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Abstract

Recent advances in computational power and algorithms have made molecular dy-

namics (MD) simulations reach greater timescales. However, for observing conforma-

tional transitions associated with biomolecular processes, MD simulations still have lim-

itations. Several enhanced sampling techniques seek to address this challenge, includ-

ing the weighted ensemble (WE) method, which samples transition between metastable

states using many weighted trajectories to estimate kinetic rate constants. However,

initial sampling of the potential energy surface has a significant impact on the per-

formance of WE, i.e., convergence and efficiency. We thereby introduce deep-learned

kinetic modeling approaches that extract statistically relevant information from short

MD trajectories to provide a well-sampled initial state distribution for WE simulation.

This hybrid approach overcomes any statistical bias to the system as it runs short
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unbiased MD trajectories and identifies meaningful metastable states of the system.

It is shown to provide a more refined free energy landscape closer to steady-state that

could efficiently sample kinetic properties such as rate constants.

1 Introduction

Molecular dynamics (MD) simulations have found their applications in science and engineer-

ing, such as chemistry and biochemistry, statistical mechanics, condensed matter physics, and

material science.1–10 In recent years, MD simulations have significantly impacted in studying

complex biological processes such as protein folding, drug discovery, receptor-ligand binding

and unbinding, protein-membrane interactions, and protein-protein interactions. MD sim-

ulations can effectively analyze key mechanistic insights into highly complex dynamics of

biological systems of interest in atomistic detail.11–18 However, the task of estimating the

kinetics and thermodynamics of such systems comes with its own set of challenges.

Existing classical force fields are sometimes insufficient to estimate specific properties of

interest, such as polarization and charge delocalization effects for complex biological sys-

tems.19–21 Timesteps for MD simulations are restricted within the femtosecond range to

correctly integrate the equations of motion as they cannot exceed the time period of highest-

frequency thermal oscillation. Biologically relevant systems undergo complex conformational

transitions, which are essential to their functions. It is challenging to capture these transi-

tions through conventional MD, especially if they are relatively slow processes (milliseconds

or longer), involve large-scale conformational rearrangements, or include protein association

and/or (re)folding. We resort to computationally expensive long-scale MD simulations to

observe such transitions or “rare events”.22–24

Several enhanced sampling methods have been developed to overcome the difference in

timescales of conventional MD simulations compared to the timescales of biological pro-

cesses.25–29 One category of enhanced sampling methods adds a bias potential to the poten-

tial energy surface (PES) that decreases the energy barrier of transition between metastable
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states and accelerates the conformational search. We could roughly categorize these meth-

ods as collective variable (CV)-based and CV-free enhanced sampling methods. CV-based

enhanced sampling approaches include and are not limited to metadynamics (metaD),30,31

variationally enhanced sampling,32 and Markov state models (MSMs)33,34 while CV-free

enhanced sampling methods include parallel tempering or replica exchange molecular dy-

namics (REMD),35,36 selective integrated tempering, and Gaussian accelerated molecular

dynamics (GaMD).37 All the previously mentioned enhanced sampling approaches are ca-

pable of accelerated PES conformational search. Thereby, they prove to be effective in

extensive thermodynamic sampling. On the contrary, such enhanced sampling approaches

add a bias potential to the system’s potential energy and thereby lead to altered dynamics.

Extracting kinetic and mechanistic insights is often subjected to assumptions such as low

residence times in the transition states regions, quasistationarity characteristics of metaD,

construction of a master equation for non-Arrhenius and multistate kinetics, and usage of

Kramers’ rate theory in the overdamped regime.38–42

On the other hand, several path sampling methods exist for an extensive sampling of ki-

netic properties, which are broadly divided into complete path sampling and segment-based

sampling. Transition path sampling (TPS) and dynamic importance sampling (DIMS) are

based on complete reactant to product path sampling. Segment-based sampling approaches

are based on splitting the reactant to product path into several segments or “bins” where

bin-to-bin transitions are sampled by running independent MD simulations of fixed duration

within these bins. These methods include and are not limited to weighted ensemble (WE)

methodology,43 milestoning approaches,44–46 adaptive multilevel splitting (AMS),47–49 and

transition interface sampling (TIS).50 These path sampling methods typically focus on sam-

pling the transition regions, and thereby, an entire PES of the system is often neglected. The

WE method enhances the sampling of rare events by running independent and unbiased par-

allel simulations in short configurational spaces or “bins”. These simulations communicate

through each other through replication and resampling, leading to the precise estimation of
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kinetic observables. The WE method is further explained in the section 2.2.

Our recent work demonstrated the effectiveness of a hybrid enhanced sampling method,

the GaMD-WE method, which combines GaMD and WE for an extensive sampling of both

the thermodynamics and kinetics of biological systems of interest.51 GaMD is performed ini-

tially to sample the PES of the system by applying several boost potentials and is followed

by reweighing to recover the original PES. Configurations selected from the recovered PES

are the starting structures for the WE simulations. Several independent boost potentials are

applied in parallel GaMD simulations and are reweighted accordingly to recover the PES of

the system. The GaMD run with the most PES coverage provides the starting structures for

WE simulations. We aim to further decrease the computational cost of thermodynamic and

kinetic sampling of systems of interest by running unbiased MD simulations and implement-

ing deep learning with the Markovian variational approach for faster and enhanced hybrid

sampling.52,53 This way, we can bypass the entire reweighting process to recover the original

PES.

Providing a well-sampled initial state distribution to WE simulations is often a concern.

Generally, multiple starting structures are provided at the beginning of a simulation, and

they often fail to establish extensive communication with each other, thereby leading to an

initial bias in the simulation. Markov State Models (MSMs) have shown to be successful in

generating equilibrium distribution and thereby removing the initial bias in the simulations.54

The history-augmented Markov state model (haMSM) is another efficient method for the

removal of bias in stationary distributions, and it has been implemented recently in WE

simulations, where a steady state analysis is performed, and the weights are distributed

accordingly to restart the simulation.55 In short, DeepWEST is an attempt to construct

MSMs from short MD simulations, providing a well-sampled initial distribution for the WE

simulations. We propose a hybrid method that uses the variational approach for Markov

principle (VAMP) and neural networks to identify metastable states from unbiased and

short MD simulations as a precursor for running WE simulations. Selected conformations
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from these states then serve as starting structures for WE simulations to further sample the

kinetics and thermodynamics of the system. This hybrid methodology further reduces the

computational cost as compared to our previously developed hybrid GaMD-WE method,

accelerates the WE approach further by providing well-sampled initial configurations, and

provides a better comprehensive picture of the thermodynamic and kinetic properties of the

systems of interest by introducing no statistical bias to the free energy landscape to the

system. In the forthcoming sections, we will describe the WE method, the VAMP approach,

and the hybrid method in detail. We will also demonstrate the capability of the DeepWEST

approach to sample kinetic and thermodynamic properties faster than the WE method alone

and compare the findings with the already established GaMD-WE approach.

2 Methods

2.1 Variational Approaches for Markovian Processes

Markovian processes are stochastic processes where the future state of the system, xt+τ

depends only on the current state, xt. Here, t is the time step, and τ is the lag time. Var-

ious Markov modeling approaches have been developed recently to extract key information

for complex dynamical processes. These methods include and are not limited to Markov

state models (MSMs),56–58 Markov transition models, variation approach to conformational

dynamics (VAC),59 time-lagged independent component analysis (TICA),60 variational dif-

fusion maps,61,62 and variational approach for Markov processes (VAMP).52,63 Dynamical

systems often display high non-linearity in their system coordinates. To analyze non-linear

and high-dimensional dynamical systems, we employ the Koopman operator, K, that linearly

transforms the vector space spanned by observables in the form of time-series data generated

by MD simulations. This facilitates the prediction and estimation of nonlinear dynamical

properties through the traditional methods employed for linear dynamical systems.64–66 A

majority of the Markovian modeling approaches exploit the fact that there exists a non-
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linear transformation of these features such that the dynamics can be approximated as a

linear Markov model.67,68 Let χ0 and χ1 be the feature transformations for the trajectory

coordinates xt and xt+τ respectively, and E be the expectation value such that the matrix

K determines the dynamics of the system according to equation 1. According to the VAMP

theory, when the subspaces spanned by the features, χ0 and χ1, are identical to the top left

and top right singular functions of K, we obtain the best finite-dimensional linear model.

E[χ1(xt+τ )] ≈ KTE[χ0(xt)] (1)

To generate well-sampled initial conformations for WE simulations, we resort to a neural

network architecture that employs the variational approach for Markov processes (VAMP),

known as VAMPnets, which is a non-biased trajectory learning approach towards faster es-

timation of kinetics and thermodynamics of systems of interest as compared to other hybrid

approaches.69 MD data analysis is primarily performed in subsequent steps of featurization,

dimension reduction, discretization, and coarse-graining.70–73 Featurization is the process

where the simulation data is often subjected to the removal of translational and rotational

motion and/or transformed into internal coordinates. Featurization follows a dimensional-

ity reduction where a high dimensional trajectory data is reduced to slow collective vari-

ables.74–76 However, initial steps of featurization, such as choosing appropriate metrics for

training the trajectory dataset such as using the cartesian coordinates or internal coordi-

nates, selecting suitable CVs that describe the conformation space such as dihedral angles

RMSD, the radius of gyration, removal of solvent coordinates, selection of heavy atoms,

and realignment are to be determined before training the trajectory using VAMPnets. The

resultant metric space is then discretized to fewer states, and the process is called discretiza-

tion.71,77,78 Finally, a coarse-graining of the Markov state model (MSM) is performed since

the internal dynamics of a particular set of microstates can be faster than the modeling

timescales.79,80 All of the above steps involved in the process of generating MSMs are per-

formed by VAMPNets that learn the non-linear collective variables or reaction coordinates
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that separate the metastable states of biological systems.

A simple VAMPnets model comprises two parallel neural network architectures that are

employed to learn feature transformations using the VAMP approach. Each network receives

the initial MD trajectory coordinates and time-lagged correspondent of the same coordinates,

xt and xt+τ respectively. Non-linear dimensionality reduction is then performed on these two

sets of trajectory inputs for each time step, t. As per the VAMP principle, a VAMP-2 score

is defined that attains its maximum value when the top left and right components of the

Koopman operator K are equivalent to the subspaces spanned by these features.52 Deployed

neural networks are trained to maximize the VAMP-2 score in order to achieve the best finite-

dimensional linear model. In the above process, it achieves the segregation of the trajectory

frames and assigns them to particular clusters or Markov states, which then accelerates the

process of rare-event sampling and transition state analysis. Key features for VAMPnets

include the choice of the lag time, the number of output nodes, and the network depth of

the architecture. Few pre-optimization runs with varying lag times were performed on the

simulation trajectory to find the lag time that could resolve the slowest processes. The choice

of a lag time relies upon the eigenvalue decomposition of the Markov propagators. When

selecting a large lag time that exceeds the timescale of the slowest processes, it becomes

difficult to fit the noisy data. However, a short lag time leads to them getting stuck in one

of the suboptimal maxima of the training score. The selection of output nodes represents

the separable metastable regions from the trajectory data. A higher number of output nodes

may not be suitable for small trajectory data since the clustering will lead to discretizing the

transition regions. The clustering of metastable states also depends heavily on the network

depth of the architecture. A deeper network describes complex functions and is more difficult

to train.
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2.2 Weighted ensemble method

Standard unbiased MD simulations are limited by the timescale and infrequency of signifi-

cant biological events. Such events are rarely captured in the trajectory data, and it becomes

challenging to analyze further and estimate the kinetics of such transitions. The weighted

ensemble simulation approach is an enhanced sampling method designed to sample such

rare occurrences or transitions such as protein-protein association reactions and conforma-

tional changes by replicating and resampling an ensemble of weighted trajectories.43,81 The

whole configurational space is subdivided into macrostates or “bins” that sequentially lead

the system from an initial state to the target state. Many short simulations or “walkers”

carrying probabilities or “weights” are run and the system evolves throughout the simula-

tion through “resampling” that ensures an equal number of trajectories in each bin, i.e., by

splitting or merging walkers. These walkers explore the configurational space extensively,

eventually sampling rare transitions. Appropriate progress coordinates are used to define

the bin boundaries. Transitions between these bins are recorded while the system evolves in

time to estimate the kinetics and thermodynamics. The WE method has been demonstrated

to accurately estimate the kinetics of rare events for multiple biological systems.82,83

Resampling is a crucial component of the WE approach that leads to the statistically

unbiased future evolution of the system.82,84,85 Walkers are resampled after every iteration

via appropriate replication and reassignment of weights. Weighted trajectories are initiated

from assigned bins and are propagated for a short interval, τ . These trajectories are either

replicated where there are too few trajectories or deleted where there are more than the

required number of trajectories per bin. Since there is no statistical bias in the simula-

tion, thermodynamic and kinetic properties can be directly obtained by the evolution of the

weights of the walkers in each bin. Simulation results can be periodically checked for conver-

gence by estimating rate constants for various possible transitions between the macrostates.

This approach also eliminates the need for choosing the resampling time, τ based on the

Markovian property and thereby provides the flexibility to select τ based on the system size.
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The efficiency of WE simulations is attributed to the weights of the starting conforma-

tions, and long-scale simulations of multiple short trajectories are required to obtain accurate

kinetic and thermodynamic properties of systems of interest. Choice of initial starting con-

formations significantly affects the accuracy and simulation time, and it can be remarkably

enhanced by providing an intelligently sampled set of initial starting conformations. The

motivation for DeepWEST originates from this notion and aims at obtaining these confor-

mations through deep learning approaches using VAMP. The Weighted Ensemble Simulation

Toolkit with Parallelization and Analysis (WESTPA) is an open-source package to perform

the WE simulations.86 This toolkit is highly interoperable, compatible with a wide range

of MD engines, and provides an integrated protocol for efficient storage and analysis of the

estimates generated. Our current work incorporates the WESTPA package for running WE

simulations. Since we are focused on obtaining the rate constants between multiple states

in these systems, we run equilibrium WE simulations to sample their kinetic and thermo-

dynamic properties. However, steady-state WE simulations can be employed for systems

where rate constants are calculated between two states. Such simulations employ “target

state recycling”, i.e., the walkers are fed into the initial state once they reach the target state.

Steady-state WE simulations with starting states from equilibrium WE are more commonly

used for sampling kinetic and thermodynamic properties.

2.3 DeepWEST

The deep learning of kinetic models with the Weighted Ensemble Simulation Toolkit (Deep-

WEST) method aims to provide well-sampled initial distribution to WE simulations. It is

achieved by running a relatively short MD simulation and processing the trajectory data

through the VAMP approach by employing neural networks. Initial conformations for WE

simulations and their probabilistic values are extracted from the resultant MSMs. WE sim-

ulations are then run with this distribution, generating a more refined free energy landscape

closer to the steady-state distribution. We have developed a DeepWEST package that au-
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tomates the entire process of running MD simulations for trajectory analysis, deep learning

of kinetic models for generating MSMs through VAMPNets, and well-sampled initial confor-

mations for running WE simulations. The entire workflow can be described below:

1. Systems of interest are downloaded from the Protein Data Bank (PDB) server and are

prepared for MD simulations using appropriate force field parameters, periodic box

vectors, and solvation using the Amber 14 package.87

2. Once the system is prepared, it is followed by energy minimization, simulated heating,

and equilibration using the OpenMM simulation engine.88

3. MD simulation is then performed using the Amber simulation engine for the desired

amount of simulation time. Trajectories are saved with the desired frequency.

4. The trajectory data is subjected to featurization, dimensionality reduction, discretiza-

tion, and kinetic modeling using VAMPnets to generate metastable states.

5. VAMPnets deploy a “fuzzy clustering” of MD trajectories in “n” output states. Each

conformation in the MD trajectory has a probability for each of these output states

that sum to one. The cluster with the maximum likelihood for each conformation is

the one that is assigned to the conformation. Post clustering, conformations within

each cluster are further binned based on one of the CVs (dihedral angle, ϕ, in the case

of alanine dipeptide and RMSD in the case of chignolin). From each subcluster, a

certain number of conformations are selected from each bin to generate a well-sampled

initial state sampling for WE simulations. Once the conformations are chosen from

these clusters, they are assigned the weights based on their fraction of the population

of the cluster to which they belong.

6. WE simulation folder is created with all the required starting structures, weights, and

topology files to run a WE simulation. To avoid any steric clashes during the initial
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WE simulations, starting structures are processed in subsequent steps of minimization

of heavy atoms (N, C, O, and Cα) followed by minimization of the entire system.

7. WE simulations are then run with the starting structures with desired probabilities

assigned for each conformation.

The Results section shows that our method estimates the kinetics of the systems of

interest, i.e., alanine dipeptide and chignolin, more quickly and more accurately than the

WE method alone. Long-scale unbiased MD simulations or brute force methods are often

used as a reference for evaluating the performances of new methods on model systems.89 Five

independent brute force simulations each of 2 µs for alanine dipeptide and 4 µs for chignolin

were performed to obtain the reference values of rate constants over aggregate simulation

time. DeepWEST performs equally well and often surpasses the brute force and the hybrid

GAMD-WE approach with the advantage of being computationally inexpensive and easy to

implement while adding no statistical bias to the system.

3 Results

To demonstrate the effectiveness of the current approach, we have tested the DeepWEST

method on three systems, namely alanine dipeptide with explicit solvation (Figure 1a), chig-

nolin with implicit solvation (Figure 1b), and the NTL9 protein with implicit solvation (Fig-

ure 1c). Kinetics and thermodynamics obtained from these systems using our DeepWEST

approach are compared against the WE and our previously developed hybrid GaMD-WE

approach. For the systems mentioned above, we demonstrate that the DeepWEST approach

surpasses the WE approach in estimating the rate constants between the metastable states

of interest and even outperforms the already established hybrid GaMD-WE approach in

many occurrences. We also demonstrate that DeepWEST samples the free energy landscape

equivalently compared to the already established approaches. Error bars representing 95%

confidence intervals are calculated for all WE, GaMD-WE, and DeepWEST runs. Simula-
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tions are run until there is no significant change in the average rate constant or “convergence”

is reached. Rate constants are plotted with an approximate interval of 50 iterations for each

run.

Figure 1: Model systems tested by WE, GaMD-WE, and DeepWEST approaches

3.1 Alanine dipeptide

Alanine dipeptide has been commonly used as a model system for testing new methods.13,51,90–92

It is a 22-atom system with an acetyl group at the N-terminus and N-methyl amide at

the C-terminus (Figure 1a). Initial coordinates for alanine dipeptide were obtained from

http://ftp.imp.fu-berlin.de/pub/cmb-data/alanine-dipeptide-nowater.pdb. AMBER ff14SB

forcefield was used to prepare the system for MD simulations.93 It was then subjected to

explicit solvation using the TIP3P water model.94 Alanine dipeptide was subjected to 50 ns
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of unbiased MD simulations. Trajectories were trained using VAMP neural networks with a

time lag of 80 ps, training ratio of 0.9, and a batch size of 1000 that learned discretization in

three metastable states. A list of hyperparameters used for network training is provided in

Table 1. Starting structures were selected from the metastable states as per the DeepWEST

protocol, followed by three independent WE simulation of 12 µs each with a total simulation

time of 36 µs. Resampling time, τ was kept to be identical as used in WE and GaMD-WE

runs, i.e., 10 ps.51,82 CVs were set to be the dihedral angles, ϕ and ψ, which were evenly

spaced in bins of 0.17 rad with ϕ and ψ ranging between [-3.14 rad, 3.14 rad ]. The target

number of walkers per bin, nw was set to be 4 for the WE simulation.

Figure 2: Three metastable states of alanine dipeptide as an output of VAMPNets (a)
separated by α (green) and β (red and blue) regions of the Ramachandran plot and (b)
separated by negative (green and red) and positive (blue) values of ϕ and further separated
by α (green) and β (red) regions of the Ramachandran plot.

To compare the performance of the DeepWEST method with the WE and the hybrid

GAMD-WE method, we have identified three metastable states in alanine dipeptide as shown

in Figure 2(a). Note that Figure 2(b) shows the three metasbale states when the simulation

time was 250 ns. For the DeepWEST method, we have used the 50 ns simulation time as

an input trajectory to be trained by the network architecture. The metastable states were

chosen in such a way that each state represents an important region of the PES. These

regions are αR, αL, and P II. αR lies within the α region while P II lies in the β region of the
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Table 1: Hyperparameters used in VAMPNets for alanine dipeptide

Hyperparameters Description Value
τ Time lag between the two MD trajectory datasets 80 ps

Batch size Number of samples in a batch for gradient descent 1000
Train ratio Percentage of trajectory points used for training 0.9

Network depth Number of hidden layers in the network 8
Layer width Width of the hidden layer 100
Learning rate Learning rate used for the ADAM optimiser 1e-4
Output size Number of metastable states as an output 3

nepochs Number of iterations over the training set 100
ϵ Threshold for eigenvalues 1e-5

Figure 3: Average free energy profile of alanine dipeptide from three separate 12 µs runs
DeepWEST simulations. Rate constants to be calculated between the following regions of
interest in alanine dipeptide: (a) αR ⇔ αL (b) P II ⇔ αL and (c) αR ⇔ P II
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Ramachandran plot (Figure 2 and 3). αL lies in the region where ϕ attains positive radian

values. αR is defined as -2.09 rad ≤ ϕ ≤ 0 rad and -1.75 rad ≤ ψ ≤ 0.87 rad, αL is defined

as 0 rad ≤ ϕ ≤ 2.09 rad and -0.87 rad ≤ψ ≤ 1.75 rad, and P II is defined as -2.09 rad ≤ ϕ ≤

0 rad and 1.31 rad ≤ ψ ≤ 3.14 rad. VAMPNets demonstrated success in the discretization

of MD trajectory data in three metastable states separating the α and β regions of the

Ramachandran plot (Figure 2a) and further separating the conformations with the negative

and positive values of the ϕ angles (Figure 2b).

Figure 4: Average free energy profiles of alanine dipeptide from three separate 12 µs runs of
WE, GaMD-WE, and DeepWEST simulations, respectively.

Two different WE approaches, namely the conventional WE and the hybrid GaMD-WE

approach, were compared to assess the performance of our newly developed DeepWEST
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Figure 5: Average free energy profiles of alanine dipeptide from three separate runs of WE,
GaMD-WE, and DeepWEST simulations at different stages the simulation.

Table 2: Rate constants (ns−1) between different metastable states of alanine dipeptide
obtained after 12 µs of aggregate simulation time. In the case of brute force simulation, the
first value indicates the average rate constant while the value within the brackets indicates
the 95% confidence interval computed using Bayesian bootstrapping. For WE, GaMD-WE,
and the DeepWEST methods, the error bars represent 95% confidence intervals obtained
from the standard deviation of three independent runs.

Transition Brute force WE GaMD-WE DeepWEST
αL→ PII 0.335, [0.275, 0.408] 0.325 ± 0.022 0.328 ± 0.012 0.336 ± 0.015
PII → αL 0.01, [0.008, 0.012] 0.009 ± 0.002 0.008 ± 0.001 0.009 ± 0.001
αR→ PII 6.812, [6.723, 6.897] 6.971 ± 0.046 6.737 ± 0.037 6.788 ± 0.155
PII → αR 2.823, [2.777, 2.868] 3.012 ± 0.052 2.941 ± 0.042 2.975 ± 0.024
αR→ αL 0.01, [0.008, 0.012] 0.009 ± 0.002 0.008 ± 0.002 0.009 ± 0.001
αL→ αR 0.305, [0.254, 0.367] 0.375 ± 0.27 0.325 ± 0.073 0.445 ± 0.427
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Figure 6: Evolution of rate constants over aggregate simulation time for brute force simula-
tion (black), WE simulations (red), GAMD-WE approach (blue), and DeepWEST approach
(green). For WE, GaMD-WE, and the DeepWEST methods, the error bars represent 95%
confidence intervals obtained from the standard deviation of three independent runs.
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approach. WE was run for a total simulation time of 36 µs averaged over three independent

runs of 12 µs each. Similarly, the GaMD-WE approach was run for 50 ns of GaMD followed

by 11.95 µs of WE, totaling a simulation time of 36 µs averaged over three independent

runs of of 12 µs each. Likewise, the DeepWEST approach was run for an unbiased MD

simulation of 50 ns followed by 11.95 µs of WE simulation, totaling a simulation time of 36

µs averaged over three independent runs of 12 µs each. Figure 2 demonstrates the ability

of the deep-learned kinetic modeling approach to cluster the MSMs and also ensures that

adequate sampling has been achieved to select starting conformations. The average free

energy is given by -kBT lnP where kB is the Boltzmann constant, T is the temperature,

and P is the probability. Figure 4a and Figure 4b represent the average free energy profiles

of alanine dipeptide for the WE and the hybrid GaMD-WE approach, respectively, while

Figure 4c represents the free energy profile for the DeepWEST approach. Figure 4c shows

almost identical PES coverages obtained through the DeepWEST approach as compared

to the WE (Figure 4a) and the hybrid GaMD-WE approach (Figure 4b). This, in turn,

demonstrates the ability of the DeepWEST approach in accessing the entire free energy

landscape of the system with enough sampling in the P II, αL, and the right-handed α-helix

or αR region. Figure 5 demonstrates the average free energy profiles of alanine dipeptide

from three separate runs of WE, GaMD-WE, and DeepWEST simulations at different stages

the simulation.

To explore the performance of the DeepWEST approach in estimating kinetic rates, brute

force simulations are carried out to obtain reference values. Three independent 12 µs simu-

lations were run, and Bayesian bootstrapping was performed for 95 % confidence intervals.

Rate constants were obtained from different methods, i.e., the brute force calculations, WE,

GaMD-WE, and the DeepWEST method for transitions between metastable regions of in-

terest (Table 2). For the transitions between the central metastable region, αR to P II, the

DeepWEST method outperformed both the WE and the GaMD-WE methods in estimating

the rate constant. The rate constant for the DeepWEST method converged faster compared
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to the brute force value (Figure 6c). However, as observed in Figure 6d, all the methods

slightly overestimated the rate constant for the transition from P II to αR. In the transitions

from αL to P II (Figure 6a), P II to αL (Figure 6b), αR to αL (Figure 6e), and αL to αR

(Figure 6f), comparable convergence and accuracy of the kinetic rates were observed for the

DeepWEST approach as compared to the WE and the GaMD-WE methods.

3.2 Chignolin

Chignolin (PDB ID: 1UAO), a designed protein, is a model system consisting of 10 amino

acid residues (GYDPETGTWG) (Figure 1b).95 It forms a stable β-hairpin structure in

implicit solvent, and MD simulations reveal the slow unfolding of chignolin.96 Initial coordi-

nates for chignolin were obtained from https://files.rcsb.org/download/1UAO.pdb1.gz. The

system was then subjected to Generalized Born (GB) implicit solvation using the model II

radii.97–99 AMBER ff14SB force field was used to prepare the system for MD simulations.93

Chignolin was subjected to 100 ns of constant volume unbiased MD simulation with a colli-

sion frequency of 1 ps-1, employing a Langevin thermostat at a constant temperature of 300

K. To interpret the kinetics of a system that demonstrates folding and unfolding behavior,

we encounter the problem of trajectory alignment with respect to a unique reference struc-

ture. Moreover, a large amount of noise would be introduced while the networks transform

the data via rotations and translations. Hence for the chignolin system, internal coordinates

were chosen as a network input. Nearest-neighbor heavy-atom distances between all non-

redundant residues separated by two or more residues served as the network input resulting

in 28 nodes. MD trajectories were trained using VAMP neural networks with a time lag

of 40 ps, training ratio of 0.9, and a batch size of 1000 that learned discretization in three

metastable states by performing a hierarchical decomposition of the state space. A list of

hyperparameters used for network training is provided in Table 3. Starting structures were

selected from the metastable states as per the DeepWEST protocol, followed by three inde-

pendent WE simulations of 40 µs each with a total simulation time of 120 µs. Resampling
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time, τ was kept to be identical as used in WE and GaMD-WE runs, i.e., 20 ps.51 CVs

for WE simulations were set to be mass-weighted root-mean-square deviation (RMSD) and

mass-weighted radius of gyration (Rg) respectively. Both CVs were evenly spaced in bins of

0.02 nm ranging between [0 nm, 1 nm]. The target number of walkers per bin, nw was set

to 4 for the WE simulation.

Table 3: Hyperparameters used in VAMPNets for chignolin

Hyperparameters Description Value
τ Time lag between the two MD trajectory datasets 40 ps

Batch size Number of samples in a batch for gradient descent 1000
Train ratio Percentage of trajectory points used for training 0.9

Network depth Number of hidden layers in the network 6
Layer width Width of the hidden layer 100
Learning rate Learning rate used for the ADAM optimiser 1e-4
Output size Number of metastable states as an output 3

nepochs Number of iterations over the training set 100
ϵ Threshold for eigenvalues 1e-5

To compare the performance of the DeepWEST method with the hybrid GaMD-WE and

WE methods, we have identified three metastable states in chignolin as shown in Figure 7.

These regions are folded, unfolded, Intermediate I (I 1), and Intermediate II (I 2). The

folded region is defined as RMSD ≤ 0.20 nm, while the unfolded region is defined as RMSD

≥ 0.55 nm. I 1 is defined to be 0.20 nm ≤ RMSD ≤ 0.30 nm and 0.425 nm ≤ Rg ≤ 0.525

nm while I 2 is defined to be 0.60 nm ≤ RMSD ≤ 0.70 nm and 0.70 nm ≤ Rg ≤ 0.80 nm.

Chignolin represents a common protein structural motif that undergoes folding and un-

folding during brute force MD simulations. We tested the DeepWEST method by estimating

rate constants between regions of interest, especially in the folded and unfolded regions. WE

was run for a total simulation time of 120 µs averaged over three independent runs of 40 µs

each. Similarly, the GaMD-WE approach ran six independent 500 ns of GaMD with varying

boost potentials, and starting conformations were selected from the GaMD run that had

the largest PES coverage. It was then followed by 39.50 µs of WE simulations, totaling a

simulation time of 120 µs averaged over three independent runs of 40 µs each. Likewise, the
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Figure 7: Average free energy profile of chignolin from three separate 40 µs runs of Deep-
WEST simulations. Rate constants to be calculated between the following regions of interest
in chignolin: (a) Folded ⇔ Unfolded (b) I 1 ⇔ I 2 and (c) Folded ⇔ I 2

Table 4: Rate constants (ns−1) between different metastable states for chignolin obtained
after 40 µs of aggregate simulation time. In the case of brute force simulation, the first value
indicates the average rate constant while the value within the brackets indicates the 95%
confidence interval computed using Bayesian bootstrapping. For WE, GaMD-WE, and the
DeepWEST methods, the error bars represent 95% confidence intervals obtained from the
standard deviation of three independent runs.

Transition Brute force WE GaMD-WE DeepWEST
Folded → Unfolded 1.016, [0.983, 1.05] 0.873 ± 0.036 1.044 ± 0.017 0.998 ± 0.049
Unfolded → Folded 0.144, [0.137, 0.15] 0.159 ± 0.002 0.148 ± 0.003 0.149 ± 0.013

I1 → I2 0.513, [0.501, 0.526] 0.515 ± 0.009 0.509 ± 0.017 0.513 ± 0.018
I2 → I1 0.316, [0.307, 0.325] 0.327 ± 0.012 0.325 ± 0.015 0.324 ± 0.007

I2 → Folded 0.134, [0.127, 0.14] 0.145 ± 0.003 0.135 ± 0.005 0.136 ± 0.011
Folded → I2 0.519, [0.502, 0.536] 0.49 ± 0.009 0.506 ± 0.016 0.511 ± 0.015
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Figure 8: Three metastable states of chignolin as an output of VAMPNets. The upper panel
shows the mean contact map for each metastable state while the lower panel shows the 3D
representation for each of the states.

DeepWEST approach ran an unbiased MD simulation of 100 ns followed by 39.90 µs of WE

simulation, totaling a simulation time of 120 µs averaged over three independent runs of 40

µs each. Figure 8 demonstrates the ability of the deep-learned kinetic modeling approach to

cluster the MSMs for chignolin. Initial conformations were selected from these metastable

states for WE simulations. Figure 9a and Figure 9b represent the average free energy profiles

of chignolin from the WE and the hybrid GaMD-WE approach, respectively, while Figure 9c

represents the free energy profile from the DeepWEST approach. Figure 10 demonstrates

the average free energy profiles of chignolin from three separate runs of WE, GaMD-WE, and

DeepWEST simulations at different stages the simulation. The PES coverages for chignolin

from the three approaches are comparable and demonstrates that the DeepWEST method

can sample the thermodynamics of the system accurately.

To assess the performance of the DeepWEST approach with respect to WE and the hybrid

GaMD-WE approach, we estimated the convergence of rate constants between metastable

states, especially defined within folded and unfolded regions of chignolin (Table 4). The
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Figure 9: Average free energy profiles of chignolin from three separate 40 µs runs of WE,
GaMD-WE, and DeepWEST simulations, respectively.
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Figure 10: Average free energy profiles of chignolin from three separate runs of WE, GaMD-
WE, and DeepWEST simulations at different stages the simulation.
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Figure 11: Evolution of rate constants over aggregate simulation time for brute force simula-
tion (black), WE simulations (red), GAMD-WE approach (blue), and DeepWEST approach
(green). For WE, GaMD-WE, and the DeepWEST methods, the error bars represent 95%
confidence intervals obtained from the standard deviation of three independent runs.
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two intermediate regions, I 1 and I 2 are separated apart in the PES, and convergence of

rate constants between these regions is difficult to achieve. Figure 11c demonstrates faster

and more accurate convergence of the DeepWEST approach as compared to the WE and

GaMD-WE approach for the transition from I 1 to I 2. However, the GaMD-WE method

outperformed the DeepWEST method in estimating the rate constant for the transition

from I 2 to I 1 (Figure 11d). The DeepWEST method showed faster convergence and greater

accuracy in estimating the rate constants between the I 2 and the folded states (Figure 11e

and 11f). Faster convergence for the DeepWEST method was also observed from the folded

to the unfolded state (Figure 11a). However, the GaMD-WE and the DeepWEST method

equally outperformed the WE method in estimating the rate constant in the transition

from the unfolded to the folded state (Figure 11a). In conclusion, for all the cases, both

the hybrid methods, especially the DeepWEST method, outperformed the WE method in

achieving faster convergence and accuracy of rate constants between the metastable regions

of interest.

3.3 NTL9

To further test the capabilities of the DeepWEST method for a higher dimensional problem,

we chose the N-terminal domain of ribosomal protein L9 (NTL9) system. The NTL9 protein

is a 627-atom system consisting of 39 amino acid residues (Figure 1c) which has a folding time

of ≈ 1.5 ms100. Initial coordinates for the unfolded NTL9 protein was obtained from https://

github.com/westpa/westpa2 tutorials/blob/main/tutorial-3.3/istates/ntl9.pdb. The system

was then subjected to Generalized Born (GB) implicit solvation using the model II radii97–99.

AMBER ff19SB force field was used to prepare the system for MD simulations101. The NTL9

protein was then subjected to 10 µs of constant volume unbiased MD simulation with a

collision frequency of 1 ps-1, employing a Langevin thermostat at a constant temperature of

300 K. Following the folding and unfolding behavior of the NTL9 system, internal coordinates

were chosen as a network input. Nearest-neighbor heavy-atom distances between all non-
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Figure 12: Three metastable states of the NTL9 system as an output of VAMPNets. The
upper panel shows the mean contact map for each metastable state while the lower panel
shows the 3D representation for each of the states.

redundant residues separated by two or more residues served as the network input resulting

in 666 nodes. MD trajectories were trained using VAMP neural networks with a time lag

of 60 ns, training ratio of 0.9, and a batch size of 1000 that learned discretization in three

metastable states by performing a hierarchical decomposition of the state space (Figure 12).

Starting structures were selected from the metastable states as per the DeepWEST protocol

followed by the WE simulation of 90 µs with a resampling time, τ of 40 ps. Therefore, the

total simulation time for the DeepWEST method was 120 µs. CVs for WE simulations were

set to be mass-weighted root-mean-square deviation (RMSD) and mass-weighted radius of

gyration (Rg) respectively. Both CVs were evenly spaced in bins of 0.05 nm ranging between

[0 nm, 2 nm]. The target number of walkers per bin, nw was set to 8 for the WE simulation.

Similarly, the conventional WE simulation was run for 130 µs with the same parameters (i.e.

resampling time, CVs and binning parameters) as described previously for the DeepWEST

simulation. The WE simulations initiated from the unfolded state to the folded state with
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the CVs set to be the mass-weighted RMSD and mass-weighted Rg respectively. Since the

reference structure for computing RMSD is the initial unfolded state, RMSD is expected to

increase during the simulation as the system folds. The unfolded region is defined as RMSD

≤ 0.60 nm, while the unfolded region is defined as RMSD ≥ 1.0 nm.

Figure 13: Average free energy profiles of NTL9 from 100 µs runs of DeepWEST and WE
simulations, respectively.

For the same amount of simulation time, i.e., 130 µs, the DeepWEST method proved

more effective than the conventional WE in covering the free energy landscape of a more

complex protein, i.e., the NTL9 system. Figure 13a and Figure 13b represent the free energy

landscapes for the NTL9 system for the DeepWEST and the conventional WE method,

respectively, where the lowest energy state was set to zero. It is evident from Figure 13a

that the DeepWEST approach is more effective than the conventional WE in exploring other

metastable states in the NTL9 system, particularly in the unfolded region. The rate constants

between the unfolded and the folded states were not measured, but we expect the DeepWEST

method to outperform the conventional WE method in kinetic rate measurements.
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4 Discussion

The WE method predominantly depends on appropriate CVs to sample the system. In most

cases, the best choice of CVs is unknown. In cases where CVs cannot sufficiently describe

the system’s dynamics, hybrid approaches and most enhanced sampling CV-free approaches

may generate a well-sampled initial configurational space.26,51,102–105 Initial sampling of the

PES has a significant impact on the accuracy and convergence of WE. Our previously de-

veloped hybrid GaMD-WE method addresses the concern of substantial initial sampling but

reweighing is an additional concern associated with it. To obtain the correct PES of the

system, GaMD resorts to reweighing, and a substantial amount of energetic noise is intro-

duced with an increase in the system size. In that case, GaMD needs to be run for a longer

timescale for varying degrees of boost potentials, increasing the overall computational cost

drastically. As demonstrated through previous examples, the newly developed DeepWEST

approach is a powerful method that obtains both the kinetics and thermodynamics of the

system. Compared to our earlier developed hybrid approach, it is a hassle-free method for

enhanced sampling prior to running WE simulations. First, DeepWEST eliminates the pro-

cess of running various accelerated MD simulations with varying degrees of boost potentials.

Second, it also eliminates the process of PES reweighing to uncover the original energy land-

scape by running unbiased MD simulations. Most importantly, deep neural architectures

learn the clustering of metastable states from short MD trajectories which could be further

processed to extract starting conformations for WE simulations. Both methods involved in

the DeepWEST approach add no statistical bias to the system, and thereby, kinetics and

thermodynamics obtained from this approach are exact. However, a longer MD simulation

time may be required to discretize metastable states as the system size increases to provide

statistically relevant starting conformations for WE simulations. Recent improvements in

the WE method have been made to achieve faster kinetics.55,104 An even more accurate and

faster kinetics and thermodynamic sampling could be achieved if DeepWEST is combined

with these improvements in WE.
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Currently, we have shown the DeepWEST method to work on simpler systems, i.e., ala-

nine dipeptide in explicit solvation and chignolin in implicit solvation. We have also shown

a greater free energy landscape coverage for the NTL9 protein for the DeepWEST method

against the conventional WE method. However, extending this method to more complex bi-

ological systems comes with challenges. Deep neural networks learn feature transformations

and cluster trajectories based on input CVs. The network architecture for such systems

primarily depends on the choice of time lag and the number of metastable states we want to

cluster. Identifying the slowest processes in complex systems comes with the choice of accu-

rate CVs, which in most cases is unknown. However, recent developments in enhanced MD

sampling and MSM approaches would be worth considering. Implementing multi-ensemble

Markov models (MEMMs) that conduct large ensembles of even shorter simulations and

further accelerate trajectories by adding boosted potentials through various accelerated en-

hanced sampling methods in DeepWEST could aid the clustering of complex proteins.58,106

Implementation of hydrogen-mass repartitioning (HMR) for solvated systems to accelerate

the dynamics would prove indispensable in faster learning of metastable states.27

5 Conclusion

A hybrid approach for a faster learning of kinetics combining the deep learning of MD trajec-

tory with the WE simulations is presented here. It employs a deep learning architecture to

sample statistically relevant conformations representative of the rare events from short MD

simulation trajectories. The method is tested on three different model systems, namely, ala-

nine dipeptide with explicit solvation, chignolin with implicit solvation, and the NTL9 protein

with implicit solvation. Our method significantly outperforms the WE and the GaMD-WE

approach for the chignolin model system, and is comparable in performance for the ala-

nine dipeptide system. Because of its reduced simulation time and slighter sophistication

as compared to the GaMD-WE approach, DeepWEST allows for fast estimation of kinetics
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with enhanced coverage. We have also developed an end-to-end package, DeepWEST, that

automates the entire process of running MD trajectories, extracting statistically relevant

conformations using VAMP theory and neural networks, and preparing the WE simulation.

The DeepWEST package is available at https://github.com/anandojha/DeepWEST. In con-

clusion, we have demonstrated a proof-of-concept of a hybrid data-driven approach that can

be incorporated in the WE approach to obtain improved results with significantly lesser time

and complexities.
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(59) Schütte, C.; Fischer, A.; Huisinga, W.; Deuflhard, P. A direct approach to confor-

mational dynamics based on hybrid Monte Carlo. Journal of Computational Physics

1999, 151, 146–168.

(60) Schwantes, C. R.; Pande, V. S. Modeling molecular kinetics with tICA and the kernel

trick. Journal of chemical theory and computation 2015, 11, 600–608.
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