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Abstract

Essays in Applied Econometrics

by

Antoine Deeb

This dissertation consists of three essays that use and develop econometric methods to

causally investigate topics in education and development economics. In the first chapter,

I develop an econometric framework to correctly and efficiently draw inference in mod-

els where estimated value-added (VA) is an explanatory variable (and models where it

appears as the dependent variable). Estimated VA measures have become increasingly

popular metrics of worker and institutional quality, and they are now widely used in

regressions by researchers seeking to establish links between worker quality and a broad

range of outcomes. Although consistent standard errors are crucial to obtain correct

confidence intervals and assess the validity of conclusions drawn by studies using VA

measures in regressions, the literature has not yet tackled this issue. I contribute to this

literature by setting up an econometric framework that allows me to show why näıve

standard error estimators are inconsistent in such models, derive consistent standard

error estimators, propose a more efficient estimator for models using VA measures as

explanatory variables, and propose a testable condition under which näıve standard er-

rors are consistent for models that use VA measures as dependent variables. Then, in

an application using data from North Carolina public schools, I find that the increase in

standard errors resulting from the required correction that I propose is larger than the

impact of clustering standard errors. In the second chapter, based on joint work with

Serena Canaan and Pierre Mouganie, we use VA measures to provide the first causal evi-

dence on the impact of college advisor quality on student outcomes. To do so, we exploit

a unique setting where students are randomly assigned to faculty advisors during their
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first year of college. We find that having a higher grade VA advisor reduces time to com-

plete freshman year and increases four-year graduation rates by 2.5 percentage points.

It also raises high-ability students’ likelihood of enrolling and graduating with a STEM

degree by 4 percentage points. The magnitudes of our estimated effects are comparable

to those from successful financial aid programs and proactive coaching interventions. We

also show that non-grade measures of advisor VA predict student success. In particular,

advisors who are effective at improving students’ persistence and major choice also boost

other college outcomes. Our results indicate that allocating resources towards improving

the quality of academic advising may play a key role in promoting college success. In

the third chapter, based on joint work with Clément de Chaisemartin, we consider the

case of a randomized controlled trial with individual-level treatment assignment, and we

allow for individual-level and cluster-level (e.g. village-level) shocks to affect the units’

potential outcomes. We show that one can draw inference on two estimands: the ATE

conditional on the realizations of the cluster-level shocks, using heteroskedasticity-robust

standard errors; the ATE netted out of those shocks, using cluster-robust standard errors.

We show that by clustering, researchers can test if the treatment would still have had

an effect, had the stochastic shocks that occurred during the experiment been different.

Then, the decision to cluster or not depends on the level of external validity one would

like to achieve.
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Chapter 1

A Framework for Using

Value-Added in Regressions

1.1 Introduction

Assessing the quality of workers and institutions and the impact of this quality on various

outcomes is a common topic in economics. For instance, it is common to assess the

impact of teachers’ value added (VA) on long-run student outcomes, often by regressing

those outcomes on the estimated VA measures (Chetty et al., 2014b; Jackson, 2018;

Canaan et al., 2021).Furthermore, some studies ask whether observable characteristics

of teachers can predict VA and regress VA measures on those characteristics. In this

paper, I start by showing that when VA is the outcome or the explanatory variable in

a regression, the regression’s robust standard errors researchers routinely use to draw

inference are invalid. I then construct consistent standard errors for the estimators used

in such studies. Finally, for models using VA as an explanatory variable I propose a

more efficient estimator, construct optimal instruments under certain assumptions, and

1



A Framework for Using Value-Added in Regressions Chapter 1

discuss a specification test.

For ease of exposition, I present my results in the context of teacher test-score value

added, estimated using leave-year out measures. However, the results can be extended

to different VA measures, and to different methods of estimating VA. While I consider

the case of linear regressions, the framework discussed in this paper can also be extended

to non-linear models.

The main insight underlying the results in this paper is that the assumptions underpin-

ning VA models naturally lead to a generalized method of moments (GMM) framework.

After demonstrating this, I show how one can use that framework for estimation and in-

ference in models that employ VA measures in regressions. Specifically, in models using

VA measures as explanatory variables, I show that the estimation of the VA measures,

and correlations between the observable characteristics used to construct them and true

teacher quality, lead to incorrect inference due to inconsistent standard error estimators.

I then propose corrected standard errors from a GMM framework, and discuss other

possible solutions under stronger assumptions.

Next I show that models using VA measures as explanatory variables are often overiden-

tified systems of moment conditions resembling instrumental variables systems, and use

that fact to propose a more efficient estimator of the impact of having a high test-score

VA teacher on long-run outcomes. Finally, I also provide corrected standard errors for

models using VA measures as a dependent variable.

My main theoretical findings are as follows. First, I describe the current practices used to

estimate the impact of teacher test-score VA on student earnings. This is typically done

using a multi-step procedure where the effect of observable characteristics is removed

from test-scores and earnings, the best linear predictor of current year VA is constructed

using the measures from other years, and residualized earnings are regressed on the

2



A Framework for Using Value-Added in Regressions Chapter 1

best linear predictor. I set up the treatment effect model underlying those practices,

and show how the assumptions for the residuals of that model imply the higher level

assumptions typically made in the literature, and lead to identification through a system

of moment equations. Specifically, I show that these models rest on three important

assumptions for the residuals of the treatment effect model. Teachers’ VA has to be mean

independent the unobserved determinants of students’ test scores and earnings, and the

average unobserved determinants of test-scores and earnings of students matched to a

given teacher have to be uncorrelated across years. These assumptions imply the forecast

unbiasedness assumption used to justify the use of VA measures as explanatory variables.

Second, I show that the aforementioned assumptions lead to the identification of the

parameters of interest using a system that contains four sets of moment equations that

map to the steps researchers routinely use to estimate VA’s effect on long-run outcomes:

a first set of moments to remove the effect of covariates from the test-scores, a second

set of moments used to construct the best linear predictor of current year VA using

the measures from other years, an optional third set of moments to remove the effect of

covariates from the outcome, and a fourth set to get the impact of VA on the residualized

outcome.1

Third, I use the fact that the asymptotic results for GMM estimators in this context

naturally capture the aforementioned multi-step procedure to derive the asymptotic dis-

tribution of the estimator of the impact of true teacher VA on earnings used in the

literature. I show that while an OLS regression will yield a consistent estimate of the

coefficient, the associated standard error estimators will be inconsistent. Indeed, these

standard error estimators take into account neither the correlations between the observ-

able characteristics of students and true teacher VA, nor the construction of the best

1Whether the outcome needs to be residualized or not depends on the context of each specific appli-
cation. In some VA studies, the outcome is residualized, but in other studies it is not.
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A Framework for Using Value-Added in Regressions Chapter 1

linear predictor. Given that most VA papers rely on a base assumption of selection on

observables, the aforementioned correlations are likely to be strong, and thus accounting

for them and the estimation of the best linear predictor is important.

Fourth, I show that if a researcher is interested in constructing confidence intervals using

the OLS coefficients and doesn’t wish to estimate a system by GMM, then corrected

standard errors obtained from the GMM formula need to be calculated using the esti-

mated parameters.2 I also show that in settings with random assignment of students to

teachers, correct standard errors can be obtained by a 2SLS regression of earnings on

current year VA while instrumenting the current year’s VA by other year’s VAs.

Fifth, I demonstrate that simply regressing the outcome on the best linear predictor

of VA fails to take advantage of overidentification. I show that the previous system

of moments is nested in a more general and overidentified system. Indeed, under the

same assumptions required to use the best linear predictor of current year VA as an

explanatory variable, we have that the VA measures in years s ̸= t are valid instruments

for year t’s VA. Then when we have more than two years of data, we have more than

one valid instrument for the endogenous year t measure. I use this to show that one can

then obtain a more precise estimator of the effect of VA on earnings using an optimal

weighting matrix. Furthermore, in a constant effect framework, one can test the validity

of the model using an overidentification test.

Sixth, I consider the construction of optimal instruments under the stronger assumption

of random assignment of students to teachers, when researchers also choose to include co-

variates in their analysis. I find that if one is willing to assume that the conditional mean

of the current year’s VA given other years’ VA is linear and errors are homoskedastic, a

3SLS estimator using the best linear predictor can be optimal.

2Another possibility is bootstrapping the estimation of the system. In practice this can be done
without using GMM by bootstrapping the entire analysis starting with the estimation of value added.

4



A Framework for Using Value-Added in Regressions Chapter 1

Finally, I focus on cases where VA is used as a dependent variable. I derive corrected

standard errors for coefficients from such regressions using a GMM framework and provide

a testable condition under which using OLS with unadjusted standard errors can also

lead to valid inference.

The preceding theoretical results are confirmed by simulations and an application. The

simulations focus on the importance of adjusting standard errors when estimating an

OLS regression using VA measures as explanatory variables. Indeed, even in a simple

model with constant true value added over time, 95% confidence intervals constructed

using OLS coefficients and standard errors only adjusted for clustering have a coverage

rate of 72.4%. On the other hand, using the multi-step OLS estimator with the proposed

corrected standard errors from GMM yields correct inference with a coverage rate of

94.2%. Furthermore, the proposed optimal GMM estimator has a variance that is 1.3%

lower than the multi-step OLS estimator.

My application uses data on third graders in North Carolina public schools. I document

the presence of correlations between the variables used to predict VA and true teacher

VA. I find an effect of sorting on lagged test scores at the student level that is similar

in magnitude to Chetty et al. (2014a), but I also find that these correlations are much

stronger for the classroom and school-year level lagged test scores used as controls to

estimate VA. Indeed, sorting on lagged test scores at the classroom and school-year level

is respectively five and three times larger than at the individual level.3 I then illustrate my

theoretical findings by showing the impact that this sorting has on the standard errors

of coefficients in regressions using value added. The GMM standard errors I propose

are between 37 and 70% larger than the standard errors currently used in the literature.

Notably, in this application, the increase in standard errors resulting from my adjustment

3Rothstein (2017) also finds significant sorting at the school level.
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is larger on average than the impact of clustering standard errors.

This paper contributes to various literatures. First, for applied researchers, this paper

provides a simple-to-implement framework to correctly and efficiently draw inference

when using VA measures in regressions. Papers using value added as an explanatory

variable are quite common in the economics of education literature, with notable examples

being Chetty et al. (2014b) and Jackson (2018) which use VA to highlight the importance

of school teachers in improving students’ adult outcomes. Rose et al. (2019) use VA to

study the link between teacher quality and future student criminal behavior. Canaan

et al. (2021) use VA to show that advisors who raise short-run student achievement, such

as GPA, improve subsequent long-run outcomes such as graduation. Mulhern (2019) uses

VA to show that good high-school counselors tend to improve all measures of educational

attainment for students. Liu and Loeb (2021) use VA to explore the link between a

teacher’s impact on student’s attendance and their long-run outcomes. Opper (2019)

uses VA as an explanatory variable when testing for spillover effects to determine whether

the impact of teachers extends beyond the students in their classrooms.

This paper contributes to the applied literature by providing a theoretical framework

that underpins the methods used in the literature while providing guidelines for the need

to correct standard errors when using VA in regressions. Indeed, this paper identifies

the correlations between the student characteristics and true teacher quality as one of

the main causes of incorrect inference, and the construction of the best linear predictor

as another. While most applied researchers are aware of the importance of properly

accounting for these factors in order to obtain unbiased estimates of teacher VA, this

paper documents the presence of these correlations in practice and stresses the importance

of accounting for them when conducting inference as well.

Second, this paper is also related to the methodological literature on VA. This literature

6
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has mostly focused on different ways to estimate and shrink VA measures. For example

Angrist et al. (2017) show how researchers can leverage lotteries to create better VA

estimates by combining non-experimental and quasi-experimental methods to obtain VA

estimates with lower MSE, while Gilraine et al. (2020) propose a non-parametric method

to shrink VA estimates. Finally, Opper (2019) develops a method of moments estimator

to construct VA measures that account for spillovers. This paper fills a different gap in the

literature by providing a flexible framework for estimation and correct inference when

using VA measures in regressions, as well as providing a guide for efficient estimation

when using value-added measures as explanatory variables.

Third, the study of the properties of estimators in this paper is also related to the work of

Pagan (1986) who provides a unified framework for the properties of two-step estimators

with a focus on the possibility of invalid inference, and the work of Newey (1984) and

Newey and McFadden (1994) which shows that the properties of multi-step estimators

can be obtained by framing the estimators as method of moment estimators. This paper

uses the results of the latter to derive its findings.

Finally, the conceptual link between VA models and GMM outlined in this paper, and the

associated causes of incorrect inference and their solutions, can be extended to different

settings using estimated measures of quality in regressions. Indeed, models resembling

the VA framework described in this paper are commonly used in economics. Examples

include studies of the effectiveness of healthcare providers (Currie and Zhang, 2021),

the effectiveness of bosses (Lazear et al., 2015; Bertrand and Schoar, 2003), and the

impact of individuals working as part of a team (Arcidiacono et al., 2017). While the

standard error estimators derived in this paper might not directly apply in those settings

because the procedures used to estimate VA measures can sometimes depart from the

ones described here, researchers could draw correct inference in such cases by following

7



A Framework for Using Value-Added in Regressions Chapter 1

the general approach outlined in this paper and jointly modeling the estimation of the

VA measures and subsequent regression analysis together in a GMM framework.

The rest of this chapter is organized as follows. Section 2 presents the results for using VA

as an explanatory variable. Section 3 presents the results for using VA as a dependent

variable. Section 4 presents the simulation results. Section 5 goes over an empirical

example and section 6 concludes.

1.2 Using Value Added as an Explanatory Variable

Researchers are often interested in the effect of teachers on the long-run outcomes of

students. For example, how does the quality of a teacher affect the adult earnings of

their students? To estimate this effect, one constructs a value-added measure of teacher

quality and collects the outcomes of students that were matched with each teacher.

1.2.1 Setup

To begin, we must define the value added of a teacher. The common definition is the

improvement in a student’s test score attributable to the teacher. Let Rit be the test

score for student i in year t. Then the potential test score, if the student were matched

to a teacher who has value added µ is

Rpot
it (µ) = µ+Rpot

it (0)

where the test score is normalized to have a mean of 0 and a variance of 1. Because the

test score is normalized, the value-added measure is also normalized to have a mean of

8



A Framework for Using Value-Added in Regressions Chapter 1

0. The part of the test score that is not attributable to the teacher’s value added is

Rpot
it (0) = X ′

itβ0 + ϵit,

where Xit captures the observed characteristics of the student and ϵit captures the un-

observed characteristics of the student that determine test scores.

The value added of a teacher, while defined in terms of a short-run outcome, may also

affect long-run outcomes, such as adult earnings. Let Yi be the adult earnings for student

i. Consider a model in which the value added of a teacher has a linear effect on earnings

that is constant for all students (I relax the constant effect assumption in Appendix A.3).

In this setting, the potential outcome function for the adult earnings of student i is given

by

Y pot
i (µ) = κ0µ+ Y pot

i (0)

and the potential outcome for an average quality teacher is

Y pot
i (0) = X ′

itβ
Y
0 + ηit

The student-level characteristics that determine this relation are measured at the time

of exposure to the teacher: Xit captures the observed characteristics of the student and

ηit captures the unobserved characteristics of the student and teacher.

To implement this framework, I allow for the possibility that the value added of a teacher

varies over time, which for teacher j is denoted µjt. It follows from the potential outcome

framework that the observed earnings for student i who was matched to teacher j in year

t are equal to:

9



A Framework for Using Value-Added in Regressions Chapter 1

Y obs
i = X ′

itβ
Y
0 + κ0µjt + ηit. (1.1)

The coefficient κ0 measures the effect a teacher has on future earnings that arises from

the teacher’s contribution to the student’s test scores. However, it is important to note

that the effect captured in κ0 might not be due solely to the direct effect on student

test scores. There may be an indirect effect that can arise, for example, when a high

value-added teacher in year t leads parents to select better teachers in years after t, which

also positively affects earnings.4

I now describe a four step procedure in terms of population quantities used to identify

κ0 which I formalize in a system of moment conditions in the next section. Each step

will be followed by a brief description of how it is implemented in practice. Before doing

so, I introduce some helpful notation. There are J teachers and each teacher is observed

for T years. A balanced panel across teachers and years simplifies the presentation, but

is not required for the results. Each teacher has class size nj, which is assumed to be

constant over time.

In step one, we remove the effect of covariates from both test-scores and earnings. To do

so, we begin with observed student test scores

Robs
it = X ′

itβ0 + µjt + ϵit (1.2)

and remove the effect of student characteristics yielding

Rit = µjt + ϵit (1.3)

As we will see later, (1.3) leads to a set ofK moment conditions, whereK is the dimension

4For further discussion about interpreting κ0 when modeling earnings in a linear setting see Chetty
et al. (2014b)
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of β0. In practice β̂0 is estimated using within teacher variation by running a regression of

observed test-scores Robs
it on the covariates Xit and teacher fixed effects, one then obtains

an estimate R̂it = Robs
it −X ′

itβ̂0. The teacher fixed effect is included to correct for possible

sorting on observable characteristics. If students with highly educated parents select the

most gifted teacher, then estimates of the student characteristics would be biased by the

omitted teacher effect. To remove this bias, we include teacher fixed-effects. Importantly,

the teacher fixed effect is only used to estimate β0, it is not used to construct R̂it. Note

that if we removed the teacher fixed effect from R̂it, we would effectively remove the

teacher’s value added.

Next we remove the effect of the same set of covariates from earnings. We have:

Yit = Y obs
i −X ′

itβ
Y
0 (1.4)

such that Yit is the earnings residual of student i, matched to teacher j in year t. This

step will lead to another additional K moment conditions, where K is the dimension of

βY
0 . In practice β̂Y

0 is estimated using within teacher variation by running a regression of

observed earnings Y obs
i on the covariates Xit and teacher fixed effects, one then obtains

an estimate Ŷit = Y obs
i −X ′

itβ̂
Y
0 . As before the teacher fixed effect is included to correct

for possible sorting on observable characteristics when estimating βY
0 , it is not used to

construct Ŷit.

In step two, we construct a preliminary measure of value added. Averaging Rit over all

students in a class would yield the preliminary measure of value added

Rjt =
1

nj

nj∑
i=1

Rit = µjt + ϵjt, (1.5)

with the idea that, on average, the ϵjt are close to 0. This measure we construct contains

both the value-added measure, µjt, and the effect of unobserved student characteristics,

11
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ϵit.

Given that to estimate the effect of teacher value added on long-run outcomes, we want

to use value added as an explanatory variable, there are two issues with using this initial

constructed measure Rjt. The first is that it is a noisy measure of value added, and the

second is that students with positive unobserved determinants of test scores are likely to

have positive unobserved determinants of earnings. In other words if we want to use Rjt

as an explanatory variable then we have mechanical endogeneity from using the same

students to form both the value-added measures and the outcome (Jacob et al., 2010).

To address these concerns there are two possible solutions. The first, which is currently

used in applied research and will be discussed in step three, involves constructing for

each teacher the best linear predictor of preliminary value added for the current year

Rjt, from the preliminary value-added measures for all years s ̸= t. The second solution

which I discuss in section 1.2.3 will involve using the preliminary value-added measures

for all years s ̸= t as instruments in an overidentified system of moment equations. I will

show that there are efficiency gains from using the latter solution.

As previously mentioned, step three improves upon the preliminary measures by con-

structing the best linear predictor of value added for the current year t, from the value-

added measures for all other years s. The best linear predictor removes the endogeneity

because we assume that the unobserved factors that influence tests scores are uncorre-

lated over time as the classes have no students in common and all sorting of students to

teacher is captured by the observable characteristics. In the context of our model it is

saying that ϵjt and ηjt are correlated but ϵjs is uncorrelated with ϵjt and ηjt for s ̸= t.

Under the assumptions of our model the best linear predictor also shrinks the value-

added measure towards a mean of zero and reduces the noise, Appendix A.4 illustrates

this with a simple example.

12
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It is reasonable to assume that value added is stationary. This then reduces the number

of parameters to be estimated. This requires that mean teacher value added does not

vary across calendar years and the correlation of value added across any pair of years

depends only on the amount of time which elapses between those years. We can then

define this improved measure as:

µ∗
jt =

∑
|s−t|̸=0

ϕ0|s−t|Rjs. (1.6)

where

ϕ0 = argmin
ϕ|s−t|

E

Rjt −
∑

|s−t|̸=0

ϕ|s−t|Rjs

2 . (1.7)

Under the assumption of stationarity, this step will lead to an additional T − 1 moment

conditions, where T − 1 is the dimension of ϕ0. In practice ϕ0 can be estimated by

regressing R̂jt =
1
nj

∑nj

i=1 R̂it on R̂js, and the estimate of µ∗
jt is then a fitted value from

an OLS regression of R̂jt on the residuals from all other years (Chetty et al., 2014a).

In step four we consider residualized earnings. They contain both the effect of teacher

value added on student earnings, κ0µjt, and the effect of other unobserved characteristics

of the student and teacher, ηit:

Yit = κ0µjt + ηit. (1.8)

Averaging over all students in a class yields:
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Y jt = κ0µjt + ηjt. (1.9)

which leads to one additional moment condition. In practice, the unobserved value µjt

must be replaced with an estimate.

Specifically the common practice estimator of κ0 is obtained by estimating the following

sample counterpart of (1.9) using OLS:

Ŷjt = κµ̂jt + ζjt, (1.10)

where µ̂jt =
∑

|s−t|̸=0 ϕ̂|s−t|R̂js is an estimate of µ∗
jt and Ŷjt =

1
nj

∑
i Y

obs
i −X ′

itβ̂
Y
0 . I will

refer to this estimator of κ0 as the multi-step OLS estimator.

The next section formalizes the identification of κ0 using a system of moment equations

that follows the steps outlined above.

1.2.2 Identification

I now discuss Assumptions 1 and 2 which give interpretable primitive conditions on the

residuals of the treatment effect model under which κ0 is identified.

Assumption 1

1. For all i, j, t: E[ϵit|µj] = E[ϵit] = 0 where µj =


µj1

...

µjT

.

2. For all s ̸= t: E(ηit|µjs) = 0.
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3. For all s ̸= t,
(
ϵjt, ηjt

)
⊥⊥
(
ϵjs, ηjs

)
Point 1 of Assumption 1 requires that students be sorted to teachers based only on ob-

servable characteristics so that teacher quality is unrelated to unobservable determinants

of student short-run outcomes. Points 2 and 3 underpin the leave-one-out procedure

described in the previous section. Specifically, Point 2 requires that the unobserved de-

terminants of earnings in year t be mean independent of the true test-score value added

of teacher j in years s ̸= t. The mean independence assumption in point 2 can be weak-

ened to be µjs and ηjt being uncorrelated, but if teacher value-added is constant then

this assumption must hold for s = t. Note that Point 2 does not rule out all sorting

on long-run outcomes, it only requires that any sorting of students to teacher based on

long-run outcomes be independent of a teacher’s test-score value added. Finally Point

3 requires that the observable characteristics used to residualize short-run outcomes be

sufficiently rich such that the average unobserved determinants of short-run and long-run

achievement within teacher, be independent over time.

I impose the following additional assumption before establishing my identification result.

To state the assumption compactly, for any variable H, let Hjt =
1
nj

∑
iHit and Ḧjt =

Hjt − 1
T

∑
tHjt. For each j: Hj is a matrix stacking Hjt over t and Ḧj is a matrix

stacking Ḧjt over t.

Assumption 2

1. E(Ẍ ′
jẌj) is finite and invertible.

2. 0 < V ar(µ∗
jt) <∞.

3. E
(
Ẍjµ̈j

)
= 0, E(Ẍj ϵ̈j) = 0 and E(Ẍjη̈j) = 0.
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Assumption 2 contains the assumptions required for identification. Point 1 requires no

perfect multicolinearity in the covariates. Point 2 requires that the linear projection of

residual test scores in the current year on other years have non-zero and finite variance.

Point 3 requires that fluctuations in covariates be uncorrelated with fluctuations in un-

observed shocks over time as well as fluctuations in value added over time. This third

point is required to identify β0 and βY
0 in a regression with teacher fixed effects.

I will now show κ0 is identified by a set of four moment conditions.

Result 1 If Assumptions 1 and 2 hold, then (β0,β
Y
0 ,ϕ0) and κ0 are identified by the

following system of moments:

E
(
Ẍ ′

j

(
R̈obs

j − Ẍjβ0

))
= 0 (1.11)

E
(
Ẍ ′

j

(
Ÿ obs

j − Ẍjβ
Y
0

))
= 0 (1.12)

E
(
R

(−t)′

j

(
Rj −R

(−t)
j ϕ0

))
= 0 (1.13)

E
(
ϕ′

0R
(−t)′

j

(
Yj − κ0R

(−t)
j ϕ0

))
= 0 (1.14)

where Yj is a vector stacking Y jt for teacher j, R
(−t)

j is a T − 1 row vector stacking the

Rjs excluding Rjt, and R
(−t)
j is a T × (T − 1) matrix stacking the R

(−t)

j .

To map these moments into the four step procedure from the previous section, note that

the first set of moment conditions will be used to estimate β0 and maps to the first step

of the procedure. The second set of moment conditions will be used to estimate βY
0 , this

also maps to the first step of the procedure. The third set of moment conditions will be

used to obtain the best linear prediction of Rjt as a function of other years. This maps

to the second and third step of the procedure with R
(−t)
j ϕ0 = µ∗

j . The fourth set of

moment conditions will be used to estimate κ0 and maps to the last step.
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For further intuition on this result, Appendix A.5 also presents an exposition of this

identification result using variances and covariances.

Finally note that Assumptions 1 and 2 imply the assumptions commonly made when

using value added as a regressor. To see that, consider µ∗
jt =

∑
|s−t|̸=0 ϕ0|s−t|Rjs from

(1.6). Note that µ∗
jt is the best linear predictor of Rjt = µjt + ϵjt as a function of other

years. We can write:

Rjt =
∑

|s−t|̸=0

ϕ0|s−t|Rjs + θjt, (1.15)

where θjt is the error from the best linear prediction. Then under Assumptions 1 and 2

we have the following result:

Result 2 If Assumptions 1 and 2 hold, then:

Cov
(
ηjt, µ

∗
jt

)
= 0

Cov
(
µjt, µ

∗
jt

)
V ar

(
µ∗
jt

) = 1.

Now notice that it follows from (1.9) that κ0 is identified under Result 2:

Cov(Y jt, µ
∗
jt)

V ar(µ∗
jt)

= κ0
Cov(µjt, µ

∗
jt)

V ar(µ∗
jt)

+
Cov(ηjt, µ

∗
jt)

V ar(µ∗
jt)

= κ0,

since the conditions in Result 2 are the population equivalent of the assumptions usually

stated in the current literature. For example, Chetty et al. (2014b) suggest that the

reduced form coefficient from an OLS regression of earnings on estimated value added

would identify κ0, if an implicit and infeasible regression of true value added on estimated

value added yields a coefficient of one. They show that one can recover the parameter

of interest under the following conditions, which they call forecast unbiasedness for an
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estimate µ̂jt of µjt and selection on observables:

Cov (µjt, µ̂jt)

V ar (µ̂jt)
= 1 and Cov (ηijt, µ̂jt) = 0.

Therefore Assumptions 1 and 2 are primitive assumptions that ensure that the higher

level assumptions currently made in the literature hold.

1.2.3 Estimation and Inference

This section will focus on drawing correct inference on κ0. In many applications, neither

nj (class size) nor T (the number of years over which a teacher is observed) are very large,

therefore I will consider asymptotics where J (the number of teachers) goes to infinity

and nj and T are fixed.

In practice, researchers use the multi-step OLS estimator κ̂ along with ŝ, a consistent

estimator of σ̃2 = (G−1
κ )2E (g(Z)2), in order to draw inference on κ0.

5 In this section, I

will show that ŝ will not be a consistent estimator of the true variance of κ̂, and propose

an alternative and consistent estimator of the variance of κ̂. Then, I will show that one

can construct an optimal GMM estimator that is more efficient than κ̂. Next, I will

show that if students are randomly assigned to teachers, one can draw valid inference on

κ0 using a 2SLS procedure. Finally under the assumption of random assignment, I will

show that given some distributional assumptions a 3SLS estimator of κ0 is optimal if the

researcher chooses to include covariates in their analysis.

5The actual form of ŝ used varies depending on whether one uses heteroskedasticity-robust variance
estimators or cluster-robust variance estimators.
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Asymptotic Distribution of the Multi-Step OLS Estimator

The multi-step OLS estimator of κ0, described using the four steps in section 2.1, is

an exactly identified method-of-moments estimator where the moments correspond to

(1.11), (1.12), (1.13), and (1.14). Thus, asymptotic results for GMM estimators in this

context naturally capture the multi-step OLS estimator. Therefore, one can treat κ̂ as

part of a joint GMM estimator of the system of moments in Result 1 in order to derive

its asymptotic distribution.

To establish consistency and asymptotic normality of the GMM estimators, regularity

conditions are required - they are listed and discussed in Appendix A.6 as Assumptions

A.6.1 and A.6.2.

The object of interest here is the asymptotic distribution of κ̂, the multi-step OLS estima-

tor of the impact of value added on earnings. Theorem 1 below establishes the asymptotic

distribution of this estimator. One should note that Theorem 1 is a subset of the more

general Theorem A.7.1 which establishes the asymptotic normality and consistency of the

joint estimators (β̂, ϕ̂, β̂Y , κ̂). Given that (β0, ϕ0, β
Y
0 ) are often regarded as nuisance

parameters required to estimate value-added measures and lack any meaningful causal

interpretation, my discussion will focus only on the asymptotic distribution of κ̂.

Theorem 1 If Assumptions 1, 2, A.6.1, and A.6.2 hold, then:

1.

√
J(κ̂− κ0)⇝ N

(
0, σ2

)
(1.16)

where

σ2 = (G−1
κ )2E

((
g(Z) +GβY ψ3(Z) +Gϕψ2(Z) +Gβψ1(z)−GϕM

−1
2ϕ M2βψ1(Z)

)2)
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and Zj =
(
Xj,R

obs
j , Y obs

j

)
, Z stacks the Zj, g(Z) = ϕ′

0R
(−t)′

j

(
Yj − κ0R

(−t)
j ϕ0

)
is the moment function used to estimate κ0, Gκ = E[∇κg(Z,β0, ϕ0, β

Y
0 , κ0)] and

Gβ, Gϕ, GβY are defined analogously. The remaining terms are defined in the proof.

2. Let σ̂2 correspond to an estimator of σ2, constructed by replacing the population

moments in σ2 by averages and the parameters by the GMM estimators. Then:

σ̂2 P−→ σ2.

Theorem 1 provides the asymptotic distribution of κ̂, and notably its variance σ2. Cru-

cially this variance depends onGβ, Gϕ, GβY , the expected values of the gradient of the mo-

ment conditions used to identify κ0 with respect to β,ϕ,βY evaluated at (β0, ϕ0, β
Y
0 ,κ0).

Intuitively, we need to consistently estimate (β0, ϕ0, β
Y
0 ) in order to consistently esti-

mate κ0, therefore the variance of κ0 must reflect the fact that the parameters used to

construct the dependent variable and the value-added measure are estimated (Newey and

McFadden, 1994).

The first implication of Theorem 1 is that GMM estimation of the system of moments

from Result 1 will yield a consistent estimator of κ0 and correct standard errors for

that estimator. These standard errors can be used for hypothesis testing and confidence

intervals. This is especially convenient as GMM estimation and the associated variance

estimator are standard routines in most statistical software.

Another implication of Theorem 1 is that ŝ, the variance estimator routinely used in

practice, will be an inconsistent estimator of σ2. Indeed, ŝ is a consistent estimator of σ̃2,

and it follows from point one of the theorem that σ̃2 ̸= σ2. It is then worth examining

what terms cause the difference between the two variances.

The first term I consider arises from the need to consistently estimate µ∗
jt and will depend
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on Gϕ. As discussed in section 2.1, the construction of µ∗
jt when using the multi-step OLS

estimator plays a crucial role in circumventing endogeneity issues arising from correlations

between ϵjt and ηjt. Mathematically, we can show that Gϕ is only zero in trivial cases,

so ŝ can only be consistent in trivial cases. Indeed:

Gϕ = −κ0ϕ′
0E
(
R

(−t)′

j R
(−t)
j

)

and under point 3 of Assumption A.6.2 we have E
(
R

(−t)′

j R
(−t)
j

)
̸= 0 and ϕ0 ̸= 0.

Therefore Gϕ is only equal to zero in the trivial case where κ0 = 0. Then we have the

following corollary:

Corollary 1 If Assumptions 1, 2, A.6.1, and A.6.2 hold, then σ̃2 cannot be equal to σ2

unless κ0 = 0.

A direct implication of Corollary 1 is that under our assumptions, ŝ will be an inconsistent

estimator of σ2 in all non-trivial cases. Therefore, to correctly draw inference on κ0

when estimating it using the multi-step OLS estimator, one needs to manually construct

the variance estimator following the formula for σ2 in Theorem 1. This can be done by

replacing population moments with sample averages and parameters with their estimator.

For example Gϕ can be replaced with Ĝϕ = −κ̂ϕ̂′
(

1
J

∑J
j=1 R̂

(−t)′

j R̂
(−t)
j

)
.

To further examine the difference, I consider the remaining two terms. The second term

arises from the need to consistently estimate the relationship between covariates and test

scores. It will depend on:

Gβ = E
[
−
(
Y ′

j − 2κ0ϕ
′
0R

(−t)′

j

)
A
]
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where A is a function of the covariates in years s ̸= t.6 Crucially, Gβ depends on

the covariance between the unobserved determinants of earnings ηjt and the covariates

Xjs for s ̸= t, the covariance between covariates Xjt and true value added µjt in all

years including t, and the covariance between Xjt and the unobserved determinants of

test scores ϵjt in all years including t. Given that most value-added models rest on

assumptions of selection on observables, it is reasonable to expect that the covariance

between covariates and value added is non-zero and thus Gβ ̸= 0.7 The application to

North Carolina data in section 1.5.2 and previous studies (Rothstein, 2017) show that

these correlations are large and significant.

The final term that causes the difference between the two variances arises from the need

to consistently estimate the relationship between earnings and covariates, and will depend

on:

GβY = E
[
−
(
ϕ′

0R
(−t)′

j Xj

)]
.

Similarly to Gβ, GβY will depend on the covariance between the covariates Xjt and

test-score value added µjs for s ̸= t, and the covariance between Xjt and the unob-

served determinants of test scores ϵjs for s ̸= t. Again since value-added models rest on

assumptions of selection on observables, one can expect that GβY ̸= 0.

Therefore, the multi-step nature of the procedure used to estimate κ0, and the correlations

between true value added and the observables used to estimate it, make the standard

errors that researchers routinely use inconsistent estimators of σ2. Appendix A.8 presents

6A is a T ×K matrix such that each row consists of (ϕ1Xjt−1 + ϕ2Xjt−2 + ...).
7Note that point 3 of Assumption 2 only rules out correlations between Ẍj and η̈j , and correlations

between Ẍj and ϵ̈j . So under the assumptions of the model it need not be that the remaining terms in
Gβ are zero either.
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a comparison between σ2 and σ̃2, which suggests that one could expect σ̃2 to be smaller.

The next section will focus on the most efficient way to estimate κ0.

Overidentification and Efficiency

If one is interested in estimating κ0, then the multi-step OLS estimator will not be the

estimator with the lowest variance. Indeed, under Assumptions 1 and 2, the exactly

identified system consisting of (1.11), (1.12), (1.13), and (1.14) masks a more general

overidentified system when T > 2. To see that note that (1.14) only requires that a linear

combination of E
(
R

(−t)′

j (Yj − κ0Rj)
)
be equal to zero.8 However, under Assumptions

1 and 2 we have the stronger conditions:

E
(
R

(−t)′

j (Yj − κ0Rj)
)
= 0.

Given that E
(
R

(−t)′

j (Yj − κ0Rj)
)
= 0, any linear combination of these moments will

also be zero which makes estimating ϕ0 and thus (1.13) redundant. Then, by replacing

(1.13) and (1.14) with E
(
R

(−t)′

j (Yj − κ0Rj)
)
= 0 we instead have the following system

of moment conditions:

E
(
Ẍ ′

j

(
R̈obs

j − Ẍjβ0

))
= 0

E
(
Ẍ ′

j

(
Ÿ obs

j − Ẍjβ
Y
0

))
= 0

E
(
R

(−t)′

j (Yj − κ0Rj)
)
= 0 (1.17)

with 2K + 1 parameters to estimate and 2K + (T − 1) moments to estimate them with.

8See section A.9.14 for a proof.
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Therefore when T > 2, the system is overidentified. Intuitively, the system consisting

of (1.11), (1.12), and (1.17) is akin to an instrumental variables system where κ0 is a

scalar parameter that can be identified from T − 1 moments. In essence, under the

same set of assumptions required to use the multi-step OLS estimator of κ0, we have

that the preliminary measures of value added in years s ̸= t are valid instruments for

the preliminary measure of value added in year t from (1.3). As such when we have

more than two years of data, we have more than one valid instrument for the endogenous

current year measure. As a result, we can rewrite the system as an overidentified systems

of moment conditions resembling an instrumental variables framework. The first two set

of moments are taken from the previous setup and are used to create the dependent

variable (residualized earnings), the instruments (preliminary measures of value added in

years s ̸= t), and the endogenous variable (preliminary measure of value added in year

t). The third set of moments provide the overidentifying information.

Given that we have shown that the system of moments in Result 1 is nested in the

more general overidentified system consisting of (1.11), (1.12), and (1.17), we can now

establish that the GMM estimator with the optimal weighting matrix will be a more

efficient estimator of κ0. The optimal GMM estimator will then have a variance that is

no greater than the multi-step OLS estimator.9

Let Ŵ ∗ be an estimate of the optimal weighting matrix

W ∗ = E[g̃1(Z,β0, β
Y
0 ,κ0)g̃(Z,β0, β

Y
0 ,κ0)

′]−1 that replaces population moments with

sample averages and parameters with their estimator. Then we have that the estimators

9The GMM system consisting of (1.11), (1.12), and (1.17) weighed using

W1 =

IK×K 0 0
0 IK×K 0
0 0 ϕ0ϕ

′
0

 .

where ϕ0 = E
(
R

(−t)′

j R
(−t)
j

)−1

E
(
R

(−t)′

j Rj

)
would have the same objective function as the multi-step

OLS.
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resulting from GMM minimization with an optimal weighting matrix are consistent and

asymptotically normal. Theorem 2 formalizes the result for the optimal estimator κ̂∗. It

is a subset of the more general Theorem A.7.2 which formalizes the result for the joint

estimators (β̂∗, β̂Y ∗, κ̂∗).

Theorem 2 If Assumptions 1, 2, and A.6.3 hold, then

√
J [κ̂∗ − κ0]⇝ N

(
0, σ2

∗
)
.

where κ̂∗ is the estimate resulting from a GMM minimization using Ŵ ∗ as a weighting

matrix. One has that σ2
∗ ≤ σ2.

Theorem 2 shows that researchers can use an optimal GMM procedure to obtain more

precise estimates of κ0, such that σ2
∗ ≤ σ2 without imposing any additional assumptions.

Furthermore, the validity of Assumptions 1, 2, and A.6.3, and the specifications of (1.2),

(1.4), and (1.9) is falsifiable using Hansen’s overidentification test under the assumption

of constant treatment effects. This is formalized in Result A.7.1.

Estimation and Inference in the Presence of Random Assignment

I now turn to the case where students are randomly assigned to teachers. In such settings,

one would not need to adjust for covariates in the analysis and drawing inference on κ0

is a simpler problem. Indeed, while ŝ is still an inconsistent estimator of σ2, one needs

to account only for the estimation of the linear projection µ∗
jt. Then one can use a 2SLS

regression of the outcome on the preliminary value-added measure in year t, Rjt, while

instrumenting it by the preliminary measures in years s ̸= t.

To formalize this result and ease exposition, consider the following assumption similar to

Canaan et al. (2021):
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Assumption 3 In every year students are randomly assigned to teachers such that one

can model observed scores and earnings as:

Robs
it = αt + µjt + ϵit

Y obs
i = αY

t + κ0µjt + ηit.

Under Assumption 3, given that students are randomly assigned to teachers, there is

no need to control for covariates aside from year fixed effects. Indeed, (1.11) and (1.12)

are now redundant since the time effects αt and α
Y
t can be removed by subtracting the

averages of Robs
it and Y obs

i for year t. Then we are left with (1.17) and the system of

moments becomes:

E
(
R

(−t)′

j (Yj − κ0Rj)
)
= 0,

which now aligns with a traditional instrumental variables problem. We can then estimate

and draw inference on κ0 using the following 2SLS regression:

R̂jt =
∑

|s−t|̸=0

ϕ|s−t|R̂js + ιjt (1.18)

Ŷjt = κ
∑

|s−t|̸=0

ϕ̂|s−t|R̂js + ζjt (1.19)

where R̂jt = Robs
jt − 1

J

∑J
j=1R

obs
jt where Robs

jt = 1
nj

∑nj

i=1R
obs
it , and Ŷjt is defined analo-

gously. This corresponds to a regression of the outcome on current year value added

while instrumenting year t value added by value added in years s ̸= t. Furthermore,

26



A Framework for Using Value-Added in Regressions Chapter 1

let ŝ2SLS be the variance estimator that is computed by statistical softwares when using

2SLS.

This leads to the following result:

Result 3 If Assumptions 1, 2, 3, A.6.1, and A.6.2 hold: Valid inference can be drawn

on κ0 by estimating the 2SLS regression defined by (1.18) and (1.19) while using ŝ2SLS

as a variance estimator.

The intuition behind Result 3 is simple, if the covariates are uninformative of teacher

value added or the unobserved determinants, then they are not required for a consistent

estimation of the residualized outcome or the value-added measures. In that case, stan-

dard errors need only account for the fact that the current year preliminary value added

measure was instrumented by the preliminary value added measures in other years. How-

ever, given that Assumption 3 is unlikely to hold in most applied settings, constructing

a consistent estimator of σ2 or GMM estimation of the system in Result 1 is required to

construct confidence intervals using κ̂.

Finally, it follows from standard results that this 2SLS estimator will be efficient un-

der homoskedasticity. The next section will show that if a researcher wants to include

covariates in their analysis, then this 2SLS estimator is no longer efficient under ho-

moskedasticity.

Optimal Instruments in the Presence of Random Assignment

Even in the presence of random assignment, researchers sometimes include covariates in

the analysis, often to improve statistical precision. For such cases, I will now construct

the optimal instruments for the system defined by (1.11), (1.12), and (1.17), and show

that the traditional 3SLS estimator is optimal under a homoscedasticity assumption and
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if E[Rj|R(−t)
j ] is linear.10

For the remainder of this section I assume that students are randomly sorted to teachers

and the following assumption holds:

Assumption 4

1. Xj ⊥⊥ (µj, ϵ
(−t)
j , η

(−t)
j ).

2. µj ⊥⊥ (ϵj, ηj).

3. E(ϵj |Ẍj)=0.

Point 1 of Assumption 4 requires that the observable characteristics of students matched

to teacher j in year t be independent of teacher j’s value-added in year t and the unob-

servable characteristics of students assigned to teacher j in years s ̸= t. Point 2 requires

that the value-added of teacher j be independent of all student unobservables. These

conditions should hold by design if students are randomly assigned to teachers. The

third point slightly strengthens point 3 of Assumption 2 to require that the unobserv-

able determinants of test-scores be mean independent of within teacher fluctuations in

covariates.We can now construct the optimal instruments for the system:

E
(
Ẍ ′

j

(
R̈obs

j − Ẍjβ0

))
= 0

E
(
Ẍ ′

j

(
Ÿ obs

j − Ẍjβ
Y
0

))
= 0

E
(
R

(−t)′

j (Yj − κ0Rj)
)
= 0.

10I use the term traditional 3SLS to refer to the 3SLS estimator that uses the linear projections of the
endogenous variables as instruments. This is in contrast with the GMM 3SLS estimator which is optimal
under homoskedasticity without further assumptions. The traditional 3SLS estimator is equivalent to
GMM 3SLS when all equations use the same instruments (Wooldridge, 2010).
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Let u =


ϵ̈j + µ̈j

η̈j + κ0µ̈j

ηj − κ0ϵj

, then we have the following result:

Result 4 If Assumptions 1, 2, and 4 hold, then:

If E[Rj|R(−t)
j ] is linear such that E[Rj|R(−t)

j ] = R
(−t)
j ϕ0 and E[uu′|Ẍj,R

(−t)
j ] =

E[uu′] then the optimal moment conditions are:

E


E[uu′]−1


Ẍj 0 0

0 Ẍj 0

0 0 R
(−t)
j ϕ0




′

u

 = 0.

Those are the moment conditions satisfied by the 3SLS estimator. Then in this case

the optimal estimator is the 3SLS estimator which first estimates (β0,β
Y
0 ) using OLS

and constructs Rj and Yj, then estimates κ0 by a 2SLS regression of Yj on Rj while

instrumenting Rj with R
(−t)
j , uses those estimates to construct an estimate of E[uu′],

and finally estimates the entire system again using GLS.

Result 4 states that under random assignment, if the errors are homoskedastic and the

conditional expectation of the preliminary value-added measures Rj in year t given pre-

liminary value-added measures R
(−t)
j in years s ̸= t is actually linear, then estimating

the system composed of (1.11), (1.12), and (1.17) by 3SLS is efficient. Result 4 also rules

out the system underlying the multi-step OLS estimator being optimal, as that would

require the three components in u to be uncorrelated.

It is then useful to consider under what distributional assumptions the conditions from

Result 4 hold. The first condition to consider is homoskedasticity, namely the possibility

that E[uu′|Ẍj,R
(−t)
j ] = E[uu′]. Homoskedasticity requires that the variances and
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covariance of the unobservable determinants and value added ϵj ,ηj ,µj do not vary across

teachers with different levels of the preliminary measures of value added in years s ̸= t,

R
(−t)
j = µ

(−t)
j + ϵ

(−t)
j , and with different levels of covariate fluctuations Ẍj .

The second condition is E[Rj|R(−t)
j ] being linear. Suppose we have:

µj

ϵj

 ∼ N

0,

Σµ ⊗ IJ 0

0 σ2
ϵ IJT


 (1.20)

such that teacher value added and the average unobservable determinants of student test

scores are joint normally distributed. Under (1.20) teacher value added is independent

across teachers but correlated within teacher, and it is independent of the average un-

observable determinants of student test scores which are i.i.d across teacher-years (this

second requirement is likely to hold under random assignment).

Then we have:

E[Rj|R(−t)
j ]

=E[µj + ϵj|µ(−t)
j + ϵ

(−t)
j ]

=E[µj |µ(−t)
j + ϵ

(−t)
j ] + E[ϵj |µ(−t)

j + ϵ
(−t)
j ]

=E[µj |µ(−t)
j + ϵ

(−t)
j ]

=(µ
(−t)
j + ϵ

(−t)
j )Σ−1

µ
(−t)
j +ϵ

(−t)
j

Σµµ(−t)

=R
(−t)
j Σ−1

R
(−t)
j

Σ
RjR

(−t)
j

(1.21)

=R
(−t)
j ϕ0 (1.22)

where Σµµ(−t) is the covariance matrix of µ and µ(−t), and Σ
R

(−t)
j

is the covariance

matrix of R
(−t)
j . The third equality follows from the fact that ϵj is independent of
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µ
(−t)
j + ϵ

(−t)
j by (1.20). The fourth equality follows from the conditional expectation

formula for multivariate normal distributions, and the fifth equality follows from the fact

that the covariance matrix of Rj and R
(−t)
j is the same as Σµµ(−t) by (1.20).

Then if teacher value added and the average unobservable determinants of student test

scores are joint normally distributed following (1.20), then E[Rj|R(−t)
j ] is linear. To gain

some intuition for (1.22), consider the case with T = 2 where

E[Rj|R(−t)
j ] =

Cov(µjt, µj(t−1))

V ar(µ) + V ar(ϵ)
Rj(t−1).

The distributional assumption in (1.20) could be plausible in a setting with random

assignment of students to teachers, a large number of teachers J , a large number of

students per teachers nj, and where value added is either constant over time for every

teacher or µjt = µj + ωjt where µj and ωj are joint normal and independent. Overall, if

one is willing to assume that students are randomly assigned to teachers then the 3SLS

estimator is efficient if one assumes homoskedasticity and joint normality of teacher value

added and unobserved determinants.

1.3 Using Value Added as a Dependent Variable

Researchers are also often interested in examining whether the observable characteristics

of teachers predict their value added. For example, do teachers with National Board

Certification or more experience have higher value added? One can also look into whether

the implementation of a given policy is linked to an increase in teacher value added.

For instance, does a training program for teachers raise their value added? To answer
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such questions, researchers regress their estimated value-added measures on a set of

explanatory variables.

In our setting, suppose that one is interested in the relationship between some teacher-

year level variables Djt and teacher value-added µjt. The parameters of interest in this

section are the coefficients from the linear projection of µjt on Djt:

µjt = D′
jtα0 + ζjt. (1.23)

Given that µjt is unobserved, one cannot estimate (1.23) as it is. In practice, researchers

often replace µjt by the estimated measure µ̂jt =
∑

|s−t|̸=0 ϕ̂|s−t|R̂js and proceed by esti-

mating (1.23) using OLS.

This section will go over how to identify, consistently estimate, and draw inference on α0

using an exactly identified GMM procedure. The asymptotic result for this GMM esti-

mator will again naturally capture the cases in which the steps are separately estimated

using OLS.

I impose the following assumption with additional regularity conditions in Assumption

A.6.4 in Appendix A.6:

Assumption 5

1. E(D′
jDj) is finite and invertible.

2. E(D′
jϵj) = 0.

Point 1 requires no perfect multicolinearity in the Dj. Point 2 requires that the average

shocks be uncorrelated with the variables Djt. Similarly to Assumption 1, this assump-

tion requires that the observable characteristics used to residualize short-run outcomes

be sufficiently rich such that the remaining unobservables, excluding value added, be
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uncorrelated with our variables of interest. Note that point 2 can be weakened to require

that the average unobserved determinants of test scores in years s ̸= t be uncorrelated

with Djt, such that E(D′
jϵ

(−t)
j ) = 0.

We can then show that α0 is identified by the following system of moment conditions:

Result 5 If Assumptions 1, 2, and 5 hold, then (β0, α0) are uniquely identified by the

following system of moments:

E
(
Ẍ ′

j

(
R̈obs

j − Ẍjβ0

))
= 0 (1.24)

E
(
D′

j (Rj −Djα0)
)
= 0 (1.25)

Result 5 shows that the coefficient from a linear projection of a set of variables Djt on

teacher value-added µjt is identified by two sets of moment conditions. The first set of

moments is used to identify β0 and construct preliminary measures of value added. They

are discussed in sections 2.1 and 2.2. The second set of moments is used to identify α0

. Note that unlike the previous sections, under point 2 of Assumption 5, we do not need

to create a leave-year out measure of value added to recover the relationship between µjt

and Djt. Instead, we can use the preliminary measures of value added Rjt = µjt + ϵjt

as the outcome since the unobserved determinants of student test scores are assumed

to be uncorrelated with the variables of interest Djt. If one suspects that point 2 of

Assumption 5 is unlikely to hold, and is instead willing to assume that E(D′
jϵ

(−t)
j ) = 0,

then Rjt can be replaced by a simple leave-year out average µ̃jt = 1
T−1

∑
s̸=tRjs with

the idea that Djt is unlikely to be correlated with the unobservable determinants of test

scores of students in different years.

To estimate (β0, α0), let the GMM weighting matrix be the identity matrixW = I. Then

Theorem A.7.3 shows that we can consistently estimate and draw inference on α0 using
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GMM. Using partitioned inversion and Theorem A.7.3, we can obtain the asymptotic

variance of α̂.

Theorem 3 If Assumptions 1, 2, and 5 hold, then

√
J(α̂− α0)⇝ N (0, V1) (1.26)

where V1 = E(D′
jDj)

−1E (ΓΓ′)E(D′
jDj)

−1′, and

Γ =

(
D′

j (Rj −Djα0)− E
(
D′

jXj

)
E
(
Ẍ ′

jẌj

)−1

Ẍ ′
j

(
R̈obs

j − Ẍjβ0

))
Theorem 3 shows that a GMM estimation of the system in Result 5 will yield a consistent

and asymptotically normal estimator of α0, and the standard errors from that procedure

can be used to correctly draw inference. Furthermore, because the GMM estimator

captures the estimator of α0 obtained from an OLS regression of an estimate of Rj on

Djt, one has to construct a consistent estimator of V1 in order to construct confidence

interval using the OLS estimator of α0. Indeed since the uncorrected OLS variance

estimator is a consistent estimator of

E(D′
jDj)

−1E
(
D′

j (Rj −Djα0) (Rj −Djα0)
′Dj

)
E(D′

jDj)
−1′ ,

it will only consistently estimate V1 if the covariates used to create the value-added

measures and the characteristics of interest are uncorrelated such that E
(
D′

jXj

)
= 0.

Given that both Dj and Xj are observable, this condition can be tested using the sample

equivalent of E
(
D′

jXj

)
. A key point here is that Rj is a noisy measure of value added

containing true teacher value added µj that is correlated with Xj and the noise term ϵj .

If Dj and Xj are correlated, consistent estimation of the first step which removes the

effect of Xj is required to obtain a consistent estimator of α0. Since ignoring the first
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steps in calculating standard errors is valid only if inconsistency in the first steps doesn’t

lead to inconsistency in later steps (Newey and McFadden, 1994), one needs to account

for the estimation of current year value added if Dj and Xj are correlated.

1.4 Simulations

I now illustrate my findings using a simulation study. This simulation will show that using

unadjusted standard errors with the multi-step OLS estimator will lead to coverage rates

that are too low for 95% confidence intervals. It will also show that coverage deteriorates

further as correlations between the covariates and true value added increase. On the

other hand, the 95% confidence intervals from using the multi-step OLS estimator with

corrected standard errors from GMM perform well in all cases. To demonstrate, I draw

1000 replication samples with a total sample size of n = 900, 000 observations holding

the number of students per class nj and classes per teacher T constant at 30 and 10

respectively, so that the sample contains J = 3, 000 distinct teachers who each teach 1

class a year for 10 years. The parameters of the simulations are as follows to allow the

covariate to be correlated with value added:

1. µjt ∼ N(0, 0.01).

2. ρ = 0.5.

3. X =
ρµjt+(1−ρ)N (0,0.01)√

ρ2+(1−ρ)2
.

4. Robs
it = Xit + µjt + ϵit ∗ U [0, 2], where ϵ ∼ N (0, 0.81).

5. Y obs
i = 5 + 10Xit + κ0µjt + ηit ∗ U [0, 2], where η ∼ N (0, 100).

6. κ0 = 100.
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µjt has a standard deviation of 0.1, which is in line with estimates in Chetty et al. (2014a)

and the simulation in Chetty et al. (2017). Test scores are constructed to be mean

zero and standard deviation one, with U [0, 2] allowing for heteroskedasticity. Earnings

and κ0 are chosen to resemble the simulation in Chetty et al. (2017) while allowing

for heteroskedasticity. Finally, given that the simulation only uses one covariate, the

correlation of this covariate with VA is set to be high at 0.5 to obtain results that are in

line with this paper’s empirical application.

Each replication first estimates value added as described above and then estimates (1.10),

clustering standard errors at the teacher level.

Column 1 of Table A.1 presents the results when the true effect of test score value added

on earnings is set to be 100, and κ0 is estimated using the multi-step OLS estimator

and the standard errors are not corrected. Results show that the standard errors ob-

tained from simply clustering and making no other adjustments when using OLS are

incorrect. The estimated standard errors were far too small - on average, the standard

error estimates were less than two thirds of the correct value. The inconsistent standard

errors lead to incorrect coverage rates for 95% confidence intervals, with these intervals

containing the true value κ0 (100) only 72.4% of the time.

Column 2 of Table A.1 presents the results when the true effect of test score value added

on earnings is set to be 100, and κ0 is estimated using the multi-step OLS estimator with

the corrected standard errors obtained from the GMM formula. Confidence intervals

constructed using this estimator provide correct coverage. The corrected GMM standard

errors account for the added variability resulting from the correlations between covariates

and true value added, as such the estimated variance is close to the true variance of the

estimator.

To better illustrate the role of the correlations between the observable characteristics of
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students used to estimate value added and true teacher quality, I let ρ be equal 0 , 0.25,

0.5, and 0.75 and draw a 1000 replications for each value. For each set of replications,

I repeat the previous exercise and obtain the coverage rate of the estimated confidence

intervals from using the multi-step OLS estimator with the incorrect and corrected stan-

dard errors. Figure A.1 presents the results of this exercise, while the actual coverage

rate of confidence intervals obtained from OLS deteriorates as the correlation between

observable characteristics and true quality increases, the confidence intervals constructed

using the from the GMM standard errors perform well even when the correlation is set to

be unrealistically high with ρ = 0.75. To understand why the confidence intervals from

OLS provide coverage well below their nominal rates as the correlation increases, I plot

for each set of replications the actual standard deviation of κ̂OLS from the Monte-Carlo

and the average standard errors obtained from OLS. Figure A.2 presents the results.

While the increasing correlation leads the actual standard deviation of κ̂OLS to increase,

the average standard errors obtained from OLS do not change since they do not take into

account the correlation. This results in a larger drop of coverage for confidence intervals

as the correlation increases.

Finally, Table A.2 presents the monte-carlo variances of the multi-step OLS estimator

of κ0 and the optimal GMM estimator of κ0 from section 1.2.3. The optimal GMM

has a slightly a lower variance than the multi-step OLS estimator, specifically it is 1.3%

lower.11

11The small magnitude of the difference could be due to the fact that the simulations have only a
moderate amount of heteroskedasticity, no correlations between ϵ and η, and constant VA over time

which implies E[Rj |R(−t)
j ] is linear.
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1.5 Application

To further illustrate my results, I draw on administrative data for students in the North

Carolina public schools, in the years 2000-2005. Specifically, I focus on third grade

students in those years.12 Students in grade three in North Carolina take end-of-grade

tests in math as well as pre-tests in the Fall which will be used as lagged test scores. I

standardize all scores within year-grade cell.

I start with 611,870 distinct students, in 1,313 schools. After excluding students with

missing test scores, special education classes, classes with fewer than 10 students, and

students that are not matched to their teachers, I am left with 444,262 distinct stu-

dents matched to 8,210 teachers in 22,295 distinct classrooms. Given that the procedure

described in section 1.2.1 is a leave-year out procedure, it excludes all teachers who

only teach for a year. As such my final sample consists of 388,191 students matched to

5,266 teachers in 19,351 classrooms. I draw long-run outcomes for these students from

high-school transcripts (graduation, GPA, class rank), end-of-course algebra scores in

high-school, and exit surveys (college plans).

The summary statistics for the sample are presented in Table A.3. Half of the students in

my sample are female, around 34% of students are Black or Hispanic, and around 61% of

students are white. Only 3% of students are English language learners, whereas 10% are

special education students. Of students matched to their long-run outcomes, about 91%

graduate from high school, 78% plan on attending college, and 41% plan on attending a

4-year college.

12I limit my focus to third grade students from 2000 to 2005 in order to remain as close as possible to
the theoretical setting of this paper. I am able to match over 70% of those students to their teacher. Of
those matched, none are missing covariates used for VA estimation, and I can observe long-run outcomes
for over half of them. Furthermore, the results found in this paper are comparable to those reported in
Rothstein (2017) who considers students in grades 3 through 5 for the years 1997-2011.
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The remainder of this section is organized as follows. First, I will illustrate the results

of section 1.2.3 by showing that that the standard errors routinely used in the literature

are incorrect. Next, to understand why the unadjusted standard errors are incorrect, I

will show that there is evidence of unconditional sorting i.e strong correlations between

the variables used to predict VA and teacher VA. In doing so I will also illustrate the

results of section 1.3.

1.5.1 Correcting Inference

To begin, I estimate value-added measures following the procedure laid out in section

1.2.1, notably estimating β0 using only within teacher variation. I use a rich vector of

student controls that is similar to Rothstein (2017) and contains: cubic polynomials in

prior scores, gender, age, indicators for special education, limited English, year, lunch

eligibility, ethnicity, as well as class- and school-year means of those variables. Table

A.4 describes the generated measures, there are 19,351 distinct measures corresponding

to the 19,351 classrooms. The measures are mean zero and have a standard deviation

of 0.177 such that a one standard deviation increase in estimated VA corresponds to a

17.7% increase in test scores.13

It then follows from Theorem 1 that when using the estimated VAmeasures in a regression

on long-run outcomes, we must adjust standard errors to obtain the true variance of κ0.

I focus on estimating the impact of teacher VA on a set of long-run outcomes for the

third grade students, namely: high-school algebra scores, high-school graduation, plan

to attend college, plan to attend a 4 year college, high-school GPA, and high-school class

rank.

13Assuming that the VA measures are forecast unbiased.
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I estimate the effect of teacher VA on those outcomes following the methodology in section

1.2.1. The results are found in Table A.5. I find that a one standard deviation increase in

teacher VA in third grade leads to a 3.84 percent of a standard deviation increase in high-

school algebra scores, a 0.5 percentage point increase in high-school graduation, a 0.88

percentage point increase in college enrollment plans, a 1.76 percentage point increase

in 4-year college enrollment plans, a 0.036 point increase in weighted high-school GPA,

and a 0.93 percentage point increase in high-school class rank. The magnitude of these

impacts are similar to the ones obtained by Rothstein (2017) using a larger sample of

students from North Carolina, and the ones of Chetty et al. (2014b) in New York.

Importantly, the unadjusted standard errors obtained from simply running an OLS re-

gression and clustering standard errors at the teacher level are incorrect. Indeed, com-

paring the unadjusted standard errors to those obtained from a GMM estimation of the

system shows that the unadjusted standard errors are too small. The clustered standard

errors from GMM are 37% to 70% larger than their unadjusted clustered OLS counter-

parts. Given that the magnitude of the effects are relatively large, the coefficients remain

statistically significant even though their t-values decrease substantially. For example,

the t-statistic for graduation drops from 7.14 to 4.16, and the t-statistic for planning

to attend college drops from 8.18 to 5. In applications for which estimated effects are

not so large, this drop could mean the difference between statistically significant and

insignificant results. To put this change into perspective, Table A.5 also gives the het-

eroskedasticity robust standard errors obtained from running an OLS regression. For all

but one outcome, the difference between clustered standard errors obtained by running

GMM and clustered standard errors obtained by running OLS is at least as large as the

difference between clustered and heteroskedasticity robust standard errors obtained by

running OLS.
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To summarize, adjusting standard errors to account for correlations between teacher VA

and the controls, and for the estimation of VA is likely to be important in practice. In

this application on data from North Carolina, the increase in standard errors resulting

from the adjustment is on average larger than the impact of clustering standard errors.14

1.5.2 Presence and Effects of Unconditional Sorting

The previous section has shown that the unadjusted standard errors obtained from simply

running OLS are too small. The theoretical results imply that this is likely due to

significant correlations between teacher VA and the vector of covariates used to estimate

the measures. To examine that, I empirically test for the presence of these correlations.

Similar to Chetty et al. (2014a), given that my VA measures are estimated using within

teacher variation in the controls, I can use these measures to estimate the correlations

between true VA and the controls. Chetty et al. (2014a) do so by running a univari-

ate regression of the VA measures on lagged test-scores and other covariates.15 They

find positive and statistically significant but small evidence of unconditional sorting on

lagged test-scores, better students are assigned slightly better teachers. Given that their

point estimate for unconditional sorting is small, and that they obtain VA measures esti-

mated using within and between teacher variation that are highly correlated (0.979) with

their original measures estimated using only within teacher variation, they conclude that

unconditional sorting is relatively minimal in practice.

14In this application, I cluster standard errors at the teacher level. If one were to cluster standard
errors at a higher level, say school or school-year, the results should be similar. Indeed, Rothstein (2017)
finds that correlations between VA and controls is stronger between schools than within schools, stating
that schools with higher VA teachers have much higher prior year test scores and better socioeconomic
conditions.

15To account for the attenuation resulting from the fact that the VA measures are shrunk, they

multiply their coefficients by an estimate
SD(µjt)
SD(µ̂jt)

= 1.56 in their data. This ratio is 1.17 in my data and

I adjust my estimates accordingly when running the analysis.
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I conduct a similar analysis. I find that the degree of unconditional sorting is not mini-

mal but occurs at the group rather than individual student level. As such the class and

school-year level means included in the estimation of VA are strong predictors of teacher

VA, these findings are consistent with Rothstein (2017). Furthermore, I show that al-

though VA measures estimated using both within and between teachers variation can be

highly correlated with the baseline measures using only within teacher variation, they

significantly understate the effect of certain teachers and are poor predictors of long-run

outcomes. Thus I find that using within teacher variation as proposed by Chetty et al.

(2014a) is important in practice.

I estimate the degree of unconditional sorting in two ways. First, I follow Chetty et al.

(2014a) by regressing the VA measures on different controls then adjusting the coefficient

to account for shrinkage, but correct inference by obtaining the standard errors by boot-

strapping the GMM system.16 Second, I make use of Theorem 3 and run a regression of

the preliminary VA measures on controls by GMM estimation of the system in Result 5.

The results of this are presented in Table A.6.

Panel A presents the results from the regressions of the VA measures on three different

controls: student level lagged test scores, classroom mean lagged test score, and school

year mean lagged test score. Surprisingly, the highly significant estimate for unconditional

sorting on student level lagged test scores of 0.010 (Column (1), Table A.6 Panel A) is

similar to the estimate found by Chetty et al. (2014a) of 0.012, even though the two

analyses use different data sets. This suggests a small degree of unconditional sorting on

student level past test scores; better students are matched with higher VA teachers. I

then further examine this by also regressing the VA measures on the class and school-year

average of lagged test scores. I find that sorting on test scores at the class and school-year

16I use the bootstrap on the GMM system since the standard errors in Theorem 3 are for a system
that regresses preliminary VA measures, not the shrunk measures,x on covariates.
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level is significantly stronger than at the individual level. Notably the point estimate of

0.056 for classroom level lagged test scores is highly significant and five times larger than

the one at the individual level. Finally, one can see that the unadjusted standard errors

from OLS are incorrect, and that the standard errors obtained from bootstrapping the

GMM system are about 50% larger.

I confirm these findings with a direct application of Theorem 3. I first estimate a regres-

sion of preliminary VA, R̂jt, on classroom mean lagged test score, then re-estimate the

parameter using the GMM system as described in Theorem 3. The results correspond to

Panel B of Table A.6. The point estimate of 0.073 is larger than the one in Panel A, but

they are statistically indistinguishable. Again, the unadjusted standard errors are smaller

than the ones obtained by GMM, with the GMM standard errors being approximately

80% larger. The difference between the standard errors is directly explained by Theorem

3. Here the vector of variables Dj is a subset of the covariates used to construct VA, Xj,

as such it must be that E
(
D′

jXj

)
̸= 0.

In summation, the results in Table A.6 point to a strong correlation between the covariates

used to estimate VA and true teacher VA. Consequently, this means that estimating β0

without teacher fixed effects, using both between and within teacher variation, will lead

to biased estimates and therefore incorrect VA measures and point estimates for long run

impacts. To show this, I estimate another set of VA measures without including teacher

fixed effects. At first glance, it seems that these measures are very similar to the ones

obtained using within teacher variation only. Indeed, Table A.7 shows that the measures

have a very high correlation of 0.965.

However, further examination shows that the measures estimated without teacher fixed

effects will dramatically understate the effectiveness of certain teachers. As shown in the

upper left quadrant of Figure A.3, these measures are sometimes negative for teachers
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that have positive VA when estimated using within teacher variation. This in turn will

lead to biased estimates of κ0, Figure A.4 illustrates this point. It presents the results

of regressions of a variety of long-run outcomes on teacher VA, following the procedure

laid out in section 1.2.1. One set of results is obtained by estimating β0 and βY
0 using

teacher fixed effects, and the other set is obtained by estimating β0 and β
Y
0 without fixed

effects. The estimates in blue are the estimates of κ0 for different outcomes using the

exact methodology in section 1.2.1, while the estimates in red are the estimates of κ0

without including teacher fixed effects to estimate β0 and β
Y
0 . It is clear that although the

measures obtained without fixed effects are highly correlated with the baseline measures,

they systematically underestimate κ0.

1.6 Conclusion

In this paper, I consider how to correctly and efficiently draw inference in models using

value-added measures in regressions. Starting with models using value-added measures

as an explanatory variable, I show that they can be reframed as GMM systems, and use

that to construct corrected standard errors for regressions with value-added on the right

hand side. I then show that these models can also be written as systems resembling

instrumental variables where the preliminary value-added measures for years s ̸= t serve

as instruments for the preliminary measure in year t. Then when one has more than two

years of data, there are multiple instruments available for the measure in year t. I use

this overidentifying information to propose a more efficient estimator for the impact of

value-added on long-run outcomes using optimal GMM, and to propose a specification

test for these models. For regressions using value-added measures as an outcome, I

derive corrected standard errors from GMM and provide a testable condition under which
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unadjusted standard errors can also lead to valid inference. The theoretical results of

this paper are checked using a simulation study. Finally, I demonstrate the practical

implications of my results in an application on data from North Carolina public schools.

I first document the presence of correlations between teacher test-score value added and

student observables, and then show that adjusting standard errors to account for those

correlations and the estimation of VA measures is relevant in practice.
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Chapter 2

Advisor Value-Added and Student

Outcomes: Evidence from Randomly

Assigned College Advisors

College graduates earn significantly more than those with a high school diploma, and

this gap has been widening over time (Oreopoulos and Petronijevic, 2013). The type of

postsecondary degrees that students pursue is also a strong determinant of their future

earnings. For example, earnings of graduates from the fields of science, technology,

engineering and math (STEM) largely exceed those with degrees in non-STEM fields

(Hastings et al., 2013; Kirkeboen et al., 2016; Canaan and Mouganie, 2018). Despite

these substantial labor market returns, college graduation and STEM enrollment rates

remain relatively low. In the United States, only 41.6 and 60.4% of students at four-

year colleges respectively graduate within 4 and 6 years of initial enrollment (NCES,

2018). Additionally, only half of freshman college students who initially express interest

in pursuing a STEM major eventually obtain a STEM bachelor’s degree (Malcom and

Feder, 2016). These issues have put the question of how to improve college students’
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outcomes at the center of ongoing policy debates in the U.S, but not many clear solutions

have been put forth.

In an effort to understand how to boost postsecondary outcomes, we focus on an over-

looked input in the education production function: the quality of academic advising.

While academic advising is offered by most U.S. postsecondary institutions to help stu-

dents navigate the complexities of college, little is known about whether quality of ad-

vising matters for students’ academic trajectories. In general, the role of an academic

advisor at four-year colleges is to provide students with high touch and personalized

support throughout the academic year. Specifically, an advisor’s duties are to moni-

tor students’ academic progress, provide personalized assistance with selecting courses

and developing a plan of study, give information on academic programs and majors,

and offer academic and career mentoring. Additionally, freshman or pre-major advisors

help students select an appropriate field of study. Advising during the freshman year

is particularly important since it is a critical period for both the recruitment of STEM

majors (President’s Council of Advisors on Science and Technology (2012)) and student

retention.1

This paper provides the first causal evidence on the effects of college advisor quality on

student outcomes. To do so, we first estimate freshman advisor value-added (VA), based

on students’ course grades, using rich administrative data linking students to faculty

advisors at the American University of Beirut, a private 4-year university located in

Lebanon. An important feature of the freshman advising system at AUB is that students

are randomly assigned to academic advisors. This enables us to compute VA estimates

that are free from bias inherent to non-random settings (Rothstein, 2009, 2010), where the

student-advisor match is most likely correlated with unobservable factors. We then look

1The first-year retention rate is 73.9% among U.S. full-time students who entered college in the fall
of 2016 (Clearinghouse, 2018).
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at the impact of advisor VA on students’ academic performance, retention, graduation

and major choice. While the random assignment of students to advisors is unique to our

setting, AUB is in many ways comparable to a private four-year university in the United

States as we detail in section 2.

Our results indicate that being matched to a one standard deviation higher VA advi-

sor increases freshman year GPA by 5.7 percent of a standard deviation. We further

find that advisor grade VA has no significant impact on the likelihood that students

persist after freshman year, but it does reduce time to complete the freshman year by

3.1%. Importantly, the benefits of having an effective freshman advisor do not fade out,

as we document a 2.5 percentage point (or 5.5%) increase in 4-year graduation rates

due to a one standard deviation higher freshman advisor VA. The magnitude of this

effect is comparable to estimates from recent evaluations of merit aid programs, as well

as interventions that offer students proactive coaching. For example, Bettinger et al.

(2016) report that eligibility for California’s Cal Grant—which offers 4 years of tuition

assistance—raises bachelor’s degree completion by 2 to 5 percentage points. Bettinger

and Baker (2014) further find that a one-year proactive student coaching program raises

degree completion by 4 percentage points.

Effective freshman advisors also influence students’ major choices. A one standard devia-

tion higher advisor VA raises high-ability students’ likelihood of enrolling and graduating

with a STEM degree by around 4 percentage points. These effects are driven by high-

ability male and female students who respectively experience a 3.2 and 4.9 percentage

point (or 7.8 and 16.3%) increase in the likelihood of enrolling in a STEM major, and

comparable improvements in STEM graduation rates. These estimates are close in mag-

nitude to the impact of financial incentives on major choice. Indeed, Denning and Turley

(2017) show that eligibility for SMART Grants—which provide low-income students with

up to $8,000 to major in technical fields—increases enrollment in STEM majors by 3.2
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percentage points.

We further show that advisor characteristics, such as gender or faculty rank, do not seem

to predict advisor value-added. However, we do find evidence that gender match between

advisors and advisees has positive effects on students’ outcomes, especially for women.

Using detailed course-level data, we rule out that higher VA advisors push students to

take “easier” courses, thereby inflating their freshman GPA and changing their subse-

quent outcomes. Instead, effective advisors seem to act as coaches or mentors, directly

influencing students’ grades without altering their course composition. We further con-

struct alternative measures of advisor value-added based on non-grade outcomes and

show that these measures of advisor quality also predict significant positive impacts on

students’ college outcomes. Results from this additional analysis suggests that our find-

ings on the longer term impacts of advisors are, for the most part, driven by grade

improvements in freshman year.

Finally, we conduct similar grade and non-grade VA analyses for a sample of students

who first enroll at AUB as sophomores with a declared major and who are randomly

assigned to faculty advisors within their chosen majors. As we detail in section 2.4.6,

the way advising is conducted for these students is close to freshman advising. Notably,

we show that our main freshmen results replicate using this new sample. Indeed, we find

that sophomores experience a 3.7 percent of a standard deviation increase in their first-

year GPA from having a one standard deviation higher grade VA advisor. Sophomore

students are also 4.3% more likely to graduate on-time due to a one standard deviation

higher advisor grade VA. These results highlight the importance of academic advisors for

students at different stages of their postsecondary studies.

This paper is the first to document that effective college advisors largely improve stu-

dents’ academic outcomes. Our findings thus relate to a broad literature focused on how

to address low college completion rates and increasing time to graduation in the U.S.
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A long body of work examines the role of financial aid in raising degree completion.

While some need-based programs are promising (Dynarski, 2003; Bettinger et al., 2016;

Castleman and Long, 2016; Barr, 2016; Angrist et al., 2020), much of the research on

financial aid has found limited impact on degree attainment (Deming, 2017). Another

avenue for improving postsecondary outcomes is to increase per student spending and

resources (Bound et al., 2010; Deming and Walters, 2017). Deming and Walters (2017)

suggest that increased spending is effective because it can be directed towards academic

support services such as advising. Our results corroborate this idea and provide a clear

policy recommendation on how postsecondary institutions can promote student success.

Specifically, our findings indicate that allocating resources towards improving the quality

of academic advising may be an effective way to boost student outcomes.

Another related literature examines whether a variety of interventions can be used to ad-

dress educational barriers. Programs which offer in-person, individualized and proactive

college coaching or advising have shown to substantially increase academic performance

(Kot, 2014; Oreopoulos and Petronijevic, 2019) and persistence (Bettinger and Baker,

2014; Carrell and Sacerdote, 2017; Barr and Castleman, 2018; Weiss et al., 2019).2 On

the other hand, light-touch interventions that omit the “personal” element have limited

impact on student success. These include nudges, email or text message reminders (Do-

bronyi et al., 2019; Bird et al., 2021), virtual advising (Oreopoulos and Petronijevic, 2019;

Phillips and Sarah, 2019; Sullivan et al., 2019; Gurantz et al., 2020) and in-person but

non proactive advising (Angrist et al., 2009; Scrivener and Weiss, 2009; Angrist et al.,

2014).

To the best of our knowledge, no prior work has examined whether college advising

2Prior work also evaluates counseling programs aimed at increasing high school students’ access to
college or financial aid. These studies show that providing students with one-on-one counseling or
assistance significantly increases college enrollment, persistence, and financial aid receipt (Bettinger
et al., 2012; Avery et al., 2014; Castleman et al., 2014; Castleman and Goodman, 2018; Mulhern, 2019).
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quality matters for students’ academic trajectories. Previous studies focus on access to

advising (i.e., the extensive margin) and not on the quality of advising. Our finding

that quality of advising matters for students’ success may thus explain why some of

the previously studied advising and coaching programs succeeded and others did not.

More broadly, our results emphasize that a reason why some interventions have been

successful at boosting college outcomes is because they give students access to high-

quality advising. Indeed, programs that have shown the most promise at increasing

college completion such as the Accelerated Study in Associates Program—which offers

comprehensive student support—have repeated interactive advising as a key component

(Weiss et al., 2019).

Our findings also relate to the extensive body of research on the education production

function, and the role of school resources and teachers in determining student achieve-

ment. Recent studies highlight the importance of teacher value-added in predicting stu-

dents’ outcomes (Staiger and Rockoff, 2010; Jackson et al., 2014; Koedel et al., 2015;

Chetty et al., 2014a,b; Jackson, 2018).3 In line with the evidence on teacher VA, we

find that advisors who raise contemporaneous student achievement improve subsequent

longer-term outcomes such as graduation. Importantly, we add to this literature by of-

fering a first look into the benefits of academic advising, which is an integral part of most

U.S. colleges.4 In particular, our paper is the first to show that college advisors are an

important input in the education production function, and may be just as valuable as

3An exception is Carrell and West (2010) who show that U.S. Air Force Academy professors who are
effective at increasing contemporaneous student achievement, harm subsequent academic performance.
This is because teachers inflate their course grades—by for example, “teaching to the test”—in order to
maximize student evaluations.

4Indeed, little is known about the role of academic advising in students’ college trajectories. Previous
studies have examined advising or coaching programs that are operated in partnership with universities
but not by colleges themselves. A multitude of papers in the education literature have documented
positive correlations between academic advising and students’ college outcomes (see Tinto (2010) for a
review of the literature). However, these studies do not address the issue of selection bias and hence,
cannot cleanly identify causal effects.
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teachers in predicting students’ success.

Our results further add to an emerging literature that evaluates whether a variety of

policies influence students’ major choice. Prior work has focused on the role of financial

incentives (Sjoquist and Winters, 2015; Denning and Turley, 2017; Evans, 2017), differen-

tial pricing of academic programs (Stange, 2015) and timing of course-taking (Patterson

et al., 2022) in college major decisions. Our paper complements these studies by showing

that advising quality largely influences students’ major choice.

By showing that effective advisors increase female STEM degree attainment, we also

join a growing literature aimed at identifying strategies to address women’s persistent

underrepresentation in the sciences. Previous work has highlighted that women are more

likely to choose STEM majors and persist in STEM careers when they are exposed to

female instructors, role models or advisors in the sciences (Blau et al., 2010; Carrell et al.,

2010; Canaan and Mouganie, 2022; Porter and Serra, 2020). However, having a sufficient

number of women take on the role of mentors might be difficult given the shortage of

females in these fields and since on average, women in academia already allocate more

time for service than men (Guarino and Borden, 2017; Buckles, 2019). Our findings

suggest that investing in quality of academic advising can promote female STEM degree

attainment, without requiring women to take on a disproportionate amount of service

work compared to men.

The rest of this chapter is organized as follows. Section 2 provides a detailed description of

our institutional setting. Sections 3 and 4 outline our data and methodology, respectively.

Section 5 presents our randomization tests and main results. We discuss our findings in

section 6 and conclude in section 7.
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2.1 Institutional Background

2.1.1 The University

To estimate the impacts of academic advisors’ value-added, we exploit a unique feature

of the advising system at the American University of Beirut (AUB), which randomly

assigns students to faculty advisors. AUB is a small nonprofit private university located

in the country of Lebanon. It provides a liberal arts education with an emphasis on

undergraduate studies, although it does also offer numerous postgraduate degrees. In

total, the university has approximately 50 degrees across a variety of disciplines such as

humanities, social sciences, sciences, engineering and medicine. AUB is one of the oldest

universities in the region and was established by American protestant missionaries in the

year 1866. The sole language of instruction at AUB is English and degrees awarded by the

university are officially registered with the New York Board of Regents. It is considered a

selective university and has a total enrollment of around 7,000 students. Admission into

the freshman year is based on a composite score that is a weighted average of SAT1 scores

(50%) and high school GPA in grades 10 and 11 (50%). It is also relatively expensive with

an average tuition of approximately $14,000, which is large given the country’s average

yearly income of $14,846.

Along many dimensions, AUB is comparable to an average private nonprofit 4-year col-

lege in the United States. The student to faculty ratio is 11 to 1 and the average class

size is less than 25 students. Further, approximately 83% of full-time faculty have doc-

toral degrees and 50% of students and around 40% of full-time faculty are female. These

statistics are similar to the average student to faculty ratio of 10 to 1 at private nonprofit

4-year colleges in the United States. Further, females account for around 55% of all un-

dergraduate students and 44% of all full-time faculty at U.S. post-secondary institutions
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(NCES, 2018). Additionally, AUB uses a credit hours system in line with the U.S. model

of higher education whereby most courses are worth 3 credit hours and students take an

average of 15 credits (5 courses) per semester. Starting with the freshman year, most

bachelor’s degrees require 120 credit hours or four years to completion.5

Our focus in this paper is on students who are initially enrolled at AUB as freshmen.

Most students in Lebanon have to pass a national exam at the end of high school, upon

which they are awarded a baccalaureate degree (or Baccalauréat). Those who pursue

the baccalaureate track in high school are ineligible to enroll in university as freshmen,

rather they enter as sophomore students with a declared major. Freshman students are

those who attended Lebanese or foreign schools that follow the U.S. high school education

system and curriculum. Students who initially enter AUB as freshmen are sometimes

younger than those eligible to directly enroll as sophomores. Indeed freshman students

are, on average, 17.8 years old when they first enroll compared to 18 years of age for

sophomore students.6 Students in our sample are thus academically and culturally more

comparable to U.S. rather than Lebanese first-year college students. We should also note

that although many freshman students in our sample come from foreign high schools, the

role of academic advisors in our setting is not to facilitate students’ transition into a new

country (i.e., making them feel less stressed about moving to Lebanon, etc.). Instead,

foreign students are assigned to another mentor whose main job is to help them transition

into their new life in Lebanon. Furthermore, foreign school students at AUB are mostly

Lebanese expatriates so they are likely already familiar with every day life in Lebanon

and may not require much assistance with settling in the country.

5The only exceptions are engineering and architecture which require five and six years to completion,
respectively.

6We calculate students’ ages using data on year of birth for both samples. We do not have data on
month of birth, so these calculations are a rough approximation of their age.
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2.1.2 Academic Advising

At the beginning of their freshman year, students are randomly assigned to academic

advisors (or pre-major advisors). Advisors are full-time faculty of professorial rank (As-

sistant, Associate and Full Professors) chosen from various departments within the Fac-

ulty of Arts and Sciences. Preference is given to faculty who are not up for tenure the

following year and who are not overloaded with service requirements. Academic advising

is counted towards faculty members’ service, but additional incentives are in place to

encourage volunteering, such as extra research funds or a course release. Faculty commit

to advising for the full academic year, and most advise for multiple years.

After deciding on the final pool of advisors, university administrators working within

the Faculty of Arts and Sciences randomly assign freshman students to their respective

advisors. This is done using a simple two step process. First, students are sorted by

either their ID numbers or last names and placed on a list. The method of sorting varies

by year, i.e. all freshman students are sorted either by name or by ID within the same

academic year. Advisors are then randomly ordered and placed on a separate list. Ad-

ministrators then pick the first name from the student list and match it to the first name

on the advisor list. The second student is then matched to the second advisor and so

on. This process continues until all students are matched to an advisor. Importantly,

no characteristics of either the advisor or student—such as gender, prior academic per-

formance, or even intended major, etc.—are taken into consideration throughout this

process. In section 2.4.1, we confirm that this matching procedure is consistent with

what we would expect from the random assignment of students to advisors. This unique

institutional feature enables us to identify the causal effect of an academic advisor’s VA

on students’ performance, major choice and graduation outcomes.

Students at AUB typically declare a major at the end of their freshman year, after having
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completed the requirements for admission into their intended majors. Academic advisors’

main tasks are to monitor students’ academic progress during the freshman year, help

them choose a major and courses, as well as develop a plan of study that will allow them

to meet the requirements for entry into their intended majors. Students are advised

by the same advisor throughout the freshman year. They are required to meet with

their advisors one-on-one at least once per semester and prior to course registration.7

Advisors further have to hold weekly office hours throughout the semester, and students

have the option of contacting them to set up additional out of office hours meetings.

They are given access to students’ full academic records, including their past high school

grades and SAT scores, which allows them to tailor their advice to students’ interests and

abilities. Advisors are notified of any irregularity or change of status of their respective

students—such as whenever students are placed on probation. Additionally, students are

not allowed to withdraw from any course without first getting advisor approval.

A key part of an advisor’s job is to help students decide on a major and importantly

meet the requirements for entry into their intended major. Freshman students apply for

a major at the end of their first year of college giving them plenty of time to interact

with their advisors before selecting a field of study. Admissions into different majors are

granted based upon the fulfillment of credit and course requirements set by departments.

Appendix Table A1 highlights an example of the requirements for four different ma-

jors—engineering, chemistry, business and history. Regardless of their intended majors,

all students have to complete a total of 10 courses in a variety of disciplines (sciences, so-

cial sciences, humanities) in order to be eligible complete their freshman year and become

sophomores. However, the emphasis on courses taken varies across intended majors. For

7Students need a PIN code for course registration that can only be provided by their advisors during
those one-on-one meetings, ensuring that they actually meet with their advisors. Furthermore, freshman
advisors conduct a group advising session prior to the beginning of the academic year where they intro-
duce students to university resources, the code of conduct and the general requirements for completing
their first year and declaring a major.
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example, students wishing to pursue science majors such as engineering and chemistry

are required to take 2 math and 3 science courses during their freshman year. On the

other hand, students who intend on enrolling in other majors such as business and history

have to complete only one math and 2 science courses—but have to take more humanities

and electives than science majors.

Further, some departments require students to take specific courses. In general, science

majors—i.e., engineering, computer science, mathematics, physics, chemistry and biol-

ogy—are the most restrictive as they require that students take a number of difficult

science and math courses. For example, students wishing to pursue engineering have to

take Calculus I and II, General Chemistry, and Introductory Physics. In contrast, those

who plan on pursuing non-science majors have the option of enrolling in easier math

and science courses.8 Finally, some majors impose admission grade requirements. The

most selective majors are engineering which require a minimum cumulative freshman-

year GPA of 80 for admission.9 In our analysis, students’ final GPA in each freshman

course is the main measure used to construct advisor value-added.10

2.1.3 Comparison to Academic Advising at Other Universities

In this section, we discuss how the different features of AUB’s academic advising system

compare to pre-major advising at 4-year colleges in the United States. First, advising at

AUB is carried out by full-time faculty, and around 31 students are assigned to each ad-

visor. A survey conducted by the College Board (2011) among U.S. 4-year colleges found

8For example, many of them take “Mathematics for Social Sciences” instead of Calculus.
9Freshman students’ applications are pooled with those entering directly to the sophomore year, and

the admission rate for engineering averages around 17%.
10Importantly, courses are not graded on a curve at AUB and, unlike teachers, advisors cannot inflate

or manipulate students’ grades directly. Further, we standardize all course grades at the class-year level
to account for differences in course grading across courses and years.
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that full-time faculty advise more than three-fourths of first-year students at 52.4% of

responding institutions. This number however varies by type of institution. While 84.1%

of surveyed baccalaureate-granting institutions reported that three-fourth of students

are advised by full-time faculty, this number is 50% at master’s-granting institutions and

22.5% at research universities which mostly rely on professional advisors. Additionally,

the National Academic Advising Association reports that in U.S. postsecondary institu-

tions where faculty advise students, the median caseload for a faculty advisor is 25 for

small institutions and 45 for medium-sized institutions.11

Second, the main goals of advising at AUB are to help students choose a major and

courses, develop a plan of study and keep track of their academic progress during the

freshman year. These tasks are in line with those emphasized in the U.S. 4-year college

advising system. Indeed, according to a survey conducted by the National Academic

Advising Association, over 91% of 4-year public and private U.S. colleges stated that they

have academic advisors whose responsibilities include helping students develop a plan of

study, schedule and register in courses, and select a major (Huber and Miller, 2011).

Third, AUB advisors are required to meet one-on-one with students at the beginning of

each semester and prior to course registration. The College Board survey (2011) indicates

that among U.S. 4-year colleges, 69% of responding institutions also required students

to meet with their first-year advisor at least once per term.

To give a clearer idea about how AUB’s advising system compares to other settings,

we collected information on how pre-major advising is conducted at various selective

private 4-year colleges in the United States. We chose 5 liberal arts colleges—Amherst

College, Middlebury College, Swarthmore College, Wesleyan University and Williams

College—and 5 research universities—Duke University, Harvard College, Princeton Uni-

11Small institutions are defined as having an undergraduate enrollment head count of less than 5000
students, while medium-sized institutions have between 6000 to 23,999 students.
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versity, Vanderbilt University and Yale University. This information is summarized in

Online Appendix Tables A2 and A3. Similar to AUB, advising at most of the liberal arts

colleges is conducted exclusively by faculty (last column of Table A2). Research-intensive

universities have faculty advisors but advising is also conducted by staff members or ad-

ministrators.

Interestingly, the tasks of pre-major advisors at both liberal arts colleges and research

intensive universities (second column of Table A2) are similar to those of AUB advisors.

Specifically, advisors are responsible for helping students set academic and career goals,

select courses and choose a program of study. The liberal arts colleges further emphasize

that advisors should keep track of students’ academic progress and problems. Further-

more, all colleges in Table A2 specify that advisors should meet one-on-one with students

several times during the academic year and at least once before course registration—as

one of the main goals of advising is to help students select courses.

Finally, AUB advisors have access to students’ academic records, are notified when their

advisees are placed on academic probation and have to approve course withdrawals. We

were unable to find aggregate statistics regarding whether U.S. advisors perform these

tasks. However, we were able to find this information for some of the colleges that

we collected data on. For example, Online Appendix Table A3 shows that advisors at

Middlebury, Wesleyan and Swarthmore have access to their students’ academic records.

The latter two colleges as well as Williams College also notify advisors when students’

academic standing is unsatisfactory. On the other hand, amongst colleges shown in Table

A3, only Vanderbilt and Amherst require that advisors approve course withdrawals.

In sum, evidence from this section indicates that AUB’s academic advising system is

comparable in many ways to advising at private 4-year colleges in the United States.
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2.2 Data

2.2.1 Data Description

This paper uses student level administrative data acquired directly from the Registrar’s

office at the American University of Beirut (AUB). These data contain detailed student-

level longitudinal information on course grades, credits accumulated, sex, semester GPA,

class-year (Freshman, Sophomore, etc...) as well as major during every semester enrolled

at university. Importantly, these data also contain information on each student’s aca-

demic advisor including gender, faculty rank and department. These anonymized data

were then matched, through an agreement between the registrar’s office and the admis-

sions office, to student baseline information. This enables us to also observe students’

Verbal and Math SAT scores, year of birth, high school location as well as legacy sta-

tus. Our data initially included 4,353 incoming freshmen students matched to 46 faculty

advisors at AUB for the academic years 2003-2004 to 2015-2016.12 We exclude all stu-

dents who have missing baseline information and all advisors who advised for only one

academic year.13 This leaves us with a final sample of 3,857 freshman students matched

to 38 academic advisors.

12Freshman students entering university before 2003-2004 had a different advising system in place.
For results involving graduation outcomes, we also limit our sample to students entering AUB on or
before 2012-2013 in order to observe graduation status for all students.

13As we discuss in detail in Section 4, our estimate of value-added (VA) for each advisor-year is
computed using a leave one-year-out estimation strategy. Thus, we are unable to compute any VA
estimate for advisors who served for one year.
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2.2.2 Summary Statistics

Our main analysis involves 3,857 freshman students enrolled in 41,121 courses matched to

38 faculty advisors. Summary statistics for all students and advisors used in our analysis

are shown in Table B.2. In columns (1) and (2), we present means and standard deviations

for key variables with the number of observations reported in column (3) throughout. We

begin by summarizing student baseline characteristics in Panel A of Table B.2. Female

students constitute around 48% of individuals in our main sample, compared to 52%

male. The average Mathematics and English SAT test scores for freshman students are

573 and 494 points respectively. Approximately 20% of all freshman students are legacy

admits, defined as those with a close relative who attended AUB.

Next, we present summary statistics for our main student level outcomes in Panel B of

Table B.2. The average freshman GPA is 76.5 out of a possible 100 points with a standard

deviation of 9. Relative to all students initially enrolled as freshmen, 79.4% complete

the requirements of the freshman year and become sophomores. For students who enter

sophomore year, the average time to do so is around 2.5 semesters. Approximately 46% of

students initially enrolled as freshmen are able to graduate on-time, i.e., within 4 years of

initial enrollment at AUB.14 Further, around 57.5% of freshmen graduate within 6 years

of enrollment.

In our analysis, we focus on the likelihood that students pursue science and business

majors (henceforth, selective majors) for several reasons.15 First, these majors impose

more course and grade requirements than other fields and hence prospective students

may require a great deal of guidance from their advisors in order to meet the admission

14For most majors, on-time graduation is defined as graduating within 4 years. The only exceptions
are engineering and architecture which require 5 and 6 years to complete on-time.

15This includes all fields of engineering, architecture, Biology, Chemistry, Computer Science, Mathe-
matics, Physics, Statistics and Business majors.
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requirements.16 Second, from a policy perspective, these majors have been shown to

have the highest labor market returns (Hastings et al., 2013; Kirkeboen et al., 2016),

and governments have been increasingly investing in promoting STEM education. 43%

of students in our sample enroll in a selective major and 35.5% of all students eventually

graduate from a selective major.

In Panel C of Table B.2, we report statistics for advisor level variables matched to our

sample of students. In total, 38 unique faculty members served as freshman advisors for

the academic years 2003-2004 to 2015-2016. On average, each advisor spends around

3.5 years advising resulting in 131 advisor-year observations. Around 39% of freshman

advisors are female faculty members and 61% are male. This is in line with the overall

proportion of female faculty at AUB which stands at approximately 40%. Further, 56.5%

of advisors are in a science department and 43.5% are in a social sciences or humanities

field within the faculty of arts and sciences. The majority of advisors are at the rank of

assistant professor. Indeed, 28% are full professors, 22 are associate and 50% are lecturers

or assistant professors. On average, each academic advisor has 31 students per academic

year.

2.3 Identification Strategy

2.3.1 Methodology—Computing Value-Added Estimates

We construct advisor value-added (VA) following the methodology presented in Chetty,

Friedman, and Rockoff (2014a) with slight modifications to fit our framework. During a

16While the business school does not require students to take specific courses, its does have a minimum
admission freshman-GPA of 77—which is higher than most other majors.
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given year, a typical student is enrolled in around 10 classes (5 during the fall semester,

5 during the spring semester). We predict value-added based on freshman course grades

since one of the main roles of an advisor is to track and help improve students’ perfor-

mance during the freshman year. Given that advisors are randomly assigned to students

each year, for the purpose of creating VA estimates, an advisor can be thought of as an

instructor for multiple different classes in a given year. Accordingly, we define a classroom

in this setting as an advisor-year-class cell.17

Let students be indexed by i, years by t, classes by c, and advisors by j. Then let student

i’s final freshman course grade, Sitc, in year t and class c be equal to:

Sitc = βXit + ηitc, (2.1)

where:

ηitc = µjt + θict, (2.2)

and Xit is a set of student level covariates that includes math and verbal SAT scores,

student gender, and whether the student was a legacy admit. The error term ηitc is

decomposed into two parts, advisor VA: µjt (scaled such that the average advisor has a

VA of zero and a one-unit increase in VA leads to a one-unit increase in course grades)

and a student-class idiosyncratic shock θict that is unrelated to advisor quality. As

we detail in section 5.1, our data are consistent with what we would expect from the

random matching of students to advisors. Importantly, under random assignment, Xit

and θict are balanced across advisors with different levels of VA and are thus uncorrelated

with µjt.
18 Thus, one advantage of our setting is that the average course grades of an

17A class refers to all sections of a given course; for example, all students taking Calculus I. Addition-
ally, our results are robust to running the analysis using advisor-year cells.

18We also assume that µjt and θict are covariance stationary. This requires that mean advisor quality
is constant over time and that the correlation between advisor quality and any shocks across years only
depends on the amount of time elapsed between the years. We impose this assumption to be able to
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advisor’s students can be directly used to construct an unbiased estimate of advisor value

added—without the need to impose any additional assumptions.19

Due to the random nature of advisor assignment, we do not directly estimate equation

(1), rather we start by standardizing student course grades at the class-year level and

running a regression of this standardized variable on year fixed effects:

Sitc = αt + νitc. (2.3)

We then create the residuals S∗
itcj from Equation (2.3) and collapse them to the advisor-

year level S̄∗
jt using Chetty, Friedman, and Rockoff (2014a) precision weights which give

more weight to classrooms with a lower variance of residual course grades.

The value-added µ̂jt of advisor j in year t is then constructed by predicting the average

S̄∗
jt using S̄

∗
js for all s ̸= 0 where s is the separation between the years in which the classes

were taught. Excluding the year s = 0 removes the endogeneity associated with using

the same students to form both the treatment and the outcome. This is equivalent to a

leave one-year-out (jackknife) estimate, where the data from different years are weighted

using the method presented in Chetty, Friedman, and Rockoff (2014a) with weights only

depending on the lag s:20

µ̂jt =
∑
s ̸=0

ϕ̂sS̄
∗
js, (2.4)

where ϕ̂s are obtained from OLS regressions of S̄∗
jt on S̄

∗
js for each lag s.

Finally, our data include students who took more than one year to complete their fresh-

man year. To account for concerns of mechanical correlations that might arise from these

adjust our VA estimates for drift in advisor quality over time (Chetty, Friedman, and Rockoff, 2014a).
19Creating VA following the exact methodology of Chetty, Friedman, and Rockoff (2014a) where

grades are first residualized using student covariates yields quantitatively similar estimates of VA. It
does however lead to a small loss in precision of VA estimates due to a lower number of observations
because of missing covariates for certain observations.

20We restrict the covariances for lags greater than 3 years to be equal to the covariance for a lag of 3.
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students being matched with the same advisor two years in a row, we compute the VA

of advisors based only on the grades of freshman students in their first year of university

schooling.

2.3.2 Forecast Unbiasedness of VA estimates

Under the random assignment of students to advisors in a given year t, the average effect

on final course GPA of a change in our estimated measure of VA is similar to the average

effect of a change in actual VA. To see that, note that given random assignment we have

that:

Cov(S∗
itcj, µ̂jt) ≡ Cov(µjt, µ̂jt), (2.5)

the covariance between residual course grade and estimated VA is equal to the covariance

between true VA and estimated VA. This relationship holds because random assignment

ensures that all observable and unobservable predictors of course performance are bal-

anced across advisors. Following Chetty, Friedman, and Rockoff (2014a), we consider the

following regression of residual course grades on estimated VA:

S∗
itcj = αt + λµ̂jt + ζitc (2.6)

In our setting we then have:

λ =
Cov(S∗

itcj, µ̂jt)

V ar(µ̂jt)
=
Cov(µjt, µ̂jt)

V ar(µ̂jt)
, (2.7)

and since µ̂jt is constructed to be the best linear predictor of S∗
itcj we have that λ = 1

and is the causal impact of being assigned an advisor with a one unit higher VA. We
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check that this holds in our setting by estimating the regression in Equation (2.6) and

testing the hypothesis that λ = 1. The results presented in Table B.2 show that a one unit

increase in estimated freshman advisor course grade VA leads to a statistically significant

0.971 unit increase in freshman course grade. Importantly, we are unable to reject the

null hypothesis of λ = 1. This indicates that a one unit change in our out-of-sample

estimated VA has the same causal effect on course grades as a one unit change in true

VA. This ensures that our estimated VA measure captures the true impact of advisor

value-added on longer run outcomes. We also show that our measure of freshman advisor

VA is forecast unbiased under different sample splits. Namely, we estimate VA in three

other ways: 1) Leaving the current and two previous years out, 2) Leaving the current

and two future years out, and 3) Randomly splitting the sample in half, estimating leave-

year out VA in one half, and then checking for forecast unbiasedness in the second half

of the sample. Online Appendix Table A4 presents results from this exercise. We are

unable to reject the null hypothesis of λ = 1 in any specification, despite sample size

reductions from this analysis.

2.3.3 Identifying Equation

Our empirical strategy exploits the random assignment of freshman students to academic

advisors at the American University of Beirut. Our main focus involves estimating the

causal impact of freshman advisor quality on students’ academic outcomes. To cap-

ture these effects, we regress student outcomes on estimated advisor course grade VA

(µ̂jt) from Equation (4). Specifically, we standardize advisor VA by year (m̂jt), and run

the following linear regression model for all freshman students matched to an academic
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advisor:21

Yijt = α + γm̂jt + θX ′
it + λt + ϵijt (2.8)

where Yijt refers to our outcomes of interest for student imatched to advisor j in academic

year t. γ is our treatment parameter which captures the average impact of advisor value-

added on student outcomes. Our simplest specification includes only these variables and

λt an academic-year fixed effect that controls for unobserved changes across different

years. Intuitively, with the inclusion of year fixed effects, we are comparing students

during the same year that are matched with advisors having different VA measures. In

alternate specifications, and to alleviate concerns over selection, we further add a set of

student controls X ′
it that should improve precision by reducing residual variation in the

outcome variable, but should not significantly alter our VA effects. These controls include

students’ math and verbal SAT scores, gender and legacy admission status. Finally, ϵijt

represents our error term. Standard errors are clustered at the advisor-year (treatment)

level throughout to account for correlations among students exposed to the same advisor

in the same year.

2.4 Results

2.4.1 Tests of the Identifying Assumption

To identify the causal effect of an advisor, it is important that freshman students’ char-

acteristics are uncorrelated with their advisor’s value-added. The ideal experiment to

identify such effects free of bias would be to randomly assign advisors to students. While

21The full distribution of the standardized advisor course grade VA measure m̂jt is reported in Online
Appendix Figure A1.
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our institutional setting provides for random assignment of students to advisors, we per-

form a series of tests to confirm that our data are consistent with such a process. First,

we show that students’ predetermined baseline characteristics are uncorrelated with their

advisor’s VA estimate. To do so, we regress advisor grade VA on a host of student con-

trols including Verbal and Math SAT scores, student gender and legacy status. We

include year fixed effects in our regressions to account for any common shocks that vary

by cohort. The results of this test are summarized in Table B.3. We find no significant

relationship between advisor VA and student ability, student gender or legacy status.

Indeed, all coefficients on our student controls are statistically insignificant and reason-

ably precise. For example, we find that scoring 10 points higher on the math SAT test

would lead to at most having an advisor with a 0.99 percent of a standard deviation

(0.0099) higher VA. We also find that student characteristics are jointly insignificant, as

indicated by a p-value of 0.25 from a test of joint significance. These results are in line

with our institutional setting and indicate that students who are assigned to a lower or

higher value-added advisor are similar in terms of observable characteristics, consistent

with random student-advisor matching.

Second, we complement the above results with additional tests of randomization. Specif-

ically, we use resampling techniques, analogous to those conducted in Carrell and West

(2010), to empirically test if our data are consistent with what would be observed from

a random process. To do so, we randomly draw 10,000 student samples of equal size

for each advisor-year combination without replacement. For each randomly sampled

advisor-year combination, we calculate the sums of both the verbal and math scores for

all students in that sample. We then compute empirical p-values for each advisor-year

based on the proportion of simulations with values less than that of the actual advisor-

year sum. Under the random assignment of students to advisors, we would expect that

any unique p-value is equally likely to be observed—i.e., that the distribution of empirical
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p-values should be uniform.

Accordingly, we test for the uniformity of this distribution using both a Kolomogrov-

Smirnov one-sample of equality of distribution test and a χ2 goodness of fit test. These

results are summarized in Panel A of Table B.4 and indicate that for all 13 years of our

data, we fail to reject the null hypothesis of random assignment for all years based on

either test of uniformity. These results hold regardless of whether we use the mathematics

or verbal SAT test scores as a proxy for academic ability. In summary, we find no

evidence of nonrandom assignment of students to advisors based on academic ability.

As an additional test, we also regress these empirical p-values on advisor characteristics,

such as value-added and academic rank. These results are reported in Panel B of Table

B.4 where we find no statistically significant relationship between our computed p-values

and advisor characteristics. We must note however that estimates from Panel B are

imprecise mostly because they involve regressions from 131 observations corresponding

to the 131 advisor-year combinations in our data.

2.4.2 Freshman Year Academic Performance and Retention

As previously discussed, some of the main tasks of an advisor are to monitor students’

academic progress and help them stay on track, with the ultimate goal of preparing

students to enroll in a major by the end of their freshman year. Accordingly, we start

by examining whether advising quality influences students’ freshman year GPA. The

corresponding regression estimates are reported in column (1) of Table B.5, with and

without the addition of student controls.22 Throughout our analysis, both freshman

GPA and advisor grade value-added (VA) are standardized, and all regressions involve

the addition of academic year fixed effects. Results presented in Panel A indicate that

22These controls include student gender, Math and Verbal SAT scores as well as legacy status.
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a one standard deviation increase in advisor VA raises students’ freshman-year GPA by

5.7 percent of a standard deviation. Consistent with the random assignment of students

to advisors, the addition of student controls in Panel B does not alter this estimate in a

meaningful way. Our estimates on GPA are comparable to professor VA estimates found

in other university settings. Indeed, Carrell and West (2010) show that a one standard

deviation change in professor quality leads to a 5 percent of a standard deviation increase

in course grades at the U.S. Air Force Academy. Further, our estimate on academic

performance is only slightly smaller than those found in teacher VA studies in school

settings (For examples, see, Kane et al. (2008); Chetty, Friedman, and Rockoff (2014a)).

The fact that our estimates are comparable to those from teacher VA studies highlights

that students can benefit from different types of interactions with educators. Specifically,

while teachers may have more repeated interactions with students, advisors have the

advantage of meeting with students one-on-one and providing them with high-touch

personalized support.

Next, we examine whether advisors impact students in ways that extend beyond grade

improvements. In column (2) of Table B.5, we look at the effect of advisor grade VA

on the likelihood that students become sophomores. Since students typically become

sophomores after completing all course and credit requirements for the freshman year,

this outcome captures first-year retention—i.e., the likelihood that students remain at the

university after their freshman year. We find that higher advisor VA has no significant

impact on the likelihood that students persist until the sophomore year. On the other

hand, column (3) reveals that effective advisors reduce the number of semesters that

students take to complete the requirements of the freshman year and become sophomores.

A one standard deviation improvement in advisor VA decreases the time to become

sophomore by 0.078 semesters. This corresponds to an approximate 3.1% reduction from

the baseline mean of 2.48 semesters. This finding is robust to the inclusion of student
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controls, as indicated by the statistically significant -0.072 estimate reported in Panel B.

Panels (a) and (b) of Figure 1 summarize the full distributional advisor grade VA effects

for our two significant outcomes, where we display average effect sizes on the y-axis and

standardized freshman advisor VA on the x-axis. Notably, advisor quality effect sizes

(on student GPA) increase in a roughly linear manner across the whole VA distribution,

whereas they decrease linearly with respect to students’ time to reach sophomore status.

In Online Appendix Table A5, we conduct heterogeneity analysis for freshman GPA and

retention. Overall estimates are restated in column (1) and heterogeneous effects by

student ability and gender are reported in columns (2) through (5). We use mathematics

SAT test scores as a measure of student ability. Specifically, low-ability students are those

scoring below the median math SAT score of their cohort, while higher-ability students

are those who score above the median of their cohort. Results presented in columns (2)

and (3) of Panel A indicate that the effect of advisor VA on freshman GPA increases

with student ability. Having a one standard deviation higher grade VA advisor increases

low-ability students’ GPA by 4.2 percent of a standard deviation, and by 7.2 percent

of a standard deviation for higher-ability students. These estimates are robust to the

inclusion of students controls. Results reported in columns (4) and (5) indicate that

GPA effects do not differ by gender. Male and female students both experience a 5.4

and 5.8 percent of a standard deviation increase in GPA when exposed to a one standard

deviation higher VA advisor, respectively.

In Panel B of Table A5, we examine heterogeneous effects for the likelihood that students

declare sophomore status. Consistent with our result for the overall sample, we find that

advisor grade VA has no significant impact on the probability that students of different

abilities or genders complete the freshman year and become sophomores. On the other

hand, Panel C reveals that the overall reduction in freshman year completion time is

mostly driven by lower-ability students. Specifically, lower-ability students take 0.107
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fewer semesters to become sophomores due to a one standard deviation higher advisor

VA—i.e., a 4.1% decrease in time to enroll in the sophomore year. Furthermore, we find

that exposure to a one standard deviation higher advisor VA reduces freshman completion

time for both male and female students by 0.062 and 0.089 semesters (or 2.45 and 3.66%),

respectively. Taken together, our findings indicate that advising quality is critical not

only for students’ academic performance, but also for improving time to complete the

freshman year particularly among low-ability students.

2.4.3 College Completion

Findings from the previous section indicate that high quality advisors substantially im-

prove students’ academic performance and time to complete the freshman year. We next

examine whether these documented gains persist in the long run and focus on whether

freshman advisor grade VA influences college completion.23 We first look at the likelihood

of on-time or 4-year graduation in column (4) of Table B.5. We find that a one standard

deviation increase in advisor VA raises the probability of on-time graduation by 2.5 per-

centage points or 5.5%. The addition of student controls, as shown in Panel B, does not

alter results in a meaningful way, as the estimate is slightly reduced to 2.2 percentage

points and remains significant at the 1% level. Estimates from column (5) show that

advisor VA has no statistically significant impact on 6-year graduation rates, albeit we

cannot rule out large effects. These findings indicate that while higher quality advisors

do not necessarily influence overall graduation rates, they do however have a large impact

on the likelihood that students graduate from university on time. This is consistent with

23We note that estimates from this section are based on a reduced sample size of freshman students
initially enrolled at AUB from the 2003-2004 to 2012-2013 academic year since we cannot observe grad-
uation for more recent cohorts. In Table A6 of the Appendix, we also report estimates of advisor VA
on short run outcomes using the sample of freshman students entering AUB for the years 2003-2004 to
2012-2013. Our documented short run effects remain qualitatively similar using this reduced sample.
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our finding that higher advisor VA does not affect the likelihood that students declare

sophomore status, but significantly reduces time to complete the freshman year. Panels

(c) and (d) of Figure 1 summarize these effects across the full VA distribution. Advisor

VA effect sizes on four-year graduation rates exhibit an approximately linear increase

with significantly negative effects for students matched to freshman advisors at the lower

end of the VA distribution. On the other hand, we find no significant pattern of advisor

VA effects on six-year graduation rates.

Heterogeneous effects for graduation outcomes are presented in Appendix Table A7. In

columns (2) and (3), we report estimates for students with different levels of ability.

For on-time graduation (Panel A), both low and higher-ability students are 2.4 and 2.3

percentage points (or 5.7 and 4.6%) more likely to graduate within 4 years when matched

with a one standard deviation higher VA advisor. On the other hand, consistent with the

effect for the overall sample, we detect no significant impacts on 6-year graduation rates

for both low and higher-ability students (Panel B). In columns (4) and (5), we report

heterogeneous effects by gender. We find that a one standard deviation improvement in

freshman advisor VA increases men’s likelihood of graduating on-time by 3 percentage

points (or 6.2%) and no significant impact on 6-year graduation. We do not detect

any statistically significant effects on female students’ 4 and 6-year graduation rates,

but reduced precision prevents us from drawing definitive conclusions regarding their

graduation outcomes.

2.4.4 Major Choice

One of the main tasks of an academic advisor is to help students select a major and

guide them on how to meet the requirements for admission into their preferred field

73



Advisor Value-Added and Student Outcomes: Evidence from Randomly Assigned College Advisors
Chapter 2

of study. We therefore examine whether advising quality influences the likelihood that

students enroll and eventually graduate from selective majors.24 As discussed in section

2.1.2, selective majors have more stringent entry requirements compared to other fields

of study. As a result, students wishing to enroll in these majors may require a lot of

guidance from their freshman-year academic advisor. The different columns in Table B.6

report estimates for the impact of advisor grade VA on students’ major choice.25 For our

overall sample, results in Panel A and column (1) indicate that a one standard deviation

increase in advisor VA raises the probability that students enroll in selective majors by

2.4 percentage points or 5.6%. The estimate for graduating from a selective major is on

the order of 1.5 percentage points (or 4.2%) and is only statistically significant at the

10% level.

These overall effects may mask contextual heterogeneities, as selective majors are poten-

tially more accessible to the highest-ability students. We therefore examine heterogeneous

effects by student ability in columns (2) and (3). We define top students as those scoring

in the top 75th percentile of the math SAT distribution (i.e., above 600), and non-top

students as those with a score below 600. Estimates reported in columns (2) and (3) of

Panel A confirm that the highest-ability students are indeed driving the overall effects on

selective major enrollment. We find that a one standard deviation increase in freshman

advisor VA raises top students’ likelihood of enrolling in a selective major by a large and

statistically significant 4.9 percentage points (or 8.6%). This is coupled with a similar

and significant 3.9 percentage points (or 8.4%) increase in top students’ probability of

graduating from these majors, indicating that the initial enrollment effects persist in

the long run and that virtually all students who are shifted into these majors end up

24Recall, we define selective majors as those in the sciences and engineering as well as business degrees.
These degrees also happen to correspond to those with the highest earnings potential.

25All regressions in Table B.6 include student controls and year fixed effects.
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graduating.26

Heterogeneous effects by gender, presented in columns (4) and (5) of Panel A, reveal

that both top female and male students benefit from being matched to an effective

advisor. Specifically, top male and female students with a one standard deviation higher

advisor VA are 5.1 and 4.4 percentage points more likely to enroll in a selective major,

respectively. Men are also 4.8 percentage points more likely to graduate from these

majors. We do not detect significant graduation effects for women, albeit estimates are

fairly imprecise.

In Panels B and C of Table B.6, we estimate effects separately for STEM and Business

majors. For STEM majors, results are consistent with those for selective majors. Es-

timates in columns (2) through (5) of Panel B indicate that non-top students’ STEM

outcomes are not positively affected by a higher VA advisor. However, both top female

and male students experience significant increases in the likelihood of enrolling and grad-

uating from STEM fields. Indeed, a one standard deviation higher VA advisor increases

top students’ likelihood of enrolling and graduating from a STEM major by 3.8 and 4.2

percentage points, respectively. For top male students, this corresponds to a 3.8 per-

centage point (or 11.6%) increase in graduation with a STEM degree. For top female

students, both STEM enrollment and graduation are statistically significant and on the

order of 4.9 and 4.6 percentage points (or 16.3 and 19.8%), respectively.

Finally, estimates presented in Panel C of Table B.6 show a 1.3 percentage point increase

in the likelihood of majoring in Business for the overall sample, and that this effect is

concentrated among non-top students and top male students. Put together, our findings

indicate that effective advisors shift students toward selective majors, and that these

26All panels in Figure 2 summarize distributional VA effects on selective major enrollment and grad-
uation for the overall and the top student. All figures indicate a roughly linear increase in the effects of
advisor quality on students’ enrollment and graduation rates across the whole VA distribution. Notably,
the documented average positive effects on selective major enrollment for top students seem to be driven
by the best set of advisors.
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effects are driven by an increase in STEM enrollment and graduation for top students

and smaller increases in Business enrollment for non-top students.

2.4.5 Non-Grade Measures of Freshman Advisor Value-Added

We document that advisor value-added has a significant impact on students’ college out-

comes. Our constructed measure of VA is based on freshman course grades as tracking

and helping improve student performance is one of the most important roles of an ad-

visor. However, a good freshman advisor may also directly influence students’ major

choice and help them persist at university. Accordingly, we check whether non-grade

measures of student outcomes are also good predictors of advisor quality and to what

extent such VA measures correlate with our current measure of advisor VA. To do so,

we introduce two new measures of advisor value-added based on student persistence and

major choice indices. Specifically, using a principal component analysis (PCA) decompo-

sition, we first create two student-level indices: a Persistence Index and a Selective Index.

The Persistence Index is composed of five key university persistence measures: 4-year

graduation, 6-year graduation, freshman drop-out, proportion of courses withdrawn and

proportion of courses failed during freshman year. The Selective Index, which measures

major selectivity, is computed using three key major choice variables: selective major

enrollment, selective major graduation and proportion of key science and math courses

taken during freshman year.27 Following the Chetty, Friedman, and Rockoff (2014a)

method introduced in Section 4.1, we then compute two separate leave one-year-out

measures of advisor VA (i.e., a Persistence and a Selective VA) based on the Persistence

Index and Selective Index, respectively.

We start by looking at how these two non-grade VA measures affect student outcomes.

27We standardize these indices to have a mean of zero and standard error of one.
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Online Appendix Table A8 summarizes results from this exercise. Estimates from column

(1) indicate that a one standard deviation increase in persistence and selective advisor VA

leads to a significant 4 and 5 percent of a standard deviation improvement in freshman

year GPA respectively. Additionally, columns (2) and (3) show that both advisor VA

measures predict positive impacts on students’ 4 and 6-year graduation rates, although

not all estimates are statistically significant at conventional levels. We also find that

having an advisor with a higher persistence or selective value-added lowers the likelihood

of course withdrawal and failure for students. Finally, we show that being matched

to an advisor with a higher persistence or selective VA increases students’ chances of

enrollment and graduation from selective majors (STEM + Business) as well as the

likelihood of taking key science and mathematics courses during freshman year. Put

together, these findings indicate that non-grade measures of advisor quality also predict

significant positive impacts on students’ college outcomes.

To better understand whether advisors who are skilled at raising student grades are also

effective in promoting persistence and influencing major choice, we next report correla-

tions between our previously constructed advisor VA measure (Grade VA) and our two

new measures (Persistence and Selective VA). Reporting raw correlations between the

different VA measures will understate the true correlations since advisor effects may be

estimated with error (Beuermann et al., 2020). To correct for this attenuation, we follow

Abdulkadiroglu et al. (2020) and Beuermann et al. (2020) and obtain Maximum Likeli-

hood estimates of the true correlations between VA dimensions. Specifically, let µ1j be

the persistent VA of advisor j along skill dimension 1, and µ2j be the persistent VA of

advisor j along skill dimension 2. Additionally, let ζ1jt be a transitory effect of advisor

j along dimension 1, and ζ2jt be a transitory effect of advisor j along dimension 2. Our

raw estimated measures of VA along a single dimension in a given year contain both

persistent VA and the transitory effect. Under the assumption of joint normality, as in
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equation (2.9), we can recover the true correlation between two different VA measures

(ρ12 in equation (2.9)) net of estimation error using Maximum Likelihood.



µ1j

µ2j

ζ1jt

ζ2jt


∼ N


0,



σ2
µ1j
IJ ρ12IJ 0 0

ρ12IJ σ2
µ2j
IJ 0 0

0 0 σ2
ζ1jt
IJT 0

0 0 0 σ2
ζ2jt
IJT




(2.9)

Results reported in Appendix Table A9 indicate positive correlations between all our

different measures of advisor VA. Specifically, Grade VA and Persistence VA exhibit

a correlation of ρ = 0.59, while Grade VA and Selective VA exhibit a correlation of

ρ = 0.60. Strikingly, the correlation between Persistence VA and Selective VA is quite

high (ρ=0.78) suggesting overlapping advisor skills in affecting these outcomes.

To further understand these patterns, we conduct additional explanatory analysis in

the spirit of Jackson (2018). Specifically, we separately regress students’ Freshman GPA,

Persistence Index and Selective Index (we also refer to these 3 outcomes as skill measures)

on their respective advisor VA measures. We present coefficients from these regressions in

Table B.7 where both treatment (VA measure) and outcome are standardized. Estimates

from columns (1) and (5) indicate that advisors who raise a given skill measure out

of sample have large and statistically significant effects on those same student skills.

For instance, the 0.04 estimate from Panel A, column (5) indicates that being matched

to an advisor with a one standard deviation higher Persistence VA increases students’

persistence index by 4 percent of a standard deviation. Next, we separately regress each

of our skill measures on advisor VA estimates computed using other skill measures. The

results from this analysis are in line with the documented positive raw correlations across

advisor VA measures. Indeed, estimates from both Panels of column (2) indicate that
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advisors who are skilled at increasing persistence and access to selective major positively

and significantly affect students’ GPA. Furthermore, coefficients in column (4), Panels A

and B, reveal that advisors who are effective at improving course grades also positively

affect persistence and major choice.

Finally, we present estimates from regressions that simultaneously include grade and non-

grade VA measures in Table B.7. Estimates from columns (3) and (6) of Panel A, indicate

that, conditional on advisors’ grade value-added, persistence VA is no longer statistically

related to students’ GPA (0.023) or Persistence Index (0.023). However, grade VA is still

predictive of student GPA (0.055) and Persistence Index (0.052) even when controlling for

advisors’ persistence value-added. This suggests that there is overlap between these two

advisor skills. On the other hand, regressions that simultaneously control for grade and

selective VA result in statistically significant estimates for both VA measures as shown in

Panel B, columns (3) and (6).This suggests that advisor skills needed to improve grades

and influence major choice, though correlated, seem to be somewhat complementary.

2.4.6 Additional Results Based on Major Advising

In this paper, we focus on pre-major advising conducted during the freshman year. How-

ever, an advantage of our data is that we are also able to look at the impacts of major

advisors—i.e., advisors who mentor students after they declare a major—for a different

sample of students. As discussed in section 2.1.1, most Lebanese students pursue a bac-

calaureate track in high school rendering them ineligible to enroll in college as freshmen.

For these students, their final year in high school is considered equivalent to the U.S.

college freshman year. Therefore, they enroll in college as sophomore students with a

declared major immediately after finishing high school. We refer to students from this
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sample as the “sophomore sample”. New enrolling sophomore students at AUB are ran-

domly assigned to faculty advisors within their chosen major using a process similar to

that used for freshmen. Specifically, all sophomore students are sorted by either their ID

or last name within their respective departments. The chosen method of sorting is the

same across all departments in the same year. Advisors within each department are then

sorted randomly on a separate list. Students are then matched to advisors within their

respective departments using the same matching process as the one used for freshman

students. Each student has the same advisor for the entire academic year. Sophomore

advisors’ (henceforth major advisors) main tasks are to help students select courses and

develop a plan of study that allows them to meet the requirements for graduating from

their majors. They also monitor students’ academic progress, have access to their aca-

demic records, are notified of their students’ change of status, and are required to meet

with students one-on-one at least once at the beginning of each semester.

In this section, we examine how major advisor VA impacts sophomore students’ college

outcomes. Extending our main analysis to the sophomore sample has several advantages.

First, our main freshman sample includes 38 unique advisors. This limited number of ad-

visors may render our results less generalizable to other settings thus potentially limiting

their implications for policy discussions. In contrast, our sophomore sample allows us to

observe a significantly larger number of unique advisors (194 unique advisors). Impor-

tantly, the sophomore advising system at AUB shares many similarities with freshman

advising. Sophomores in our setting are comparable to freshmen in that they are both

first-year college students and hence, we are essentially capturing the impacts of first-year

college advising for both samples. Additionally, the tasks of a sophomore major advisor

are similar to those of a pre-major advisor. The only difference between these two types

of advising is their end-goal: while freshman advising is intended to keep students on

track to declare a major, sophomore advisors help students stay on track to graduate
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from their chosen major. Second, our sophomore sample analysis provides new insights

into the role of major advising which is important in and of itself, as it is offered by

most U.S. private 4-year colleges. Indeed, all colleges shown in Table A2 offer one-on-one

major advising that is comparable in its goals and the way it is conducted to the one in

our setting.28

Sophomore Sample Summary Statistics

Before presenting our additional analysis, we describe the sophomore sample. Online Ap-

pendix Table A10 summarizes key statistics for the sample of 14,055 first-time enrolling

sophomore students at AUB for the academic years 2003-2004 to 2015-2016.29 Impor-

tantly, these students are matched to 194 distinct advisors during this time period, thus

providing for a much larger number of student-advisor interactions than the freshman

sample.30 Students from this sample are approximately 48 percent female, similar to the

freshman sample. Additionally, 25 percent of admissions are legacy students. Students

score an average of 644 and 530 points on the Math and Verbal SAT exams, respec-

tively. Notably, these scores—particularly for the Math SAT—are significantly higher

than those from the freshman sample. This is not surprising as students enrolling at

AUB as sophomores spend an extra year in high school that is considered equivalent to

the freshman university year.

Panel B of Appendix Table A10 shows means for the sophomore sample’s main outcomes.

Only 8.8 percent of students drop out after sophomore year. To examine the impacts of

major advisor VA on longer-term outcomes, we focus on 4-year and 6-year graduation

rates as in the freshman sample. However, since sophomore students enroll in college

28Of course, this is with the exception that sophomores at AUB are first-year college students, while
U.S. sophomores are second-year college students.

29Freshman students who eventually become sophomores at AUB are dropped from this analysis, since
our focus here is on first-time advising effects.

30For the graduation sample, this number shrinks to 152 unique advisors.
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one year after freshmen, we slightly modify our definition of these variables. Specifically,

for the sophomore sample, 4-year graduation—which is our measure of on-time degree

completion—is defined as graduating within 3 years from initial enrollment at AUB.

Similarly, 6-year graduation, our measure of overall degree completion, is defined in this

case as graduating within 5 years from initial enrollment at AUB.31 Appendix Table A10

reveals that 79.6 percent of students end up graduating overall, while only 52.9 percent

complete their degree on time. We also look at whether major advisor VA influences the

probability that students graduate from their initial major—i.e., their declared major in

the first semester of their sophomore year. 40.5 percent of sophomore students graduate

on-time and 55.4 percent graduate overall from their initial majors.

Finally, Panel C summarizes sophomore advisor level characteristics. 31 percent of major

advisors are female and around half are in science departments. Additionally, advisors

are well represented across all faculty ranks and each major advisor has an average of

19.1 sophomore students to advise per year.

Sophomore Advisor Course Grade VA

We examine whether a higher value-added major advisor predicts improved outcomes

for students entering AUB as sophomores. To do so, we first construct course grade

value-added measures for major advisors following the Chetty, Friedman, and Rockoff

(2014a) method introduced in section 2.3.1. One notable difference between this and

our previous analysis involves the need to include department fixed effects to compute

unbiased measures of VA. This is because sophomore students are randomly assigned

to faculty advisors in the department corresponding to their declared major. Results

presented in Online Appendix Table A11 confirm that this procedure results in a forecast

31Compared to other majors, engineering and architecture require 1 and 2 more years to complete
on-time, respectively. We accommodate for this in our definitions of 4 and 6-year graduation rates.
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unbiased measure of advisor grade value-added by showing that a one unit increase in

estimated advisor course grade VA leads to a statistically significant 0.991 unit increase in

sophomore course grade.32 To analyze major advisor quality effects, we regress sophomore

student outcomes on our constructed and standardized advisor course grade VA estimate

(ν̂jdt) using the following linear regression model:

Yijdt = α + βν̂jdt + θX ′
it + ζd + λt + ϵijdt (2.10)

Here, β captures the effect of major advisor VA on sophomore student i matched to ad-

visor j in department d and cohort t. Our identifying equation now includes department

fixed effects ζd since randomization of students to advisors occurs within departments.

Before presenting the main findings from this exercise, we show that our data are con-

sistent with what we would expect from the random matching of sophomore students

to advisors within departments. In Online Appendix Table A13, we show that advisor

grade VA is unrelated to students’ baseline characteristics. Results indicate that condi-

tional on department fixed effects, students’ Math and Verbal SAT scores, gender and

legacy status are not statistically related to their advisors’ value-added. Additionally,

these variables are jointly unrelated to advisor grade VA, as the p-value from the test of

joint significance is equal to 0.462.

Table B.8 presents the main findings from our course grade VA analysis. Results in Panel

A indicate that being matched to a major advisor with a one standard deviation higher

grade value-added increases students’ sophomore-year GPA by 3.7 percent of a standard

32We further check that our measure of sophomore advisor grade VA is forecast unbiased under different
sample splits. Namely we estimate sophomore advisor VA in three other ways: 1) Leaving the current
and two previous years out, 2) Leaving the current and two future years out, and 3) Randomly splitting
the sample in half, estimating leave-year out VA in one half, and then checking for forecast unbiasedness
in the second half of the sample. Appendix Table A12 presents results from this exercise. We are unable
to reject the null hypothesis of λ = 1 in any specification, despite the reduced sample sizes from this
analysis.
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deviation, but does not significantly affect their dropout rate one year after the start of

their sophomore year. Column (3) further reveals that a one standard deviation higher

quality major advisor increases the likelihood of on-time graduation by 2.3 percentage

points, i.e. 4.3 percent. It also increases the overall graduation rate by 1.6 percentage

points (column (4)), though this estimate is only significant at the 10 percent level.

Estimates in columns (5) and (6) suggest that the documented effect for on-time degree

completion is mostly due to students being more likely to graduate on time from their

initial declared major. Specifically, we find that a one standard deviation higher advisor

VA increases the probability that students graduate on time from their initial major by

2 percentage points, but we detect no statistically significant effects on ever graduating

from initial major.

In our freshman sample analysis, we showed that having a higher VA advisor increases

the probability that students enroll in STEM majors. Since sophomore students enroll at

AUB with a declared major, we cannot look at whether advisor VA impacts their STEM

enrollment. An analogous analysis in this case is to examine whether effective advisors

are most beneficial for sophomore students whose initial declared major is STEM—i.e.,

those who declared a STEM major in the first semester of their sophomore year. Indeed,

students in these fields may require a great deal of assistance from their advisors since

they are the most difficult and competitive majors at AUB. Panels B and C of Table B.8

report estimates of the impact of advisor grade VA on students who initially enrolled

in STEM and non-STEM majors. We find that being matched to a major advisor who

has a one standard deviation higher grade VA is associated with a 4.1 and 2.4 percent

of a standard deviation increase in sophomore-year GPA for STEM and non-STEM stu-

dents respectively. Nonetheless, the documented overall effects for all other outcomes

are concentrated among STEM students. Columns (3) to (5) respectively show that a

one standard deviation increase in advisor grade VA significantly raises STEM students’

84



Advisor Value-Added and Student Outcomes: Evidence from Randomly Assigned College Advisors
Chapter 2

on-time degree completion by 3.4 percentage points, overall graduation by 2.6 percent-

age points and on-time graduation from their initial major by 3 percentage points. On

the other hand, no statistically significant effects are detected for any of the non-STEM

students’ outcomes.33

Taken together, these results indicate that major advisor grade VA has significant im-

pacts on sophomore students’ outcomes. Importantly, while there are slight differences in

magnitudes, findings from this exercise are consistent with those from the freshman sam-

ple. This further solidifies the importance of college advisors in the education production

function.

Sophomore Advisor Persistence VA

The role of an effective major advisor is not restricted to improving students’ academic

performance. Effective advisors can also directly impact students’ persistence in the ma-

jor. As a result, we check whether non-grade measures of student outcomes are also good

predictors of major advisor quality. To do so, we first construct a measure of advisor

value-added based on a sophomore student persistence index. Specifically, using a princi-

pal component analysis (PCA) decomposition, we create a sophomore Persistence Index

composed of five key university persistence measures related to sophomore students’ suc-

cess: 4-year graduation from initial major, 6-year graduation from initial major, dropout

after sophomore year, proportion of courses withdrawn and proportion of courses failed

during sophomore year. We then construct a non-grade measure of advisor value-added

based on this index. Finally, we regress all our outcomes of interest on this constructed

sophomore advisor Persistence VA measure.

33The full distributional effects of sophomore advisor grade VA are summarized in Figure 3. Notably,
the documented increase in average sophomore GPA seems to be driven by a decrease in the GPA of
students matched to the worst set of sophomore advisors (Panel (a) of Figure 3). Additionally, the best
set of sophomore advisors seem to significantly improve four and six-year graduation rates.
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Findings from this exercise are summarized in Online Appendix Table A14. Strikingly,

results presented in column (1) indicate that having an advisor with a one standard

deviation higher persistence VA has no overall significant effect on students’ sophomore

GPA. Rather, higher persistence VA advisors only positively impact the GPA of stu-

dents in STEM majors (0.025), while having no significant effect on those in non-STEM

fields (0.003). Estimates from columns (2) through (6) of Table Table A14 indicate that

persistence VA measures of advisor quality predict large and robust impacts on all stu-

dent measures of persistence and graduation. Notably, these effects are significant and

comparable for both STEM and non-STEM majors.

Our findings suggest that advising skills that improve students’ persistence in their chosen

majors are somewhat distinct from those that improve grade performance. We investi-

gate this further by running additional regressions using our two measures of sophomore

advisor value-added together. Specifically, we regress students’ sophomore GPA and

Persistence Index on their respective advisor VA measures separately and jointly. We

present estimates from these regressions in Online Appendix Table A15. Notably, re-

sults presented in columns (2) and (3) indicate that advisors who are good at increasing

students’ persistence do not seem to increase their sophomore GPA. Additionally, esti-

mates presented in columns (5) and (6) show that sophomore advisor persistence VA

predicts higher student persistence even after controlling for advisors’ grade VA. Taken

together, results from this analysis indicate that sophomore advisors who increase stu-

dents’ grades have different skills than those who improve persistence. This provides

further evidence that post-major advisor skills are distinct for these two measures of

value-added. Overall, results presented in this section using the sophomore sample indi-

cate that our documented findings on freshman advisor VA extend, and replicate, to a

larger set of students and advisors.
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2.5 Discussion

2.5.1 Discrete Treatment—High and Low Grade VA advisors

We have shown that higher grade VA academic advisors improve students’ college out-

comes. These positive effects could be masking some interesting treatment heterogeneity

relevant for policy analysis. For example, how would students be affected if they were

matched to a high-performing advisor rather than a low-performing one? Accordingly,

we next estimate the impact of being matched to advisors in different quartiles of the

grade VA distribution. These estimates are presented graphically in Online Appendix

Figures A2 and A3 for the freshman sample and in Figure A4 for the sophomore sample.

Specifically, the different panels plot point estimates and 95% confidence intervals repre-

senting the effects of being matched to advisors in the bottom and top two quartiles of

the VA distribution—with the second quartile as our excluded baseline category.

Estimates presented in Figure A2a indicate that top quartile freshman advisors sub-

stantially improve students’ first year GPA by approximately 10 percent of a standard

deviation relative to advisors in the second quartile (omitted category). However, we

must note that these estimates are relatively noisy which precludes us from making any

definitive conclusions related to differences between top versus bottom advisors. Indeed,

the top 95% confidence interval for bottom advisors overlaps with the bottom 95% confi-

dence interval for top advisors. Estimates for time to declaring sophomore status mirror

those for GPA, as shown in Figure A2b. Specifically, students matched to the lowest

grade VA freshman advisors take approximately 0.12 more semesters to complete the

freshman year compared to those in the second lowest quartile. However, these effects

are relatively imprecise as we cannot rule out that effects are similar across the various

VA quartiles. We next examine whether the impacts of top and low-performing advisors
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persist in the long run by focusing on graduation outcomes. One caveat to keep in mind

when interpreting graduation effects is that they are based on a reduced sample of stu-

dents, since we cannot observe graduation outcomes for more recent cohorts, resulting

in a loss of precision. Estimates in Figure A2c and A2d suggest that being matched to

a top rather than second quartile advisor results in an increase in on-time graduation

and six-year graduation respectively, significant at the 10% level only. However, we are

unable to determine that graduation estimates are statistically different across quartiles.

Panels (a) through (d) of Appendix Figure A3 show how freshman advisors in differ-

ent quartiles of the VA distribution impact students’ enrollment and graduation from

selective majors. For both the overall sample (Figures A3a and A3b) and top students

(Figures A3c and A3d), going from a second quartile to top advisor increases the like-

lihood of enrollment and graduation from selective majors, though these effects are not

statistically significant for graduation. Taken together, results from the freshman sample

suggest that students benefit the most from being matched to advisors in the top quartile

of the VA distribution. However, we are unable to draw any strong conclusions from this

exercise, particularly as it relates to differences between bottom and top advisors.

Finally, we run a similar analysis on the population of students entering AUB as sopho-

mores, as they are matched to a larger number of advisors, which could help improve

precision. Panels (a) through (d) of Appendix Figure A4 summarize findings from this

analysis. Notably, estimates for GPA are less noisy as we find that top versus bottom

sophomore advisors have significantly different effects on students’ first year GPA. These

effects seem to be driven by bottom quartile advisors who reduce students’ GPA by ap-

proximately 7.5 percent of a standard deviation relative to second quartile advisors. We

also uncover evidence suggesting that bottom quartile advisors worsen students’ four and

six-year graduation rates, though effects similar to advisors in the top two VA quartiles

cannot be ruled out.

88



Advisor Value-Added and Student Outcomes: Evidence from Randomly Assigned College Advisors
Chapter 2

2.5.2 Potential Mechanisms

In this paper, we find that academic advising quality substantially impacts students’

college outcomes. In this section, we discuss the mechanisms that could explain the

documented effects. Our first set of results show that effective advisors largely improve

students’ course performance. There are several potential explanations for this finding.

First, it is possible that advisors directly improve students’ academic performance by

providing them with mentoring, coaching and affirmation effects—especially since they

have the opportunity to continuously and repeatedly interact with students during their

first year. Another possible explanation is that high quality advisors encourage students

to enroll in a specific set of courses that maximize first-year grades (or “easy” courses).

To understand which of these two explanations is more likely, we make full use of our

data and look at the effects of advisor grade VA on students’ course-level outcomes.

We start by looking at the impact of advisor VA on the likelihood that students take

challenging courses during their first year. We focus on our main analysis sample which

includes freshman students matched to pre-major advisors. We do not conduct this

analysis for the sample of sophomores matched to post-major advisors, as sophomore

students typically have to take courses that are required by their major during their

first year and hence do not have much flexibility in terms of first-year course choice. The

results from our freshman sample analysis are reported in Table B.9 separately for the first

(Panel A) and second (Panel B) semesters of the freshman year. The most challenging

courses during the freshman year are math and science courses that are required for

entry into selective majors.34 Strikingly, estimates from column (1) of Table B.9 reveal

that advisors do not push students towards or away from core science and math courses.

34These include Calculus I and II as well as Physics, Chemistry, Biology and Computer Science courses
targeted for students intending to major in these fields.
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Importantly, estimates are small in magnitude and reasonably precise. This result is at

odds with our second interpretation in which advisors may influence students’ grades by

changing their course composition.

While freshman advisors do not influence course choice, estimates presented in column

(2) indicate that students are 0.9 percentage points less likely to fail courses due to a

one standard deviation higher advisor VA. This corresponds to a 13.4 and 12.5 percent

reduction in the likelihood of failing a course during the first and second semesters, re-

spectively. A more telling result is that a one standard deviation improvement in advisor

VA decreases the likelihood that students withdraw from a course by 0.5 percentage

points or 9.4 percent during the first semester of the freshman year (column (3) and

Panel A). Students can only withdraw from courses after meeting one-on-one with their

pre-major advisors, and advisors have to approve course withdrawals. This suggests that

effective advisors encourage students to persist in their courses, and provide positive af-

firmation and coaching directly influencing students’ grades.35 Interestingly, the estimate

in Panel B reveals that advisor grade VA has no significant impact on course withdrawal

during the second semester of the freshman year. This potentially indicates that with

time, advisors (or students) acquire more information about their students’ (own) abili-

ties, pushing students in the second semester to take courses that match their interests

and thereby reduce the chances of withdrawing from courses. Taken together, findings

from columns (1) through (3) of Table B.9 indicate that the documented improvement

in overall Freshman GPA is most likely due to direct coaching and mentoring provided

by advisors and not due to behavioral changes in course selection.

Our findings on the importance of academic advisors are not limited to grade improve-

ments, rather they also extend to other college outcomes such as persistence and major

35Sophomore students are not required to meet with their advisors or get their approval to withdraw
from courses. As such, examining the relationship between post-major advisor VA and sophomore
students’ course withdrawal does not allow us to understand whether affirmation effects are at play.
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choice. We cannot conclusively speak to the exact mechanism behind these longer run

effects, but some of our previous analyses can help shed light on what is driving these

effects. For freshman students, the effects we document on student persistence measures,

such as time to complete the freshman year and 4-year graduation, are most likely ex-

plained by the documented improvement in academic performance during the freshman

year. Indeed, higher grades and the lower likelihood of failing and withdrawing from

courses increase the odds of successfully completing freshman year. This in turn can

lead to a positive feedback loop where the documented increase in performance during

freshman year enhances students’ confidence and learning thus further bettering future

academic outcomes such as on-time graduation. This interpretation is in line with esti-

mates reported in column (6) of Panel A, Table B.7 which indicate that, conditional on

being matched to an advisor who is good at improving students’ grades, being matched

to an advisor who is skilled at helping students persist no longer seems to meaningfully

impact persistence at university.

On the other hand, our analysis using non-grade measures of VA for the sophomore

sample yields different insights. Indeed, results presented in Appendix Table A15 reveal

that even after conditioning on having an advisor who is effective at raising students’

grades, being assigned to an advisor who is good at improving persistence still signif-

icantly increases sophomore students’ persistence in the major. Taken together, these

results suggest that the main barrier for freshmen, i.e. pre-major, students’ persistence is

their first-year academic performance. However, students who already declared a major

(i.e., sophomore students) may face other barriers to degree completion and require help

from advisors who are skilled at improving both performance and persistence.

Finally, regarding the documented increase in STEM and business major enrollment for

freshmen, findings from Table B.9 suggest that it is not due to behavioral changes in

terms of shifting away or towards certain classes to fulfill course requirements for these
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majors. Additionally, analysis reported in column (6) (Panel B) of Table B.7 further

suggests that this cannot be fully explained by grade improvements either. Rather, the

most likely explanation for the documented increase in selective major enrollment is that

it is driven by increased grade performance in addition to positive affirmation effects

provided by freshman advisors.

2.5.3 Advisor Characteristics and Match Effects

We next examine whether advisors’ observable characteristics predict their value-added.

To do so, we regress all our constructed measures of advisor VA on advisor gender,

rank and type of department. Results in Online Appendix Table A16 reveal no signifi-

cant relationship between freshman advisors’ faculty rank and their predicted grade or

non-grade VA score. Specifically, being an associate or full professor as opposed to an

assistant professor or lecturer does not predict a significantly higher or lower VA score,

suggesting that faculty experience does not play a key role in predicting advisor quality.

Additionally, we find that freshman advisor gender and department (i.e., whether the

advisor is in a science versus non-science department) are also statistically unrelated to

advisor VA. However, one caveat with these results is that they are based on regressions

with a low number of observations—corresponding to the number of advisor-years in our

freshman sample. For example, regressions involving the use of Grade VA are based on

131 advisor-year observations. Hence, results from Table A16 only provide suggestive

evidence that advisors’ observable characteristics are not related to VA. To strengthen

conclusions from this analysis, we run the same regressions on a larger set of advisors, i.e.

academic advisors matched to students from the sophomore sample. Importantly, results
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presented in Appendix Table A17 are all insignificant and in line with findings found in

the freshman advisor sample, but more precise as they are based on 736 advisor-year ob-

servations. Overall, findings from both analyses are consistent with those from Barr and

Castleman (2019) who show that counselor characteristics are not significantly related

to student outcomes. This suggests that it is most likely unobservable characteristics,

such as tone of voice, that may predict a large portion of what constitutes an effective

advisor.

Results from the previous exercise indicate that advisors’ observable characteristics, such

as gender, do not predict advisor quality. Another interesting question is whether the

match between advisor and student characteristics matters. Accordingly, we next check

whether advisor-student gender match affects students’ outcomes. To do so, we run the

following reduced form regression:

Yiat = β0 + β1Femada + β2Femsti + β3Femsti ∗ Femada +X ′
iγ + σt + ϵiat (2.11)

where Yiat is the outcome of interest for student i matched to advisor a in academic year

t. Femada is a dummy variable that is equal to 1 if advisor a is female and 0 otherwise.

Femsti is another indicator variable for whether student i is female. We further interact

both of these indicators. We also include student controls X ′
i and year fixed effects σt

throughout.36 Our main coefficients of interest which we report in all our tables are β1

(the effect of having a female versus male advisor for male students) and β1+ β3 (the

effect of having a female versus male advisor for female students). Finally, standard

errors are clustered at the advisor-year level throughout.

Online Appendix Table A18 summarizes the effects of student-advisor gender match for

36For regressions involving the sophomore sample, we also include department fixed effects since ran-
domization occurs within department in that context.
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male and female students from our main freshman sample. Specifically, estimates from

row 1 show impacts on male students who are matched with a female as opposed to male

freshman advisor and estimates from row 2 present coefficients from own gender match

for female students (being matched with a female rather than male advisor). Results

presented in column (1) of Table A18 indicate that own gender match matters for female

students in terms of academic performance but not for male students. Indeed, female

students’ freshman GPA increases by 7.7 percent of a standard deviation when they are

matched with a female versus male advisor. Conversely, the gender of a freshman advisor

does not have a significant impact on male students’ grades. We also find that advisor

gender does not affect the likelihood that men or women drop out after freshman year but

gender match does increase female students’ 4-year graduation rates by 6.4 percentage

points. However, we uncover no significant gender-match effects on 6-year graduation

rates. In terms of major choice, we find that gender congruence has no significant impact

on the likelihood that men or women enroll or graduate from a selective major. We also

show that these effects are statistically insignificant for top-performing male and female

students in columns (7) and (8).

Online Appendix Table A19 summarizes these same gender match effects for our post-

major advising sample (i.e. the sample of students directly enrolled as sophomores).

We find that student-advisor gender match matters for both sexes in terms of first-year

academic performance. Indeed, results presented in column (1) of Table A19 indicate

that male students’ first year GPA increases by 4.9 percent of a standard deviation when

matched with a male as opposed to female advisor. Additionally, female students’ GPA

increases by around 5.4 percent of a standard deviation when matched with a same gen-

der advisor. However, we find no statistically significant effect of own-gender match on

any of our student persistence outcomes as shown in columns (2) through (6). Overall,

results from this section indicate that even though observable advisor characteristics do
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not predict advisor VA, student-advisor gender match does seem to matter for some stu-

dent outcomes; mainly students’ GPA.

2.6 Conclusion

In this paper, we study the impact of academic advisor VA on student outcomes. To

identify causal effects, we exploit a unique setting where college students are randomly

assigned to faculty advisors at the beginning of their freshman year. Students interact

with their advisors for the full academic year. Advisors assist students with academic

planning, monitor their academic progress, and help them decide on a major. We pre-

dict advisor value-added based on students’ first-year course performance and show that

advisors who raise students’ grades also reduce freshman year completion time. These

effects are long-lasting, as we show that a one standard deviation increase in freshman

advisor grade VA raises 4-year graduation rates by 5.5%. Finally, we find that effective

advisors have a strong impact on students’ major choice. We document that exposure to

higher-VA advisors largely increases high-performing students’ chances of enrolling and

graduating with a STEM degree.

Our finding that college students substantially benefit from high-quality personalized and

continuous support has important implications for current debates on how to increase

the rates of college completion and STEM degree attainment. In particular, our results

indicate that allocating resources towards improving the quality of academic advising

may substantially improve such outcomes. This in line with a recent study by Deming

and Walters (2017) who find that higher U.S. state funding for public post-secondary

institutions raises degree completion, through increased spending on academic support
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services such as advising.

Our paper presents new evidence showing that advisor quality is an important deter-

minant of students’ college success. However, what exactly constitutes a good advisor

remains an open question. Our results indicate that observable characteristics—such as

advisor rank, gender or department—do not correlate with advisor VA. Further research

is needed to identify which advisor attributes increase their VA. Doing so would allow

colleges to improve the quality of academic advising through screening for or training

faculty to become effective advisors. Importantly, since most colleges already offer some

form of academic advising, policies geared towards improving advisor quality may be a

scalable way to promote student success.
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Chapter 3

Clustering and External Validity in

Randomized Controlled Trials

3.1 Introduction

In a randomized controlled trial (RCT), it is well known that one can estimate and draw

inference on the average treatment effect, if the potential outcomes of units participating

in the experiment are non-stochastic, a commonly-made assumption in the randomization

inference literature (see, e.g., Neyman, 1923; Li and Ding, 2017; Abadie et al., 2020). In

practice, it is often implausible that units’ potential outcomes are fixed. For instance, an

agricultural household’s investment decisions may be affected by the weather conditions

in its village during planting season, or by other stochastic shocks. In a model where

units’ potential outcomes are not fixed but depend on stochastic shocks, the results in the

randomization inference literature still hold, conditional on the realizations of the shocks

affecting units’ potential outcomes. One can estimate and draw inference on the average

treatment effect (ATE) conditional on the shocks that occurred during the experiment.

This may not be a parameter of interest, as it lacks in external validity. For instance,
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when evaluating the effect of a cash grant on farmers’ investment decisions, one may

want to know the grant’s effect independent of the specific shocks that arose during the

experiment, rather than the grant’s effect given those specific shocks.

To fix ideas, we describe our paper in the context of the farmers’ cash grant RCT example,

but our results apply to all experiments where shocks arising at a more aggregated level

than the randomization unit can affect the outcome. We assume that the cash grant is

randomly assigned to some households within each village. We relax the assumption of

deterministic outcomes and allow household-level as well as village-level shocks to affect

farmers’ potential investment decisions without and with the grant. Finally, we define

two estimands of interest: the ATE conditional on the village-level shocks and the ATE

netted out of those shocks.

We start by showing that researchers can draw inference on the conditional ATE, by

regressing farmers’ investment on whether they received the cash grant, using the

heteroskedasticity-robust variance estimator. This variance estimator is conservative for

the variance of the ATE estimator conditional on the village-level shocks. On the other

hand, to draw inference on the unconditional ATE, researchers need to cluster their

standard errors at the village level. Indeed, we show that the village-clustered variance

estimator is conservative for the unconditional variance of the ATE estimator. We also

show that owing to the conservative nature of both variance estimators, the expectation

of the heteroskedasticity-robust estimator may be larger than the expectation of the

clustered one, when the treatment effect is more heterogeneous across farmers than across

villages. In such cases, clustering may actually increase the ATE’s t-statistic.

In a survey of The American Economic Journal: Applied Economics from 2014 to 2016,

we found that only 1 out of the 26 published RCTs clustered their standard errors at

a level higher than the unit-of-randomization. Therefore, our results provide an easy to
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implement and often overlooked solution for researchers to assess the external validity of

their findings. By external validity, we mean whether results can be extrapolated beyond

the specific circumstances that occurred during the experiment. Whether results can be

extrapolated to a different population than the one that participated in the experiment

is a different question.

To choose at which level to cluster, one first needs to think of which shocks are likely

to arise during the experiment. Shocks are post-randomization events that affect the

outcome. For example, in the context of the cash-grant RCT, weather events arising after

the randomization are shocks. On the other hand, villages’ demographic characteristics

may affect the outcome, but they are pre-determined, so they are not shocks. In the

context of a nationwide job-placement experiment, a post-randomization event affecting

the labor market is a shock. Second, one needs to think of the level at which shocks

operate. In the cash-grant RCT example, some weather shocks may arise at the village

level and may be independent across villages, while other weather shocks may arise at

a more aggregated level. In the job-placement experiment example, some labor market

shocks arise at the local level (e.g.: a plant closure), while others arise at the national level

(e.g.: a change in the Central Bank’s interest rate). There could also be some industry-

specific shocks, and other shocks affecting all industries, so shocks need not operate at a

geographic level. Finally, one needs to cluster at a level where many shocks are likely to

operate, while still having sufficiently many clusters to draw valid inference. In the job

placement experiment, clustering at a local (e.g. city or regional) level will account for

all the shocks taking place at that level, but it will not account for macro-level shocks.1

Clustering can only account for shocks arising at a more disaggregated level than the

1In that example, one may want to account both for local- and industry-level shocks. We conjecture
that doing so may be feasible using a multi-way clustering method (see Cameron et al., 2012; Menzel,
2018; Davezies et al., 2019), but showing it goes beyond the scope of this paper.
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level at which the experiment took place.2 The above exercise is not a mechanical one:

it leads to concrete, context-specific, recommendations on the level at which one should

cluster. Importantly, to avoid specification searching, the level of clustering should be

pre-specified.

Our paper shows that the model-based (Cameron and Miller, 2015; Wooldridge, 2003)

and design-based (Murray et al., 1998; Donner and Klar, 2000; Abadie et al., 2017)

approaches to clustering are not incompatible, and may be fruitfully combined. In RCTs

without clustering in the treatment assignment and where the experimental units are

not sampled from a larger population, Abadie et al. (2017) have argued that clustering

standard errors is not needed. Our results lead to a different recommendation: we

consider the very same RCTs (with individual-level treatment assignment, and in a finite

population of units that are not sampled from a larger population), and argue that if

there are cluster-level shocks affecting the potential outcomes, one may want to cluster

if one wants to draw inference on the average treatment effect netted out of the shocks.

This difference arises because in Abadie et al. (2017), assignment to treatment is the only

source of randomness when experimental units are not drawn from a larger population.

In contrast, our setup allows for another source of randomness, the cluster-level shocks,

that are not under the investigator’s control, and that may alter the outcome. There are

a number of contexts where such shocks are likely to arise, and we now review two other

recent papers that have documented their existence and proposed methods to take them

into account.

Rosenzweig and Udry (2019) have also shown that with aggregate shocks, heteroskedasticity-

robust variance estimators may understate the true variance of the ATE estimator in an

RCT. As one of their applications, they use an RCT in Ghana conducted from 2009 to

2Hahn et al. (2020) propose a framework for dealing with macro shocks in the context of structural
MLE models, a setting that differs from ours.
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2011 where farmers were given a rainfall insurance and a cash grant. They use those

treatments as an instrument for agricultural investment, and they show that returns to

investment vary with rainfalls. Using their estimated coefficient for the interaction of

investment and rainfalls, they compute the distribution of returns to investment under

the rainfall distribution observed over the last 65 years in Ghana. They find that the

resulting distribution has a much larger variance than the sampling variance from the

experiment would suggest. The solution they propose to account for aggregate shocks

differs from ours. First, it requires using additional data (e.g. the distribution of rainfalls

in the Ghana example) while ours does not. Second, it is designed to account for specific

observable shocks (e.g. rainfall shocks in the Ghana example) while ours can account

for any type of cluster-level shock, including unobserved ones. Finally, their method can

be used to extrapolate the distribution of the treatment effect under a different distri-

bution of shocks than that observed during the experiment. This extrapolation can be

made under the assumption that the shocks interact multiplicatively with the treatment

effect. The clustering method we propose does not rely on this assumption; accordingly,

it can tell us if there is evidence that the cluster-level shocks that arose during the exper-

iment affected the impact of the intervention, but it cannot tell us anything about the

intervention’s impact under different shocks. Let us illustrate this important difference

through an example. Assume an agricultural experiment took place in a rainy year, with

some variation in rainfall across regions, but no drought in any region. Clustering at the

regional level, the researcher can test if it is still possible to reject the null of no effect,

accounting for the variability in the treatment effect induced by rainfall variations from

moderate to high. But clustering cannot tell us whether the treatment would have had

an effect during a drought year. The method proposed by Rosenzweig and Udry (2019)

can achieve that, under some assumptions.
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Riddell and Riddell (2020) have also highlighted an issue similar to that we discuss here.

By revisiting the results of the Self-Sufficiency Project, they find that post-randomization

events can threaten the validity of experimental designs. They give the following example.

In a randomized trial of a chemotherapy treatment conducted at one site only, if an

outbreak of C-difficile occurs during treatment, treatment group members will be more

likely to die from the outbreak than the control group members due to a weakened

immune system. Then without more sites, we can only draw inference on the treatment

effect conditional on the occurrence of a C-difficile outbreak, which is not necessarily

the parameter of interest. Riddell and Riddell (2020) mention that multiple sites may

help researchers to interpret experimental evidence because different post-randomization

events may occur in different sites. Our results support that statement, and show that

by clustering at the level at which these post-randomization events take place, one can

draw inference on the ATE net of these events.

Finally, many other papers have departed from the randomization inference literature,

and have allowed potential outcomes to be stochastic in RCTs (see, e.g. Bugni et al., 2018,

2019). However, those papers usually assume that potential outcomes are i.i.d. Instead,

we consider the case where units’ potential outcomes are correlated due to cluster-level

shocks.

We use our results to revisit Karlan et al. (2014), who study the effects of a rainfall

insurance and of a cash grant treatment on farmers’ investment decisions. That paper was

also revisited by Rosenzweig and Udry (2019), who argue that in this context, regional-

level weather shocks need to be accounted for. To do so, we cluster standard errors

at the regional level at which Rosenzweig and Udry (2019) argue that weather shocks

occur. Doing so, we do not find very different results from those Karlan et al. (2014) had

obtained using heteroskedasticity-robust standard errors, thus showing that their results
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are robust to accounting for the aggregate shocks that arose during the experiment.

We also revisit Cole et al. (2013), who study the effects of various treatments on farm-

ers’ adoption of a rainfall insurance. Using heteroskedasticity-robust standard errors,

the authors found that two of their treatments significantly increased adoption. This

experiment took place in 37 villages of two districts of the state of Andra Pradesh in

India, so the most aggregated level we can cluster at is the village one. Even clustering

at this fairly disaggregated level, we find that only one of the two treatments still has a

significant effect on adoption. The effect of the second treatment may have been due to

the specific village-level shocks that arose during the experiment, and may not replicate

under different circumstances.

The take-aways of our paper for applied researchers are as follows. When one rejects

the null of no effect without clustering but not with clustering, one can assert that the

treatment had an effect, given the specific shocks that arose during the experiment,

though this conclusion may not generalize under different shocks. On the other hand,

when one rejects the null of no effect with clustering, one can assert that the treatment

had an effect, independent of the specific shocks that arose during the experiment. Then,

the decision to cluster or not depends on the level of external validity one would like to

achieve.
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3.2 Setup and finite-sample results

3.2.1 Setup and Notation

We consider an RCT taking place in a finite population of K villages. Village k has nk

households, and randomization is stratified at the village level. The experiment wants to

look at the effect of cash grants on farming households’ investment in agriculture. The

outcomes of interest are households’ investments in agriculture such as land preparation

costs, value of chemicals used, and acres cultivated. It is arguably implausible to as-

sume that households’ potential outcomes are fixed, they may be affected by a wealth of

stochastic events that could take place until the time they make their investment deci-

sions. These shocks could be specific to the households (such as the breadwinner being

laid off or injured), or they could be common to all households within a village (such as

extreme weather events, economic hardships in the village etc.). We therefore assume

that for all (i, k) ∈ {1, ..., nk}×{1, ..., K}, the potential outcomes of household i in village

k without and with the treatment, Yik(0) and Yik(1) satisfy the following equations:

Assumption 6 Stochastic Potential Outcomes

Yik(0) = yik(0) + ηk(0) + ϵik(0)

Yik(1) = yik(1) + ηk(1) + ϵik(1). (3.1)

ϵik(0) (resp. ϵik(1)) represents a shock affecting the potential outcomes of household i in

village k if she is untreated (resp. treated). ηk(0) (resp. ηk(1)) represents a shock affecting

all the untreated (resp. treated) households in village k. We assume that E(ϵik(0)) =

E(ϵik(1)) = E(ηk(0)) = E(ηk(1)) = 0, so yik(0) (resp. yik(0)) represent the expectation

of Yik(0) (resp. Yik(1)), the outcome without (resp. with) treatment that household i in
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village k will obtain under “average” household- and village-level shocks. In our cash-

grant example, yik(d) is a household’s investment under average shocks and treatment d.

ϵik(d) represents the effect of household-level shocks, such the breadwinner being laid off,

on the household’s investment under treatment d. ηk(d) represents the effect of village

level shocks, such as an extreme weather event, on the household’s investment under

treatment d. Let (η(0),η(1)) = (ηk(0), ηk(1))1≤k≤K be a vector stacking all the village-

level shocks, and let (ϵ(0), ϵ(1)) = (ϵik(0), ϵik(1))1≤i≤nk,1≤k≤K be a vector stacking all

the household-level shocks.

Assumption 6 requires that the shocks be additively separable, and take place at the

level of the experimental strata. These two conditions are not of essence for our results

to hold. Our main results still hold if shocks take place at a more aggregated level than

the experimental strata. Our main results also still hold if the shocks do not affect the

potential outcomes in an additively separable manner, i.e. if Yik(d) = fikd (ϵik(d), ηk(d))

for some functions fikd(.). In that case, one just needs to redefine ATE(η(0),η(1))

below as 1
n

∑
i,k E(Yik(1) − Yik(0)|(η(0),η(1))), and ATE as 1

n

∑
i,k E(Yik(1) − Yik(0)),

see Section C.1.7 of the Appendix for more details. We expect most readers to be familiar

with the additively separable model, so we stick to it in the paper to facilitate reading.

Let n =
∑K

k=1 nk denote the total number of households in the K villages. We may be

more interested in learning

ATE =
1

n

∑
i,k

[yik(1)− yik(0)], (3.2)

rather than

ATE(ϵ(0), ϵ(1),η(0),η(1)) =
1

n

∑
i,k

[Yik(1)− Yik(0)], (3.3)
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or

ATE(η(0),η(1)) =
1

n

∑
i,k

[(yik(1) + ηk(1))− (yik(0) + ηk(0))] . (3.4)

The second parameter is the average effect of the treatment on households’ investments,

conditional on the specific village and household shocks that arose during the experiment.

The third parameter is the average effect of the treatment on households’ investments,

conditional only on the specific village shocks. The first parameter is the average effect

of the treatment, net of those specific shocks. This parameter is more externally valid

than the other two, as it applies beyond the specific circumstances that occurred during

the experiment.3

Let Dik be an indicator for whether household i in village k is treated, let Dk be a vector

stacking the treatment indicators of all households in village k, and let D be a matrix

stacking these vectors. We consider the following assumption:

Assumption 7 For all i, k,

1. V (ϵik(d)) = σ2
dik < +∞ for d = 0, 1.

2. For all j ̸= i, (ϵik(0), ϵik(1)) ⊥⊥ (ϵjk(0), ϵjk(1)).

3. D ⊥⊥
(
(ϵik(0), ϵik(1))1≤i≤nk

, ηk(0), ηk(1)
)
1≤k≤K

.

4. (ϵik(0), ϵik(1))1≤i≤nk
⊥⊥ (ηk(0), ηk(1))1≤k≤K.

5. V (ηk(1)− ηk(0)) < +∞.

3On the other hand, ATE still only applies to the villages participating in the experiment. Recent
articles that consider treatment effects extrapolation outside of the estimation sample include, e.g.,
Dehejia et al. (2019) or Bo and Galiani (2019).
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Point 1 requires that (ϵik(0), ϵik(1)) have a second moment. Point 2 requires that in each

village, the household level shocks be independent. Point 3 requires that the household-

and village-level shocks be independent of the treatments, which usually holds by design

in a RCT. Point 4 requires that the household- and village-level shocks be independent.

Finally, Point 5 requires that the variance of ηk(1)− ηk(0) exist. Assumption 7 does not

require that the shocks (ϵik(0), ϵik(1)) and (ηk(0), ηk(1)) be identically distributed: the

variance of the shocks may for instance vary across households or villages. Assumption

7 also does not require that ϵik(0) and ϵik(1) be independent, or that ηk(0) and ηk(1)

be independent: one may for instance have ϵik(0) = ϵik(1) and ηk(0) = ηk(1), if the

household- and village-level shocks are the same when treated and untreated.

Let n1k and n0k respectively denote the number of households in the treatment and control

groups in village k. Let Yik = DikYik(1)+(1−Dik)Yik(0) denote the observed outcome of

household i. For any variable xik defined for every i ∈ {1, ..., nk} and k ∈ {1, ..., K}, let

xk = 1
nk

∑nk

i=1 xik denote the average value of xik in village k, let x1k = 1
n1k

∑n1k

i=1Dikxik

and x0k = 1
n0k

∑n0k

i=1(1 −Dik)xik respectively denote the average value of xik among the

treated and untreated households in village k, and let x = 1
n

∑
i,k xik denote the average

value of xik across all households.

Then let n = n
K
, and let

ÂTEk = Y 1k − Y 0k

ÂTE =
1

K

K∑
k=1

nk

n
ÂTEk,

respectively denote the standard difference in means estimator of the average treatment

effect in village k, and the estimated average treatment effect in the K villages.

For any variable xik defined for every i ∈ {1, ..., nk} and k ∈ {1, ..., K}, let S2
x,k =

107



Clustering and External Validity in Randomized Controlled Trials Chapter 3

1
nk−1

∑nk

i=1(xik − xk)
2 denote the variance of xik in village k, and let

S2
x,1,k = 1

n1k−1

∑n1k

i=1Dik(xik − x1k)
2 and S2

x,0,k = 1
n0k−1

∑n0k

i=1(1 −Dik)(xik − x0k)
2 respec-

tively denote the variance of xik among the treated and untreated households in village

k. Then let,

V̂rob

(
ÂTEk

)
=

1

n1k

S2
Y,1,k +

1

n0k

S2
Y,0,k

denote the robust estimator of the variance of ÂTEk (Eicker et al., 1963; Huber et al.,

1967; White et al., 1980), and let

V̂rob

(
ÂTE

)
=

1

K2

K∑
k=1

(nk

n

)2
V̂rob

(
ÂTEk

)
,

denote the estimator of the variance of ÂTE one can form using those estimators and

assuming the ÂTEks are independent.

We assume that the treatment is randomly assigned at the household level in each village:

Assumption 8 Stratified completely randomized experiment

For all k,
∑nk

i=1Dik = n1k, and for every (d1, ..., dnk
) such that d1 + ... + dnk

= n1k,

P (Dk = (d1, ..., dnk
)) = 1

( nk
n1k

)
.

Finally, we make the following assumption:

Assumption 9 The vectors (Dk, ηk(1), ηk(0), (ϵik(0), ϵik(1))1≤i≤nk
) are mutually inde-

pendent.

Assumption 9 requires that the variables attached to different villages be mutually inde-

pendent.
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3.2.2 Finite-sample results

We can now state our first result.

Theorem 4 If Assumptions 6, 7, 8, and 9 hold,

1. E
(
ÂTE

∣∣∣η(0),η(1)) = ATE(η(0),η(1))

2. V
(
ÂTE

∣∣∣η(0),η(1)) =
1

K2

K∑
k=1

(nk

n

)2
V
(
ÂTEk

∣∣∣η(0),η(1)) ,where
V
(
ÂTEk

∣∣∣η(0),η(1)) = 1
n0k
S2
y(0),k +

1
n1k
S2
y(1),k −

1
nk
S2
y(1)−y(0),k +

1
n1k
σ2
1k +

1
n0k
σ2
0k

3. V
(
ÂTE

∣∣∣η(0),η(1)) ≤ E
(
V̂rob(ÂTE)

∣∣∣η(0),η(1)) ,with equality if

there is no treatment effect heterogeneity within village: S2
y(1)−y(0),k = 0 for all k.

Point 1 of Theorem 4 shows that ÂTE is an unbiased estimator of ATE(η(0),η(1)),

conditional on the village-level shocks. Point 2 gives a formula for the variance of ÂTE

conditional on the village-level shocks. It is similar to the variance of ÂTE in Neyman

(1923), derived assuming fixed potential outcomes. However, it contains one more term,

1
K2

K∑
k=1

1
n1k
σ2
1k +

1
n0k
σ2
0k, which comes from the added variation created by the individual-

level shocks. Point 3 shows that the robust variance estimator is a conservative estimator

of that conditional variance.

In our set-up, the result in Neyman (1923) implies that conditional on the household- and

village-level shocks, ÂTE is an unbiased estimator, and the robust variance estimator

is a conservative estimator of the variance of ÂTE. Theorem 4 extends this result, by

showing that it still holds when one only conditions on the village-level shocks.4

4It has also been shown (see Imbens and Rubin, 2015) that when the potential outcomes are i.i.d., the
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In our cash-grant example, Theorem 4 implies that if the researcher uses robust standard

errors and finds a statistically significant effect, she can conclude that ATE(η(0),η(1)) ̸=

0: the treatment had an effect, given the specific village-level shocks that arose during

the experiment. ATE(η(0),η(1)) does not depend on the household-level shocks that

arose during the experiment, but it does depend on the village-level shocks. Therefore,

the researcher cannot say whether the treatment would still have had an effect if different

village-level shocks had occurred. To answer that question, one needs to draw inference

on ATE. We now show that this can be achieved, by clustering standard errors at the

village level. Let

V̂clu(ÂTE) =
1

K (K − 1)

K∑
k=1

(nk

n
ÂTEk − ÂTE

)2

be the cluster-robust estimator of the variance of ÂTE (Liang and Zeger, 1986).5

Theorem 5 If Assumptions 6, 7, 8, and 9 hold,

1. E
(
ÂTE

)
= ATE

2. V
(
ÂTE

)
=

1

K2

K∑
k=1

(nk

n

)2 [ 1

n0k

S2
y(0),k +

1

n1k

S2
y(1),k −

1

nk

S2
y(1)−y(0),k +

1

n1k

σ2
1k+

1

n0k

σ2
0k + V (ηk(1)− ηk(0))

]
.

3. E
(
V
(
ÂTE

∣∣∣η(0),η(1))) ≤ V
(
ÂTE

)
≤ E

[
V̂clu(ÂTE)

]
.

The second inequality is an equality if nk = n and ATEk = ATE,

robust variance estimator is an unbiased estimator of V (ÂTE). This result can also be obtained from
Theorem 4. Assume that ηk(0) = ηk(1) = 0, thus ensuring that the potential outcomes are independent,
and that yik(d) = y(d) and σ2

dik = σ2
d, thus ensuring that they are identically distributed. Then, Point

3 implies that V
(
ÂTE

)
= E

(
V̂rob

(
ÂTE

))
.

5When all strata have the same number of units, V̂clu(ÂTE) is equal to the cluster-robust estimator of
the variance of the treatment coefficient in a regression of the outcome on a constant and the treatment
clustered at the strata level, up to a degrees of freedom adjustment.
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with ATEk =
1
nk

∑nk

i=1 [yik(1)− yik(0)] for all k = 1, ..., K.

Point 1 of Theorem 5 shows that ÂTE is an unbiased estimator of ATE. Point 2

gives a formula for the unconditional variance of ÂTE. Point 3 shows that the cluster-

robust variance estimator is a conservative estimator of the unconditional and conditional

variances of ÂTE.

In our cash-grant example, Theorem 5 states that if the researcher uses the cluster-robust

standard errors and finds a statistically significant effect, she can conclude that ATE ̸= 0.

ATE does not depend on the household- and village-level shocks that arose during the

experiment. Therefore, this conclusion is not dependent on the specific shocks that arose

during the experiment, but holds when the shocks are averaged out.

Our approach comes with a risk. By defining several potential estimands of interest,

it may lead researchers to test several null hypothesis, with or without clustering, or

clustering at various different levels. This would distort inference. To avoid that risk,

researchers should pre-commit to an analysis plan that specifies if and at what level they

intend to cluster standard errors.

Corollary 2 If Assumptions 6, 7, 8, and 9 hold and nk = n for all k,

E
[
KV̂clu(ÂTE)

]
− E

[
KV̂rob(ÂTE)

]
=

1

K

K∑
k=1

V (ηk(1)− ηk(0)) +
1

K − 1

K∑
k=1

(
E
(
ÂTEk

)
− 1

K

K∑
k′=1

E
(
ÂTEk′

))2

− 1

n

1

K

K∑
k=1

S2
y(1)−y(0),k
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Corollary 2 states that the difference between the expectations of the normalized clus-

tered and robust variance estimators is equal to the average of V (ηk(1)− ηk(0)) plus the

difference between the variance of the treatment effect between villages and the average

variance of the treatment effect within villages divided by n. It has two important impli-

cations. First, if households’ potential outcomes are identically distributed, then yik(1)−

yik(0) = τ for all (i, k), and E
[
KV̂clu(ÂTE)

]
−E

[
KV̂rob(ÂTE)

]
= 1

K

K∑
k=1

V (ηk(1)− ηk(0)).

Therefore, one can test whether there are village-level shocks that affect the impact of

the intervention by testing whether the two variance estimators significantly differ.

Second, consider the following assumption:

Assumption 10 Homogeneous clustered shocks

For all k, ηk(1) = ηk(0).

Assumption 10 requires that treated and untreated households are affected similarly by

the village-level shocks.6 Under Assumptions 6 and 10, ATE(η(0),η(1)) = ATE and

V
(
ÂTE

)
= V

(
ÂTE|η(0),η(1)

)
, so Theorems 4 and 5 imply that both V̂rob(ÂTE) and

V̂clu(ÂTE) are conservative for V
(
ÂTE

)
. Corollary 2 shows that V̂clu(ÂTE) can be less

conservative than V̂rob(ÂTE), if there is more treatment effect heterogeneity within rather

than between villages. When Assumption 10 fails, Theorems 4 and 5 imply that both

V̂rob(ÂTE) and V̂clu(ÂTE) are conservative for E
(
V
(
ÂTE

∣∣∣η(0),η(1))), and Corollary

2 shows that V̂clu(ÂTE) can be less conservative than V̂rob(ÂTE) if the additional vari-

ance in ÂTE coming from the village-level shocks is lower than the difference between

the within-village variance of the treatment effect divided by n and the between-village

variance of the treatment effect.

6It is not testable without imposing other assumptions. Under the assumption that ATEk does

not vary across k, one can test whether the ÂTEks significantly differ. If they do, that implies that
ηk(1) ̸= ηk(0) for some k.

112



Clustering and External Validity in Randomized Controlled Trials Chapter 3

3.3 Large-sample results

We now derive the asymptotic distribution of ÂTE considering a case where the number

of villages K goes to infinity. First let:

ADk =
nk

n̄
ÂTEk,

and consider the following assumption:

Assumption 11 Regularity conditions to derive the asymptotic distribution of ÂTE

For some ϵ > 0,

1. For every k, E
(
AD2+ϵ

k

)
≤M < +∞, for some M > 0.

2. lim
K→+∞

1
S2+ϵ
K

∑K
k=1 E [|ADk − E(ADk)|2+ϵ] = 0, where S2

K =
∑K

k=1 V (ADk).

3. 1
K

∑K
k=1 E (ADk),

1
K

∑K
k=1 E (AD2

k), and
1
K

∑K
k=1 E (ADk)

2 converge towards finite

limits when K → ∞.

Assumption 11 contains the regularity conditions needed to apply the strong law of large

numbers in Lemma 1 of Liu et al. (1988) and the Lyapunov CLT. Also let:

σ2 = lim
K→∞

1

K

K∑
k=1

E
(
AD2

k

)
− 1

K

K∑
k=1

E (ADk)
2 ,

σ2
+ = lim

K→∞

1

K

K∑
k=1

E
(
AD2

k

)
−

(
1

K

K∑
k=1

E (ADk)

)2

.

We show:
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Theorem 6 If Assumptions 6, 7, 8, 9, and 11 hold,

1.
√
K
(
ÂTE − ATE

)
d→ N

(
0, σ2

)
.

2. KV̂clu

(
ÂTE

)
p→ σ2

+ ≥ σ2.

Point 1 of Theorem 6 shows that ÂTE is an asymptotically normal estimator of ATE

when the number of villages goes to infinity. Point 2 shows that KV̂clu

(
ÂTE

)
converges

to a finite upper bound of the asymptotic variance of ÂTE and can be used to construct

conservative confidence intervals for ATE.

3.4 Applications

3.4.1 Agricultural Decisions After Relaxing Credit And Risk Constraints

Table 4 in Karlan et al. (2014) presents the effects of having rainfall index insurance,

receiving a capital grant, and having both treatments on investment decisions and value of

harvest. The results are obtained using the first two years of a three-year RCT conducted

in Ghana. In the first year, the authors randomly assigned households to one of four

groups: the cash grant group, the insurance group, the cash grant and insurance group,

and the control group. In the second year, the cash grant experiment was still present

but the insurance grant experiment was replaced by an insurance pricing experiment.

Insurance prices were randomized at the community level but every community also

had control households without access to the insurance with the randomization being

at the household level. For farmers that were offered insurance, insurance take-up is

instrumented using the price offered to them (see Karlan et al., 2014).
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In a re-analysis of this experiment, Rosenzweig and Udry (2019) divide communities into

11 regions, and show that returns to farmers’ investments respond to the weather shocks

affecting their region. In Table 3.1 below, Panel A replicates the results in Karlan et al.

(2014), using heteroskedasticity-robust variance estimators. In Panel B, we instead use

cluster-robust variance estimators, clustering at the level of the 11 regions indicated by

Rosenzweig and Udry (2019). As there are only 11 clusters, in Panel C we present p-

values computed using the wild-bootstrap test proposed in Cameron et al. (2008), and

that has been shown to have good properties with a small number of large clusters, see

Canay et al. (2019). Clustering at the region level does not strongly affect the results in

Karlan et al. (2014). The only exception is for the outcome “value of chemicals used”,

for which treatment effects are less significant with the wild cluster bootstrap than with

robust standard errors. Otherwise, for most of the outcomes for which we can reject

ATE(η(0), η(1)) = 0, we can also reject ATE = 0.
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Table 3.1: Effects in Karlan et al. (2014), without and with clustering.

(1) (2) (3) (4) (5) (6) (7)

Land # of Acres Value of Wages Paid Opportunity Cost Total Value of

Preparation Costs Cultivated Chemicals Used to Hired Labor of Family Labor Costs Harvest

A: Robust SE

Insured 25.528** 1.024** 37.904** 83.537 98.161 266.146** 104.274

(12.064) (0.420) (14.854) (59.623) (84.349) (134.229) (81.198)

[0.034] [0.015] [0.011] [0.161] [0.245] [0.047] [0.199]

Insured*Capital Grant 15.767 0.257 66.440*** 39.760 -52.653 72.137 129.243

(13.040) (0.445) (15.674) (65.040) (86.100) (138.640) (81.389)

[0.227] [0.563] [0.000] [0.541] [0.541] [0.603] [0.112]

Capital Grant 15.362 0.088 55.631*** 75.609 -130.562 2.438 64.822

(13.361) (0.480) (17.274) (68.914) (92.217) (148.553) (89.764)

[0.250] [0.854] [0.001] [0.273] [0.157] [0.987] [0.470]

B: Clustered SE

Insured 25.528** 1.024*** 37.904** 83.537 98.161 266.146*** 104.274*

(12.498) (0.372) (17.784) (52.591) (67.068) (97.865) (60.776)

[0.041] [0.006] [0.033] [0.112] [0.143] [0.007] [ 0.086]

Insured*Capital Grant 15.767 0.257 66.440*** 39.760 -52.653 72.137 129.243*

(14.307) (0.266) (12.018) (53.571) (56.916) (94.551) (74.076)

[0.270] [0.332] [0.000] [0.458] [0.355] [0.445] [0.081]

Capital Grant 15.362 0.088 55.631** 75.609 -130.562 2.438 64.822

(15.092) (0.504) (25.531) (50.493) (114.161) (185.320) (122.354)

[0.309] [ 0.861] [0.029] [0.134] [0.253] [0.990] [0.596]

C: Wild Bootstrap

Insured 25.528* 1.024** 37.904 83.537 98.161 266.146* 104.274

[0.069] [0.032] [0.141] [0.103] [0.299] [0.060] [0.106]

Insured*Capital Grant 15.767 0.257 66.440** 39.760 -52.653 72.137 129.243

[0.336] [0.388] [ 0.022] [0.507] [0.393] [0.480] [0.115]

Capital Grant 15.362 0.088 55.631 75.609 -130.562 2.438 64.822

[0.392] [0.882] [0.166] [0.162] [0.305] [0.993] [ 0.638]

N 2,320 2,320 2,320 2,320 2,320 2,320 2,320

Standard errors in parentheses, p-values in brackets. The results in this table are based on Table 4 from Karlan

et al. (2014), in year 2 Insured is instrumented using a full set of prices. Total costs (column (6)) includes sum of

chemicals, land preparatory costs (e.g., equipment rental but not labor), hired labor, and family labor (valued at

gender/community/year-specific wages). Harvest value includes own-produced consumption, valued at community-

specific market value. All specifications include controls for full set of sample frame and year interactions. *** p

<0.01 ** p <0.05 * p <0.1.
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The results of Table 3.1 are based on 2SLS regressions, while our theoretical results cover

OLS ones. To alleviate this concern, we report results from reduced form regressions with

only one of the instruments used by Karlan et al. (2014), the binary variable ”offered

a capital grant and insurance at price 0”. We also include a full set of sample frame

and year interactions as controls, as in their 2SLS regression. Results are shown in

Table 3.2. Again, clustering at the region level does not change the significance of the

“intention-to-treat” effects of that instrument.

Table 3.2: Reduced Form Effects in Karlan et al. (2014), without and with clustering.

(1) (2) (3) (4) (5) (6) (7)

Land # of Acres Value of Wages Paid Opportunity Cost Total Value of

Preparation Costs Cultivated Chemicals Used to Hired Labor of Family Labor Costs Harvest

A: Robust SE

K-Grant 42.186** 1.275* 110.629*** 115.089 -46.286 214.860 165.269

and free insurance offered (19.125) (0.658) (24.791) (93.025) (114.330) (186.694) (122.767)

[0.027] [0.053] [0.000] [0.216] [0.686] [0.250] [0.178]

B: Clustered SE

K-Grant 42.186* 1.275* 110.629*** 115.089 -46.286 214.860 165.269

and free insurance offered (20.795) (0.584) (23.964) (95.827) (110.267) (192.092) (150.403)

[0.070] [0.054] [0.001] [0.257] [0.684] [0.289] [0.298]

C: Wild Bootstrap

K-Grant 42.186* 1.275*** 110.629*** 115.089 -46.286 214.860 165.269

and free insurance offered [0.051] [0.006] [0.004] [0.268] [0.630] [0.384] [0.300]

N 2,320 2,320 2,320 2,320 2,320 2,320 2,320

Standard errors in parentheses, p-values in brackets. The results in this table are based on a reduced form re-

gression inspired by Table 4 from Karlan et al. (2014). They consist of a regression of the outcome on a dummy

variable for being offered a capital grant and insurance at price 0. Total costs (column (6)) includes sum of

chemicals, land preparatory costs (e.g., equipment rental but not labor), hired labor, and family labor (valued at

gender/community/year-specific wages). Harvest value includes own-produced consumption, valued at community-

specific market value. All specifications include controls for full set of sample frame and year interactions. *** p

<0.01 ** p <0.05 * p <0.1.

We compare how our clustering method performs relative to the method proposed by
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Rosenzweig and Udry (2019) to account for weather shocks. They use their method to

estimate the net returns of planting-stage investments in the Ghana experiment, using

the RCT treatments as instruments for investment in a 2SLS regression. Note that

our results above apply to OLS regression coefficients, but we will momentarily assume

they also apply to 2SLS ones, to be able to draw a comparison with the results in

Rosenzweig and Udry (2019). Table 3.3 below compares three confidence intervals. The

first uses the normal approximation, the estimate of returns to planting-stage investment

in Table 3 Column 2 of Rosenzweig and Udry (2019), and standard errors clustered at the

regional level. As there are only 11 regions, the second confidence interval uses the wild-

bootstrap, clustering at the region level. The third confidence interval uses the 2.5 and

97.5 percentiles from the distribution of returns to planting stage investment in Figure 5

of Rosenzweig and Udry (2019). The confidence intervals clustered at the region level are

much tighter than that in Rosenzweig and Udry (2019). This is because those confidence

intervals account for different sources of variation in the estimates. Those clustered at

the regional level account for the region-level shocks that occurred over the duration of

the experiment, while the confidence interval in Rosenzweig and Udry (2019) accounts

for the variability in rainfalls over a much longer period of time.
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Table 3.3: Confidence Interval for Net Returns of Planting-Stage Investments

95% Confidence Interval

Normal approximation with clustered SE at region level [-64.14%,254.79%]

Wild-bootstrap with clustered SE at region level [-97.62%, 289.10%]

Confidence interval in Rosenzweig and Udry (2019) [-1105% , 1509%]

The results in the first two rows in this table are based on the regression in Column 2 of Table 3

of Rosenzweig and Udry (2019). The confidence interval in the first row uses the normal approx-

imation and the estimate of returns to planting-stage investment from that regression, clustering

standard errors at the region level. That in the second row uses the wild cluster bootstrap and the

estimate of returns to planting-stage investment from that regression, clustering standard errors

at the region level. That in the third row uses the 2.5 and 97.5 percentiles from the distribution

of returns to planting stage investment in Figure 5 of Rosenzweig and Udry (2019).

3.4.2 Barriers to Household Risk Management: Evidence from India

In this section we reexamine the results in Cole et al. (2013), who conducted an exper-

iment in India to study the effect of price and nonprice factors in the adoption of an

innovative rainfall insurance product. The authors estimate the impact of the following

treatments on the decision to purchase insurance: whether the household is visited by an

insurance educator; whether the educator was endorsed by local agents that have close

relationships with rural villages; whether the educator presented an additional education

module about the financial product; and whether the visited household received a high

cash reward.7 The treatments were assigned at the household level, within each of the

37 villages participating in their experiment. Households have time after the visit to

determine whether they would like to buy insurance or not, and shocks that could affect

7The endorsement treatment was only assigned in two-thirds of the villages.
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their decision, such as weather shocks, may occur during this period.

Table 3.4 below replicates Table 5 of Cole et al. (2013). As Cole et al. (2013) find no

effect for the endorsement and education treatments, we only report results for the two

other treatments. We first use the robust variance estimators used by the authors, and

then cluster standard errors at the village level. This RCT took place in 37 villages of two

districts of Andhra Pradesh. Therefore, we are unable to cluster at a higher geographical

level than these 37 villages, and we can only account for fairly disaggregated village-level

shocks. Nonetheless, the results below show even these disaggregated shocks seem to

alter the effect of one of the two treatments.
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Table 3.4: Conditional and Unconditional Results.

Dependent Variable: Insurance Take-Up

Robust s.e. Clustered s.e.

Visit 0.115*** 0.115

(0.043) (0.089)

High reward 0.394*** 0.394***

(0.034) (0.045)

Household controls Yes Yes

Village FEs Yes Yes

N 1047 1047

Mean of Dep Var 0.282 0.282

The results in this table are based on specification 3 of Table 5 from Cole et al. (2013). The

dependent variable in the regression is an indicator for whether the household purchased

an insurance policy. The treatment variables are indicators for whether the household was

visited by an insurance educator; whether the educator was endorsed by an LSA; whether

the educator presented the education module; and whether the visited household received a

high cash reward. Household controls are the same as in Cole et al. (2013). Robust standard

errors are shown in parentheses in the first column. Standard errors clustered at the village

level are shown in the second column.

* p<0.10 ** p<0.05 *** p<0.01.

The first column of Table 3.4 presents results using robust standard errors. The effects of

both treatments are significant, so for both of them we can reject ATE(η(0),η(1)) = 0:

conditional on the village-shocks that arose during the experiment, the treatment had

an effect. Assumption 10 is likely to fail in this application: receiving a visit from an

educator that describes features of the insurance and answers the household’s questions

can affect how these households respond to village-specific economic and weather shocks

arising between the visit and the time when they need to make their insurance decisions.
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Therefore, using robust standard errors may not be appropriate to test ATE = 0, one

may instead have to use clustered standard errors. With clustered errors, the second

column of the table shows that the effect of the high-reward treatment is still significant.

We can reject ATE = 0 for that treatment: its effect does not seem to be driven by the

specific village-level shocks that arose during the experiment. On the other hand, the

effect of the visit treatment is no longer significant with clustering. We cannot reject

ATE = 0 for that treatment: its effect may have been driven by the village-level shocks

that occurred during the experiment.

The regression in Table 3.4 has several treatments, and household-level controls. Though

extending our theoretical results to regressions with several treatments and controls

should be straightforward, in Table A1 in the appendix we show the results we ob-

tain in a simplified version of the regression in Table 3.4, with only the visit treatment

and without controls. Standard errors clustered at the village level are 35% larger than

robust standard errors. The estimated treatment effect is significant at the 1% (resp.

5%) level with robust (resp. village-clustered) standard errors.

3.5 Conclusion

In RCTs with household-level treatment assignment and household- as well as village-level

shocks affecting the potential outcomes, we show that one may use heteroskedasticity-

robust or village-clustered standard errors, depending on whether one wants to draw

inference on the ATE conditional on the village-level shocks, or netted out of those

shocks.
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Table A.1: Simulation Evidence of the Properties of κ̂

OLS OLS
Current Practice Corrected SEs

(1) (2)

n=900,000 and J=3,000

SD from Monte-Carlo 2.156 2.156
Average SD of κ̂ 1.265 2.100

Coverage Rate of 95% CI 0.724 0.942

Results are based on 1000 replications. The coverage rate is obtained
by taking the average of an indicator of whether the true value κ0 is in
the estimated confidence interval for a 1000 replications with standard
errors clustered at the teacher level. The number of students per class
nj and classes per teacher T are held constant at 30 and 10 respectively
in all simulations.

124



Appendix for “A Framework for Using Value-Added in Regression” Chapter A

Table A.2: Simulation Evidence of the Properties of κ̂

OLS Optimal
Current Practice GMM

(1) (2)

n=900,000 and J=3,000

Variance from Monte Carlo 4.652 4.592

Results are based on 1000 replications. The number of students
per class nj and classes per teacher T are held constant at 30
and 10 respectively in all simulations.
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Table A.3: Summary Statistics

Mean S.D. Obs.
(1) (2) (3)

A. Student Level Short-Run Variables

Math Test Score 0.060 0.974 388,191
Class Size 21.968 3.379 388,191
Female 0.494 0.500 388,191
Lunch Eligibility 0.446 0.497 388,191
Black 0.284 0.451 388,191
Hispanic 0.053 0.223 388,191
White 0.608 0.488 388,191
English Language Learner 0.032 0.175 388,191
Special Education 0.110 0.312 388,191

B. Student Level Long-Run Outcomes

High-School Algebra Score 0.243 0.924 303,826
Graduate High School 0.907 0.290 280,542
Plan College 0.788 0.409 272,990
Plan 4-Year College 0.417 0.493 272,987
Weighted High-School GPA 3.072 0.939 193,927
Class Rank 0.513 0.286 193,594

The sample consists of 388,191 North Carolina public schools third grade students
matched to 5,266 teachers in 19,351 classrooms in the years 2000-2005.

Table A.4: Summary Statistics for VA measures

Mean of VA 0.013
S.D of VA .177
Number of Observations 19,351

Summary statistics for the VA measures of 5,266 teachers
in 19,351 classrooms in the years 2000-2005. They are esti-
mated use within teacher variation following the procedure
described in section 1.2.1. Controls include cubic polynomi-
als in prior scores, gender, age, indicators for special edu-
cation, limited English, year, lunch eligibility, ethnicity, as
well as class- and school-year means of those variables

126



Appendix for “A Framework for Using Value-Added in Regression” Chapter A

Table A.5: Estimates of Long-Run Impacts

Algebra Score Graduation Plan College Plan 4-Year College HS GPA Class Rank

Teacher VA 0.038 0.005 0.009 0.018 0.036 0.009
OLS Heteroskedasticity Robust SE (0.0013) (0.0005) (0.0007) (0.0008) (0.0017) (0.0005)
OLS Clustered SE (0.0027) (0.0007) (0.0011) (0.0015) (0.0027) (0.0010)
GMM Clustered SE (0.0037) (0.0012) (0.0018) (0.0022) (0.0040) (0.0016)

N 303,733 280,456 272,907 272,904 193,867 193,535

Teacher VA is standardized. The results in this table are obtained by a univariate regression of the residualized
outcome on teacher VA, following the methodology of section 1.2.1. Standard errors are clustered at the teacher
level. Controls for estimation of VA and residualization of outcome include cubic polynomials in prior scores; gender;
age; indicators for special education, limited English, year, lunch eligibility, ethnicity; as well as class- and school-
year means of those variables.

Table A.6: Estimates of Unconditional Sorting

Dependent Variable Teacher VA

(1) (2) (3)

A. Regression of teacher VA measures on covariates

Lagged Test Scores 0.010
OLS Standard Error (0.0012)
Bootstrap Standard Error (0.0018)

Classroom Mean Lagged Test Score 0.056
OLS Standard Error (0.0065)
Bootstrap Standard Error (0.0100)

School-Year Mean Lagged Test Score 0.041
OLS Standard Error (0.0083)
Bootstrap Standard Error (0.0133)

N 388,191 388,191 388,191

B. Regression of preliminary teacher VA measures on covariates

Classroom Mean Lagged Test Score 0.073
OLS Standard Error (0.0063)
GMM Standard Error (0.0114)

N 444,018

Standard errors are clustered at the teacher level. Panel A presents the results of regressions of the estimated
teacher VA measures on different controls. Bootstrapped standard errors are calculated by block bootstrapping
the sample at the teacher level then estimating VA followed by the regressions, this is equivalent to bootstrapping
the GMM system. Following Chetty et al. (2014a), the coefficients and standard errors in panel A are multiplied
by 1.17 to offset shrinkage of the dependent variable. Panel B presents the results of a regression of preliminary
(unshrunk VA measure) on classroom mean lagged test score following Theorem 3. OLS standard errors are the
unadjusted estimators produced by statistical softwares, GMM standard errors are obtained following Theorem 3.
Observations are slightly higher in panel B because teachers who only teach one year can be included when following
this methodology.
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Table A.7: Correlations Between Different VA measures

Baseline VA VA using all variation

Baseline VA 1.00 0.965

VA using all variation 0.965 1.00

This table presents the two-way correlation coefficient between the baseline VA mea-
sures estimated using only within teacher variation, and the VA measures estimated
using between and within teacher variation.

A.2 Figures

Figure A.1: Coverage Rate using OLS SEs and GMM SEs with Different Correlation
Levels

Each dot represents a coverage rate obtained by taking the average of an indicator of
whether the true value κ0 is in the estimated confidence interval for a 1000 replications
with standard errors clustered at the teacher level. The number of students per class nj

and classes per teacher T are held constant at 30 and 10 respectively in all simulations,
the correlation between student characteristics and true VA is increased by increasing
the parameter ρ from the data generating process described in section 1.4. ρ is set to be
0, 0.25 , 0.5, and 0.75.
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Figure A.2: Actual Standard Deviation of κ̂ vs Standard Error Obtained from OLS

Each dot of the blue line represents the standard deviation of κ̂ obtained from a Monte-
Carlo using a 1000 replications. Each dot of the red line represents the average of the
standard errors estimated using OLS from 1000 replications with standard errors clustered
at the teacher level. The number of students per class nj and classes per teacher T are
held constant at 30 and 10 respectively in all simulations, the correlation between student
characteristics and true VA is increased by increasing the parameter ρ from the data
generating process described in section 1.4. ρ is set to be 0, 0.25 , 0.5, and 0.75.
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Figure A.3: Baseline VA vs VA Using All Variation

This graphs plots the baseline VA measures, constructed using an estimator of β0 that was
estimated using teacher fixed-effects, against VA measures constructed using an estimator
of β0 without fixed effects. Controls used are: cubic polynomials in prior scores; gender;
age; indicators for special education, limited English, year, lunch eligibility, ethnicity; as
well as class- and school-year means of those variables.
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Figure A.4: Estimates of Long-Run Impacts

This graphs plots the effect of a one standard deviation increase in teacher VA on different
long-run outcomes. They are obtained by a univariate regression of the residualized
outcome on teacher VA, following the methodology of section 1.2.1. The estimates in blue
are the estimates of κ0 for different outcomes using the exact methodology in section 1.2.1,
while the estimates in red are the estimates of κ0 without including teacher fixed effects
to estimate β0 and βY

0 . Standard errors are clustered at the teacher level. The standard
errors for the baseline estimates are obtained by GMM, the standard errors for the other
estimates are unadjusted. Controls for estimation of VA and residualization of outcome
include cubic polynomials in prior scores; gender; age; indicators for special education,
limited English, year, lunch eligibility, ethnicity; as well as class- and school-year means
of those variables.
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A.3 Heterogeneous Treatment Effects

Suppose that the potential outcome function for the adult earnings of student i is given

by

Y pot
i (µ) = κiµ+ Y pot

i (0)

where Y pot
i (0) is the same as before but κi is stochastic varies across students. Then the

true teacher-year level residual earnings are:

Y jt = κjtµjt + ηjt, (A.1)

where κjt = 1
nj

∑nj

i=1 κi. Let κj be a vector stacking the κjt. I impose the following

assumptions:

Assumption 12 Heterogeneous Treatment Effects

1. E(κj) = κ∗ <∞.

2. κjt ⊥⊥
(
µj, ϵ

(−t)
j

)
.

Point 1 requires that the mean of the individual level effects be finite. Point 2 requires

that the treatment effects in year t be independent of a teacher’s true VA and of the

unobserved determinants of the teacher’s other students in years s ̸= t.

Consider the linear projection of Y jt from (A.1) on µ∗
jt =

∑
k ̸=t ϕ0kRjk:

Y jt = κ0µ
∗
jt + ujt, (A.2)
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where κ0 =
Cov(Y jt,µ

∗
jt)

V ar(µ∗
jt)

. Now to show that κ0 = E(κjt):

κ0 =
Cov(Y jt, µ

∗
jt)

V ar(µ∗
jt)

=
Cov(κjtµjt + ηjt, µ

∗
jt)

V ar(µ∗
jt)

=
E(κjtµjtµ

∗
jt) + E(ηjtµ∗

jt)

E(µ∗
jt)

=
E(κjtµjtµ

∗
jt)

E(µ∗2
jt )

=
E(κjt)E(µjtµ

∗
jt)

E(µ∗2
jt )

= E(κjt)

where the second equality follows from (A.1). The third equality follows from the fact

that µjt and µ∗
jt are mean zero. The fourth equality follows from Assumption 1. The

fifth equality follows from Point 2 of Assumption 12. The last equality follows from the

fact that
E(µjtµ

∗
jt)

E(µ∗
jt)

= 1 from Result 2.

Then we still have E
(
ϕ′

0R
(−t)′

j

(
Yj − κ0R

(−t)
j ϕ0

))
= 0 with κ0 = E(κjt), then the non-

optimal GMM estimator is robust to heterogeneous treatment effects under Assumption

12.

A.4 Shrinkage

Consider a simple case where value added is constant over time such that:
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Rit = Robs
it −X ′

itβ0 = µj + ϵit (A.3)

and

Rjt =
1

nj

nj∑
i=1

Rit = µj + ϵjt. (A.4)

Consider the best linear predictor of Rjt using one other year Rjt′ :

µ∗
jt = ϕ0Rjt′ (A.5)

where:

ϕ0 =
Cov(Rjt, Rjt′)

V ar(Rjt′)
. (A.6)

Then under Assumption 1 we have:

ϕ0 =
Cov(Rjt, Rjt′)

V ar(Rjt′)

=
Cov(µj + ϵjt, µj + ϵjt′)

V ar(µj + ϵjt′)

=
Cov(µj, µj)

V ar(µj) + V ar(ϵjt′)

=
V ar(µj)

V ar(µj) + V ar(ϵjt′)
< 1

where the second equality follows from the fact that µj is uncorrelated with ϵjt′ and ϵjt

by Point 1 of Assumption 1, and the fact that ϵjt′ and ϵjt are uncorrelated by Point 3 of

Assumption 1.

This example shows that when value added is constant, µ∗
jt is a shrinkage estimator similar

to the one proposed by Kane and Staiger (2008). One can show that the measures will

still be shrunk towards the mean of zero when value added is not constant over time and
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more years are used.

A.5 Alternative Identification Proof

Result A.5.1 If Assumptions 1 and 2 hold, then κ0 is identified.

By Points 1 and 3 of Assumption 2, β0 and βY
0 are identified by the coefficients on Xj

in a regression of Robs
j and Y obs

j respectively on Xj and teacher fixed effects. Namely:

β0 = E(Ẍ ′
jẌj)

−1E(Ẍ ′
jR̈

obs
j )

βY
0 = E(Ẍ ′

jẌj)
−1E(Ẍ ′

jŸ
obs
j )

since the a regression on the variables using the within transform is equivalent to a

regression with fixed effects.

Then starting with (1.2):

Robs
it = X ′

itβ0 + µjt + ϵit,

and let:

Rit = Robs
it −X ′

itβ0 = µjt + ϵit (A.7)

be the actual residual score, which is then collapsed to the teacher year level:

Rjt =
1

nj

nj∑
i=1

Rit = µjt + ϵjt, (A.8)

we can write the best linear prediction of Rjt as a function of other years as:

Rjt =
∑

|s−t|̸=0

ϕ0|s−t|Rj|s−t| + θjt (A.9)
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so that:

µjt =
∑

|s−t|̸=0

ϕ0|s−t|Rj|s−t| + θjt − ϵjt. (A.10)

Plugging (A.10) into (1.9) and letting µ∗
jt =

∑
s ̸=0 ϕ0sRjs yields:

Y jt = κ0µ
∗
jt + κ0θjt − κ0ϵjt + ηjt, (A.11)

where µ∗
jt is identified. Therefore:

Cov
(
Y jt, µ

∗
jt

)
V ar

(
µ∗
jt

) = κ0 + κ0
Cov

(
θjt, µ

∗
jt

)
V ar

(
µ∗
jt

) − κ0
Cov

(
ϵjt, µ

∗
jt

)
V ar

(
µ∗
jt

) +
Cov

(
ηjt, µ

∗
jt

)
V ar

(
µ∗
jt

)
= κ0 (A.12)

where the second equality holds because θjt is the error from (1.15) and the variables are

mean zero, and:

Cov
(
ϵjt, µ

∗
jt

)
= Cov

ϵjt, ∑
|s−t|̸=0

ϕ0|s−t|Rjs


= Cov

ϵjt, ∑
|s−t|̸=0

ϕ0|s−t|(µjs + ϵjs)


= Cov

ϵjt, ∑
|s−t|̸=0

ϕ0|s−t|µjs

+ Cov

ϵjt, ∑
|s−t|̸=0

ϕ0|s−t|ϵjs


= 0

where both terms are 0 by Assumption 1.
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To show Cov
(
ηjt, µ

∗
jt

)
= 0:

Cov
(
ηjt, µ

∗
jt

)
= Cov

ηjt, ∑
|s−t|̸=0

ϕ0|s−t|Rjs


= Cov

ηjt, ∑
|s−t|̸=0

ϕ0|s−t|(µjs + ϵjs)


= Cov

ηjt, ∑
|s−t|̸=0

ϕ0|s−t|µjs

+ Cov

ϵjt, ∑
|s−t|̸=0

ϕ0|s−t|ϵjs


= 0

where both terms are 0 by Assumption 1.

QED.

A.6 Regularity Conditions

Assumption A.6.1 Technical Assumptions for Consistency

1. (β′
0,β

Y ′
0 ,ϕ′

0, κ0) is an element in the interior of Θ and Θ is a compact subset of

R2K+T .
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2.

E
(
sup(β,βY ,ϕ,κ)∈Θ

∣∣∣∣∣∣Ẍ ′
j

(
R̈obs

j − Ẍjβ
)∣∣∣∣∣∣) <∞

E
(
sup(β,βY ,ϕ,κ)∈Θ

∣∣∣∣∣∣R̃(−t)′

j

(
R̃j − R̃

(−t)
j ϕ

)∣∣∣∣∣∣) <∞

E
(
sup(β,βY ,ϕ,κ)∈Θ

∣∣∣∣∣∣Ẍ ′
j

(
Ÿ obs

j − Ẍjβ
Y
)∣∣∣∣∣∣) <∞

E
(
sup(β,βY ,ϕ,κ)∈Θ

∣∣∣ϕ′R̃
(−t)′

j

(
Ỹj − κR̃

(−t)
j ϕ

)∣∣∣) <∞

3.
(
Xj,µj, ϵj,Y

obs
j ,ηj

)
are i.i.d across j.

where R̃jt = R
obs

jt −X
′
jtβ, R̃j is a vector stacking all R̃jt for teacher j, R̃

(−t)
j is a matrix

stacking T row vectors (of dimension 1×(T −1)) with each row (indexed by t) containing

T − 1 different R̃jk for k ̸= t.

Assumption A.6.2 Technical Assumptions for Asymptotic Normality and Consistent

Variance Estimation

1. For all (β′,βY ′
,ϕ′, κ) ∈ R2K+T :

E

(
Ẍ ′

j

(
R̈obs

j − Ẍjβ
)(

R̈obs
j − Ẍjβ

)′
Ẍj

)
<∞

E
(
R̃

(−t)′

j

(
R̃j − R̃

(−t)
j ϕ

)(
R̃j − R̃

(−t)
j ϕ

)′
R̃

(−t)
j

)
<∞

E
(
Ẍ ′

j

(
Ÿ obs

j − Ẍjβ
Y
)(

Ÿ obs
j − Ẍjβ

Y
)′
Ẍj

)
<∞

E
(
ϕ′R̃

(−t)′

j

(
Yj − κR̃

(−t)
j ϕ

)(
Yj − κR̃

(−t)
j ϕ

)′
R̃

(−t)
j ϕ

)
<∞.

2. E

∣∣∣∣∣ sup
(β,ϕ,βY ,κ)∈Θ

(
ϕ′R̃

(−t)′

j R̃
(−t)
j ϕ

)∣∣∣∣∣ <∞ and E

∣∣∣∣∣ sup
(β,ϕ,βY ,κ)∈Θ

(
R̃

(−t)′

j R̃
(−t)
j

)∣∣∣∣∣ <∞.
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3. E
[(

ϕ′
0R

(−t)′

j R
(−t)
j ϕ0

)]
,E
[(

R
(−t)′

j R
(−t)
j

)]
are invertible.

4.

E
(
sup(β,βY ,ϕ,κ)∈Θ

∣∣∣∣∣∣Ẍ ′
j

(
R̈obs

j − Ẍjβ
)∣∣∣∣∣∣2) <∞

E
(
sup(β,βY ,ϕ,κ)∈Θ

∣∣∣∣∣∣R̃(−t)′

j

(
R̃j − R̃

(−t)
j ϕ

)∣∣∣∣∣∣2) <∞

E
(
sup(β,βY ,ϕ,κ)∈Θ

∣∣∣∣∣∣Ẍ ′
j

(
Ÿ obs

j − Ẍjβ
Y
)∣∣∣∣∣∣2) <∞

E
(
sup(β,βY ,ϕ,κ)∈Θ

∣∣∣ϕ′R̃
(−t)′

j

(
Ỹj − κR̃

(−t)
j ϕ

)∣∣∣2) <∞

Assumption A.6.3 Technical Assumptions for Optimal GMM

1. (β′
0,β

Y ′
0 , κ0) is an element in the interior of Θ1 and Θ1 is a compact subset of

R2K+1.

2.

E
(
sup(β,βY ,κ)∈Θ1

∣∣∣∣∣∣Ẍ ′
j

(
R̈obs

j − Ẍjβ
)∣∣∣∣∣∣2) <∞

E
(
sup(β,βY ,κ)∈Θ1

∣∣∣∣∣∣Ẍ ′
j

(
Ÿ obs

j − Ẍjβ
Y
)∣∣∣∣∣∣2) <∞

E
(
sup(β,βY ,κ)∈Θ1

∣∣∣∣∣∣R̃(−t)′

j

(
Ỹj − κR̃j

)∣∣∣∣∣∣2) <∞

3.
(
Xj,µj, ϵj,Y

obs
j ,ηj

)
are i.i.d across j.
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4. For all (β,βY , κ) ∈ R2K+1:

E

(
Ẍ ′

j

(
R̈obs

j − Ẍjβ
)(

R̈obs
j − Ẍjβ

)′
Ẍj

)
<∞

E
(
Ẍ ′

j

(
Ÿ obs

j − Ẍjβ
Y
)(

Ÿ obs
j − Ẍjβ

Y
)′
Ẍj

)
<∞

E
(
R̃

(−t)′

j

(
Ỹj − κR̃j

)(
Ỹj − κR̃j

)′
R̃

(−t)
j

)
<∞.

5. E

∣∣∣∣∣ sup
(β,βY ,κ)∈Θ1

(
R̃

(−t)′

j R̃
(−t)
j

)∣∣∣∣∣ <∞.

Assumption A.6.3 reframes Assumptions A.6.1 and A.6.2 for the new set of moments.

Assumption A.6.4 Assumptions for Consistency, and Asymptotic Normality

1. (β′
0, α

′
0) is an element of the interior of Θ2 and Θ2 is a compact subset of RK+KD .

2.

E
(
sup(β,α)∈Θ2

∣∣∣∣∣∣Ẍ ′
j

(
R̈obs

j − Ẍjβ
)∣∣∣∣∣∣2) <∞

E
(
sup(β,α)∈Θ2

∣∣∣∣∣∣D′
j

(
R̃j −Djα

)∣∣∣∣∣∣2) <∞

3. (Xj,µj, ϵj,Dj) are i.i.d across j.

4. For all (β,α) ∈ RK+KD :

E

(
Ẍ ′

j

(
R̈obs

j − Ẍjβ
)(

R̈obs
j − Ẍjβ

)′
Ẍj

)
<∞

E
(
D′

j

(
R̃j −Djα

)(
R̃j −Djα

)′
Dj

)
<∞
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A.7 Consistency, Asymptotic Normality, and Consistent Vari-

ance Estimation of the GMM Estimators

Lemma A.7.1 If Assumptions 1, 2, and A.6.1 hold, then (β̂, ϕ̂, β̂Y , κ̂)
p→ (β0, ϕ0, β

Y
0 ,κ0),

where (β̂, ϕ̂, β̂Y , κ̂) are the estimators obtained from a GMM minimization of the mo-

ment system of (1.11), (1.13), (1.12), and (1.14) with the identity matrix as a weighting

matrix.

Theorem A.7.1 If Assumptions 1, 2, A.6.1, and A.6.2 hold, then

√
J
[
(β̂, ϕ̂, β̂Y , κ̂)− (β0, ϕ0, β

Y
0 ,κ0)

]
⇝ N (0,Ω) .

where Ω = G̃−1E[g̃(Z,β0, ϕ0, β
Y
0 ,κ0)g̃(Z,β0, ϕ0, β

Y
0 ,κ0)

′]G̃−1′ and

G̃ = E
[
▽(β,ϕ,βY ,κ)g̃(Z,β0, ϕ0, β

Y
0 ,κ0)

]
, and g̃(Z,β0, ϕ0, β

Y
0 ,κ0) is defined in (A.26) in

the proof.

Let Ω̂ correspond to an estimator of Ω, constructed by replacing the population moments

in Ω by averages and the parameters by the GMM estimators. Then:

Ω̂
p→ Ω (A.13)

Lemma A.7.2 If Assumptions 1, 2, and A.6.3 hold, then

1.
√
J
[
(β̂, β̂Y , κ̂)− (β0, β

Y
0 ,κ0)

]
⇝ N (0,Ω1) .

where (β̂, β̂Y , κ̂) are the estimators obtained from a GMM minimization and

Ω1 =
(
G̃′

1G̃1

)−1

G̃′
1E[g̃1(Z,β0, β

Y
0 ,κ0)g̃(Z,β0, β

Y
0 ,κ0)

′]G̃1

(
G̃′

1G̃1

)−1

,
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and G̃1 = E
[
▽(β,βY ,κ)g̃1(Z,β0, β

Y
0 ,κ0)

]
, where g̃1(Z,β0, β

Y
0 ,κ0) is defined in

(A.32) in the proof.

2. Ω̂1
p→ Ω1 where Ω̂1 corresponds to the sample equivalent of Ω1 replacing moments

by sample moments and parameters by (β̂, β̂Y , κ̂).

Theorem A.7.2 If Assumptions 1, 2, and A.6.3 hold, then

√
J
[
(β̂∗, β̂Y ∗, κ̂∗)− (β0, β

Y
0 ,κ0)

]
⇝ N (0,Ω∗) .

where (β̂∗, β̂Y ∗, κ̂∗) are the estimates resulting from a GMM minimization using Ŵ ∗ as

a weighting matrix,

Ω∗ =
(
G̃′

1W
∗G̃1

)−1

, and Ω∗ ≤ Ω2 where Ω2 is the submatrix of Ω that corresponds to the

variance covariance matrix of (β̂, β̂Y , κ̂).

Result A.7.1 If Assumptions 1, 2, and A.6.3 hold, then

̂̃g1(Z, β̂∗, β̂Y ∗, κ̂∗)′Ŵ ∗̂̃g1(Z, β̂∗, β̂Y ∗, κ̂∗)⇝ χ2
T−2.

Theorem A.7.3 If Assumptions 1, 2, 5, A.6.4 and hold, then

√
J
[
(β̂, α̂)− (β0, α0)

]
⇝ N (0,Ω2) .

where Ω2 = G̃−1
2 E[g̃2(Z2,β0, α0)g̃2(Z2,β0, α

′
0)]G̃

−1′

2 and G̃2 = E
[
▽(β,α)g̃2(Z2,β0, α0)

]
,

where Zj =
(
Xj,R

obs
j ,Dj

)
, Z2 stacks the Zj, and g̃2(Z2,β0, α0) is defined in (A.37)

in the proof.
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A.8 Variance Comparison

Theorem 1 also allows us to compare σ2 to the variance obtained from OLS:

σ2 − (G−1
κ )2E

(
g(Z)2

)
=(G−1

κ )2[
E
((
g(Z) +GβY ψ3(Z) +Gϕψ2(Z) +Gβψ1(z)−GϕM

−1
2ϕ M2βψ1(Z)

)2 − E
((
g(Z)2

)))]
=(G−1

κ )2E
(
(2g(Z))

(
GβY ψ3(Z) +Gϕψ2(Z) +Gβψ1(z)−GϕM

−1
2ϕ M2βψ1(Z)

))
+ (G−1

κ )2E
((
GβY ψ3(Z) +Gϕψ2(Z) +Gβψ1(z)−GϕM

−1
2ϕ M2βψ1(Z)

)2)

where the equality follows from factoring a2 − b2 and the linearity of the expectation

operator. Given that the second term is always positive, the difference between the two

variances is going to depend on the covariances between the moment used to estimate κ0

and the other three sets moments. Then the covariances of interest are:

E
(
Ẍ ′

j (µ̈j + ϵ̈j) (κ0θj − κ0ϵj + ηj)
′R

(−t)
j ϕ0

)
E
(
R

(−t)′

j θj (κ0θj − κ0ϵj + ηj)
′ R

(−t)
j ϕ0

)
E
(
Ẍ ′

jη̈j (κ0θj − κ0ϵj + ηj)
′ R

(−t)
j ϕ0

)
.

For ease of exposition of the difference between the two variances, assume that the

covariances of the errors are homoskedastic with respect to R
(−t)
j and Ẍj such that:
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E
(
(µ̈j + ϵ̈j) (κ0θj − κ0ϵj + ηj)

′ |R(−t)
j , Ẍj

)
= E

(
(µ̈j + ϵ̈j) (κ0θj − κ0ϵj + ηj)

′)
E
(
θj (κ0θj − κ0ϵj + ηj)

′ |R(−t)
j , Ẍj

)
= E

(
θj (κ0θj − κ0ϵj + ηj)

′)
E
(
(κ0µ̈j + η̈j) (κ0θj − κ0ϵj + ηj)

′ |R(−t)
j , Ẍj

)
= E

(
(κ0µ̈j + η̈j) (κ0θj − κ0ϵj + ηj)

′)
we get:

E
(
Ẍ ′

jE
(
(µ̈j + ϵ̈j) (κ0θj − κ0ϵj + ηj)

′)R(−t)
j ϕ0

)
E
(
R

(−t)′

j E
(
θj (κ0θj − κ0ϵj + ηj)

′)R(−t)
j ϕ0

)
E
(
Ẍ ′

jE
(
(κ0µ̈j + η̈j) (κ0θj − κ0ϵj + ηj)

′)R(−t)
j ϕ0

)
.

Note that the first and third set of covariances will depend on E
(
ẌjtRjs

)
for s ̸= t.

Simplifying further, it is reasonable to assume that those covariances are close to zero

since they depend on the covariance between within teacher fluctuations in covariates in

year t and teacher value added in years s ̸= t, and average unobserved determinants of

test scores in years s ̸= t, E
(
Ẍjtµjs

)
, and E

(
Ẍjtϵjs

)
.

Then for the variance from OLS to be larger than σ2 it would have to be that

2GϕE
(
R

(−t)′

j E
(
θj (κ0θj − κ0ϵj + ηj)

′)R(−t)
j ϕ0

)
< 0

and ∣∣∣2GϕE
(
R

(−t)′

j E
(
θj (κ0θj − κ0ϵj + ηj)

′)R(−t)
j ϕ0

)∣∣∣ >
E
((
GβY ψ3(Z) +Gϕψ2(Z) +Gβψ1(z)−GϕM

−1
2ϕ M2βψ1(Z)

)2)
.

In other words the contribution to σ2 of the covariances between the moments used to
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estimate ϕ0 and κ0 has to be large and negative enough to outweigh the contribution to

σ2 from the variances and covariances of the moments used to estimate β0, β
Y
0 , and ϕ0.

Therefore, it is likely that the variance from OLS be smaller than σ2 in most cases.

A.9 Proofs

A.9.1 Proof of Result 1

E
(
Ẍ ′

j

(
R̈obs

j − Ẍjβ0

))
=E

(
Ẍ ′

j (µ̈j + ϵ̈j)
)

=0

where the first equality follows from (1.2), and the second equality follows from Point 3

of Assumption 2.

E
(
R

(−t)′

j

(
Rj −R

(−t)
j ϕ0

))
=E

(
R

(−t)′

j θj

)
=0

where the first equality follows from (1.15), and the second equality follows from the fact

that θjt is orthogonal to Rjk for k ̸= t by construction.
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E
(
Ẍ ′

j

(
Ÿ obs

j − Ẍjβ
Y
0

))
=E

(
Ẍj(η̈j + κ0µ̈j)

)
=0

where the first equality follows from (1.9) and the second from Point 3 of Assumption 2.

E
(
ϕ′

0R
(−t)′

j

(
Yj − κ0R

(−t)
j ϕ0

))
=E

(
µ∗
jt

(
Yj − κ0µ

∗
jt

))
=E

(
µ∗
jt

(
κ0θjt − κ0ϵjt + ηjt

))
=0

where the second equality follow from (A.11) and the third equality follows from As-

sumption 1 and from the fact that θjt is orthogonal to Rjk for k ̸= t by construction.

Q.E.D
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A.9.2 Proof of Result 2

Starting with Cov
(
ηjt, µ

∗
jt

)
= 0:

Cov
(
ηjt, µ

∗
jt

)
=Cov

ηjt, ∑
|s−t|̸=0

ϕ0|s−t|Rjs


=Cov

ηjt, ∑
|s−t|̸=0

ϕ0|s−t|µjs

+ Cov

ϵjt, ∑
|s−t|̸=0

ϕ0|s−t|ϵjs


=0

where both terms are 0 by Assumption 1.

Now for
Cov(µjt,µ

∗
jt)

V ar(µ∗
jt)

= 1:

Cov
(
µjt, µ

∗
jt

)
V ar

(
µ∗
jt

)
=
Cov

(∑
|s−t|̸=0 ϕ0|s−t|Rjs + θjt − ϵjt, µ

∗
jt

)
V ar

(
µ∗
jt

)
=
Cov

(∑
|s−t|̸=0 ϕ0|s−t|Rjs + θjt − ϵjt,

∑
|s−t|̸=0 ϕ0|s−t|Rjs

)
V ar

(∑
|s−t|̸=0 ϕ0|s−t|Rjs

)
=
Cov

(∑
|s−t|̸=0 ϕ0|s−t|Rjs,

∑
|s−t|̸=0 ϕ0|s−t|Rjs

)
V ar

(∑
|s−t|̸=0 ϕ0|s−t|Rjs

)
=1

where the first equality follows from (A.10), the third equality follows from the fact that

θjt is the error from (1.15) and by Assumption 1.
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A.9.3 Proof of Lemma A.7.1

We start with the following moments:

E
(
Ẍ ′

j

(
R̈obs

j − Ẍjβ
))

(A.14)

E
(
R̃

(−t)′

j

(
R̃j − R̃

(−t)
j ϕ

))
(A.15)

E
(
Ẍ ′

j

(
Ÿ obs

j − Ẍjβ
Y
))

(A.16)

E
(
ϕ′R̃

(−t)′

j

(
Ỹj − κR̃

(−t)
j ϕ

))
(A.17)

where R̃jt = R
obs

jt −X
′
jtβ, R̃j is a vector stacking all R̃jt for teacher j, R̃

(−t)
j is a matrix

stacking T row vectors (of dimension 1×(T−1)) with each row (indexed by t) containing

T − 1 different R̃jk for k ̸= t, and Ỹjt = Y
obs

jt −X
′
jtβ

Y and Ỹj is a vector stacking them.

Note that (A.14) and (A.16) make it so that β0 and βY
0 will be estimated using teacher

fixed effects.

Let the sample equivalent of the moment conditions be:

1

J

J∑
j=1

Ẍ ′
j

(
R̈obs

j − Ẍjβ
)

(A.18)

1

J

J∑
j=1

R̃
(−t)′

j

(
R̃j − R̃

(−t)
j ϕ

)
(A.19)

1

J

J∑
j=1

Ẍ ′
j

(
Ÿ obs

j − Ẍjβ
Y
)

(A.20)

1

J

J∑
j=1

ϕ′R̃
(−t)′

j

(
Ỹj − κR̃

(−t)
j ϕ

)
(A.21)
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Let the GMM weighting matrix be the identity matrix.

To show the estimator is consistent, we need to check the conditions from Theorem 2.6

of Newey and McFadden (1994). Consistency of GMM when the data are i.i.d requires

the following conditions:

1. The weighting matrix W is positive semi-definite

2. WE[g(X,Y obs,Robs,β,βY ,ϕ, κ)] = 0 if and only if (β,βY ,ϕ, κ) = (β0,β
Y
0 ,ϕ0, κ0),

where g(X,Y obs,Robs,β,βY ,ϕ, κ) is a vector stacking the moment functions.

3. (β0,β
Y
0 ,ϕ0, κ0) ∈ Θ and Θ is compact.

4. g(X,Y obs,Robs,β,βY ,ϕ, κ) is continuous for all (β,βY ,ϕ, κ) ∈ Θ with proba-

bility one.

5. E[sup(β,βY ,ϕ,κ)∈Θ||g(X,Y obs,Robs,β,βY ,ϕ, κ)||] <∞.

The first condition is satisfied since the weighting matrix W is the identity matrix, so it

is positive semi-definite.

Furthermore by Result 1 all the moments are equal to 0 when evaluated at (β0,β
Y
0 ,ϕ0, κ0).

Therefore E[g(X,Y obs,Robs,β0,β
Y
0 ,ϕ0, κ0)] = 0 and under Assumptions 1 and 2, and

(1.1), (1.2), (1.7), and (1.15) we have that (β0,β
Y
0 ,ϕ0, κ0) are uniquely identified so

that this holds if and only if (β,βY ,ϕ, κ) = (β0,β
Y
0 ,ϕ0, κ0). Then the second condition

holds.

The third condition holds by Point 1 of Assumption A.6.1, and the fourth condition holds

by inspection.

The last condition holds by Point 2 of Assumption A.6.1 and the triangle inequality

applied to the euclidian norm.

Q.E.D
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A.9.4 Proof of Theorem A.7.1

Now to show asymptotic normality we start by rewriting the moments as:

E (m1(Z,β)) = E
(
Ẍ ′

j

(
R̈obs

j − Ẍjβ
))

(A.22)

E (m2(Z,β,ϕ)) = E
(
R̃

(−t)′

j

(
R̃j − R̃

(−t)
j ϕ

))
(A.23)

E
(
m3(Z,β

Y )
)
= E

(
Ẍ ′

j

(
Ÿ obs

j − Ẍjβ
Y
))

(A.24)

E
(
g(Z,β,ϕ,βY , κ)

)
= E

(
ϕ′R̃

(−t)′

j

(
Ỹj − κR̃

(−t)
j ϕ

))
(A.25)

where Zj =
(
Xj,R

obs
j , Y obs

j

)
, Z stacks the Zj, and m1(),m2(),m3(), g() are functions.

Let

g̃(Z,β,ϕ,βY , κ) =
[
m1(Z,β)

′,m2(Z,β,ϕ)
′,m3(Z,β

Y )′, g(Z,β,ϕ,βY , κ)′
]′

(A.26)

be a vector stacking the four functions.

A GMM estimator is asymptotically normal if it is consistent and conditions (i)-(v) of

Theorem 3.4 of Newey and McFadden (1994) are satisfied.

The conditions are the following:

1. (β0, ϕ0, β
Y
0 ,κ0) is in the interior of Θ.

2. g̃(Z,β,ϕ,βY , κ) is continuously differentiable in a neighborhoodN of (β0, ϕ0, β
Y
0 ,κ0).

3. E[g̃(Z,β0, ϕ0, β
Y
0 ,κ0)] = 0 and E[||g̃(Z,β0, ϕ0, β

Y
0 ,κ0)||2] is finite.

4. E

[
sup

(β,ϕ,βY ,κ)∈N
||▽g̃(Z,β,ϕ,βY ,κ)||

]
<∞.

5. G̃′G̃ is non singular for G̃ = E
[
▽(β,ϕ,βY ,κ)g̃(Z,β0, ϕ0, β

Y
0 ,κ0)

]
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Under Assumptions 1, 2, and A.6.1, the GMM estimator is a consistent estimator of

(β0, ϕ0, β
Y
0 ,κ0).

Condition (i) of Theorem 3.4 of Newey and McFadden (1994) holds under Point 1 of

Assumption A.6.1. Condition (ii) holds by inspection. The first part of condition (iii) is

shown to hold in the consistency proof, and for the second part note that:

E[||g̃(Z,β0, ϕ0, β
Y
0 ,κ0)||2] = E

(
trace

(
g̃(Z,β0, ϕ0, β

Y
0 ,κ0)g̃(Z,β0, ϕ0, β

Y
0 ,κ0)

′)) .
Therefore for E[||g̃(Z,β0, ϕ0, β

Y
0 ,κ0)||2] to be finite we need that:

E
(
Ẍ ′

j

(
R̈obs

j − Ẍjβ0

)(
R̈obs

j − Ẍjβ0

)′ (
R̈obs

j − Ẍjβ0

))
<∞

E
(
R

(−t)′

j

(
Rj −R

(−t)
j ϕ0

)(
Rj −R

(−t)
j ϕ0

)′
R

(−t)
j

)
<∞

E
(
Ẍ ′

j

(
Ÿ obs

j − Ẍjβ
Y
0

)(
Ÿ obs

j − Ẍjβ
Y
0

)′
Ẍj

)
<∞

E
(
ϕ′

0R
(−t)′

j

(
Yj − κ0R

(−t)
j ϕ0

)(
Yj − κ0R

(−t)
j ϕ0

)′
R

(−t)
j ϕ0

)
<∞.

which holds by Point 1 of Assumption A.6.2.

For condition (iv) we need to show that: E

[
sup

(β,ϕ,βY ,κ)∈N
||▽g̃(Z,β,ϕ,βY ,κ)||

]
<∞

E

[
sup

(β,ϕ,βY ,κ)∈N
||▽g̃(Z,β,ϕ,βY ,κ)||

]
=

E

(
sup

(β,ϕ,βY ,κ)∈N

√
trace (▽g̃(Z,β,ϕ,βY ,κ)▽g̃(Z,β,ϕ,βY ,κ)′)

)

by the triangle inequality applied to the Euclidean norm, a sufficient condition for the

quantity above to be finite, is that the sum of absolute values of the diagonal elements
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be finite. So we need that:

E

∣∣∣∣∣ sup
(β,ϕ,βY ,κ)∈N

(
ϕ′R̃

(−t)′

j R̃
(−t)
j ϕ

)∣∣∣∣∣ <∞

E

∣∣∣∣∣ sup
(β,ϕ,βY ,κ)∈N

(
R̃

(−t)′

j R̃
(−t)
j

)∣∣∣∣∣ <∞

E
∣∣∣(Ẍ ′

jẌj

)∣∣∣ <∞.

Now by Points 1 of Assumption 2 we have E
∣∣∣(Ẍ ′

jẌj

)∣∣∣ < ∞. The other two hold by

taking the neighborhood N to be Θ and then using Point 2 of Assumption A.6.2.

Condition (v) is satisfied under Point 1 of Assumption 2 and Point 3 Assumption A.6.2.

Furthermore we have Ŵ = W = I, such that
(
G̃′IG̃

)−1

G̃′ = G̃−1 , therefore the

asymptotic variance of the estimator becomes:

(
G̃′IG̃

)−1

G̃′IE[g̃(Z,β0, ϕ0, β
Y
0 ,κ0)g̃(Z,β0, ϕ0, β

Y
0 ,κ0)

′]IG̃
(
G̃′IG̃

)−1

= G̃−1E[g̃(Z,β0, ϕ0, β
Y
0 ,κ0)g̃(Z,β0, ϕ0, β

Y
0 ,κ0)

′]G̃−1′

Finally the consistency of Ω̂ follows directly from Theorem 4.5 of Newey and McFadden

(1994). We need to only check that g̃(Z,β,ϕ,βY ,κ) is continuous in a neighborhood N

of (β0, ϕ0, β
Y
0 ,κ0) with probability one, which is satisfied by inspection. And a fourth

moment existence condition E[sup(Z,β,ϕ,βY ,κ)∈N ||g̃(z,β,ϕ,βY ,κ)||2] < ∞ which holds

by Point 4 of Assumption A.6.2 and taking the neighborhood N to be Θ.

Q.E.D

A.9.5 Proof of Theorem 1

Let:
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Gκ = E[∇κg(Z,β0, ϕ0, β
Y
0 , κ0)] = E

[
−
(
ϕ′

0R
(−t)′

j R
(−t)
j ϕ0

)]
GβY = E[∇βY g(Z,β0, ϕ0, β

Y
0 , κ0)] = E

[
−
(
ϕ′

0R
(−t)′

j Xj

)]
Gϕ = E[∇ϕg(Z,β0, ϕ0, β

Y
0 , κ0)] = E

[(
Y ′

j R
(−t)
j − 2κ0ϕ

′
0R

(−t)′

j R
(−t)
j

)]
Gβ = E[∇βg(Z,β0, ϕ0, β

Y
0 , κ0)] = E

[
−
(
Y ′

j A− 2κ0ϕ
′
0R

(−t)′

j A
)]

M1 =M3 = E
[
−
(
Ẍ ′

jẌj

)]
M2ϕ = E

[
−
(
R

(−t)′

j R
(−t)
j

)]
M2β = E[∇βm2(Z,β0,ϕ0)] = E

[
−
(
R

(−t)′

j Xj +X (−t)
j − X̃

(−t)

j −R
(−t)′

j A
)]

where Yj is a vector stacking Y jt, Rjt = R
obs

jt − X
′
jtβ0, Rj is a vector stacking all Rjt

for teacher j, R
(−t)
j is a matrix stacking T row vectors (of dimension 1× (T − 1)) with

each row (indexed by t) containing T − 1 different Rjk for k ̸= t. A is a T ×K matrix

such that each row consists of (ϕ1Xjt−1 + ϕ2Xjt−2 + ...). X
(−t)
j is a 1 × (T − 1) block

matrix stacking T ×K matrices of the covariates for teacher j in all years except year t.

X (−t)
j is a T − 1×K matrix where each row consists of R′

j multiplied by a submatrix of

X
(−t)
j . X̃ (−t)

j is a T − 1×K matrix where each row ϕ′
0R

(−t)′

j multiplied by a submatrix

of X
(−t)
j .

Furthermore let:

ψ1(Z) = −M−1
1 m1(Z,β0)

ψ2(Z) = −M−1
2ϕ m2(Z,β0,ϕ0)

ψ3(Z) = −M−1
3 m3(Z,β

Y
0 )

g(Z) = g(Z,β0, ϕ0, β
Y
0 , κ0).
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Then we have:

by TheoremA.7.1 we have that:

√
J
[
(β̂, ϕ̂, β̂Y , κ̂)− (β0, ϕ0, β

Y
0 ,κ0)

]
⇝

N
(
0, G̃−1E[g̃(Z,β0, ϕ0, β

Y
0 ,κ0)g̃(Z,β0, ϕ0, β

Y
0 ,κ0)

′]G̃−1′
)
.

Now note that the last row of G̃−1 is G−1
κ [1 GβYM−1

3 − GϕM
−1
2ϕ − GβM

−1
1 +

GϕM
−1
2ϕ M2βM

−1
1 ]. Multiplying that by g̃(Z,β0, ϕ0, β

Y
0 ,κ0) we get:

G−1
κ

(
g(Z)−GβYM−1

3 m3(Z,β
Y
0 )−GϕM

−1
2ϕ m2(Z,β0,ϕ0)−GβM

−1
1 m1(Z,β0)

+GϕM
−1
2ϕ M2βM

−1
1 m1(Z,β0)

)
= (G−1

κ )
(
g(Z) +GβY ψ3(Z) +Gϕψ2(Z) +Gβψ1(Z)−GϕM

−1
2ϕ M2βψ1(Z)

)
. (A.27)

Now note that the asymptotic variance of κ̂ would be the lower right block of the joint

variance matrix. Given that the quantity in (A.27) is a scalar, we can square it to obtain

the lower right block of the joint variance matrix and then:

√
J(κ̂− κ0)⇝ N

(
0, σ2

)
(A.28)

where σ2 = (G−1
κ )2E

((
g(Z) +GβY ψ3(Z) +Gϕψ2(Z) +Gβψ1(Z)−GϕM

−1
2ϕ M2βψ1(Z)

)2)
.

Q.E.D
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A.9.6 Proof of Lemma A.7.2

Under Assumptions 1, 2, and A.6.3, the proof of Point 1 is similar to the proofs for

Lemma A.7.1 and TheoremA.7.1. The proof of Point 2 is similar to the final part of the

proof of Theorem A.7.1.

A.9.7 Proof of Theorem A.7.2

Let:

E (m1(Z,β0)) = E
(
Ẍ ′

j

(
R̈obs

j − Ẍjβ0

))
(A.29)

E
(
m3(Z,β

Y
0 )
)
= E

(
Ẍ ′

j

(
Ÿ obs

j − Ẍjβ
Y
0

))
(A.30)

E
(
g1(Z,β0, β

Y
0 , κ0)

)
= E

(
R

(−t)′

j (Yj − a− κ0Rj)
)

(A.31)

where m1(),m3(), g1() are functions. Let:

g̃1(Z,β0, β
Y
0 , κ0) =

[
m1(Z,β0)

′,m3(Z,β
Y
0 )′, g1(Z,β0, β

Y
0 , κ0)

′]′ (A.32)

The proof to show that:
√
J
[
(β̂∗, β̂Y ∗, κ̂∗)− (β0, β

Y
0 ,κ0)

]
⇝ N (0,Ω∗) is similar to the

proof for Lemma A.7.1 and Theorem A.7.1. We need only that Ŵ ∗ p→ W ∗ and that W ∗

be invertible, these conditions are guaranteed by Lemma A.7.2, Point 1 of Assumption

2, and Points 2 and 5 of Assumption A.6.3.

Ω∗ ≤ Ω2 by Theorem 3.2 of Hansen (1982).
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A.9.8 Proof of Result A.7.1

The result follows from Lemmas 4.1 and 4.2 of Hansen (1982).

Note that the first two moment conditions are exactly identified. Then note that for the

last moment condition we have one parameter, κ0, and T − 1 possible instruments such

that the degrees of freedom of the χ2 distribution will be T − 1− 1 = T − 2.

A.9.9 Proof of Result 4

We have established in Theorem A.7.2 that the optimal GMM estimator has an asymp-

totic variance of Ω∗ =
(
G̃′

1W
∗G̃1

)−1

where,W ∗ = E[g̃1(Z,β0, β
Y
0 ,κ0)g̃(Z,β0, β

Y
0 ,κ0)

′]−1

and G̃1 = E
[
▽(β,βY ,κ)g̃1(Z,β0, β

Y
0 ,κ0)

]
. We can write our moment conditions as E[Q′u]

where Q is a block diagonal matrix with blocks Ẍj , Ẍj ,R
(−t)
j and u =


ϵ̈j + µ̈j

η̈j + κ0µ̈j

ηj − κ0ϵj

.

Note that under Assumption 4 we have:

G̃1 =


−E(Ẍ ′

jẌj) 0 0

0 −E(Ẍ ′
jẌj) 0

−E(Bj + κ0R
(−t)′

j Xj) −E(R(−t)′

j Xj) −E(R(−t)′

j Rj)



=


−E(Ẍ ′

jẌj) 0 0

0 −E(Ẍ ′
jẌj) 0

0 0 −E(R(−t)′

j Rj)


where Bj is a matrix where each row consists of a column of X

(−t)
j multiplied by

156



Appendix for “A Framework for Using Value-Added in Regression” Chapter A

(Yj − κ0Rj) = (ηj − κ0ϵj). The second equality then follows from Assumption 4 which

makes all off-diagonal elements zero.

Then we can write: G̃1 = −E[Q′L] = −E[Q′E[L|Q]] where L is a block diagonal matrix

with blocks Ẍj , Ẍj ,Rj and W ∗ = E[Q′uu′Q] = E[Q′E[uu′|Q]Q]. Then the variance

from the optimal GMM estimator will be:

Ω∗ =
(
E[Q′E[L|Q]]′E[Q′E[uu′|Q]Q]−1E[Q′E[L|Q]]

)−1

and the optimal instrument following Chamberlain (1987) are:

Q∗ = E[uu′|Q]−1E[L|Q] (A.33)

and yield an asymptotic variance of

Ω∗ =
(
E
(
E[L|Q]′E[uu′|Q]−1E[L|Q]

))−1

where the moment conditions will then be:

E[(Q∗)′u] = E[(E[uu′|Q]−1E[L|Q])′u] (A.34)

where:

E[L|Q] =


Ẍj 0 0

0 Ẍj 0

0 0 E[Rj|Q]


and note that E[Rj|Q] = E[µj|R(−t)

j ] + E[ϵj|Ẍj ] because Xj is independent of µj by

Assumption 4, and ϵj is independent of R
(−t)
j by point 2 of Assumption 4 and by point

3 of Assumption 1. Finally note that E[ϵj|Ẍj ] = 0 by point 3 of Assumption 4.
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A.9.10 Proof of Result 5

Starting with E
(
Ẍ ′

j

(
R̈obs

j − Ẍjβ0

))
= 0:

E
(
Ẍ ′

j

(
R̈obs

j − Ẍjβ0

))
=E

(
Ẍ ′

j (µ̈j + ϵ̈j)
)

=0

where the first equality follows from (1.2), and the second equality follows from Point 3

of Assumption 2. Then by Point 1 of Assumption 2, we have that E(Ẍ ′
jẌj) is invertible,

therefore β0 is uniquely identified.

Now moving to E
(
D′

j (Rj −Djα0)
)
= 0:

E
(
D′

j (Rj −Djα0)
)

=E
(
D′

j (µj + ϵj −Djα0)
)

=E
(
D′

j (ζj + ϵj)
)

=0

where the first equality follows from (1.2), the second equality follows from (1.23). The

third equality follows from the fact that ζjt is orthogonal to Djt by construction and by

Point 2 of Assumption 5. Then by Point 1 of Assumption 5, we have that E(D′
jDj) is

invertible, therefore α0 is uniquely identified.
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A.9.11 Proof of Theorem A.7.3

Note that Ŵ = W = I and consistency of the GMM estimators follows using a similar

proof to Lemma A.7.1.

Now to show asymptotic normality we start by rewriting the moments as:

E (m1(Z,β)) = E
(
Ẍ ′

j

(
R̈obs

j − Ẍjβ
))

(A.35)

E (m4(Z,β,α)) = E
(
D′

j

(
R̃j −Djα

))
(A.36)

where Zj =
(
Xj,R

obs
j ,Dj

)
, Z2 stacks the Zj, and m1(),m4() are functions. Let

g̃2(Z2,β,α) = [m1(Z2,β)
′,m4(Z2,β,α)′]

′
(A.37)

be a vector stacking the two functions.

A GMM estimator is asymptotically normal if it’s consistent and conditions (i)-(v) of

Theorem 3.4 of Newey and McFadden (1994) are satisfied.

Condition (i) holds under Point 1 of Assumption A.6.4. Condition (ii) holds by inspection.

The first part of condition (iii) holds by Result 5 and the second part: second part note

that:

E[||g̃2(Z2,β0,α0)||2] = E (trace (g̃2(Z2,β0,α0)g̃2(Z2,β0,α0)
′)) .

Therefore for E[||g̃2(Z2,β0,α0)||2] to be finite we need that:

E
(
Ẍ ′

j

(
R̈obs

j − Ẍjβ0

)(
R̈obs

j − Ẍjβ0

)′ (
R̈obs

j − Ẍjβ0

))
<∞

E
(
D′

j (Rj −Djα0) (Rj −Djα0)
′ Dj

)
<∞
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which holds by Point 4 of Assumption A.6.4.

For condition (iv) we need to show that: E

[
sup

(β,α)∈N
||▽g̃2(Z2,β,α)||

]
< ∞ for a neigh-

borhood N around (β0, α0).

E

[
sup

(β,α)∈N
||▽g̃2(Z2,β,α)||

]
= E

(
sup

(β,α)∈N

√
trace (▽g̃2(Z2,β,α)▽g̃2(Z2,β,α)′)

)

Since by the triangle inequality applied to the Euclidean norm, a sufficient condition for

the quantity above to be finite, is that the sum of absolute values of the diagonal elements

be finite. So we need that:

E
∣∣∣(Ẍ ′

jẌj

)∣∣∣ <∞

E
∣∣(D′

jDj

)∣∣ <∞.

these conditions are guaranteed by Point 1 of Assumption A.6.4 and Point 1 of Assump-

tion 2.

Condition (v) is satisfied under Point 1 of Assumption 2 and Point 1 Assumption 5.

A.9.12 Proof of Theorem 3

The asymptotic variance of α can be obtained from partitioned matrix inversion. Let:
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G̃α = −E
(
D′

jDj

)
G̃β = −E

(
D′

jXj

)
M̃1 = −E

(
Ẍ ′

jẌj

)

Now note that the second row of G̃−1
2 is [−G̃−1

α G̃βM̃
−1
1 , G̃−1

α ] which can be written as

G̃−1
α [−G̃βM̃

−1
1 , I]. Multiplying that by g̃2(Z2,β0,α0) we get:

G̃−1
α

(
D′

j (Rj −Djα0)− G̃βM̃
−1
1 Ẍ ′

j

(
R̈obs

j − Ẍjβ0

))
=− E

(
D′

jDj

)−1
(
D′

j (Rj −Djα0)− E
(
D′

jXj

)
E
(
Ẍ ′

jẌj

)−1

Ẍ ′
j

(
R̈obs

j − Ẍjβ0

))

Taking the quadratic of the above with

Γ =

(
D′

j (Rj −Djα0)− E
(
D′

jXj

)
E
(
Ẍ ′

jẌj

)−1

Ẍ ′
j

(
R̈obs

j − Ẍjβ0

))
yields:

V1 = E(D′
jDj)

−1E (ΓΓ′)E(D′
jDj)

−1′
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A.9.13 Algebra for Corollary 1

Gϕ = E
[(

Y ′
j R

(−t)
j − 2κ0ϕ

′
0R

(−t)′

j R
(−t)
j

)]
= E

[(
Y ′

j − 2κ0ϕ
′
0R

(−t)′

j

)
R

(−t)
j

]
= E

[(
ηj + κ0θj − κ0ϵj − κ0ϕ

′
0R

(−t)′

j

)
R

(−t)
j

]
= −κ0ϕ′

0E
(
R

(−t)′

j R
(−t)
j

)

A.9.14 Proof of Overidentification

To see that note that (1.14) is equivalent to:

ϕ′
0E
(
R

(−t)′

j

(
Yj − κ0R

(−t)
j ϕ0

))
=ϕ′

0E
(
R

(−t)′

j (Yj − κ0Rj + κ0θj)
)

=ϕ′
0E
(
R

(−t)′

j (Yj − κ0Rj)
)
= 0

where the first equality follows from (1.15) and the second equality follows from the

fact that R
(−t)
j and θj are uncorrelated by construction. Notably, (1.14) only requires

that a linear combination of E
(
R

(−t)′

j (Yj − κ0Rj)
)
be equal to zero. However, under

Assumptions 1 and 2 we have the stronger conditions:
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E
(
R

(−t)′

j (Yj − κ0Rj)
)

=E
(
R

(−t)′

j ηj − κ0R
(−t)′

j ϵj

)
=0

where the first equality follows from (1.3) and (1.8). The second equality follows from

the fact that:

E
(
R

(−t)
j ηj

)
=E

(
(µ

(−t)
j + ϵ

(−t)
j )ηj

)
=E

(
µ

(−t)
j ηj

)
+ E

(
ϵ
(−t)
j ηj

)
=0

where analogously to R
(−t)
j , each row in µ

(−t)
j stacks µjs for each t with s ̸= t and

each row in ϵ
(−t)
j stacks ϵjs for each t with s ̸= t. The equalities then follow from

E
(
µjsηjt

)
= 0 by Assumption 1 and E

(
ϵjsηjt

)
= 0 by Assumption 1. A similar argument

shows E
(
R

(−t)′

j ϵj

)
.
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B.1 Figures
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(d) 6-Year Graduation

Figure B.1: Distribution of Freshman Advisor Grade VA Effects on Academic Per-
formance and College Completion

Sample includes first-time enrolling freshman students from the academic years 2003-
2004 to 2015-2016. The sample is restricted to 2003-2004 to 2012-2013 for graduation
outcomes. The figures plot a nonparametric estimate of the conditional mean of outcomes
(residualized with respect to a year fixed effect) on standardized VA (residualized with
respect to a year fixed effect). Specifically, we estimate a nonparametric regression of
residualized outcomes on residualized standardized VA using a local linear regression. We
then plot the point-estimates from the nonparametric regression with the corresponding
bias-corrected confidence intervals following Calonico, Cattaneo and Farrell (2018).

165



Appendix for “Advisor Value-Added and Student Outcomes: Evidence from Randomly Assigned
College Advisors” Chapter B

-.1
-.0

5
0

.0
5

.1
.1

5
Se

le
ct

iv
e 

En
ro

llm
en

t

-2 -1 0 1 2
Advisor VA

point estimate 95% C.I.
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(c) Top Students’ Selective Major Enroll-
ment
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(d) Top Students’ Selective Major Gradu-
ation

Figure B.2: Distribution of Freshman Advisor Grade VA Effects on Selective Major
Enrollment and Graduation

Sample includes first-time enrolling freshman students from the academic years 2003-
2004 to 2015-2016. The sample is restricted to 2003-2004 to 2012-2013 for graduation
outcomes. The figures plot a nonparametric estimate of the conditional mean of outcomes
(residualized with respect to a year fixed effect) on standardized VA (residualized with
respect to a year fixed). Specifically, we estimate a nonparametric regression of resid-
ualized outcomes on residualized standardized VA using a local linear regression. We
then plot the point-estimates from the nonparametric regression with the corresponding
bias-corrected confidence intervals following Calonico, Cattaneo and Farrell (2018).
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(f) 6-Year In-Major Graduation

Figure B.3: Distribution of Sophomore Advisor Grade VA Effects on Academic Per-
formance and College Completion

The sample includes first-time enrolling sophomore students from the academic years 2003-2004 to 2015-
2016. The sample is restricted to the yeas 2003-2004 to 2012-2013 for graduation outcomes. The figures
plot a nonparametric estimate of the conditional mean of outcomes (residualized with respect to year and
department fixed effects) on standardized VA (residualized with respect to year and department fixed
effects). Specifically, we estimate a nonparametric regression of residualized outcomes on residualized
standardized VA using a local linear regression. We then plot the point-estimates from the nonparametric
regression with the corresponding bias-corrected confidence intervals following Calonico, Cattaneo and
Farrell (2018).
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B.2 Tables

Table B.1: Summary Statistics

Mean S.D. Obs.
(1) (2) (3)

A. Student Level Covariates

Female 0.478 0.500 3,857
Math SAT 573 75.5 3,857
Verbal SAT 494 90.0 3,857
Legacy Status 0.202 0.402 3,857

B. Student Level Outcomes

Freshman GPA 76.5 9.15 3,857
Become a Sophomore 0.794 0.405 3,857
Time to Sophomore 2.480 1.159 3,047
Graduate in 4 years 0.458 0.498 2,952
Graduate in 6 Years 0.575 0.494 2,952
Enroll in Selective Major 0.429 0.495 3,857
Graduate from Selective Major 0.355 0.478 2,952

C. Advisor-Year Level Characteristics

Female 0.389 0.489 131
Science Department 0.565 0.498 131
Lecturer and Other 0.100 0.300 131
Assistant Professor 0.400 0.491 131
Associate Professor 0.221 0.417 131
Professor 0.282 0.452 131
Number of Students 31.1 7.54 131

Our main sample includes freshman students who first enrolled in AUB in the academic
years 2003-2004 to 2015-2016. Data from these years comprise 38 unique advisors. Our
graduation sample includes students who first enrolled in AUB in the academic years
2003-2004 to 2012-2013.
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Table B.2: Estimate of Forecast Bias of Advisor Grade VA Measure

Freshman Course Grade

Advisor VA 0.971
(0.253)

Mean of VA -0.005
S.D of VA 0.055
Number of Observations 39,369

Standard errors in parentheses are clustered at the advisor-year level. Regression includes
year fixed effects. Freshman advisor VA is constructed using a leave-year out estimate
as described in the methodology section.

Table B.3: Test of Random Assignment

Advisor Grade VA

Math SAT 0.0004
(0.0003)

Verbal SAT 0.0001
(0.0003)

Female 0.0216
(0.0320)

Legacy -0.0354
(0.0402)

Number of Observations 3,857
P-Value Joint Significance 0.25

Sample includes first-time enrolling freshman students from the academic years 2003-
2004 to 2015-2016. Standard errors in parentheses are clustered at the advisor-year level.
Regression includes year fixed effects. Advisor VA is standardized by year.
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Table B.4: Random Assignment Check

Math SAT Verbal SAT
Empirical P-Value Empirical P-Value

(1) (2)

A. Test for Student Characteristics

Kolmogorov-Smirnow test (no. failed/total tests) 0/13 0/13

χ2 goodness of fit test (no. failed/total tests) 0/13 0/13

B. Test for Advisor Characteristics

Advisor Grade VA 0.021 0.033
(0.025) (0.021)

Associate/Full Professor -0.044 0.004
(0.060) (0.056)

Number of Observations 131 131

Sample includes first-time enrolling freshman students from the academic years 2003-
2004 to 2015-2016. Standard errors in parentheses are clustered at the advisor level. All
regressions include year fixed effects. The empirical p-value of each advisor represents the
proportion of the 10,000 simulated groups of students with a summed value less than that
of the observed group. Advisor VA is standardized by year. The Kolmogorov-Smirnov
and χ2 goodness of fit test results indicate the number of tests of the uniformity of the
distribution of p-values that failed at the 5 percent level.
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Table B.5: Effect of Advisor Grade VA on Academic Performance, Retention and
College Completion

Standardized Becoming Time to 4-Year 6-Year
GPA Sophomore Sophomore Graduation Graduation
(1) (2) (3) (4) (5)

A. No Controls

Advisor Grade VA 0.057 0.008 -0.078 0.025 0.015
(0.016) (0.006) (0.026) (0.008) (0.010)

B. With Controls

Advisor Grade VA 0.048 0.007 -0.072 0.022 0.013
(0.014) (0.006) (0.025) (0.008) (0.010)

Mean Dep Var 0.038 0.794 2.480 0.458 0.575
R2 No Controls 0.010 0.014 0.060 0.017 0.014
R2 with Controls 0.149 0.024 0.080 0.058 0.042
Number of Observations 3,857 3,857 3,047 2,952 2,952

Sample includes first-time enrolling freshman students from the academic years 2003-
2004 to 2015-2016. The sample is restricted to 2003-2004 to 2012-2013 for graduation
outcomes. Standard errors in parentheses are clustered at the advisor-year level. All
regressions include year fixed effects and advisor VA is standardized by year. Controls
include math and verbal SAT scores, a dummy variable for being a female, and a dummy
variable for being a legacy student.

171



Appendix for “Advisor Value-Added and Student Outcomes: Evidence from Randomly Assigned
College Advisors” Chapter B

Table B.6: Effect of Advisor Grade VA on Student Major Choice

Overall Non-top Top Top Top
Sample Students Students Male Female

(1) (2) (3) (4) (5)

A. Selective Major

Enrollment 0.024 0.013 0.049 0.051 0.044
(0.008) (0.009) (0.011) (0.018) (0.020)

Graduation 0.015 0.006 0.039 0.048 0.017
(0.009) (0.010) (0.015) (0.021) (0.025)

Mean Enrollment 0.429 0.357 0.567 0.586 0.537
Mean Graduation 0.355 0.299 0.464 0.469 0.456

B. STEM Major

Enrollment 0.010 -0.006 0.038 0.032 0.049
(0.007) (0.008) (0.014) (0.018) (0.022)

Graduation 0.010 -0.007 0.042 0.038 0.046
(0.007) (0.008) (0.014) (0.020) (0.024)

Mean Enrollment 0.216 0.138 0.368 0.410 0.300
Mean Graduation 0.163 0.098 0.290 0.326 0.232

C. Business Major

Enrollment 0.013 0.019 0.010 0.019 -0.005
(0.006) (0.008) (0.010) (0.011) (0.019)

Graduation 0.005 0.012 -0.004 0.010 -0.029
(0.006) (0.007) (0.012) (0.014) (0.020)

Mean Enrollment 0.212 0.219 0.190 0.175 0.238
Mean Graduation 0.191 0.200 0.174 0.143 0.224

N Enrollment 3,857 2,540 1,317 816 501
N Graduation 2,952 1,957 995 616 379

Sample includes first-time enrolling freshman students from the academic years 2003-
2004 to 2015-2016. The sample is restricted to 2003-2004 to 2012-2013 for graduation
outcomes. Standard errors in parentheses are clustered at the advisor-year level. All
regressions include year fixed effects and advisor VA is standardized by year. Controls
include math and verbal SAT scores, a dummy variable for being a female, and a dummy
variable for being a legacy student.
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Table B.7: Effect of Various VA Skill Measures on the Corresponding Skills

(1) (2) (3) (4) (5) (6)

Panel A:
Standardized GPA Persistence Index

Grade VA 0.058 0.055 0.054 0.052
(0.016) (0.015) (0.019) (0.018)

Persistence VA 0.040 0.023 0.040 0.023
(0.019) (0.016) (0.019) (0.017)

Number of Observations 2,949 2,984 2,917 2,952 2,987 2,920

Panel B:
Standardized GPA Selective Index

Grade VA 0.058 0.049 0.042 0.032
(0.016) (0.016) (0.019) (0.018)

Selective VA 0.050 0.033 0.060 0.045
(0.018) (0.016) (0.019) (0.020)

Number of Observations 2,949 2,984 2,917 2,952 2,987 2,920

Sample includes first-time enrolling freshman students from the academic years 2003-2004
to 2012-2013 to be able to create graduation outcomes. Standard errors in parentheses
are clustered at the advisor-year level. All regressions include year fixed effects and VA
is standardized by year. Each column represents estimates from a separate regression.
Controls included are math and verbal SAT scores, a dummy variable for being a female,
and a dummy variable for being a legacy student. The slight difference in number of
observations across columns is due to missing data points for some VA measures.

173



Appendix for “Advisor Value-Added and Student Outcomes: Evidence from Randomly Assigned
College Advisors” Chapter B

Table B.8: Effect of Sophomore Advisor Grade VA on Academic Performance, Re-
tention and College Completion

Standardized Dropout 4-Year 6-Year 4-Year 6-Year
GPA after Sophomore Graduation Graduation Graduation Graduation

in Major in Major
(1) (2) (3) (4) (5) (6)

A. Overall Sample

Grade VA 0.037 -0.003 0.023 0.016 0.020 0.013
(0.007) (0.005) (0.010) (0.009) (0.011) (0.010)

Mean Dep Var 0.004 0.088 0.527 0.791 0.403 0.549
Number of Observations 14,055 14,055 9,120 9,120 9,120 9,120

B. STEM Majors

Grade VA 0.041 -0.010 0.034 0.026 0.030 0.019
(0.010) (0.003) (0.011) (0.008) (0.015) (0.014)

Mean Dep Var 0.081 0.070 0.579 0.814 0.417 0.528
Number of Observations 7,859 7,859 4,985 4,985 4,985 4,985

C. Non-STEM Majors

Grade VA 0.024 0.006 0.08 0.001 0.012 0.008
(0.008) (0.009) (0.013) (0.012) (0.012) (0.012)

Mean Dep Var -0.092 0.109 0.466 0.765 0.386 0.574
Number of Observations 6,196 6,196 4,135 4,135 4,135 4,135

Sample includes first-time enrolling sophomore students from the academic years 2003-
2004 to 2015-2016. The sample is restricted to 2003-2004 to 2012-2013 for graduation
outcomes. Standard errors in parentheses are clustered at the advisor-year level. Regres-
sions includes department and year fixed effects. Advisor VA is standardized by year.
Controls include math and verbal SAT scores, a dummy variable for being a female,
and a dummy variable for being a legacy student. SAT scores are standardized within
department and year.
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Table B.9: Effect of Advisor Grade VA on Course-Level Freshman Student Outcomes

Take Science or Fail Withdraw from
Maths Course Course Course

(1) (2) (3)

A. First Semester

Advisor Grade VA -0.002 -0.009 -0.005
(0.004) (0.003) (0.002)

Mean Dep. Var. 0.317 0.067 0.053
Course-Term FE No Yes Yes
N 19,371 19,371 19,371

B. Second Semester

Advisor Grade VA -0.002 -0.009 0.000
(0.004) (0.003) (0.002)

Mean Dep. Var. 0.305 0.072 0.048
Course-Term FE No Yes Yes
Number of Observations 16,092 16,092 16,092

Sample includes first-time enrolling freshman students from the academic years 2003-2004
to 2015-2016. Standard errors in parentheses clustered two-ways at the advisor-year and
individual level. All regressions include year fixed effects and advisor VA is standardized
by year. Controls include math and verbal SAT scores, a dummy variable for being a
female, and a dummy variable for being a legacy student. Sample includes students from
academic years 2003-2004 till 2015-2016.
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B.3 Appendix Figures

Figure A1: Standardized distribution of advisor VA measure

Notes: The above figure shows the standardized distribution of our constructed advisor value-
added measure—based on student course grades. Freshman advisor VA is standardized by year
and the sample includes students matched to a freshman advisor who initially enrolled at AUB
from academic years 2003-2004 till 2015-2016.
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Figure A2: Discrete Treatment on Freshman Academic Performance and College
Completion

(a) Standardized GPA (b) Time to Sophomore

(c) 4-year Graduation (d) 6-Year Graduation

Notes: The different panels show the impacts of being matched to freshman advisors from different
quartiles of the grade VA distribution. Sample includes first-time enrolling freshman students from
the academic years 2003-2004 to 2015-2016. The sample is restricted to 2003-2004 to 2012-2013
for graduation outcomes. Point estimates represent coefficients from regressions of advisor VA
quartile (with the second quartile as the baseline excluded category) on student outcomes. All
regression include year fixed effects and students controls. All bars represent 95% confidence
intervals with standard errors clustered at the advisor-year level.
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Figure A3: Discrete Treatment on Freshman Selective Major Enrollment and Grad-
uation

(a) Selective Major Enrollment (b) Selective Major Graduation

(c) Top Students’ Selective Major Enroll-
ment

(d) Top Students’ Selective Major Gradu-
ation

Notes: The different panels show the impacts of being matched to freshman advisors from different
quartiles of the grade VA distribution. Sample includes first-time enrolling freshman students from
the academic years 2003-2004 to 2015-2016. The sample is restricted to 2003-2004 to 2012-2013
for graduation outcomes. Point estimates represent coefficients from regressions of advisor VA
quartile (with the second quartile as the baseline excluded category) on student outcomes. All
regression include year fixed effects and students controls. All bars represent 95% confidence
intervals with standard errors clustered at the advisor-year level.
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Figure A4: Discrete Treatment on Sophomore Academic Performance and College
Completion

(a) Standardized GPA (b) Dropout after Sophomore

(c) 4-year Graduation (d) 6-Year Graduation

Notes: The different panels show the impacts of being matched to sophomore advisors from
different quartiles of the grade VA distribution. Sample includes first-time enrolling sophomore
students from the academic years 2003-2004 to 2015-2016. The sample is restricted to 2003-2004
to 2012-2013 for graduation outcomes. Point estimates represent coefficients from regressions
of advisor VA quartile (with the second quartile as the baseline excluded category) on student
outcomes. All regression include year and department fixed effects and students controls. All
bars represent 95% confidence intervals with standard errors clustered at the advisor-year level.
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B.4 Appendix Tables

Table A1: Requirements for admission in different majors

Number of credits required in each discipline by major

Notes: The above table shows the number of credits that a student must pass during the freshman
year within each discipline in order to be eligible for admission into engineering, physics, business
and history. Each course is typically equivalent to 3 credits.

Additional course and grade requirements by major

Notes: The above table shows specific courses and grades that students must obtain during
the freshman year to be eligible for admission into engineering, physics, business and history. For
example, the engineering department requires that students take Math 101 (Calculus I), Math 102
(Calculus II), CHEM 101 and 101L (General Chemistry) and PHYS 101 and 101L (Introductory
Physics). By passing these courses, students receive enough credits to fulfill the math and science
credit requirements for admission into engineering (the first table shows that students need 6
credits in math and 9 credits in sciences).
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Table A2: Pre-major academic advising at other private 4-year colleges and univer-
sities

College/University Advisors help students with Meetings Advisors are

Amherst College defining academic goals, improving academic skills, One-on-one Faculty
selecting courses, exploring new areas of study meetings prior to

and declaring a major course registration

Duke University selecting courses, setting academic goals, One-one meeting during Faculty or
deciding on field of study, finding co-curricular orientation week and prior to staff members

opportunities course registration

Harvard College choosing courses, meeting degree One-on-one meetings during Faculty,
requirements, considering concentration course selection week and every administrators or
options, or planning for the summer 3 or 4 weeks during semester graduate students

Middlebury College choosing courses and major One-on-one meetings Faculty
keeping tabs on academic problems prior to course registration

Princeton University setting long-term academic goals, selecting courses, One-on-one meetings Faculty
discovering academic interests each semester

Swarthmore College selecting courses and program of study; maintaining One-on-one meetings during Faculty, deans,
academic success; discuss setting goals, time pre-registration period or when administrators, or

management, balancing academics with other parts of life students have academic difficulties staff members

Vanderbilt University creating course schedule; discuss academic goals Phone meeting prior to Fall semester Faculty
and progress towards fulfilling curriculum requirements and one-on-one meeting later on

Wesleyan University academic planning, setting long-term academic and One-on-one Faculty
career goals, selecting courses and program of study meetings

Williams College choosing a major and courses, setting long-term One-one meetings Faculty
career goals; check in on students’ prior to each course
well-being and academic progress registration period

Yale University selecting courses, setting academic goals, Advisors set up Faculty, administrators
deciding on program of study one-on-one meetings or staff members

Notes: This table shows the organization of pre-major academic advising at various U.S. private 4-year colleges or universities. The information is taken from
each college or university’s website.
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Table A3: Pre-major academic advising at other private 4-year colleges and univer-
sities (continued)

College/University Advisors have access to Advisors notified of students’ Advisors approve
students’ academic records academic standing course withdrawals

Amherst College N/A N/A Yes

Duke University N/A N/A but students urged to No but students encouraged to
talk to advisor in case of academic probation discuss course withdrawal with advisors

Harvard College N/A N/A N/A

Middlebury College Advisors emailed when students No but students should
Yes receive course warning (i.e., expected discuss course withdrawal with advisors

to earn a final grade of “D” or “F”)

Princeton University N/A N/A Required approval of Residential dean,
director of studies, or academic advisor

Swarthmore College Advisors receive copies of
Yes all official correspondence concerning No

advisees’ academic standing

Vanderbilt University N/A N/A Yes

Wesleyan University Advisors notified of students’
Yes Unsatisfactory Progress Report and required No

to schedule one-on-one meeting in that case

Williams College N/A Advisors notified of students’ No
unsatisfactory grades

Yale University N/A N/A No

Notes: This table reports whether pre-major advisors at various U.S. private 4-year colleges or universities perform certain tasks. Each task is shown in a
different column. The information is taken from each college or university’s website. Information is reported as unavailable (N/A) in case we could not find
it on the corresponding university/college’s website.
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Table A4: Estimate of Forecast Bias of Freshman Advisor Grade VA Measure with
Different Sample Splits

A. Leave Current Year and 2 Lags Out

Freshman Course Grade

Advisor VA 0.950***
(0.333)

N 33,981

B. Leave Current Year and 2 Leads Out

Freshman Course Grade

Advisor VA 1.052***
(0.301)

N 33,696

C. Random Sample Split

Freshman Course Grade

Advisor VA 0.811***
(0.343)

N 17,749

Notes: Standard errors in parentheses are clustered at the advisor-year level. All
regressions include year fixed effects. Freshman advisor VA is constructed using a
leave-year out estimate as described in the methodology section. In Panel C, the
random sample split is done by randomly dropping half of the observations in a each
year, estimating leave-year out VA, then checking for forecast unbiasedness using the
dropped observations. *** p <0.01 ** p <0.05 * p <0.1.
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Table A5: Heterogeneous Effects of Advisor Grade VA on Academic Performance and
Retention

Overall Below Median Above Median
Sample Math SAT Math SAT Male Female
(1) (2) (3) (4) (5)

A. Standardized GPA

No Controls 0.057*** 0.042** 0.072*** 0.054** 0.058***
(0.016) (0.017) (0.023) (0.024) (0.014)

Controls 0.048*** 0.041** 0.054*** 0.047** 0.047***
(0.014) (0.016) (0.020) (0.023) (0.013)

Mean Dep. Var. 0.038 -0.111 0.202 -0.094 0.182
N 3,857 2,019 1,838 2,014 1,843

B. Likelihood of Becoming Sophomore

No Controls 0.008 0.001 0.013 0.003 0.012
(0.006) (0.009) (0.008) (0.009) (0.008)

Controls 0.007 0.001 0.012 0.003 0.011
(0.006) (0.009) (0.008) (0.009) (0.008)

Mean Dep. Var. 0.793 0.772 0.817 0.773 0.816
N 3,857 2,019 1,838 2,014 1,843

C. Time to Sophomore

No Controls -0.078*** -0.107*** -0.049 -0.062* -0.089***
(0.026) (0.032) (0.032) (0.033) (0.030)

Controls -0.072*** -0.103*** -0.041 -0.056* -0.086***
(0.025) (0.031) (0.031) (0.032) (0.029)

Mean Dep. Var. 2.480 2.587 2.373 2.527 2.433
N 3,047 1,526 1,521 1,525 1,522

Notes: Sample includes first-time enrolling freshman students from the academic years
2003-2004 to 2015-2016. Standard errors in parentheses are clustered at the advisor-
year level. All regressions include year fixed effects and advisor VA is standardized
by year. Controls include math and verbal SAT scores, a dummy variable for being
a female, and a dummy variable for being a legacy student. *** p <0.01 ** p <0.05
* p <0.1.
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Table A6: Effect of Advisor Grade VA on Student Outcomes Using Graduation Sam-
ple

Standardized Become Time to Enroll in a
GPA a Sophomore Sophomore Selective Major
(1) (2) (3) (3)

A. No Controls

Advisor Grade VA 0.070*** 0.007 -0.081*** 0.022**
(0.018) (0.008) (0.028) (0.009)

B. With Controls

Advisor Grade VA 0.056*** 0.006 -0.075*** 0.023**
(0.016) (0.008) (0.026) (0.009)

Mean Dep Var 0.035 0.776 2.575 0.434
N 2,952 2,952 2,287 2,952

Notes: Sample includes first-time enrolling freshman students from the aca-
demic years 2003-2004 to 2012-2013. Standard errors in parentheses are clus-
tered at the advisor-year level. All regressions include year fixed effects. Advi-
sor VA is standardized by year. Controls include math and verbal SAT scores,
a dummy variable for being a female, and a dummy variable for being a legacy
student. Sample includes students from academic years 2003-2004 till 2012-
2013. *** p <0.01 ** p <0.05 * p <0.1.
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Table A7: Heterogeneous Effects of Advisor Grade VA on College Completion

Overall Below Median Above Median
Sample Math SAT Math SAT Male Female
(1) (2) (3) (4) (5)

A. 4-Year Graduation

No Controls 0.025*** 0.024** 0.023* 0.030** 0.017
(0.008) (0.011) (0.013) (0.012) (0.012)

Controls 0.022*** 0.025** 0.020 0.028** 0.014
(0.008) (0.010) (0.013) (0.012) (0.012)

Mean Dep. Var. 0.458 0.422 0.500 0.480 0.575

B. 6-Year Graduation

No Controls 0.015 0.008 0.020 0.019 0.010
(0.009) (0.011) (0.015) (0.014) (0.010)

Controls 0.013 0.010 0.018 0.018 0.008
(0.010) (0.011) (0.015) (0.014) (0.010)

Mean Dep. Var. 0.575 0.547 0.606 0.600 0.687

N 2,952 1,551 1,401 1,551 1,401

Notes: Sample includes first-time enrolling freshman students from the academic years
2003-2004 to 2012-2013. Standard errors in parentheses clustered at the advisor-year
level. All regressions include year fixed effects and advisor VA is standardized by
year. Controls include math and verbal SAT scores, a dummy variable for being a
female, and a dummy variable for being a legacy student. *** p <0.01 ** p <0.05 *
p <0.1.
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Table A8: Effect of Non-Grade VA on Academic Performance, College Completion,
and Major Choice

Standardized 4-Year 6-Year Proportion Proportion Enroll Graduate Proportion
GPA Graduation Graduation of Courses of Courses in Selective from Selective of Courses

Withdrawn Failed Major Major Science
(1) (2) (3) (4) (5) (6) (7) (8)

Persistence VA 0.040** 0.018** 0.014 -0.004** -0.005 0.020** 0.024*** 0.010**
(0.019) (0.008) (0.009) (0.002) (0.004) (0.008) (0.008) (0.004)

Selective VA 0.050*** 0.018** 0.016* -0.005*** -0.007* 0.024*** 0.028*** 0.008**
(0.018) (0.008) (0.010) (0.002) (0.004) (0.009) (0.009) (0.004)

N 2,984 2,987 2,987 2,987 2,987 2,987 2,987 2,987

Notes: Sample includes first-time enrolling freshman students from the aca-
demic years 2003-2004 to 2012-2013 to be able to create graduation outcomes.
Standard errors in parentheses are clustered at the advisor-year level. All re-
gressions include year fixed effects and VA is standardized by year. Controls
included are math and verbal SAT scores, a dummy variable for being a fe-
male, and a dummy variable for being a legacy student. *** p <0.01 ** p
<0.05 * p <0.1.

Table A9: Maximum Likelihood Correlations Between Different VA measures

Grade VA Persistence VA Selective VA

Grade VA 1.00

Persistence VA 0.59 1.00

Selective VA 0.60 0.78 1.00

Notes: This table presents the two-way correlation coefficient be-
tween the estimated VA on Grades, the Persistence Index, and the
Selectiveness Index. Correlations were computed using the maxi-
mum likelihood approach described in section IV-E.
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Table A10: Summary Statistics for Sophomore Sample

Mean S.D. Obs.
(1) (2) (3)

A. Student Level Covariates

Female 0.480 0.500 14,055
Math SAT 644 72.2 14,055
Verbal SAT 530 106.2 14,055
Legacy Status 0.249 0.432 14,055

B. Student Level Outcomes

Sophomore GPA 77.5 7.84 14,055
Dropout after Sophomore 0.088 0.283 14,055
Graduate in 4 years 0.529 0.499 9,120
Graduate in 6 Years 0.796 0.403 9,120
Graduate in 4 years in major 0.405 0.491 9,120
Graduate in 6 Years in major 0.554 0.497 9,120

C. Advisor-Year Level Characteristics

Female 0.310 0.463 736
Science Department 0.484 0.500 736
Lecturer and Other 0.240 0.428 736
Assistant Professor 0.352 0.478 736
Associate Professor 0.174 0.379 736
Professor 0.234 0.423 736
Number of Students 19.1 19.5 736

Notes: Our main sample includes sophomore students who first enrolled in AUB in the
academic years 2003-2004 to 2015-2016. Data from these years comprise 194 unique
advisors. Our graduation sample includes students who first enrolled in AUB in the
academic years 2003-2004 to 2012-2013. Data from these years comprise 152 unique
advisors.
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Table A11: Estimate of Forecast Bias of Advisor Grade VA Measure for Sophomore
Sample

Sophomore Course Grade

Advisor Grade VA 0.991***
(0.163)

Mean of VA 0.0004
S.D of VA 0.043
N 144,093

Notes: Standard errors in parentheses are clustered at the advisor-
year level. Regressions includes department and year fixed effects.
Sophomore advisor VA is constructed using a leave-year out esti-
mate as described in the methodology section. *** p <0.01 ** p
<0.05 * p <0.1.
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Table A12: Estimate of Forecast Bias of Sophomore Advisor Grade VA Measure with
Different Sample Splits

A. Leave Current Year and 2 Lags Out

Sophomore Course Grade

Advisor VA 1.017***
(0.164)

N 141,305

B. Leave Current Year and 2 Leads Out

Sophomore Course Grade

Advisor VA 1.060***
(0.164)

N 139,181

C. Random Sample Split

Sophomore Course Grade

Advisor VA 0.891***
(0.192)

N 71,939

Notes: Standard errors in parentheses are clustered at the advisor-year level. Regres-
sions include department, and year fixed effects. Sophomore advisor VA is constructed
using a leave-year out estimate as described in the methodology section. In Panel C,
the random sample split is done by randomly dropping half of the observations in a
each year-department, estimating leave-year out VA, then checking for forecast unbi-
asedness using the dropped observations. *** p <0.01 ** p <0.05 * p <0.1.
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Table A13: Test of Random Assignment for Sophomore Sample

Advisor Grade VA

Math SAT 0.010
(0.009)

Verbal SAT 0.002
(0.008)

Female 0.029
(0.022)

Legacy -0.015
(0.020)

N 14,055
P-Value Joint Significance 0.462

Notes: Sample includes first-time enrolling sophomore stu-
dents from the academic years 2003-2004 to 2015-2016.
Standard errors in parentheses are clustered at the advisor-
year level. Regression includes department and year fixed
effects. Advisor VA is standardized by year. SAT scores
are standardized within department and year. *** p <0.01
** p <0.05 * p <0.1.
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Table A14: Effect of Sophomore Advisor Persistence VA on Academic Performance,
Retention and College Completion

Standardized Dropout 4-Year 6-Year 4-Year 6-Year
GPA after Sophomore Graduation Graduation Graduation in Major Graduation in Major
(1) (2) (3) (4) (5) (6)

A. Overall Sample

Persistence VA 0.003 -0.022*** 0.030*** 0.025*** 0.035*** 0.036***
(0.007) (0.006) (0.009) (0.008) (0.010) (0.009)

Mean Dep Var 0.006 0.085 0.527 0.791 0.403 0.549
N 8,761 8,761 8,761 8,761 8,761 8,761

B. STEM Majors

Persistence VA 0.025* -0.016*** 0.026** 0.016* 0.037** 0.036***
(0.013) (0.004) (0.011) (0.008) (0.015) (0.014)

Mean Dep Var 0.083 0.067 0.579 0.814 0.417 0.528
N 4,747 4,747 4,747 4,747 4,747 4,747

C. Non-STEM Majors

Persistence VA 0.001 -0.022** 0.038*** 0.027*** 0.037*** 0.035***
(0.008) (0.009) (0.011) (0.010) (0.011) (0.011)

Mean Dep Var -0.086 0.108 0.466 0.765 0.386 0.574
N 4,014 4,014 4,014 4,014 4,014 4,014

Notes: The sample includes first-time enrolling sophomore students from the
academic years 2003-2004 to 2012-2013. Standard errors in parentheses are
clustered at the advisor-year level. Regressions includes department and year
fixed effects. Advisor VA is standardized by year. Controls include math and
verbal SAT scores, a dummy variable for being a female, and a dummy variable
for being a legacy student. SAT scores are standardized within department
and year.
*** p <0.01 ** p <0.05 * p <0.1.
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Table A15: Effect of Various VA Skill Measures on the Corresponding Skills Sopho-
more Sample

Standardized GPA Persistence Index

(1) (2) (3) (4) (5) (6)

Grade VA 0.027*** 0.027*** 0.038* 0.033*
(0.009) (0.009) (0.021) (0.018)

Persistence VA 0.003 0.001 0.075*** 0.073***
(0.007) (0.008) (0.019) (0.018)

N 8,761 8,761 8,761 8,761 8,761 8,761

Notes: The sample includes first-time enrolling sophomore students from the
academic years 2003-2004 to 2012-2013. Standard errors in parentheses are
clustered at the advisor-year level. Regressions includes department and year
fixed effects. Advisor VA is standardized by year. Controls include math and
verbal SAT scores, a dummy variable for being a female, and a dummy variable
for being a legacy student. SAT scores are standardized within department and
year. Each column represents estimates from a separate regression. Controls
included are math and verbal SAT scores, a dummy variable for being a female,
and a dummy variable for being a legacy student. *** p <0.01 ** p <0.05 *
p <0.1.
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Table A16: Observable Characteristics Effect on Freshman Advisor VA Measures

Grade VA Persistence VA Selective VA

Professor -0.004 0.019 0.014
(0.018) (0.023) (0.020)

Associate Professor 0.006 0.023 0.013
(0.015) (0.024) (0.019)

Female Advisor 0.016 0.012 0.014
(0.012) (0.022) (0.017)

Science Department 0.005 0.021 0.021
(0.010) (0.027) (0.022)

N 131 115 115

Notes: Sample includes academic advisors matched to first-time en-
rolling freshman students for academic years 2003-2004 to 2015-2016.
Standard errors in parentheses are clustered at the advisor level. All
regressions include year fixed effects. The number of observations drops
for Persistence and Selective VA measures because they are constructed
using the sample of students we can observe graduation for (2003-2004
till 2012-2013 freshman entering cohorts). *** p <0.01 ** p <0.05 * p
<0.1.

Table A17: Observable Characteristics Effect on Sophomore Advisor VA Measures

Grade VA Persistence VA

Professor -0.008 -0.002
(0.006) (0.007)

Associate Professor -0.003 0.001
(0.005) (0.007)

Female Advisor -0.004 0.008
(0.005) (0.007)

Science Department 0.006 0.002
(0.004) (0.007)

N 736 646

Notes: Sample includes academic advisors matched to first-
time enrolling sophomore students for academic years 2003-
2004 to 2015-2016. Standard errors in parentheses are clus-
tered at the advisor level. All regressions include year fixed
effects. The number of observations drops for Persistence
VA because it is constructed using the sample of students
we can observe graduation for (2003-2004 till 2012-2013).
*** p <0.01 ** p <0.05 * p <0.1.
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Table A18: Effect of Being Matched with a Female Rather than Male Advisor on
Freshman Student Outcomes

Standardized Becoming 4-Year 6-Year Selective Selective Selective Major Selective Major
GPA Sophomore Graduation Graduation Major Enroll Major Grad Enroll Top Grad Top
(1) (2) (3) (4) (5) (6) (7) (8)

Effect on Male Students (β1) -0.012 -0.023 -0.036 -0.020 -0.016 -0.009 -0.045 -0.007
(0.037) (0.018) (0.023) (0.025) (0.022) (0.025) (0.035) (0.040)

Effect on Female Students (β1 + β3) 0.077** 0.009 0.064*** 0.024 0.017 0.032 0.006 0.025
(0.032) (0.017) (0.024) (0.023) (0.024) (0.024) (0.049) (0.055)

Mean Dep Var 0.038 0.794 0.458 0.575 0.429 0.355 0.567 0.464
N 3,857 3,857 2,952 2,952 3,857 2,952 1,317 995

Notes: Sample includes advisors matched to first-time enrolling freshman stu-
dents from the academic years 2003-2004 to 2015-2016. The sample is re-
stricted to 2003-2004 to 2012-2013 for graduation outcomes. Standard errors
are clustered at the advisor-year level and reported in parentheses. All regres-
sions include year fixed effects. Controls include math and verbal SAT scores
and a dummy variable for being a legacy student. *** p <0.01 ** p <0.05 *
p <0.1.

Table A19: Effect of Being Matched with a Female Rather than Male Advisor on
Sophomore Student Outcomes

Standardized Dropout 4-Year 6-Year 4-Year 6-Year
GPA after Sophomore Graduation Graduation Graduation in Major Graduation in Major
(1) (2) (3) (4) (5) (6)

Effect on Male Students (β1) -0.049* -0.003 -0.043 -0.041 -0.009 -0.011
(0.030) (0.015) (0.026) (0.025) (0.025) (0.026)

Effect on Female Students (β1 + β3) 0.054** -0.012 0.003 0.011 0.025 0.031
(0.021) (0.017) (0.028) (0.025) (0.028) (0.026)

Mean Dep Var 0.004 0.088 0.527 0.791 0.403 0.549
N 14,055 14,055 9,120 9,120 9,120 9,120

Notes: Sample includes advisors matched to first-time enrolling sophomore
students from the academic years 2003-2004 to 2015-2016. The sample is re-
stricted to 2003-2004 to 2012-2013 for graduation outcomes. Standard errors
are clustered at the advisor-year level and reported in parentheses. All regres-
sions include year and department fixed effects. Controls include math and
verbal SAT scores and a dummy variable for being a legacy student. SAT
scores are standardized within department and year. *** p <0.01 ** p <0.05
* p <0.1.
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Controlled Trials”

C.1 Appendix

C.1.1 Tables

Table A1: Conditional and Unconditional Results Of Simplified Specification from
Cole et al. (2013).

Dependent Variable: Insurance Take-Up

Robust s.e. Clustered s.e.

Visit 0.164*** 0.164**

(0.054) (0.073)

Household controls No No

Village FEs Yes Yes

N 416 416

The results in this table is a simplified version of the regression of Table 5 from Cole et al.

(2013). The dependent variable in the regression is an indicator for whether the household

purchased an insurance policy. The treatment variable is an indicator for whether the

household was visited by an insurance educator and the sample is restricted to having all

other treatments equal to 0. The regression includes village fixed effects. Robust standard

errors are shown in parentheses in the first column. Standard errors clustered at the village

level are shown in the second column.

* p<0.10 ** p<0.05 *** p<0.01.

C.1.2 Useful Results

Under Assumption 8, one has that for all i, k
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P (Dik = 1) =
n1k

nk

, (C.1)

and for all j ̸= i

E(DikDjk) =
n1k(n1k − 1)

nk(nk − 1)
. (C.2)

Lemma 1

Lemma 1 If Assumptions 7 and 9 hold,

(Dk, (ϵik(0), ϵik(1))1≤i≤nk
) ⊥⊥

(
Dk′ , (ϵik′(0), ϵik′(1))1≤i≤nk′

)
|(η(0),η(1))

Proof

By Assumption 9 and Points 3 and 4 of Assumption 7,

(Dk, (ϵik(0), ϵik(1))1≤i≤nk
) ⊥⊥

(
Dk′ , (ϵik′(0), ϵik′(1))1≤i≤nk′

,η(0),η(1)
)
.

Then, the result follows from the fact joint independence implies conditional indepen-

dence.
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C.1.3 Proof of Theorem 4

Conditional Unbiasedness of ÂTE

E
(
ÂTEk

∣∣∣(η(0),η(1))) = E

(
1

n1k

∑
i

DikYik(1)−
1

n0k

∑
i

(1−Dik)Yik(0)

∣∣∣∣∣(η(0),η(1))
)

=
1

n1k

∑
i

E (DikYik(1)|(η(0),η(1)))

− 1

n0k

∑
i

E ((1−Dik)Yik(0)|(η(0),η(1)))

=
1

n1k

∑
i

E (Dik|(η(0),η(1)))E (Yik(1)|(η(0),η(1)))

− 1

n0k

∑
i

E (1−Dik|(η(0),η(1)))E (Yik(0)|(η(0),η(1)))

=
1

n1k

∑
i

n1k

nk

(yik(1) + ηk(1))−
1

n0k

∑
i

n0k

nk

(yik(0) + ηk(0))

= (ηk(1)− ηk(0)) +
1

nk

∑
i

(yik(1)− yik(0)) .

The first equality holds because we observe Yi(1) for treated units and Yi(0) for untreated

units, the third equality follows from Assumption 6 and Point 3 of Assumption 7, and

the fourth equality follows from Assumption 6 and Points 3 and 4 of Assumption 7 and

Equation (C.1).

Now ÂTE = 1
K

K∑
k=1

nk

n
ÂTEk, therefore :
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E
(
ÂTE

∣∣∣(η(0),η(1))) =
1

K

K∑
k=1

nk

n
E
(
ÂTEk

∣∣∣(η(0),η(1)))
=

1

K

K∑
k=1

nk

n

[
(ηk(1)− ηk(0)) +

1

nk

∑
i

(yik(1)− yik(0))

]
= ATE(η(0),η(1)).

Conditional Variance of ÂTE

We begin by deriving the conditional variance of ÂTEk.

We start with:

V
(
ÂTEk

∣∣∣(η(0),η(1))) = V
(
E
(
ÂTEk

∣∣∣Dk, (η(0),η(1))
)∣∣∣(η(0),η(1)))

+E
(
V
(
ÂTEk

∣∣∣Dk, (η(0),η(1))
)∣∣∣(η(0),η(1))) .(C.3)

Now begin with the first term:

V
(
E
(
ÂTEk

∣∣∣Dk, (η(0),η(1))
)∣∣∣(η(0),η(1)))

= V

(
1

n1k

nk∑
i=1

Dikyik(1) + ηk(1)−
1

n0k

nk∑
i=1

(1−Dik)yik(0)− ηk(0)

∣∣∣∣∣(η(0),η(1))
)

= V

(
1

n1k

nk∑
i=1

Dikyik(1)−
1

n0k

nk∑
i=1

(1−Dik)yik(0)

∣∣∣∣∣(η(0),η(1))
)
. (C.4)
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The first equality comes from the fact that:

E [DikYik(1)|Dk, (η(0),η(1))] = DikE [Yik(1)|Dk, (η(0),η(1))]

= DikE [yik(1) + ϵik(1) + ηk(1)|Dk, (η(0),η(1))]

= Dik(yik(1) + ηk(1)).

The second equality follows from Assumption 6, the third equality follows from Points 3

and 4 of Assumption 7. Similarly, one can show that E ((1−Dik)Yik(0)|Dk, (η(0),η(1))) =

(1−Dik)(yik(0) + ηk(0)).

By Point 3 of Assumption 7, 1
n1k

nk∑
i=1

Dikyik(1)− 1
n0k

nk∑
i=1

(1−Dik)yik(0) ⊥⊥ (η(0),η(1)), so:

V

(
1

n1k

nk∑
i=1

Dikyik(1)−
1

n0k

nk∑
i=1

(1−Dik)yik(0)

∣∣∣∣∣(η(0),η(1))
)

= V

(
1

n1k

nk∑
i=1

Dikyik(1)−
1

n0k

nk∑
i=1

(1−Dik)yik(0)

)
. (C.5)

The right hand side of the previous equation is the variance of the estimated average

treatment effect in the case of deterministic potential outcomes. Then, it follows from

Equations (C.4) and (C.5) and from Neyman (1923) that:

V
(
E
(
ÂTEk|Dk, (η(0),η(1))

)∣∣∣(η(0),η(1))) =
1

n0k

S2
y(0),k +

1

n1k

S2
y(1),k −

1

nk

S2
y(1)−y(0),k.

(C.6)
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Moving to the second term :

E
(
V
(
ÂTEk

∣∣∣Dk, (η(0),η(1))
)∣∣∣(η(0),η(1)))

= E

(
V

(
1

n1k

nk∑
i=1

Dikϵik(1)−
1

n0k

nk∑
i=1

(1−Dik)ϵik(0)

∣∣∣∣∣Dk, (η(0),η(1))

)∣∣∣∣∣(η(0),η(1))
)

= E

(
1

n2
1k

nk∑
i=1

D2
ikσ

2
1i +

1

n2
0k

nk∑
i=1

(1−Dik)
2 σ2

0i

∣∣∣∣∣(η(0),η(1))
)

−E

(
1

n0kn1k

Cov

(
nk∑
i=1

Dikϵik(1),

nk∑
i=1

(1−Dik)ϵik(0)

∣∣∣∣∣Dk, (η(0),η(1))

)∣∣∣∣∣(η(0),η(1))
)

=
1

n2
1k

nk∑
i=1

E
(
D2

ik

)
σ2
1i +

1

n2
0k

nk∑
i=1

E
[
(1−Dik)

2]σ2
0i −

1

n0kn1k

E

(
Cov

(
nk∑
i=1

Dikϵik(1),

nk∑
i=1

(1−Dik)ϵik(0)

∣∣∣∣∣Dk, (η(0),η(1))

)∣∣∣∣∣(η(0),η(1))
)

=
1

n2
1k

nk∑
i=1

n1k

nk

σ2
1i +

1

n2
0k

nk∑
i=1

n0k

nk

σ2
0i

− 1

n0kn1k

E

(
nk∑
i=1

Cov (Dikϵik(1), (1−Dik)ϵik(0)|Dk, (η(0),η(1)))

∣∣∣∣∣(η(0),η(1))
)

=
1

n1k

σ2
1k +

1

n0k

σ2
0k

− 1

n0kn1k

E

(
nk∑
i=1

Dik(1−Dik)Cov (ϵik(1), ϵik(0)|Dk, (η(0),η(1)))

∣∣∣∣∣(η(0),η(1))
)

=
1

n1k

σ2
1k +

1

n0k

σ2
0k. (C.7)

The first equality holds because conditional on Dk and (η(0),η(1)) there is no random-

ness in (1 − Dik)(yik(0) + ηk(0)) and Dik(yik(1) + ηk(1)). The second equality holds by

Points 1, 2, 3, and 4 of Assumption 7, which imply that V (ϵik(d)|Dk, (η(0),η(1))) =

V (ϵik(d)) = σ2
dik and Cov(ϵik(d), ϵjk(d)|Dk, (η(0),η(1))) = Cov(ϵik(d), ϵjk(d)) = 0. The

third equality holds by Point 3 of Assumption 7. The fourth equality holds since Dik

is binary therefore D2
ik = Dik, and because by Points 2, 3, and 4 of Assumption 7,
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Cov(ϵik(1), ϵjk(0)|Dk, (η(0),η(1))) = Cov(ϵik(1), ϵjk(0)) = 0. The last equality holds

since Dik(1−Dik) = 0.

Combining Equations (C.3), (C.6), and (C.7) shows that:

V
(
ÂTEk

∣∣∣(η(0),η(1))) =
1

n0k

S2
y(0),k+

1

n1k

S2
y(1),k−

1

n
S2
y(1)−y(0),k+

1

n1k

σ2
1k+

1

n0k

σ2
0k. (C.8)

Now by Lemma 1, for all k ̸= k′:

Cov
(
ÂTEk, ÂTEk′

∣∣∣(η(0),η(1))) = 0. (C.9)

Finally, combining the fact that ÂTE = 1
K

K∑
k=1

nk

n
ÂTEk and Equation (C.9) we get:

V
(
ÂTE

∣∣∣(η(0),η(1))) =
1

K2

K∑
k=1

(nk

n

)2
V
(
ÂTEk|((η(0),η(1))

)
.

Estimating an Upper Bound for the Conditional Variance of ÂTE

We start by showing that

E

(
1

n1k

[
1

n1k − 1

nk∑
i=1

Dik

(
Yik(1)− Y 1k

)2]∣∣∣∣∣(η(0),η(1))
)

=
1

n1k

S2
y(1),k +

1

n1k

σ2
1k. (C.10)
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We have:

1

n1k

[
1

n1k − 1

nk∑
i=1

Dik

(
Yik(1)− Y 1k

)2]

=
1

n1k

1

n1k − 1

[
nk∑
i=1

DikYik(1)
2 − n1kY

2

1k

]
=

1

n1k

1

n1k − 1[
nk∑
i=1

Dik

(
yik(1)

2 + 2ϵik(1)yik(1) + ϵ2ik(1) + η2k(1) + 2yik(1)ηk(1) + 2ηk(1)ϵik(1)
)]

− 1

n1k

1

n1k − 1


(

nk∑
i=1

Dikyik(1) +
nk∑
i=1

Dikϵik(1) + ηk(1)
nk∑
i=1

Dik

)2

n1k


= A+B + C +D + E + F,

with

A =
1

n1k

1

n1k − 1


nk∑
i=1

Dikyik(1)
2 −

(
nk∑
i=1

Dikyik(1)

)2

n1k

 ,

B =
1

n1k

1

n1k − 1


nk∑
i=1

Dikϵ
2
ik(1)−

(
nk∑
i=1

Dikϵik(1)

)2

n1k

 ,

C =
1

n1k

2

n1k − 1

 nk∑
i=1

Dikyik(1)ϵik(1)−

((
nk∑
i=1

Dikyik(1)

)(
nk∑
i=1

Dikϵik(1)

))
n1k

 ,
and
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D =
1

n1k

1

n1k − 1

η2k(1) nk∑
i=1

Dik −
1

n1k

(
ηk(1)

nk∑
i=1

Dik

)2
 = 0,

E =
1

n1k

1

n1k − 1

[
2ηk(1)

nk∑
i=1

Dikyik(1)−
2

n1k

(
nk∑
i=1

Dikyik(1)

)(
ηk(1)

nk∑
i=1

Dik

)]
= 0,

F =
1

n1k

1

n1k − 1

[
2ηk(1)

nk∑
i=1

Dikϵik(1)−
2

n1k

(
nk∑
i=1

Dikϵik(1)

)(
ηk(1)

nk∑
i=1

Dik

)]
= 0.
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To ease notation let E∗(X) = E(X|(η(0),η(1))).

E∗(A) = E(A)

=
1

n1k(n1k − 1)[
nk∑
i=1

E(Dik)y
2
ik(1)−

1

n1k

nk∑
i=1

E(Dik)y
2
ik(1)−

1

n1k

∑∑
i ̸=j

E(DikDjk)yik(1)yjk(1)

]

=
1

n1k(n1k − 1)[
n1k

nk

nk∑
i=1

y2ik(1)−
1

n1k

nk∑
i=1

n1k

nk

y2ik(1)−
1

n1k

∑∑
i ̸=j

n1k

nk

n1k − 1

nk − 1
yik(1)yjk(1)

]

=
1

n1k(n1k − 1)

[
n1k − 1

nk

nk∑
i=1

y2ik(1)−
n1k − 1

nk(nk − 1)

∑∑
i ̸=j

yik(1)yjk(1)

]

=
1

n1k(n1k − 1)[
n1k − 1

nk

nk∑
i=1

y2ik(1) +
n1k − 1

nk(nk − 1)

nk∑
i=1

y2ik(1)−
n1k − 1

nk(nk − 1)

nk∑
i=1

nk∑
j=1

yik(1)yjk(1)

]

=
1

n1k(n1k − 1)[
(n1k − 1)(nk − 1) + (n1k − 1)

nk(nk − 1)

nk∑
i=1

y2ik(1)−
nk(n1k − 1)

(nk − 1)

nk∑
i=1

nk∑
j=1

yik(1)

nk

yjk(1)

nk

]

=
1

n1k

[
1

nk − 1

nk∑
i=1

y2ik(1)−
nk

nk − 1
y2k(1)

]
=

1

n1k

S2
y(1),k.

The first equality holds by Point 3 of Assumption 7. The third holds by Equations (C.1)

and (C.2).
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Moving to B,

E∗(B) =
1

n1k(n1k − 1)


nk∑
i=1

E∗(Dik)E∗(ϵ2ik(1))−
E∗

((
nk∑
i=1

Dikϵik(1)

)2
)

n1k


=

1

n1k(n1k − 1)

[
nk∑
i=1

E∗(Dik)E∗(ϵ2ik(1))−
1

n1k

nk∑
i=1

E∗(D2
ik)E∗(ϵ2ik(1))

− 1

n1k

∑∑
i ̸=j

E∗(DikDjk)E∗(ϵik(1)ϵjk(1))

]

=
1

n1k(n1k − 1)

[
n1k

nk

nk∑
i=1

σ2
1i −

1

n1k

nk∑
i=1

n1k

nk

σ2
1i

]
=

1

n1k

σ2
1k.

The first equality holds by Points 1 and 3 of Assumption 7. The second equality holds by

Points 1 and 3 of Assumption 7. The third equality holds since D2
ik = Dik and by Points

1, 2, 3, and 4 of Assumption 7 as well as by Equation (C.1), which imply E∗(Dik) =

E(Dik) =
n1k

nk
, E∗(ϵ2ik(1)) = E(ϵ2ik(1)) = σ2

1i, and E∗(ϵik(1)ϵjk(1)) = E(ϵik(1)ϵjk(1)) = 0.

Finally for C:

E∗(C) =
1

n1k

2

n1k − 1

 nk∑
i=1

E∗(Dik)yik(1)E∗(ϵik(1))−
E∗
(

nk∑
i=1

Dikyik(1)
nk∑
i=1

Dikϵik(1)

)
n1k


=

1

n1k

2

n1k − 1[
−

nk∑
i=1

E∗(D2
ik)yik(1)E∗(ϵik(1))−

∑∑
i ̸=j

E∗(DikDjk)yik(1)E∗(ϵjk(1))

]
= 0.
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The first equality holds by Point 3 of Assumption 7. The second and third equalities hold

by Point 4 of Assumption 7, which implies E∗(ϵik(1)) = E(ϵik(1)) = 0. This completes

the proof of (C.10). Using similar arguments, one can show that

E

(
1

n0k

[
1

n0k − 1

nk∑
i=1

(1−Dik)
(
Yik(0)− Y 0k

)2]∣∣∣∣∣(η(0),η(1))
)

=
1

n0k

S2
y(0),k +

1

n0k

σ2
0k.

(C.11)

Point 2 of the theorem and Equations (C.10) and (C.11) imply that

V
(
ÂTEk|(η(0),η(1))

)
≤ E

(
V̂rob

(
ÂTEk

)∣∣∣(η(0),η(1))) .
Finally, the result follows from Point 2 of the theorem, the definition of V̂rob

(
ÂTE

)
, and

the linearity of the conditional expectation.

C.1.4 Proof of Theorem 5

Unbiasedness of ÂTE

E
(
ÂTE

)
= E

[
E
(
ÂTE|η(0),η(1)

)]
= E [ATE(η(0),η(1))]

= E

[
1

K

K∑
k=1

nk

n

nk∑
i=0

[(yik(1) + ηk(1))− (yik(0) + ηk(0))]

]

=
1

K

K∑
k=1

nk

n

nk∑
i=0

[yik(1)− yik(0)]

= ATE. (C.12)

Where the first equality holds by the law of iterated expectations, and the second equality
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holds by Theorem 4.

Unconditional Variance of ÂTE

We start with:

V
(
ÂTE

)
= E

(
V
(
ÂTE|η(0),η(1)

))
+ V

(
E
(
ÂTE|η(0),η(1)

))
. (C.13)

Now begin with the first term:

E
(
V
(
ÂTE|η(0),η(1)

))
= E

[
1

K2

K∑
k=1

(nk

n

)2
V
(
ÂTEk|η(0),η(1)

)]

=
1

K2

K∑
k=1

(nk

n

)2
V
(
ÂTEk|η(0),η(1)

)
. (C.14)

Where the first equality holds by Theorem 4, and the second equality holds because

V
(
ÂTEk|η(0),η(1)

)
contains no stochastic components, as shown in Point 2 of Theo-

rem 4.
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Moving to the second term:

V
(
E
(
ÂTE|η(0),η(1)

))
= V (ATE(η(0),η(1)))

= V

(
1

K

K∑
k=1

nk

n

1

nk

nk∑
i=0

[(yik(1) + ηk(1))− (yik(0) + ηk(0))]

)

=
1

K2
V

(
K∑
k=1

1

n

nk∑
i=0

(yik(1)− yik(0)) + (ηk(1)− ηk(0))

)

=
1

K2
V

(
K∑
k=1

nk

n
(ηk(1)− ηk(0))

)

=
1

K2

K∑
k=1

(nk

n

)2
V (ηk(1)− ηk(0)) . (C.15)

The first equality holds by Theorem 4, the last holds by Assumption 9 and Point 5 of

Assumption 7. The result follows from (C.13), (C.14), and (C.15), and from Point 2 of

Theorem 4.
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Estimating an Upper Bound for the Variance of ÂTE

The first inequality is trivial so we only prove the second one.

E
[
V̂clu(ÂTE)

]
= E

[
1

K (K − 1)

K∑
k=1

(nk

n
ÂTEk − ÂTE

)2]

=
1

K (K − 1)
E

[
K∑
k=1

(nk

n

)2
ÂTE

2

k − 2ÂTE
K∑
k=1

nk

n
ÂTEk +KÂTE

2

]

=
1

K (K − 1)

[
K∑
k=1

(nk

n

)2
E
(
ÂTE

2

k

)
−KE

(
ÂTE

2)]
=

1

K (K − 1)[
K∑
k=1

(nk

n

)2 [
V
(
ÂTEk

)
+ E

(
ÂTEk

)2]
−K

[
V
(
ÂTE

)
+ E

(
ÂTE

)2]]
=

1

K (K − 1)[
K2V

(
ÂTE

)
+

K∑
k=1

(nk

n

)2
E
(
ÂTEk

)2
−KV

(
ÂTE

)
−KE

(
ÂTE

)2]

= V
(
ÂTE

)
+

1

K (K − 1)

[
K∑
k=1

(nk

n

)2
E
(
ÂTEk

)2
−KE

(
ÂTE

)2]
. (C.16)

The second and third equalities follow from algebraic manipulations and the linearity of

the expectations operator, the fourth follows from the definition of a variance, and the

fifth follows from V
(
ÂTE

)
= 1

K2

K∑
k=1

(
nk

n

)2
V
(
ÂTEk

)
.

By convexity of x→ x2,

1
K

K∑
k=1

(
nk

n

)2 E(ÂTEk

)2
≥
[

1
K

K∑
k=1

(
nk

n

)
E
(
ÂTEk

)]2
⇔

K∑
k=1

(
nk

n

)2 E(ÂTEk

)2
≥ KE

(
ÂTE

)2
,
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so the second term in Equation (C.16) is positive. This proves the result.

C.1.5 Proof of Corollary 2

If nk = n, it follows from Equation (C.16) that

E
[
V̂clu(ÂTE)

]
= V

(
ÂTE

)
+

1

K (K − 1)

[
K∑
k=1

E
(
ÂTEk

)2
−KE

(
ÂTE

)2]
.

Moreover,

E
[
V̂rob

(
ÂTEk

)]
=E

[
E∗
(
V̂rob

(
ÂTEk

))]
=E

[
E∗

(
1

K2

K∑
k=1

(nk

n

)
V̂rob

(
ÂTEk

))]

=E

[
V
(
ÂTE|(η(0),η(1))

)
+

1

K2

K∑
k=1

1

nk

(nk

n

)2
S2
y(1)−y(0),k

]

=E
[
V
(
ÂTE|(η(0),η(1))

)]
+

1

K2

K∑
k=1

1

nk

S2
y(1)−y(0),k,

where the first equality holds by the law of iterated expectations, the third equality

holds by Equations (C.10) and (C.11) and Point 2 of Theorem 4, and the last follows
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from nk = n. Combining the two preceding displays,

E
[
V̂clu(ÂTE)

]
− E

[
V̂rob

(
ÂTEk

)]
=V

(
ÂTE

)
− E

[
V
(
ÂTE|(η(0),η(1))

)]
+

1

K (K − 1)

[
K∑
k=1

E
(
ÂTEk

)2
−KE

(
ÂTE

)2]
− 1

K2

K∑
k=1

1

nk

S2
y(1)−y(0),k

=
1

K2

K∑
k=1

V (ηk(1)− ηk(0)) +
1

K (K − 1)

[
K∑
k=1

E
(
ÂTEk

)2
−KE

(
ÂTE

)2]

− 1

K2

K∑
k=1

1

nk

S2
y(1)−y(0),k,

where the second equality follows from Equations (C.13) and (C.15) and nk = n. This

proves the result.

C.1.6 Proof of Theorem 6

Let:

1

SK/K

[
ÂTE − ATE

]
=

1

SK

K
[
ÂTE − E

(
ÂTE

)]
=

1

SK

K

[
1

K

K∑
k=1

ADk − E

(
1

K

K∑
k=1

ADk

)]

=
1

SK

K∑
k=1

[ADk − E (ADk)] ,

where the first equality holds by Theorem 5. Under Assumptions 6, 7, 8, 9, and 11,
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∑K
k=1 [ADk − E (ADk)] is a sum of independent mean 0 random variables with finite

variance. Furthermore, by Point 3 of Assumption 11 we know that

lim
K→+∞

1
S2+ϵ
K

∑K
k=1 E [|ADk − E(ADk)|2+ϵ] = 0 for some ϵ > 0. Therefore by the Lyapunov

CLT:

1

SK

K∑
k=1

[ADk − E (ADk)]
d→ N(0, 1).

Now note that:

1

SK/K

[
ÂTE − ATE

]
=

√
K√

1
K

∑K
k=1 V (ADk)

[
ÂTE − ATE

]

=

√
K√

KV
(
ÂTE

) [ÂTE − ATE
]
,

so by the Slutsky Lemma and Point 3 of Assumption 11:

√
K
(
ÂTE − ATE

)
d→ N

(
0, σ2

)
.

Now we show that KV̂clu

(
ÂTE

)
p→ σ2

+ ≥ σ2:

lim
K→∞

KV̂clu

(
ÂTE

)
= lim

K→∞

1

K

K∑
k=1

(
ADk − ÂTE

)2
= lim

K→∞

1

K

K∑
k=1

AD2
k −

(
1

K

K∑
k=1

ADk

)2

.

By Assumption 9, Point 1 of Assumption 11, the strong law of large numbers in Lemma

1 of Liu et al. (1988), the fact that almost sure convergence implies convergence in

probability, and Point 3 of Assumption 11,
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1

K

K∑
k=1

AD2
k

p→ lim
K→∞

1

K

K∑
k=1

E
(
AD2

k

)
1

K

K∑
k=1

ADk
p→ lim

K→∞

1

K

K∑
k=1

E (ADk) .

Therefore, by the continuous mapping theorem:

KV̂clu

(
ÂTE

)
p→ lim

K→∞

1

K

K∑
k=1

E
(
AD2

k

)
−

(
1

K

K∑
k=1

E (ADk)

)2

= σ2
+.

By the convexity of x → x2 we have 1
K

∑K
k=1 E (ADk)

2 ≥
(

1
K

∑K
k=1 E (ADk)

)2
, so σ2

+ ≥

σ2.

C.1.7 Relaxing Assumption 6

Let Yik(d) = fikd (ϵik(d), ηk(d)) for some functions fikd(.). Redefine ATE(η(0),η(1))

as 1
n

∑
i,k E(Yik(1) − Yik(0)|(η(0),η(1))), and ATE as 1

n

∑
i,k E(Yik(1) − Yik(0)). It is

trivial to show that ÂTE is unbiased for ATE and conditionally unbiased for E(Yik(1)−

Yik(0)|(η(0),η(1))), so we will focus on showing that our results regarding the variance

and conditional variance of ÂTE still hold.
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Conditional Variance of ÂTE

(C.3) still holds. Starting with the first term in (C.3):

V
(
E
(
ÂTEk

∣∣∣Dk, (η(0),η(1))
)∣∣∣(η(0),η(1)))

= V

(
1

n1k

n1k∑
i=1

DikE(Yik(1)|(η(0),η(1)))

− 1

n0k

n0k∑
i=1

(1−Dik)E(Yik(0)|(η(0),η(1)))
∣∣∣∣(η(0),η(1)))

where the equality holds by Point 3 of Assumption 7. Now note that conditional on

(η(0),η(1)), only the Diks are random inside the conditional variance operator. Then,

it follows from Neyman (1923) that

V
(
E
(
ÂTEk|Dk, (η(0),η(1))

)∣∣∣(η(0),η(1))) =
1

n0k

S2
E∗(Yik(0)),k

+
1

n1k

S2
E∗(Yik(1)),k

− 1

nk

S2
E∗(Yik(1))−E∗(Yik(0)),k
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where as before E∗(X) = E(X|(η(0),η(1))). Moving to the second term in (C.3),

E
(
V
(
ÂTEk

∣∣∣Dk, (η(0),η(1))
)∣∣∣(η(0),η(1)))

= E
(

1

n2
1k

V

(
n1k∑
i=1

DikYik(1)

∣∣∣∣∣Dk, (η(0),η(1))

)

+
1

n2
0k

V

(
n1k∑
i=1

(1−Dik)Yik(0)

∣∣∣∣∣Dk, (η(0),η(1))

)∣∣∣∣(η(0),η(1)))
= E

(
1

n2
1k

n1k∑
i=1

DikV (Yik(1)|η(0),η(1)))

+
1

n2
0k

n0k∑
i=1

(1−Dik)V (Yik(0)|η(0),η(1))
∣∣∣∣(η(0),η(1)))

=
1

n2
1k

n1k∑
i=1

E∗ (Dik)V (Yik(1)|(η(0),η(1))) +
1

n2
0k

n0k∑
i=1

E∗ (1−Dik)V (Yik(0)|(η(0),η(1)))

=
1

n1k

n1k∑
i=1

1

nk

V (Yik(1)|(η(0),η(1))) +
1

n0k

n0k∑
i=1

1

nk

V (Yik(0)|(η(0),η(1)))

where the second equality holds because V (Yik(d)|Dk,η(0),η(1)) = V (Yik(d)|η(0),η(1))

by Point 3 of Assumption 7, and

cov (Yik(d), Yjk(d)|Dk,η(0),η(1)) = cov (Yik(d), Yjk(d)|η(0),η(1)) = 0, by Point 3 of As-

sumption 7 and because ϵik(d) ⊥⊥ ϵjk(d)|η(0),η(1) by Points 2 and 4 of Assumption 7.

The third equality holds because V (Yik(1)|(η(0),η(1))) and V (Yik(0)|(η(0),η(1))) are

functions of (η(0),η(1)). The fourth equality holds because E∗ (Dik) = E (Dik) by Point

3 of Assumption 7. Finally, the first equality holds because:

1

n1kn0k

Cov

(
nk∑
i=1

DikYik(1),

nk∑
i=1

(1−Dik)Yik(0)

∣∣∣∣∣Dk, (η(0),η(1))

)

=
1

n1kn0k

nk∑
i=1

Dik(1−Dik)Cov (Yik(1), Yik(0)|Dk, (η(0),η(1))) = 0.

The first equality holds because
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Cov(Yik(d), Yjk(d)|Dk, (η(0),η(1))) = Cov(Yik(d), Yjk(d)|(η(0),η(1))) = 0 by Points 2, 3

and 4 of Assumption 7, the second equality holds because Dik(1−Dik) = 0. Therefore,

V
(
ÂTEk

∣∣∣(η(0),η(1)))
=

1

n0k

S2
E∗(Yik(0)),k

+
1

n1k

S2
E∗(Yik(1)),k

− 1

nk

S2
E∗(Yik(1))−E∗(Yik(0)),k

+
1

n1k

n1k∑
i=1

1

nk

V (Yik(1)|(η(0),η(1))) +
1

n0k

n0k∑
i=1

1

nk

V (Yik(0)|(η(0),η(1))) (C.17)

Finally, by Lemma 1,

V
(
ÂTE

∣∣∣(η(0),η(1))) =
1

K2

K∑
k=1

(nk

n

)2
V
(
ÂTEk|((η(0),η(1))

)
. (C.18)

Estimating an Upper Bound for the Conditional Variance of ÂTE

1

n1k

E∗

[
1

n1k − 1

nk∑
i=1

Dik

(
Yik(1)− Y 1k

)2]

=
1

n1k

1

n1k − 1
E∗

[
nk∑
i=1

DikYik(1)
2 − n1kY

2

1k

]

=
1

n1k

1

n1k − 1

[
nk∑
i=1

E∗(DikYik(1)
2)− n1kE∗(Y

2

1k)

]

=
1

n1k

1

n1k − 1[
nk∑
i=1

n1k

nk

E∗(Yik(1)
2)− 1

n1k

nk∑
i=1

E∗(D2
ikY

2
ik(1))−

1

n1k

∑∑
i ̸=j

E∗(DikDjkYik(1)Yjk(1))

]

=
1

n1k

1

n1k − 1[
nk∑
i=1

n1k

nk

E∗(Yik(1)
2)− 1

nk

nk∑
i=1

E∗(Y 2
ik(1))−

n1k − 1

nk(nk − 1)

∑∑
i ̸=j

E∗(Yik(1))E∗(Yjk(1))

]
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=
1

n1k

1

n1k − 1[ nk∑
i=1

n1k − 1

nk

[V (Yik(1)|(η(0),η(1))) + E∗(Yik(1))
2]

− n1k − 1

nk(nk − 1)

∑∑
i ̸=j

E∗(Yik(1))E∗(Yjk(1))

]

=
1

n1k

1

n1k − 1

[
nk∑
i=1

n1k − 1

nk

V (Yik(1)|(η(0),η(1)))

+
n1k − 1

nk

nk∑
i=1

E∗(Yik(1))
2 +

n1k − 1

nk(nk − 1)

∑
i

E∗(Yik(1))
2

− n1k − 1

nk(nk − 1)

∑∑
i,j

E∗(Yik(1))E∗(Yjk(1))

]

=
1

n1k

[
1

nk

nk∑
i=1

V (Yik(1)|(η(0),η(1)))

]

+
1

n1k

1

nk − 1

[
nk∑
i=1

E∗(Yik(1))
2 − nkE∗(Yik(1))

2

]

=
1

n1k

S2
E∗(Yik(1)),k

+
1

n1k

n1k∑
i=1

1

nk

V (Yik(1)|(η(0),η(1))) . (C.19)

The third equality holds by Point 3 of Assumption 7 and by Equation (C.1). The fourth

equality holds because treatment is binary, by Point 3 of Assumption 7, by Points 2

and 4 of Assumption 7, and by Equations (C.1) and (C.2). The fifth equality holds

by the definition of a conditional variance. The remaining equalities hold by algebraic

manipulations.

Using similar arguments, one can show:

E

(
1

n0k

[
1

n0k − 1

nk∑
i=1

(1−Dik)
(
Yik(0)− Y 0k

)2]∣∣∣∣∣(η(0),η(1))
)

=
1

n0k

S2
E∗(Yik(0)),k

+
1

n0k

n0k∑
i=1

1

nk

V (Yik(0)|(η(0),η(1))) . (C.20)
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Equations (C.17), (C.19), and (C.20) show that

V
(
ÂTEk|(η(0),η(1))

)
≤ E∗

(
V̂rob

(
ÂTEk

))
. Then, it follows from Equation (C.18)

and the definition of V̂rob

(
ÂTEk

)
that

V
(
ÂTE|(η(0),η(1))

)
≤ E∗

(
V̂rob

(
ÂTE

))
.

Estimating an Upper Bound for the Variance of ÂTE

The proof in Section 6.3.3 does not make use of Assumption 6 so the result is already

proven.
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