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Abstract 

To develop realistic computational cognitive models of 
human decision making, it is essential to incorporate various 
traditionally non-cognitive but critically important soft factors 
into the model development, such as cultural biases, intuition, 
emotion, social norms, etc. In this paper we attempt to explore 
human cognitive-affective interactions in strategic thinking 
through a neurocomputational modeling approach. To 
empirically justify the model, we carried out a neuroimaging 
experiment using the ultimatum game. 

Introduction 
In the Art of War Sun Tzu tells us, if the enemy is too 
strong, flee from him. In general, why do we run away if we 
notice that we are in danger? Is it because we are afraid? Or 
is it because we decide that it is the logical thing to do based 
on our reasoning and strategic thinking? Or is it because of 
both? 

While good decision-making is among the prime 
examples of human intelligent behavior, how people do that 
has been a long-standing open question. The dominant 
theoretical framework (e.g., Subjective Expected Utility 
Theory) proposes that people always weigh the costs and 
benefits, or the feasibility and desirability, of actions so as 
to choose the action that can maximize the overall utility. 
While theoretically and formally appealing, psychological 
evidence typically shows that people systematically deviate 
from the prescription of this normative theory. As noted by 
Viner long time ago (1925), many factors may contribute to 
human performance besides utility maximization: 

 
Human behavior, in general, … ,not under the constant 
and detailed guidance of careful and accurate hedonic 
calculations, but is the product of an unstable and 
unrational complex of reflex actions, impulses, 
instincts, habits, customs, fashions and hysteria. 
[p.373-374] 
 
Despite these observations, the relation between reason 

and emotion has been a tangled one and how their 
interaction leads to decision making and strategic thinking 
remains elusive. From antiquity onward, philosophers have 

often opposed reason and emotion (e.g., "Reason wishes the 
decision that it gives to be just; anger wishes to have the 
decision which it has given seem the just decision", Seneca, 
On Anger). According to Seneca, anger is typically too 
shortsighted to engage in strategic interaction with reason. 
In his famous book, The Theory of Moral Sentiments, 
Adam Smith (1759) argued that human behavior was 
determined by a struggle between the "passions" and the 
"impartial spectator." The passions included basic instincts 
such as hunger, pain, sex, and emotions such as fear and 
anger. According to Smith, while behavior was often under 
the direct control of the passions, people could override 
passions' control through the impartial spectator – an 
outsider and a “moral hector who, looking over the shoulder 
of the economic man, scrutinizes every move he makes” 
(see Ashraf, Camerer, & Loewenstein, forthcoming). The 
outsider in Smith's theory is, of course, only imaginary. But 
the struggle between reason and emotions is true and 
ubiquitous in human everyday decision-making. 

Efforts have been taken in recent years to augment 
traditional computational models with so-called behavior 
moderator functions (e.g., Biddle, Henninger, Franceschini, 
& Jones, 2003). The dominant approach is to compute 
emotion through an artificial appraisal function, which is 
often heuristics-based or rule-based (e.g., Gratch & 
Marsella, 2004; Marinier III & Laird, 2004). Such an 
appraisal can then influence cognition through new rules or 
parameter tuning. 

The complex nature of emotions, however, makes any 
attempts to compute emotions difficult. Elster (Elster, 1999, 
2004) suggests that emotion be described from the 
following six perspectives: 
• Physiological arousal: the departure from the 

physiological baseline; 
• Physiological expressions: making emotions felt by one 

person known to others; 
• Valence: the pain and pleasure that accompany emotions; 
• Cognitive antecedent: emotions are triggered by beliefs; 
• Intentional objects: emotions are about something, or 

directed toward something.  
• Action tendency: emotions lead to action. For example, 

anger causes the object of anger to suffer (revenge), 
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hatred causes the object of hatred to cease to exist, fear 
leads to flight or fight, and love leads to approach and 
touch the other. 
Among the six aspects, valence has the most obvious 

relevance to reasoning and decision making – the pain and 
pleasure of emotions are simply negative and positive 
utilities that may contribute to the overall expected utility of 
a choice. Valence reveals the hedonic property of emotions. 
Elster suggests that the level of pain and pleasure derived 
from emotions are inversely related to the probability of the 
events that generate these emotions. However, according to 
Elster, emotion is the sum of all the six aspects and leaving 
any one out can be misleading. 

The Emotional Brain 
Recent advances in cognitive neuroscience help clarify the 
neural underpinnings of emotions and their relationship with 
other higher-level cognitive functions (Damasio, 1995; 
LeDoux, 1996, 2000). The fact that the thinking brain (e.g., 
the neocortex) evolved from the emotional brain (e.g., the 
limbic system) suggests that there was an emotional brain 
long before there was a rational one and has important 
implications on cognitive-affective interaction. On the one 
hand, the neocortex apparently allows for the subtlety and 
complexity of emotional life. There is more neocortex-to-
limbic system in primates than in other species, explaining 
why humans are able to display a far greater range of 
reactions to our emotions and suggesting higher-level 
thinking might somehow be able to govern emotional 
responses (LeDoux, 1996). On the other hand, as the root 
from which the newer brain grew, the emotional areas are 
enervated to all parts of the neocortex, giving emotional 
centers immense power to influence the functioning of the 
rest of the brain. Rite Carter (1998) put it this way in his 
book Mapping The Mind: 
 

At the center of the brain lies a cluster of strange-
shaped modules that together are known as the limbic 
system. This is the powerhouse of the brain — 
generator of the appetites, urges, emotions and moods 
that drive our behavior. Our conscious thoughts are 
mere moderators of the biologically necessary forces 
that emerge from this unconscious underworld; where 
thought conflicts with emotion, the latter is designed by 
the neural circuitry in our brains to win [p.54] 
 
Interestingly, more recent studies using functional 

neuroimaging have largely conformed to these evolutionary 
hypotheses though more details have also been revealed. 
Various structures, such as the amygdala, substantia nigra 
(SN), anterior cingulate cortex (ACC), and the prefrontal 
cortex (PFC), have all been found active in processing 
emotionally competent stimuli and/or the execution of 
emotions (LeDoux, 1996; Rolls, 1999). It has been found 
that these systems overlap dramatically with the areas that 
are modulated by the mesencephalic dopamine system, 
which has long been believed to represent a “hedonia” 

center in the brain and contribute to reward processing, 
reinforcement learning and decision making (Holroyd & 
Coles, 2002; Liang & Wang, 2003; O'Reilly & Munakata, 
2000; Schultz, 2002; Shizgal & Arvanitogiannis, 2003; 
Sutton & Barto, 1998). The mesencephalic dopamine 
system is composed of a collection of nuclei including SN 
and the ventral tegmental area (VTA). These nuclei project 
widely to the basal ganglia and the ACC and PFC. How the 
valence function is computed through these brain areas 
using biologically plausible mechanisms may hold the key 
to understand how emotions affect decision making. 

The Ultimatum Game 
The ultimatum game (Camerer, 2003; Davis & Holt, 1993; 
Thaler, 1988) is an ideal task for studying cognitive-
affective interaction in decision making in the sense that it 
simultaneously involves rational reasoning, emotional 
responses, and strategic thinking. As a step toward 
systematically understanding the cognitive-affective 
interactions in human decision making, we have examined 
the brain activities and computational algorithms underlying 
human decision making using the ultimatum game  

The rules of the game are quite simple. Two players have 
to agree on how to split a sum of money. The proposer 
makes an offer. If the responder accepts, the deal goes 
ahead. If the responder rejects, neither player gets anything. 
In both cases, the game is over. Obviously, rational 
responders should accept even the smallest positive offer, 
since the alternative is getting nothing. Proposers, therefore, 
should be able to claim almost the entire sum. In a large 
number of human studies, however, conducted with 
different incentives in different countries, the majority of 
proposers offer 40 to 50% of the total sum, and about half of 
all responders reject offers below 20% (Camerer, 2003). 

One dominant explanation for the responder's typical 
rejection of offers below 30% of the total sum resorts to the 
people's willingness to pursue fairness (Nowak, Page, & 
Sigmund, 2000). According to this view, unfair offers often 
invoke various psychological and emotional responses, 
which can influence or even overwrite rational decision 
making – yet another manifestation of the well-documented 
and long-standing opposition between reasons and passions. 
Recent neuroimaging evidence in the emerging field of 
neuroeconomics supports the explanation (Glimcher & 
Rustichini, 2004; Sanfey, Rilling, Aronson, Nystrom, & 
Cohen, 2003). It has been found that unfair offers activate 
specific brain regions including the anterior insula, which 
are often associated with disgust (Sanfey, Rilling, Aronson, 
Nystrom, & Cohen, 2003).  

While intuitively appealing, why and how this is so 
remains unclear. Our neurocomputational study has the 
potential to expose explicitly the representations and 
computational mechanisms underlying the decision making 
process and offer new insights that go beyond the 
descriptive opposition of reasons and emotions. 
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The Experiment 
The original ultimatum game is 2-player gain-based game. 
That is, 2 players are asked to split an amount of money. In 
the current experiment, in order to explicitly examine the 
emotional component in human decision-making, several 
key independent variables are manipulated. 

The first one is the framing factor. In addition to the gain 
framing, we add a loss framing. That is, the players are 
asked to share a monetary cost or penalty. The proposer 
proposed an amount for the responder to share. Again, the 
responder can either accept or reject. If she/he accepts, deal 
moved forward. If she/he rejects, everybody in the group 
has to pay the whole amount (e.g., $10). 

The second variable is the number of players, which can 
be 2 or 3 or 5. The purpose of this manipulation is to change 
the rational expectation of the responder. For example, if the 
total amount is $10 and the number of players is 5, the 
rational expectation would be $2. 

The third variable is the amount of proposal. In the gain 
framing condition, it would be the offer the responder would 
get if he/she accepts. In the loss framing condition, it would 
be the share of cost the responder would have to pay if 
he/she accepts. The amount can be $0, $1, $2, $3, ..., $10. 

A within-subject 2(gain or loss) x 3 (# of players) x 11 
(proposal $) design is adopted. The order of gain or loss 
condition is balanced among subjects. In each framing task, 
subjects perform each trial condition twice, resulting in a 
total of 66 trials. They are presented in a completely random 
order. Subjects respond using a mouse, clicking left button 
for acceptance and right button for rejection. The EEG data 
is collected using the 128-channel EGI system with Net 
Station. Six subjects were paid to participate in the 
experiment. 

The trial layout and various time parameters are shown in 
Figure 1.  

 

 
Figure 1:  Trial layout 

Behavioral Results 
The reaction time data show that subjects make responses 
fairly quickly (~1s), though there is a difference between the 
gain and loss conditions. The response data are analyzed 
separately for the gain and loss frames. 
 
Gain Table 1 (left) shows the average response rejection 
rate in each condition (a combination of group size and offer 
amount). To illustrate, the cells are color coded, where the 

fair offers are coded blue, unfair offers are coded in other 
colors. In addition, we distinguish two types of unfair offers. 
Sometimes the offers are less than the fair offer, which, if 
accepted, were unfair and unfavorable to the responders. 
These conditions are coded in red. In other cases the offers 
were more than the fair offer, which, if accepted, are 
favorable to the responders but unfair to the other group 
members. These conditions are coded in green. It is clear 
that where subjects typically reject those unfavorable unfair 
offers, they accept those favorable unfair offers. 

 
Table 1:  Rejection rate in the gain (left) and loss (right) 

framing 
 

 
There are 3 important issues that need to be noted here. 

First, while the typical 30% rejection rule found in the 
literature holds for 2-player condition, it does not hold for 
those more than 2-player conditions. It seems that subjects 
simply tend to reject unfair and unfavorable offers in 
general. Second, if the above point can be explained as the 
subjects’ general tendency to pursue fairness, as has been 
suggested in the literature, subjects’ tendency in accepting 
those offers that are favorable to themselves but unfair to 
their peers rebuts this explanation. In general, subjects 
tended to accept those offers. Third, it is interesting to note 
that when the offer is $9 or $10, there are some trials in 
which subjects reject the offer. It seems that subjects might 
have realized that such offers were too unfair to other group 
members and feel morally guilty if accepted. This is 
confirmed by subjects’ verbal report after the experiment. 
As a matter of fact, it turns out that only one subject did it. 
Except this single subject, everybody else accepted such 
quite “generous” offers. 

 
Loss The loss framing shows almost exactly opposite 
pattern in terms of the rejection rate (see Table 1, right). 
Again, the general pattern is that subjects tend to reject 
unfavorable and unfair offers but accept favorable and 
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unfair offers. The subject who showed higher moral 
standard and made a difference in the gain framing 
condition did not make a difference here. Later debriefing 
confirmed that she did not feel obligated to share some cost 
when offered to pay $0. 

ERP Results 
To probe the brain activities and dynamics underlying 
subjects’ decision making, we collect the EEG data while 
subjects are doing the experiment so that the ERP (event-
related potential) analysis can be conducted (Luck, 2005; 
Picton et al., 2000; Rugg & Coles, 1995). An ERP is a 
pattern of electrical activity on the scalp, generated by the 
brain, that occurs in response to a cognitive event during an 
experimental condition. Again, data are analyzed separately 
for gain and loss frames, and only the gain results are 
reported here. 
 
Accept vs Reject (Gain) As we described above, one of the 
most important contrasts we are interested in is based on 
subjects’ responses. We would like to know the neural 
differences underlying when subjects accept the offer vs 
when they reject the offer. From the behavioral data, we 
know that subjects typically reject the unfair and 
unfavorable offers while accept those fair offers and those 
unfair but favorable offers. Note that based on the standard 
game theory, subjects should accept any offers that are 
larger than $0. So those rejecting trials might represent a 
case in which emotional factors have played a role. This has 
been confirmed by a recent fMRI study (Sanfey et al., 
2003). However, due to the low temporal resolution of 
fMRI technique, how and when these factors work in the 
decision making process is unclear. We would like to 
explore this issue by comparing ERPs of the accept trials 
and reject trials. 

To do so, we have made two manipulations. First, we 
choose not to use those trials with $0 offers. The reason is 
that it makes a rational sense to reject those offers anyway. 
The result of this manipulation is that we have only 60 trials 
for each subject. Second, we exclude one subject’s EEG 
data in our analysis due to the fact that too many eye blinks 
are detected in his EEG data.  

Based on the 5 subjects’ data, we successfully derive the 
ERP results, which shows that in the first 150ms after the 
onset of the offer, ERPs were generally negative. More 
positive ERPs appeared after that, starting in the frontal part 
of the brain, and generally propagated backward and 
reached the parietal region fairly quickly (by about 200ms). 
These positive ERPs stayed on afterward in the whole brain 
regions, only they were getting more and more positive. 

Given this general pattern, however, it is easy to see the 
difference between the two response conditions. The most 
noticeable difference occurs in the period of 150 to 270 ms 
after the offer onset. In the accept condition, positive ERPs 
gradually extend backward to the parietal region and get 
more positive during this period. However, this is not the 
case in the reject condition, where the parietal region ERPs 

stay negative during this period. Only later, at about 270 ms 
after the offer onset, the reject condition gradually catches 
up the accept condition in that more positive ERPs appear in 
the posterior part of the brain. 

A large body of evidence has shown that the parietal lobe 
is closely associated with numerical concept, mathematical 
thinking, and utility calculation (Dehaene, Spelke, Pinel, 
Stanescu, & Tsivkin, 1999; Hubbard, Piazza, Pinel, & 
Dehaene, 2005; Sanfey, 2004). Our finding here in a sense 
is consistent with previous findings. However, the 
difference between the two conditions during a specific time 
window offers an interesting new finding. Given the 
context, it seems plausible to explain the difference in terms 
of possible cognitive-affective interactions. Rejectable 
offers, which are often unfair and unfavorable, induced 
some sub-cortical emotional activations during that time 
window, which can delay or short-circuit the rational utility 
calculation that is supposed to occur. This in turn eventually 
result in reject responses. 

A Neurocomputational Model 
Our computational model centers on the concept of 
expectation. Just like Adam Smith separates "passions" and 
"impartial spectator", we hypothesize that there is a 
distinction between rational self and moral self. One major 
difference between the two is they typically possess 
different expectations. In the $10-sum ultimatum game, for 
the responder, while $0 is the expectation for the rational 
self, $5 is the expectation for the moral self. As a result, an 
offer of $3 would lead to a positive difference (e.g., $3-$0) 
for the rational self and a negative difference for the moral 
self (e.g., $3-$5). Since the two differences are in opposite 
signs, a conflict resolution mechanism then becomes 
necessary.  

Yet another difference between the rational self and moral 
self is that while the former is emotionless, the latter leads 
to feelings and emotions, suggesting the moral self is more 
closely associated to the emotional centers of the brain.  

How expectations are derived is a problem of learning. 
Learning to expect as a basic learning mechanism has been 
explored extensively in computational modeling 
frameworks. The well-known Rescorla-Wagner learning 
rule (Rescorla & Wagner, 1972) can be thought as a 
mathematical description on how an organism learns to 
predict the outcome given the cue and has been widely 
applied to explain human and animal learning. Specifically, 
it uses the difference between the predicted outcome value 
and the true outcome value as a training error to 
systematically improve the prediction. Its equivalent form in 
machine learning domain, the delta rule, has been the 
cornerstone in training artificial neural networks to perform 
nontrivial learning tasks. Temporal difference (TD) learning 
(Sutton, 1988; Sutton & Barto, 1998) is an extension of the 
Rescorla-Wagner rule to the continuous time domain. 
Instead of using the difference between the prediction value 
and the true outcome value as the train error, in TD learning 
a TD error is used, which is the difference between the 
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prediction value at the time t and the prediction value at 
time t+1. As a result, in TD learning an organism does not 
have to wait until the final outcome is available to learn – it 
can learn at any time within the trial now simply by 
comparing the prediction values at any two successive time 
points, a simple bootstrapping strategy. More complex 
bootstrapping strategies can be adopted, such as comparing 
the prediction value at time t with the average prediction 
value at all later time points, which results in different type 
of TD error. TD learning as a general computational 
formulation of human, animal, and machine reinforcement 
learning and sequential decision making has been generally 
supported. Recent evidence from cognitive neuroscience has 
shown that there might exist suitable mechanisms in the 
brain, particularly in the frontal systems, which implement a 
similar TD type learning (Holroyd & Coles, 2002; O'Reilly 
& Munakata, 2000). 

 
Figure 2: A sketch of the neurocomputational model of 

the ultimatum game 
 

Recent evidence from cognitive neuroscience research 
supports our claim that different brain systems join to help 
make decisions (Damasio, 1995; Lee, 2006; Rolls, 1999; 
Wagar & Thagard, 2004).We can map the theory to 
functional brain regions based on these available evidence. 
Expectations are represented in the parietal lobe (Dehaene, 
2002; Dehaene, Spelke, Pinel, Stanescu, & Tsivkin, 1999). 
Deltas are calculated in the midbrain areas such as VTA and 
SN (Shizgal & Arvanitogiannis, 2003). The delta signals are 
broadcasted, via neurotransmitter dopamine, to the frontal 
cortex (for rational self) and basal ganglia (for moral self). 
The basal ganglia broadcasts its signals to the limbic 
system, leading to emotions and feelings (Damasio, 1995, 

2001). When the two selves tend to make different decisions 
(eg, deltas in opposite signs), this invokes ACC, which 
monitors and resolves the conflict (Brown & Braver, 2005; 
C. S. Carter et al., 1998).  

This mapping naturally leads to the model sketch depicted 
in Figure 2, which can be implemented and evaluated in 
biologically realistic neural network modeling frameworks 
such as leabra (O'Reilly & Munakata, 2000). 

Conclusion 
With only six subjects, the current study so far has already 
provided promising results and generated innovative 
theoretical insights about cognitive-affective interactions in 
human decision making. It shows rejected offers and 
accepted offers induced different brain activities. In 
particular, it seems that some processes in the parietal lobe, 
which may be utility calculation related based on previous 
literature, are delayed or short-circuited in the time window 
of 150-270 ms after the offer onset in the reject response 
condition. However, it is important to note that although it is 
reasonable to speculate that the lower sub-cortical emotion-
related brain circuits is responsible for such an intervention, 
without further data analysis and source localization, we 
cannot make this claim for sure. Clearly, further work is 
necessary.  
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