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Accurate sequencing of DNA motifs able to form
alternative (non-B) structures
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Francesca Chiaromonte,4,9,10 Yi-Fei Huang,1,4 and Kateryna D. Makova1,4
1Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA; 2Department of Operations
and Decision Systems, Université Laval, Quebec, Quebec G1V0A6, Canada; 3Population Health and Optimal Health Practices, CHU
de Québec–Université Laval Research Center, Québec, Quebec G1V4G2, Canada; 4Center for Medical Genomics, The Pennsylvania
State University, University Park, Pennsylvania 16802, USA; 5Laboratory of Cell Biology, NCI-CCR, National Institutes of Health,
Bethesda, Maryland 20892, USA; 6Department of Biochemistry andMolecular Biology, The Pennsylvania State University, University
Park, Pennsylvania 16802, USA; 7Faculty of Informatics, Masaryk University, 60200 Brno, Czech Republic; 8Department of
Pathology, The Pennsylvania State University, College of Medicine, Hershey, Pennsylvania 17033, USA; 9Department of Statistics,
The Pennsylvania State University, University Park, Pennsylvania 16802, USA; 10Institute of Economics and L’EMbeDS, Sant’Anna
School of Advanced Studies, Pisa 56127, Italy

Approximately 13% of the human genome at certain motifs have the potential to form noncanonical (non-B) DNA struc-

tures (e.g., G-quadruplexes, cruciforms, and Z-DNA), which regulate many cellular processes but also affect the activity of

polymerases and helicases. Because sequencing technologies use these enzymes, theymight possess increased errors at non-B

structures. To evaluate this, we analyzed error rates, read depth, and base quality of Illumina, Pacific Biosciences (PacBio)

HiFi, and Oxford Nanopore Technologies (ONT) sequencing at non-B motifs. All technologies showed altered sequencing

success for most non-B motif types, although this could be owing to several factors, including structure formation, biased

GC content, and the presence of homopolymers. Single-nucleotide mismatch errors had low biases in HiFi and ONT for all

non-B motif types but were increased for G-quadruplexes and Z-DNA in all three technologies. Deletion errors were in-

creased for all non-B types but Z-DNA in Illumina and HiFi, as well as only for G-quadruplexes in ONT. Insertion errors

for non-B motifs were highly, moderately, and slightly elevated in Illumina, HiFi, and ONT, respectively. Additionally,

we developed a probabilistic approach to determine the number of false positives at non-B motifs depending on sample

size and variant frequency, and applied it to publicly available data sets (1000 Genomes, Simons Genome Diversity

Project, and gnomAD). We conclude that elevated sequencing errors at non-B DNA motifs should be considered in low-

read-depth studies (single-cell, ancient DNA, and pooled-sample population sequencing) and in scoring rare variants.

Combining technologies should maximize sequencing accuracy in future studies of non-B DNA.

[Supplemental material is available for this article.]

DNA conformations that deviate from the canonical right-handed
double-helix with 10 nucleotides per turn are collectively termed
“non-B DNA” (Zhao et al. 2010). The ability of the DNA molecule
to fold into such alternative structures depends on the presence of
certain sequence motifs (thereby called “non-B motifs”), which
range in size from tens to hundreds of base pairs and account for
a substantial portion of an organism’s genome (e.g., ∼13% of the
human genome) (Guiblet et al. 2018). Non-B DNA motifs can
form distinct non-B DNA structures depending on their sequence
(Fig. 1). A-phased repeat motifs, which consist of tracts of three to
nine adenines or thymines (A-tract) separated by at least 4 bp
(spacer), can facilitate bent double-helix structures (Koo et al.

1986; Barbič et al. 2003). In G-quadruplex (G4)motifs, which con-
sist of at least four blocks of at least three guanines separated byone
to seven arbitrary bases, the guanines from different blocks can
bind to each other via Hoogsteen hydrogen bonds forming stems,
with the arbitrary bases forming loops (Sen and Gilbert 1988;
Burge et al. 2006). Direct repeatmotifs, which consist of two copies
of the repeated unit separated by a nonrepetitive spacer, can mis-
align, leading to slipped-strand structures with looped out bases
(Sinden et al. 2007). Inverted repeatmotifs, which consist of repet-
itive sequences complementary to each other (e.g., 5′-GACTGC
and GCAGTC-3′) separated by a nonrepetitive spacer, are capable
of forming hairpins and cruciform structures (Nag and Petes
1991). Mirror repeat motifs that consist of stretches of homopur-
ines:homopyrimidines arranged in a mirrored fashion, separated
by a spacer, can form triple-helix (H-DNA) structures (Htun and
Dahlberg 1988). Finally, Z-DNA motifs, which consist of alternat-
ing pyrimidines and purines, such as (CG:CG)n or (CA:TG)n, can
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form left-handed zig-zag DNA structures (Wang et al. 1979;
Singleton et al. 1982).

Non-B DNA structures can form in vivo (Biffi et al. 2013;
Hänsel-Hertsch et al. 2016; Shin et al. 2016) and play an important
role in essential cellular processes such as gene expression and
DNA replication (Ghosh and Bansal 2003; Jain et al. 2008; Wang
and Vasquez 2014). Non-B DNA may influence DNA synthesis
because some non-B DNA structures have been shown to obstruct
the progression and affect the accuracy of DNA polymerases
(Mirkin and Mirkin 2007; Wang and Vasquez 2014). For instance,
hairpins, G4 structures, Z-DNA, and triple helices have been linked
to the inhibition of polymerase activity in vitro, with evidence il-
lustrating a direct effect of realized non-B DNA structures on poly-
merase errors (Hile and Eckert 2004; Mirkin andMirkin 2007; Hile
et al. 2012; Stein et al. 2022). Furthermore, certain non-B-forming
motifs were found to influence polymerase kinetics and affect se-
quencing errors of Pacific Biosciences (PacBio) sequencing
(Guiblet et al. 2018).

Two major high-throughput sequencing technologies—
Illumina and PacBio—are based on synthesis with DNA polymeras-
es. In Illumina sequencing, the Pyrococcus-derived Phusionpolymer-
ase (Quail et al. 2012) is involved in the bridge amplification of the
template strand, producing clusters, which is followed by sequenc-
ing by synthesis via the incorporation of fluorescently active nucle-
otides (Metzker 2010). In PacBio sequencing, an engineered
bacteriophage phi29DNApolymerase incorporates fluorescently la-
beled nucleotides (Eid et al. 2009), whose sequence is then deter-
mined by a laser (Logsdon et al. 2020). In contrast, in Oxford
Nanopore Technologies (ONT) sequencing, DNA polymerase syn-
thesis is absent, and the nucleotide sequence is determined by
changes in electric current caused by thepassageof a single-stranded
DNA through a protein nanopore located in a synthetic membrane
(Logsdon et al. 2020; Jain et al. 2016). Although it is currently un-

known what effect non-B DNA structures
might have on the activity of the engi-
neered T4 phage Dda helicase, the motor
protein used to unwind and propel the
double-stranded DNA molecule during
ONT sequencing (Daniel and Deamer
2019; Logsdon et al. 2020), there are ex-
amples of helicases being involved in the
resolution of non-B structures (e.g., Jain
et al. 2010). Although the conceptual ap-
proach of nucleotide sequence determina-
tion is considerably different among these
three sequencing technologies, it is con-
ceivable that the enzymes they recruit—
polymerases and helicases—contribute
to the technology-specific sequence error
profiles. Because non-B DNA structures
have been shown to affect DNA process-
ing enzyme activity (Mirkin and Mirkin
2007), their effect on sequencing error
profiles should be considered.

Errors have been a major concern
ever since the invention of DNA se-
quencing, because they may drastically
influence the downstream analysis and
interpretation of sequencing data.
Randomly occurring sequencing errors
can be alleviated by increasing the read
depth per site, enabling a consensus ap-

proach to identify the true nucleotide at a given locus (Nielsen
et al. 2011). In cases in which the amount and/or quality of input
DNA (e.g., ancientDNA studies) (Slatkin and Racimo 2016) or bud-
get constraints do not allow high read depth, sequencing errors
may have a major effect on the downstream analyses (Shafer
et al. 2017). Sequencing errors that occur nonrandomly are expect-
ed to have an even greater impact, because such errors are expected
to occur even with high read depth, resulting in them being more
likely to be identified as false-positive genetic variants. Examples
hereby are the coverage bias against GC-rich sequences in
Illumina sequencing (Aird et al. 2011; Shafer et al. 2017) or the ten-
dency of (earlier) versions of ONT sequencing to erroneously col-
lapse homopolymer runs. Thus far, approaches to mitigate these
issues have mostly included stringent computational filtering or
the use of multiple independent sequencing technologies, which
may drastically reduce the amount of usable data or may be cost-
prohibitive, respectively.

In this study, we aimed at investigating a potential associa-
tion between non-B DNAmotifs and sequencing success for three
major sequencing technologies (Illumina, HiFi mode of PacBio,
and ONT).We compiled annotations of non-B-forming sequences
in the human genome and used sequencing data from the
Genome in a Bottle (GIAB) consortium (Zook et al. 2016) to detect
errors. We used hypothesis testing, regression models, and proba-
bilistic estimation to assess whether sequencing success is altered
at non-B DNA and to differentiate between different factors con-
tributing to technology-specific sequencing error profiles and
false-positive variants in non-B motifs.

Results

We contrasted sequencing success, as measured by error rate, se-
quencing depth, and base quality, between motifs with non-B

Figure 1. Types of non-B DNA structures. Shown are six types of alternative DNA structures (non-B
DNA) with their respective underlying motifs and sequence arrangements. Mirror repeat motifs that
form triple helix (H-DNA) structures consist of strongly skewed stretches of homopurines:homopyrimi-
dines arranged in a mirrored fashion and separated by a spacer.
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DNA-forming potential (“non-B motifs”) and control B DNA se-
quences. This was performed for sequencing reads generated
with Illumina, PacBio, and ONT sequencing technologies. We
used a data set in which these three technologies were applied to
the same sample, an Ashkenazim son (HG002) from theGIAB con-
sortium (Zook et al. 2016). For PacBio, the effects of non-B motifs
on continuous long-read sequencing were evaluated previously
(Guiblet et al. 2018), and thus, we focused on the HiFi circular con-
sensus reads, which achieve low error rates after multiple passes
over the same template. We acquired the genomic coordinates of
A-phased repeat, direct repeat, inverted repeat, mirror repeat, and
Z-DNA motifs from the non-B DNA database (Cer et al. 2013).
The motifs potentially forming G4 structures were annotated
with Quadron (Sahakyan et al. 2017).

Before assessing sequencing success, we applied two filtering
schemes that differed in stringency. In the moderate filtering
scheme, we only removedmotifs with an averagemappability score
of less than one (see Methods), and we acknowledge that including
the repetitive portions of the genome that are enriched in non-B
motifs might introduce misalignments and ambiguous mapping
of sequencing reads.With stringent filtering, we obtained “cleaner”
(largely void of artifacts), but smaller, sets of non-B motifs by filter-
ing out repeats and microsatellites, as well as overlapping motifs of
different types. In the moderately filtered set, we restricted the size
of motifs to the range from 10 to 1000 bp (mean=12.33–58.25 bp,
median=11–51 bp) (Supplemental Table S1), excluded motifs that
overlappedwith other non-Bmotifs of the same type, and excluded
motifs with an average mappability below one (see Methods). As a
result, we retained 5,360,356 non-B motifs, covering ∼137 Mb of
the genome (Supplemental Table S1). In the stringently filtered
sets, we additionally removed non-B DNA motifs and controls
that had ≥1-bp overlap with a repetitive element or amicrosatellite,
were within 50 bp from another non-Bmotif of any type, or had an
average base quality of a Phred score below 30 for Illumina or below
73.2 for HiFi (these are corresponding thresholds for the two tech-
nologies; see Methods). As a result, we retained 710,553 motifs
(13.5 Mb), 570,217 motifs (10.9 Mb), and 721,479 motifs (13.9
Mb) in the Illumina, HiFi, and ONT data sets, respectively
(Supplemental Table S1). For each filtering scheme, each sequenc-
ing technology, and each type of non-B motif, we also generated
a set of random control sequences, matching the corresponding
motif set in number and length and excluding all non-B motifs, se-
quencing gaps, and ≥7-bp homopolymer runs. Before scoring se-
quencing errors, we removed biological variants as annotated in
the GIAB true-variant set (Zook et al. 2016).We calculated two error
rates for each type of mismatch error: per-motif rate and aggregate
rate. The per-motif rate was obtained by dividing the total number
of mismatch errors by the total number of aligned nucleotides for
each motif and (separately) control sequence and then averaging
them. The aggregate rate was calculated by summing up all mis-
match errors and dividing by the total number of aligned nucleo-
tides overall for motifs and control sequences.

Single-nucleotide mismatch error rates

Illumina

We detected significantly higher per-motif single-nucleotide mis-
match (SNM) error rates for direct repeats, G4 motifs, and Z-DNA
motifs compared with the respective controls for Illumina (for av-
erage per-motif and per-control error rates, see Fig. 2A, black cir-
cles; see also Supplemental Table S2A; for Benjamini–Hochberg-

corrected t-test P-values, see Supplemental Table S4). This was
the case for both moderately (1.35-, 2.39-, and 1.64-fold, respec-
tively) and stringently (1.13-, 2.00-, and 1.49-fold, respectively) fil-
tered sets (Fig. 2B). Error rates for A-phased and inverted repeats
were significantly lower compared with the respective controls
(0.90- and 0.93-fold for moderate filtering and 0.90- and 0.92-
fold for stringent filtering, respectively), whereas mirror repeats
had error rates significantly higher (1.20-fold) than that of the con-
trols for the moderately filtered set and not significantly different
from that of the controls for the stringently filtered set. Here and
below, we also computed the aggregate error rates in motifs and
corresponding controls (Fig. 2A, orange triangles; Supplemental
Table S2A; Supplemental Fig. S1), which inmost cases were similar
to the average per-motif and per-control error rates. To illustrate
that differences in error rates between motifs and controls are
not solely because of a few outliers, we report the numbers and pro-
portions of motifs and controls with at least one error of each error
type in Supplemental Table S3.

To disentangle the factors contributing to the differences in
average per-motif and per-control SNM error rates, we fit a
Poisson regression model for each non-B motif type separately.
In each model, the number of SNMs (in a motif or a control se-
quence) is the response, and the predictors are an indicator of
“non-B motif versus control,” the nucleotide composition, the
motif length, the occurrence of 3- to 7-bp homopolymer runs,
and the total number of sequenced nucleotides across all reads
mapping to a motif (for details, see Methods). The results were
similar between the moderately and stringently filtered sets
(Supplemental Table S5); below, we discuss results for the former.
To evaluate model performance and explanatory power, we calcu-
lated the percentage of deviance explained, that is, Cohen’s pseu-
do-R2, which ranged from 1.7% (for A-phased repeats) to 16.7%
(for G4motifs) (Supplemental Table S5). To estimate the contribu-
tion of each predictor, we followed the approach described by
Kelkar et al. (2011) and fitted reduced models in which we left
out individual predictors one at a time and calculated the reduc-
tion in deviance explained compared with the full model. Note,
however, that, because of potential interactions between predic-
tors, effects might not be additive. For themodels with the highest
deviance explained (G4 motifs and mirror repeats, 16.7% and
8.7%, respectively), the removal of the “non-B motif versus con-
trol” predictor reduced the explanatory power by 5.3% (G4motifs)
and 5.8% (mirror repeats). Likewise, removing nucleotide compo-
sition from the model substantially reduced the percentage of
deviance explained in the models for G4 motifs (27.8%) and mir-
ror repeats (by 97.8%). Here and below, such percentages among
models should be compared by taking into account the overall
deviance explained by each model (Supplemental Table S5).

To add an orthogonal approach to evaluate sequencing er-
rors, we calculated SNM error rates as mismatches in the overlaps
between Illumina read pairs in non-B motifs of the moderately fil-
tered set, using sequencing data of the same individual as above
(HG002) and following the method of Stoler and Nekrutenko
(2021). Given that this approach identifies far fewer errors because
it includes only the overlapping part of the reads, the resulting data
set was admittedly smaller than the original one: In total, we ana-
lyzed between 494,961 (Z-DNA motifs) and 1,395,058 (inverted
repeats) of overlapping nucleotides in non-Bmotifs (Supplemental
Table S6). Overall, this analysis showed similar trends (Supplemen-
tal Table S6) to the analysis presented above. In particular, G4 and
Z-DNA motifs showed substantially higher SNM error rates than
did the controls, with 3.60-fold and 1.90-fold increases,
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Figure 2. Single-nucleotide mismatch (SNM) error rates in non-B motifs. (A) Boxplots of per-motif SNM error rates. Boxplot whiskers show the fifth and
the 90th percentiles, and values outside whiskers are excluded from the boxplots in order to better visualize the bulk of the distributions. The left panel
shows the moderately filtered motif set; the right panel, the stringently filtered set. The three rows correspond to the different technologies (Illumina,
HiFi, and ONT). Red and blue boxes correspond to motifs and controls, respectively; black dots mark per-motif means; and orange triangles aggregate
error rates (sum of all errors divided by sumof all aligned nucleotides). Note that the y-axes differ among technologies. (B) Heatmaps visualizing fold chang-
es in per-motif means of SNM error rates between motifs and corresponding controls. Red (blue) shades indicate higher (lower) error rates in non-B motifs
than in the controls, with fold change values reported in each cell of the map. When these values are in bold, per-motif means were significantly different
between motifs and controls (t-test P-values corrected for multiple testing smaller or equal to 0.05). Also, here, left and right panels correspond to mod-
erately and stringently filtered sets, respectively, and rows correspond to Illumina, HiFi, and ONT technologies, respectively.
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respectively (Supplemental Fig. S2), whereas SNM error rates for
the other non-B motif types were more similar to the controls
and were even significantly decreased for direct and inverted re-
peats (chi-square test) (Supplemental Table S5).

PacBio HiFi

Even though SNM error rates for HiFi data were overall low
(Supplemental Table S2B), they were significantly elevated for sev-
eral non-B motif types compared with controls in the moderately
filtered set (Fig. 2). Similar to Illumina, for HiFi we found signifi-
cantly elevated per-motif SNM error rates compared with controls
for direct repeats, G4 motifs, inverted repeats, mirror repeats, and
Z-DNAmotifs (1.30-, 1.31-, 1.02-, 1.13-, and 1.43-fold increases, re-
spectively). The percentage of deviance explained for the Poisson
regression models was usually low (Supplemental Table S5), and
thus, the contribution of each predictor to the variation in SNMer-
ror rates could not be reliably determined. For the stringently fil-
tered set, we found no significant differences between per-motif
versus per-control SNM error rates (Fig. 2).

ONT

The overall ONT SNM error rate was an order of magnitude higher
than that for Illumina or HiFi (Supplemental Table S2B). All com-
parisons of ONT SNM per-motif versus per-control rates, for both
moderately and stringently filtered sets, were statistically signifi-
cant (Fig. 2). Similar to Illumina and HiFi data, ONT reads showed
higher per-motif SNM error rates in G4 motifs than in controls
(1.25-fold and 1.27-fold for moderately and stringently filtered
sets, respectively). However, fold differences of SNM error rates
for the other non-B motifs versus controls were relatively small
in magnitude (from 0.89-fold to 1.15-fold), and for Z-DNA, were
inconsistent between the moderately and stringently filtered
data sets. The explanatory power of the Poisson regression models
for the ONT data was low (Supplemental Table S5); thus, the con-
tribution of individual predictors could not be reliably
determined.

SNM error rates for different parts of non-B motifs

We found a conspicuous pattern of variation in SNMerror rates be-
tween different parts of non-B motifs, such as repeat arms and
spacers in the repeat motifs and such as stems and loops in the
G4 motifs (Fig. 3A; Supplemental Table S7). These patterns were
qualitatively consistent between filtering schemes for all non-B
DNA types and technologies (Fig. 3A). Below, we present fold dif-
ferences for the moderately filtered set. Per-spacer error rates were
significantly higher (Supplemental Table S7; for adjusted P-values,
see Supplemental Table S8) than per-repeat-tract rates for A-phased
repeats across all three technologies analyzed, with 1.40-fold for
Illumina, 1.05-fold for HiFi, and 1.45-fold for ONT (Fig. 3B).
Likewise, error rates were significantly elevated in spacers com-
pared with repeat arms for direct repeats (1.39-fold for Illumina,
1.19-fold for HiFi, and 1.18-fold for ONT) (Fig. 3B). For inverted re-
peats, the rates were also significantly elevated in spacers com-
pared with repeat arms in all three technologies, but the fold
increases were small (≤1.10). For mirror repeats, error rates were
significantly elevated in spacers compared with repeat arms for
Illumina and ONT (1.23-fold and 1.16-fold, respectively) (Fig.
3B) but were the same between these two parts of repeats for
HiFi. For G4motifs, we observed contrasting patterns among tech-
nologies: Whereas error rates were significantly elevated in loops

compared with stems in Illumina andHiFi (5.76- and 1.20-fold, re-
spectively), they were decreased in loops versus stems (0.83-fold)
in ONT (Fig. 3B). The pattern observed in ONT likely reflects the
known elevated error rates at homopolymers (Bowden et al.
2019), which are present in G4 stems.

Deletion errors

Illumina

To compare deletion error rates between non-B motifs and con-
trols, we divided the number of deletion errors by the number of
aligned nucleotides (across all reads) of the motif or control se-
quence. The overall deletion error rates were low for the Illumina
data set (Fig. 4A; Supplemental Table S2B). Deletion error rates
were significantly higher for motifs than for controls in both strin-
gently and moderately filtered sets for direct repeats (8.23- and
4.31-fold for the moderately and stringently filtered data sets, re-
spectively), G4 motifs (3.00- and 3.02-fold), and inverted repeats
(1.60- and 1.25-fold) (Fig. 4B; Supplemental Table S4). Additional-
ly, deletion error rates were significantly higher in motifs than in
controls in the moderately filtered set for Z-DNA motifs (12.7-
fold), mirror repeats (4.84-fold), and A-phased repeats (1.20-fold)
(Fig. 4B; Supplemental Table S2A). The percentage of deviance ex-
plained in the Poisson regressionmodels for per-motif deletion er-
ror rates ranged from 0.4% (for A-phased repeats) to 16.3% (for Z-
DNA motifs) (Supplemental Table S5). The removal of the “non-B
motif versus control” predictor led to a reduction of deviance ex-
plained across all non-B motif types, with a 1.98%–83.2% reduc-
tion depending on the non-B motif type, with particularly high
contribution of this predictor for models concerning Z-DNA mo-
tifs (83.2%) and direct repeats (64.5%) (Supplemental Table S5),
which both also showed relatively high explanatory power for
the full model (16.3% and 9.4%, respectively).

PacBio HiFi

The overall deletion error rate for HiFi was approximately an order
of magnitude higher than that for Illumina (Supplemental Table
S2B). All non-Bmotif types except for Z-DNAmotifs showed signif-
icantly elevated per-motif deletion error rates compared with the
controls (Fig. 4A), with 1.32-, 1.56-, 2.12-, 1.32-, and 1.67-fold in-
creases for themoderately filtered set and 1.24-, 1.17-, 2.16-, 1.38-,
and 1.58-fold increases for the stringently filtered set for A-phased
repeats, direct repeats, G4s, inverted repeats, andmirror repeats, re-
spectively (Fig. 4B; Supplemental Table S4). Per-motif deletion er-
ror rates in Z-DNA motifs were significantly reduced compared
with the controls: 0.62-fold for the moderately filtered data and
0.24-fold for the stringently filtered data. The Poisson regression
models for HiFi deletion error rates explained between 4.8% (Z-
DNA motifs) and 12.0% (direct repeats) of deviance. Excluding
the “non-B motif versus control” predictor led to a moderate re-
duction in percentage of deviance explained in models for direct
repeats (17.5%) and mirror repeats (19.9%) (Supplemental Table
S5). The presence of homopolymers was the most important pre-
dictor in all models; its removal led to the reduction of deviance
explained between 57.9% and 91.7%.

ONT

The average per-motif deletion error rates were significantly differ-
ent for all non-Bmotif types versus controls for the moderately fil-
tered set and for G4s, inverted repeats, mirror repeats, and Z-DNA
motifs for the stringently filtered set (Fig. 4A). Consistent elevation
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Figure 3. Single-nucleotide error rates in non-B motif subregions. (A) Boxplots of per-motif SNM error rates of subregions of non-B motifs. A-phased,
direct, inverted, and mirror repeats are divided into repeat arms and spacer; G4 motifs are divided into stem (G-tract) and loop. Boxplot whiskers show
the fifth and the 90th percentiles, and values outside whiskers are excluded from the boxplots in order to better visualize the bulk of the distributions.
The left panel shows the moderately filtered set; the right panel, the stringently filtered set. The three rows correspond to the different technologies
(Illumina, HiFi, and ONT). Purple and green boxes correspond to repeat/stem and spacer/loop subregions, respectively; black dots mark values for per-
motif means; and orange triangles aggregate error rates (sum of all errors divided by sum of all aligned nucleotides). Note that the y-axes differ among
technologies. (B) Heatmaps visualizing fold changes in per-motif means of SNMerror rates between different subregions of non-Bmotifs. Red (blue) shades
indicate higher (lower) error rates in loops and spacers than in stems and repeat arms, with fold change values reported in each cell of the map.When these
values are in bold, per-motif means were significantly different betweenmotifs and controls (t-test P-values corrected formultiple testing smaller or equal to
0.05). Also here, left and right panels correspond to moderately and stringently filtered sets, respectively, and rows correspond to Illumina, HiFi, and ONT
technologies, respectively.
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Figure 4. Deletion error rates in non-Bmotifs. (A) Boxplots of per-motif deletion error rates. Boxplot whiskers show the fifth and the 90th percentiles, and
values outside whiskers are excluded from the boxplots in order to better visualize the bulk of the distributions. The left panel shows the moderately filtered
motif set; the right panel, the stringently filtered set. The three rows correspond to the different technologies (Illumina, HiFi, and ONT). Red and blue boxes
correspond to motifs and controls, respectively; black dots mark per-motif means; and orange triangles aggregate error rates (sum of all deletion errors
divided by sum of all aligned nucleotides). Note that the y-axes differ among technologies. (B) Heat maps visualizing fold changes in per-motif means
of deletion error rates between motifs and corresponding controls. Red (blue) shades indicate higher (lower) error rates in non-B motifs than in controls,
with fold change values reported in each cell of the map. When these values are in bold, per-motif means were significantly different between motifs and
controls (t-test P-values corrected for multiple testing smaller or equal to 0.05). Also here, left and right panels correspond to moderately and stringently
filtered sets, respectively, and rows correspond to Illumina, HiFi, and ONT technologies, respectively.
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in per-motif deletion rates was observed for G4 motifs over con-
trols (1.64-fold and 1.53-fold for the moderately and stringently
filtered sets, respectively) (Fig. 4B). Differences in deletion rates be-
tweenmotifs and controls were smaller inmagnitude formirror re-
peats, Z-DNAmotifs, and inverted repeats (from 0.99- to 1.19-fold)
(Fig. 4B). The explanatory power of the Poisson regression models
explaining ONT deletion error rates ranged from 8.4% (for Z-DNA
motifs) to 23.7% (for G4 motifs). For the latter, the removal of the
“non-B motif versus control” predictor led to a reduction of devi-
ance explained by only 0.7%,whereas in themodel for Z-DNAmo-
tifs, we found an 18.9% reduction. InG4motifs, the removal of the
predictor denoting the presence of a homopolymer led to the re-
duction in deviance explained by 12.1%.

Insertion errors

Illumina

For Illumina, the insertion error rate was low and comparable to
the deletion error rate (Supplemental Table S2B). The per-motif in-
sertion error rates were significantly elevated in all non-B motif
types compared with the controls for the moderately filtered set
and for A-phased repeats, direct repeats, and G4 motifs for the
stringently filtered set (Fig. 5A; Supplemental Table S2A). A-phased
repeats, direct repeats, and G4 motifs showed a 1.50-, 29.2-, and
8.82-fold increase in insertion error rates in themoderately filtered
set and a 4.78-, 3.65-, and 7.15-fold increase in the stringently fil-
tered set, respectively (Fig. 5B). In the Poisson regression models,
the percentage of deviance explained ranged from 1.00% (for
A-phased repeats) to 21.5% (for Z-DNA motifs). Three Poisson re-
gression models exceeded an explanatory power of 10%, namely,
for direct repeats (16.7%), mirror repeats (20.5%), and Z-DNAmo-
tifs (21.5%). For these three models, we found that the removal of
the predictor for “non-Bmotif versus control” led to a reduction of
the deviance explained by 47.7%, 39.5%, and 83.8%, respectively.

PacBio HiFi

Similar to the deletion error rate, the insertion error rate for HiFi
was approximately an order ofmagnitude higher than that for Illu-
mina (Supplemental Table S2B). Average per-motif insertion error
rates for HiFi were significantly elevated in all non-B motif types
compared with controls in the moderately filtered set and in all
non-B motifs but direct repeats in the stringently filtered set (Fig.
5A): with 1.23-, 1.40-, 1.07-, 1.32-, and 1.70-fold increases for
the moderately filtered set and 1.21-, 1.30-, 1.08-, 1.20-, and
1.38-fold increases in A-phased repeats, G4 motifs, inverted re-
peats, mirror repeats, and Z-DNAmotifs, respectively (Fig. 5B; Sup-
plemental Table S4). The explanatory power of the Poisson
regressionmodels did not exceed 5% in any of themodels, render-
ing only limited information about the contribution of individual
predictors (Supplemental Table S5).

ONT

The insertion error rate in the ONT data set was higher than for
other technologies analyzed (Fig. 5A; Supplemental Table S2B).
Similar to that for the other technologies, for ONT, we found sig-
nificantly elevated per-motif insertion error rates in G4 motifs
compared with controls (1.60- and 1.52-fold for the moderately
and stringently filtered sets, respectively) (Fig. 5B). For the other
non-B motifs, insertion error rates were similar in magnitude be-
tween motifs and controls (with fold changes ranging between
0.98 and 1.08) (Fig. 5B), albeit often significantly different because

of the large number of insertion events considered. Poisson regres-
sion models with ONT insertion error data explained between
2.4% (for Z-DNA motifs) and 22.5% (for G4 motifs)
(Supplemental Table S5) of deviance. For the latter, the removal
of the “non-B motif versus control” predictor led to a 2.5% reduc-
tion in the percentage of deviance explained.

Sequencing depth and quality

For Illumina, we found lower average read depth in G4 and Z-DNA
motifs than in controls (0.81- and 0.95-fold, respectively, in the
moderately filtered set and 0.82- and 0.90-fold in the stringently
filtered set), and higher average read depth in A-phased, inverted,
and mirror repeats than in controls (1.05-, 1.04- and 1.05-fold,
respectively, in the moderately filtered set and 1.04-, 1.03- and
1.04-fold in the stringently filtered set) (Supplemental Fig. S3;
Supplemental Table S2A). Direct repeats did not affect average
read depth. For HiFi, we observed only minimal differences in
the aggregate read depth between non-Bmotifs and controls, rang-
ing from 0.98- to 1.01-fold for themoderately filtered set and from
0.99 to 1.01-fold for the stringently filtered set (Supplemental Fig.
S3). For ONT, we found no relevant differences in aggregate read
depth between non-B motifs and controls (Supplemental Fig. S3;
Supplemental Table S4).

To evaluate potential effects of non-B DNA on sequencing
base quality, we used the moderately filtered set. For Illumina,
the average base quality was lower in direct repeat, G4, and Z-
DNA motifs with 0.99-, 0.97-, and 0.96-fold differences compared
with controls, respectively. Average base quality in A-phased re-
peat and inverted repeat motifs was slightly elevated compared
with that in controls (1.02- and 1.01-fold, respectively), whereas
it was equivalent between mirror repeat motifs and controls
(Supplemental Fig. S4). For HiFi, average base quality was reduced
in comparison to controls in direct repeat (0.99-fold) and Z-DNA
motifs (0.96-fold), whereas it was increased in A-phased repeat
(1.08-fold) andG4motifs (1.08-fold). In inverted andmirror repeat
motifs, average HiFi base quality was not different between motifs
and controls. We could not measure the potential effects of non-B
motifs on ONT base quality because no read base quality values
were available in the data used (see Methods).

False-positive single-nucleotide variants owing to errors

in non-B motifs

To evaluate the probability of identifying sequencing errors as var-
iants (i.e., of false-positive single-nucleotide variants [SNVs]) and
to gauge the expected number of such false positives in motifs
with non-B-forming potential, we developed a probabilistic model
that takes into account several key parameters (seeMethods). It in-
corporates the per-nucleotide error rates derived from the analyses
presented above, aswell as the number of haploid genomes, the av-
erage sequencing read depth per haploid genome, the minimum
number of reads used to identify a variant, the minor variant fre-
quency used to call an SNV, and the total number of base pairs cov-
ered by non-B motifs (either of a certain type or all together; for
details, see Methods).

We applied this model to three hypothetical scenarios with
varying “sample sizes,” that is, numbers of haploid genomes—
200, 2000, and 20,000 (corresponding to 100, 1000, and 10,000 in-
dividuals)—and average read depths per haploid genome, ranging
from 3× to 30× (Fig. 6A). For each scenario, we estimated the ex-
pected number of false-positive SNVs using the probabilistic mod-
el with the SNM error rates we computed above for themoderately
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Figure 5. Insertion error rates in non-B motifs. (A) Boxplots of per-motif insertion error rates. Boxplot whiskers show the fifth and the 90th percentiles,
and values outside whiskers are excluded from the boxplots in order to better visualize the bulk of the distributions. The left panel shows the moderately
filteredmotif set; the right panel, the stringently filtered set. The three rows correspond to the different technologies (Illumina, HiFi, andONT). Red and blue
boxes correspond to motifs and controls, respectively; black dots mark per-motif means; and orange triangles aggregate error rates (sum of all insertion
errors divided by sum of all aligned nucleotides). Note that the y-axes differ among technologies. (B) Heatmaps visualizing fold changes in per-motif means
of insertion error rates between motifs and corresponding controls. Red (blue) shades indicate higher (lower) error rates in non-B motifs than in controls,
with fold change values reported in each cell of the map. When these values are in bold, per-motif means were significantly different between motifs and
controls (t-test P-values corrected for multiple testing smaller or equal to 0.05). Also here, left and right panels correspond to moderately and stringently
filtered sets, respectively, and rows correspond to Illumina, HiFi, and ONT technologies, respectively.
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filtered set in each of the three technologies. This was performed
separately for motifs of each non-B type and for controls (B
DNA) and considering different ways of scoring rare variants
(i.e., by scoring variants present in a single haploid genome, by
scoring variants present in three haploid genomes, and by using
a minor variant frequency threshold of 0.01) (Fig. 6A; for results
for doubletons, see Supplemental Fig. S5). Requiring a variant to

occur inmultiple (e.g., three to five) haploid genomes is frequently
used when studying rare variants (Wainschtein et al. 2022). For all
three ways of scoring variants, the expected number of false-posi-
tive SNVs was higher in all three technologies when considering
non-B motifs of all types combined compared with an equally
long stretch of BDNA sequence (solid and dashed lines, respective-
ly, in Fig. 6A). However, above the read depth of 21× for Illumina

A

B

Figure 6. False-positive SNVs in non-B motifs. (A) Scenarios with different technologies corresponding to rows and numbers of diploid individuals (100,
1000, and 10,000) corresponding to columns. The average read depth per haploid genome is plotted on the x-axis, and the expected number of false-
positive SNVs owing to errors is shown on the y-axis. Colors indicate different variant frequency filters (singletons, tripletons, and 1%) (for doubletons, see
Supplemental Fig. S5), whereby the solid line corresponds to the cumulative number of all false-positive SNVs across non-B types; the dashed line, to the
number of false-positive SNVs in an equally long stretch of B DNA. (B) Expected false-positive SNVs in middle guanines in guanine triplets at G4 motifs in
Illumina sequencing. Within G4 motifs, there are 1,715,082 bp that fit the requirements of a middle guanine in a guanine triplet, which may have an ex-
tremely high error rate (Schirmer et al. 2016). Plotted are the numbers of expected false-positive SNVs, with the same coloring scheme and numbers of
diploid individuals as in A.
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and HiFi, the expected number of false positives approached zero
even for singletons in all three sample size scenarios. In contrast,
ONT sequencing may not be advisable when investigating single-
ton variants owing to its substantial expected false positives even
at higher read depths. For tripletons and variants with a minor fre-
quency above 0.01, expected false positives weremuch lower over-
all. Indeed, already at an average depth of 6×, virtually no false-
positive SNVs are expected when requiring a minor frequency
above 0.01 for sample sizes larger than 100 individuals in
Illumina and HiFi (for ONT, this is achieved at approximately 9×
read depth). Whereas motifs of all non-B DNA types were com-
bined above, expected false positives computed separately for dif-
ferent non-B DNA types (Supplemental Fig. S6) depend, for each
non-B motif type, on its error rate and on the number of nucleo-
tides it occupies in the genome. In addition to calculating expected
false positives, we also ranMonte Carlo simulations with our prob-
abilistic model to gauge the variability of false-positive values un-
der the different scenarios considered (see Methods), drawing
congruent conclusions (Supplemental Fig. S7).

We then investigated a special case of an exceptionally high
error rate potentially occurring in G4 motifs, namely, the middle
guanines in guanine triplets. Schirmer et al. (2016) have shown
that, in Illumina sequencing, the second positions of guanine
triplets show error rates of orders of magnitude higher than ge-
nome-wide averages. Using this drastically elevated error rate
(0.035 errors per site) in our probabilistic model for all potential
middle G’s in the G4 motifs analyzed in this study (a total of
1,715,082 bp), we obtained large expected false-positive values
even at higher read depths (Fig. 6B) and at higher minor variant
frequency cutoffs. Indeed, false positives for singletons did not ap-
proach zero even at sequencing depth of 30×, and they approached
zero at the depth of 23× and 27× for tripletons scored for 1000 and
10,000 individuals, respectively. This indicates that for analyses of
variants contained in G4 motifs, substantially higher read depths
and/ormore stringentminor variant filters are necessary to discern
between true- and false-positive variants.

To further illustrate the potential impact of non-B motifs on
false-positive SNVs, we used our probabilistic model with parame-
ters derived from three publicly available sequencing data sets: the
1000 Genomes Project (1000G) (The 1000 Genomes Project
Consortium 2015), the Simons Genome Diversity Project (SGDP)
(Mallick et al. 2016), and the Genome Aggregation Database
(gnomAD) (Karczewski et al. 2020). These data sets are all based
on Illumina sequencing technology and have vastly different sam-
ple sizes as well as considerably different average sequencing read
depths. In the 1000G example, which has an average read depth of
2× (1× per haploid genome) and a high number of individuals
(5008 haploid genomes), singleton and tripleton variants cannot
be reliably distinguished from sequencing errors, whereas requir-
ingminor variant frequencies≥0.01 drastically reduces the expect-
ed number of false positives (Supplemental Table S9). In contrast,
in the SGDP example (21× read depth per haploid genome, 600 in-
dividuals), the sequencing depth is such that, according to our
probabilisticmodel, false-positive variants are not expected regard-
less of the minor variant frequency. In the gnomAD example (15×
read depth per haploid genome, 152,312 haploid genomes),
11,044 errors are expected to be falsely identified as singletons
among all non-B motifs compared with 2481 errors among an
equally long stretch of B DNA. These numbers are substantially re-
duced (leading to virtually no expected false positives according to
our probabilistic model) in tripletons and variants with frequen-
cies ≥0.01.

Finally, we also applied an empirical approach to the detec-
tion of false-positive SNVs. Randomly subsampling the Illumina
data set used in the error detection analysis above to different
read depths (3×, 9×, 15×, and 30×), we naively identified SNVs in
the HG002 individual using FreeBayes (Garrison and Marth
2012) and then compared these variants to the GIAB true-variant
set to estimate the proportion of false-positive SNVs (seeMethods).
In addition, we also used a newer version of the GIAB true-variant
set (v4.2.1) to estimate false positives. Compared with the probabi-
listic model results (Fig. 6), with increasing depth, the proportion
of false positives initially increased but then decreased (for both
motifs and controls), starting at a read depth of 15× (Supplemental
Fig. S8). The overall pattern of higher proportions of false positives
in motifs compared with controls observed based on the GIAB
true-variant set used in our main analysis (Supplemental Fig.
S8A) was also evident when using a newer, more complete true-
variant set GIAB v4.2.1 (Supplemental Fig. S8B). This suggests
that true variants falsely identified as errors did not substantially
contribute to such a pattern.

Discussion

Identifying biases in sequencing accuracy and predicting sequenc-
ing success are paramount for genomic studies. By using publicly
available data, we showed that non-B DNA-forming motifs are as-
sociated with altered sequencing success across three major se-
quencing technologies. Thus, such motifs should be taken into
consideration when interpreting existing sequencing studies and
designing new ones. As our Poisson models suggested, the as-
sociation of non-B motifs with error rates can be caused by the
co-occurrence of other attributes, such as biased nucleotide
composition or the presence of homopolymers. Yet, previous stud-
ies suggested that a variety of non-B DNA structures are affecting
the function of DNA polymerases in vivo (Mirkin and Mirkin
2007), and this might be the case also when these enzymes are
used in sequencing instruments.

SNM rates

Overall, we found moderate associations between non-B motifs
and SNMerror rates. The largest was observed for G4motifs, which
showed consistently elevated SNM error rates across all technolo-
gies and both filtering schemes (Fig. 2). The magnitude of this el-
evation was lower for HiFi and ONT than for Illumina (Fig. 2).
For HiFi, whenwe restricted attention to the nonrepetitive portion
of the genome through our “stringent” filtering, we observed no
significant differences in SNM error rates between non-B motifs
and controls (Fig. 2). For Illumina, our Poisson regression models
suggest that in some cases altered SNM error rates are mainly asso-
ciated with the presence of non-B DNA motifs themselves (e.g.,
Z-DNA, direct repeats, and G4 motifs); in others, with their pecu-
liar nucleotide composition (e.g., mirror repeats and A-phased re-
peats). The latter is in line with previous studies indicating that
GC content affects sequencing depth and errors in Illumina
(Aird et al. 2011). We also found higher SNM error rates in spac-
ers/loops than in repeat arms/stems, with particularly strong eleva-
tions for the Illumina technology and for G4 motifs (Fig. 3). This
heterogeneity in SNM error rates within motifs should also be tak-
en into account when analyzing variants located in non-B DNA. It
suggests that although average error rates over an entire non-Bmo-
tif might be only slightly elevated compared with control regions,
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certain subregions within the motif may be more prone to se-
quencing errors than others. This was also evident when we ana-
lyzed the expected number of false positives at the middle G’s in
G4s’ stems (Fig. 6B).

Deletion error rates

The association of non-Bmotifs with deletion error rates was stron-
ger than that with SNM error rates. Particularly for the Illumina
technology, fold differences between non-B motifs and controls
were larger in magnitude for deletion than for SNM error rates.
G4 motifs had elevated deletion error rates over controls across
technologies and filtering schemes, with the highest fold increases
for Illumina, intermediate for HiFi, and lowest for ONT. Our mod-
els indicated that, in addition to the presence of non-B motifs,
deletion error rates are strongly associated with the presence of ho-
mopolymers. Although ONT sequencing is known to show a bias
in homopolymer regions (Bowden et al. 2019), the ongoing im-
provement of both base-calling algorithms and sequencing chem-
istry is expected to further reduce this bias in the future. Notably,
although fold differences in deletion error rates between non-B
motifs and controls were smaller in magnitude for HiFi than for
Illumina and were smallest for ONT, both long-read technologies
showed higher overall deletion error rates than the short-read
Illumina.

Insertion error rates

We found that compared with deletion error rates, insertion error
rates (albeit low) were more strongly affected by the presence of
non-B motifs for Illumina, were less for HiFi, and were similarly
largely unaffected for ONT. The fold increases in insertion error
rates owing to the presence of non-B motifs for the Illumina tech-
nology were the largest across all the analyses we conducted. For
this technology, even after applying stringent filtering, we found
significant increases in insertion error rates. A notable exception
are Z-DNA motifs, which seemingly become more accurate in
the stringent filtering scheme. This is because of the removal of
motifs overlapping with microsatellites, which appear to drive
the high insertion, as well as deletion, error rate. Again for
Illumina and for all non-B motif types but G4 motifs, our models
indicated a contribution of the motif presence to explaining vari-
ability in insertion error rates. These contributions were onlymod-
erate for HiFi and minor for ONT.

Effects of moderate versus stringent filtering

We found that applying moderate versus stringent filtering alters
Z-DNA deletion and insertion error rates for the Illumina technol-
ogy. When the moderate filter is applied, Z-DNA shows highly el-
evated deletion and insertion error rates compared with that of
controls, whereas these rates are reduced when the stringent filter
is applied. Given that in the stringently filtered data set any over-
lap withmicrosatellites is removed, we suspect that microsatellites
are driving the signal in the moderately filtered data set. We also
note that our reanalysis of the SGDP data (Illumina sequencing)
to compare diversity between B DNA and non-B DNA indicated
G4motifs stand out in terms of SNV diversity even when stringent
filtering is applied (Supplemental Fig. S9). In addition to the two
filtering levels, we have also explored the effects of using different
true-variant sets in our error detection pipeline. For a subset of the
whole data (Illumina and Chromosome 1), we repeated the error
detection analysis using a more extensive true-variant set to iden-

tify errors and showed that although the overall SNV error rates
were slightly reduced, the pattern of elevated rates in motifs com-
pared with controls persisted (Supplemental Fig. S10).

Depth and quality

Across technologies, Illumina clearly showed the largest differenc-
es in average read depth between non-B motifs and controls and
showed reduced read depths in G4 and Z-DNA motifs. G4 motifs
showed the largest differences, with a 20% and 18% decrease in
read depth compared with the controls for the moderately and
stringently filtered sets, respectively. Readdepthwas hardly altered
at all for the two long-read technologies, HiFi and ONT. For
Illumina and HiFi technologies, the associations between non-B
motifs and sequencing quality appear to be minor.

Conclusions and recommendations

Although our results suggest a relationship between non-B motifs
and sequencing accuracy, providing evidence for a causal link be-
tween non-B DNA structure formation and sequencing errors is
more difficult. Confounding factors, such as biased GC content,
which are also known to influence sequencing accuracy in at least
one of the technologies (Illumina), are in close interplay with non-
B motifs, as they are often an inherent feature of such motifs
(Dohm et al. 2008). The same is true for homopolymers (including
imperfect homopolymers occurring in G4 motifs), which are
known to elevate the error rates of both HiFi and ONT technology
(Bowden et al. 2019; Karst et al. 2021). We conclude that many
non-Bmotifs possess several attributes associated with elevated se-
quencing error rates (structure, biased nucleotide composition,
and homopolymers), with effects and magnitudes differing across
technologies and sequencing error types. Therefore, the choice of
technology depends on the type of errors one is trying to avoid at
non-B motifs. To minimize single-nucleotide errors at non-B mo-
tifs, we recommend using PacBio HiFi, particularly for the nonre-
petitive portion of the genome. Both HiFi and ONT display low
SNM error biases at non-B DNA motifs compared with Illumina;
however, HiFi has lower overall SNM error rates compared with
those of ONT. If minimizing deletion and insertion error biases
at non-B motifs is of interest, the choice should be between HiFi
andONT, which show comparatively lower biases at non-Bmotifs,
with a preference toward HiFi, which has overall low indel rates.
Illumina has low insertion and deletion error rates, but its inser-
tion and deletion error biases at non-Bmotifs are substantial, mak-
ing it a suboptimal choice.

If one is to choose one sequencing technology to obtain the
most accurate results for non-Bmotifs andminimize all three types
of sequencing errors, we would recommend HiFi, which balances
out low error rates with relatively low biases at non-B motifs. The
ONT technology, althoughhaving higher overall rates for all errors
considered, does not appear to be affected by non-B DNAmotifs as
much as Illumina and PacBio HiFi, indicating that ONTmay carry
less bias in non-B motifs. This is consistent with the fact that this
technology is not polymerase based (Daniel and Deamer 2019).
However, G4 motifs are the only type of non-B that shows a con-
siderable increase of mismatch errors, which is somewhat surpris-
ing because the helicase used in ONT sequencers should, in
principle, be less susceptible to structures formed in single-strand-
ed DNA. Overall, given a sufficient read depth, ONT might be less
prone to false-positive variants at non-Bmotifs, which, in addition
to its ability to generate ultra-long sequencing reads (Jain et al.
2018), makes it attractive.
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The use ofmultiple technologies facilitates error detection for
any type ofmutation, because true variants should be present in all
technologies, each with its own sequencing error profile. In addi-
tion to combining different technologies, our calculation of ex-
pected false-positive SNVs based on SNM error rates in non-B
motifs suggests that read depth and variant frequency cutoffs are
critical, especially for rare variants. The high amount of expected
false-positive singleton variants in scenarios with low read depth,
and particularly in subregions of G4 motifs, highlights the impor-
tance of treating these regions with extra caution in downstream
analyses and of applying rigorous quality filters. Moreover, results
obtained from our probabilistic model with parameters derived
from the 1000 Genomes, SGDP, and gnomAD data sets highlight
how investigating rare variants with low read depthmay be partic-
ularly problematic. In some extreme cases (e.g.,middle guanines in
guanine triplets) with insufficient read depth, variants may be-
come indistinguishable from errors if they are only occurring
once or a few times among studied individuals. Taken together,
these results are in line with previous findings on the relationship
between read depth, minor variant frequency, and the occurrence
of false positives. They highlight the need for sufficient depth and
quality control in error-prone regions (Tabangin et al. 2009;
Kishikawa et al. 2019), to which we now add non-B DNA, and sug-
gest that investigations incorporating rare variants in such regions
should be performed with additional caution and sufficient read
depth.

Overall, in cases in which abundant read depth is available,
the increased error rate in non-B motifs might not lead to mistak-
ing errors for biological variants (i.e., to false positives), especially
when stringent filters are applied in terms of read quality and the
avoidance of repetitive regions. However, when read depth is low
(e.g., in ancient DNA or pooled population sample studies), var-
iants identified in non-B motifs require additional scrutiny be-
fore being used in downstream analyses, and it may be
advisable to restrict attention to variants identified by multiple
technologies (when available) to avoid technology-specific
biases.

Methods

Data

We used publicly available sequencing data generated for the
GIAB Consortium (Zook et al. 2016; https://www.nist.gov/
programs-projects/genome-bottle). We downloaded Illumina,
PacBio HiFi, and ONT data for one individual—the son of the
Ashkenazim trio (HG002, NA24385). We down-sampled the ex-
isting Illumina (2 × 150 bp, generated with Illumina HiSeq 2500
Rapid SBS) alignment file of 300× to ∼100×. For PacBio HiFi, we
downloaded 167 Gb of raw read data (30× consensus read depth,
generated with the PacBio Sequel instrument). Because the ONT
base-calling is under constant development, we used a data set
available at EPI2ME Labs (https://labs.epi2me.io), which uses a
significantly improved base-calling algorithm (Bonito v0.3.0)
on the same raw data set with sequencing depth of 57×
(HG002, NA24385).

Read mapping

In all our analyses, we used hg19 as a reference, as the most com-
prehensive genomic annotations and other resources are available
for this version. Because we are applying a variety of filters to
remove repetitive regions (see below), we do not expect our

analysis to be influenced by the choice of this reference. For
Illumina, we downloaded alignment files from the GIAB homepage
(https://github.com/genome-in-a-bottle/giab_data_indexes). For
PacBio and ONT, we aligned reads to hg19 using minimap2 with
the PacBio HiFi and ONT specific parameters, respectively (Li
2018). In all alignment files, we removed duplicates using Picard
tools (http://broadinstitute.github.io/picard/) and sorted and split
reads into forward and reverse and by chromosome using
SAMtools (Li et al. 2009).

Non-B DNA annotations

For all non-B DNA motifs except G4 motifs, we used annotations
available at the non-B DNA database (https://nonb-abcc.ncifcrf
.gov), which are based on the human reference hg19. To predict
potentially G4-forming loci, we used Quadron (Sahakyan et al.
2017), which provides predicted stability values for each
motif, with default parameters. We then downloaded the
mappability track for hg19 based on 36-mers from the UCSC
Genome Browser (http://genome.ucsc.edu/), used the R package
genomicRanges (Lee and Schatz 2012; Lawrence et al. 2013) to cal-
culate meanmappability values, and used BEDTools nuc (Quinlan
and Hall 2010) to obtain nucleotide composition (abundance of
each of the four bases) for all motifs. For base quality, we first ob-
tained values for each read and position within each motif using
SAMtoolsmpileup (version 1.9) (Li et al. 2009) and then calculated
the average for each motif. Because Illumina and PacBio technolo-
gies use different quality score encoding, these results are not
directly comparable. For the ONT data set, there are no quality
scores available in base-called read data.

For each non-B motif type, we removed overlapping motifs
(within the same non-B type) and those overlapping with a nucle-
otide homopolymer ≥7 bp, as well as any motif >1000 bp or with
an average mappability lower than one. In addition, we recorded
any overlap with a motif of another non-B type, a RepeatMasker
annotation, a homopolymer≤7 bp, or an annotatedmicrosatellite.
Microsatellite annotations were generated with STR-FM
(Fungtammasan et al. 2015), identifyingmono-, di-, tri-, and tetra-
nucleotide repeats with a copy number of at least seven units. This
set of non-B motifs, which we call the “moderately filtered set,”
formed the basis for randomly generating control regions:
Independently for each non-B type, we constructed controls
matching the number and the size of themotifs and excluding ref-
erence gaps and all non-B DNA motifs. Finding controls with
matched nucleotide composition was not feasible for some non-
B DNA motif types owing to their high number and extensive se-
quence coverage, especially when motifs had biased GC content
(e.g., G4 motifs). For all control regions, we gathered features
such as base quality, nucleotide composition, overlap with
RepeatMasker annotations, etc. To form the “stringently filtered
set,” we first excluded any motif that overlapped with a
RepeatMasker or an STR annotation and anymotif that either over-
lapped with or was within 50 bp of another non-B motif.
Additionally, we excluded any motif with a Phred quality score
lower or equal to 30 (Illumina) or 73.17 (HiFi). To adjust controls,
we subjected them to the same filters and then randomly subsam-
pled them to match the size of the corresponding motif sets.

To assess variation in error rate within non-B motifs, we fur-
ther partitioned annotated motifs into subregions. For A-phased,
direct, inverted, and mirror repeats, we split the annotations into
repeat arms and spacers; for G4 motifs, into stems (the G-tract)
and loops. To be consistent across motifs, we restricted analyses
on subregions to G4 motifs with four stems and three loops and
to repeat motifs (A-phased, direct, inverted, and mirror repeats)
with two repeat arms and one spacer.
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Error calling

Because variant detection tools are usually focused on detecting
true biological variation and are optimized to avoid sequencing er-
rors, we developed a script that, for each region of interest, counts
the total number of aligned nucleotides and naively identifiesmis-
matches directly from theCIGAR string of an alignment file. To ex-
clude biological variants not representing sequencing errors from
our analyses, we used the HG002 GIAB true-variant set previously
described (Zook et al. 2016). Briefly, the variant setwas obtained by
mapping all sequencing data of the Ashkenazim Jew trio to the
hg19 reference and then jointly calling variants using GATK
HaplotypeCaller on all three samples. The resulting VCF file was
filtered following GATK SNP variant quality score recalibration
and GATK best practices recommendations (Zook et al. 2016). In
our error detection pipeline, any single-nucleotide, insertion, or
deletion mismatch was recorded as an error unless it overlapped
with a true biological variant present in the true-variant set de-
scribed above. In the latter case, it was removed from all subse-
quent analyses, and the position was treated as if no mismatch
had occurred for HG002 (Zook et al. 2016).

To add an orthogonal approach in single-nucleotide error
calling for Illumina, we also detected SNV sequencing errors by ex-
amining the overlaps between mates in Illumina read pairs as de-
scribed by Stoler and Nekrutenko (2021), using the full (300×)
data set described above. For each read pair, we restricted our anal-
ysis only to the errors located in the region between 50% and 60%
of the full read length. For this analysis, we used the same sets of
non-B motifs and controls as described above.

Read depth and base quality

To assess potential biases in sequence readdepth,we calculated the
mean depth per base pair (total number of aligned nucleotides di-
vided by total length) and permotif (averaging themeandepth per
bp across all motifs) for all non-B motif types and associated con-
trols. Likewise, we computed mean base quality for motifs and
controls for Illumina and HiFi sequencing data.

Downstream statistical analysis

All statistical analyses were performed separately on the “moder-
ately” and “stringently” filtered sets described above. The t-test
P-values for the comparisons between the average per-motif and
per-control mismatch error rates were adjusted for multiple testing
using the Benjamini–Hochberg correction (Benjamini and
Hochberg 1995).

To study the effect of non-B-forming motifs on sequencing
errors while taking into consideration the effects of other quanti-
ties such as nucleotide composition, motif length, and the pres-
ence of homopolymers, we fitted a Poisson regression model
using the glm function in R with Poisson distribution and log
link function. This model was chosen because errors, that is, our
responses, displayed extremely right-skewed distributions with
an excess of zero. Specifically, we used the counts of single-nucle-
otide mismatches, deletions, and insertions as responses in sepa-
rate regressions, always including the logarithm of the total
number of sequenced nucleotides as an offset term, namely, a pre-
dictor with fixed coefficient equal to one, to control for motif
length and sequencing depth. In symbols, we used the Poisson
model

log ( E(#err | x) ) = log (# nucl)+ b0 + b1x1 + · · · + bpxp,

where # err is the error count, # nucl is the total number
of sequenced nucleotides, and x1, …, xp are the predictors.

This model is mathematically equivalent to using the error rates
as responses:

log
E(# err | x)
# nucl

( )
= b0 + b1x1 + · · · + bpxp.

Nucleotide composition, as represented by the proportions of
A, C, T, and G nucleotides in each motif or control, was trans-
formed using the isometric log-ratio transform of Aitchison for
compositional data (Aitchison 1982). For each regression, after fit-
ting the full model with all predictors included, we excluded influ-
ential outliers (i.e., observations with a Cook’s distance greater
than one) (Cook and Sanford 1982), fit the model again, per-
formed a goodness-of-fit chi-square test, and computed Cohen’s
pseudo R2; that is, the share of deviance explained (D0–Dm)/D0,
wherein D0 is the null deviance and Dm the residual deviance of
the model. To estimate the contribution of each individual predic-
tor, we then repeated the fit, excluding from themodel one predic-
tor at a time and calculating the reduction in the share of deviance
explained (Kelkar et al. 2011); in symbols, [(D0 − Dm) − (D0 −
Dm{−})]/(D0 − Dm), where Dm and Dm{−} are the residual deviances
of the full and reduced model, respectively. All statistical analyses
were performed with the R programming language, and figures
were produced with the ggplot2 package (Wickham 2011; R Core
Team 2022).

Probabilistic model and empirical approach to estimate

false-positive SNVs

We built a probabilistic model to quantify the contribution of se-
quencing errors in variant identification and to estimate the effect
of non-Bmotifs on the number of false-positive SNVs called in sev-
eral scenarios. Specifically, we modeled the presence of a sequenc-
ing error at a single site of a certain type (e.g., a site belonging to a
certain type of non-B motif) using the Bernoulli distribution; that
is,X∼B(1, r), where r is the corresponding per-nucleotide sequenc-
ing error rate. Assuming independence among errors of different
sequenced nucleotidesmapping to the same site, the number of er-
rors observed in a site sequenced at depth d isY∼B(d, r), a binomial
distribution with d trials. Further assuming that all the sequencing
errors in a site generate the same variant (worst-case scenario), the
probability of wrongly identifying a variant in a site of a haploid
genome is pvar=P(Y≥minreads), where minreads is the minimum
number of reads required to call a variant. Finally, considering
the total number of haploid genomes g and assuming indepen-
dence among their sequencing errors, we obtain that the number
of haploid genomes with a variant in a site owing to sequencing
errors can be modeled as V∼B(g, pvar). Hence, the probability of
identifying a variant in a site owing to sequencing errors is pSNV

=P(V≥minvar), where minvar is the minor variant frequency to
call an SNV. Using such probability pSNV and the total number of
sites of the considered type and assuming constant sequencing
depth at all sites, we can compute the expected number of false-
positive SNVs as pSNV ·nsites. Across the different read depth scenar-
ios (3× to 30×, in increments of 3), minreadswas always one-third of
the respective read depth. Because this calculation only provides
an expected number (an average) of false-positive SNVs, we also
implemented a Monte Carlo simulation study based on the same
generative model to evaluate the corresponding variability in
false-positive values under various scenarios.

In addition, we estimated the proportion of false-positive
SNVs using the same Illumina data set that was also used for the
error detection analyses. To illustrate the effect of varying read
depths on false positives, we subsampled the HG002 100× data
set to approximately 3×, 9×, 15×, and 30× and performed variant
calling using the tool FreeBayes with default parameters and a
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minimum mapping quality filter set to 30 (Garrison and Marth
2012). We then intersected the obtained variant set with the com-
bined annotation of non-B motifs and controls and compared
these variants with the GIAB true-variant set described above
(v3.3.2), as well as with a newer, more complete version (v4.2.1)
(Wagner et al. 2022). Called variants present in the true-variant
set were scored as true positives; those absent, as false positives.
We then calculated the proportion of false positives by dividing
the number of false positives by the sum of true and false positives
for both motifs and controls.

Software availability

All custom scripts used in our analyses are available at GitHub
(https://github.com/makovalab-psu/nonB-Seq-Errors) and as
Supplemental Code.
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