScSr-SNN, the weight matrices of self-recurrent connections and skip connections

are initialized following the normal distribution with a mean of 0 and standard deviation

of 1. No axon and synaptic delay or refractory period are adopted in the feedforward pass

whereas the self-recurrent connections have 1 ms delay. No dropout or normalization is

applied. Moreover, we also separately apply the proposed self-recurrent structure and

skip-connected structure to reveal their individual effects of boosting performance. For

all the results reported in this chapter, we use Sr-SNNs to denote the networks with only

self-recurrent connections in their recurrent layers. In addition, ScSr-SNN represent the

full proposed structure. In the experiments, all the ScSr-SNN have 3 hidden layers and

the skip connections are from the first hidden layer to the third hidden layer.

For LISR, the fully connected weights between layers are initialized by the He Normal

initialization proposed in [85]. The self recurrent weights are initialized to 0.5 while the

weights of the excitatory recurrent connection and the inhibitory recurrent connection
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are fixed to 1 and −2, respectively.

Practical issues such as desired output selection, warm-up mechanism, and the bound-

ary of derivatives, follow the same solutions in Section 5.4.2.

6.5.2 Loss Function

For the BP method used in this chapter, the loss function can be defined by any errors

that measure the distance between the actual outputs and the desired outputs. In our

experiments, since hundreds of time steps are required for simulating speech and video

inputs, we choose the accumulated output PSCs to define the error which is similar to

the firing count used in many existing works [16, 17].

We suppose the simulation time steps for a sample is Nt. Furthermore, for neuron

o of the output layer, we define the desired output as do and real output as ro where

ro =
∑Nt

k=1 ao[tk] and do is manually determined. Therefore, the loss is determined by the

square error of the outputs

L =
Nt∑
k=1

E[tk] =
N(out)∑
o

1

2
(do − ro)2, (6.22)

where N (out) is the number of neurons in the output layer.

Furthermore, the error at each time step is simply defined by the averaged loss through

all the time steps:

E[tk] =
L

Nt

, Eo[tk] =
(do − ro)2

2Nt

. (6.23)

With the loss function defined above, the error δ can be calculated through the (6.15,

6.17, 6.18, 6.20, 6.21).
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6.5.3 TI46-Alpha

In Table 6.2, we compare the proposed structures with several existing results on the

full TI46-Alpha dataset. [69] applies the state vector of the reservoir to train the single

readout layer using BP. Its result shows that only training the single readout layer of a

recurrent LSM is inadequate for this challenging task, demonstrating the necessity of a

more structured and deep SNN. The ST-RSBP proposed in Chapter 4 demonstrates the

best-reported performance of TI46-Alpha. It has one recurrent layer and two feedforward

layers trained with the ST-RSBP method. However, both recurrent networks in [69] and

ST-RSBP are randomly generated. We show that, with the proposed ScSr-SNN method,

we can achieve a performance of 95.13% which is 1.78% better than the best-reported

result we obtained with ST-RSBP method. In the table, we also demonstrate that

the self-recurrent connections and skip connections can both improve performance when

they are applied separately. In addition, with the same training rule TSSL-BP, our

proposed methods can boost 1.99% performance on the same network size compared to

the feedforward networks trained by our proposed TSSL-BP method.

The network for the proposed LISR structure only has one hidden layer with 800

neurons. In other words, the hidden layer contains 400 LISRs with 400 excitatory neurons

and 400 inhibitory neurons. In the last two rows of Table 6.2, we compare the performance

between the proposed structure and feedforward SNN. These two experiments have the

same network size, learning rule, preprocessing steps, and hyperparameters. The only

difference is the network structure in the hidden layer. As shown, by implementing

the proposed structure, the network can achieve 5.03% performance improvement with

almost the same number of tunable parameters. Among all the results, the proposed

LISR outperforms the result of ST-RSBP by 2.73%. Furthermore, it achieves the best

performance with only a similar or smaller number of parameters which leads to high-
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efficient training and inference.

Table 6.2: Accuracy on TI46-Alpha

Network Structure Learning Rule Hidden Layers # Params Accuracy

LSM [69] Non-spiking BP 2000 52, 000 78%
Feedforward SNNs [16] HM2BP 800 83, 200 89.92%

RSNNs ST-RSBP 400− 400− 400 363, 313 93.35%
Feedforward SNNs TSSL-BP 400− 400− 400 361, 600 93.14%

Sr-SNNs TSSL-BP 400− 400− 400 362, 800 94.62%
ScSr-SNN TSSL-BP 400− 400− 400 522, 800 95.13%
Sr-SNNs TSSL-BP 800 84, 000 93.06%

Feedforward SNNs TSSL-BP 800 83, 200 91.05%
LISR TSSL-BP 800 83, 600 96.08%

6.5.4 N-TIDIGITS

For the N-TIDIGITS dataset, performance is compared with the feedforward networks

trained by HM2BP [16], RSNNs trained by ST-RSBP, and the Skip-Connected Self-

Recurrent SNN (ScSr-SNN) trained by TSSL-BP. In addition, we not only compare the

performance with previous work on RSNNs but also with the well-known RNNs in non-

spiking networks such as Gated Recurrent Unit (GRU) and Long-Short Term Memory

(LSTM). The GRU and LSTM networks are trained by the non-spiking BP method. As

shown in Table 6.3, both ScSr-SNN and LISR methods outperform the state-of-the-art

results in the existing works.

We demonstrate the performance of the proposed LISR structure by two networks.

The first network only has one hidden layer with 400 neurons while another network has

three hidden layers with 400 neurons in each layer. All the hidden layers are implemented

with the proposed LISR. Similarly, the feedforward SNNs with the same network size are

also tested. By comparing with the feedforward counterparts, the proposed structure

is not only effective for the single-layer network but also highly improves performance
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with multiple hidden layers. For the single-layer network, the proposed method can

impressively improve performance by 9.26% compared to the feedforward SNN with a

similar number of parameters.

Furthermore, the LISR structure also achieves more than 5% better performance than

the widely-adopted recurrent structures of ANNs, the GRU and LSTM, on this dataset.

One possible reason for the LISR network significantly outperforming ANNs is that the

dataset is neuromorphic based with spikes as inputs. Thus, the SNNs are more likely to

handle the spatial-temporal information inside the dataset effectively.

Table 6.3: Accuracy on N-TIDIGITS
Network Structure Learning Rule Hidden Layers # Params Accuracy

Feedforward SNN [16] HM2BP 250− 250 81, 250 89.69%
GRU [61] Non-spiking BP 200− 200− 100 314, 700 90.90%

Phase LSTM [61] Non-spiking BP 250− 250 818, 750 91.25%
Feedforward SNN TSSL-BP 400 30, 000 84.84%

LISR TSSL-BP 400 30, 200 94.10%
RSNN ST-RSBP 400− 400− 400 351, 241 93.90%

Sr-SNNs TSSL-BP 400− 400− 400 351, 200 94.02%
ScSr-SNN TSSL-BP 400− 400− 400 511, 200 95.07%

Feedforward SNN TSSL-BP 400− 400− 400 350, 000 91.03%
LISR TSSL-BP 400− 400− 400 350, 600 96.65%

6.5.5 DVS-Gesture

In the experiments on the DVS-Gesture dataset, all the networks have the same size.

The inputs are first processed by the pooling layer of 4× 4 pooling kernel size. Thus, the

inputs to the 512 neurons hidden layer have 2 channels with the size of 32 × 32 in each

channel.

As demonstrated in Table 6.4, the proposed LISR structure can improve performance

by up to 2.43% compared to the same size feedforward SNNs trained by the proposed
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TSSL-BP or STBP [15]. In addition, performance of the proposed method also out-

performs the ANN structures including vanilla RNN and LSTM. In [86], a rate-coding-

inspired loss function is proposed for enhancing performance of ANNs on neuromorphic

image datasets. However, our proposed method still achieves more than 1.74% perfor-

mance improvement over the rate-coding-inspired loss function, and our method uses a

much smaller number of parameters.

Table 6.4: Accuracy on DVS-Gesture
Network Structure Learning Rule Hidden Layers # Params Accuracy

Feedforward SNN [86] STBP P4− 512 1, 054, 208 87.50%
RNN [86] Non-spiking BP P4− 512 1, 316, 352 52.78%

LSTM [86] Non-spiking BP P4− 512 5, 250, 560 88.19%
Feedforward SNN TSSL-BP P4− 512 1, 054, 208 88.19%

LISR TSSL-BP P4− 512 1, 054, 464 89.93%

6.6 Analysis

6.6.1 Effects of Self-recurrent Connections

In the proposed method, the self-recurrent connections are constructed so that the

network can realize recurrent behaviors similar to those of more complex RSNNs while the

error gradients can be calculated more straightforwardly. The weights of self-recurrent

connections are randomly initialized following the normal distribution with the mean of

0 and standard deviation of 1. By the BP method, the weights of the connections can

be trained to minimize the loss function.

We take the well-trained ScSr-SNN on TI46-Alpha as an example. The network con-

tains 3 layers with 400 neurons in each layer. We record the weights of self-recurrent

connections after training. Figure 6.6 shows the distribution of the 1200 self-recurrent
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Figure 6.6: Weights distribution of well-trained self-recurrent connections

weights. As shown, there are about 60% positive self-recurrent connections. From the

network perspective, the well-trained self-recurrent weights guarantee the complex dy-

namics of the RSNNs and minimize the output loss. From the single neuron level, on one

hand, the positive self-recurrent connections refresh the information of the neuron and

thus maintain the single-neuron memory. On the other hand, the negative self-recurrent

connection depresses the neuron and can be considered as a regulation for the neuron’s

activity.

6.6.2 Effects of Skip Connections

The skip connections mainly play three roles. First, the skip connections combined

with self-recurrent connections introduce additional recurrent structures and thus further

enhance neural dynamics. Second, the skip connections pass high-level information to

a certain layer and introduce more features. Finally, the skip connections provide an

alternative path for the gradient.

When the network goes deeper, the effects of skip connections become even stronger.

We compare two structures, ScSr-SNN and Sr-SNNs, on the TI-Alpha dataset. The
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Figure 6.7: Effects of skip connections

networks have six hidden layers with 100 neurons in each layer. The only difference

between these two networks is that ScSr-SNN has skip connections from the first layer

to the fifth layer. As shown in Figure 6.7, with the skip connections, the performance

can be improved for more than 1.5%. Apart from the performance improvement, the

ScSr-SNN network can also achieve the same loss with up to 50 fewer epochs than Sr-

SNNs. The network dynamics and more features introduced by skip connections lead

to the performance improvement. In the meanwhile, the faster convergence is benefited

from the additional path to pass the backpropagated errors.

There are many possible ways to connect non-adjacent layers with skip connections

in a deep network. It’s necessary to know if more skip connections lead to better perfor-

mance. We conduct a few experiments on the TI46-Alpha dataset. The network has 4

hidden layers with 200 neurons in each layer. As shown in Table 6.5, we compare two

kinds of connections. The one skip connections network only has skip connections from

the first hidden layer to the third hidden layer. The two skip connections means the first
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hidden layer to the third hidden layer and the second hidden layer to the fourth hidden

layer are both connected. The results show that the proposed methods with only skip

connections from the first layer to the third layer achieve the best result. This may be

because one skip connections can enrich the network dynamics while multiple skip con-

nections lead to the instability of the network and also cause complexity for the proposed

BP method to well train the network.

Structures Best

Feedforward SNNs 92.08%
ScSr-SNN: one skip connections 94.27%
ScSr-SNN: two skip connections 93.56%

Table 6.5: Performances on TI46-Alpha with more layers

6.6.3 Computational Efficiency

Owing to the simple structure of self-recurrent connections, the proposed ScSr-SNN

has lower computational complexity compared to fully connected RSNNs. For a layer

with n neurons, the proposed self-recurrent connections only introduce 2n more tunable

parameters. However, for a fully connected recurrent layer, it has n2 parameters in the

recurrent weight matrix. During simulation, the time cost mainly comes from the error

backpropagated through recurrent connections, because the gradient must be calculated

time step by time step. Thus, the proposed structure can be more efficient than fully

connected RSNNs.

More specifically, we use the networks in the experiments of TI46-Alpha as an exam-

ple. Each network has 3 hidden layers with 400 neurons in each layer. In addition, the

inputs have 78 channels and the output layer has 26 neurons. Therefore, the number of

tunable parameters of the feedforward network is 361, 600. For the proposed method, Sr-

SNNs have 362, 800 parameters. Thus, by comparing the number of parameters, we can
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conclude that there’s almost no computational overhead by applying self-recurrent con-

nections. After implementing the skip connections, ScSr-SNN have 522, 800 parameters.

The largely increased number of parameters may result in additional computational costs.

Thus, a trade-off between the cost and performance should be taken into consideration

when applying skip connections.

Moreover, the proposed LISR also contributes to the high-efficient training and infer-

ence of the network. For a hidden layer with n neurons, since the weights of excitatory

and inhibitory connections are fixed and only self-recurrent connections are trained, the

implementation of LISR only introduces 2.5n more parameters for the forward pass and

0.5n parameters for the backward pass. The number of additional recurrent weights is

small compared to the parameters between layers. Since the computational cost of simu-

lation is highly related to the number of parameters, the LISR network can enhance the

network performance with almost no additional cost compared to feedforward SNN. In

addition, the TSSL-BP, which can train networks over a short temporal window of a few

time steps, is adopted as the learning rule for the proposed methods to further reduce

the computational overhead.

6.6.4 Firing Activity

When considering the implementation of the proposed structures on neuromorphic

hardware, low power consumption becomes an important constraint. In most cases, the

power consumption is highly related to the firing rate of the whole network. A good

network should not only demonstrate decent performance but also keeps relatively low

firing activities.

To demonstrate the firing sparsity of the proposed ScSr-SNN, we select the well-

trained ScSr-SNN on TI46-Alpha. We randomly apply one sample to the well-trained
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network from the test set. The firing rate of each hidden neuron is recorded. As shown

in Figure 6.8, about 55% neurons are silent while 26% neurons have firing rates less than

10%. In addition, only less than 3% neurons have firing rates that are higher than 40%.

Therefore, from the firing activity point, the proposed method also demonstrates decent

computational efficiency.

0%
0%-10%
10%-20%
20%-30%
30%-40%
40%-50%
>50%

Figure 6.8: Firing acitivity of well-trained ScSr-SNN

To analyze firing events of LISR, we select two well-trained networks, one feedforward

SNN and one LISR network. Both of the networks have only one hidden layer with 800

neurons. An alphabet sample with ’A’ speech of the TI46-Alpha dataset is used for the

experiment.

Fig. 6.9 presents the firing events of all neurons in the hidden layer of the two networks.

Each blue dot in the figure represents a spike. For the LISR network, the first 400 neurons

are excitatory and the other 400 neurons are inhibitory. As shown in Fig. 6.9, the activity

of the LISR network is denser than the activity of the feedforward network. Even for

the excitatory neurons which receive strong inhibition from the inhibitory neuron, more

firing events are observed compared to the neurons in the feedforward network.

Moreover, we calculate the firing rate of each neuron in the hidden layers of the
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Figure 6.9: Firing events on a TI46-Alpha sample.

feedforward network and the LISR network. In Fig. 6.10, the firing rates of the networks

are categorized into seven groups. The number of neurons that have firing rates within

certain thresholds is summed together. As shown in Fig. 6.10, about half of the neurons

in the feedforward network are silent while only 14.375% neurons have firing rates greater

than 10%. However, for the same input sample, only 23% neurons of the LISR network

are silent. In the meanwhile, more than 48% neurons have firing rates greater than 20%,

and 12.125% neurons have more than 30% firing rates.

Firing Rates of Feedforward Network

0%
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10%-20%
20%-30%
30%-40%
40%-50%
>50%

Firing Rates of LISR Network

Figure 6.10: Firing rates on a TI46-Alpha sample.
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As illustrated above, the LISR network enhances the network activity so that more

neurons are involved in learning and information processing. Moreover, since the spatial-

temporal information is passed through spikes, the neuron requires a certain level of

activity to transfer and filter information. Furthermore, only when the activity is high

enough can the neuron be sensitive to the small inputs. Therefore, the proposed structure

benefits the network performance by refreshing and gating the information maintained

inside the neurons as well as adjusting the network activities. On the other hand, al-

though the overall firing rates of the LISR network are slightly higher, its firing activity

is still sparse with more than half of neurons having a firing rate of 10% or lower. Thus,

the sparsity of firing events, which is one of the crucial features of biologically inspired

networks, is maintained.

6.7 Summary and Discussions

In this chapter, we propose two architectures of RSNNs with structured recurrent

connectivity. Both of them can be efficiently trained by our proposed TSSL-BP and

achieve state-of-the-art performances.

For the Skip-Connected Self-Recurrent SNNs (ScSr-SNN), its benefits can be sum-

marized as:

• Self-recurrent Connections: (1) The network can realize recurrent behaviors simi-

lar to those of more complex RSNNs. (2) A neuron loses all its information after

generating a spike and resetting membrane potential to 0. With the positive self-

recurrent connections, such information will be obtained by the neuron again. This

process can maintain the single-neuron memory. (3) The structure is easy to inter-

pret due to the independence of neurons in each layer. (4) It simplifies the forward

and backward computation in the recurrent structure.
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• Skip connections: (1) The skip connections combined with self-recurrent connec-

tions introduce additional recurrent structure as demonstrated in this chapter.

Thus, it further enhances network dynamics. (2) The skip connections pass high-

layer information to a certain layer and introduce more features. (3) The skip

connections provide an alternative path for the gradient.

For Laterally-Inhibited Self-Recurrent Unit (LISR), we demonstrate the proposed

structure and illustrate that the LISR can be easily applied to deep RSNNs. In addition,

the learning rule is derived to be eligible to train this unique structure. In the results, the

proposed method is evaluated on three datasets cover speeches, neuromorphic speeches,

and neuromorphic images. The experimental results consistently show that the proposed

structure can outperform the existing methods as well as the feedforward counterparts

with a similar or smaller number of parameters. The impressive performance improve-

ment comes from the refreshing and gating mechanism, and the regulation of network

activities introduced by the LISR network.

In the future, we would like to evaluate the effectiveness of the proposed structure on

hardware.We believe the proposed structures will benefit the brain-inspired computing

community from both a structural and algorithmic perspective.
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Chapter 7

Hybrid Risk-Mitigating

Architectural Search

In neural circuits, recurrent connectivity plays a crucial role in network function and

stability. However, existing recurrent spiking neural networks (RSNNs) are often con-

structed by random connections without optimization. RSNNs can produce rich dy-

namics that are critical for memory formation and learning. Although in Chapter 6 we

proposed two effective RSNN architectures ScSr-SNN and LISR, systemic architectural

optimization of RSNNs is still an opening challenge.

Neural architectural search (NAS), the process of automating non-spiking ANNs con-

struction, becomes prevalent recently after achieving state-of-the-art performance on var-

ious tasks [87, 88]. Different types of strategies such as reinforcement learning [89],

gradient-based optimization [90], and evolutionary algorithms [91] have been proposed

to find optimal architectures of traditional CNNs and RNNs. In contrast, architectural

optimization of SNNs has received little attention. Only recently, [92] adopted a simu-

lated annealing algorithm to learn the optimal hyperparameters of liquid state machine

(LSM) models through a three-step search. The number of liquids in each layer, num-
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ber of neurons in each liquid, and internal parameters like connectivity percentage and

excitatory vs. inhibitory neuron ratio are optimized during the process. Similarly, a

surrogate-assisted evolutionary search method was applied in [93] to optimize the hyper-

parameters of LSM such as density of connections, input connection probability, distribu-

tion of synaptic strength, and time constant of the neuron model. However, both works

focused only on LSM for which hyperparameters indirectly affecting recurrent connec-

tions as opposed to specific connectivity patterns were optimized. The recurrence in the

network was still randomly determined without any optimization after hyperparameters

were chosen.

In this chapter, we aim to enable the systemic design of large RSNNs via a new scal-

able RSNN architecture and automated architectural optimization. RSNNs can create

complex network dynamics both in time and space, which manifests itself as an opportu-

nity for achieving great learning capabilities and a challenge in practical realization. It is

important to strike a balance between theoretical computational power and architectural

complexity. Firstly, we argue that composing RSNNs based on well-optimized building

blocks small in size, or recurrent motifs, can lead to an architectural solution scalable to

large networks while achieving high performance. We assemble multiple recurrent motifs

into a layer architecture called Sparsely-Connected Recurrent Motif Layer (SC-ML). The

motifs in each SC-ML share the same topology, defined by the size of the motif, i.e., the

number of neurons, and the recurrent connectivity pattern between the neurons. The mo-

tif topology is determined by the proposed architectural optimization while the weights

within each motif may be tuned by a standard training algorithm, e.g., backpropagation.

Motifs in a recurrent SC-ML layer are wired together using sparse lateral connections

determined by imposing spatial connectivity constraints. As such, there exist two levels

of structured recurrence: recurrence within each motif and recurrence between the motifs

at the SC-ML level. The fact that the motifs are small in size and that inter-motif con-
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nectivity is sparse alleviates the difficulty in architectural optimization and training of

these motifs and SC-ML. Furthermore, multiple SC-ML layers can be stacked and wired

using additional feedforward weights to construct even larger recurrent networks.

Secondly, we demonstrate a method called Hybrid Risk-Mitigating Architectural

Search (HRMAS) to optimize the proposed recurrent motifs and SC-ML layer architec-

ture. HRMAS is an alternating two-step optimization process hybridizing bio-inspired

intrinsic plasticity for mitigating the risk in architectural optimization. Facilitated by

gradient-based methods [90] and our proposed TSSL-BP, the first step of optimization is

formulated to optimize network architecture defined by size of the motif, intra and inter-

motif connectivity patterns, types of these connections, and the corresponding synaptic

weight values, respectively. While structural changes induced by the architectural-level

optimization are essential for finding high-performance RSNNs, they may be misguided

due to discontinuity in architectural search, and limited training data, hence over-fitting.

We mitigate the risk of network instability and performance degradation caused by archi-

tectural change by introducing a novel biologically-inspired “self-repairing” mechanism

through intrinsic plasticity, which has the same spirit of homeostasis during neural de-

velopment [94]. The intrinsic plasticity is introduced to the second step of each HRMAS

iteration and acts as unsupervised fast self-adaption to mitigate the risks imposed by

structural and synaptic weight modifications introduced by the first step during the

RSNN architectural “evolution”.
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7.1 Sparsely-Connected Recurrent Motif Layer (SC-

ML)

Unlike the traditional non-spiking RNNs that are typically constructed with units like

LSTM or GRU, the structure of existing RSNNs is random without specific optimization.

The complex recurrent connectivity hinders RSNN performance and prevents scaling to

large RSNNs. The proposed SC-ML is composed of multiple sparsely-connected recurrent

motifs, where each motif consists of a group of recurrently connected spiking neurons,

as shown in Figure 7.1. The motifs in each SC-ML share the same topology, which is

defined as the size of the motif, i.e., the number of neurons, and the recurrent connectivity

pattern between the neurons. Within the motif, synaptic connections can be constructed

between any two neurons or to introduce self-recurrent connections back to the same

neurons. Thus the problem of the recurrent layer optimization is greatly reduced to that

of learning the optimal motif and sparse inter-motif connectivity, alleviating the difficulty

in architectural optimization and allowing scalability to large networks.

Figure 7.1: Sparsely-Connected Recurrent Motif Layer.

This motif-based structure is motivated from both a biological and a computational

perspective. First, from a biological point of view, there is evidence that the neocortex is
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not only organized in layered minicolumn structures but also into synaptically connected

clusters of neurons within such structures [95, 96]. For example, networks of pyramidal

cells cluster into multiple groups of a few dozen neurons each. Second, from a computa-

tional perspective, optimizing the connectivity of the basic building block, i.e., the motif,

is a more simplified problem than optimizing the connectivity of the whole recurrent layer

for which the number of possible inter-neuron connections increases exponentially with

neuron count. Third, by constraining most recurrent connections inside the motifs and

allowing a few lateral connections between neighboring motifs to exchange information

across the SC-ML, the total number of recurrent connections is limited. This leads to a

great deal of sparsity as observed in biological networks [97].

Figure 7.1 presents an example of SC-ML with 12-neuron motifs. The lateral inter-

motif connections can be introduced as the mutual connections between two correspond-

ing neurons in neighboring motifs or constructed in other ways to ensure sparsity and

reduce complexity. With the proposed SC-ML, a multi-layer large RSNN can be easily

composed by stacking multiple SC-MLs with feedforward weights between layers. Within

a multi-layered network, information processing is facilitated through local processing of

different motifs, communication of motif-level responses via inter-motif connections, and

extraction and processing of higher-level features layer by layer.

7.2 Hybrid Risk-Mitigating Architectural Search

To systematically optimize the motif topology and lateral connections of SC-ML and

thus fully elevate the performance of RSNNs, we propose an optimization framework

called Hybrid Risk-Mitigating Architectural Search (HRMAS), where each optimization

iteration consists of two alternating steps.
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7.2.1 Hybrid Risk-Mitigating Architectural Search Framework

In HRMAS, all recurrent connections are categorized into three types: inhibitory,

excitatory, and non-existence. An inhibitory connection has a negative weight and is fixed

without training in our current implementation. The weight of an excitatory connection is

positive and trained by a backpropagation (BP) method. HRMAS is an alternating two-

step optimization process hybridizing architectural optimization with intrinsic plasticity

(IP). The first step of each HRMAS optimization iteration optimizes the topology of

the motif and inter-motif connectivity in SC-ML and the corresponding synaptic weights

hierarchically. Specially, the optimal number of neurons in the motif is optimized over

a finite set of motif sizes. All possible intra-motif connections are considered and the

type of each connection is optimized, which may lead to a sparser connectivity if the

connection types of certain synapses are determined to be “non-existence”. At the inter-

motif level, a sparse motif-to-motif connectivity constraint is imposed, e.g., neurons in one

motif are only allowed to be wired up with the corresponding neurons in the neighboring

motifs. Inter-motif connections also fall under one of the three types. Hence, a greater

level of sparsity is produced with the emergence of connections of type “non-existence”.

Strategies like this reduce the complexity of the network and its optimization. The second

step in each HRMAS iteration executes an unsupervised IP rule to stabilize the network

function and mitigate potential risks caused by architectural changes.

Figure 7.2 illustrates the incremental optimization strategy we adopt for the architec-

tural parameters. Using the two-step optimization detailed later, initially all architectural

parameters including motif size and connectivity are optimized. After several training

iterations, we choose the optimal motif size from a set of discrete options. As this most

critical architectural parameter is set, we continue to optimize the remaining architec-

tural parameters defining connectivity, allowing fine-turning of performance based on the
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Figure 7.2: Architectural optimization in HRMAS.

chosen motif size.

7.2.2 Comparison with prior neural architectural search work

of non-spiking RNNs

Neural architecture search (NAS) has been applied for architectural optimization of

traditional non-spiking RNNs, where a substructure called cell is optimized by a search

algorithm [89]. Based on the optimized substructure, multiple cells are stacked to form

a network. A cell contains nodes organized in a directed acyclic graph which is usually a

tree. As in Figure 7.3, the cell takes the input xt at time t and produces the current state

ht based on the previous state ht−1. The operation, e.g. based on a specific combination

or activation function at each node is optimized during architectural search. Nevertheless,

this NAS approach may not be the best fit for RSNNs. First, recurrence in the cell as in

Figure 7.3 is only created by feeding ht−1 back to the cell while connectivity inside the

cell is feedforward. While a long history of practice led to widely adopted LSTM and

GRU models and the optimal cell found by the above NAS procedure can be complex
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Figure 7.3: Cell in traditional RNNs.

than an LSTM/GRU cell, the overall operations and connectivity of the final RNN do not

go beyond an LSTM-like architecture. Finally, the considered combination operations

and activation functions like addition and elementwise multiplication are not biologically

plausible.

In comparison, in RSNNs based on the proposed SC-ML architecture, we add onto

the memory effects resulted from temporal integration of individual spiking neurons by

introducing sparse intra or inter-motif connections. This corresponds to a scalable and

biologically plausible RSNN architectural design space that closely mimics the micro-

circuits in the nervous system. Furthermore, we develop the novel alternating two-step

HRMAS framework hybridizing gradient-based optimization and biologically-inspired in-

trinsic plasticity for robust NAS of RSNNs.

7.2.3 Alternating Two-Step Optimization in HRMAS

The alternating two-step optimization in HRMAS is inspired by the evolution in neu-

ral development. As shown in Figure 7.4, neural circuits may experience weight changes
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Figure 7.4: Evolution in neural development.

through synaptic plasticity. Over a longer time scale, circuit architecture, i.e., connectiv-

ity, may evolve through learning and environmental changes. In addition, spontaneous

firing behaviors of individual neurons may be adapted by intrinsic plasticity (IP). We are

motivated by the important role of local IP mechanisms in stabilizing neuronal activity

and coordinating structural changes to maintain proper circuit functions [94]. We view IP

as a “fast-paced” self-adapting mechanism of individual neurons to react to and minimize

the risks of weight and architectural modifications. As shown in Figure 7.5, we define

the architectural parameters (motif size and intra/inter-motif connection types weights),

synaptic weights, and intrinsic neuronal parameters as α, w, and β, respectively. Each

HRMAS optimization iteration consists of two alternating steps. In the first step, we

optimize α and w hierarchically based on gradient-based optimization using backprop-

agation (BP). In Figure 7.5, δ is the backpropagated error obtained via the employed

BP method. In the second step, we use an unsupervised IP rule to adapt the intrinsic

neuronal parameters of each neuron over a time window (“IP window”) during which
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training examples are presented to the network. IP allows the neurons to respond to

the weight and architectural changes introduced in the first step and mitigate possible

risks caused by such changes. In Step 1 of the subsequent iteration, the error gradients

w.r.t the synaptic weights and architectural parameters are computed based on the most

recent values of β updated in the preceding iteration.

Figure 7.5: Proposed HRMAS.

The first step of the k-th HRMAS iteration solves a bi-level optimization problem

using BP:

minαLvalid(α,w∗(α), β∗−) (7.1)

s.t. w∗(α) = argwminLtrain(α,w, β∗−), (7.2)

where Lvalid and Ltrain are the loss functions defined based on the validation and training

sets used to train α and w respectively; β∗− is the intrinsic parameter values updated in the

preceding (k − 1)-th iteration; w∗(α, β) denotes the optimal synaptic weights under the

architecture specified by α. The second step of the k-th iteration solves the optimization
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problem below:

β∗ = argβminLip(α∗, w∗, β) (7.3)

Lip is the local loss to be minimized by the IP rule as further discussed in Section 7.2.6.

7.2.4 Gradient-based Optimization in HRMAS

Optimizing the weight and architectural parameters by solving the bi-level optimiza-

tion problem of (7.1, 7.2) can be computational expensive. We adapt the recent method

[90] to reduce computational complexity by relaxing the discrete architectural parame-

ters to continuous ones for efficient gradient-based optimization. It significantly reduces

the computational cost of architecture search by approximating the bi-level optimization

problem, relaxing the discrete architectural parameters to continuous ones, and solving

the continuous model by gradient descent.

Without loss of generality, we consider a multi-layered RSNN consisting of one or

more SC-ML layers, where connections between layers are assumed to be feedforward.

We focus on one such SC-ML layer, as shown in Figure 7.6, to discuss the proposed

gradient-based optimization.

The number of neurons in the SC-ML layer is fixed. The motif size is optimized

such that each neuron is partitioned into a specific motif based on the chosen motif size.

The largest white square in Figure 7.6 shows the layer-connectivity matrix of all intra-

layer connections of the whole layer, where the dimension of the matrix corresponds

to the neuron count of the layer. We superimpose three sets of smaller gray squares

onto the layer-connectivity matrix, one for each of the three possible motif sizes of v1,

v2, and v3 considered. Choosing a particular motif size packs neurons in the layer into

multiple motifs, and the corresponding gray squares in Figure 7.6 illustrate the intra-

motif connectivity introduced within the SC-ML layer.
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Figure 7.6: SC-ML with relaxed architectural parameters.

The entry of the layer-connectivity matrix at row r and column i specifies the ex-

istence and nature of the connection from neuron r to neuron i. We consider multiple

motif size and connection type choices during architectural search using continuous-

valued paramterizations αv and αcir, respectively for each motif size v and connection

type c. we relax the categorical choice of each motif size using a softmax over all possible

options: α̂v = exp(αv)∑
v′∈V exp(α

v′ )
, and similarly relax the categorical choice of each connec-

tion type based on the corresponding motif size: α̂cir =
exp(αcir)∑
c′∈C exp(α

c′
ir)

. Here, C and V are

the set of all possible connection types and motif sizes, respectively; α̂v and α̂cir are the

continuous-valued categorical choice of motif size v and connection type c, respectively,

which can also be interpreted as the probability of selecting the corresponding the motif

size or connection type. In this chapter, we use hat over the variable to denote the archi-

tectural parameter processed by softmax. Then, the task of architecture optimization is

reduced to learn a set of continuous variables α̂ = {α̂c, α̂v}. With the continuous archi-

tectural parameters, a gradient-based method like BP is applicable to learn the recurrent
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connectivity.

In [90], the bi-level optimization problem is simply approximated to a one-shot model

to reduce the expensive computational cost of the inner optimization which can be ex-

pressed as

∇α̂Lvalid(α̂, w∗(α̂)) = ∇α̂Lvalid(α̂, w − η∇wLtrain(w, α̂)), (7.4)

where η is the learning rate for a step of inner loop. Both the weights of the search

network and the architectural parameters are trained by the BP method.

The architectural gradient can be approximated by

dLvalid
dα̂

(α̂) = ∇α̂Lvalid(α̂, w∗)− η∇wLvalid(α̂, w∗)∇2
α̂,wLtrain(w∗, α̂)). (7.5)

The complexity is reduced by using the finite difference approximation around w± =

w±ε∇wLvalid(α̂, w∗) for small perturbation ε to compute the gradient of ∇α̂Lvalid(α̂, w∗).

Finally the architectural updates in (7.5) can be calculated as

dLvalid
dα̂

(α̂) = ∇α̂Lvalid(α̂, w∗)−
η

2ε
(∇α̂Ltrain(w+, α̂)−∇α̂Ltrain(w−, α̂)). (7.6)

7.2.5 Backpropagation via HRMAS framework

As shown in Figure 7.6, the synaptic weight of the connection from neuron r to

neuron i is expressed as the summation of weights under all possible motif sizes and con-

nection types weighted by the respective continuous-valued categorical choices (selection

probabilities).

Based on the leaky integrate-and-fire (LIF) neuron model in (2.4), the neuronal mem-

brane voltage ui[t] of neuron i in the SC-ML layer at time t is given by integrating cur-
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rents from all inter-layer inputs and intra-layer recurrent connections under all possible

architectural parameterizations:

ui[t] = (1− 1

τ
)ui[t− 1] +

R

τ
(
∑
j

wijaj[t] +
∑
v∈V

(α̂v
Ivi∑
r

∑
c∈C

(α̂cirw
c
irar[t− 1]))), (7.7)

where R and τ are the resistance and time constant of the membrane, wij the synaptic

weight from neuron j in the previous layer to neuron i, wcir the recurrent weight from

neuron r to neuron i of connection type c, and aj[t] the (unweighted) postsynaptic current

(PSC) converted from spikes of presynaptic neuron j through a synaptic model. To

reduce clutter in the notation, we use Ivi to denote the number of presynaptic connections

afferent onto neuron i’s input in the recurrent layer when choosing motif size v, which

includes both inter and intra-motif connections. We further drop the explicit dependence

of α̂cir on α̂v. Through (7.7), the continuous architecture parameterizations influence the

integration of input currents, and hence firing activities of neurons in all layers and

affect the loss function defined at the output layer. As such, the task of architecture

optimization reduces to the one that learns the set of optimal continuous variables α̂c

and α̂v. The final architecture is constructed by choosing the parameterizations with the

highest selection probabilities obtained from the optimization.

During the learning, We define the loss function as

L =
T∑
k=0

E[tk], (7.8)

where T is the total time steps and E[tk] the loss at tk. From (7.7), the membrane

potential ui[t] of the neuron i at time t demonstrates contribution to all future fires and

losses of the neuron through its PSC ai[t]. Therefore, the error gradient with respect to
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the presynaptic weight wij from neuron j to neuron i can be defined as

∂L

∂wij
=

T∑
m=0

R

τ
aj[tm]

T∑
k=m

∂E[tk]

∂ui[tm]
=

T∑
m=0

R

τ
aj[tm]δi[tm], (7.9)

where δi[tm] denotes the error for neuron i at time tm and is defined as:

δi[tm] =
T∑

k=m

∂E[tk]

∂ui[tm]
=

T∑
k=m

∂E[tk]

∂ai[tk]

∂ai[tk]

∂ui[tm]
. (7.10)

In this chapter, the output layer is regular feedforward layer without recurrent con-

nection. Therefore, the weight woj of output neuron o is updated by

∂L

∂woj
=

T∑
m=0

R

τ
aj[tm]

T∑
k=m

∂E[tk]

∂ao[tk]

∂ao[tk]

∂uo[tm]
, (7.11)

where ∂E[tk]
∂ao[tk]

depends on the choice of the loss function.

Now, we focus on the backpropagation in the recurrent hidden layer while the feed-

forward hidden layer case can be derived similarly. For a neuron i in SC-ML, in addition

to the error signals from the next layer, the error backpropagated from the recurrent

connections should also be taken into consideration. The backpropagated error can be

calculated by:

δi[tm] =
T∑

k=m

T∑
j=k

∂ai[tk]

∂ui[tm]

Np∑
p=1

(
∂up[tk]

∂ai[tk]

∂E[tj]

∂up[tk]

)
+

T∑
k=m

T∑
j=k+1

∂ai[tk]

∂ui[tm]

Nr∑
r

(
∂ur[tk + 1]

∂ai[tk]

∂E[tj]

∂ur[tk + 1]

)

=
T∑

k=m

∂ai[tk]

∂ui[tm]

N∑
p=1

(
R

τ
wpiδp[tk]) +

T−1∑
k=m

∂a
(l)
i [tk]

∂u
(l)
i [tm]

∑
v∈V

(α̂v
Ovi∑
r

∑
c∈C

R

τ
α̂criw

c
riδr[tk + 1]),

(7.12)

where Np and Nr are the number of neurons in the next layer and the number of neurons

in this recurrent layer, respectively. δp and δr are the errors of the neuron p in the next
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layer and the error from the neuron r through the recurrent connection. Ov
i represents

all the postsynaptic neurons of neuron i’s outputs in the recurrent layer when choosing

motif size v, which includes both inter and intra-motif connections.

The key term in (7.12) is ∂a[tk]
∂u[tm]

which reflects the effect of neuron’s membrane poten-

tial on its output PSC. Due to the non-differentiable spiking events, it becomes the main

difficulty for the BP of SNNs. Various approaches are proposed to handle this problem

such as probability density function of spike state change [17], surrogate gradient [98],

and the TSSL-BP method proposed in Chapter 5.

With the error backpropagated according to (7.12), the weights and architectural

parameters can be updated by gradient descent as:

∆wij ∝ δi[t]
R

τ
aj[t], ∆α̂v ∝

Nr∑
i

δi[t]
R

τ

Ivi∑
r

(
∑
c∈C

α̂cirw
c
irar[t− 1]),

∆wcir ∝ δi[t]
R

τ

∑
v∈V

(α̂vα̂cirar[t− 1]), ∆α̂cir ∝ δi[t]
R

τ

∑
v∈V

(α̂vwcirar[t− 1]).

(7.13)

where δi[t] is the backpropagated error for neuron i at time t given in (7.12), Nr is the

number of neurons in this recurrent layer, R and τ are the leaky resistance and membrane

time constant, two intrinsic parameters adapted by the IP rule, aj[t] and ar[t] are the

(unweighted) postsynaptic currents (PSCs) generated based on synpatic model by the

presynaptic neuron j in the preceding layer and the r-th neuron in this recurrent layer,

respectively.

7.2.6 Risk Minimizing Optimization with Intrinsic Plasticity

For architectural optimization of non-spiking RNNs, gradient-based methods are

shown to be unstable in some cases due to misguided architectural changes and conversion

from the optimized continuous-valued parameterization to a discrete architectural solu-
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tion, hindering the final performance and demolishing the effectiveness of learning [99].

Adaptive regularization which modifies the regularization strength (weight decay) guided

by the largest eigenvalue of ∇2
αLvalid was proposed to address this problem [99]. While

this method shows promise for non-spiking RNNs, it is computationally intensive due to

frequent expensive eigenvalue computation, severely limiting its scalability.

To address similarly observed risks due to architectural modifications for RSNNs, we

propose an efficient biologically-inspired risk-mitigating technique. In biological circuits,

it has been shown that Intrinsic Plasticity (IP), also known as homeostasis plasticity,

plays an important role in minimizing these risks. IP is a self-adaptive mechanism of

biological neurons that maintains homeostasis and shapes the dynamics of neural cir-

cuits [27, 28, 29]. It has been observed in neural development that IP not only main-

tains the stability of neuronal activity but also can act at a network level to coordinate

changes in connectivity and excitability across multiple neurons to stabilize circuit func-

tion [100, 94]. Inspired by these biological observations, the HRMAS framework incorpo-

rates the IP rule into the proposed architectural optimization process at the second step

of each optimization iteration. IP is based on local neural firing activities and performs

online adaptation with minimal additional computational overhead.

IP has been applied in spiking neural networks for locally regulating neuron activ-

ity [33, 20]. In this chapter, we make use of IP for a very different purpose: mitigating

the risk of RSNN architectural modifications. We adopt the SpiKL-IP rule proposed in

Chapter 3 for all recurrent neurons during architecture optimization. SpiKL-IP adapts

the intrinsic parameters of a spiking neuron while minimizing the KL-divergence from the

output firing rate distribution to a targeted exponential distribution. It both maintains

a level of network activity and maximizes the information transfer from the input to the

output for each neuron.

From the SpiKL-IP in Chapter 3, We adapt leaky resistance and membrane time
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constant, two intrinsic neuronal parameters of each neuron using SpiKL-IP which effec-

tively solves the optimization problem in (7.3) in an online manner. The two neuronal

parameters R and τ are updated according to the approximate average firing rate of the

neuron by:

∆R =
2yτVth −W − Vth − 1

µ
τVthy

2

RW
, ∆τ =

−1 + y
µ

τ
, W =

Vth

e
1
τy − 1

, (7.14)

where µ is the desired mean firing rate, y the average firing rate of the neuron. Similar to

biological neurons, we use the intracellular calcium concentration φ[t] as a good indicator

of the averaged firing activity and y can be expressed with the time constant of calcium

concentration τcal as

φi[t] = (1− 1

τcal
)φi[t− 1] + si[t], yi[t] =

φi[t]

τcal
. (7.15)

Algorithm 1: HRMAS - Hybrid Risk-Mitigating Architectural Search

Initialize weights w, intrinsic parameters β, architectural parameters α, and
correspondingly α̂. while no converged do

Update α̂ by η1∇α̂Lvalid(α̂, w − η2∇wLtrain(α̂, w, β));
Update w by η2∇wLtrain(α̂, w, β);
β ←− SpiKL-IP(α̂, w)

end
Fix the motif size to the option with highest selection probability and exclude
motif size from α.

Optimize the remaining architectural parameters by repeating the above.
Generate the final architecture by setting each connection type to the option
with highest selection probability; Train the weights of the final architecture
and evaluate performance.

We explicitly express the neuronal parameters R and τ of neuron i tuned through

time as Ri[t] and τi[t], since they are adjusted by the IP rule at each time step. They are
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updated by

Ri[t] = Ri[t− 1]− γ∆Ri, τi[t] = τi[t− 1]− γ∆τi, (7.16)

where γ is the learning rate of the SpiKL-IP rule.

In addition, by including time-variant neuronal parameters R and τ into (7.12) and

(7.13), the one time step architectural parameter and weight updates change to

δi[tm] =
T∑

k=m

∂ai[tk]

∂ui[tm]

N∑
p=1

(
Rp[tk]

τp[tk]
wpiδp[tk])

+
T−1∑
k=m

∂a
(l)
i [tk]

∂u
(l)
i [tm]

∑
v∈V

(α̂v
Ovi∑
r

∑
c∈C

Rr[tk + 1]

τr[tk + 1]
α̂criw

c
riδr[tk + 1])

∆wij ∝ δi[t]
Ri[t]

τi[t]
aj[t], ∆α̂v ∝

Nr∑
i

δi[t]
Ri[t]

τi[t]

Ivi∑
r

(
∑
c∈C

α̂cirw
c
irar[t− 1])

∆wcir ∝ δi[t]
Ri[t]

τi[t]

∑
v∈V

(α̂vα̂cirar[t− 1]), ∆α̂ir ∝ δi[t]
Ri[t]

τi[t]

∑
v∈V

(α̂vwcirar[t− 1]).

(7.17)

Finally, the proposed alternating two-step optimization of HRMAS is summarized in

Algorithm 1.

7.3 Experiments and Results

The proposed HRMAS optimized RSNNs with the SC-ML layer architecture and five

motif size options are evaluated on speech dataset TI46-Alpha [56], neuromorphic speech

dataset N-TIDIGITS [61], neuromorphic video dataset DVS-Gesture [63], and neuro-

morphic image dataset N-MNIST [59]. The performances are compared with recently

reported state-of-the-art manually designed architectures of SNNs and ANNs such as

feedforward SNNs, RSNNs, Liquid State Machine(LSM), and LSTM. For the proposed

work, the architectural parameters are optimized by HRMAS with the weights values
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trained on a training set and architectural parameters learned on a validation set as

shown in Algorithm 1. The accuracy of each HRMAS optimized network is evaluated on

a separate testing set with all weights reinitialized.

7.3.1 Experimental Settings

In the experiments of this chapter, the fully connected weights between layers are

initialized by the He Normal initialization proposed in [85]. The recurrent weights of

excitatory connections are initialized to 0.2 and tuned by the BP method. The weights

of inhibitory connections are initialized to −2 and fixed. The simulation step size is set

to 1 ms. The parameters like thresholds and learning rate are empirically tuned. No

synaptic delay is applied for feedforward connections while recurrent connections have 1

time step delay. No refractory period, normalization, or dropout is used. Adam [68] is

adopted as the optimizer. The mean of the accuracy reported is obtained by repeating

the experiments five times.

Our experiments contain two phases. In the first phase, the weights are trained via the

training set while the validation set is used to optimize architectural parameters. In the

second phase, the motif topology and type of lateral connections are fixed after obtaining

the optimal architecture. All the weights of the network are reinitialized. Then, the new

network is trained on the training set and tested on the testing set. The test performance

is reported in the paper. In addition, since all the datasets adopted in this chapter only

contain training sets and testing sets, our strategy is to divide the training set. In the

first phase, the training set is equally divided into a training subset and a validation

subset. Then, the architecture is optimized on these subsets. In the second phase, since

all the weights are reinitialized, we can train the weights with the full training set and

test on the testing set. Note that the testing set is only used for the final evaluation.
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Table 7.1 lists the typical constant values of parameters adopted in our experiments

for each dataset. The SC-ML size denotes the number of neurons in the SC-ML. In our

experiments, each network contains one SC-ML as the hidden layer. In addition, five

motif sizes are predetermined before the experiment. The HRMAS framework optimizes

the motif size from one of the five options.

Parameter TI46-Alpha N-TIDIGITS DvsGesture N-MNIST

τm 16 ms 64 ms 64 ms 16 ms
τs 8 ms 8 ms 8 ms 8 ms
τcal 16 ms 16 ms 16 ms 16 ms

learning rate 0.0005 0.0005 0.0001 0.0005
Batch Size 50 50 20 50
Time steps 100 300 400 100

Epochs for searching 300 200 60 30
Epochs for testing 400 400 150 100

SC-ML size 800 800 512 512

Motif size options [5, 10, 16, 25, 40] [2, 4, 8, 16, 32]

Table 7.1: Parameters settings.

7.3.2 Results

Figure 7.7: Optimized motif topologies.
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Figure 7.7 presents two examples of the motif topology optimized by HRMAS over five

size options [2, 4, 8, 16, 32] for the N-MNIST dataset and five size options [5, 10, 16, 25, 40]

for the TI-Alpha dataset. The final optimized motif sizes are 2 and 16, respectively.

Table 7.2 shows the results on the TI46-Alpha dataset. The HRMAS-optimized RSNN

network has one hidden SC-ML layer with 800 neurons, and outperforms all other models

while achieving 96.44% accuracy with mean of 96.08% on the testing set. The proposed

RSNN outperforms the LSM model of [69] and feedforward SNN of [16] by 18.44% and

6.52%, respectively. It also outperforms the larger multi-layered RSNN with more tunable

parameters trained by the ST-RSBP proposed in Chapter 4 by 3.1%. In Chapter 6, the

manually designed ScSr-SNN and LISR structure demonstrates improved performances

using the same TSSL-BP method. Our automated HRMAS architectural search produces

better performing networks.

Table 7.2: Accuracy on TI46-Alpha
Network Structure Learning Rule Hidden Layers Mean Best

LSM [69] Non-spiking BP 2000 − 78%
Feedforward SNN [16] HM2BP 800 89.83% 89.92%

RSNN ST-RSBP 400− 400− 400 93.06% 93.35%
Feedforward SNN TSSL-BP 800 − 91.05%

Sr-SNN TSSL-BP 800 − 93.06%
Sr-SNN TSSL-BP 400− 400− 400 94.17% 94.62%
HRMAS TSSL-BP 800 96.08% 96.44%

In Table 7.3, we show that a HRMAS-optimized RSNN with a 400-neuron SC-ML

layer outperforms several state-of-the-art results on the N-TIDIGITS dataset including

feedforward networks trained by HM2BP [16] and RSNNs trained by ST-RSBP. Our

RSNN has a more than 3% performance gain over the widely adopted recurrent structures

of ANNs, the GRU and LSTM. It also significantly outperforms a feedforward SNN with

the same network size, preprocessing steps, and hyperparameters trained with the same
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TSSL-BP method with an accuracy improvement of almost 9.82%, demonstrating the

potential of automated architectural optimization.

Table 7.3: Accuracy on N-TIDIGITS
Network Structure Learning Rule Hidden Layers Mean Best

Feedforward SNN [16] HM2BP 250− 250 − 89.69%
GRU [61] Non-spiking BP 200− 200− 100 − 90.90%

Phase LSTM [61] Non-spiking BP 250− 250 − 91.25%
RSNN ST-RSBP 400− 400− 400 93.63% 93.90%

Feedforward SNN TSSL-BP 400 − 84.84%
Feedforward SNN TSSL-BP 400− 400− 400 89.55% 89.85%

HRMAS TSSL-BP 400 94.27% 94.66%

On DVS-Gesture and N-MNIST, Table 7.4 compares a HRMAS-optimized RSNN

with models including feedforward SNNs trained by TSSL-BP or STBP [15] with the

same size, and non-spiking vanilla RNN and LSTM. Note that although our RSNN and

the LSTM model have the same number of units in the recurrent layer, the LSTM model

has a much greater number of tunable parameters. Moreover, [86] proposed a rate-

coding-inspired loss function to improve the performance of the reported ANNs. Our

HRMAS-optimized model surpasses all other models.

7.3.3 Ablation Analysis

We conduct ablation studies on the RSNN optimized by HRMAS for the TI46-Alpha

dataset to reveal the contributions of various proposed techniques. With all proposed

techniques included, the HRMAS-optimized RSNN achieves 96.44% accuracy. As shown

in Table 7.5, removal of the IP rule from the second step of the HRMAS optimization

iteration visibly degrades the performance, showing the efficacy of intrinsic plasticity for

mitigating risks of architectural changes. A similar performance degradation is observed

when the sparse inter-motif connections are excluded from the SC-ML layer architecture.
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Table 7.4: Accuracy on DVS-Gesture and N-MNIST
Network Structure Learning Rule Hidden Layers Mean Best

DVS-Gesture
Feedforward SNN [86] STBP P4− 512 − 87.50%

RNN [86] Non-spiking BP P4− 512 − 52.78%
LSTM [86] Non-spiking BP P4− 512 − 88.19%

Feedforward SNN TSSL-BP P4− 512 − 88.19%
HRMAS TSSL-BP P4− 512 88.40% 90.28%

N-MNIST
Feedforward SNN [86] STBP 512 − 98.19%

RNN [86] Non-spiking BP 512 − 98.15%
LSTM [86] Non-spiking BP 512 − 98.69%

Feedforward SNN TSSL-BP 512 − 98.32%
HRMAS TSSL-BP 512 98.60% 98.72%

Without imposing a structure in the hidden layer by using motifs as a basic building

block, HRMAS can optimize all possible connectivity patterns and types of the large set

of 800 hidden neurons. However, this creates a large and highly complex architectural

search space, rendering a tremendous performance drop.

Finally, we compare the HRMAS model with an RSNN of a fixed architecture with

full recurrent connectivity in the hidden layer. The application of the BP method is able

to train the latter model since no architectural optimization is involved. However, albeit

its significantly increased model complexity due to dense connections, this model has a

large performance drop in comparison with the RSNN fully optimized by HRMAS.

Table 7.5: Ablation studies of HRMAS on TI46-Alpha
Setting Accuracy Setting Accuracy

Without IP 95.20% Without inter-motif connections 95.73%
Without motif 88.35% Fully connected RSNN 94.10%
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7.4 Summary and Discussions

In this chapter, we present an RSNN architecture based on SC-ML layers composed

of multiple recurrent motifs with sparse inter-motif connections as a solution to con-

structing large recurrent spiking neural models. We further propose the automated

architectural optimization framework HRMAS hybridizing the “evolution” of the archi-

tectural parameters and corresponding synaptic weights based on backpropagation and

biologically-inspired mitigation of risks of architectural changes using intrinsic plastic-

ity. We show that HRMAS-optimized RSNNs impressively improve performance on four

datasets over the previously reported state-of-the-art RSNNs and SNNs. By producing

sparse and scalable network architectures with optimized connectivity, this approach may

contribute to development of high-performance RSNNs on both general-purpose and ded-

icated neuromorphic computing platforms. By sharing the Pytorch implementation with

the community, the proposed HRMAS framework may motivate new advances in design

of high-performance brain-inspired recurrent spiking neural models and deployment of

such models on energy-efficient neurmorphic computing hardware.
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Conclusion and Future Work

8.1 Conclusion

This dissertation presents computationally powerful training algorithms and sys-

tematic exploration of recurrent spiking neural networks (RSNNs) for embracing high-

performance and energy-efficient spiking neuron networks. We summarize the major

contributions of this dissertation as follows.

While intrinsic plasticity (IP) was attempted for spiking neurons in the past, the

prior IP rules lacked a rigorous treatment in their development, and the efficacy of these

rules was not verified using practical learning tasks. In Chapter 3, we address the the-

oretical and practical limitations of the existing works by proposing the SpiKL-IP rule.

SpiKL-IP aims to tune the intrinsic parameters of a spiking neuron while minimizing

the KL-divergence from the targeted exponential distribution to the actual output fir-

ing rate distribution. However, several challenges must be addressed as we work toward

achieving the above goal. First, we rigorously relate the output firing rate with the static

input current by deriving the firing-rate transfer function (FR-TF). FR-TF provides a

basis for allowing the derivation of the SpiKL-IP rule that minimizes the KL-divergence.
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Furthermore, we cast SpiKL-IP in a suitable form to enable the online application of IP

tuning. Finally, we address one major challenge associated with applying SpiKL-IP under

realistic contexts where the input current to each spiking neuron may be time-varying,

which leads to the final IP rule that has no dependency on the instantaneous input level

and effectively tuning the neural model parameters based upon averaged firing activities.

Simulation studies demonstrate that the application of SpiKL-IP to individual neurons

in isolation or as part of a larger spiking neural network robustly produces the desired ex-

ponential distribution. The evaluation of SpiKL-IP under real-world speech tasks shows

that SpiKL-IP noticeably outperforms two existing IP rules and can significantly boost

recognition accuracy by up to more than 16%.

Training of SNNs via BP is challenged by two fundamental issues. First, from an algo-

rithmic perspective, the complex neural dynamics in both spatial and temporal domains

make the BP process obscure. Moreover, the errors are hard to be precisely backprop-

agated due to the non-differentiability of discrete spike events. Second, a large number

of time steps are typically required for emulating SNNs in time to achieve decent per-

formance, leading to high latency and rendering spike-based computation unscalable to

deep architectures. We proposed two types of BP methods to handle these problems.

In Chapter 4, we present the novel spike-train level backpropagation algorithm ST-

RSBP, which can transparently train all types of SNNs including RSNNs without unfold-

ing in time. The employed S-PSP model improves the training efficiency at the spike-train

level and also addresses key challenges of RSNNs training in handling temporal effects

and gradient computation of loss functions with inherent discontinuities for accurate

gradient computation. More specifically, in ST-RSBP, the given rate-coded errors can

be efficiently computed and back-propagated through layers without costly unfolding the

network in time and through expensive time point by time point computation. Moreover,

ST-RSBP handles the discontinuity of spikes during BP without altering and smoothing
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the microscopic spiking behaviors. The problem of network unfolding is dealt with ac-

curate spike-train level BP such that the effect of all spikes is captured and propagated

in an aggregated manner to achieve accurate and fast training. As such, both rate and

temporal information in the SNN are well exploited during the training process. Based

upon challenging speech and image datasets including TI46 [56], N-TIDIGITS [61], and

MNIST, ST-RSBP is able to train SNNs with an accuracy surpassing that of the current

state-of-the-art SNN BP algorithms and conventional non-spiking deep learning models.

In Chapter 5, we present the novel temporal spike sequence learning via a backprop-

agation (TSSL-BP) method to train deep SNNs. The main purposes of the proposed

TSSL-BP method are to: (1) more precisely handle the non-differentiability of the spik-

ing activation function while keeping all-or-none firing characteristics of spiking neurons;

(2) provide a way to train SNNs within a small number of time steps (i.e. latency) to

reduce response time, improve accuracy and efficiency. The efficacy and precision of

TSSL-BP allow it to successfully train SNNs over a very short temporal window, e.g.

over 5-10 time steps, enabling ultra-low latency spike computation. As shown in Sec-

tion 5.4, TSSL-BP significantly improves accuracy and runtime efficiency of BP training

on several well-known image datasets of MNIST [53], NMNIST [59], FashionMNIST [54],

and CIFAR10 [55]. Specifically, it achieves up to 3.98% accuracy improvement over the

previously reported SNN work on CIFAR10, a challenging dataset for all prior SNNs BP

methods.

To explore computationally powerful RSNN architectures, we first proposed two man-

ually designed structures that can significantly improve network performance compared

to existing works and feedforward counterparts. Then, we present a systemic architec-

tural optimization to search for optimal RSNN structures.

In Section 6.1, we propose a new RSNN structure called Skip-Connected Self-Recurrent

SNN (ScSr-SNN) to offer a simple and structured approach for designing high perfor-
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mance RSNNs and mitigating the training challenges resulted from random recurrent

connections as in the prior works. The main contributions of this work are: (1) We

proposed the self-recurrent architecture for SNNs. The recurrence is only introduced by

self-recurrent connections of individual spiking neurons, i.e., there exist no lateral connec-

tions between different neurons within a layer. We demonstrate that, with self-recurrent

connections, SNNs are able to realize recurrent behaviors similar to those of more com-

plex RSNNs while the error gradients can be more straightforwardly calculated due to

the mostly feedforward nature of the network. (2) We show that the skip connections can

help the formation of recurrent structures, introduce more tunability, and thus improve

performance. (3) We rigorously derive the backpropagation algorithm that can handle

self-recurrent connections and skip connections. Based on challenging speech datasets

TI46 [56] and neuromorphic speech dataset N-TIDIGITS [61], the proposed ScSr-SNN

can boost performance by up to 2.85% compared with other types of RSNNs trained by

state-of-the-art BP methods.

Although ScSr-SNN is easy to implement, its connections may be so simple that it

cannot exploit the full power of recurrence. In Section 6.2, we propose a novel recurrent

structure called the Laterally-Inhibited Self-Recurrent Unit (LISR), which consists of

one excitatory neuron with a self-recurrent connection wired together with an inhibitory

neuron through excitatory and inhibitory synapses. The self-recurrent connection of

the excitatory neuron mitigates the information loss caused by the firing-and-resetting

mechanism and maintains the long-term neuronal memory. The lateral inhibition from

the inhibitory neuron to the corresponding excitatory neuron, on the one hand, adjusts

the firing activity of the latter. On the other hand, it plays as a forget gate to clear the

memory of the excitatory neuron. Based on speech and image datasets commonly used

in neuromorphic computing, RSNNs based on the proposed LISR improve performance

significantly by up to 9.26% over feedforward SNNs trained by the proposed TSSL-BP
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method with similar computational costs.

Finally, to automize enable the systemic design of large RSNNs, we propose a new

scalable RSNN architecture and automated architectural optimization in Chapter 7. We

compose RSNNs based on a layer architecture called Sparsely-Connected Recurrent Motif

Layer (SC-ML) that consists of multiple small recurrent motifs wired together by sparse

lateral connections. The small size of the motifs and sparse inter-motif connectivity leads

to an RSNN architecture scalable to large network sizes. We further propose a method

called Hybrid Risk-Mitigating Architectural Search (HRMAS) to systematically optimize

the topology of the proposed recurrent motifs and SC-ML layer architecture. HRMAS

is an alternating two-step optimization process by which we mitigate the risk of network

instability and performance degradation caused by architectural change by introducing

a novel biologically-inspired “self-repairing” mechanism through intrinsic plasticity. The

intrinsic plasticity is introduced to the second step of each HRMAS iteration and acts

as unsupervised fast self-adaption to structural and synaptic weight modifications intro-

duced by the first step during the RSNN architectural “evolution”. To the best of the our

knowledge, this is the first work that performs systematic architectural optimization of

RSNNs. We evaluate the proposed techniques on speech dataset TI46-Alpha [56], neuro-

morphic speech dataset N-TIDIGITS [61], neuromorphic video dataset DVS-Gesture [63],

and neuromorphic image dataset N-MNIST [59]. The SC-ML-based RSNNs optimized

by HRMAS achieve state-of-the-art performance on all of the four datasets. With the

same network size, automated network design via HRMAS outperforms existing RSNNs

by up to 3.38% performance improvement.

In conclusion, we expect this dissertation would help move the community forward to-

wards high-performance spiking neural networks and energy-efficient neuromorphic com-

puting.
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8.2 Future Work

There are multiple potential directions leading to further exploration and expansion of

the existing work. From a training algorithms perspective, we can explore a biologically

plausible backpropagation method that not only embraces the computational power from

existing BP methods but also facilitate hardware implementation and energy efficiency

from a bio-inspired aspect. From the architectural perspective, with the help of our

proposed HRMAS method, we can explore the optimized recurrent architecture of various

datasets. Furthermore, we can even compare our automatically optimized architecture

with the neural circuits discovered in biological neural systems to find the similarity and

better understand the connectivity of biological neural networks.

8.2.1 Biologically Plausible Backpropagation

Our proposed learning methods and state-of-the-art training algorithms for SNNs

can achieve competitive performance compared to the ANN counterparts. However,

these methods all have high computational costs, require extra memory to save neuronal

states for backpropagation, and cannot train networks online. These features of existing

BP methods are thought to be unbiologically plausible and hinder their applications to

neuromorphic hardware. SNNs have started to deliver energy-efficient, massively paral-

lel, and low-latency solutions to AI problems, facilitated by the emerging neuromorphic

hardware. To harness these computational benefits, SNNs need to be trained by learning

algorithms that adhere to brain-inspired neuromorphic principles, namely event-based,

local, and online computations. Therefore, there is a need for a BP method of SNNs that

is biologically plausible or hardware friendly so that it can be directly implemented on

neuromorphic hardware.

Several recent efforts have sought to tackle these challenges. [101] proposed a deep
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Conclusion and Future Work Chapter 8

learning method using forward and backward neural activity propagation. The learning

rule was based on the idea that spike-timing-dependent plasticity (STDP) implements the

gradient descent learning rule. [102] proposed a more biologically plausible direct feed-

back alignment (DFA) method for conventional ANNs where the error is more biologically

plausibly fed back to each hidden layer through fixed random feedback connections di-

rectly from the output layer, reducing a bulk of the BP complexity. Furthermore, DFA

can be performed for all hidden layers concurrently, reducing the backward phase latency.

This idea was extended to SNNs in [103] as an event-based BP method. Furthermore,

our previous work [104] adapted the ST-RSBP proposed in Chapter 4 with DFA to a

hardware-friendly ST-DFA method and demonstrated it on FPGA board. In addition,

[105] and [106] also tries to modify the BP method so that the training can be similar

to Hebbian learning. Recently, [21] proposed a gradient-based method with a local error

which is thought to be more biologically plausible than existing BP methods.

Although various approaches are proposed to build more biologically plausible and

hardware-friendly training methods, the lack of SNN learning rules that can achieve both

high performance and biological plausibility, hinders the neuromorphic technology from

going mainstream.

8.2.2 Biologically Plausible Architecture Explored from Archi-

tectural Optimization

How neural circuits in the brain are built and function is a central pursuit of neu-

roscience. Many works tried to explore and understand the neural circuits from their

cell types, mechanism, topology, connectivity, and so on. More recently, [107] report

the complete connectomes of both sexes of a tiny roundworm — a major step towards

understanding how a brain’s function emerges from its form.
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In our future work, we can start well-known neural circuits from neuroscience, for

example, olfactory circuits. The architecture of olfactory circuits has been widely studied

in recent few decades [108, 109]. In addition, different types of neuromorphic circuits

inspired by olfactory circuits are proposed for odor recognition and odor location [110,

111, 112]. Olfactory circuits own several interesting characteristics. In the olfactory bulb,

multiple neurons are grouped in the glomerulus with one major neuron connected to

pre/post layers. Each olfactory bulb has many glomeruli located near its surface. There

is typically lateral inhibition between glomeruli and excitatory recurrent connectivity

within each glomerulus. As we can see, these features can be easily realized by the SC-

ML structure proposed in Chapter 7. Thus, with our powerful architectural optimization

method, we can build the recurrent structure optimized based on olfactory datasets

and check the similarity between the optimized network and neural circuits observed

biologically. We believe these experiments can help us better understand the connectivity

and functions of recurrent spiking neural networks.
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H. Schwenk, and Y. Bengio, Learning phrase representations using rnn
encoder-decoder for statistical machine translation, in EMNLP, 2014.
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