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ABSTRACT OF THE DISSERTATION 

 

Development of Systems Biology Strategies for  

Environmental Exposures in Health and Disease 

by 

YEN-WEI CHEN 

Doctor of Philosophy in Molecular Toxicology 

University of California, Los Angeles, 2022 

Professor Xia Yang, Co-Chair 

Professor Patrick Allard, Co-Chair 

 

Environmental exposures such as drug administration, chemical contamination, and unhealthy 

diets can lead to toxicity or adverse effects that impose significant health and economical 

burdens. Addressing the mechanisms of these effects has become a critical topic. However, the 

majority of the current mechanistic research efforts has focused on a narrow molecular space, 

for example, on changes in the transcriptome in a select tissue and species, without taking into 

account other types of molecular, cellular, tissue, and species information. I hypothesize that 

development of new tools and strategies to integrate multispecies multi-tissue multicellular 

information will uncover new insights on environmental exposure. Hence my research aims to 

develop tools and apply computational analyses to understand molecular networks of different 
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exposures and identify potential therapies. First, I built a tissue- and species-specific drug gene 

signature database for >900 drugs across tens of thousands of transcriptome datasets across 

human, mouse and rat models, and implemented a network-based repositioning tool to link drug 

signatures with different organ toxicities and disease therapeutics. This system was applied to 

validated for hyperlipidemia, non-alcoholic fatty liver disease and hepatoxicity. Next, I 

investigated multi- and trans-generational (F1 and F3) effect stemming from ethanol exposure 

on C. elegans model through single nucleus RNA-seq. I established the first comprehensive 

whole-organism transcriptional map of an environmental response at cell-type specific 

resolution. Results indicated strong alterations in metabolism, lipid transportation pathways as 

well as abnormal germline phenotypes among germline clusters. Finally, I investigated 

molecular effects of how a Western diet (high fat high sucrose) and a fructose rich diet affect 

metabolic regulation through single cell RNA-seq analysis of diverse cell subpopulations across 

different tissues (liver, adipose, hypothalamus and small intestine) in a mouse model. We 

identified susceptible tissues, cell types, biological pathways, and ligands mediating metabolic 

syndrome (Avp, Apoe, Oxt). These various projects involving different model systems, tissues, 

and cell types provided new analytical tools and revealed systems level insights on diverse 

types of environmental exposures.
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1 

Chapter 1 Introduction 

Exposure to various environmental agents, such as therapeutic drugs, industrial chemicals, 

alcohol and diets, has been associated with different health risks. For example, drug toxicity or 

adverse drug reaction (ADR) sometimes leads to severe clinical manifestations such as 

allergies, hepatotoxicity, nephrotoxicity, and even cardiotoxicity. ADRs cause the withdrawal of 

numerous marketed drugs and a large proportion of failures of new drugs in clinical trials. 

Management of drug toxicity may cost up to 30.1 billion dollars annually in US 1. In addition to 

risks related to drug treatment, diseases related to unhealthy diet (such as diet rich in fat and 

sugar) are also on the rise and cause significant costs to the society which is linked to $50 

billion cost 2–4. Finally, alcohol ingestion and related diseases and social burdens is also 

tremendous in the US with economic burden estimated up to 249 billion 5,6. Understanding the 

molecular mechanisms underlying these diverse environmental exposures will offer necessary 

information to support risk assessment and guide the development of preventative and 

therapeutic strategies. 

 

In order to conduct proper risk assessment, careful selection of species and model systems is 

required. For example, rat is commonly used in toxicological research as well as large 

toxicogenomics database such as TG-GATEs 7 and drugMatrix 

(https://ntp.niehs.nih.gov/DrugMatrix/index.html) due to diversified genetic backgrounds that 

mimic human populations 8. Compared to rat models, the mouse is more commonly used in 

disease modeling 9 as well as studies examining gene by environment interactions 10 due to 

well-controlled genetics in inbred or recombinant strains. Furthermore, invertebrate models such 

as C. elegans also have unique advantages toxicology studies due to its tractability, short life 

cycle, highly evolutionary conserved genes,  and easily accessible cell types including germ 

cells 11. Though each of these different species and model systems carries unique advantages, 
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species differences in genetics, tissue functions, and metabolic and signaling pathways lead to 

species specific responses to environmental exposures, which complicate translational 

interpretation in exposure characterizations and human relevance in health and disease 12. 

 

In addition to species related complexity, tissue and cell type specific responses also cause 

challenges in chemical characterization. For instance, fructose exposure acts on the brain to 

change food intake behaviors while inducing fat accumulation in liver in rodents 13. Each tissue 

also contains numerous diverse types of cell types. For example, liver consists of two large 

groups of cells, hepatocytes and non-parenchymal cells. Hepatocytes also function differently 

according to location and nutrient gradient: hepatocytes that are located nearby the perinodal 

region have a higher oxygen gradient and conduct more beta-oxidation, whereas hepatocytes 

located in the central vein region have higher activity in lipogenesis, triglyceride synthesis and 

glycolysis 14. Liver non-parenchymal cells such as Kupffer cells, sinusoidal endothelial cells and 

hepatocyte satellite cells function together to support hepatocytes 15. Different cell types not only 

respond differently to environmental exposures but also show different crosstalk patterns with 

each other through ligand receptor interactions.  

 

Last but not least, tissue/cell specific molecular alterations further increase complexity during 

risk assessment. Tissue specific gene expression and regulation has been documented through 

Genotype-Tissue Expression (GTEx) project 16 and affected mechanism characterizations in 

disease and exposure. For example, it has been known that mutations in LPL, CETP, APOA 

and APOB were found in patients with metabolic syndrome 17. However, these mutations 

showed tissue specificity, with LPL, CETP highly expressed in adipose tissue while APOA and 

APOB are specifically expressed in liver. Furthermore, tissue specific gene expression is also 
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linked with adverse drug reaction 18. Identification of tissue specific molecular mechanism is also 

critical in environmental exposure characterization.  

 

The complexities from diversity of species, tissues, cell types and molecular interactions have 

hindered thorough investigation and understanding of exposure characterization. In recent 

years, systems biology concepts and methodologies have been developed to enable better 

characterization of disease and exposures. In particular, network biology 19 is a central concept 

in systems biology to provide a fundamental framework to model molecular interactions with 

species, tissue- and cell type information. Network modeling can facilitate better mechanism 

characterization 20–22 and support identification of novel therapies 23,24. In addition to applying 

network concept at molecular layers such as genes, proteins 25 or metabolites 26, network 

concept can also be applied on cell type and tissue layer 27 with different genes, proteins and 

metabolites serving as cross-talking molecules between cells and tissues. Recent advances in 

single cell RNA sequencing (scRNA-seq) 28 29 further enable high throughput transcriptome 

profiling at single cell resolution to capture complex responses to environmental exposure 

across different cell types, tissues and species. Despite the availability of advanced techniques 

and novel algorithms, applications of systems biological concepts and approaches to 

environmental exposure studies to derive molecular insights are still limited. Current toxicology 

and risk assessment tools are heavily focused on relationships between chemical structures, in 

vitro assay-based toxicodynamics and  toxicokinetics 30–33. Providing systems biology based 

insights will further support hazard identification and risk assessment in toxicology. 

 

In order to address the aforementioned gaps, my dissertation work leverages multi-species, 

multi-tissue, multi-cellular systems biology concepts and methodologies to understand 

environmental exposures including pharmaceutical drugs, alcohol, and diets. Specifically, my 
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research is focused on 1) development of “PharmOmics”, a tissue- and species-specific drug 

gene signature database for >900 drugs across tens of thousands of transcriptome datasets 

and integrated with network-based repositioning tool to link drug signatures with different organ 

toxicities and disease therapeutics;  2) investigating multi- and trans-generational (F1 and F3) 

effect stemming from ethanol exposure on C. elegans model through single nucleus RNA-seq 

through establishment of the first comprehensive whole-organism transcriptional map of an 

environmental response at cell-type specific resolution; 3) Investigating molecular effects of how 

a Western diet (high fat high sucrose) and a fructose rich diet affect metabolic regulation 

through single cell RNA-seq analysis of diverse cell subpopulations across different tissues 

(liver, adipose, hypothalamus and small intestine) in a mouse model.  

 

The methodological details of curation, algorithm implementation and performance evaluation of 

PharmOmics is described in Chapter 2. PharmOmics aims to retrieve tissue and species-

specific insights of drug mechanism through integration of drug signatures and tissue specific 

gene regulatory network, which distinguished itself against other tools which either overlooked 

the network perspective or only focused on non-tissue specific protein interaction networks. I 

have first implemented semi-automatic pipeline which retrieved tissue- and species-specific 

drug gene signature database for >900 drugs across tens of thousands of transcriptome 

datasets across human, mouse and rat models. Followed by this, I implemented network-based 

drug repositioning algorithm to link drug signatures with different organ toxicities and disease 

therapeutics. Through in silico validation with diseases of known drug treatment (hyperlipidemia, 

hyperuricemia, hepatitis) and in vivo validation with diseases without drug treatment (non-

alcoholic fatty liver disease), I have demonstrated that PharmOmics is able to identify disease 

treatment drugs and mechanistic insights. Moreover, this platform is also available from our 

MergeOmics webserver 34 which provides easy-to-access system for the scientific community. 
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In Chapter 3, I investigated multi- and trans-generational (F1 and F3) effects stemming from 

ethanol exposure on C. elegans model through single nucleus RNA-seq, which demonstrated 

the unique advantage of using C. elegans model to both investigating multi-generation effects 

efficiently as well as capturing exposure effects among cell types from whole organism level 

from single nucleus RNA-seq. Through implementation of tools designed for single nucleus 

datasets and highly sensitive differentially expressed genes detection algorithm, I established 

the first comprehensive whole-organism transcriptional map of an environmental response at 

cell-type specific resolution. Results indicated strong alterations in metabolism, lipid 

transportation pathways as well as abnormal germline phenotypes among germline clusters, 

which indicated long-lasting effect of ethanol exposure in reproductive system through non-

genetic mechanisms. 

 

In Chapter 4, I investigated molecular effects of how a Western diet (high fat high sucrose) and 

a fructose rich diet affect metabolic regulation through single cell RNA-seq analysis of diverse 

cell subpopulations across different tissues (liver, adipose, hypothalamus and small intestine) in 

a mouse model. In order to retrieve cell type interactions from different perspectives, I have 

conducted analysis involving traditional differential expressed genes/pathways, ligand-receptor 

interaction modeling and metabolite flux analysis. Through interactions via circulating ligands 

and metabolites, I have constructed cell type interaction mappings which helped identification of 

susceptible tissues, cell types, biological pathways, and ligands mediating metabolic syndrome 

(Avp, Apoe, Oxt). The multi-tissue systems biology investigation provided thorough comparison 

between two MetS inducing diets not only from cell type response itself but also from cross-talks 

across cell types which supported future development of biomarkers and therapeutics. 
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In summary, by developing a bioinformatics platform and applying systems biology to derive 

mechanistic insights, my studies demonstrate how systems biology strategies can be applied in 

different environmental exposures in order to reveal systems level insights.  The platforms and 

molecular insights obtained can serve as foundations for future environmental exposure 

characterization and support future drug development as well as chemical risk assessment 

development.  
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Chapter 2 PharmOmics: A Species- and Tissue-specific Drug Signature Database and 

Gene Network-based Drug Repositioning Tool 

Introduction 

Drug development has been challenging and costly over the past decades due to the high 

failure rate in clinical trials 35. Most drugs with excellent efficacy and safety profiles in preclinical 

studies often encounter suboptimal efficacy or safety concerns in humans 36.  This translational 

gap is likely attributable to our incomplete understanding of the systems level activities of drugs 

in individual tissues and organ systems 37  as well as the differences between humans and 

preclinical model systems 38.  

 

Drug activities can be captured by gene expression patterns, commonly referred to as gene 

signatures. By measuring how a pharmacological agent affects the gene signature of a tissue in 

a particular species, we can infer the tissue-specific biological pathways involved in therapeutic 

processes or toxicological responses. This concept has prompted drug repositioning studies to 

repurpose approved drugs for new disease indications 20,23,39–42. Similarly, gene signatures can 

reveal mechanisms underlying adverse drug reactions (ADRs) and be leveraged to predict 

ADRs as previously shown for liver and kidney toxicity 43–45. 

 

A drug may affect different molecular processes between tissues, providing treatment effects in 

the desired target tissue(s) but causing toxicity or ADRs in other tissues, which can be captured 

in tissue-specific drug signatures. In addition, rodent models have been commonly used in 

toxicology and preclinical studies, yet species-specific effects of drugs have been observed 46 

and may underlie the lack of efficacy or unexpected ADRs of drugs when used in humans 47. 

Therefore, understanding the species-specific molecular effects of drugs is of translational 

importance. A detailed species- and tissue-specific drug genomic signature database will 
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significantly improve our understanding of the molecular networks affected by drugs at a 

systems level and facilitate network-based drug discovery and ADR prediction for translational 

medicine. 

 

The potential of using gene signatures to facilitate target and toxicity identification has led to 

several major efforts in characterizing genomic signatures related to drug treatment 39,48–50. 

However, none of the existing platforms offer comprehensive cross-tissue and cross-species in 

vivo assessments of drug activities to allow prediction of drug effects on individual tissues and 

translational potential based on consistencies or discrepancies between species. For instance, 

the Comparative Toxicogenomics Database (CTD), a literature-based resource curating 

chemical-to-gene/protein associations as well as chemical-to-disease and gene/protein-to-

disease connections 48, lacks the cellular and tissue context of the curated interactions. More 

systematic, data-driven databases like CMap 39 and LINC1000 49 focus on characterizing and 

cataloging the genomic footprints of more than ten thousand chemicals using in vitro cell lines 

(primarily cancer cell lines) to offer a global view of the molecular responses of individual 

cellular systems to drugs. However, in vitro cell-lines may not always capture in vivo tissue-

specificity of drug activities. To move into in vivo systems, large toxicogenomics databases like 

TG-GATEs 7  and DrugMatrix from the National Toxicology Program of the National Institute of 

Environmental Health Sciences (https://ntp.niehs.nih.gov/DrugMatrix/index.html) have become 

available to provide unbiased transcriptome assessment for heart, muscle, liver, and kidney 

systems. However, information about other organ systems is limited. Efforts to analyze publicly 

deposited transcriptomic datasets in GEO 51and ArrayExpress 52, which have broader tissue 

coverage, for individual drugs have been described 50, but systematic analyses of species- and 

tissue-specific effects of drugs have not been achieved. 
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Here, we developed a bioinformatics pipeline (Figure 2.1) to curate a database that contains 

13,530 rat, human, and mouse transcriptomic datasets across >20 tissues covering 941 drugs. 

We then evaluated the tissue- and species-specificity of drug signatures as well as the 

performance of these signatures in gene network-based drug repositioning, toxicity prediction, 

and comparisons of molecular activities between tissues and species. To benchmark the 

performance of drug repositioning methods, we conducted in silico evaluation of the retrieval 

rate of known drugs for various diseases, tested method robustness using simulated disease 

signatures with noise, compared across existing and new methods, and conducted experimental 

validation of novel predictions. The drug signatures and network-based drug repositioning tool 

are hosted on an interactive web server,  PharmOmics, to enable public access to drug 

signatures, integrative analyses and visualization for drug repositioning 

(http://mergeomics.research.idre.ucla.edu/runpharmomics.php). 

 

Results 

Construction of the PharmOmics database containing dose-, tissue- and species-

stratified drug signatures  

As illustrated in Figure 2.1A, we compiled a list of clinically relevant drugs, including 766 

approved drugs from Kyoto Encyclopedia of Genes and Genomes (KEGG), the US Food and 

Drug Administration (FDA), European Medical Agency, and Japanese Pharmaceuticals and 

Medical Devices Agency, with an additional 175 chemicals from TG-GATEs 7 and DrugMatrix 

(https://ntp.niehs.nih.gov/DrugMatrix/index.html). The compiled drug list was queried against 

GEO, ArrayExpress, TG-GATEs, and DrugMatrix to identify transcriptomics datasets from 

human, mouse, and rat studies, which were further annotated with species, tissue, dosage, and 

treatment time information (STAR Methods). Numbers of datasets, platform information, and 

sample size distribution are detailed in STAR Methods. Differentially expressed genes (DEGs) 
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were obtained from individual datasets as “dose/time-segregated signatures” and from meta-

analysis of multiple datasets for each drug or each class of drugs across treatment regimen for 

each tissue and each species as “meta-signatures” (STAR Methods). All DEGs are compiled 

into a drug signature database, comprised of 18,710 gene signatures. Inspection of the 

database indicated higher coverage for liver compared to other organs/tissues (Figure 2.1B, 

4.1C), more rat signature sets compared to other species (Figure 2.1C, 4.1D), and more 

signatures from DrugMatrix compared to other data sources (Figure 2.1B, 4.1D). 

 

Implementation of the PharmOmics web server for drug signature query and drug 

repositioning prediction 

To allow easy data access and use of the PharmOmics database, we provide drug signature 

query, species and tissue comparison, drug repositioning, and drug network visualization on an 

open access web server Mergeomics 2.0 34,53 (http://mergeomics.research.idre.ucla.edu; STAR 

methods). The PharmOmics web server features three main functions (Figure 2.2A). First, 

species- and tissue-stratified drug signatures and pathways for both the dose/time-segregated 

and meta signatures can be queried, and comparative analysis to examine similarities and 

differences between tissues and species for a given drug can be carried out. Second, it features 

a network drug repositioning tool that is based on the connectivity in a given gene network 

between PharmOmics drug signatures and user input genes such as a disease signature. Third, 

the web server offers a gene overlap-based drug repositioning tool that assesses direct overlap 

between drug gene signatures and user input genes. The gene overlap-based approach is 

similar to what has been previously implemented in other drug repositioning tools; however, the 

network-based repositioning approach is unique to PharmOmics. An example of network-based 

repositioning using a sample liver network and a sample hyperlipidemia gene set as inputs and 

the resulting drug predictions and network visualization of a top drug, oxymetholone, are shown 
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in Figure 2.2B and 2.2C. Lastly, network and gene overlap scores for hepatotoxicity and known 

ADR links from SIDER database are given in both network- and overlap-based analysis results 

to predict potential ADRs of the input signature. 

 

Utility of PharmOmics drug signatures in retrieving known therapeutic drugs for various 

diseases  

Drug repositioning has mainly relied on analysis of direct overlaps between drug signatures and 

disease genes 39,50,54. Recently, protein-protein interaction networks have also been used for 

network-based drug repositioning by assessing network connectivity between disease genes 

and known drug targets 24. However, it remains unclear whether tissue-specific gene regulatory 

networks coupled with tissue-matched drug signatures are of value for drug repositioning. To 

this end, we evaluated the ability of PharmOmics drug signatures to identify drugs for diseases 

based on network connectivity of gene signatures of diseases and drugs matched by tissue in 

addition to the commonly used gene overlap approach. We hypothesized that if a drug is useful 

for treating a disease, the drug and disease signatures likely target similar pathways and 

therefore would have direct gene overlaps or connect extensively in gene networks. For 

network-based drug repositioning, we used a network proximity measure between drug DEGs 

and diseases genes as previously described for protein network-based analysis 24  (STAR 

methods). Here, we used tissue-specific Bayesian gene regulatory networks (BNs) and tested 

the mean shortest distance between drug DEGs and disease genes. For gene overlap-based 

drug repositioning, we calculate the Jaccard score, gene overlap fold enrichment, and Fisher’s 

exact test p values as measures of direct gene overlap.   

 

The performance of PharmOmics drug repositioning was first assessed using hyperlipidemia as 

the test case because multiple known drugs are available as positive controls. Since 
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hyperlipidemia is most relevant to low density lipoprotein cholesterol (LDL) and liver tissue, we 

retrieved LDL causal genes and pathways in liver tissue based on genome-wide association 

studies (GWAS) of LDL in conjunction with genetic regulation of liver gene expression using 

Mergeomics (STAR methods) 9,22,53. In addition to retrieving disease genes based on GWAS, a 

hyperlipidemia signature from CTD 48 was also used as an alternative disease signature source. 

For each drug with different dose and treatment durations, the signature with the highest 

overlap with the disease signature was used to represent the drug. Gene overlap- and network-

based methods using dose/time-segregated signatures had similar overall performance as 

assessed by the area under receiver operating characteristics curve (~90% Area under the 

curve of receiver operating characteristic (AUROC); p<0.001) in the identification of 

antihyperlipidemic drugs (Figure 2.3A, 2.3B). The dose/time-segregated signatures performed 

better than the meta signatures when using network-based repositioning (Figure 2.3C, 2.3D). 

When compared to other existing drug repositioning platforms, PharmOmics was able to 

retrieve higher prediction rankings for the known anti-hyperlipidemia drugs (Table 2.1) than 

CMap (MergeOmics signature p=0.0064, CTD signature p = 0.0056) and L1000 (MergeOmics 

signature p=0.03, CTD signature p < 0.001), while showing comparable results to CREEDS 

(non-significant for both Mergeomics and CTD signature) based on Wilcoxon signed rank test. 

PharmOmics also reached better AUROC (Figure 2.3C, 2.3D) than CMap and L1000, as well 

as higher balanced accuracy, defined as (sensitivity+specificity)/2 (Table 2.2), than CREEDS, 

CMap, and L1000. These results support the capacity of PharmOmics as a complementary drug 

repositioning tool to existing platforms. 

 

To provide molecular insights into the top drug predictions, we examined the disease network 

overlap patterns of the top drugs, lovastatin, a known anti-hyperlipidemia drug (Figure 2.3E), 

and oxymetholone, a known androgen drug with hyperlipemia ADR (FDA box warning label) 
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(Figure 2.3F). The network approach can retrieve both therapeutic drugs and drugs with ADRs 

because network connectivity rather than direction of change was the main consideration. Both 

drugs had DEGs connecting to genes related to cholesterol metabolism and peroxisome 

proliferator-activated receptor (PPAR) pathways in the hyperlipidemia network (Figure 2.3E, 

2.3F). However, lovastatin DEGs had direct overlap with cholesterol biosynthesis genes such as 

Hmgcr (target of statin drugs) and Sqle along with more DEGs that connected to disease genes, 

while oxymetholone did not have Hmgcr and Sqle as DEGs and had smaller disease 

subnetwork overlap, suggesting key differences between the two drugs. Notably, many drug 

DEGs did not directly overlap with disease genes, which supports the utility of a network-based 

drug repositioning approach that does not require the direct retrieval of a known drug target or 

direct overlap of drug DEGs with disease genes. 

 

We further evaluated the performance of PharmOmics in retrieving known drugs for several 

other diseases for which known therapeutic drugs are available and can serve as positive 

controls. Using CTD disease signatures for hepatitis, network-based repositioning obtained 79% 

AUROC (p<0.001, Figure 2.3G) in retrieving both steroid and non-steroid anti-inflammatory 

agents (prediction ranks in Table S2.1). We also queried type 2 diabetes signatures and found 

PharmOmics was able to predict PPAR gamma agonist drugs (79% AUROC, p=0.04, Figure 

2.3H), but not sulfonylurea drugs which act on the pancreatic islet to enhance insulin release 

(prediction ranks in Table S2.2), due to a paucity of drug signatures in islets. Finally, we queried 

hyperuricemia signatures and network-based repositioning obtained 90% AUROC (p=0.009, 

Figure 2.3I, prediction ranks in Table S2.3) for detecting anti-hyperuricemia drugs. The overall 

performance of PharmOmics for these various diseases is better or on par with other platforms 

(Figure 2.3G-I). 
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We reasoned that network-based repositioning is likely more robust against missing genes in 

disease signatures than traditional gene overlap-based analysis. To test this, we masked part of 

the disease gene signatures for hyperlipidemia and hepatitis as test cases. Results showed that 

network-based repositioning maintained similar performance even when 50% of disease genes 

were masked, while gene overlap-based strategy showed decrease in performance when 20% 

or more genes were masked from the disease signatures (Figure 2.3J).  

 

Overall, these various test cases using known therapeutic drugs as positive controls support 

both the utility and robustness of network-based drug repositioning for the diseases tested when 

drug signatures from the appropriate tissues are available. 

 

Utility of PharmOmics to predict known and novel drugs for non-alcoholic fatty liver 

disease (NAFLD)  

After establishing the performance of PharmOmics in drug repositioning using the case studies 

above where positive controls are available, we applied PharmOmics to predict potential drugs 

for non-alcoholic fatty liver disease (NAFLD), for which there is currently no approved drugs. 

Using NAFLD steatosis signatures from a published mouse study 9 and the CTD NAFLD 

signatures 48, we predicted PPAR alpha agonists (clofibrate, fenofibrate, bezafibrate, and 

gemfibrozil), HMG-CoA reductase inhibitors (lovastatin, fluvastatin, and simvastatin), a PPAR 

gamma agonist (rosiglitazone), and a nonsteroidal anti-inflammatory drug (aspirin) to be among 

the top 10% of drug candidates based on the average ranking of drugs predicted using both the 

mouse steatosis signature and CTD NAFLD signature (Table S2.4). PPAR agonists have been 

well supported as potential drugs for NAFLD 55–66, whereas statins showed positive association 

yet less literature documentation 67–70. Aspirin was recently reported to be associated with 
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reducing liver fibrosis progression in a cohort association study in humans 71, but here it was 

predicted for liver steatosis or general NAFLD. 

 

Next, we sought to validate the top predicted drugs in mitigating liver steatosis.  We chose 

fluvastatin as a positive control due to its high prediction rank across different platforms (top 5% 

in PharmOmics, CMap, and L1000; top 20% in CREEDS; Table S2.4) and  better efficacy 

compared to other statins in improving metabolic phenotypes in a methionine- and choline-

deficient diet mouse model used to study non-alcoholic steatohepatitis (NASH) 69. We also 

chose to test aspirin as a unique top prediction by PharmOmics (top 5%). In comparison, aspirin 

had much lower ranks in CREEDS (30%) and CMap (35%) and was not documented in L1000. 

 

Fluvastatin and aspirin were tested using a mouse steatosis model induced by a high fat high 

sucrose (HFHS) Western diet, which has been previously used to study NAFLD (9,72–74. Key 

genes identified in this diet-induced NAFLD model 9 were known NAFLD-associated genes 75,76 

and reproducible in independent human studies  77, supporting its utility as a model for this 

disease. Comparison between the mice in HFHS group (NAFLD) and the chow group (Control) 

confirmed that HFHS induced increases in hepatic triglycerides (TG), a measure of liver 

steatosis, without significant differences in liver weight or other lipids (Figure 2.4). Comparison 

of the fluvastatin and aspirin treated groups with the NAFLD group revealed significant 

treatment effects by both drugs on mitigating body weight gain (fluvastatin: p<0.0001, Figure 

2.5A; aspirin: p<0.0001, Figure 2.5B), reducing adiposity (fluvastatin: p<0.0001, Figure 2.5C; 

aspirin: p=0.0008, Figure 2.5D), and decreasing hepatic triglycerides (TG) (fluvastatin: 

p=0.0044, Figure 2.5E; aspirin: p=0.0023, Figure 2.5F). Drug treatments did not significantly 

alter liver weight, total cholesterol (TC), and unesterified cholesterol (UC) (Figure 2.5E, 2.5F; 

Figure 2.6). 
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We further investigated whether the effects of the drugs on NAFLD steatosis phenotypes were 

confounded by food and water intake. No difference was observed in food and water intake in 

the fluvastatin treatment group (Figure 2.6E, 2.6F), but in the aspirin treatment group there was 

a significant decrease in food intake but no difference in water intake compared to the NAFLD 

group (Figure 2.6G, 2.6H). Adjusting for food intake effects using linear regression showed that 

the significant effects of fluvastatin on body weight gain (p=0.0306), adiposity (p=0.0022), and 

hepatic TG (p=0.0190) remained significant. For aspirin, the significant effects on hepatic TG 

(p=0.0372) remained, but the effects on body weight gain and adiposity (p=0.0511) were no 

longer significant. 

 

Our experimental validation experiments support the efficacy of both fluvastatin and aspirin in 

mitigating liver TG levels independent of food and water intake. Agreeing with the PharmOmics 

prediction ranks, the effects of fluvastatin were stronger than that of aspirin (Figure 2.5A-F). 

Moreover, visualization of the network overlaps between NAFLD signatures and drug signatures 

revealed more extensive disease network connections for fluvastatin than for aspirin (Figure 

2.5G, 2.5H), and the signatures of the two drugs connected to pathways involved in NAFLD 

such as PPAR signaling pathways and fatty acid and steroid biosynthesis. 

 

Utility of PharmOmics drug signatures in predicting and understanding hepatotoxicity  

We further explored the potential of coupling PharmOmics drug signatures and tissue gene 

networks to predict liver toxicity, a major type of ADR for which both toxicity signatures and 

orthogonal ADR documentations from various independent databases are available for 

performance evaluation. We used the chemical-induced liver injury signature containing 435 

genes from CTD to predict the degree of hepatotoxicity of drugs based on the overlap and liver 
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gene network connectivity between PharmOmics drug signatures and the CTD liver injury 

signature. We then used both the liver histological severity from TG-GATEs and the 

independent FDA drug-induced liver injury (DILI) categories (“most”, “less” – moderate/mild, and 

“no” DILI concern) as in silico independent validation of the predicted hepatotoxic drugs. 

 

We found that drug ranking of hepatotoxicity from both the network-based and gene overlap-

based analyses from PharmOmics increased with higher histological severity as defined by TG-

GATEs (Figure 2.7A), supporting a positive relationship between the predicted hepatotoxicity 

scores and experimental hepatotoxicity measures. Next, we tested the performance of 

PharmOmics in predicting hepatotoxic drugs from the FDA DILI drug database. PharmOmics 

dose/time-segregated signatures resulted in higher performance (67% AUROC, p=0.0014) 

compared to the meta signatures (63% AUROC, p = 0.029) and the other platforms tested such 

as CREEDS, CMap, and L1000 (AUROC 50-53%; non-significant p > 0.05 for CREEDS and 

L1000; CMap showed significantly higher scores in drugs with lower hepatotoxicity, Figure 

2.7B-2.7C). 

 

Top drug predictions by PharmOmics based on the CTD hepatotoxicity signatures were wy-

14643 (experimental drug with severe histological finding in TG-GATEs), dexamethasone 

(moderate DILI concern category in FDA and moderate histological finding in TG-GATEs), 

phenobarbital (moderate DILI concern), indomethacin (“most” DILI concern), and fenofibrate 

(moderate DILI concern). The network overlapping patterns of the top predicted drugs with the 

CTD liver injury genes (Figure 2.7D) showed that the top predicted drugs exhibited consistent 

targeting of the hepatotoxicity gene subnetworks. 
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Since CTD contains a large number (435) of curated hepatotoxicity genes, we hypothesized that 

this large network could be divided into subnetworks indicative of different mechanisms towards 

liver toxicity, which might improve toxicity prediction for drugs with different mechanisms. 

Therefore, we applied the Louvain clustering method to divide the liver injury network defined by 

the CTD hepatotoxicity genes into subnetworks and filtered out subnetworks with less than 10 

genes. These subnetworks showed varying abilities in identifying drugs with DILI concerns 

(Table S2.5). The best performing hepatotoxicity subnetwork showed improved AUROC 

compared to the whole network (75% vs 67%; Figure 2.7B). Further scrutinization of the top 

performing subnetwork revealed that the antioxidant gene GSR, the phase 2 drug metabolizer 

NAT2, and the inflammatory response gene IRAK1 showed the best predictability. These results 

suggest that the network-based toxicity prediction approach may help prioritize predictive 

genes, pathways, and subnetworks related to hepatotoxicity. 

 

Utility of meta signatures to understand tissue and species specificity 

To evaluate tissue and species specificity of drug signatures, we used the meta signatures, 

which reflect the dose/time-independent, consistent genes affected by drugs across studies in 

the same tissue or species.  We analyzed the overlap in gene signatures for each drug across 

different tissues and species and visualized the results using UpSetR 78. As shown in Figure 

2.8A, the overlap rate in the DEGs of the same drug between tissues and organs is usually less 

than 5%, indicating a high variability in DEGs between tissues. 

 

As an example, we examined atorvastatin, a HMGCR (β-Hydroxy β-methylglutaryl-CoA 

receptor) inhibitor, which has well understood mechanisms and has been broadly tested in 

different tissues under the human species label. We found that two DEGs, TSC22D3 and 

THBS1, involved in extracellular matrix and inflammation respectively, were shared across 
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tissues (Figure 2.8B). At the pathway level, immune related pathways were shared between 

blood and liver cells but not in the urogenital system (Figure 2.8C, Table S2.6). Unique liver 

pathways include steroid synthesis and drug metabolism, which is expected as the known target 

of statin drugs is HMGCR, the rate limiting enzyme in cholesterol biosynthesis in liver. Blood 

monocyte DEGs indicated changes in inflammation related pathways, while G-protein coupled 

receptor (GPCR) ligand binding proteins were altered in prostate cancer cells. The tissue 

specificity of drug meta signatures supports tissue-specific therapeutic responses and 

emphasizes the need for comprehensive inclusion of drug signatures from different tissue 

systems.   

 

We also found evidence for high species specificity. As shown in Figure 2.8D, the pair-wise 

overlaps in DEGs between species for the same drug is generally lower than 5%. Here we 

chose PPAR gamma receptor agonist rosiglitazone as an example because this drug has 

datasets across human, rat, and mouse in PharmOmics, and its mode of action is well-studied. 

As shown in Figure 2.8E and Figure 2.8F, nine genes (CPT1C, AKR1B1, VNN1, ACSM3, 

CD36, CPT1A, PDK4, ZNF669, ADH1C) and several pathways (PPAR signaling and fatty acid, 

triacylglycerol, and ketone body metabolism) were consistently identified from liver DEGs across 

species (Table S2.7), reflecting the major species-independent pharmacological effects of 

rosiglitazone. Bile acid related genes were altered in rat datasets, whereas retinol metabolism 

and adipocytokine pathways were altered in human datasets. The species differences identified 

highlight the importance of investigating the physiological differences among model systems to 

facilitate drug design with better translational potential. Our cross-species comparative analysis 

also revealed that only 21% of the unique drug-tissue pairs (236 out of 1144) have data from 

two or more species, thus highlighting the need for systematic data generation across species 

to better understand between-species similarities and differences in drug actions.  
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Discussion and conclusion 

We present PharmOmics, an open-access drug signature database along with a web interface 

for accessing and utilizing the signatures for various applications. PharmOmics utilizes publicly 

available drug-related transcriptomic datasets across multiple data repositories and provides 

unique tissue-, species-, and dose/time-stratified gene signatures that are more reflective of in 

vivo activities of drugs. We also developed a unique framework for drug repositioning based on 

tissue-specific gene network models. We examined the potential applications of PharmOmics 

for various utilities including drug repurposing, toxicity prediction, and comparison of molecular 

activities between tissues and species. We also carried out in silico performance assessments 

across drug signature databases and in vivo mouse experiments to validate select drugs from 

network-based predictions for liver steatosis. 

 

Compared to the well-established CMap and LINC1000 platforms, PharmOmics focuses more 

on in vivo settings and likely captures physiologically relevant drug signatures to improve drug 

repositioning performance. Compared to a previous crowdsourcing effort which also utilizes 

publicly available drug datasets 50, the PharmOmics platform includes more curated databases 

(TG-GATEs, DrugMatrix Affymetrix, DrugMatrix Codelink datasets) and has a systematic tissue, 

species, and treatment regimen stratification to facilitate drug repositioning. Comparison across 

platforms revealed statistically significant gene signature overlaps, but the degree of overlap is 

low (Figure 2.9), supporting that these are complementary platforms. PharmOmics is also the 

only tool utilizing a gene network framework rather than a direct gene overlap approach. We 

believe that the increased coverage of in vivo datasets, consideration of tissue-, species-, and 

dose specificity, and the use of a network approach all contribute to the improved performance 



 

21 

of PharmOmics. However, in cases where tissues, networks, and doses are not available in 

PharmOmics, existing platforms have advantages. 

 

The use of tissue annotation with BRENDA Tissue Ontology helps normalize organ labels and 

improves comparability of datasets. The tissue- and species-specific analyses implemented in 

PharmOmics allows for comprehensive molecular insight into the actions of drug molecules in 

individual tissues and species. Our results support that different species have unique drug 

responses in addition to shared features. Therefore, drug responses obtained in animal models 

require caution when translating to humans. This notion agrees with the long-observed high 

failure rate of drug development that has primarily relied on preclinical animal models and 

argues for greater consideration and understanding of inter-species differences in drug actions. 

 

In addition to tissue and species stratification, we also provide detailed dose/time-segregated 

drug signatures, which can help better understand the dose- and time-dependent effects of 

drugs through gene signature and pathway comparisons offered through our web server. By 

contrast, the meta-analysis signatures capture the consistent genes and pathways across 

treatment regimens, which likely represent core, dose/time-independent mechanisms, and can 

help address the sample size issue of individual datasets since most drug treatment datasets 

carried out to date are of small sample size. Repositioning with meta signatures also 

significantly shortens the computing time in network-based repositioning applications. For 

instance, computation using 1251 human meta signatures can be completed in 40 minutes, 

whereas using ~14,000 dose/time-segregated signatures can take 4 hours. 

 

Previous drug repositioning studies support the utility of a protein network-based approach for 

drug repositioning. Here we show that combining the drug transcriptomic signatures in 
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PharmOmics with tissue-specific gene regulatory networks and gene signatures of diseases can 

predict potential therapeutic avenues and tissue toxicity. Compared to other platforms, the use 

of tissue- and species-specific drug signatures along with network biology is a unique feature of 

PharmOmics, which enables drug prioritization based on network proximity rather than direct 

gene overlaps. We demonstrate in various applications that network-based analysis had more 

robust performance to that of gene overlap-based analysis. Moreover, network-based 

repositioning offers molecular and mechanistic insights into the therapeutic or toxic effects of 

drugs. For instance, different NAFLD network overlapping patterns were observed between 

fluvastatin and aspirin which reflect different drug mechanisms for the same disease phenotype 

that can be explored further. 

 

In conclusion, we have established a new drug signature database, PharmOmics, across 

different dosage, species and tissues, which captures the systems level in vivo activities of drug 

molecules. In addition, we demonstrate the possible means to integrate these signatures with 

network biology to address drug repositioning needs for disease treatment and to predict and 

characterize toxicity. Finally, our study tested the concept of tissue-matched drug repositioning 

and supports consideration of the tissue context of disease and drugs in the improvement of 

drug repositioning performance, and repositioning efforts will be further expanded when more 

tissue specific disease and drug signatures are available. PharmOmics has the potential to 

complement other available drug signature databases to accelerate drug development and 

toxicology research. It should be noted that we aim to position PharmOmics as a data-driven 

tool for hypothesis generation. Integration with known drug characteristics to select drug 

candidates and design follow up experiments are still essential. 
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Limitations of study 

There are several limitations in this study. First, our computational pipeline may not be able to 

identify all drug datasets from GEO and ArrayExpress database and currently does not 

accommodate RNA sequencing datasets (~10% of retrieved drug datasets). Variations in 

annotations of drug names, sample size, definition of treatment vs control groups, and 

tissue/cell line labeling across datasets make it challenging to design a fully automated pipeline 

to curate drug datasets. Another issue is that deposited RNA sequencing datasets are in non-

standardized formats, with some as raw counts and others as normalized counts such as FPKM 

and RPKM, making a streamlined and standardized analysis of these datasets difficult. We are 

currently processing RNA sequencing datasets and will add these to PharmOmics in the future. 

It is therefore crucial for public data repositories to offer clear definitions and instructions for 

metadata generation in order to standardize terms and data processing procedures across 

datasets to facilitate future data reuse. Secondly, the coverage of tissue, species, and treatment 

regimens across drugs is unbalanced, preventing a thorough comparison across tissues, 

species, dosages, and treatment windows. We will continue to update our PharmOmics 

database periodically to include more datasets as they become available to increase the 

coverage of datasets and drug signatures. Thirdly, the sample sizes for drug treatment studies 

tend to be small (majority with n=3/group or less). This is an intrinsic limitation of existing drug 

studies and is a common challenge to existing drug databases including TG-GATEs, 

DrugMatrix, CMap, L1000, and CREEDS. This fact highlights the need for systematic efforts to 

increase sample sizes in drug genomic studies. To mitigate the sample size concern and reduce 

the reliance on individual studies, we implemented a meta-analysis strategy to aggregate drug 

signatures across studies to derive meta signatures. However, this strategy removes dosage- 

and time-dependent effects. We offer both options in our database to mitigate sample size 

concerns through meta-analysis while retaining dose and time regimen information through the 
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dose/time-segregated analysis. Fourth, our network-based applications are currently limited in 

the coverage of high-quality tissue specific regulatory networks and computing power. We will 

continue to expand and improve the tissue networks and computing environment in our web 

server. Lastly, systematic validation efforts are needed to substantiate the value of drug 

repositioning tools like PharmOmics. Thus far, we utilized both in silico performance 

assessments and in vivo experiments to validate our predictions in limited settings. As with the 

other existing platforms such as CMap and L1000, future application studies and community-

based validation efforts are necessary to further assess the value of PharmOmics. 

 

Methods 

Curation of tissue- and species-specific drug transcriptomic datasets 

A total of 941 drugs, including 766 FDA approved drugs from KEGG, FDA, European Medical 

Agency, and Japanese Pharmaceuticals and Medical Devices Agency, and 175 chemicals from 

TG-GATEs and DrugMatrix were queried against GEO, ArrayExpress, TG-GATEs, and 

DrugMatrix to identify datasets. Duplicated datasets between data repositories were removed. 

We developed a semi-automated pipeline combining automated search with manual checking to 

identify relevant datasets for drug treatment. The automated process first extracts datasets 

containing drug generic names or abbreviations and then inspects the potential datasets for 

availability of both drug treatment and control labels in the constituent samples. Labels identified 

by the automated process were also manually checked to validate the labels and remove 

potential false detections. Only datasets with n>=3/group in both drug treatment and control 

groups were included in our downstream analyses. Although a larger sample size is desired, the 

majority (77.7%) of drug transcriptome datasets for the dose/time segregated signature 

database have n=3/group, 21.9% datasets have n=2/group, and <1% datasets have n>3/group 

(Figure 2.10A). It should be noted that this sample size is used in all major drug/chemical 
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signature databases, including CMap, L1000, TG-GATEs and DrugMatrix, in order to cover 

different chemicals and time and dose regimens. GEO/ArrayExpress datasets showed larger 

sample size variation compared to dedicated toxicogenomics databases (Figure 2.10B). 

Currently our gene signatures were obtained from microarray datasets since RNA-seq datasets 

were not standardized in the GEO/ArrayExpress platform and different normalization methods 

will require a different downstream processing pipeline. The 1460 microarray datasets for 342 

drugs from GEO/ArrayExpress were from Affymetrix (55%), Illumina (25%) and Agilent (20%) 

platforms; the 5370 DrugMatrix datasets for 655 drugs and chemicals contained Affymetrix and 

Codelink microarrays; the 6700 datasets for 169 drugs and chemicals from TG-GATEs mainly 

used Affymetrix microarrays. Affymetrix and Illumina microarrays provided similar transcriptome 

coverages while Codelink platform is an older design which only covered around 6000 genes. 

Agilent microarrays are two-color compared to the other three platforms which used single-color 

arrays. 

 

Obtaining drug treatment signatures stratified by species and tissues 

Species and tissue labels were retrieved based on the metadata of each dataset. Tissue names 

were standardized based on the BRENDA Tissue Ontology 79. We implemented a search 

procedure to climb the ontology tree structure to determine the suitable tissue annotations. This 

was done by first building a priority list of widely used tissues/organs in toxicological research 

using the BRENDA Tissue Ontology tree system. Tissue/organ priority order was set to 

"kidney", "liver", "pancreas", "breast", "ovary", "adipose tissue", "cardiovascular system", 

"nervous system", "respiratory system", "urogenital system", "immune system", "hematopoietic 

system", "skeletal system", "integument" (endothelial and skin tissue), "connective tissue", 

"muscular system", "gland", "gastrointestinal system", and "viscus" (other non-classified tissue). 

Tissue terms relevant to each of these tissues or organs were curated from the ontology tree 
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into a tissue/organ ontology table. Next, we looked up terms from our tissue/organ ontology 

table in the Cell/Organ/Tissue column of the metadata in each transcriptomic dataset. If a 

tissue/organ term was not found, we searched the title and summary columns of the metadata 

as well to retrieve additional information. When the search returned multiple tissue terms (for 

example, breast cancer cell line may be categorized as both epithelial and breast organ), we 

used the term with the highest priority as described above. We prioritized the tissue terms 

based on the relevance to toxicology to make tissue assignments unique for each dataset to 

reduce ambiguity. Manual checking was conducted to confirm the tissue annotation for each 

dataset.  

 

For each gene expression dataset from GEO and ArrayExpress, normalized data were 

retrieved, and quantile distribution of the values was assessed. When a dataset was not 

normally distributed, log2-transformation using GEO2R 51  was applied. For gene expression 

datasets from Codelink microarrays (DrugMatrix), quantile normalization was conducted. For 

Affymetrix microarrays (DrugMatrix and TG-GATEs), GCRMA 80normalization was conducted. 

To identify differentially expressed genes (DEGs) representing drug signatures, two different 

strategies were used. First, the widely used DEG analysis method LIMMA 81 was applied to 

obtain dose and time segregated signatures under false discovery rate (FDR) < 0.05. To 

overcome the low sample size issue and obtain “consensus” drug signatures for a 

drug/chemical, LIMMA was also applied to datasets where multiple doses and treatment 

durations were tested, and treatment effects were derived by combining dose/time experiments 

for the same drug/chemical in each study.  Second, we leveraged different studies for the same 

drugs or chemicals in the same tissue and species to derive meta-analysis signatures. To 

address heterogeneity in study design, platforms, sample size, and normalization methods 

across different data repositories, we applied the characteristic direction method from the 
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GeoDE package to derive consistent DEGs for each drug across different data sources. GeoDE 

was designed to accommodate heterogenous datasets that have differing parameters and 

outputs between treatment and control groups. It uses a “characteristic direction” measure to 

identify biologically relevant genes and pathways. The normalized characteristic directions for all 

genes were then transformed into a non-parametric rank representation. Subsequently, gene 

ranks of a particular drug from the same tissue/organ system and the same organism were 

aggregated across datasets using the Robust Rank Aggregation method 82, a statistically 

controlled process to identify drug DEGs within each tissue for each species. Robust Rank 

Aggregation provides a non-parametric meta-analysis across different ranked lists to obtain 

commonly shared genes across datasets, which avoids statistical issues associated with 

heterogeneous datasets. It computes a null distribution based on randomized gene ranks and 

then compares the null distribution with the empirical gene ranks to obtain a p-value for each 

gene. The robust rank aggregation process was done for the upregulated and downregulated 

genes separately to obtain DEGs for both directions under Bonferroni-adjusted p-value < 0.01, a 

cutoff implemented in the Robust Rank Aggregation algorithm. To obtain species-level 

signatures for each drug, we further aggregated DEGs across different organs tested for each 

drug within each species.  

 

Pathway analysis of individual drug signatures was conducted using Enrichr 83 by intersecting 

each signature with pathways or gene sets from KEGG 84 and gene ontology biological process 

(GOBP) terms 85. Gene signatures were defined as FDR < 0.05 for dose/time segregated 

signatures and Bonferroni-adjusted p-value < 0.01 for meta-analysis signatures. In addition, 

pathway enrichment analysis based on network topology analysis 86 was conducted using 

Bioconductor package ROntoTools 87. Pathways at FDR < 0.05 were considered significant in 

both methods. 
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We curated 14,366 drug signatures segregated by treatment dosage and duration, tissue, and 

species, covering 719 drugs and chemicals, among which 554 are FDA approved. In addition, 

our meta signatures is a consensus of 4,344 signatures covering 551 drugs across treatment 

regimens. In total, the entire database is based on 13,530 rat, human, and mouse 

transcriptomic datasets across >20 tissue or organ systems across 941 drugs and chemicals 

from GEO, ArrayExpress, DrugMatrix, and TG-GATEs to derive drug signatures. The 

toxicogenomics databases TG-GATEs and DrugMatrix mainly contain liver and kidney datasets 

from rats, while public data repositories GEO and ArrayExpress contain datasets with broader 

tissue and species coverage (Figure 2.1B). Overall, the rat datasets are mainly from liver and 

kidney whereas human and mouse datasets also contained signatures from other tissues and 

organs such as breast and the nervous system (Figure 2.1C). There is also a species bias 

between the data repositories; GEO covered more mouse and human datasets, TG-GATEs 

mainly has human and rat datasets, and DrugMatrix curated more rat datasets (Figure 2.1D). 

 

Curation of gene networks 

We used tissue-specific networks, for example Bayesian gene regulatory networks (BNs) of 

mouse liver constructed using a previously established method 88,89 based on transcriptomic and 

genetic data from different mouse liver transcriptomic datasets 21,90–93. For each data set, 1,000 

BNs with different random seeds were reconstructed using Monte Carlo Markov Chain 

simulation and the model with the best fit for each network was determined. In the resulting set 

of 1,000 networks, edges appearing in over 30% of the networks were included in a consensus 

network. This practice has been found to produce experimentally supported regulatory relations 

between genes 88,89. The union of nodes and edges from BNs of multiple mouse or human 

studies were used as tissue-specific networks. 
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Curation of drug signatures from CMap, LINC1000, and CREEDS for comparison with 

PharmOmics 

To compare PharmOmics with other established drug signature platforms for drug repurposing, 

we downloaded signatures from L1000FWD 94 

(http://amp.pharm.mssm.edu/l1000fwd/download_page) which were well annotated for matched 

drug signature overlapping comparison. For CREEDS 50 

(http://amp.pharm.mssm.edu/CREEDS/) repositioning, the web-based Enrichr 83  tool was used 

to query disease signatures to their DrugMatrix library, and outputs based on “combined score” 

implemented by Enrichr were used. Finally, CMap repositioning test were completed through 

query from the website directly (https://clue.io/) and rank based CMap scoring was used. For 

CMap and L1000 results which are based on in vitro cell lines, results from all cell lines were 

summarized to represent common usage of in vitro studies. For CREEDS results where in vivo 

studies were available, only the corresponding tissues were included for comparability with 

PharmOmics. We compared PharmOmics with the CREEDS, CMap and L1000 at the regimens 

that showed the best performance in drug repurposing analysis in each platform. 

 

Curation of disease gene signatures for drug repositioning 

To test the potential of PharmOmics drug signatures for drug repositioning, we curated disease 

gene signatures for hyperlipidemia and NAFLD. Hyperlipidemia was chosen as a test disease 

because numerous positive control drugs are available to assess the performance of 

PharmOmics in retrieving the known drugs compared to other existing drug repositioning tools. 

NAFLD was chosen as another test case since no effective drugs are currently available for this 

condition and our predictions may help guide future drug development. 
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The hyperlipidemia signatures were derived from two resources: i) genes and pathways 

identified by the Mergeomics pipeline 53 based on low-density lipoprotein cholesterol (LDL) 

genome-wide association study (GWAS) summary statistics data 95, and ii) genes based on 

mechanistic and therapeutic evidence collected by the Comparative Toxicogenomics Database 

(CTD) 48 under Mesh ID D006949. These two different resources represent disease gene 

signatures derived from either GWAS inference or a literature-based system. NAFLD gene 

signatures were retrieved from i) studies of NAFLD mouse model 9 from a large systems 

genetics cohort comprised of hundreds of mice from ~100 genetically diverse strains, and ii) 

CTD gene signature under Mesh ID D065626. 

 

As additional test cases, we also retrieved gene signatures for chemical induced liver injury 

under CTD Mesh ID D056486, for hepatitis under CTD Mesh ID D006527, for hyperuricemia 

under CTD Mesh ID D033461 and for type 2 diabetes under CTD Mesh ID D003924. 

 

Measurement of similarity between signatures of drugs, ADRs and diseases 

We used two different methods to determine similarities between two signatures (e.g., a drug 

signature vs. a disease or ADR signature, or a drug signature vs. signature of another drug). 

The first method is based on signature overlaps and uses a signed Jaccard score based on 

upregulated genes from the first signature set (a1), upregulated genes from the second 

signature set (b1), downregulated genes from the first signature set (a2) and downregulated 

genes from the second signature set (b2). The Jaccard score was defined in the following 

formula: 

𝐽(𝐴, 𝐵) =
|𝐴 ∩ 𝐵|
|𝐴 ∪ 𝐵|

 

𝑠𝑖𝑔𝑛𝑒𝑑	𝐽𝑎𝑐𝑐𝑎𝑟𝑑	𝑠𝑐𝑜𝑟𝑒 = 𝐽(𝑎1, 𝑏1) + 𝐽(𝑎2, 𝑏2) − 𝐽(𝑎1, 𝑏2) − 𝐽(𝑎2, 𝑏1) 
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If there is no direction from the disease signature (a), Jaccard score was determined based on a 

simple overlap between disease signature (a) and drug signatures (b) without considering 

direction (b1, b2). 

 

The second method to determine similarities between two signatures is based on a distance 

measure derived from the mean of shortest path lengths between network key drivers of a drug 

gene signature (A) and a disease signature (B) in a given Bayesian gene regulatory network 

(BN) based on a key driver analysis (see below for details). This distance measure is adapted 

from a previous study using protein interaction networks 24. 

distance(B, A) =
1
‖A‖

Fminb ∈ B	distance(b, a)
!∈#

 

 

To reduce variations in result, only signatures with more than 10 genes were included in 

analysis. To obtain a null distribution for shortest path lengths, we permuted genes with the 

same degree as the drug/disease/ADR genes in each network 1,000 times and calculated a z-

score based on the mean and standard error of the null distribution.  

 

Comparison of gene signatures from different species used gene symbol conversion based on 

ortholog information from HGNC consortium 96. ROCR package 97 were used to assessed the 

performance of the gene overlap based or network based methods in drug repositioning or ADR 

prediction. 

 

Comparison of PharmOmics with existing drug signature platforms  

To assess the degree of agreement in drug signatures between the PharmOmics database and 

existing platforms, we compared PharmOmics with the CREEDS 50 and L1000FWD 54 
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databases, for which drug signatures are accessible. As shown in Figure 2.9, both the 

PharmOmics dose/time-segregated signatures and the meta signatures showed better 

concordance with the two existing platforms than the agreement between CREEDS and 

L1000FWD, as reflected by higher overlap fold enrichment score and lower statistical p values. 

These platforms have differences in the datasets and analytical strategies and therefore are 

complementary. Due to the lack of full access to CMap signatures, we were not able to 

systematically compare PharmOmics against CMap. 

 

PharmOmics web server implementation  

To allow easy data access and use of  PharmOmics, we have created a freely accessible web 

tool deployed on the same Apache server used to host Mergeomics 53, a computational pipeline 

for integrative analysis of multi-omics datasets to derive disease-associated pathways, 

networks, and network regulators (http://mergeomics.research.idre.ucla.edu). 

 

The PharmOmics web server features three functions (Figure 2.2A). First, it allows queries for 

species- and tissue-stratified drug signatures and pathways for both the dose/time-segregated 

and meta signatures. Details of statistical methods (e.g., LIMMA vs characteristic direction), 

signature type (dose/time-segregated vs meta), and datasets used are annotated. The drug 

query also includes a function for DEG and pathway signature comparisons between user-

selected species and tissues which can be visualized and downloaded. Second, it features a 

network drug repositioning tool that is based on the connectivity of drug signatures in 

PharmOmics to user input genes such as a disease signature. This tool requires a list of genes 

and a gene network that can be chosen from our preloaded gene regulatory networks if relevant 

or a custom upload (see Applications below for details in implementation). In order to keep 

reasonable computation time and memory requirement of network repositioning on dose/time 
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segregated signatures, we implemented on the web server the option to run repositioning with a 

maximum of 500 genes for each drug signature, which were defined by their FDR value 

regardless of directionality. In the output, Z-score and p-value results of network repositioning 

are displayed and available for download. In addition, we list the overlapping genes between 

drug signatures in the given network and the input genes, the drug genes with direct 

connections to input genes through one-edge extension, and input genes with one-edge 

connections to drug genes in the downloadable results file. The output page also provides 

network visualization which details the genes affected by a drug and their overlap with and 

direct connections to user input genes using Cytoscape.js. The network nodes and edges files 

are also available for download and can be used on Cytoscape Desktop. An example of the web 

interface of the input submission form and results display of the network repositioning tool using 

a sample liver network and a sample hyperlipidemia gene set is shown in Figure 2.2B and 

2.2C. Lastly, the web server offers a gene overlap-based drug repositioning tool that assesses 

direct overlap between drug gene signatures and user input genes. Gene overlap-based drug 

repositioning requires a single list of genes or separate lists of upregulated and downregulated 

genes and outputs the Jaccard score, odds ratio, Fisher’s exact test p-value, within-species 

rank, and gene overlaps for drugs showing matching genes with the input genes. This gene 

overlap-based approach is similar to what was implemented in other drug repositioning tools, 

but the network-based repositioning approach is unique to PharmOmics. 

 

Experimental methods for NAFLD drug validation 

Eight week old mice underwent dietary treatment with fluvastatin and aspirin purchased from 

Cayman Chemicals (Ann Arbor, MI). The target intake concentrations of fluvastatin and aspirin 

were 15mg/kg and 80 mg/kg, respectively, which were chosen based on doses used in previous 

studies that did not show toxicity 69,98. These experimental diets were then administered for 10 
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weeks. The average fluvastatin intake was 14.98 mg/kg/day, and the average aspirin intake was 

79.67 mg/kg/day. During drug treatment, metabolic phenotypes such as body weight, body fat 

and lean mass composition were monitored weekly. Fat and lean mass were measured with 

Nuclear Magnetic Resonance (NMR) Bruker minispec series mq10 machine (Bruker BioSpin, 

Freemont, CA). At the end of treatment, mice were sacrificed after a 4 hour fasting period and 

livers from all groups were weighed, flash frozen, and stored at −80 °C until lipid analysis. For 

metabolic phenotypes measured at multiple time points (body weight gain and adiposity), 

differences between groups were analyzed using a 2-way ANOVA followed by Sidak’s multiple 

comparisons test. 

 

Hepatic lipid quantification 

Hepatic lipids were extracted using the Folch method 99. Briefly, frozen liver tissues were 

homogenized in methanol, and then chloroform was added to each sample to obtain a 2:1 

mixture of chloroform and methanol. Samples were then incubated overnight at 4C. Following 

incubation samples were filtered and magnesium chloride was added to the filtrate and 

centrifuged. The resulting aqueous phase and soluble proteins were aspirated, and the 

remaining organic phase was evaporated using nitrogen gas. The dried lipids were dissolved in 

a Triton X-100 solution. The samples were stored in −80°C prior to analysis. The lipid extracts 

were analyzed by the UCLA GTM Mouse Transfer Core for triglyceride (TG), total cholesterol 

(TC), unesterified cholesterol (UC), and phospholipids (PL) levels by colorimetric assay 100,101. 

Depending on data normality, the groups were analyzed using either a two-sided t-test or Mann-

Whitney test. 

 

Quantification and statistical analysis 
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Data representation, dispersion and precision measures can be viewed in the figure legends. 

For in vivo experimental data comparisons using two-way ANOVA (with Sidak post-hoc 

analysis), t-test and Mann-Whitney test, Prism v8 was used for analysis. Significance level p < 

0.05 is noted using an asterisk *. For repositioning score two group comparison was performed 

by Wilcoxon signed rank test in R 4.0.2. Significance levels p < 0.05, p < 0.01 and p < 0.001 are 

noted using asterisks *, **, and ***, respectively. Multiple group comparison was performed by 

Kruskal-Wallis test followed by post-hoc pairwise Wilcoxon signed rank test in R 4.0.2. 

Significance levels p < 0.05, p < 0.01 and p < 0.001 are noted using asterisks *, **, and ***, 

respectively). Figures were generated by Prism v8 for in vivo experimental data, R default plot 

for ROC curves and histograms, and R ggplot2 102 for boxplots. Sample sizes can be viewed in 

the figure legends. The statistics used in the bioinformatics analysis was described in the 

individual method sections above. 

 

Data and code availability 

• All data, including indexed dataset catalog, pre-computed drug signatures and pre-

computed pathway enrichments for individual drugs are deposited to and accessible through the 

PharmOmics web server (http://mergeomics.research.idre.ucla.edu/runpharmomics.php). We 

also implemented functions for same-tissue between-species comparison and same-species 

between-tissue comparison and comparison result download. In addition, network-based drug 

repositioning analysis and gene overlap-based drug repositioning analysis using all drug 

signatures are available at http://mergeomics.research.idre.ucla.edu/runpharmomics.php. 

 

• Code for PharmOmics repositioning is available at 

https://github.com/XiaYangLabOrg/pharmomics. 
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• Any additional information required to reanalyze the data reported in this paper is 

available from the lead contact upon request. 

 

Experimental Model and Subject Details-animals 

Since drug repositioning was done using steatosis gene signatures, we validated the predicted 

drugs using a diet-induced steatosis mouse model which has been previously 9,72–74 used to 

study NAFLD. Briefly, seven-week old C57BL/6J male mice were purchased from the Jackson 

Laboratory (Bar Harbor, ME). Mice were maintained on a 12-hour light/dark cycle environment 

at UCLA and were given ad libitum access to food and water. After a one week acclimation 

period mice were randomly assigned to four experimental groups (n=7-9/group) on different 

diets/treatments: regular chow diet (Control) (Lab Rodent Diet 5053, St. Louis, MO), high fat 

high sucrose (HFHS) diet (Research Diets-D12266B, New Brunswick, NJ) to induce hepatic 

steatosis, a key NAFLD phenotype, HFHS diet with Fluvastatin treatment (NAFLD + Flu), and 

HFHS diet with aspirin treatment (NAFLD + Asp). All animal experiments were done under the 

protocol approved by the UCLA institutional animal care and use committee (IACUC). 
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Tables 

Table 2.1. Prediction percentile of FDA approved antihyperlipidemic drug based on 

hyperlipidemia signatures from MergeOmics (MO) pipeline and CTD database across 

different platforms tested.  

Platform 
PharmOmics 
dose/time seg 

network  

PharmOmics 
dose/time seg 

Jaccard 
PharmOmics 

meta CREEDS CMap L1000 

Disease 
gene 

signature 
MO CTD MO CTD MO CTD MO CTD MO CTD MO CTD 

Atorvastatin 0.951 0.794 0.981 0.957 0.498 0.316 0.989 0.82 0.913 0.164 0.962 0.668 

Bezafibrate 0.856 0.995 0.901 0.982 0.981 0.932 0.571 0.95 0.332 0.561 0.394 0.755 

Cerivastatin 0.989 0.848 0.995 0.962 0.798 0.719 0.986 0.836 0.879 0.516 0.967 0.761 

Clofibrate 0.965 0.97 0.802 0.927 0.951 0.992 0.737 0.986 0.196 0.291 0.31 0.615 

Clofibric acid 0.93 0.58 0.949 0.892 NA NA NA NA NA NA NA NA 

Fenofibrate 0.984 0.986 0.908 0.883 0.954 0.954 0.797 0.943 0.121 0.108 NA NA 

Fluvastatin 1 0.997 1.000 0.924 0.97 0.985 1 0.815 0.905 0.963 0.958 0.514 

Gemfibrozil 0.992 0.962 0.984 0.873 0.787 0.844 0.9 0.712 0.677 0.612 0.363 0.591 

Lovastatin 0.995 0.984 0.986 0.986 0.905 0.43 0.993 0.632 0.972 0.084 0.992 0.979 

Nafenopin 0.726 0.943 0.472 0.864 NA NA 0.431 0.712 NA NA NA NA 

Niacin 0.192 0.873 0.821 0.309 0.137 0.711 0.719 0.343 0.671 0.171 0.107 0.307 

Pravastatin 0.894 0.339 0.911 0.862 NA NA 0.979 0.854 0.829 0.669 0.592 0.717 

Simvastatin 0.949 0.935 0.856 0.992 0.916 0.909 0.996 0.9 0.972 0.951 0.987 0.843 

Ciprofibrate NA NA NA NA NA NA NA NA 0.685 0.998 0.292 0.272 

Ezetimibe NA NA NA NA NA NA NA NA 0.905 0.982 0.657 0.269 

Probucol NA NA NA NA NA NA NA NA 0.552 0.115 0.018 0.529 

Rosuvastatin NA NA NA NA NA NA NA NA 0.913 0.056 0.905 0.464 

Median 0.951 0.943 0.911 0.924 0.911 0.876 0.94 0.828 0.829 0.516 0.624 0.603 

Mean 0.879 0.862 0.890 0.878 0.79 0.779 0.841 0.792 0.701 0.483 0.607 0.592 

Total 
number of 

drugs 
369 369 369 369 263 263 281 281 934 934 867 867 
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Table 2.2. Comparison of drug repositioning performance between PharmOmics and 

other existing platforms for hyperlipidemia.  

Drug pool for each database was limited to FDA approved drugs to match the drug selection 

criteria in PharmOmics to make results comparable. Significance were defined at the 

recommended cutoffs for each platform: z-score < -2.33 in PharmOmics, overlap BH adjusted p 

< 0.05 in CREEDS, L1000 and PharmOmics dose/time segregated Jaccard, and connection 

score > 95 or < -95 in CMap query system. For CMap and L1000, drug signatures from all cell 

lines (CMap_all or L1000_all) or from the hyperlipidemia relevant liver cell line 

HepG2(CMap_HEPG2 or L1000_HEPG2) were used.  

 
Drug signature 

platform 
Total 
FDA 
listed 
drugs 

Significant 
drugs  

(% total) 

Known 
hyperlipidemia 

drugs 

Significant 
hyperlipidemia 

drugs (% known 
drugs) 

Balanced 
accuracy 

(sensitivity+ 
specificity/2) 

PharmOmics 
meta_liver 

263 33 (12.5%) 10 6 (60%) 74.7% 

PharmOmics 
dose/time 

segregated_liver 
- network 

369 29 
(7.9%) 

13 9 (69.2%) 81.8% 

PharmOmics 
dose/time 

segregated_liver 
- Jaccard 

369 171 
(46.3%) 

13 12 
(92.3%) 

73.8% 

CMap 934 264 
(28.6%) 

15 8 (53.3%) 62.7% 

CMap_HEPG2 667 135 
(20.3%) 

13 1 (7.7%) 43.6% 

L1000 867 428 
(49.3%) 

14 8 (57.1%) 54.1% 

L1000_HEPG2 153 37 (24.2%) 5 0 (0%) 37.5% 
CREEDS_liver 281 257 

(91.4%) 
12 12 (100%) 54.5% 
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Table S2.1. Prediction percentile of steroid and non-steroid anti-inflammatory drugs 

based on hepatitis signatures from CTD database across different platforms tested 

Table S2.2. Prediction percentile of FDA approved anti-diabetic drug based on type2 

diabetes signatures from CTD database across different platforms tested 

Table S2.3. Prediction percentile of FDA approved gout treatment drug based on 

hyperuricemic signatures from CTD database across different platforms tested.  

Table S2.4.  Network repositioning result for non-alcoholic fatty liver disease based on 

genetic pathways obtained from studies of female and male mice. 

Table S2.5.  Submodule repositioning result based on signatures from CTD chemical 

induced liver injury 

Table S2.6.  Cross-tissue comparison of Atorvastatin Pathways.  

Table S2.7.  Cross-species comparison of Rosuvastatin Pathways.  
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Figures 

 

Figure 2.1 PharmOmics data processing pipeline and database summary.  

(A) FDA approved drugs were searched against GEO, ArrayExpress, TG-GATEs, and 

DrugMatrix data repositories. Additional experimental drugs and chemicals from TG-GATEs and 

DrugMatrix were also included. Datasets were first annotated with tissue and species 

information, followed by retrieval of dose/time-segregated using LIMMA 81or meta-analysis drug 

signatures using GeoDE 94 and Robust Rank Aggregation 82. These signatures were used to 

conduct drug repositioning analysis and hepatotoxicity prediction based on either direct gene 

overlaps or a gene network-based approach. (B) Summary of available datasets based on data 
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sources and tissues. Y-axis indicates unique dataset counts, and X-axis indicates tissue and 

data resources. (C) Summary of available datasets based on tissues and species. Y-axis 

indicates unique dataset counts, and X-axis indicates tissue and species. (D) Summary of 

available datasets based on data sources and species. Y-axis indicates unique dataset counts, 

and X-axis indicates data resources and species. 
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Figure 2.2 PharmOmics web server implementation.  

(A) PharmOmics web server outline. The web server hosts drug signature and pathway queries, 

between-tissue and -species drug signature comparisons, and network-based and gene 

overlap-based drug repositioning. Users can query, download, and perform drug repositioning 

using all species- and tissue-specific meta and dose/time-segregated signatures. Interactive 

results tables and network visualizations are displayed on the website and available for 

download. (B) User interface of network drug repositioning web tool using sample 

hyperlipidemia gene set and sample mouse Bayesian gene regulatory network. Inputs to 

network drug repositioning includes i) signature type to query (meta-analyzed, dose/time-

segregated with top 500 genes per signature, or dose/time-segregated with all genes), ii) 

network (custom upload or select a sample network), iii) species (relating to the species of the 

network being used), and iv) genes. In the example case we choose dose/time-segregated 

signatures using top 500 genes, a sample liver network, mouse/rat species, and the sample 

hyperlipidemia gene set (loaded from “Add sample genes”). If human gene symbols are 

provided with the “Mouse/Rat” species selection, the genes will be converted to mouse/rat 

symbols. (C) After the job is complete, the results file is displayed on the website and available 

for download. Subnetworks of top ranked drugs can be visualized using the “Display Network” 

button which will load an interactive display of the subnetwork topology for a select drug. For 

example, the oxymetholone drug signature in rat liver is a top hit, and the drug network is shown 

on the right. Additional data in the downloadable results file include the genes that are both a 

drug gene and an input gene in the network, drug genes that are directly connected (first 

neighbor) to input genes, and input genes directly connected to drug genes. 
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Figure 2.3 Drug repositioning using PharmOmics for diseases with known therapeutics. 
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(A and B) Area under the curve of receiver operating characteristics (AUROC) plots for network-

based repositioning and gene overlap-based repositioning in identifying anti-hyperlipidemia 

drugs (total n = 369, target n=13) using (A) Mergeomics hyperlipidemia signature or (B) CTD 

hyperlipidemia signature. (C and D) Comparison of drug repositioning performance between 

PharmOmics network-based approach with CREEDS (total n = 281, target n=12), using the 

“combined score” generated by the enrichment analysis tool implemented in Enrichr), L1000 

(total n = 867, target n=14), and CMap query system (total n = 934, target n=15)  using (C) 

Mergeomics hyperlipidemia signature and (D) CTD hyperlipidemia signature to identify anti-

hyperlipidemic drugs. For drugs with multiple datasets with different doses and treatment times, 

only the best performing signature was used. (E and F) Drug-hyperlipidemia subnetwork based 

on Mergeomics hyperlipidemia signature (red) and drug signature (blue) showing first neighbor 

(direct) connections using (E) lovastatin and (F) oxymetholone signatures. Direct overlapping 

genes between disease and drug signatures are network nodes colored with both red and blue. 

(G - I) Comparison of drug repositioning performance between PharmOmics network-based 

approach with L1000, CREEDS and CMap query system using CTD signatures for hepatitis (G), 

type 2 diabetes (H), and hyperuricemia (I) to identify steroid and non-steroidal anti-inflammatory 

drugs (n=16 in PharmOmics, n=14 in CREEDS, n=47 in CMap, n=47 in L1000)  (G), PPAR 

gamma agonists (n=11 in PharmOmics, n=9 in CREEDS, n=13 in CMap, n=13 in L1000)  (H), 

and anti-hyperuricemia drugs (n=3 in PharmOmics, n=4 in CMap, n=3 in L1000)   (I), 

respectively. Note that in (I), CREEDS was not included due to lack of anti-hypouricemic drugs. 

(J) Boxplot showing AUROC performance with different proportion of original disease signatures 

used after masking disease genes. For each proportion, 20 random sampling of original disease 

signature was conducted to obtain AUROC in identifying disease related drugs. Wilcoxon 

signed rank test was used to calculate significance in difference between gene overlap-based 
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AUROC and network-based AUROC. *, **, *** indicates p < 0.05, p < 0.01 and p < 0.001 

repectively from Wilcoxon signed rank test. See also Table S2.1, S2.2, S2.3  
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Figure 2.4. Effects of high fat high sucrose diet on body composition and liver lipids in 

C57BL/6J mice.  

(A) Time course of body weight gain of mice on control and high fat high sucrose (HFHS) diet 

for 10 weeks. (B) Time course of adiposity of mice on control and HFHS diet for 10 weeks. (A 

and B) Data are represented as mean +/- SEM and was analyzed by two-way ANOVA followed 

by Sidak post-hoc analysis to examine treatment effects at individual time points. (C) Bar plot of 

liver weight in mice on a control and HFHS diet. (D) Bar plot of hepatic lipid levels in mice on a 

control and HFHS diet (D). Triglyceride (TG), Total Cholesterol (TC), Unesterified Cholesterol 

(UC), Phospholipid (PL). (C and D) Data are represented as mean +/- SEM and was analyzed 

using either the two-sided t-test or Mann-Whitney test. P value <0.05 was considered significant 

and is denoted by an asterisk (*). Sample size n = 8-9/group. Control diet (Control); HFHS diet 

(NAFLD).  
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Figure 2.5 In vivo validation of top predicted drugs fluvastatin and aspirin on preventing 

NAFLD phenotypes in a diet-induced NAFLD mouse model.  

Mouse groups include C57BL/6J mice fed a high fat high sucrose (HFHS) diet to induced liver 

steatosis (NAFLD), HFHS with fluvastatin (NAFLD + Flu), and HFHS with aspirin (NAFLD + 
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Asp). (A and B) Time course of body weight gain in NAFLD mice treated with fluvastatin (A) or 

aspirin (B) over 10 weeks. (C and D) Time course of fat mass and muscle mass ratio (adiposity) 

in mice treated with fluvastatin (C) or aspirin (D) over 10 weeks. (A-D) Data are represented as 

mean +/- SEM and were analyzed by two-way ANOVA followed by Sidak post-hoc analysis to 

examine treatment effects at individual time points. P value < 0.05 was considered significant 

and is denoted by an asterisk (*). (E and F) Quantification of lipids in the liver of mice on 

fluvastatin (E) or aspirin (F) treatment for 10 weeks. Triglyceride (TG), Total Cholesterol (TC), 

Unesterified Cholesterol (UC), Phospholipid (PL). Data are represented as mean +/- SEM and 

were analyzed using two-sided t-test. P value < 0.05 was considered significant and is denoted 

by an asterisk (*). Sample size n = 7-8/group. (G) Gene network view of fluvastatin gene 

signatures overlapping with NAFLD disease signatures. (H) Gene network view of aspirin gene 

signatures overlapping with NAFLD disease signatures. See also Figure 2.4, 4.6 and Table S2.4 
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Figure 2.6 Liver weight, food intake, and water intake in C57BL/6J mice on a HFHS diet 

with or without fluvastatin or aspirin.  

(A and B) Bar plot of liver tissue weight in mice on a HFHS diet with or without fluvastatin (A) or 

aspirin (B). (C and D) Dotplots of lipid levels in the liver of mice on fluvastatin (C) or aspirin (D) 

treatment for 10 weeks. Triglyceride (TG), Total Cholesterol (TC), Unesterified Cholesterol (UC), 

Phospholipid (PL). Circle indicates the identified outliers using the ROUT method on Graphpad 

(Prism v8), which were removed from the subsequent analysis. (E and F) Bar plot of food (E) 
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and water (F) intake in mice on a HFHS diet with or without fluvastatin. (G and H) Bar plot of 

food (G) and water (H) intake in mice on a HFHS diet with or without aspirin. (A, B and E-H) 

Data are represented as mean +/- SEM. All data was analyzed using a two-sided t-test. P value 

<0.05 was considered significant and is denoted by an asterisk (*). Sample size n = 7-8/group. 

HFHS group (NAFLD); HFHS with Fluvastatin (NAFLD + Flu); HFHS with Aspirin (NAFLD + 

Asp). 
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Figure 2.7 Utility of PharmOmics drug signatures in hepatotoxicity prediction.   

The analysis was based on matching between PharmOmics drug signatures and hepatotoxicity 

signatures of drug induced liver injury (DILI) curated from comparative toxicogenomics database 

(CTD). (A) Boxplots of gene overlap-based hepatotoxicity ranking (left) and network-based 

hepatoxicity ranking (right) by PharmOmics, across four categories of liver injury histological 

severity defined by the independent TG-GATEs database (x-axis) (all doses included, n=205 in 

“minimal” category, n=221 in “slight” category, n=147 in “moderate” category, n=37 in “severe” 
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category). (B) ROC curves comparing PharmOmics with other tools in predicting hepatotoxic 

drugs from the FDA DILI drug database. For PharmOmics, three sets of tests were performed, 

where dose/time-segregated drug signatures, meta signatures, or a hepatotoxicity subnetwork 

was used. Significance were calculated by comparing “no DILI-concern” category (n= 30 in 

PharmOmics dose/time segregated signatures, n=19 in PharmOmics meta, signatures, n=94 in 

CMap, n=88 in L1000, n=18 in CREEDS) vs “less DILI-concern” plus “most DILI-concern” 

categories (n= 185 in PharmOmics dose/time segregated signatures, n=156 in PharmOmics 

meta signatures, n=276 in CMap, n=251 in L1000, n=142 in CREEDS). (C) Hepatotoxicity 

signature matching scores from various drug repositioning platforms across three different DILI 

drug categories. For drugs with multiple dose and time points, only the best score was used. 

PharmOmics scores are derived from network-based matching; CMap scores were derived from 

the CMap online query plarform; L1000 scores are from Jaccard scores from the L1000 

plarform; CREEDS scores are from the combined scores derived from enrichr platform. 

Boxplots show interquartile range (IQR) and median values (line inside the box). IQR was 

defined as between 25th (Q1) and 75th (Q3) percentile. The upper and lower bars indicate the 

points within Q3 + 1.5*IQR and Q1 – 1.5*IQR, respectively. (D) Liver hepatotoxicity network 

based on CTD hepatotoxicity genes and its overlap with drug signatures of 4 of the top 5 

predicted drugs by PharmOmics which had >50 drug signature genes. Phenobarbital was 

among the top 5 drugs but was not included in the figure due to its small DEG size. Colors of 

the network nodes denote the different drugs targeting the genes. The top 3 predictive 

subnetworks are labeled in red. Kruskal-Wallis test followed by post-hoc pairwise Wilcoxon 

signed rank test was used for statistics in A and C and Wilcoxon signed rank test was used to 

calculate significance for B. *, **, *** indicates p < 0.05, p < 0.01 and p < 0.001, respectively.  

See also Table S2.5 
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Figure 2.8 Cross-tissue and cross-species comparisons of drug signatures in 

PharmOmics.  

(A) Distribution of drug signature overlap percentages between tissue pairs in matching species 

from PharmOmics meta database. Arrow points to the pairs of tissues for drugs with high 

overlap in gene signatures. (B) Upset plot of cross-tissue comparison for atorvastatin signatures 

genes. Y-axis indicates number of genes. (C) Upset plot of cross-tissue comparison for 

pathways enriched in atorvastatin signatures. Y-axis indicates number of pathways. (D) 

Distribution of drug signature overlap percentages between pairs of species for matching 

gene overlap percentage

Fr
eq

ue
nc

y

0.00 0.05 0.10 0.15 0.20 0.25
0

100

200

300

400

500

gene overlap percentage

Fr
eq

ue
nc

y

0.00 0.05 0.10 0.15
0

20

40

60

80

100

120

A

Fludrocortisone_Rat kidney vs liver
Etidronate_Rat cardiovascular vs muscular tissue
Losatran Rat cardiovascular vs muscular tissue

D

Dexamethasone_liver Rat vs Mouse

B E
360 344

226

16 12 4 2
0

100

200

300

400

G
en

e 
Si

ze

●

●

●

●

● ●

●

●

●

●

●

●

urogenital system
liver

hematopoietic system

0100200300400
Set Size

941

478

259
173

24 10 9
0

250

500

750

1000

G
en

e 
Si

ze

●

●

●

●

●

●

●

●

●

●

●

●

Rat
Mouse
Human

03006009001200
Set Size

TSC22D3, THBS1

CPT1C, AKR1B1, VNN1, ACSM3, CD36, 
CPT1A, PDK4, ZNF669, ADH1C

C
89

14 11 9 5 3
0

25

50

75

100

Pa
th

wa
y 

Si
ze

●

●

●

● ●

●

●

●

●

●

Rat
Mouse
Human

0306090
Set Size

PPAR signaling pathway
Fatty acid, triacylglycerol metabolism

ketone body metabolism

F
129

92

15
1

0

50

100

Pa
th

wa
y 

Si
ze

●

●

●

● ●

●

liver
hematopoeitic system

Urogenital system

050100150
Set Size

GPCR ligand binding

inflammatory response 
chemotaxis

TNF signaling

Steroid biosynthesis
PPAR signaling

Terpenoid backbone biosynthesis
Jak-Stat signaling

Tol like receptor signaling



 

55 

tissues from PharmOmics meta signature database. Arrow points to the species pair with high 

gene signature overlap for a matching drug. (E) Upset plot of cross-species comparison for 

rosiglitazone liver gene signatures. (F) Upset plot of cross-species comparison for pathways 

enriched in rosiglitazone liver signatures. Pairs of tissues with shared drug signature genes or 

pathways are connected with black vertical lines in the bottom portion of the Upset plots.  
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Figure 2.9 Comparison of drug signatures between PharmOmics and existing drug 

signature databases CREEDS and L1000. 

For each drug in PharOmics database shared among other databases, only the overlap scores 

for the best matched signatures between two databases are used. Lower left triangular matrix 

represents the histogram of the gene overlap fold enrichment scores calculated using 

hypergeometric test, and the upper right triangular matrix represents the histogram of the -

log10(pvalue) from Fisher’s exact test.  
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Figure 2.10 Histogram of sample size distribution among different PharmOmics signature 

databases.  

(A) Sample size distribution of datasets from TG-GATEs and DrugMatrix. (B) sample size 

distribution of datasets from GEO/Arrayexpress database. Datasets with sample size <3/group 

were excluded from downstream analysis. 
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Chapter 3 Single-nucleus resolution of the adult C. elegans and its application to 

elucidate intergenerational response to alcohol exposure. 

Introduction 

In mammals, in utero exposure to alcohol is associated with Fetal Alcohol Syndrome Disorders 

(FASD)  which hosts an array of well-characterized morphological, neurological, and 

reproductive deficits 103. FASD is also known for its long lasting effect which passes through 

multiple generations. FASD caused structural and functional anomalies involving the 

reproductive system, the central nervous system, craniofacial morphogenesis, the heart, kidney, 

liver, and gastrointestinal system 103,104. However, although in utero alcohol exposure clearly 

impacts the function of multiple organ systems, a comprehensive understanding of all organs, 

tissues, and cell types that are the most affected by alcohol remains lacking 

 

In addition to impacting the health across multiple generations, mounting evidence in various 

model systems, such as mice, rats, Drosophila, and C. elegans, indicate that at least some 

exposure-related adverse reproductive and neurobehavioral features also extend beyond the F1 

generation and are detectable in F3 progeny. For instance, a rat model of late gestational 

ethanol exposure demonstrated that not only F1, but also F2 and F3 individuals show an 

average increase in ethanol intake by 50%105. Moreover, preconception exposure is sufficient to 

cause increased alcohol intake in the offspring, together with signs of spatial learning and 

memory deficits 106. Notably, the impact of in utero ethanol exposure on alcohol and substance 

use across several generations is also observed in the broader context of several established 

multi- and transgenerational models which showed impacts in various cognitive, behavioral, or 

physical endpoints107,108.  
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C. elegans is a simplified but highly advantageous model for studying the multi-generation 

effects of alcohol exposure and is the most used invertebrate species for modeling FASD 109. 

Direct exposure to ethanol causes a variety of dose- and duration-dependent outcomes similar 

to those elicited in mammals, such as growth and fertility impairments, neuro-depressive effects, 

increased alcohol preference, disinhibition, and withdrawal. These effects all involve similar 

cellular and neurological pathways in C. elegans and mammals109. C. elegans is also highly 

conserved in both ethanol’s metabolism 110 and reproductive system, with two gonads opening 

into a common uterus where embryos initiate their development, provides suitable modeling for 

in utero exposure to alcohol. 

 

Recently, the combination of single-cell RNA sequencing (scRNA-seq) technologies and the 

tractability of the model organism C. elegans, with its well-established differentiation lineages 

and stages has enabled the layering of transcriptional data with developmental events at both 

embryonic and larval (L2) stages 111,112. This has led to the identification of gene expression 

changes that track the development of 502 preterminal and terminal cell types in embryos 112 

and the characterization of 27 distinct cell types at various stages111. Furthermore, we and 

others have shown that C. elegans is also a powerful model for the study of multi- and trans- 

generational responses to environmental stimuli 11,113–116. However, single cell transcriptomic 

approaches have yet to be applied to the characterization of environmental exposures, including 

alcohol, at the whole organism level and across generations.  

 

Here, we used a single nucleus RNA sequencing (snRNA-seq) approach to maximize the 

isolation of diverse cell types that were previously too sensitive to be captured by traditional 

single cell RNA sequencing, including neuronal cell types with long processes as well as 
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syncytial organs such as the germline, followed by RNA-seq. We applied this approach to 

examine the transcriptional impact of parental (P0) exposure to physiologically low doses of 

ethanol that do not cause overt tissue toxicity on the F1 offspring (inter-generational exposure) 

as well as on the F3 generation (trans-generational exposure). Mechanical extraction and 

isolation of adult C. elegans nuclei followed by snRNA-seq identified a large number of distinct 

cell types that resolved into both known and novel functional categories. We also demonstrate 

that this powerful method can provide robust insights into the effect of intergenerational ethanol 

exposure at the tissue-, cell -specific resolution and identify the cells, and molecular pathways 

that are most impacted by such an exposure. 

 

Material and methods 

Culture conditions and strains 

The sperm-defective strain JK560 fog-1(q253) which prevents self-fertilization was used for 

sequencing experiments. Worms were cultured on standard nematode growth medium (NGM) 

plates streaked with single colony OP50 E. coli and maintained at 20°C. The generation of 

worms to be collected for single-nucleus analysis was moved to 25°C at the L1 stage and grown 

at 25°C until collection. Worms were synchronized using a 10μm nylon mesh filter (NY1102500 

EDM Millipore and SX00025000 EDM Millipore) which only allows L1 stage worms to pass 

through. The L1 worms were kept for 62hrs at 25°C and then washed with five rounds of M9 

buffer and centrifuged at 1,300g for 1 minute to form a pellet. After washing, worms were spun 

in a rotator with 1mL of M9 for 30 minutes to remove OP50 from the worms' gut. The worms 

were then allowed to settle by gravity for 5 minutes and the final compact worm pellet volume 

was adjusted to 30μL. 

 

C. elegans ethanol exposure  
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For ethanol exposure, a population of gravid adult worms and embryos was bleached. The 

embryos were then plated on standard OP50 seeded NGM plates and allowed to grow to the L4 

stage (approximately 50hrs post bleaching). C. elegans were exposed for 48 hours in a liquid 

culture containing M9 buffer solution, standard OP50 bacteria (10mg/mL), and ethanol at a final 

concentration of 0.05% and 0.5% in 15mL conical tubes. Water is used for the control exposure. 

Following the either ethanol or water exposure, the progeny of the exposed P0 generation were 

obtained using gravid adult bleaching. The synchronized F1 and F3 population was then plated 

on standard OP50-seeded NGM plates and grown for 16hrs at 20°C at which time all F1 and F3 

were at the L1 stage, and plates were then transferred to 25°C for 48hrs into adulthood. Finally, 

we also collected unexposed P0 group to support cluster identification. 

 

Single-nucleus dissociation 

All single-nucleus dissociation steps were done at 4°C. A compact 30μL pellet of adult JK560 C. 

elegans (approximately 4,000 worms) was transferred to a prechilled Dounce homogenizer  

(Z378623-1EA Sigma) and homogenized for 10 strokes with 400μL of ice cold FA lysis buffer 

(50mM HEPES/NaOH pH 7.5, 1mM EDTA, 0.1% Triton X-100, 150mM NaCl, protease inhibitor 

0.5X (Roche 11697498001), RNase inhibitor 0.2U/μL (Thermo Fisher 10777019), and RNase 

free water). Worms were homogenized for 10 strokes in a 1.5mL Wheaton Dounce 

homogenizer and for an additional 20 strokes (350μL FA buffer) with an Eppendorf Dounce 

homogenizer (06-434 Fisher) in a corkscrew fashion. Between each set of 10 homogenization 

strokes, debris was pelleted at 100g for 1 minute and supernatant containing nuclei was 

collected and pooled in a fresh 1.5mL low retention microcentrifuge tube. 

 

After homogenization, the pooled supernatant containing nuclei was centrifuged at 100g for 1 

minute to pellet remaining debris. The top 900μL of supernatant with nuclei was transferred to a 
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fresh 1.5mL low retention microcentrifuge tube and washed twice with filtered PBS BSA-1% 

((AM9624 Thermo Fisher) 0.22μm pressure filter (Thermo Scientific 03-377-26, Fisher 

SLGP033RS)). Nuclei were pelleted at 500g for 4 minutes. After the final wash, nuclei were 

resuspended in 750-850μL PBS-BSA 1% and then filtered using a 40μm Flowmi tip filter 

(BAH136800040-50EA Sigma Aldrich).  

 

Nuclei integrity was verified by staining single-nuclei isolations with DAPI and observing the 

nuclei under a fluorescent microscope. The nuclei did not have a frayed appearance and were 

compact, indicating that they were intact. Nuclei extractions were performed at 4°C in a timely 

fashion to prevent cellular transcription during the dissociation process. On average, a total of 

1,200 nuclei was obtained per batch of 4,000 worms. Flow cytometry was used to ensure 

optimal nuclei concentration (700-1200 events/µl). 

 

Library Preparation and sequencing 

Library preparation was performed by UCLA Technology Center for Genomics & Bioinformatics. 

Nuclei were isolated into single droplets and barcoded using the 10X Chromium Next GEM 

single cell 3ʹ reagent kit. Followed by sequencing with 50bp long paired end reads with the 

NovaSeq 6000. 

 

Single-nuclei dataset preprocessing  

snRNA-seq reads were demultiplexed and aligned to the ENSEMBL ce10 C. elegans 

transcriptome to generate gene expression matrices using CellRanger (10x Genomics). The 

reference transcriptome was converted to accommodate pre-mRNA alignment by replacing 

“transcript” to “exon” in the annotation GTF file. Followed by CellRanger preprocessing, data 

were cleaned of ambient RNA by SoupX 117 and doublets by Diem 118.  Low-quality droplets 
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were filtered out according to the following criteria: 1) gene number less than 300 or more than 

8000, 2) unique molecular identifier (UMI, indicates unique number of gene reads before PCR 

amplification process) count less than 500 or more than 40000, 3) mitochondrial RNA 

percentage > 15% per cell, and 4) ribosomal RNA >20% per cell. 

 

Identification of cell clusters 

R Seurat 3.1.5 119 package was used for normalization, cell type identification, marker 

identification and batch effect correction for snRNA-seq data for all 31 sample groups. snRNA-

seq data was log-normalized. The top 2000 variable genes were selected as representative 

features, then gene expression was corrected with UMI counts, mitochondrial gene percentage 

and ribosomal RNA percentage in preparation for clustering analysis. Canonical correlation 

analysis (CCA) was applied across different batches and treatment conditions to mitigate batch 

effects in cluster identification. Cell clusters were identified using the Louvain algorithm 120. We 

included all treatment groups for unsupervised clustering since increased cell numbers increase 

the power to identifying smaller cell types 121. Cluster specific gene markers were detected by 

Wilcoxon Rank Sum test 122 for cell type identification. To reduce biases from ethanol treatment 

in identifying cluster identifies, only cells from water and unexposed group were included unless 

cells from these two groups consist of less than 20% of the during cluster identification. 

Furthermore, for each cluster, the gene had to be expressed in at least 25% of the cells of the 

given cluster and there had to be at least a 0.25 log fold change in gene expression compared 

to other cells. Cell cluster identity was determined based on the overlap between highly 

expressed genes in each cluster with known cell type marker genes obtained from literature, 

Nematode Expression Pattern Database (NEXTDB) 123 as well as tissue enrichment analysis 

from wormbase 124 (Table 3.1). Log-normalized expression levels in t-SNE (t-distributed 

stochastic neighbor embedding) plot projections were used to visualize cell clusters in two 
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dimensions and dot heatmaps were used to visualize marker expression across different cell 

types.  

 

Differential gene expression and pathway analyses 

The Monocle 125 pipeline was used in order to identify DEGs across different cell types, 

generations and dose levels. Four different monocle models were created to assess DEGs in 

F1_0.05 (F1 of 0.05% ethanol exposure group), F1_0.5 (F1 of 0.5% ethanol exposure group), 

F3_0.05 (F3 ofr 0.05% ethanol exposure group) and F3_0.5 (F3 of 0.5% ethanol exposure 

group) condition. For each condition (generation and dose level), only cell types with more than 

10 cells in each group were included. For genes expressed in more than 20% of cells for each 

cell type, a negative binomial model was fitted based on raw counts to normalize data, followed 

by fitting a generalized linear model to retrieve the dietary exposure effect with batch effects 

corrected as follows: 

 

Gene expression = b1*batch+b2*ethanol+b3*gene count+b4*UMI count 

 

The batch term was only included for conditions F1_0.05 and F3_0.05 where two batches of 

water and 0.05% ethanol samples were involved, for the F1_0.5 and F3_0.5 conditions this term 

was not used since only water and 0.5% ethanol samples of same batch were considered. The 

b2 coefficient was used to estimate dietary exposure effects. Statistical p-value was obtained 

using a likelihood ratio test against the null model where the dietary exposure term was not 

included. Significant DEGs were defined as genes with Benjamini & Hochberg corrected FDR < 

0.05. 

 

The DEGs were then subject to pathway annotation analysis. Only cell types with no fewer than 
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20 DEGs were included in this analysis. Gene ontology analysis was conducted using the 

clusterprofiler package 126 with the C. elegans gene ontology biological pathway (GOBP), 

molecular function (GOMF) database 85 and wormbase phenotype database 127. Enrichment P 

values were corrected using the Benjamini–Hochberg method and a significance threshold of 

FDR < 0.05 was utilized. We also filtered significantly enriched pathways with less than 2 

overlapped genes. For significantly enriched pathways, fold changes were calculated by 

averaging the fold changes of the pathway genes between treatment and control nuclei. For 

wormbase phenotypes, we also retrieved annotations for each phenotype by querying EBI OLS 

(ontology lookup service) API. Annotations from first level (nematode phenotype, physiology 

phenotype and anatomical phenotype) were not utilized since these terms were too general to 

provide any meaningful interpretation. We then selected the top 20 most common annotations 

and compared their proportion in original database with our enrichment results. 

 

Euclidean distance-based measurement of cell type sensitivity 

We used Euclidean distance to identify cell types that are sensitive to ethanol exposure. We 

only included cell types with at least 10 cells per treatment (ethanol and control) group per 

batch. For each gene, the expression distance between nuclei for water and ethanol treatment 

groups were squared and summed, then the square root was taken. In order to avoid potential 

biases caused by genes that are either highly expressed or not expressed, expression values 

were normalized to z-scores and only the top 1,000 expressed genes were used. To account for 

variability in expression characteristics for each cell type, treatment labels were permutated 

1000 times to calculate the null distribution for each individual cell type. P values were 

calculated between the observed Euclidean distance and the null distribution for each cell type 

and adjusted with the Benjamini & Hochberg method. 
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To visualize the differences between water and ethanol treated nuclei for individual cell types, 

the fold change (FC) in the Euclidean distance of the ethanol treatment group compared with 

the water treatment group for each cell type was normalized by dividing the empirical Euclidean 

distance by the median Euclidean distance of the null distribution per cell type. The log10(FC) 

vs. -log10(adjusted p value) of each cell type was then plotted to visualize and rank the 

vulnerable cell types in ethanol treatment. For the 0.05% ethanol treatment group where two 

batches were involved, FDR and log10(FC) will be averaged. 

 

Statistical Analysis 

Unless otherwise mentioned, statistical analysis was conducted by R/3.5.1 (R Core Team). 

 
Results 

Single-nucleus preparation and snRNA-seq 

Intact nuclei were isolated from adult fog-1(q253) C. elegans raised at the restrictive 

temperature of 25°C 128. Since the focus of our study was to characterize adult tissue response 

to ethanol, we used a sperm-defective strain to prevent self-fertilization and the resulting 

crowding of our snRNA-seq data with embryonic cell types (see material and methods section). 

Briefly, worms were synchronized using 10µm filters and allowed to grow to day one of 

adulthood before mechanical nuclear extraction (Figure 3.1A). Single nucleus RNA-seq library 

preparation was performed using the 10X Genomics Chromium system followed by 50 PE 

sequencing using the Illumina Novaseq 6000 platform. In total, we generated transcriptomic 

data for 81,267 nuclei, each with more than 500 transcripts derived from 31 groups collected in 

5 distinct batches. On average, 2,181 unique molecular identifiers (UMIs) and 992 genes were 

detected per nucleus with high sequencing depth (90.3% average sequencing depth). 
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snRNA-seq reads were demultiplexed and aligned to the ENSEMBL ce10 C. elegans 

transcriptome to generate gene expression matrices using CellRanger (10x Genomics) . To 

prevent the inclusion of empty droplets and to correct for ambient RNA contamination, we also 

applied Diem 118 and SoupX 117, respectively. Diem identifies empty droplets through modeling 

semi-supervised expectation maximization and outperforms other methods in snRNA-seq. Since 

Diem only filtered empty droplets and didn’t correct expression levels for remaining droplets, we 

combined Diem with SoupX, which models snRNA-seq contamination levels and corrects 

expression levels for the remaining droplets. Using these stringent parameters, we obtained 

transcriptomic data from 46904 droplets representing a median of 2577 UMIs and 1266 genes 

(Figure 3.1B). A total of 31 discrete clusters were identified following batch/group effect 

correction using canonical correlation analysis (CCA) in Seurat v3 followed by the application of 

the Louvain clustering algorithm 120,129 (Figure 3.1C). Log-normalized expression levels in t-SNE 

(t-distributed stochastic neighbor embedding) plot projections were used to visualize cell 

clusters in two dimensions and dot heatmaps were used to visualize cell type specific marker 

expression across different cell types. 

 

To facilitate unbiased cell type annotation, top differentially expressed markers (FDR<0.05) in 

each cluster was used to identify potential cell types. Cluster identity was identified based on 

matching top markers with Nematode Expression Pattern Database (NEXTDB) 123, literature 

annotation and tissue enrichment analysis from wormbase 124. Highly confident clusters based 

on all evidences were shown in Table 3.1. 

 

SnRNA-seq revealed organism-wide impact of inter-generational exposure to ethanol 

We first applied snRNA-seq to identify the transcriptional outcome of a 48-hour (L4 to the end of 

day 1 of adulthood) parental exposure to two concentrations of ethanol (0.05% and 0.5%) or 
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water control on the F1 adult progeny. These doses were chosen to capture both low levels of 

ethanol easily reached in human populations and in pregnant women in particular 130. We first 

compared cell-type proportions in the F1 following parental ethanol exposure and observed that 

broadly similar cell-type distributions were observed across all treatment conditions (Figure 

3.2A). However, we observed a significant number of Differentially Expressed Genes (DEGs) 

(FDR<0.05) between ethanol treatment and water. Across all F1 clusters from the 0.05% 

ethanol exposure condition, we identified a total of 1,223 DEGs, including 583 consistently 

upregulated DEGs, 520 consistently downregulated DEGs, and 120 DEGs that were 

differentially up or down regulated in cluster specific ways (i.e. upregulated in some clusters but 

downregulated in other clusters). Surprisingly, compared to the 0.05% ethanol treatment, 

exposure to the higher 0.5% ethanol concentration resulted in fewer DEGs identified in the F1s: 

a total of 948 DEGs, including 430 uniformly upregulated DEGs, 407 uniformly downregulated 

DEGs, and 111 DEGs that were either up- or down-regulated in a cluster-specific fashion. A 

detailed Venn diagram shows that 35 DEGs were shared across all conditions (Figure 3.2B).  

 

Pathway analysis of the union of all cell type specific DEGs revealed the enrichment of some 

Gene Ontology (GO) functional categories that align with alcohol metabolism such as carboxylic 

acid metabolic process driven by the presence in our DEG list of several aldehyde 

dehydrogenases (Table S3.1), which catalyze the final step of ethanol metabolism from 

acetaldehyde into acetate. Other GO categories that are shared across all exposure conditions 

include: small molecule biosynthetic process, which is largely enriched in fatty acid metabolism-

related genes, and defense response. In addition, embryo development ending in birth or the 

egg hatching pathway was shared across F105 (F1 of 0.5% ethanol treatment group), F305 (F3 

of 0.5% ethanol treatment group), F1005 (F1 of 0.05% ethanol treatment group) (Table S3.2). 
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These results indicated our low dose ethanol exposure treatment, though not causing changes 

strong enough on body proportion, still induced overall ethanol related responses in worm body. 

 

SnRNA-seq revealed cell type specific impact of inter-generational exposure to ethanol 

We also conducted cluster-specific DEG analysis to investigate cell type specific effects on F1. 

Cluster-specific analyses did not reveal significant changes in cell type proportions at any 

treatment dose nor generation (Figure 3.2A). However, cluster-resolved DEG analysis indicated 

clearly distinct transcriptional responses to parental ethanol exposure between cell types. While 

some genes were consistently up-regulated (atp-6, nduo-6) or down-regulated (vit-5) across all 

clusters between ethanol and water treatment, most DEGs showed cell type-specificity, 

highlighted by the low overlap of the top DEGs per cluster (Figure 3.3). To rank order the F1 

clusters by sensitivity to ethanol exposure, we employed a Euclidean distance analysis 131,132, 

which estimates the degree of global transcriptomic shifts between exposure and control groups 

. Several clusters (1, 15, 29) with a strong germline identity showed the most significant 

transcriptomic shifts at the F1 generation under the 0.5% ethanol exposure condition (Figure 

3.4A). Cluster 1 shows a gene signature suggestive of mid-pachytene; cluster 15 of late-

pachytene where pachytene indicates third stage of the prophase of meiosis during germline 

development; cluster 29 of oocyte. Other cluster categories that appeared most affected 

included clusters related to muscle function such as cluster 2 (musculature) and cluster 17 

(striated muscle cells). The degree of the transcriptomic shift was much less pronounced 

following 0.05% ethanol exposure compared to 0.5% ethanol, suggestive of a dose-dependent 

transcriptomic response across cell types. 

 

We hypothesized that while most DEGs are cell type-specific, genes implicated in ethanol 

metabolism may show a more uniform response across clusters. Thus, we investigated the 
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expression of genes involved in ethanol metabolism, including 3 distinct alcohol 

dehydrogenases (sodh-1, H24K24.3, ZK829.7) and 10 aldehyde dehydrogenases (alh-3, -4, -7 

through -13), whose expression was detectable in our datasets (Figure 3.5). Contrary to our 

expectations, of the 13 genes examined, only 5 showed significant changes in expression (FDR 

< 0.05) and did so in a cluster-dependent fashion. For example, sodh-1 was upregulated in 

cluster 13 and cluster 18 under the 0.05% exposure condition but was downregulated in cluster 

2 and cluster 27 at 0.5%. Notably, the cell types showing the highest increase in ethanol 

metabolism genes were not the cell types that were the least sensitive to ethanol and vice 

versa, suggesting that upregulation of ethanol metabolism does not necessarily protect a tissue 

from the inter-generational impact of exposure. 

 

We then inspected the top DEGs across cell types and conditions in order to identify the genes 

most significantly affected by ethanol (Figure 3.4B). Results included changes in ribosomal 

related genes (rrn-3.1, rpl-10, rrn-2.1, epl-41.2), cytochrome related genes (ctc-3, ctb-1, ctb-2) 

and vitellogenin related genes (vit-2, vit-3, vit-1, vit-6); all were commonly altered across 

different cell types. In hypodermis cells (cluster 6), 0.05% ethanol lead to downregulation of 

ribosomal, cytochrome and v vitellogenin genes. In mid pachytene (cluster 1), 0.5% ethanol 

resulted in downregulation of ribosomal and vitellogenin related genes and upregulation of 

cytochrome related genes; in early pachytene (cluster 12) 0.5% ethanol resulted in 

downregulation of ribosomal related genes and in late pachytene (cluster 15) it upregulated 

cytochrome related genes. Top DEG analysis showed 0.5% ethanol treatment affected germline 

cytochrome, ribosome and vitellogenin functions in F1 offspring. 

 

Next, we interrogated the F1 data to identify whether the clusters with significant alterations 

(FDR<0.05) in our Euclidean analysis shared differentially enriched pathways (Figure 3.4C and 



 

71 

3.4D). GO analysis for molecular function and biological pathway revealed that ribosomal 

function and lipid metabolism under molecular pathways category and aging and reproduction 

under biological pathways category were significantly enriched across several clusters (Figure 

3.4C, Table S3.3 for 0.05% group and S3.4 for 0.5% group). We also examined which DEG 

were responsible for the significantly enriched pathways related to reproductive function and 

lipid transportation, hence we investigated DEG overlapping patterns in pathway “embryo 

development ending in birth or egg hatching” that showed specificity in oocyte cluster (Figure 

3.6A) and “lipid transporter activity” (Figure 3.6B) which was highly shared pathways across 

different germline clusters. Results indicated that 0.5% alcohol affected several germline genes 

such as grd-5, mex-1 and ani-1 in the oocyte cluster related to reproductive system pathway 

(Figure 3.6A) and vitellogenin related genes were responsible for lipid transporter activity 

(Figure 3.6B). Vitellogenin is also noted for functional relationship with post-embryonic 

development regulation as well as mediating intergenerational effects 133. Hence, we think 

pathway enrichment analysis indicated low dose ethanol exposure affected several reproductive 

functions. 

  

Since the 2 most sensitive clusters based our Euclidean Distance analysis displayed germline 

identity (Figure 3.4A), we examined whether reproduction-related phenotypes were significantly 

over-represented in our dataset. We utilized wormbase which documented different phenotypes 

and genes associated with different phenotypes. Through comparison of cell type specific DEGs 

with Wormbase phenotype database, we have shown several of top shared phenotypes across 

sensitive cell types were related to germline functions (Figure 3.4E, Table S3.5 showed 

phenotype enrichment result for F1 0.05% group and Table S3.6 showed enrichment result for 

F1 0.5% group). To determine that germline functions enrichment is not due to higher proportion 

of germline related annotations in the Wormbase phenotype database, we further compared the 
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proportion of phenotype categories from our enrichment results with the Wormbase phenotypes. 

Our dataset had a significantly higher proportion of phenotypes from reproductive system 

development and cell development category among both treatment groups (Figure 3.4F). A 

closer look at overlapping genes related to “oocyte number decreased” (Figure 3.6C) and “early 

larval arrest” (Figure 3.6D) indicated ribosomal genes (rps and rpl family) as main overlapping 

genes which corroborated with top DEGs shared across different clusters under 0.5% ethanol 

treatment. 

 

Characterization of the transgenerational impact of ethanol at single nucleus resolution 

To capture the transgenerational effect of a P0 exposure to ethanol, we performed snRNA-seq 

on the F3 generation (Figure 3.7). Across all clusters of the F3s stemming from a P0 0.05% 

ethanol exposure, a total of 798 unique DEGs satisfied an FDR < 0.05: 366 were constantly 

upregulated, 369 were constantly downregulated, and 63 DEGs were differentially up or down 

regulated in cluster specific ways (i.e. upregulated in some clusters but downregulated in other 

clusters). For 0.5% ethanol, a total of 918 unique DEGs were identified at an FDR < 0.05, 402 

were upregulated, 422 were downregulated, and 94 DEGs were differentially up or down 

regulated in cluster specific ways. 

 

Cluster specific analysis also revealed cell type specific responses to ethanol in the F3 

generation. Sensitivity analysis by Euclidean distance indicated more clusters had significant 

Euclidean distance alteration on 0.5% ethanol exposure compared to 0.05% (Figure 3.7A). In 

addition, sensitivity analysis also revealed cell types that are sensitive and insensitive to ethanol 

treatment, with mid-pachytene germline cluster (cluster 1) being the most sensitive cell type. 
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A closer look at top shared DEGs (Figure 3.7B) among cell types with significantly altered 

sensitivity revealed genes from the ATP pathway (atp-6, ctc-1, ctc-2, ctc-3) and collagen related 

genes. We also observed top DEGs were generally downregulated for both concentrations of 

ethanol exposure in the F3 generation, compared to upregulating effects in F1 (Figure 3.4B) 

Pathway analysis using GO biological pathway and molecular function enrichment analysis 

(Figure 3.7C and 3.7D, Table S3.7 for significant pathway enrichment in F3 under 0.05% and 

S3.8 for significant pathway enrichment in F3 under 0.5%) indicated significant (FDR < 0.05) 

alteration of lipid transporter activity in mid pachytene (cluster 1), upregulation of muscle related 

pathways in body wall musculature (cluster 2) and early pachytene cells (cluster 12). 

Examination of overlapping DEGs in pathways of interest indicated vitellogenin related genes 

(vit-1 to vit-6) as major DEGs related to “lipid transporter activity” (Figure 3.8A) which showed 

long lasting ethanol exposure effects under 0.5% involving germline and muscle cell types. We 

also examined another commonly shared F3 pathway “structural constituent of cuticle” among 

different cell types (Figure 3.8B) and showed collagen gene alteration as major factor related to 

this pathway.  

 

Finally, we also repeated enrichment analysis with wormbase phenotype database through 

documented genes associated with different phenotypes (Figure 3.7E). Result indicated 

showed strong alterations in different phenotypes involving narrowed rachis structure, 

pachytene region organization alteration and organism morphology variation in 0.5% ethanol 

treated F3, although they were not as consistent as 0.5% ethanol treated F1 (Figure 3.4E). We 

have identified “pachytene region organization variant downregulated” in cluster 1 which is also 

found in F1, indicating potentially lasting ethanol exposure effect in F3. We also identified body 

wall muscle morphology variant and “paralyzed” phenotypes altered in cluster 2 (body wall 

muscle), which might indicate a potential muscle effect of 0.5% ethanol exposure. A closer look 
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of overlapping genes related to enriched phenotype “germ cell compartment morphology 

variant” in mid pachytene (cluster 1) showed ribosomal genes (rps and rpl family) were main 

overlapping genes (Figure 3.8C), which is also found in overlapping genes related to “oocyte 

number decreased” under F1 (Figure 3.6C). We also found that the phenotype “paralyzed” 

(Figure 3.8D) which was altered in germline related clusters (1, 12) was related to actin (act-1), 

Tropomyosin (lev-11) and unc gene family. A survey of phenotype annotation  category still 

indicated phenotypes with germline related functional annotation were altered compared to 

overall database proportion (Figure 3.7F). Through these DEG, pathway and phenotype 

analyses, I have shown that ethanol treatment can induce strong genetic alterations for up to 3 

generations and involve ribosomal function and lipid transportation function. 

 

Discussion 

We have developed a single-nucleus RNA-seq approach in the adult C. elegans nematode that 

identifies a large number of known cell types while providing in-depth transcriptional information 

about them, and can be applied to achieve a nuanced understanding of physiological responses 

to environmental cues. 

 

Our methods generate robust numbers of genes per nucleus, even when compared to 

mammalian studies 134. Additionally, single-cell and single-neuron sequencing are very well 

correlated and single-nucleus sequencing has the advantage of removing confounding 

transcripts from the mitochondrial genome 111. 

 

Our approach has several limitations. By working in a fog-1 mutant background, we were not 

able to identify sperm cells, a necessary trade-off to avoid the production of embryos. It is 

possible that the absence of fog-1 alters the transcriptional landscape of the germline. However, 
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fog-1(q253) was chosen specifically because of the normal morphology and staging of the 

hermaphrodite germline in fog-1 mutants 128 which we validated by DAPI staining and cluster 

analysis. 

 

Nonetheless, we were successful in in silico validating some findings of our ethanol studies 

through documented gene-phenotype relationships, such as the “oocyte number reduction” 

phenotype in F1 and “germ cell compartment variant” phenotype in F3, showing that ethanol 

affected ribosomal and reproductive phenotypes across generations. These results demonstrate 

that a low dose of ethanol at the parental generation has a significant impact on the offspring’s 

oocyte function and embryonic viability. Direct ethanol exposure has been known to cause 

aneuploidy in mammals 135–137, however the underlying molecular mechanisms as well as cell 

type specificity underlying the effect of transgenerational exposure has not been fully 

investigated. Here, we reveal the effects of low-dose ethanol on the reproductive system across 

multiple generations i) organism-wide response involving alcohol metabolism regulation through 

union of all DEGs ii) alteration of global gene expression pattern through Euclidean distance 

based sensitivity analysis iii) alteration of several molecular pathways crucial for proper germline 

development, including mitochondrial function 138,139, ribosomal functions 140,141 and lipid 

transportation142,143 iv) alteration of genes connected with germline dysfunction phenotypes. 

Together, snRNA-seq of the adult C. elegans represents a powerful method for the 

comprehensive identification of cell types in the nematode and for probing the multigenerational 

transcriptional impact of physiological and environmental changes. 
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Tables 

Table 3.1. Putative cell type annotation based on literature, NEXTDB and tissue 

enrichment analysis (TEA). Germline related clusters are bold. 

cluster 
number 

putative identify markers Source TEA 

1 mid-pachytene rad-50/M116.5/ppw-
2/msh-6 

NEXTDB germ line 

2 body wall 
musculature 

myo-3/tnt-2/unc-27 NEXTDB striated muscle 

3 spermatheca snf-9/ssp-37/ule-3 NEXTDB spermatheca  
4 uterine epithelial 

cells 
pes-23/ifa-1/C35B1.4 NEXTDB hermaphrodite 

6 hypodermis sqt-3 NEXTDB epithelial system 
12 early pachytene syp-3/Gld-1/Glp-1/ NEXTDB Psub1 Embryonic 

founder cell 
13 pharyngeal 

gland cells 
phat-3/Y8A9A.2/phat-

8 
NEXTDB pharynx 

15 late- pachytene Y9D1A.1/clp-3/daf-2 NEXTDB germ line 

17 striated muscle 
cells 

pde-4/dyb-1 NEXTDB striated muscle 

18 pharyngeal 
muscle cells 

pqn-31/tnc-2/pqn-94 NEXTDB pharynx 

19 proximal 
gonadal sheath 

skpo-1/tbh-1 NEXTDB somatic gonad  

20 amphid and 
phasmid sheath 

cells 

F53F4.13/T02B11.3 Bacaj et al144. amphid sheath cell 

23 mitotic zone 
germline 

wdr-5.1/alg-5/F11E6.7 NEXTDB AB Embryonic 
founder cell 

25 distal gonadal 
sheath 

skpo-1/tbh-1/lim-7 NEXTDB,  
Killian et al145. 

somatic gonad 

28 coelomycete cell cup-4 Cao et al111. coelomic system  

29 oocytes Y9D1A.1/clp-3/emb-5 NEXTDB Abprapap 
embryonic cell 
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Table S3.1. Differentially enriched pathways after ethanol treatment based on union of all 

cell type specific DEGs across different conditions 

Table S3.2. Shared differentially enriched pathways after ethanol treatment based on 

union of all cell type specific DEGs across different conditions 

Table S3.3. All significantly enriched GOBP and GOMF pathways in F1 after 0.05% 

ethanol treatment 

Table S3.4. All significantly enriched GOBP and GOMF pathways in F1 after 0.5% ethanol 

treatment 

Table S3.5. All significantly enriched wormbase phenotypes in F1 after 0.05% ethanol 

treatment 

Table S3.6. All significantly enriched wormbase phenotypes in F1 after 0.5% ethanol 

treatment 

Table S3.7. All significantly enriched GOBP and GOMF pathways in F3 after 0.05% 

ethanol treatment 

Table S3.8. All significantly enriched GOBP and GOMF pathways in F3 after 0.5% ethanol 

treatment 

Table S3.9. All significantly enriched wormbase phenotypes in F3 after 0.05% ethanol 

treatment 

Table S3.10. All significantly enriched wormbase phenotypes in F3 after 0.5% ethanol 

treatment 

  



 

78 

Figures 

 

Figure 3.1. snRNA-seq identifies distinct cell and functional categories in the C. elegans 

adult hermaphrodite.  

A. Experimental flow for single-nucleus isolation and snRNA-seq. Worms were homogenized in 

Eppendorf, followed by nuclei extraction and sequencing. B. Gene counts across 9 single-nuclei 

studies. Samples 1-2 : group 1, unexposed; samples 3-10: group 2, water F1 (samples 7,8), 

water F3 (samples 9,10), 0.05% ethanol F1 (samples 3,4), 0.05% ethanol F3 (samples 5,6); 

samples 11-13: group3, non-treated; samples 14-22: group 4, water F3 (samples 20-22), 0.05% 

ethanol F3 (samples 14-16), 0.5% ethanol F3 (samples 17-19); samples 23-31: group 5, water 

F1 (samples 29-31), 0.05% ethanol F1 (samples 23-25), 0.5% ethanol F3 (samples 26-28). 

Groups indicating samples collected from different batches. C. t-distributed stochastic neighbor 

embedding (t-SNE) plot of cells from all the samples with clustering labels identified by 

combination of unsupervised Louvain clustering. 
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Figure 3.2. Organism-wide multi- and trans- generational low-dose effect of ethanol on C. 

elegans.  

A. Proportion distribution plot of all F1 and F3 samples colored by different treatment dose, each 

dot represents one sample. X-axis indicates cluster number assigned by Louvain clustering and 

Y-axis indicates cells of that cluster divided by all cells from that specific sample. All conditions 

were non-significant based on the post-hoc Tukey statistic. B. Venn diagram based on the union 

of DEGs across all the cell types (A) Upregulated DEGs only (B) Downregulated genes only (C) 

all DEGs. Key: F105 (0.5% ethanol F1 generation), F1005 (0.05% ethanol F1), F305 (0.5% 

ethanol F3), F3005 (0.05% ethanol F3). 
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Figure 3.3. Dot heatmap of top 3 differential expressed genes across clusters in F1.  

X-axis indicates different cell types and Y-axis indicates top5 differentially expressed genes after 

ethanol treatment across clusters ranked by monocle based FDR. The plot is divided by doses 

(0.05% on the left and 0.5% on the right). The size of the dot is correlated to –log(FDR) 

of differential expression p-value and the color is representing direction and scale of fold change 

(upregulation is shown in red and downregulation is shown in blue). 
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Figure 3.4. Analysis of ethanol exposure effects on first generation (F1).  

A. Euclidean distance sensitivity analysis of all the cell clusters. X-axis indicated cluster number 

and y-axis indicates log fold change compared to Euclidean distance obtained by permuting 

treatment labels 1000 times. Significance was accessed based on comparing Euclidean 

distance against 1000 random permutated labels. B. Dot heatmap of top shared DEGs across 

cell types with significantly altered Euclidean distance metric. Dot size corresponded to -

log(FDR) and dot color corresponded to -log(fold change) retrieved by differential gene analysis, 

only significant DEGs were plotted. C. Dot heatmap of top shared gene ontology biological 

pathway (GOBP) pathways across cell types with significantly altered Euclidean distance metric. 

D. Dot heatmap of top shared gene ontology molecular function (GOMF) pathways across cell 

types with significantly altered Euclidean distance metric. Dot size corresponded to -log(FDR) 

obtained from enrichment analysis and dot color corresponded -log(median fold change) of 

overlapping genes in each pathway. E. Dot heatmap of top shared wormbase phenotype across 

cell types with significantly altered Euclidean distance metric. Dot size corresponded to -
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log(FDR) obtained from enrichment analysis and dot color corresponded -log(median fold 

change) of overlapping genes in each pathway. F. Bar plot showing the proportion of top 

wormbase phenotype annotations from all enriched pathways (“dataset”) and wormbase 

phenotype database (“Background_all_path”). For each wormbase phenotype from the original 

database we retrieved the corresponding wormbase phenotype annotations by querying EBI 

OLS API, followed by selecting the top 20 shared phenotypes. Annotations from the first level 

(nematode phenotype, physiology phenotype and anatomical phenotype) were too general to 

form meaningful interpretations. Proportions were calculated based on the proportion of 

annotations among all enriched pathways (“dataset”) and the wormbase phenotype database 

(“Background_all_path”).  Fisher’s exact test was used to compare proportions between the two 

conditions in each annotation category. 
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Figure 3.5 Dot heatmap of ethanol metabolism related genes across different clusters.  

Different panels indicated dose and generation. Only DEGs (ie FDR < 5%) were plotted as dot. 

Color indicated –log10(fold change). 
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Figure 3.6. Dot heatmap of overlapping F1 DEGs under selected significantly enriched 

pathways and phenotypes across different clusters  
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A. DEGs overlapped with pathway “embryo development ending in birth or egg hatching” B. 

DEGs overlapped with pathway “lipid transporter activity” C. DEGs overlapped with phenotype 

“oocyte number decreased” D. DEGs overlapped with phenotype “early larval arrest”. DEGs (ie 

FDR < 5%) were plotted as dot and Color indicated –log10(fold change). 
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Figure 3.7. Analysis of ethanol exposure effects on the third generation (F3).  

A. Euclidean distance sensitivity analysis of all the cell clusters. X-axis indicated cluster number 

and y-axis indicated log fold change compared to Euclidean distance obtained by permuting 

treatment labels. Significance was accessed based on comparing Euclidean distance against 

1000 random permutated labels. B. Dot heatmap of top shared DEGs across cell types with 

significantly altered Euclidean distance metric. Dot size corresponded to -log(FDR) and dot 

color corresponded to -log(fold change) retrieved by differential gene analysis, only significant 

DEGs were plotted. C. Dot heatmap of top shared gene ontology biological pathway (GOBP) 

pathways across cell types with significantly altered Euclidean distance metric. D. Dot heatmap 

of top shared gene ontology molecular function (GOMF) pathways across cell types with 

significantly altered Euclidean distance metric. Dot size corresponded to -log(FDR) obtained 

from enrichment analysis and dot color corresponded -log(median fold change) of overlapping 

genes in each pathway. E. Dot heatmap of top shared wormbase phenotype across cell types 

with significantly altered Euclidean distance metric. Dot size corresponded to -log(FDR) 
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obtained from enrichment analysis and dot color corresponded -log(median fold change) of 

overlapping genes in each pathway. F. Bar plot showing the proportion of top wormbase 

phenotype annotations from all enriched pathways (“dataset”) and wormbase phenotype 

database (“Background_all_path”). For each wormbase phenotype from original database we 

retrieved corresponding wormbase phenotype annotations by querying EBI OLS API, followed 

by selecting top 20 shared phenotypes. Annotations from first level (nematode phenotype, 

physiology phenotype and anatomical phenotype) since these terms were too general to make 

interpretations. Proportion were calculated based on proportion of annotations among all 

enriched pathways (“dataset”) and wormbase phenotype database (“Background_all_path”).  

Fisher exact test was used to compare proportions between two conditions in each annotation 

category. 

 

  



 

88 

 

Figure 3.8 Dot heatmap of F3 DEGs overlapped in selected significantly enriched 

pathways and phenotypes across different clusters, faceted by dose  

A. DEGs overlapped with pathway “lipid transporter activity” B. DEGs overlapped with pathway 
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“structural constituent of cuticle” C. DEGs overlapped with phenotype “germ cell compartment 

morphology variant” D. DEGs overlapped with phenotype “paralyzed”. DEGs (ie FDR < 5%) 

were plotted as dot and Color indicated –log10(fold change). 
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Chapter 4 Multi-tissue Single-Cell Analysis Reveals Differential Tissue, Cellular, and 

Molecular Sensitivity Between Fructose and High Fat High Sucrose Diets 

 

Introduction 

Metabolic syndrome (MetS) is a common complex disorder comprising diverse symptoms such 

as hyperlipidemia, obesity, insulin resistance, and hypertension. Previous research has 

highlighted the importance of genetics and lifestyle in the development of MetS146–148. In 

particular, modern diets rich in high fat, sucrose, and/or fructose content, are crucial risk factors 

for MetS. The rodent high fat high sucrose diet (HFHS) resembles the classic Western diet149, 

whereas the high fructose diet has only become more heavily studied in the context of MetS 

over the past decade in both epidemiological studies150,151 and molecular mechanistic 

investigations152–154 due to its presence in corn syrup, commonly used addictive in soda and 

snacks. The two MetS risk diets possess different metabolic characteristics10.  The metabolism 

of HFHS involves the breakdown of sucrose into glucose (processed by hexokinase) and 

fructose (metabolized by ketohexokinase (KHK)) as well as fat metabolism (lipolysis and fatty 

acid oxidation) and HFHS diet primarily promotes adiposity and insulin resistance. In contrast, 

the fructose diet mainly requires intestinal uptake of fructose by GLUT5155 and clearance via 

KHK in both the small intestine and liver156,157. Fructose diet was mainly reported to cause 

dyslipidemia and hyperglycemia10. Additionally, mouse strains with different genetic background 

respond differentially to the two diets10,149. For example, C57BL/6J (B6) mice are highly 

sensitive to HFHS-induced weight and adiposity gain but are relatively resistant to fructose-

induced weight and adiposity gain. DBA/2J (DBA) mice, on the other hand, show the reverse 

trend. These differences support that MetS induced by different risk diets are likely mediated by 

different mechanisms and represent different MetS subtypes. 

 



 

91 

Numerous tissues are involved in the pathophysiology of MetS, including the hypothalamus 

(central control of energy homeostasis and metabolism)158, liver (lipid and glucose 

metabolism)159, adipose tissue (energy storage, immune and endocrine functions)160, and the 

small intestine (nutrient absorption and gut microbial interactions)159,161. In line with this, the 

contribution of nutrition source on MetS is expected to involve multi-tissue multi-cellular 

mechanisms, which is supported by studies for both HFHS153,162,163 and fructose13,164,165 diet 

studies. To date, studies on the role of HFHS and fructose in MetS were conducted mainly in 

bulk tissues, which mask cell-type specific responses of each of the heterogenous tissues. A 

holistic understanding of MetS pathogenesis at cell type resolution has been limited by the 

paucity of systemic investigation across different tissues and cell types.  

 

In the present study, we employed single-cell RNA-seq (scRNA-seq) to characterize cell-type 

specific transcriptomic changes across different tissues relevant to metabolic regulation, 

including the hypothalamus, liver, adipose tissue, and small intestine. By simultaneously 

investigating all cell types across multiple tissues in two diet-induced MetS models, our study 

offers a better understanding of cell-type specific responses found in both HFHS- and fructose-

induced MetS and reveals potential mechanistic differences conferred by the different MetS 

diets. Our results pinpoint sensitive tissues, cell types, cell-type specific pathways, and cell-cell 

communications networks across tissues altered in MetS that are either uniquely responsive to 

fructose and HFHS, or shared between diets. Our multi-tissue single cell data and cross-

tissue/cell type gene networks for two common risk diets for MetS serve as a rich resource for 

the metabolism community. 

 

Methods 

Diet-induced MetS models 
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As shown in the overall study design in Figure 4.1A, eight-week-old B6 male mice were treated 

with chow diet with water (control group, n=6), chow diet with water containing 15% fructose 

mimicking the prevalent uptake route of fructose through liquid drinks (Fructose group, n=6), 

and a high fat high sucrose diet containing 16.8% kcal protein, 51.4% kcal carbohydrate, and 

31.8% kcal fat with water mimicking the Western diet (Research Diets- D12266B, NJ, USA; 

HFHS group, n=6) for 11 weeks. The diets were changed once a week and water or fructose 

solutions were changed twice a week. Food and liquid were accessed ad libitum and the intake 

amount for each was measured. After 11 weeks, mice were sacrificed, and tissues including 

hypothalamus, gonadal adipose tissue, whole liver, and the small intestine (including 

duodenum, jejunum, and ileum) were collected for scRNAseq using Drop-seq121. 

 

Phenotypic characterization of MetS 

Body weight was measured weekly using a scale and body mass composition (fat mass, lean 

mass) was determined using a Bruker Minispec Mq10 NMR analyzer (Bruker BioSpin, Fremont, 

CA). To measure glucose tolerance, animals were fasted overnight by transferring mice to clean 

cages before intraperitoneal glucose tolerance test (IPGTT) at the 4th and 10th week of HFHS 

or fructose treatment. For IPGTT, 20% glucose was injected intraperitoneally into each mouse 

at 2g glucose/kg body weight. Blood glucose levels from tail vein were measured at 0, 15, 30, 

90, and 120 min after glucose injection using an AlphaTrak portable blood glucose meter 

(Abbott Laboratories, North Chicago, IL, USA). Area under the curve (AUC) across 0-120min 

was calculated to measure the degree of glucose intolerance. For lipid profiling, blood samples 

from fasted mice were collected through retroorbital bleeding at 11 weeks before sacrifice. 

Plasma total cholesterol (TC), high-density lipoprotein (HDL), triglycerides (TG), glucose, and 

insulin were measured by enzymatic colorimetric assays at the UCLA GTM Mouse Transfer 

Core as previously described166. Low-density lipoprotein (LDL) was calculated as LDL = TC - 
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HDL - (TG/5). Differences in the phenotypes between treatment groups were assessed using 

One-way ANOVA, except for body weight, relative fat mass and relative lean mass across 

various timepoints where two-way ANOVA was used. 

 

scRNA-seq, data preprocessing, and quality control 

Tissues were collected, cells were lysed, suspended and barcoded using optimized protocols 

for hypothalamus121, gonadal adipose stromal vascular fraction (SVF)167, small intestine168, liver 

non-parenchymal cells (NPCs)169 and hepatocytes (http://mouselivercells.com/procedure.html) 

and version 3.1 of the online Drop-seq protocol (http://mccarrolllab.com/download/905/). For 

each tissue, n=3-5 independent biological replicates were processed from different mice in each 

diet group. As tissue dissociation and the Drop-seq procedure were time-consuming, only 

n=2/group was processed each day for each tissue. Sequencing libraries were prepared 

according to the Drop-seq protocol and sequenced using Illumina HiSeq4000 with 50bp paired-

end setting at 20-50k reads/cell. 

 

The fastq files of the Drop-seq sequencing data were processed to digital expression gene 

matrices using the Drop-seq pipeline (https://github.com/Hoohm/dropSeqPipe) and DropEST170. 

Fastq files were converted to BAM format and cell and molecular barcodes were tagged. Reads 

corresponding to low quality barcodes were removed. Next, any occurrence of the Illumina 

adapter sequence or polyA tails found in the reads were trimmed. These cleaned reads were 

converted back to fastq format to be aligned to the mouse reference genome mm10 using 

STAR-2.5.0c171. Reads which overlapped with exons and introns were tagged using a mm10 

RefFlat annotation file with the tool DropEST170. The transcript counts of each cell were 

normalized by the total number of Unique Molecular Identifiers (UMIs) for that cell. These values 

were then multiplied by 10,000 and log transformed. Single cells were identified from using the 
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following thresholds: gene counts from 200 to 3000, mitochondrial transcripts less than 10%, 

and ribosomal transcripts less than 20%.  Samples that did not meet the quality control cutoffs 

were removed from downstream analysis, yielding quality data for hypothalamus (n=2 control, 2 

fructose, 2 HFHS samples, single batch), gonadal adipose SVF (n=2 control, 2 fructose, 2 

HFHS samples, single batch), small intestine (n=2 control, 2 fructose, 2 HFHS samples, single 

batch), liver NPCs (n=3 control, 5 fructose, 4 HFHS samples, two batches)169 and hepatocytes 

(n=2 control, 4 fructose, 4 HFHS samples, two batches).  

 

scRNA-seq data analysis 

R Seurat 4.0.2172 package was used for gene expression normalization and differential 

expression analysis. Briefly, scRNA-seq data were first log-normalized. Canonical correlation 

analysis (CCA) was applied across different samples to mitigate technical variation in cell 

cluster identification. Cell clusters were identified based on shared nearest neighbor (SNN) 

modularity optimization120 and visualized using t-SNE, t-SNE was used to better visualize 

subcluster patterns (hepatocytes, neurons, enterocytes, adipose progenitor cells). Wilcoxon 

signed rank test based on the Seurat Findmarker function was used to identify highly expressed 

marker genes for each cluster. Cell cluster identity was determined based on the overlap 

between highly expressed marker genes in each cluster with known cell type marker genes 

obtained from the literature for liver, adipose SVF, small intestine and hypothalamus (full marker 

list and references in Table S4.1).  

 

Euclidean distance-based measurement of cell type sensitivity 

Euclidean distances between gene expression profile groupings were used to identify cell types 

that were sensitive to each diet131. Only cell types with > 10 cells in each of the MetS diet group 

and control group were included. Euclidean distance was calculated by taking the sum of the 



 

95 

square of gene expression differences between groups of cells across genes, followed by taking 

the square root. In order to avoid potential bias caused by genes that are either highly 

expressed or non-expressed, expression values were normalized to z-scores and only the top 

1,000 expressed genes were used. To account for variabilities in expression characteristics for 

each cell type, background Euclidean distance was calculated based on permutated treatment 

labels. P-values were calculated by comparing the Euclidean distance based on real data and 

that from 5000 permutations, followed by adjustment for multiple testing with the Benjamini-

Hochberg173 method across all cell clusters analyzed. 

 

Differential gene expression analysis 

To identify differentially expressed genes (DEGs) induced by fructose or HFHS diet, two 

different methods were used. For adipose, small intestine and hypothalamus, where only a 

single batch of data was involved, a pipeline involving the Wilcoxon rank sum test was used to 

obtain conservative DEGs that were consistent across comparisons involving individual 

samples. Briefly, for cell types where a gene is expressed in more than 10% of cells in both 

groups involved in a comparison, cells from each tissue sample in a treatment group (i.e., 

fructose or HFHS) were compared against cells from all samples in the control diet group or vice 

versa. For instance, to obtain DEGs affected by HFHS in small intestine scRNAseq data, cells 

from each control sample were compared against cells from all cells in the HFHS samples, and 

cells from each HFHS sample were compared against cells from all cells in the control group. 

Within each comparison, the Wilcoxon Rank Sum test was used in the Seurat Findmarkers 

function.  Subsequently, the Metap174 package in R was applied to meta-analyze the adjusted p-

values from the Findmarkers output across all comparisons for each treatment and cell type. 

Significant DEGs were defined as genes with the same direction of change in 75% of all 

comparison pairs and meta-analysis adjusted p-value < 0.05. This pipeline is more conservative 
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than the traditional approach which pools cells from all samples in each treatment group, since 

we only select DEGs that show consistent changes across comparisons for each diet treatment.  

 

For liver samples where two different batches were involved, the monocle125 pipeline was used 

to correct for batch effect. For genes expressed in more than 25% of cells in each cell type, a 

negative binomial model was first used to normalize count data, followed by fitting a generalized 

linear model (GLM) to retrieve dietary exposure effect with batch effects corrected as follows: 

 

𝐺𝑒𝑛𝑒	𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛	 = 	𝑏1 ∗ 𝑏𝑎𝑡𝑐ℎ + 𝑏2 ∗ 𝑑𝑖𝑒𝑡𝑎𝑟𝑦	𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑠 + 𝑏3 ∗ 𝑈𝑀𝐼	𝑐𝑜𝑢𝑛𝑡𝑠 + 𝑏4 ∗ 𝐺𝑒𝑛𝑒	𝐶𝑜𝑢𝑛𝑡𝑠 

 

The b2 coefficient obtained was used to estimate dietary exposure effects. Statistical p-value 

was obtained using a likelihood ratio test against the null model where the dietary exposure 

term was not included:  

 

𝐺𝑒𝑛𝑒	𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛	 = 	𝑏1 ∗ 𝑏𝑎𝑡𝑐ℎ + 𝑏3 ∗ 𝑈𝑀𝐼	𝑐𝑜𝑢𝑛𝑡𝑠 + 𝑏4 ∗ 𝐺𝑒𝑛𝑒	𝐶𝑜𝑢𝑛𝑡𝑠  

 

Significant DEGs were defined as genes with Benjamini-Hochberg corrected false discovery 

rate (FDR) < 0.05. Cell types with more than 20 DEGs were subject to pathway enrichment 

analysis using the enrichr83 package and the GO85 and KEGG84 pathway databases. Significant 

pathways were defined as pathways with Benjamini-Hochberg FDR < 0.05 and more than 3 

overlapping genes between DEGs and pathways. 

 

Enrichment of cell type specific DEGs for disease-associated SNPs from human genome 

wide association studies (GWAS) 
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To understand the relationship between cell type specific DEGs in our mouse models and 

different human diseases, the Marker Set Enrichment Analysis (MSEA) procedure in the 

Mergeomics pipeline was used53,175. The full summary statistics for human GWAS studies for 

various metabolic traits or diseases was curated and used in the analysis (Table S4.2). Only 

SNPs within 50kb of the human orthologs of the mouse DEGs were used. SNPs were further 

trimmed based on linkage disequilibrium (LD), by keeping only one eSNP for each LD block 

(defined as LD r2> 0.7) using the Marker Dependency Filtering (MDF) function in Mergeomics. 

1000Genome phase 1 data was used to obtain LD block data through the PLINK2 tool176. The 

LD pruned SNPs were mapped to each DEG set and the disease GWAS association P-values 

of the corresponding SNPs were extracted from each disease GWAS summary statistics. A 

modified chi-squared statistic was used for the enrichment analysis by comparing GWAS p-

values of the SNP set mapped to a given DEG set against SNP sets that were mapped from 

randomly generated gene sets across a range of quantile-based GWAS p-value cutoffs using 

MSEA. The definition of the modified chi-square statistic used in MSEA is: 

, where O and E are the numbers of the observed and estimated positive 

findings above a GWAS p-value cutoff defined by the i-th quantile, respectively; n is the number 

of quantile points (10 points were identified ranging from the top 50% to top 99.9% of signals 

based on the GWAS P-value rankings), and κ = 1 was a stability parameter that diminishes 

artefacts for small SNP sets with low expected counts. For the MSEA procedure, an FDR<5% 

cut-off was used, which was estimated by the Benjamini-Hochberg method173 to identify 

significantly enriched DEG sets for each disease GWAS. 

 

Ligand-receptor interaction network analysis 

 

c =
Oi - Ei

Ei +ki=1

nå
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In order to characterize potential long range interactions mediated by secreted ligand-receptor 

pairs between the cell types of different metabolic tissues, we implemented Nichenet177, which 

curates ligand-receptor interactions from various publicly available resources. The Nichenet 

ligand-receptor model was integrated with cell type DEGs identified for each diet to find 

potentially activated ligand-receptor pairs. Differentially expressed ligands identified by DEG 

analysis from source cells and differentially expressed receptors identified by Nichenet in target 

cells were used to assess ligand-receptor interaction. Secreted ligands were selected based on 

the UniProt database178 and human protein atlas179 to exclusively focus on ligands that fit the 

long range interaction model. Ligand-receptor interaction networks between cell types were 

visualized using cytoscape180. 

 

Analysis of metabolic intake and reaction flux through single cell flux estimation analysis 

(scFEA) 

In order to infer flux of metabolic intermediates in fructose, glucose and fatty acid metabolism, 

we applied scFEA26 which combines metabolic network analysis with deep learning methods to 

quantify metabolic pathway activities based on scRNAseq data. scFEA contains curated 

metabolic modules, however, the fructose metabolic pathway was not covered. We manually 

added the fructose metabolism module based on the KEGG database by adding fructose intake 

(Slc2a5 and Slc2a2181), fructose to fructose 1-phosphate (F1P) (Khk), F1P to Glyceraldehyde + 

Glycerone-phosphate (synonym of dihydroxyacetone phosphate, DHAP) (Aldoa, Aldoc, Aldob, 

Aldoart1, Aldoart2), Glyceraldehyde to glyceraldehyde 3-phosphate (G3P) (Tkfc) and 

Glycerone-phosphate to G3P metabolic steps (Tpi1). Log-normalized gene expression counts 

from scRNAseq were used as input. Since the flux estimate of this method is a relative 

measurement within each tissue, we used [median(treatment) – 

median(control))/median(control)] to represent median fold change in the treatment group 
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compared to the control group. We focused on the nutrients (glucose, fatty acid and fructose) 

and metabolic steps (glycolysis, fatty acid metabolism and fructolysis) that are most relevant to 

HFHS and fructose diets. 

 

Data availability 

Raw fastq and raw gene expression count matrix were deposited to GEO while Interactive 

dataset visualization for each tissue is available from single cell portal 

(https://singlecell.broadinstitute.org/single_cell) under SCP1403 (small intestine), SCP1404 

(liver NPC and hepatocytes), SCP1405 (adipose SVF), SCP1406 (hypothalamus) and SCP1407 

(hypothalamus neurons subset). 

 

Results 

Fructose and HFHS diets induced different aspects of MetS 

15% fructose solution or a HFHS diet for 11 weeks induced a variety of MetS-related 

phenotypes in B6 mice (Figure 4.1). HFHS diet caused a significant increase in body weight 

from 6 to 11 weeks of treatment, and significant fat mass gain started at half a week until 11 

weeks, without significant changes in lean mass (Figure 4.1B-D). Glucose tolerance was 

impaired at week 4 and week 11 of HFHS treatment. In addition, plasma triglycerides (TG), 

plasma total cholesterol (TC), high-density lipoprotein (HDL), low-density lipoprotein (LDL), un-

esterified cholesterol (UC) and insulin levels were significantly elevated by HFHS (Figure 4.1E-

G). Conversely, 15% fructose in drinking water did not cause significant changes in body 

weight, plasma TG or glucose tolerance, but significantly raised plasma levels of TC, HDL, and 

UC (Figure 4.1E-G). Notably, mice provided with either the HFHS diet or fructose exhibited 

decreased food intake compared to controls; however, the total caloric intake of mice 

consuming HFHS or fructose was maintained at a similar level as the control group (Figure 
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4.1H). Our results confirmed previous reports of hyperlipidemia, hyperglycemia and obesity 

induced by the HFHS diet10, and hyperlipidemia in the absence of body weight or body 

composition changes in B6 mice upon fructose consumption182,183. Therefore, the two diets 

altered different aspects of MetS pathologies in B6 mice, which may represent different 

subtypes of diet-induced MetS. 

 

scRNA-seq identified expected cell types across metabolic tissues 

In order to understand action mechanisms of MetS inducing diets in a cell-type specific manner, 

we dissected multiple metabolic tissues at the end of the 11-week dietary treatments from the 

same mice that had undergone phenotypic characterization. scRNA-seq data was obtained for 

small intestine, adipose stromal vascular fraction (SVF) , liver NPCs, liver hepatocytes, and 

hypothalamus for mice fed chow (control), HFHS, and fructose (n=2-5/group after quality 

control, Figure 4.2A-D). We identified distinct cell clusters based on tSNE plots for the small 

intestine (Figure 4.2E), adipose SVF (Figure 4.2F), liver (Figure 4.2G), and hypothalamus 

(Figure 4.2H). Cell clusters were then annotated with cell types based on the expression 

patterns of known cell type markers for small intestine (Figure 4.3A-B), adipose SVF (Figure 

4.3C-D), liver (Figure 4.3E-F), and hypothalamus (Figure 4.3G-H). In addition to the major cell 

types known to constitute each of the tissues, our scRNAseq data also revealed hepatocyte 

subtypes based on zonation patterns, subtypes of adipocyte progenitor cells (APCs), and 

neuronal subtypes within the hypothalamus (Figure 4.3I-J) based on the expression patterns of 

known subtype markers. Therefore, our scRNA-seq data retrieved the expected cell types and 

subtypes for the metabolic tissues examined. 

 

Fructose and HFHS diets induced different cell type specific response based on cell 

proportion and global transcriptomic changes  
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We first investigated whether fructose and HFHS treatments altered cell type proportions 

(general overview in Figure 4.4A-D for small intestine, adipose SVF, liver and hypothalamus, 

respectively). We found that fructose treatment increased the proportion of T cells in the small 

intestine (15.0% in fructose samples compared to 6.7% in controls and 2.4% in HFHS samples). 

By contrast, HFHS treatment increased macrophage populations in adipose SVF (For M1 

macrophage 2% in control, 0.5% in fructose and 7.6% in HFHS. For M2 macrophage 4.6% in 

control, 0.7% in fructose and 11.7% in HFHS) 

 

We further hypothesized that cell types sensitive to fructose or HFHS diet will undergo more 

robust transcriptomic changes.  To measure transcriptome level changes between treatment 

and control cells Euclidean distance was used to quantify the scale of transcriptional differences 

between treatment and control groups for each cell type. As shown in Figure 4.4E, several 

hypothalamic cell types, including glutamatergic neurons, tanycytes and Myelinating 

oligodendrocytes showed high sensitivity to fructose; liver dendritic cells and adipose SVF 

macrophages had higher sensitivity to HFHS; small intestine proximal enterocytes, hepatocytes, 

adipose SVF APCs, and hypothalamic GABAergic neurons were sensitive to both diets.  

 

Overall, the various analyses above support differential cellular sensitivity to different MetS risk 

diets despite some similarities. 

 

Identification of DEGs altered by MetS risk diets in individual cell types  

To understand the molecular changes in individual cell types induced by each diet, we identified 

DEGs using meta analysis of p-values from treatment-control pairs for each tissue (small 

intestine, hypothalamus, and adipose SVF) and a GLM based model for liver to account for 

batch effects (Table 4.1; Table S4.3).  
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Comparing all significant DEGs between diets for cell types with more than 10 DEGs, (Figure 

4.5), we found significant overlaps in DEGs between diets for the majority of cell types, 

especially small intestine proximal enterocytes, liver pericentral hepatocytes, liver periportal 

hepatocytes and hypothalamic astrocytes compared to other cell types. Compared to this, 

macrophages and APC cell types in SVF showed higher numbers of HFHS specific DEGs while 

neurons in hypothalamus showed higher numbers of fructose specific DEGs, while these cell 

types still share significant proportions of overlapped DEGs. DEG overlapping analysis revealed 

differential cell type responses to diets in the perspective of DEGs.  

 

We further examined top DEGs for each cell type to understand the most significant molecular 

changes involved in MetS induced by HFHS and fructose (top 3 DEGs in Table 4.1 and top 

DEG heatmaps in Figure 4.6). For example, in the small intestine, Apoa1, an apolipoprotein 

related to cholesterol flux, and mt-Rnr2 (encoding humanin, a mitochondrial derived peptide 

related to metabolic control184) were the most significant DEGs in proximal enterocytes and 

goblet cells, and were upregulated in response to both fructose and HFHS treatments (Figure 

4.6A). In adipose SVF, mt-Rnr2 (humanin) and Malat1 (a long non-coding RNA related to 

glucose metabolism185), were the top genes in both APCs and macrophages, where fructose 

upregulated and HFHS diet downregulated both genes (Figure 4.6B). In liver hepatocytes, 

Car3, a gene encoding carbonic anhydrase III and known as a nutritionally regulated 

biomarker186, was the top upregulated DEG after fructose treatment; Cyp3a11, a cytochrome 

enzyme related to drug metabolism178, was the top downregulated DEG after HFHS diet. Both 

diets upregulated Fabp1, a gene encoding fatty acid binding protein related to cholesterol 

uptake in hepatocytes178 and Mup20, a gene encoding male pheromone which was also found 

to be affected by liver injury187 (Figure 4.6C). In liver NPCs, Malat1 was the top DEG 
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downregulated by both fructose and HFHS diets. In the hypothalamus, Malat1 was upregulated 

and Nnat (a gene encoding the receptor for the tridecapeptide neurotensin related to metabolic 

regulation188), was the top DEG downregulated by fructose in most hypothalamic cell types 

(astrocytes, myelinating oligodendrocytes, and all neuron clusters). Ube3a, a ubiquitin-protein 

ligase, was found to be the top upregulated DEG in all neuronal clusters after fructose 

treatment. Copg2, a gene related to intracellular protein transport178 was the top upregulated 

DEG in both glutamatergic and GABAergic neurons by both fructose and HFHS diets (Figure 

4.6D). Notably, mt-Rnr2 and Malat1 were consistently top DEGs across many cell types for both 

diets. The importance of many of these top DEGs in metabolism in diverse tissues and cell 

types support the broad metabolic regulatory effects of both MetS risk diets. 

 

Cell type specific DEGs are associated with human diseases  

To understand the disease relevance of the cell-type specific DEG sets affected by fructose and 

HFHS, we integrated the DEGs with human disease GWAS data for various metabolic traits and 

disease, which provide association  between the DEGs affected by MetS risk diets and human 

cardiometabolic diseases as GWAS implicates potential disease causal genes (Table S4.2).  

 

The cell type specific DEGs altered by fructose (Figure 4.4F) and HFHS (Figure 4.4G) showed 

significant enrichment statistics to human cardiometabolic diseases or traits. For example, both 

fructose- and HFHS-induced DEGs from hepatocytes, adipose SVF APCs and small intestine 

proximal enterocytes were enriched for GWAS signals for TG, LDL, and TC. Both fructose- and 

HFHS diet-induced DEGs in hypothalamic neurons were enriched for GWAS associations with 

anorexia and BMI-related traits, supporting previous studies189,190 that documented that both 

diets affected pathways regulating food intake and energy balance.  Finally, we also found 

different cell type specificity between diets for disease association. Notably, HFHS-induced 
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DEGs from liver NPCs (Kupffer cells, endothelial cells, dendritic cells) were enriched for GWAS 

associations with HbA1c and the diabetic disposition index. Additional HFHS DEGs from 

immune cell types (adipose SVF macrophages, liver NKT cells, liver B cells, and small intestine 

T cells) were also enriched for MetS associated genetic signals which were not found for DEGs 

affected by fructose diet. 

 

Pathway analysis of DEGs revealed tissue and cell type specific biological processes 

affected by MetS risk diets 

We performed pathway analysis on the sets of DEGs to retrieve over-represented pathways and 

biological processes from individual cell types in response to the two MetS-inducing diets (top 

select pathways in Table 4.1; pathway enrichment statistics in Table S4.4).  

 

First, we generated a Venn Diagram to obtain an overview of the pathways enriched in both 

HFHS and Fructose diet (Figure 4.7, Table S4.5). We found that glycolysis/gluconeogenesis 

was enriched in small intestine proximal enterocytes specifically in response to fructose, while 

HFHS treatment lead to enrichment in gastric acid secretion; fat digestion and absorption 

pathways were shared by both diets. In liver periportal hepatocytes, the citrate cycle (TCA 

cycle) was specific to the fructose diet, fatty acid alpha-oxidation was specific to HFHS diet and 

metabolic pathways were shared by both diets. We have found some cell types showed large 

pathway numbers shared by both diets, such as small intestine proximal enterocytes sharing fat 

digestion and absorption, liver periportal hepatocytes sharing metabolic pathways and 

pericentral hepatocytes sharing PPAR signaling pathway. We also identified cell types with 

larger numbers of pathways enriched in HFHS diet, such as small intestine goblet (e.g. renin-

angiotensin system) and T cells (e.g. carbohydrate digestion and absorption) and all SVF APC 

cell types (e.g ECM-receptor interaction), as well as cell types with larger number of pathways 
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enriched in fructose diet, such as hypothalamus glutamatergic neurons (e.g. long-term 

potentiation).  

 

We also inspected pathways related to tissue specific functions. In the liver, translation, 

metabolic, and inflammatory pathways were altered by both MetS diets but the cellular 

specificity and direction of change in the pathways were not always consistent between diets 

(Figure 4.8A). For instance, fructose-treated mice exhibited a downregulation of translation 

pathways in four major liver cell types (hepatocytes, Kupffer cells, endothelial cells, and 

dendritic cells), whereas HFHS downregulated translation pathways in hepatocytes and Kupffer 

cells while upregulating these pathways in endothelial cells. Fructose treatment resulted in 

downregulation of several metabolic pathways such as triglyceride homeostasis (detailed in 

Figure 4.8B) and gluconeogenesis was observed in hepatocytes; in contrast, the HFHS diet 

upregulated metabolic pathways in hepatocytes, including triglyceride homeostasis, carbon 

metabolism, and PPAR signaling pathways. Inflammatory pathways (e.g., Antigen processing 

and presentation) were also downregulated in hepatocytes by fructose and HFHS diets while 

upregulated in periportal hepatocytes under HFHS treatment. Finally, antigen processing and 

apoptosis pathways in liver Kupffer cells were upregulated in response to HFHS diet but were 

downregulated in response to fructose diet.  

 

In previous studies, bulk profiling of adipose SVF cells from mice fed a HFHS diet revealed 

alterations in extracellular matrix (ECM), inflammation and apoptosis22,191,192. We have now 

resolved these findings at the cell-type level (Figure 4.8C). ECM related pathways were 

upregulated in most of the cell types. In addition, “Negative regulation of apoptotic process” 

were upregulated in APC subtypes and downregulated in macrophage subtypes. Finally, the 

changes in inflammatory pathways showed similar directionality in APCs and macrophages. 
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TNF signaling pathway was downregulated while lysosome and inflammatory response 

pathways were upregulated. Compared to HFHS, the fructose diet induced fewer alterations in 

adipose SVF. In APC subtypes, ribosomal pathways were upregulated and the “Negative 

regulation of apoptotic process” process was downregulated by fructose. Further examination of 

DEGs involved in the negative regulation of apoptotic pathways indicated that fructose and 

HFHS diet induced different DEGs within this pathway (Figure 4.8D). Of note, HFHS diet 

elicited a larger number of DEGs, higher sensitivity and larger enriched pathway number 

compared to fructose diet, which indicated diet-specific responses in adipose SVF cell 

populations. 

 

Among the major small intestine cell types, proximal enterocytes and goblet cells displayed a 

strong and upregulating responses to both fructose and HFHS diets in nutrient absorption and 

lipid transport process, including carbohydrate digestion and absorption, fat digestion and 

absorption, cholesterol absorption, and chylomicron assembly (Figure 4.8E). Proximal 

enterocytes also showed upregulation of the renin-angiotensin pathway and downregulation of 

oxytocin pathways under both fructose and HFHS treatment. In addition, HFHS diet treatment 

uniquely upregulated chylomicron assembly, fat digestion and carbon metabolism in T cells. 

 

Finally, hypothalamic neurons showed distinct pathway alteration patterns between diets. While 

pathways related to GABAergic synapse, glutamatergic synapse function and oxytocin signaling 

were shared by both diets with different directionality; downregulated in fructose treatment while 

upregulated in HFHS treatment, as exemplified by genes from the oxytocin signaling pathway 

(Figure 4.8F-G). Fructose diet induced additional pathways in oxidative phosphorylation and  

Vasopressin−regulated water reabsorption (Figure 4.8F). In addition, genes from pathways 

shared by two diets showed different directionality. Fructose treatment downregulated these 
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pathways while HFHS treatment upregulated them, as exemplified by genes from the oxytocin 

signaling pathway (Figure 4.8G).  Both risk diets downregulated mitochondrial electron 

transport, suggesting downregulation of ATP synthesis. 

 

In summary, our pathway analysis revealed key similarities and differences in the molecular 

processes perturbed by fructose and HFHS diets across tissues and cell types. This was 

demonstrated by inflammatory and ECM related pathways in APC cell types in adipose SVF 

affect by HFHS. In addition, MetS diets showed different directionality in hepatocyte metabolic 

functions and neuron synapse pathways though they are shared in both MetS diets. Through 

single cell analysis, we were able to investigate how molecular processes in different tissues 

was perturbed by MetS diets at cell type resolution, which was missing in bulk tissue RNA 

analysis.  

 

MetS risk diet induced cell type specific alterations in nutrient uptake and metabolic flow 

We hypothesize that the genes and pathways altered in individual tissues and cell types reflect 

nutrient and metabolic flux changes under HFHS and fructose diets. We applied single cell Flux 

Estimation Analysis (scFEA) to infer the intake and metabolic activities in major cell types of 

different tissues. We used our scRNAseq data and the curated metabolic gene module 

information (Methods) as inputs to scFEA, which used machine learning models to estimate 

metabolite intake and flux from genes in metabolic gene modules. Flux outputs were further 

compared across conditions within cell type to estimate changes induced by MetS diets.Results 

indicated strong cell type specific alterations in nutrient uptake and metabolism. For example, 

small intestine proximal and distal enterocytes showed a robust increase in fatty acid intake 

which was estimate by Slc27a1-6 and fructose intake which was estimate by Slc2a5 under both 

diets (Figure 4.9A). These cell types also showed increased fructose metabolism as indicated 
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by increased fructose to Fructose-1-Phosphate (F1P) flux estimated by Khk under HFHS 

treatment and increased F1P to Glyceraldehyde and Glycerone−phosphate flow which was 

estimated by Aldoa, Aldoc, Aldob, Aldoart1, Aldoart2 under both fructose and HFHS treatments. 

In comparison, there was little alteration related to glucose metabolism and intake, which is in 

line with the role of enterocytes in changing activities of fatty acid and fructose absorption and 

metabolism156. Compared to enterocytes, few changes were found in small intestine 

macrophages, indicating a limited role for inflammatory cells in absorbing and metabolizing 

nutrients in the small intestine. 

 

In liver (Figure 4.9B), both periportal and pericentral hepatocytes showed increased intake of 

fatty acids under both fructose and HFHS diet which was estimated by Slc27a1-6, and 

increased pyruvate to acetyl-CoA flow which was estimated by Dlat, Dld, Pdha1, Pdha2, Pdhb 

under both dietary treatments. The conversion of acetyl-CoA to fatty acid, which was estimated 

by Fasn, Acaca, Acsl1, etc. was inferred to be increased in periportal hepatocytes under 

fructose treatment, whereas HFHS increased this conversion in both periportal and pericentral 

hepatocytes. These results suggest both diets lead to increased energy storage.  We also did 

not see any changes in fructose intake in hepatocytes and only a small increase in fructose 

metabolic flux under HFHS treatment. Instead, we observed the increased glucose intake in 

both diets, which suggests fructose conversion to glucose in the small intestine156.  When 

fructose intake does not exceed the metabolic capacity of the small intestine, hepatocytes 

played a smaller role156,193. Compared to the alterations in hepatocytes, Kupffer cells showed 

minor changes in the metabolism of nutrients, which indicated minor roles of inflammatory cells 

in liver nutrient metabolism. 
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In adipose SVF (Figure 4.9C), HFHS diet increased fatty acid intake in both APCs and 

macrophage cell types, along with increases in fatty acid and acetyl-CoA flux activities in APCs. 

Compared to HFHS, the fructose diet increased the activity of the first step of glycolysis 

(Glucose to G6P) in APCs but not the other steps, which suggests alterations in the glycolytic 

flux and a potential build-up of G6P. We also noted there was little alteration in both fructose 

intake and metabolic flux in SVF cells, suggesting a minor role of adipose SVF in fructose 

metabolism. 

 

In the hypothalamus (Figure 4.9D), the fructose diet increased GABA intake in astrocytes while 

decreasing fatty acid intake in both GABAergic and glutamatergic neurons. Compared to this, 

the HFHS diet increased glucose intake in both neuron clusters and decreased fatty acid intake 

in glutamatergic neurons. While fatty acid intake was decreased, the metabolic flux showed 

limited alteration, which suggests fatty acids were not actively utilized for energy related roles in 

neuronal cells194. Both fructose and HFHS diets also decreased the rate of two steps in the 

glycolysis pathway (3-phosphoglycerate to pyruvate and pyruvate to Acetyl−CoA) in neurons, 

which could result in potential glucose and intermediate G3P build up in neurons. Finally the 

lower availability of direct energy substrate, acetyl-CoA, may limit energy production in TCA 

cycle of neurons, which may result in the downregulation of the mitochondrial electron transport 

pathway in neurons as shown in Figure 4.8. 

 

We further conducted metabolic pathway enrichment analysis in order to compare with scFEA 

results (Figure 4.9E). Results indicated that both diets increased in fat digestion and absorption 

pathways in small intestine enterocytes. Under both diets, liver hepatocytes decreased 

gluconeogenesis and increased fatty acid metabolism pathway. However, fructose treatment 

increased glycogen synthesis pathways and bile acid synthesis/secretion, while HFHS 
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increased fatty acid biosynthetic process. SVF APC cells decreased differentiation to fat cell 

under both diets. Pathway analysis indicated enterocytes as a major fatty acid absorption site 

while hepatocytes conducting glucose and fatty acid metabolic activities, which corroborated 

with the intake and flux activities we have observed from Figure 4.9A-B. It is reported that fatty 

acid transporter protein (encoded by Slc27a) transports bile acids and long-chain FA195. The 

upregulation of bile acid biosynthesis and secretion in pericentral hepatocytes under fructose 

treatment (Figure 4.9E) suggests the increased fatty acid intake (Figure 4.1A) under fructose 

treatment is partly mediated with bile acids. Furthermore, pathway analysis also identified 

gluconeogenesis and glycogen synthesis activities which were not well captured from flux 

analysis.  

 

The scRNA-seq metabolic flux analysis, combined with pathway enrichment analysis revealed 

specific cell types with potential metabolic alterations which may be direct effectors of the diets. 

Both fructose and HFHS diets indicated fructose metabolic alterations in enterocytes, fatty acid 

metabolic alterations in hepatocytes and glycolysis alterations in neurons. HFHS induced 

additional fatty acid intake in APCs. Through the uptake and metabolism of nutrients in the 

diets, these cells can trigger changes in the pathways of other cell types nearby or remote 

metabolic tissues. 

 

Network analysis inferred key ligand-receptor interactions between the hypothalamus 

and peripheral metabolic tissues that are affected by fructose and HFHS diets 

Tissue crosstalk plays a major role in the pathophysiology of MetS, a systemic disease196,197. 

This inter-tissue communication is often mediated by circulating ligands, such as leptin and 

ghrelin, hormones that can be secreted from one tissue and bind to receptors in another 

tissue198. Therefore, identifying novel circulating factors mediating tissue crosstalk will enable us 
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to better understand the molecular mechanisms underlying MetS. We hypothesized that MetS-

inducing diets would lead to changes in ligand secretion and circulation, resulting in responses 

in downstream tissues. To investigate potential ligand-receptor pairs involved in the systemic 

regulation of dietary response in MetS, we focused on long range interactions between cell 

types across different tissues using Nichenet177 (Figure 4.10). In particular, we used DEGs from 

each tissue and cell type to identify ligand-receptor pairs that were affected by each diet to 

elucidate how secreted ligands from a source tissue/cell type affects receptor-mediated 

functions in other tissues and cell types. It is important to note that all interactions discussed 

below are inferred by the scRNAseq data and Nichenet. 

 

In small intestine, proximal enterocytes and goblet cells had the largest number of DEGs that 

encode ligands secreted from the small intestine for both fructose (5 differentially expressed 

ligands out of 7 total detected ligands; Figure 4.10A) and HFHS diets (6 DEGs out of 8 total 

detected ligands; Figure 4.10B). The ligands Apoa1 were the top ligand interacting with APC 

cells, macrophages, astrocytes, enterocytes and liver NPC cells (Kupffer, sinusoidal endothelial 

cells and B cells) after HFHS treatment. Saa1 was the top ligand interacting with APC cells, 

hepatocytes, oligodendrocytes and enterocytes after fructose treatment. Of note, Saa1 was a 

unique ligand interacting with hepatocytes in the fructose treatment condition. In addition, T cell 

ligand secretion (Ccl5, Ccl25, Apoa1, Apob) was only altered by HFHS diet, which indicated 

stronger inflammatory response after HFHS treatment in SI. 

 

In adipose SVF (Figure 4.10C-D), HFHS treatment affected more DEGs encoding secreted 

ligands across major cell types than fructose treatment (19 vs 4 ligands). Notably, one of the 

ligands is encoded by Apoe, the cholesterol carrier ligand secreted from mesothelial, 

endothelial, macrophage subtypes (M1, M2), APC subtypes (Hsd11b1, Pi16), and T cells. We 
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also identified DEGs encoding inflammation related ligands (C3, Tnf, Il1b, Il1rn and Igf1), which 

are secreted from endothelial, a macrophage subtype (M2), and APC subtypes(Hsd11b1, Agt, 

Pi16) and interacted with not only cell types from SVF but also various cell types from liver, 

small intestine and hypothalamus. These results indicated that the HFHS diet likely induces a 

widespread inflammatory response that originates from adipose SVF cells and propagates to 

other metabolic tissues. 

 

In liver, both fructose (14 altered ligands; Figure 4.10E) and HFHS (18 altered ligands; Figure 

4.10F) significantly affected DEGs encoding ligands. The main ligands related to cholesterol 

transport (Apoa1, Apoe, Apob) as well as inflammatory function (C3, Igf1 and Trf) from 

periportal hepatocytes, pericentral hepatocytes and Kupffer cells were altered by fructose and 

HFHS diets. For metabolic ligands altered by fructose diet, Apoe and Apob were mostly 

interacting with receptors in multiple small intestine and liver cell types while Apoa1 was 

interacting with receptors in adipose SVF, hypothalamus and liver cell types. For HFHS diet, 

Apob from periportal hepatocytes was interacting with small intestine goblet and proximal 

enterocytes and liver cell types; Apoe was interacting with small intestine, adipose SVF and liver 

pericentral hepatocytes; Apoa1 was interacting with different types of cells from all tissues. For 

inflammatory ligands such as Il1b, C3, Igf1 and Trf, the fructose diet altered receptor activities 

for these ligands mostly in the small intestine and liver, while HFHS diet affected more receptor 

activities in adipose SVF. Finally, Fga, a gene encoding a fibrinogen subunit, was secreted from 

pericentral and periportal hepatocytes and targeted adipose APCs and hypothalamic 

GABAergic and glutamatergic neurons in response to the fructose diet. 

 

In the hypothalamus, fructose (Figure 4.10G) resulted in more ligand alterations compared to 

HFHS (7 vs 4 ligands; Figure 4.10H). Among these, known neuropeptides, such as Oxt, Avp 
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and Apoe exhibited altered expression in hypothalamic neurons and supporting cell types and 

interacted with periportal and pericentral hepatocytes, proximal enterocytes and goblet cell 

types. Gal, a less studied ligand encoding Galanin and related to metabolic function199, was 

secreted from GABAergic neurons and interacted with receptors in hepatocytes and adipose 

APC cells. We found that more cell types responded to the 4 ligands altered by HFHS than 

responded to the 7 ligands altered by fructose. This is likely due to more extensive alterations in 

the corresponding receptors in target peripheral tissues (liver, small intestine and adipose SVF) 

under HFHS treatment.  

 

Several ligands identified in the analysis are known MetS-related ligands. For example, Avp 

(vasopressin) 200,201 was altered by both fructose and HFHS in hypothalamic neurons. 

Apolipoproteins (Apoa1, Apob and Apoe) was affected in proximal enterocytes, GABAergic and 

glutamatergic neurons, pericentral and periportal hepatocytes by both fructose and HFHS diet. 

Inflammatory ligands (C3, Igf1, Tnf, Il1b, Il1rn, etc.) were affected in adipose macrophages and 

APCs by HFHS treatment and corroborates the inflammatory response induced by HFHS 

diet153,202,203. Importantly, novel ligands such as Gal and Fga, which were not known to play a 

role in MetS, were also identified.  

 

When comparing the ligands identified in our study with a recently published serum proteome 

study for cardiometabolic disorders204, we found that the ligands identified by our study had both 

lower p-values in association to T2D (p= 0.017 Wilcoxon signed-rank test) and a higher 

proportion of significant ligands with T2D association p-value < 0.05 compared to the whole 

serum proteome results (23.8% vs 9.9%, p = 0.007 Fisher’s exact test). This supports the 

potential clinical relevance of our scRNAseq-based results. Finally, our analysis also identified 

novel interacting cell types mediated by these ligands. For example, hypothalamic Avp, which 
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was previously reported to interact with the liver205, was also shown to interact with distal 

enterocytes, goblet cells and T cells in the small intestine in our analysis, which warrants future 

investigation.  

 

Discussion 

Both fructose and HFHS diets have long been associated with MetS13,146,162,206, and bulk tissue 

studies of these diets have revealed the involvement of multiple tissues and diverse molecular 

pathways 156,207,208 in MetS pathophysiology induced by these risk diets. As metabolic tissues 

are highly heterogeneous in cell type composition, single cell studies are necessary to elucidate 

the cellular landscape of MetS diets. Recent single cell studies focused on the effect of high fat 

diet on adipose tissue209,210. However, there is limited knowledge of the cellular landscape 

resulting from the differential effects between fructose and high fat diets across metabolic 

tissues. Our study fills this gap by applying single cell analysis across multiple tissues and 

dietary treatments.  

 

Our study confirmed previous findings that the two MetS risk diets induced distinct metabolic 

phenotypic responses10,211. HFHS increased weight and fat mass, elevated plasma lipids and 

insulin levels, and impaired glucose tolerance in B6 mice, all of which was not observed except 

high plasma lipids in fructose-fed B6 mice. These results are consistent with previous studies 

which show that HFHS diet consumption is accompanied by higher body weight and more 

severe hyperglycemia and hyperinsulinemia than diets with only one component, either fat or 

sucrose212–214. Both diets affected lipid traits. The phenotypic similarities and differences 

suggest both shared and distinct mechanisms of the two MetS risk diets.  Our single cell 

analysis supports this hypothesis and shows that diverse cell types such as liver hepatocytes, 

endothelial cells, macrophages, hypothalamic neurons, intestine enterocytes, and adipose 
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APCs across different tissues exhibit differential responses to the two MetS diets (Table S4.1). 

For instance, adipose SVF APCs and macrophages were found to respond more dramatically to 

HFHS diet, which agrees with the phenotypic changes for HFHS. The hypothalamic GABAergic 

and glutamatergic neurons were more responsive to fructose, and the fructose-responsive 

DEGs were previously linked to anorexia and BMI regulation in human GWAS, which may agree 

the known role of hypothalamus in regulating food intake and energy balance189,190.  

 

Further investigation of DEGs and pathway analysis revealed common and unique alterations 

induced by the two MetS diets, from mt-Rnr2 gene involving metabolic function to pathways in 

fatty acid absorption and glycolysis to genes. Among the shared DEGs between diets, mt-Rnr2 

(humanin) was a top DEG in small intestine proximal enterocytes, goblet cells, adipose SVF 

APC cells and macrophages, while Malat1 was a top DEG in periportal and pericentral 

hepatocytes, various adipose SVF APC subtypes and macrophages subtypes. Mt-Rnr2 is 

involved in the regulation of energy expenditure184. Malat1 has been associated with 

atherosclerosis215 and inflammation in endothelial cells216 as well as hepatic steatosis217. 

Despite the presence of these shared DEGs, numerous DEGs were specific to each diet. Our 

pathway analysis also uncovered how functional pathways were differentially altered between 

cell types and treatments. For instance, metabolic pathways including PPAR signaling, fatty acid 

metabolism and cholesterol homeostasis were downregulated by fructose but upregulated by 

HFHS in hepatocytes; inflammatory pathways were induced in adipose APCs and macrophages 

under HFHS treatment;  neuropeptide pathways were affected in hypothalamic neurons by both 

fructose and HFHS treatment, however a larger number of DEGs and pathways were found for 

fructose diet. These findings highlight the heterogeneity of cellular responses in each tissue to 

different diets and the importance of using single cell technologies to decipher such 

heterogeneity to reveal precise cellular and gene targets of individual risk diets. 
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Our multitissue single cell studies also offer the opportunity to explore cross-tissue cell-cell 

communication. We conducted ligand-receptor interaction network analysis in order to identify 

secreted ligands which show differential expression in a given cell type and their potential 

downstream responding cell types with differential expression of the corresponding receptors. 

The network analysis recapitulated genes encoding known metabolic regulators, such as Avp 

(vasopressin) 205,218, Apoe (apolipoprotein E)219 and C3 (complement factor 3)220. Some of the 

ligands (e.g., Apoe, C3, Il1rn) identified in our analysis were also found in a recently human 

serum proteome study204 for playing a role in clinical outcomes of metabolic disorders. We also 

identified novel ligands which were less investigated, including Fga221,222 and Gal199,223. Fga 

encodes for the fibrinogen alpha chain which acts as the alpha component of fibrinogen and is 

known for its wound repair function. The association between of fibrinogen and MetS was 

investigated in previous studies222,224, but the functional role of Fga in MetS has not been 

explored.  Gal encodes a neuropeptide which is related to cognitive function and endocrine 

regulation225. While Gal was previously shown to be a potential MetS biomarker226, its 

physiological function in metabolism is not well understood. 

 

In addition to known and novel ligands, we also identified the potential ligand sources and 

interacting cell types. For example, vasopressin and oxytocin were secreted mainly from the 

hypothalamus neurons (GABAergic and Glutamatergic) and supporting cells (Astrocytes, 

oligodendrocytes precursor) and targeted cell types in liver and small intestine. Apoe was 

secreted from liver, hypothalamus and adipose SVF cell types and targeted cell types in all 

tissues. Fga was secreted from liver cell types and targeted adipose APCs and hypothalamic 

neuronal cell types in response to the fructose diet. Gal was secreted from the hypothalamus 

GABAergic neuron and targeted cell types in the liver and adipose SVF under HFHS diet. The 
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cell-type level fine map of both the known and novel ligands and the potential cell-cell 

interactions across tissues revealed by our analysis warrants further experimental testing to 

investigate their causal and functional relationships with MetS. 

 

To explore how the two diets may trigger differential cellular and molecular sensitivity in the four 

metabolic tissues, we further used our scRNA-seq data to carry out metabolic activity analysis 

to infer how different MetS diets can alter metabolic flow in specific cell types which may in turn 

affect molecular pathways in various cell types across tissues. This analysis showed that small 

intestine enterocytes not only played a role in fatty acid and fructose uptake but also 

metabolized fructose, in contradiction to the commonly held belief that the liver is the key tissue 

that metabolizes fructose. Our finding is support by a recent publication156 based on isotope 

tracing which indicated that fructose can be fully metabolized in the small intestine if the fructose 

quantity was within small intestine’s metabolic capability. In addition, both diets increased fatty 

acid uptake as well as fatty acid metabolism by the liver, with stronger effects observed for 

HFHS diet, which may explain the robust increase in triglycerides levels as a result of HFHS 

treatment. Metabolic activity analysis also showed increased fatty acid uptake in both adipose 

APCs and macrophages under HFHS treatment, which we hypothesize is linked with strong 

alterations in inflammatory, ECM and PPAR signaling pathways identified in these cell types. In 

the hypothalamus, fatty acid uptake was decreased in neuronal cells by both diets. It is 

documented that fatty acids are used as signaling molecules that regulates energy balance in 

hypothalamus194,227 that could potentially contribute to altered energy intake behavior. Through 

this analysis, we also showed metabolic activity is highly cell type specific, where supporting cell 

types such as small intestine macrophages, liver Kupffer cells and adipose SVF endothelial 

cells showed very limited alterations in metabolic activity compared to intestinal enterocytes and 

hepatocytes, as expected. Furthermore, we found limited alterations in fructose metabolic 
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activity   metabolic activity in cell types that do not compromise the small intestine, which 

indicated that under our experimental design, fructose from both HFHS and fructose diets were 

more likely metabolized in the small intestine and conferred their effects through increasing fatty 

acid levels and related metabolic activities228.       

 

Integrating our findings from the phenotypic characterization, cell type specific DEGs and 

pathways, cross-cell-type interaction, and the nutrient uptake and metabolic flow analysis 

across cell types from different tissues, we propose the following mechanistic models under 

either fructose or HFHS diet. Under fructose diet (Figure 4.11) fructose induced enhanced 

fructose and fatty acid absorption activity in small intestine enterocytes.  The increased fatty 

acid and fructose level traversed across different organs, causing alterations of hepatocyte 

PPAR signaling and triglyceride metabolism, as altering adipose APC inflammatory pathway 

and ECM pathways, and inducing anorexia phenotypes and reducing glycolysis flux in 

hypothalamic neurons. These fructose-induced alterations might be mediated by key promoted 

ligand secretion (such as Apoe, Fga and C3 from hepatocytes and Avp from neurons) and 

potentially further enhanced metabolic dysfunctions, especially high plasma cholesterol. In 

HFHS diet (Figure 4.11) also induced induced enhanced fructose and fatty acid absorption 

activity in small intestine enterocytes. Circulating glucose and fatty acid further caused PPAR, 

carbon metabolism and fatty acid metabolic upregulations in hepatocytes. Furthermore, 

excessive fatty acid concentrations can also induce robust inflammatory response and ECM 

dysregulation in APC cells and M2 macrophage. Neurons in hypothalamus is also showing 

alterations in food intake GWAS correlations and synapse function. Ligands (Avp and Gal from 

neurons, Il1m from APC cells, C3 and Apoe from APC and hepatocytes) were secreted during 

the process while potentially further mediating metabolic dysfunction including obesity, glucose 

tolerance impairment, and dyslipidemia. 
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Our study has several limitations. To better capture a variety of tissues and treatments, a larger 

sample size per group than the present design is preferred. However, single cell studies using 

similar sample size have been shown to capture critical disease mechanisms132,229–231. 

Secondly, our network analysis focused on ligand receptor interaction network, which may miss 

important interactions compared to other purely data-driven algorithms232. Finally, our DEG and 

pathway analyses as well as network analysis revealed numerous hypotheses that require 

experimental validation. 

 

The combination of all our analyses enabled us to build a model of the B6 response to two MetS 

risk diets in the cell type level across hypothalamus, liver, adipose, and small intestine in 

response to two MetS risk diets. While HFHS induced robust changes in adipose APCs and 

macrophages, fructose had more profound effects on hypothalamic cell populations, particularly 

neurons. We also found that Malat1 and mt-Rnr2 were frequently altered across multiple cell 

types by both diets, supporting these as highly responsive gene markers of diet-induced MetS. 

In addition, we integrated DEGs with the ligand receptor database to identify several known and 

novel circulating regulators mediating cell-cell interactions in MetS, including Avp, Apoe, Oxy, 

Fga and Gal as well as their source and target cell types. We also integrated cell type specific 

DEGs with both biological pathways and human GWAS to understand the potential relations 

between MetS diets and human metabolic diseases. The analysis revealed the specific cell 

types related to MetS, such as hepatocytes, which exhibited altered lipid metabolism. This is 

likely related to plasma TG and HDL levels which are affected by both diets. Feeding HFHS also 

further increased plasma LDL levels. Finally, through metabolic flux estimation, we were able to 

identify cell types that are likely to be directly affected by the nutrients in the different diets and 

further trigger other molecular pathways in these and additional cell types. For instance, small 
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intestine proximal enterocytes were shown to be particularly important in metabolizing fructose 

and changing metabolic pathways when fed either HFHS or fructose diet; under HFHS diet, 

adipose SVF APCs absorbed fatty acids and increased inflammatory response; liver 

hepatocytes uptook and metabolized circulating fatty acids and changed fatty acid and 

carbohydrate metabolic functions upon  both HFHS or fructose diet; hypothalamus neurons 

decreased fatty acid intake and glycolysis activities, accompanied by altered neuropeptide and 

energy balance related functions under both HFHS or fructose diet. This study supports further 

development of treatments targeting sensitive cell types and key regulators in MetS subtypes 

induced by different dietary risks. 

 

Conclusion 

Through application of scRNA-seq in small intestine, liver, adipose SVF and hypothalamus with 

two MetS related diets, our study enabled the elucidation of the roles of individual cell types in 

MetS by pinpointing the genes and pathways that are altered in these cell types and revealing 

the inter-tissue cell-cell crosstalk network. The use of scRNA-seq enabled detailed comparison 

between fructose and HFHS which induced different metabolic dysfunctions and cell type 

specific effects. Our datasets and findings could serve as a rich resource to expediate future 

nutrigenomic and mechanistic studies of MetS. 

 

  



 

121 

Tables 

Table 4.1. Summary of differential expressed genes and pathways in selected cell types. 
 

  

tissue name Cell types treatment DEG# Overlap 
DEG#/ 
Pathway# 

top selected 
DEGs 

selected top pathways 

Small intestine Proximal 
enterocytes  

Fructose 670 417/75 Apoa1 Actb 
Usp4  

Fat digestion and absorption, 
Oxytocin signaling pathway, Renin-
angiotensin system 

HFHS 
 

627 Fgfr3 Sepp1 
Slc5a1  

Fat digestion and absorption, PPAR 
signaling pathway, Carbohydrate 
digestion and absorption 

Adipose APC_Pi16 Fructose 150 74/17 mt-Rnr2 Malat1 
Gm26809 

Extracellular matrix disassembly, I-
kappaB kinase/NF-kappaB 
signaling, Negative regulation of 
G2/M transition of mitotic cell cycle 

HFHS 338 Malat1 Fabp4 
Lyz2 

ECM-receptor interaction, TNF 
signaling pathway, PPAR signaling 
pathway 

APC_Hsd11b1 Fructose 180 82/17 mt-Rnr2 Malat1 
Cxcl1 

Negative regulation of apoptotic 
process, I-kappaB kinase/NF-
kappaB signaling, extracellular 
matrix disassembly 

HFHS 424 Malat1 Lyz2 
Cd74  

ECM-receptor interaction, PI3K-Akt 
signaling pathway, TNF signaling 
pathway 

Liver Periportal 
hepatocytes 

Fructose 272 189/68 Car3 Mup17 
Mup9  

PPAR signaling pathway, Very-low-
density lipoprotein particle 
assembly, 
Glycolysis/Gluconeogenesis 

HFHS 409 Cyp3a11 Fabp1 
Mup20  

PPAR signaling pathway, 
Cholesterol homeostasis, Neutrophil 
degranulation 

Sinusoidal 
endothelial 
cells 

Fructose 47 30/11 Abi1 Gm26924 
Malat1  

Ribosome, Oxytocin signaling 
pathway 

HFHS 135 Fos Hbb-bs 
Iigp1  

Type I interferon signaling pathway, 
Negative regulation of apoptotic 
process, Vascular endothelial 
growth factor receptor signaling 
pathway 

Hypothalamus Glutamatergic 
neurons  

Fructose 627 93/18 mt-Rnr2 Fgf14 
Malat1  

Oxidative phosphorylation, 
Glutamatergic synapse, Long-term 
potentiation 

HFHS 170 Copg2 Lrba 
Dlg2  

Glutamatergic synapse, Oxytocin 
signaling pathway, Calcium 
signaling pathway 

GABAergic 
neurons  

Fructose 713 167/55 Malat1 Oxt Avp GABAergic synapse, Long-term 
potentiation, Thyroid hormone 
synthesis  

HFHS 307 Cntnap2 Tbc1d9 
Ube3a  

GABAergic synapse, Long-term 
potentiation, Oxytocin signaling 
pathway 

Astrocyte Fructose 77 36/1 Malat1 mt-Rnr2 
Nrxn1 

Regulation of axon 
extension, positive regulation of 
potassium ion transmembrane 
transporter activity, cholesterol 
catabolic process 

HFHS 56 Trpm3 Nrxn1 
Gpc5 

Retrograde endocannabinoid 
signaling, Serotonergic synapse,  
Ion transmembrane transport 
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Table S4.1. Markers used for annotation across different cell types 

Table S4.2. GWAS studies used for MergeOmics analysis on cell type specific DEGs 

Table S4.3. Differential expressed gene statistics across all tissues and dietary 

treatments 

Table S4.4. Differentially enriched pathways based on cell type specific DEGs across 

different tissues and dietary treatments 

Table S4.5. Unique and shared cell type specific pathways in each cell type across 

different dietary treatments  
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Figures 

 

Figure 4.1. Study design and phenotypic analysis of mice.  

(A) Overview of study. Male C57BL/6J mice were treated with chow+water (Control), chow+15% 
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fructose water (Fruc) or high fat high sucrose + water (HFHS). After 11 weeks of dietary 

treatment, hypothalamus, liver, gonadal adipose stromal vascular fraction and small intestine 

were collected and sequenced by Drop-seq. Data were processed and cell types were 

identified. This was followed by cell type sensitivity analysis, differential gene and pathway 

analysis, GWAS integration analysis, ligand-receptor network analysis, and metabolic flux 

(intake and activity) analysis. (B-G) Phenotypic analysis of mice treated with various diets. 

Cumulative change in body weight (B), relative fat mass (C), and relative lean mass (D) in mice 

fed normal Chow diet with water,15% fructose, or HFHS over 11 weeks. * denotes P < 0.05, ** 

denotes P < 0.01, and *** denotes P < 0.001 by Two-way ANOVA, followed by Sidak post-hoc 

analysis.  Fasting plasma lipids (E), glucose and insulin (F) levels in response to fructose or 

HFHS consumption. Glucose tolerance determined using IPGTT was conducted at 4 and 10 

weeks shown as area under the curve (AUC) (G). (H) Calori intake of mice fed 3 different diets. 

Data are expressed as  means ± SEMs.  * denotes P < 0.05, ** denotes P < 0.01, and *** 

denotes P < 0.001 by two-sided Student’s t-test. Sample n=6/group. 
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Figure 4.2. QC metrics and sample batch effect corrections visualization.  

(A-D) QC metrics of filtered datasets, showing gene counts (top left), UMI counts (top right), mitochondrial 

gene percentage (bottom left) and ribosomal gene percentage (bottom right) in each sample used in 

analysis for (A) Small intestine (B) SVF (C) Liver (D) Hypothalamus. (E-H) tSNE plot of all cells, colored 

by samples after batch effect correction for (E) Small intestine (F) SVF (G) Liver (H) Hypothalamus 
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Figure 4.3. Identification of cell types in scRNAseq datasets from small intestine, adipose 

SVF, liver, and hypothalamus  

(A, C, E, G, I) tSNE with cell type annotation (B, D, F, H, J) marker heat map.  (A, B) Small 

intestine. (C,  D) adipose SVF. (E, F) Liver.  (G, H) Hypothalamus. (I, J) Hypothalamus neuronal 

subtypes. In marker dot heatmaps B, D, F, H, J, dot size indicates % of cells in each cluster with 

detectable marker expression (plotted as Z-score transformed value) and dot color corresponds 

average expression of genes in expressed cells. Sample size n=2-5/tissue. 
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Figure 4.4. HFHS and fructose diets induced transcriptomic alternations with differential 

tissue and cell type specificity  

(A, B, C, D) tSNE figure with cell type annotation colored by different dietary treatments. (A) 

Small intestine, (B) SVF, (C) Liver and (D) Hypothalamus. (E) Euclidean distance representation 

of differential cell type sensitivity at transcriptome level after MetS diet treatment. The fold 

change (FC) of the Euclidean distance of either Fructose or HFHS treatment group compared 

with control group in each cell type was calculated by dividing the empirical Euclidean distance 

of that cell type by the median Euclidean distance of the permutation-based null distribution of 

that same cell type. The null distribution is also used to calculate p-values by comparing with 

empirical Euclidean distance. P-values were adjusted for each cell type by using the Benjamini 

& Hochberg method173. (F, G) Heatmap of GWAS enrichment results from Mergeomics which 

integrated full summary statistics of human GWAS of various diseases/traits with (F) fructose 

DEGs and (G) HFHS DEGs. Each heatmap tile corresponds to -log(FDR) from enrichment 

analysis between cell type DEGs and GWAS disease/trait. Only significantly enriched results 

(FDR < 5%) were colored. GWAS, genome-wide association study. 
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Figure 4.5. Venn diagram of DEGs shared in HFHS and fructose diets  

(A) Cell types in small intestine (B) cell types in liver (C) cell types in SVF (D) cell types in hypothalamus. 

Only cell types with more than 10 DEGs in both dietary treatments were included, p-value was calculated 

based on fisher exact test.  
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Figure 4.6. Dot heatmap of top expressed genes across different cell types.  

Top 3 differentially expressed genes were plotted for (A) Small intestine. (B) SVF (C) Liver (D) 

Hypothalamus. Dot color corresponds to -log(fold change) and dot size corresponds to -log(FDR) 

estimated by Seurat Wilcoxon method (Small intestine, SVF and hypothalamus) or monocle negative 

binomial GLM modeling (liver). 
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Figure 4.7. Venn diagram of enriched pathways shared in HFHS and fructose diets  

(A) Cell types in small intestine (B) cell types in liver (C) cell types in SVF (D) cell types in hypothalamus. 

Selected representative pathways were shown in text box. Only cell types with at least 1 enriched 

pathway in both dietary treatments were included, p-value was calculated based on fisher exact test. 
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Figure 4.8. Top pathways and genes affected by fructose and HFHS diets in individual 

cell types. 

(A, C, E, F) Pathway dot heatmap of top selected differentially enriched pathways (B, D, G) 

Gene dot heat map showing all overlapped differentially expressed genes from selected 

pathway. (A) liver (B) pathway “Triglyceride homeostasis” pathway in liver hepatocytes (C) SVF 

(D) pathway "negative regulation of apoptotic process" in SVF APCs (E) small intestine (F) 

hypothalamus (G) pathway "Oxytocin signaling pathway" in hypothalamus neurons. For 

pathway dot heatmaps in A, C, E and F, Dot color corresponds to -log(median fold change of 
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pathway overlapped genes) and dot size corresponds to -log(FDR) estimated by enrichr 

pathway database. For dot heatmaps in B, D and G, dot color corresponds to -log(fold change) 

and dot size corresponds to -log(FDR) estimated by Seurat Wilcoxon method (Small intestine, 

SVF and hypothalamus) or monocle negative binomial GLM modeling (liver). 
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Figure 4.9. Metabolic flux analysis inferred cell type specific and dietary specific flux alterations.  

(A-D) Metabolic flux analysis of (A) Small intestine, (B) Liver, (C) SVF and (D) Hypothalamus. X-axis 

indicates intake flux estimate of different metabolites as well as metabolic flux estimate for selected 

glycolysis, fatty acid metabolism and fructose metabolism pathways. Y-axis indicates median fold 

increment  (median(treatment) – median(control))/median(control). Sub-panel labels indicate different 

metabolic flux (x-axis) or different cell types (y-axis). G6P, Glucose-6-Phosphate; G3P, Glyceraldehyde 3-

phosphate; 3PD, 3-Phosphoglycerate; F1P, Fructose-1-Phosphate. (E) Pathway dot heatmap of top 

selected differentially enriched pathways related to metabolic functions. Dot color corresponds to -

log(median fold change of pathway overlapped genes) and dot size corresponds to -log(FDR) estimated 

by enrichr pathway database. 
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Figure 4.10. Long range ligand-receptor analysis between small intestine, SVF, liver and 

hypothalamus.  

Ligand receptor interaction network with ligands exhibiting altered expression from small intestine cell 

types to other cell types after (A) fructose and (B) HFHS treatment. Ligand receptor interaction network 

with ligands exhibiting altered expression from adipose SVF cell types to other cell types after (C) fructose 

and (D) HFHS treatment. Ligand receptor interaction network with ligands exhibiting altered expression 

from liver cell types to other cell types after (E) fructose and (F) HFHS treatment. Ligand receptor 

interaction network with ligands exhibiting altered expression from hypothalamus cell types to other cell 

types after (G) fructose and (H) HFHS treatment. Nodes represent ligands (purple color, middle layer) 

which were DEGs in source cell types (left layer) or target cell types (right layer) with corresponding 

receptors as DEGs. Cell types of different tissues are labeled with different colors: green - small intestine, 

blue - hypothalamus, pink – liver, yellow – adipose SVF. 
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Figure 4.11. Integrated summary of all the analysis.  

Summary of phenotype, metabolic flux, biological pathway, secreted ligands, activated 

receptors and GWAS related phenotypes changes among critical cell types induced by Fructose 

(blue) and HFHS (red) diets. Directionality of metabolic flux and biological pathway changes 

were illustrated with arrow.
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Chapter 5. Conclusion and future direction 

 

Implementation of systems biology strategies supports the characterization of different 

exposure effects 

Environmental exposures impose significant health burden in human populations, yet the 

molecular mechanisms are difficult to dissect due to the complex effects on biological systems 

encompassing molecules, cells, tissues, and species. To meet the challenges, systems biology 

concepts and approaches have emerged to delineate the complex interaction networks across 

molecular layers 233,234, cell types 27, and tissues or organ systems 197. However, the application 

of systems biology in exposure characterization has been limited.  In this dissertation, I applied 

systems biology concepts with three different projects covering different environmental 

exposure schemes in daily life, including drug mechanism, transgenerational alcohol exposure, 

and harmful dietary exposure. Through these projects, I developed a novel gene network-based 

computational tool to predict drug-disease or drug-toxicity relationships and characterized 

molecular cross-talks across cell types and tissues under different exposure scenarios. These 

projects helped derive systems level understanding of genes and pathways affected by 

pharmaceutical drug entities, alcohol exposure, and dietary exposures in different tissues and 

species. 

 

PharmOmics as a novel systems biology tool for drug characterization, drug 

repositioning, and toxicity prediction  

In Chapter 2, I established a new drug signature database, PharmOmics, for ~1000 

pharmaceutical drugs across different drug dosage, tissues, and species. I also demonstrated 

means to integrate these signatures with network biology to address drug repositioning needs 

for disease treatment and to predict and characterize toxicity. Finally, this study examined and 
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validated the concept of matching tissue specificity during drug repositioning, which improved 

repositioning performance as well as indicating tissue specific mechanism insights. I have 

established PharmOmics as a potential complementary drug signature database to accelerate 

drug development and toxicology research.  

 

The PharmOmics system had tremendous potential to be further expanded to improve the 

breadth and depth of the tool. On breadth side, drug signatures can be expanded with 

multiomics datasets such as RNA-seq, epigenomics, proteomics, metabolomics, and 

microbiome datasets from public data repositories or with literature-based signature from 

comparative toxicogenomics database (CTD). Our initial analysis showed discrepancy between 

signatures extracted from CTD and transcriptomics studies, thereby supporting the need to 

incorporate different types of molecular signatures into the PharmOmics framework. In addition 

to expanding omics layers and types of molecular signatures, tissue specific networks need to 

be expanded to support broader application of drug repositioning. On depth side, network based 

repositioning can further be extended to consider drug combinations 235, which should support 

identifications of drug combinations in disease treatment and toxicities related to drug 

interactions. Therefore, PharmOmics provided a highly expandable framework which can be 

actively updated to incorporate multiomics signatures as well as advanced network based 

analytical algorithms. 

 

Broadening applications of C. elegans tool for multi- and trans- generational risk 

assessment 

In Chapter 3, the Allard lab developed a single nuclei RNA-sequencing technique fir C. elegans 

in order to capture trans-generational ethanol exposure across different cell types. Through 

combination of sensitive pipelines, I have shown cell type specific effect of low dose ethanol 
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exposure across generations. Furthermore, I have identified potential pathways involving 

mitochondria, ribosome and lipid metabolism dysfunction in germline clusters, which can be 

further correlated with wormbase related reproductive disorder phenotypes. This project 

established C. elegans as a model for transgenerational toxicity research and, when combined 

with cell type specific information, it becomes a system that can help pin down key cell types 

and mechanisms that may be involved in the mammalian response. 

 

Through the application of single nuclei RNA-seq and bioinformatics tools, I was able to provide 

evidences indicating single nucleus C. elegans as a trans-generational risk assessment model.  

Further analysis involving gene regulatory network methods as well as involving more datasets 

should be able substantiate this concept. For example, constructing gene regulatory network 

based on single nuclei datasets can identify potential key regulators which can improve the 

characterization of the mechanism. Gene regulatory networks can either be using correlation 

modules such as WGCNA 236 or GENIE3 237 which do not require prior knowledge. In addition to 

constructing gene regulatory network from data, adding 1-2 additional dosage points and 

conducting dose response analysis per cell types would also be helpful to locate pathways 

mediating low dose ethanol exposure. This strategy was applied previous in Per- and poly-

fluoroalkyl substances (PFAS) characterization with in vitro model and successfully obtained 

mechanistic insights across different PFAS238. Finally, our study single nucleus pipeline showed 

the potential of using C. elegans as a model for trans-generational risk assessment, which can 

be further expanded to different environmental chemicals such as bisphenol-A and PFAS. 

Through comparison with different published resources, it will enable me to further understand 

advantages and disadvantages of this system compared to other in vitro and in vivo models. 
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Identification of novel metabolic syndrome mechanisms, biomarkers and treatments 

based on multi-tissue single cell RNA-seq 

In Chapter 4, single cell RNA-seq was applied across the small intestine, liver, adipose SVF 

and hypothalamus of two groups of mice that were fed two different MetS related diets. To 

understand the effects of these diets, I performed multiple complementary analyses. Using the 

scRNA-seq data, I not only identified differentially expressed genes and pathways and thereby 

established the roles of individual cell-type specific responses, but also utilized ligand-receptor 

and metabolic flux analysis to establish an intercellular crosstalk network . I have shown that the 

use of scRNA-seq data enabled the comprehensive comparison of the effects of fructose and 

HFHS diets, which induced different metabolic dysfunction and cell-type specific effects. This 

dataset and findings serve as a rich resource to accelerate future biomarker and mechanistic 

studies of MetS. 

 

I established a cell-type interaction map for different dietary treatments in order to characterize 

their relationships with metabolic syndrome. This study revealed cell-type specific responses as 

well as ligand interactions which can serve as biomarkers and lead to the development of novel 

treatments. This study can further be expanded through inference of gene regulatory networks 

through GENIE3 or SCENIC 240. By integrating gene regulatory network modules associated 

with identified ligand-receptor interactions, I am able to further identify cell type specific 

responses and investigate differences between fructose and HFHS diets. Finally, through 

combination of cell type specific DEGs and cell type specific gene regulatory network through 

PharmOmics framework, I can further identify treatments targeting different cell types. Our 

preliminary results showed that even with tissue specific network, we can still find metabolic 

drugs targeting hepatocytes and anti-inflammatory drugs targeting liver Kupffer cells. This result 
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can further be extended through construction of cell type specific regulatory networks. Through 

the identification of cell-type specific drug treatment, I can practice the concept of precision 

medicine at the cell-type specific level, which has the potential to improve prediction 

performance compared to bulk level drug prediction. 

 

Systems biology as a future main direction for environmental exposure research 

In this dissertation, I have shown the advantages of applying a systems biology strategy to three 

different exposure scenarios. Through the incorporation of biological networks, I was able to 

improve prediction of drug-disease relationships, infer molecular mechanisms throughgene 

regulatory network models, and construct cell-type cross talk models to elucidate inter-tissue 

communication. I have shown the benefit of applying of novel cutting age high-throughput 

genomic technologies, such as high throughput sequencing, single cell sequencing, network 

biology, to the fields of modern toxicology and pharmacology. Through the careful selection of 

experimental models, high throughput methods, and customized analysis pipelines, I unveiled 

molecular and cellular mechanisms that were previously unexplored, supported the 

development of drugs, and characterized the response to toxicants. Given the exploding 

numbers of chemicals and drugs need to be screened nowadays for their vast mechanisms and 

toxicities, a more efficient pipeline based on high throughput techniques should be considered. I 

have demonstrated three scenarios where systems biology strategies performed well compared 

to traditional methods. 

 

However, systems biology and high throughput techniques are not without drawbacks. They 

might identify too many potential targets which are hard to validate all of them, even with the 

conservative tools I have already applied in the analysis. Hence in my future direction, I have 

proposed different directions to further establish the accuracy and robustness of systems 
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biology in environmental exposure, including expanding PharmOmics gene signature and 

algorithm, application of single nuclei C. elegans model with more dose and chemicals, as well 

as integrating cell type specific response with biological regulatory networks to find cell type 

specific treatments. Finally, close collaboration with experimental biologist is also critical for 

developing and validating these concepts. These future directions are potential strategies which 

can further reduce the bias and improve the applicability of using systems biology methods as 

risk assessment tools. 
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ABSTRACT

The Mergeomics web server is a flexible online tool
for multi-omics data integration to derive biologi-
cal pathways, networks, and key drivers important
to disease pathogenesis and is based on the open
source Mergeomics R package. The web server takes
summary statistics of multi-omics disease associa-
tion studies (GWAS, EWAS, TWAS, PWAS, etc.) as in-
put and features four functions: Marker Dependency
Filtering (MDF) to correct for known dependency be-
tween omics markers, Marker Set Enrichment Anal-
ysis (MSEA) to detect disease relevant biological
processes, Meta-MSEA to examine the consistency
of biological processes informed by various omics
datasets, and Key Driver Analysis (KDA) to identify
essential regulators of disease-associated pathways
and networks. The web server has been extensively
updated and streamlined in version 2.0 including an
overhauled user interface, improved tutorials and re-
sults interpretation for each analytical step, inclusion
of numerous disease GWAS, functional genomics
datasets, and molecular networks to allow for com-
prehensive omics integrations, increased functional-
ity to decrease user workload, and increased flexibil-
ity to cater to user-specific needs. Finally, we have
incorporated our newly developed drug reposition-
ing pipeline PharmOmics for prediction of potential
drugs targeting disease processes that were identi-

fied by Mergeomics. Mergeomics is freely accessi-
ble at http://mergeomics.research.idre.ucla.edu and
does not require login.

GRAPHICAL ABSTRACT

INTRODUCTION

The advent of omics technologies has made signifi-
cant strides in unveiling various disease-associated genetic
and epigenetic variants, genes, proteins and metabolites.
The ever-growing source of multi-omics datasets avail-
able including genomics, epigenomics, transcriptomics, pro-
teomics and metabolomics now presents a new challenge of
integrating these different data types for more meaningful
and holistic interpretation of complex diseases. To conduct
a comprehensive investigation of disease pathogenesis, we
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must consider multiple omics layers that contribute to bio-
logical complexity (1). The computational pipeline Merge-
omics was developed to meet the need for multi-omics inte-
gration and functional interpretation to obtain mechanistic
understanding. Mergeomics provides flexibility to incorpo-
rate the full spectrum of summary statistics (not just top
hits) of individual layers of omics or multi-omics data si-
multaneously along with diverse functional genomics data
across data types, studies and species. As such, genome-
wide association studies (GWAS) as well as epigenome-
(EWAS), transcriptome- (TWAS), proteome- (PWAS) and
metabolome-wide association studies (MWAS) can all be
accommodated.

The development of our Mergeomics tool follows the
philosophy of utilizing a systems biology approach to un-
ravel the complex interactions across molecular domains
as well as cell types, tissues and organ systems that oc-
cur in disease. In particular, we are guided by the omni-
genic disease model (2), which states that a large propor-
tion of the genome likely contributes to disease pathogene-
sis through molecular interactions both within and between
tissues. Utilizing this data-driven analysis considering the
interactions among different omics layers and tissue con-
texts will uncover global maps to identify critical targets in
disease pathogenesis, which can be followed by experimen-
tal approaches to investigate the detailed events that occur
through the predicted molecules or pathways.

With the abundance of omics data available, it is un-
surprising that various tools or methods have been devel-
oped to better integrate and interpret these datasets (3–5).
These tools can be broadly categorized into two applica-
tion categories: multi-omics biomarker predictions of dis-
eases or subtypes (i.e. uncovering correlative or predictive
but not necessarily disease-causing features) or mechanis-
tic understanding of disease pathogenesis (i.e. regulators,
molecular interactions and processes involved in disease
development). Mergeomics focuses on mechanistic model-
ing but not predictive modeling. In terms of approaches,
fusion (such as PFA (6), SNF (7), PSDF (8)), Bayesian
(e.g. iCluster (9), PSDF (8), BCC (10)), correlation, multi-
variate (e.g. MFA (11), IntegrOmics (12), MixOmics (13)),
pathway and network methods (PARADIGM (14), SNF
(7), iOmicsPASS (15), MiBiOmics (16), Lemon-Tree (17),
PaintOmics (18), NetICS (19), Metascape (20)) have been
implemented (3–5). Mergeomics falls within the network
method category that mainly focuses on understanding dis-
ease pathogenesis through uncovering multiple molecular
targets within biological processes important to disease.
The benefit of a network approach over other integrative
options is its ability to provide biological interpretability,
which is reliant not on the identification of latent struc-
tures through mathematical deconvolution but on the uti-
lization of prior information based on molecular interac-
tions, which can help provide clear targetable options (e.g.
genes) in disease. Compared to other tools, Mergeomics
not only accommodates diverse data types (GWAS, EWAS,
TWAS, PWAS, MWAS) from different sources, studies, or
species for a given disease, but also considers relationships
between omics layers through functional genomics such as
expression quantitative trait loci (eQTLs), molecular path-
ways, and tissue-specific gene regulatory networks to derive

disease networks and predict therapeutics. Mergeomics also
uses full summary statistics, not raw data or lists of top as-
sociations, as input, thereby reducing the need for raw data
processing and harmonization and for pre-determining a
specific cutoff to call for significant markers. Mergeomics
has the ability to conduct pathway analysis and model gene
regulatory networks, protein-protein interaction networks,
and transcription factor networks in order to predict and vi-
sualize network regulators of disease. These unique features
help maximize the utility of existing datasets and overcome
limitations of other tools which utilize a narrower range of
multi-omics data sources, do not provide mechanistic inter-
pretations, or require programming skills with no intuitive
web server for ease of use.

Since the release of the open source Mergeomics R
package (https://bioconductor.org/packages/release/bioc/
html/Mergeomics.html) (21) and web server in 2016 (22),
this tool has been used to model a diverse set of diseases
including cardiometabolic disorders such as non-alcoholic
fatty liver disease (23), cardiovascular disease (24–26) and
type 2 diabetes (27), autoimmunity including psoriasis
(28) and rheumatoid arthritis (29), alcohol dependence
(30), brain injury (31), Sjogren’s syndrome (32) and
environmental contributions to disease (33–35). Impor-
tantly, multiple validations of molecular predictions from
Mergeomics with in silico, in vitro and in vivo studies
highlight the validity and causal nature of the disease net-
work predictions (23,27–28,31,35–40). Due to increasing
demand for multi-omics integration and interpretation
from scientists with different areas of expertise, we have
implemented major revisions and improvements on the
Mergeomics web server. Specifically, we have redesigned
the user interface, simplified workflows, offered detailed
tutorials and case studies, and provided more datasets
and network models for utilization. The Mergeomics 2.0
web server offers the scientific community much-improved
accessibility to our pipeline, caters to each user’s spe-
cific goals in multi-omics studies, and addresses a broad
range of biological questions, particularly emphasizing a
mechanistic understanding of disease pathogenesis and
prediction of potential therapeutics based on mechanistic
understanding.

OVERVIEW AND UPDATES ON THE CORE FUNC-
TIONS OF MERGEOMICS

Overview of core functions

Mergeomics 2.0 features four core functions as previously
implemented in version 1.0 with an addition of a new func-
tion. First, we provide a preprocessing tool, Marker De-
pendency Filtering (MDF) to remove omics marker redun-
dancies such as linkage disequilibrium (LD) between sin-
gle nucleotide polymorphisms (SNPs). Second, Marker Set
Enrichment Analysis (MSEA) is used to identify omics-
informed disease processes through the integrations of
omics markers such as SNPs with functional genomics,
canonical pathways, or co-expression networks. Third,
Meta-MSEA runs MSEA on multiple datasets and con-
ducts pathway/network level meta-analysis to retrieve con-
sistent disease processes informed across datasets. Fourth,
Key Driver Analysis (KDA) pinpoints network regulators
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of disease processes based on the topology of biological net-
works. In Mergeomics 2.0, we added a new functional mod-
ule called PharmOmics, which takes as input multi-omics-
informed disease pathways or networks from Mergeomics
to match with drug signatures to predict potential thera-
peutic drugs.

Introduction of PharmOmics into Mergeomics 2.0

We have recently developed a novel species- and tissue-
specific network-based drug repositioning tool, Phar-
mOmics, which is based on in vivo molecular studies of
drugs (41). PharmOmics is a complementary drug repo-
sitioning tool to other existing tools, such as CMap (42)
and LINCS L1000 (43), which are mostly based on in vitro
cell line data. We provide two drug repositioning meth-
ods: network-based drug repositioning and gene overlap-
based drug repositioning. Network-based drug reposition-
ing ranks drugs based on the degree of connectivity of genes
influenced by drug treatments to disease gene signatures in
a given gene network model (44). Gene overlap-based drug
repositioning is based on the degree of direct overlap be-
tween drug genes and disease genes. Users can directly in-
put their disease pathway results from MSEA (genes from
disease pathways are used as input) or KDA (genes from the
disease network or significant key drivers (KDs) are used as
input). For both MSEA and KDA, specific gene sets can be
input into drug repositioning for a more refined analysis. As
PharmOmics is based on gene expression studies, inputs are
limited to genes or proteins. Users can also input their genes
of interest into PharmOmics for drug repositioning analysis
without running any other functions in Mergeomics.

Flexible workflows using the core functions

Each of the main functions of Mergeomics described above
can be utilized as a standalone analysis tool or can be com-
bined into a multi-step workflow with several different cases
as portrayed in Figure 1. There are four cases or starting
points that a user has the option to select. In case one, the
user has one GWAS dataset and is prompted first to run
MDF where they provide their association dataset, map-
ping data (e.g. SNP to gene), and marker dependency data
(LD in the case of GWAS) to retrieve corrected SNP as-
sociations and mapping files. The MDF step is optional
if the user does not wish to correct for LD, although we
highly recommend this correction to avoid statistical arte-
facts due to LD. These results along with a gene set are fed
into MSEA to uncover disease-associated pathways, which
can be further analyzed in KDA to identify key regulators
or PharmOmics for drug repositioning. In case two, the user
has EWAS, TWAS, PWAS or MWAS data, and they are led
to MSEA, where MDF and marker mapping are optional.
As in the GWAS path, results from MSEA can be carried
to KDA or PharmOmics. In case three, the user has multi-
ple omics datasets and utilizes Meta-MSEA, which will run
MSEA on each dataset and then conduct a meta-analysis
across datasets to retrieve consistent biological processes,
which can be input into PharmOmics or KDA. Finally, in
case four, the user has a gene set and network of interest and
can directly run KDA, which will provide KD genes and a

subnetwork visualization of the top KDs, and the KDs or
subnetwork can be input into PharmOmics to predict drugs.

Update on Marker Dependency Filtering (MDF)

MDF prepares input files for MSEA by correcting for de-
pendency between omics markers and is an optional func-
tion. This preprocessing step is most commonly used for
GWAS data to correct for LD between SNPs and filter out
redundant SNPs, which is critical for removing redundant
association signals that can result in statistical and biolog-
ical artefacts in downstream analysis. Another purpose of
MDF is to link the SNPs to potential downstream genes
based on functional evidence, such as tissue-specific eQTLs.
Correcting for dependency between other omics markers is
currently seldom used. However, this feature can be utilized
to correct for dependency between other types of markers
(methylation sites, transcripts, etc.), if desired. MDF uses as
input an association file which details markers (e.g. SNPs)
and their disease association strengths (e.g. −log10 P-values
or effect size, note that P-values are prohibited as MDF
ranks larger values as stronger association strength, which
is opposite of P-values), a mapping file used for marker to
gene mapping (e.g. SNPs are mapped to genes to be en-
riched for gene sets), and a marker dependency file indi-
cating the dependency between markers (e.g. LD between
SNPs, to remove redundant markers) (Figure 2). The result-
ing corrected association and mapping files are then used
as input to MSEA. MDF also allows for the selection of a
top percentage of markers (50% or 25% recommended) to
be considered in the analysis which reduces noise from low
signal markers.

Updates to MDF include an increased number of marker
to gene mapping options such as the addition of all available
tissue-specific Genotype-Tissue Expression project (GTEx)
(45) cis-eQTLs and splicing QTLs (cis-sQTLs) (Table 1), the
ability to combine up to five mapping options, and the inclu-
sion of LD files for all 26 populations from 1000 Genomes
(1000G) (46) and methylation disequilibrium from EWAS
software 2.0 (47). For analysis starting from GWAS data,
MDF is a default preprocessing step, but we have included
the option to skip MDF. For analytical paths starting from
other omics data, users have the option to add MDF if
needed.

Update on Marker Set Enrichment Analysis (MSEA)

In MSEA, full summary statistics of omics markers such
as SNPs from GWAS, epigenetic sites from EWAS, genes
from TWAS, proteins from PWAS, or metabolites from
MWAS and their disease association values are taken as in-
put and are integrated with functional genomics, canoni-
cal pathways, or co-expression networks to retrieve disease-
associated pathways and networks. MSEA calculates and
summarizes enrichment of disease/trait omics markers in
sets of functionally related genes, such as canonical path-
ways and co-expression networks, across a range of statisti-
cal cutoffs in the full summary statistics using a chi-square-
like statistic and then uses permutation to determine sta-
tistical P-values for the enrichment. We emphasize the im-
portance to provide the association strength of the given
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Figure 1. Workflow of Mergeomics. We provide four options on the web server to tailor to the user’s data type. Case One: Individual GWAS analysis. For
GWAS datasets we advise utilizing the MDF function; however, we also provide the ability to skip MDF and directly run MSEA and follow the workflow
to PharmOmics or KDA. Case Two: Individual EWAS, TWAS, PWAS or MWAS analysis. In this case, we directly start at MSEA without MDF; however,
we also provide the ability to utilize the MDF function if needed. From here the user can feed the MSEA results into PharmOmics or KDA. Case Three:
Multi-omics analysis. If the user has multiple omics of the same type (e.g. two GWAS) or different types (e.g. TWAS and EWAS), they can utilize the
Meta-MSEA function to derive disease-associated pathways and can input their results into PharmOmics or KDA. Case Four: A gene list(s) to run KDA.
The user in this case can upload their gene sets of interest and upload or select a network to derive KD genes and visualize top KD subnetworks. The
disease subnetwork or significant KDs can be fed into PharmOmics for drug repositioning.

marker wherein a larger number reflects greater associa-
tion such as −log10 P-values or effect size to avoid incorrect
downstream analysis and interpretability.

MSEA is able to analyze diverse data types, and each
has different considerations of inputs which was partly de-
scribed in the above MDF section (Figure 2). The output
from MSEA can be interpreted as omics-informed disease
pathways or networks. If GWAS is used, MSEA results can
imply causal disease processes since GWAS carries causal
inference. For other omics data, the MSEA results can only
be interpreted as disease-associated processes but may or
may not be causal. Considering GWAS along with other
omics data, in our opinion, is a useful way to identify causal
genes and processes. We also advise the user to take care in
their interpretation of the names or annotations of path-
ways deemed to be significant (FDR < 0.05) as some can
be misleading. Attention to the genes enriched in a given
pathway derived from the input dataset should be checked
in the gene details output file to confirm whether the path-
way name is indeed appropriate as the genes may be more
suitable or representative of another biological process. A
user can conclude the analysis with results from MSEA or
use the MSEA results as input to KDA with a user-defined

statistical cutoff to identify network KDs of the disease pro-
cesses based on molecular network topology.

In Mergeomics 2.0, we added the ability to use disease-
associated gene sets derived from MSEA as input to Phar-
mOmics for drug repositioning analysis, selecting either
specific gene sets or by false discovery rate (FDR) or P-
value threshold, to pinpoint drugs whose gene signatures
align with those of the disease-associated gene sets identi-
fied by MSEA.

Update on Meta-MSEA

Meta-MSEA allows for integration of multiple datasets of
the same omics type (e.g. two or more GWAS datasets) or
multiple omics types (e.g. GWAS, EWAS, TWAS) and runs
MSEA for each omics dataset followed by a meta-analysis.
This integration reveals consistencies and differences in bio-
logical perturbation across different omics types or different
studies of the same omics type.

In Mergeomics 2.0, we improved the guidance of running
Meta-MSEA in regard to the differences in preprocessing
of the different types of omics data. In addition, we have
increased the flexibility of this analysis to allow for spe-
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Marker associations Mapping 

GWAS
EWAS/TWAS
PWAS/MWAS

GENE MARKER

GENE1 SNP1

GENE2 SNP2

GENE3 SNP2

Required        Optional

MARKER VALUE

SNP1 1.6

SNP2 2.8

SNP3 0.7

MARKERa MARKERb WEIGHT

SNP1 SNP2 0.78

SNP1 SNP3 0.89

SNP2 SNP4 1.00

Marker dependency

Marker sets
MODULE GENE

Immune TLR6

Immune CCR2

Glycolysis GAPDH

GWAS
EWAS/TWAS
PWAS/MWAS

GWAS
EWAS/TWAS
PWAS/MWAS

Marker Set Enrichment Analysis (MSEA)

Marker Dependency Filtering (MDF)

GWAS Default Starting Point
EWAS/TWAS/PWAS/MWAS Optional Step

Corrected marker associations and mapping files

Marker associations
MARKER VALUE

MARKER1 1.6

MARKER2 2.8

MARKER3 0.7

EWAS/TWAS/PWAS/MWAS Default Starting Point
GWAS Optional Starting Point (skip MDF)

Mapping 
GENE MARKER

GENE1 MARKER1

GENE2 MARKER2

GENE3 MARKER3

All files required

Significantly associated disease marker sets

Key Driver Analysis (KDA)

Possible Starting Point

Marker sets
MODULE NODE

Immune TLR6

Immune CCR2

Glycolysis GAPDH

HEAD TAIL WEIGHT

HLA-A HLA-G 0.96

IL10RA CD2 0.93

CCR1 FYN 0.70

Network

All files required

Significant key drivers or disease subnetwork

Network-based or overlap-based drug repositioning

If multi-omics Meta-MSEA
If individual

d or overlap based drug

Figure 2. Mergeomics pipeline inputs. MDF is the default
starting point for GWAS analysis and is an optional step for
EWAS/TWAS/PWAS/MWAS. MDF requires marker-disease asso-
ciations, a marker-gene mapping file, and a marker dependency file. Users
with GWAS data can also skip MDF and run MSEA directly. MDF
produces corrected marker-disease associations and marker-gene map-
ping files containing independent markers that are used for MSEA. For
MSEA, required files for all datasets are the marker-disease associations
and marker sets (pathway/modules). The marker to gene mapping file
is required for GWAS and EWAS and optional for MWAS, TWAS and
PWAS. Disease-associated marker sets from MSEA can be fed into KDA,
which requires gene sets and a network. KDA can also be a starting
point of analysis. Disease-associated gene sets from MSEA or KDs and
disease subnetwork from KDA can be fed into PharmOmics for drug
repositioning.

cific inputs and parameters for each association data. After
each individual omics dataset is added, the user will be able
to review which datasets have been successfully uploaded
and their individual MSEA parameters with the option to
add additional datasets or delete certain datasets, provid-
ing an easy way to track all the different inputs. As in the
results generated from the individual MSEA, significantly
associated gene sets from Meta-MSEA can be used as in-
put to KDA or PharmOmics drug repositioning. We have

also implemented user-defined individual MSEA FDR cut-
offs to KDA in that the disease-associated pathways must
pass all individual MSEA FDR cutoffs as well as the meta-
FDR to be used in KDA, allowing the user to focus on
the most consistent and robust disease processes across dif-
ferent datasets. In addition, we now provide heterogeneity
statistics from Cochran’s Q test to indicate the variability
between datasets.

Update on Key Driver Analysis (KDA)

KDA identifies essential regulators of disease-associated
pathways and networks, which are then visualized in the
web browser using Cytoscape.js (Figure 3). KDA results can
also be downloaded as network files ready to be used on
Cytoscape Desktop for further customization of the net-
work visualization. A Chi-square-like statistic, χ = O−E√

E− κ
,

is used to identify genes (KDs) that are connected to a sig-
nificantly larger number of disease-associated genes than
what is expected by random chance. O and E represent
the observed and expected numbers of disease-associated
genes in a hub subnetwork, and E is estimated by Nk Np

N
where Np is the disease gene set size, Nk is the hub de-
gree, and N is the full network order. KDs represent pri-
oritized disease regulatory genes based on network topol-
ogy. In numerous recent applications of Mergeomics, top
KDs have been shown to be causal for diseases based on
experimental evidence (23,27,36), thereby supporting their
importance. KDA can be utilized as a follow up analy-
sis to MSEA or Meta-MSEA, and it can also be used as
an independent analysis using a gene list of interest and
a given network as inputs. For instance, the user can up-
load a list of curated disease genes and choose or upload
a relevant network to run KDA to identify how the dis-
ease genes interact in the network and whether there are
key hub nodes in the network that regulate the disease
genes.

In Mergeomics 2.0, we added the ability to visualize input
gene overlap with a given network, if any, in the case that no
KDs were found. The user can therefore be better informed
on the reason for the lack of KD hits based on the distri-
bution and connectivity of the input genes in the network.
If few input genes are in the network or the input genes are
widely dispersed in the network, KDs may not be identified.
We have additionally increased the number of sample tissue-
specific networks (Table 1). As we have done similarly with
MSEA and Meta-MSEA, disease subnetworks or signifi-
cant KDs from KDA can be used directly for PharmOmics
drug repositioning, and users can further customize which
processes in the subnetwork are used in drug repositioning
for a more focused analysis.

DATA AND SAMPLE INPUT UPDATES

We have significantly augmented the amount of
Mergeomics-ready sample files with commonly used
datasets and will continue to actively update sample files to
enrich data resources on a monthly basis.

In Mergeomics 2.0, we include over 20 GWAS datasets
from a broader range of diseases from metabolic syndrome
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Table 1. Sample resources on Mergeomics web server. Complete list in Supplementary Tables S1–S4

General data category Data type Specifics Citation

Association data GWAS Alzheimer’s disease (71)
Attention deficit hyperactivity disorder (72)
Alcohol dependence (73)
Body mass index (74)
Breast cancer (75)
Coronary artery disease (76)
Fasting glucose (77)
Heart failure (78)
High density lipoproteins (HDL) (79)
Low density lipoproteins (LDL) (79)
Major depressive disorder (80)
Parental lifespan (81)
Parkinson’s disease (82)
Psoriasis (83)
Severe illness in COVID-19 (84)
Schizophrenia (85)
Stroke (86)
Systemic lupus erythematosus (87)
Type 2 diabetes (88)
Total cholesterol (79)
Triglycerides (79)

EWAS Birth weight (89)
Maternal anxiety (90)
Social communication (91)
Psoriasis (62,63)

Marker mapping Chromosomal distance 10kb, 20kb, 50kb (46)
Regulome RegulomeDB (ENCODE) (92)
eQTL 49 tissue types (45)
sQTL 49 tissue types (45)

Marker dependency Linkage disequilibrium 26 populations at r2 > 0.5 and > 0.7 (46)
Methylation disequilibrium r2 > 0.5 (47)

Marker sets Canonical (knowledge based) KEGG (50)
Reactome (51)
BioCarta (52)
MSigDB (49)
GO (53)
BioPlanet (55)
WikiPathways (54)

Data-driven (co-expression) 24 tissue specific modules
(WGCNA/MEGENA)

(45,56–57)

Networks Gene regulatory human and mouse
composite (Bayesian)

Adipose, blood, brain, kidney, liver, muscle (58,93–98)

Gene regulatory (GIANT) Adipose, blood, brain, kidney, liver, muscle (61)
Protein-protein interaction STRING (59)
Transcription factor-target (FANTOM5) Adipose, blood, brain, kidney, liver, muscle (60)

to psychiatric disorders (Table 1; detailed data sources and
links in Supplementary Table S1). For omics dependency
filtering options, we have added the full array of LD data
from 26 human populations studied in 1000G (46) with
LD above 0.5 and 0.7 for SNP filtering to remove redun-
dant SNPs in high LD and have also provided an example
methylation disequilibrium data file for correction of EWAS
data. For SNP to gene mapping options, we have added all
tissue-specific cis-eQTL and cis-sQTL mapping files from
the GTEx version 8 (q-value < 0.05) (45), which inform
on the SNPs associated with gene expression level changes
(eQTL) or differential splicing (sQTL). In addition, we offer
ENCODE regulatory gene mapping (48) and various chro-
mosomal location-based mapping options (Table 1; Supple-
mentary Table S2). Moreover, we have increased the num-
ber of curated pathways from version 1 to include all gene
sets from Molecular Signatures Database (MSigDB) (49)
such as KEGG (50), Reactome (51), Biocarta (52) canonical
pathways, chemical and genetic perturbation, microRNA

and transcription factor targets, and cell type marker sig-
natures, Gene Ontology (53), Wikipathways (54) and Bio-
planet (55), among others (Table 1; Supplementary Ta-
ble S3). To complement knowledge-based pathways, we in-
clude our data-driven tissue-specific co-expression network
modules utilizing GTEx transcriptome datasets and co-
expression network construction tools MEGENA (56) and
WGCNA (57) (Table 1; details of data sources, methods,
and parameters used to construct networks in Supplemen-
tary Table S3). Finally, we have constructed tissue-specific
Bayesian gene regulatory networks (58) and include them as
sample networks on the web server. We also provide human
protein-protein interaction networks (59), transcription fac-
tor networks (60) and GIANT networks (61) (Table 1; Sup-
plementary Table S4). Sample files are available to down-
load from our sample resources page (http://mergeomics.
research.idre.ucla.edu/samplefiles.php), and further clarifi-
cation on correct formatting of input data is detailed on the
web server and in Figure 2.
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Figure 3. Top KDs network visualization. Screenshot of the in-browser interactive network visualization (using Cytoscape.js) directed from the KDA
results page. The colors of the nodes represent member genes of a disease-associated pathway. The diamond shaped nodes represent KD genes, where the
border color represents the top pathway that is regulated by the KD. If a node has multiple colors, it is part of two or more disease-associated pathways,
and if a node is grey, it does not belong to the disease pathways (non-member genes) but is present in the input network.

GENERAL UPDATES

We have completely redesigned the user interface for a much
more intuitive guidance of the use of the pipeline for differ-
ent omics data types. To start the pipeline, users are pre-
sented with four workflow options in regard to their data:
(i) GWAS, (ii) EWAS, TWAS, PWAS or MWAS, (iii) mul-
tiple of the same or different types of omics data and (iv) a
gene set list (user can run KDA or PharmOmics). The sep-
aration of GWAS from other omics datasets is for the ad-
ditional need to correct for LD and link SNPs to candidate
genes through MDF, which is not required or is optional
for other omics datasets. For EWAS, a marker to gene map-
ping file is required if the user uploads epigenetic markers
such as CpG probes. For MWAS, a metabolite to gene map-
ping file is optional but not required if the user uses metabo-
lite sets as the marker sets to be tested. Marker mapping is
not needed for TWAS and PWAS as the markers (genes and
proteins) match the gene sets. This workflow design clearly
delineates what is needed for each specific data type, which
is more intuitive for the user. We have also improved the
fluidity and presentation of the pipeline workflow as each
collapsible step appears below the previous in a vertical for-
mat so that the user can revisit input files, parameters, and

results of previous steps in the pipeline and choose to rerun
a step at any point in the pipeline. A workflow map with
navigation links is also generated on the left sidebar to help
visualize the steps taken and downstream paths.

We have improved the system that allows users to return
to their session where results of analyses can be revisited
or continued onto the next step using a unique tracking
ID number that is valid for up to 48 hours after the start
of their session. The user can also choose to have their re-
sults emailed upon completion of the analysis, which is not
mandatory but is recommended because the tracking ID
allows the user to reload their session and retrieve com-
pleted jobs in case a crash occurs. Because later steps of
the pipeline, KDA and PharmOmics, can be run indepen-
dently, downloadable result files from MSEA and KDA can
be uploaded directly to the desired next step in the anal-
ysis (e.g. MSEA to KDA/PharmOmics or KDA to Phar-
mOmics).

In addition, we have improved case-specific responsive-
ness of the web server to better inform the user such as error-
checking of user uploaded files to ensure the file is format-
ted correctly and providing feedback on user results such as
whether the results are substantial enough to be used in the
next step of the analysis. Across all applications of Merge-
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Figure 4. Meta-MSEA use case study overview. To showcase the function and output of the web server, we utilized multiple human psoriasis GWAS and
EWAS data and ran the multiple omics data workflow (Case 3 in Figure 1, Meta-MSEA). Firstly, we uploaded the psoriasis GWAS data, mapped the
SNPs to genes using a combined skin and blood eQTL file, and filtered for LD > 0.7 to remove redundant SNPs in LD. Next, we uploaded our psoriasis
EWAS association datasets and mapped the CpG sites to genes based on a 5 kb distance. Finally, we uploaded KEGG pathways with a psoriasis control set.
Pathway enrichment results are produced, and each pathway’s top genes, markers, and corresponding association values are displayed. Psoriasis-associated
pathways are used as input into KDA as well as PharmOmics drug repositioning (using genes from significant pathways/modules). In the KDA, along with
the Meta-MSEA input, we chose the blood GIANT network option and ran the KDA providing KD results and visualization (Figure 3) and additionally
utilized the network genes as an input into PharmOmics. Finally, two sets of drug repositioning results were produced using gene overlap-based drug
repositioning in PharmOmics: one based on the genes of significant pathways from the Meta-MSEA results and the other based on the KDA subnetwork
genes.

omics 2.0 we have provided an improved review of analysis
inputs and parameters and new interactive tables with pag-
ination, sorting, and search features (Figure 5). We also im-
plemented real-time runtime analysis output and progress
updates, and this job log including any errors that occurred
is available for download at the conclusion of the analysis.
Finally, we have improved multi-device usage including on
tablets and phones such that it can be appropriately viewed
on different screen sizes. We further improved the tutorial
to explain input file preparation, parameter setting, and the
underlying methods of each computational function and
provide video tutorials to demonstrate the different pipeline
options.

USE CASE: IDENTIFYING PATHOGENIC PATHWAYS
AND NETWORKS FOR PSORIASIS BASED ON
MULTI-OMICS DATA

The use case described here utilizes publicly available
GWAS and EWAS data to perform Meta-MSEA and sub-
sequently KDA to find pathogenic pathways and regula-
tors of psoriasis (Figure 4). All data used in this example
are provided as sample data on the web server which can

be downloaded (http://mergeomics.research.idre.ucla.edu/
samplefiles.php). GWAS of psoriasis was obtained from
dbGAP database (www.ncbi.nlm.nih.gov/gap) with acces-
sion phs000019.v1.p1, and two EWAS of psoriasis were
obtained from GEO (GSE31835 and GSE63315) (62,63).
For preprocessing of the GWAS data, we use the top
50% of SNPs ranked by −log10 P-value and correct for
LD between SNPs using MDF with the psoriasis GWAS
summary statistics as the marker associations, combined
skin and blood eQTLs as the SNP to gene mapping,
and the 1000G CEU LD structure containing SNPs with
r2 > 0.7 as the marker dependency file. For the EWAS
data, CpG sites are mapped to adjacent genes within 5
kb. Next, we chose canonical pathways from the KEGG
database and a positive control gene set from the NHGRI-
EBI GWAS catalog (64) for psoriasis as the pathways or
marker sets to be examined. We ran Meta-MSEA across
the GWAS and two EWAS datasets. At the conclusion of
Meta-MSEA, a set of results files and a summary table
display are generated on the webpage detailing the path-
ways ranked by meta P-value and their top markers and
corresponding mapped genes (Figure 5A; Supplementary
Table S5).
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Figure 5. Output files from Meta-MSEA, KDA, and PharmOmics based on the case study of psoriasis outlined in Figure 4. Tables are interactive with
pagination, search, and sort functions. Result files are downloadable from links on the webpage above the output tables (not shown). (A) Example Meta-
MSEA output from the psoriasis use case. The table shown details the significance of association of each pathway/module and the top markers and
corresponding association strengths that contributed to the module association. There are two additional tables which can be displayed by clicking on
the tabs to the right of ‘Module Results’ at the top. The second table shows the significance and details of merged modules after merging redundant
pathways (termed ‘Supersets’), and these non-overlapping gene sets are used as input to KDA. The third table shows the individual significance values for
each omics dataset included in this Meta-MSEA of one GWAS and two EWAS of psoriasis. (B) Example KDA output from the psoriasis use case. The
table shown records the significance of KDs, the pathways/modules that they regulate based on network topology, and details of the local subnetwork
such as the number of KD subnetwork genes and number of pathway/module gene overlap with the KD subnetwork. Merged pathways/modules are
represented by the term ‘Superset’, which means they are comprised of multiple redundant (significant gene overlap) pathways. (C) Example PharmOmics
drug repositioning output using a gene overlap-based analysis between disease pathways and drug signatures. Gene overlap-based drug repositioning
queries all tissue- and species-specific meta-analyzed and dose/time segregated gene signatures of drugs in our PharmOmics database as well as all L1000
drug signatures. The table shown gives the dataset source of the drug signature, the method of differential gene expression analysis, details of the drug study
including species, tissue or cell line, whether the study was done in vitro or in vivo, the dose and time regimen, the Jaccard score, and statistical significance
of the gene overlap between the input psoriasis related genes from Meta-MSEA and the drug signatures.
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As shown in Figure 5A, ‘Cytokine cytokine receptor in-
teraction’, ‘Graft versus host disease’ and ‘Natural killer
cell mediated cytotoxicity’ were three of the top pathways
identified among others. Following Meta-MSEA, KDA was
run with default parameters using non-redundant supersets
(pathways that were merged due to significant overlap in
gene members) significantly associated with psoriasis from
Meta-MSEA and a blood GIANT Bayesian gene regula-
tory network (61) (chosen due to the relevance of the im-
mune system to psoriasis) to identify KDs of the disease
related gene sets. At the conclusion of the KDA, a table is
produced on the webpage listing the KDs and significance
of enrichment of psoriasis-associated gene sets in their net-
work neighborhood (Figure 5B; Supplementary Table S6).
For example, ICAM2 is identified as the KD for the viral
myocarditis/tight junction/autoimmune pathway, and CD2
is identified as a KD for the Autoimmune Disease Superset.
By default, the top five KDs and their local subnetworks
from each gene set is included in the interactive subnetwork
visualization in the browser (Figure 3).

With addition of the PharmOmics pipeline to the Merge-
omics web server, we ran two drug repositioning analyses:
one directly from the MSEA results and the other consid-
ering the whole subnetwork derived from the KDA (Figure
5C; Supplementary Table S7). In this case study, we do not
consider gene expression direction changes (upregulation
or downregulation) in psoriasis and therefore will simply
be utilizing genes involved in disease without considering if
they are protective or pathogenic; thus, our predicted drug
list will contain drugs that can induce as well as drugs that
can potentially treat psoriasis. In addition, PharmOmics
interrogates all drug signatures regardless of the tissue or
species, and the user can choose to focus on the relevant
drug studies for their given dataset. For example, we mainly
focused on drugs that were studied in integument tissue, due
to its relevance to psoriasis. In the top 10 repositioned drugs
derived from psoriasis associated gene sets from Meta-
MSEA, we find 8/10 to have prior association with a role
in psoriasis pathogenesis (Imiquimod (65)) or treatment
including broad options suggesting classes of drugs such
as anti-inflammatory, immunosuppressant, JAK inhibitors,
and anti-rheumatic drugs and more specific options such as
Baricitinib (66), Ingenol (67), and Etinostat (68) (Figure 5C;
Supplementary Table S7). Similarly, using the psoriasis sub-
network from the KDA highlights Imiquimod and Ingenol
within the top 10 drugs, and the remainder of the results are
broad categories such as JAK inhibitors, anti-inflammatory
drugs, and anti-rheumatic drugs (Supplementary Table S8),
each of which are actively being investigated in the treat-
ment of psoriasis (69,70). The predicted drugs can form new
hypotheses for experimental testing.

FUTURE DIRECTIONS

The web server will continue to actively incorporate the
most up-to-date public resources including multi-omics as-
sociation data, functional genomics data such as eQTLs or
protein QTLs (pQTLs), knowledge-based pathways, gene
co-expression networks, and gene regulatory networks on
a monthly basis. We will also include single cell networks

when available to understand the gene regulatory connec-
tions within a given cell type or between cell types rather
than across a whole tissue, which will offer higher resolution
molecular mechanisms of disease pathogenesis. Cell type
level association data derived from single cell omics studies
can be used in the current platform. We will also continue
incorporating additional analytical functions into the web
server such as different forms of meta-analysis that can be
conducted within the Meta-MSEA tool as well as adding
new features to better accommodate analysis of data types
that are currently not considered or well tested, such as gut
microbiome and spatial transcriptomics data.

CONCLUSION

Thanks to advancements in technologies, the number of
multi-omics data (GWAS, EWAS, TWAS, PWAS and
MWAS) increases exponentially. The systems biology ap-
proach to interrogate multi-tissue multi-omics data has be-
come a promising method to understand biology in a data-
driven way and sheds light on the hidden mechanisms. How-
ever, the computational knowledge and skills required to
perform such integrative analysis are often considered as a
hurdle to many biologists. Therefore, the Mergeomics web
server was developed to lower this barrier to enable fel-
low researchers to dive into multi-omics systems biology.
The current update, Mergeomics 2.0, is a versatile web-
based tool that provides multi-omics data integration us-
ing a pathway- and network-based approach. The improve-
ments we made support a wide range of pre-calculated net-
works and data for all steps of the pipeline to fulfill a variety
of needs and research purposes. In addition, the new user
interface presents a more intuitive and flexible environment
that greatly improves its ease of use. In addition to a de-
tailed tutorial, each step of the pipeline contains embedded
guidance to facilitate the user experience. We believe that
the Mergeomics 2.0 and systematics approach applied here
will accelerate our understanding of complex diseases and
guide therapeutics.

DATA AVAILABILITY

Sample resources are available on our sample resources
page on the Mergeomics web server (http://mergeomics.
research.idre.ucla.edu/samplefiles.php), and the R package
for Mergeomics can be found on (https://bioconductor.org/
packages/release/bioc/html/Mergeomics.html).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Fatemifar,G., Hedman,Å.K., Wilk,J.B., Morley,M.P., Chaffin,M.D.
et al. (2020) Genome-wide association and Mendelian randomisation
analysis provide insights into the pathogenesis of heart failure. Nat.
Commun., 11, 163.

79. Willer,C.J., Schmidt,E.M., Sengupta,S., Peloso,G.M., Gustafsson,S.,
Kanoni,S., Ganna,A., Chen,J., Buchkovich,M.L., Mora,S. et al.
(2013) Discovery and refinement of loci associated with lipid levels.
Nat. Genet., 45, 1274–1283.

80. Coleman,J.R.I., Peyrot,W.J., Purves,K.L., Davis,K.A.S., Rayner,C.,
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Conservation and divergence of vulnerability and
responses to stressors between human and mouse
astrocytes
Jiwen Li 1, Lin Pan1, William G. Pembroke2, Jessica E. Rexach2, Marlesa I. Godoy 1, Michael C. Condro1,
Alvaro G. Alvarado1, Mineli Harteni1, Yen-Wei Chen3, Linsey Stiles 4, Angela Y. Chen 5, Ina B. Wanner1,6,
Xia Yang3,7,8,9, Steven A. Goldman10,11, Daniel H. Geschwind 1,2,12, Harley I. Kornblum1,6,9,13 &
Ye Zhang 1,6,8,9,14✉

Astrocytes play important roles in neurological disorders such as stroke, injury, and neuro-

degeneration. Most knowledge on astrocyte biology is based on studies of mouse models and

the similarities and differences between human and mouse astrocytes are insufficiently

characterized, presenting a barrier in translational research. Based on analyses of acutely

purified astrocytes, serum-free cultures of primary astrocytes, and xenografted chimeric

mice, we find extensive conservation in astrocytic gene expression between human and

mouse samples. However, the genes involved in defense response and metabolism show

species-specific differences. Human astrocytes exhibit greater susceptibility to oxidative

stress than mouse astrocytes, due to differences in mitochondrial physiology and detox-

ification pathways. In addition, we find that mouse but not human astrocytes activate a

molecular program for neural repair under hypoxia, whereas human but not mouse astrocytes

activate the antigen presentation pathway under inflammatory conditions. Here, we show

species-dependent properties of astrocytes, which can be informative for improving trans-

lation from mouse models to humans.
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M ice are one of the most widely used experimental ani-
mals in biomedical research due to the ease with which
they can be genetically manipulated and the many

paradigms that translate well between species. However, humans
and mice differ greatly in body size, life span, ecological niche,
behavior, and pathogenic challenges. Many mouse models of
neurodegenerative disorders exhibit milder neuron degeneration
phenotypes compared with human patients1–4. Mouse models of
ischemic stroke can often achieve full functional recovery5,
whereas human patients frequently have irreversible functional
deficits. These limitations represent a key barrier in translational
research, as over 90% of neurological drug candidates with pro-
mising animal data failing in human clinical trials6. Therefore, a
full understanding of the cellular and molecular differences
between the human and mouse brain is urgently needed.

Astrocytes are critical for many aspects of development and
function in the central nervous system (CNS)7–23. Most of our
knowledge on the biology of astrocytes is based on studies using
mouse astrocytes. Aside from human astrocytes being larger and
morphologically more complex than mouse astrocytes24,25, little
is known about the similarities and differences between human
and mouse astrocytes, particularly their responses to disease-
relevant perturbations. Because of this knowledge gap, it is
challenging to harness the knowledge gained from mouse astro-
cytes to elucidate the biology of human astrocytes and their roles
in neurological disorders.

In this study, we systematically examined human astrocytes
under three conditions: acutely purified, cultured without serum,
and xenografted into mouse brains. We found extensive con-
servation between human and mouse astrocyte transcriptomes,
but also identified important differences between mouse and
human astrocytes that were maintained across all three condi-
tions. We identified striking differences in the cell survival,
mitochondrial physiology, and molecular responses of human
and mouse astrocytes under oxidative stress, hypoxia, inflam-
matory cytokine treatment, and simulated viral infections. These
findings reveal important mechanistic differences between human
and mouse astrocytes and provide insight into how mouse models
of neurodegeneration and stroke can be improved to achieve
better translation to humans.

Results
Immunopanned astrocytes exhibit resting transcriptome pro-
files. We recently developed an immunopanning method for the
acute purification of human astrocytes and a serum-free chemi-
cally defined medium that keeps human astrocytes healthy for at
least six weeks in vitro (Fig. 1a–c)26. Here, we tested whether
immunopanned human astrocytes resemble resting or reactive
astrocytes by RNA sequencing (RNA-seq). We assessed the
expression of genes previously found to be induced by stroke and
inflammation in mouse astrocytes27. The expression of these
genes was significantly lower in cultured immunopanned astro-
cytes than in serum-selected astrocytes (average fold change =
0.18; false discovery rate (FDR)= 0.032; Fig. 1d). In addition, we
identified reactive astrocyte genes induced in inflammatory con-
ditions in humans (see below) and again found lower expression
of these genes in cultured immunopanned astrocytes than in
serum-selected astrocytes (Supplementary Fig. 1). Both immu-
nopanned and serum-selected human astrocyte cultures exhibited
high expression of astrocyte-specific genes and low or undetect-
able levels of genes specific to neurons, microglia, oligodendrocyte
precursor cells, or endothelial cells (Supplementary Fig. 2).

To examine the extent to which immunopanned human
astrocytes could model in vivo astrocytes, we performed immuno-
panning purification of human astrocytes and harvested RNA (1)

immediately after purification to capture the in vivo gene signature
(referred to as acutely purified thereafter) and (2) after 4–6 days of
culturing in our serum-free chemically defined medium (referred to
as serum-free cultured thereafter). We then performed RNA-seq
and compared the transcriptomes of acutely purified and cultured
human astrocytes. We found that the gene expression from the
serum-free astrocyte cultures more closely resembled acutely
purified astrocytes than astrocytes obtained using the traditional
serum-selected method (Spearman’s correlation = 0.97 vs. 0.92;
these correlation coefficients are significantly different; p < 0.0001;
Fig. 1e, f, Supplementary Fig. 3 and Supplementary Data 1 and 2).
We performed principal component analysis (PCA) and found that
acutely purified astrocytes and serum-free cultures of astrocytes are
more similar to each other than to serum-selected astrocytes
(Supplementary Fig. 4). Overall, immunopanned human astrocytes
recapitulate the expression of the majority of genes expressed by
astrocytes in vivo and therefore represent a useful platform for
studying human astrocyte biology.

Species-dependent astrocytic gene expression. We compared the
acutely purified human astrocytes described above with corre-
sponding mouse transcriptome data that we previously
collected26,28. The overall gene expression profiles showed con-
servation between human and mouse astrocytes (Spearman’s
correlation ρ = 0.78; Fig. 1g). However, thousands of genes
exhibited significant differences in expression between species
(8091 genes, FDR < 0.05; genes with percentile rankings in the top
two-thirds of both species were included; Fig. 1h; Supplementary
Fig. 5). To pinpoint the genes and pathways that differed between
human and mouse astrocytes, we analyzed protein-interaction
networks and gene ontology (GO) terms. We found that the
genes expressed at higher levels by mouse compared to human
astrocytes were enriched in multiple GO terms associated with
metabolism (Fig. 1i and Supplementary Data 3). In contrast,
genes expressed at higher levels by human compared to mouse
astrocytes were enriched in a single GO term, defense response
(Fig. 1j and Supplementary Data 3). We analyzed the subcellular
localization of proteins encoded by genes differentially expressed
between human and mouse astrocytes. Interestingly, mouse
astrocytes showed higher expression of genes associated with the
compartment mitochondria, whereas human astrocytes showed
higher expression of genes assigned to extracellular space (Fig. 1i, j),
including secreted cytokines. The top hub genes with the most
protein-protein interactions with other genes in the network include
IL6, a cytokine involved in inflammation, and TLR4, a Toll-like
family receptor that mediates responses to bacterial lipopoly-
saccharide, in the genes with higher expression in humans, and
Ndufa7 and Ndufb7, mitochondrial respiratory chain components,
in the genes with higher expression in mouse (Supplementary
Data 4). To assess whether gene expression differences between
human and mouse astrocytes can be found in other independent
datasets, we analyzed single-cell and single-nucleus RNA-seq
datasets from human and mouse brains29. We found that the
human-mouse expression differences determined from our immu-
nopanned astrocyte bulk RNA-seq data correlate with the human-
mouse expression differences derived from single-cell RNA-seq data
(r2= 0.35; Supplementary Fig. 6), confirming that our approach of
using acutely purified astrocytes from human and mouse can
recapitulate the species differences in astrocytes observed in vivo.
The human-mouse gene expression differences we identified are
consistent across 15 mouse strains (Supplementary Fig. 7).

The human-specific gene signature is intrinsically pro-
grammed. The higher expression of defense response genes by
human astrocytes could be a result of either intrinsic properties or
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differences in external factors (e.g., neuronal or glial cell types,
systemic or environmental variations) between human and
mouse samples. To assess differences between mouse and human
astrocytes when exposed to equivalent external environments, we
transplanted human astrocytes into mouse brains and compared
them with the neighboring host mouse astrocytes30–32 . We

purified primary human fetal astrocytes, and then injected them
into the brains of neonatal mice (Fig. 2 a). We aged the xeno-
grafted chimera mice for about 8 months, and then confirmed
widespread distribution of human astrocytes in the host mouse
brains (Fig. 2 b–e). We then purified all astrocytes (human and
mouse) from the chimeric mice by immunopanning and
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performed RNA-seq. We exploited DNA sequence differences
between human and mouse genes in order to separate sequencing
reads of human vs. mouse origin at the mapping step. This
approach allowed us to obtain the transcriptome profile of human
astrocytes grafted in a host mouse brain (Supplementary Data 5).

To test whether the human-specific astrocyte gene signature is
intrinsically programmed or induced by other cell types in the
human brain environment, we compared gene expression
differences between human and mouse astrocytes using both
the acutely purified and the xenograft/host dataset. We reasoned
that human-mouse astrocyte differences would be attenuated in
the xenograft model if the astrocyte differences were driven by
human-specific environmental factors. We calculated gene
expression differences between human and mouse astrocytes
based on the acutely purified dataset (hmDiff_acute) and the
chimera dataset (hmDiff_chimera) (Fig. 2f; Supplementary Fig. 8).
The heatmaps (Fig. 2f; Supplementary Fig. 8) show differentially
expressed genes based on these two datasets. If the species-
specific gene expression patterns were determined by the host
environment, then differentially expressed genes across species
based on the acutely purified dataset would not be differentially
expressed in the xenografted dataset (i.e., the xenografted column
of the heatmap would appear white). Instead, we observed similar
patterns of species-specific gene expression across the acutely
purified and xenografted datasets. We found a positive correlation
between hmDiff_acute and hmDiff_chimera (Pearson’s correla-
tion = 0.60 for all genes; Pearson’s correlation = 0.85 for genes
with percentile differences > 0.4; Fig. 2f and Supplementary
Fig. 8). We also calculated gene expression correlations between
transplanted human astrocytes and acutely purified human/
mouse astrocytes and found that transplanted human astrocytes
resemble human astrocytes more than mouse astrocytes (i.e., the
correlation coefficient of transplanted human vs. acutely purified
human was significantly higher than that of transplanted human
vs. acutely purified mouse; p < 0.0001; Supplementary Fig. 9a, b).
These analyses suggest that the human-specific astrocyte gene
signature is largely intrinsically programmed, with only minor
environmental contributions by neurons and other cell types in
the human brain.

One challenge that has limited human astrocyte research is the
difficulty in obtaining mature cells for experimental manipula-
tions, due to (1) the limited availability of fresh healthy adult
human brain tissue and (2) the restriction that stem cell-derived
human astrocytes mostly resemble developing stages33–35. Here,
we found that certain genes that are expressed in acutely purified
astrocytes in vivo, but lost in culture, are regained in xenografted

astrocytes (Fig. 2g). In fact, the xenografted human astrocytes
were able to reach mature stages that are difficult to access in
in vitro models (Fig. 2h; Supplementary Fig. 9c–e), allowing us to
observe the persistence of mouse and human transcriptomic
differences across a broad developmental range. Therefore, in
addition to identifying consistent species differences in astrocyte
transcriptomic profiles across acutely purified, cultured, and
xenografted conditions, we established the xenograft model as a
much-needed platform for studying mature human astrocytes
in vivo.

To assess how the introduction of human astrocytes may
change host mouse astrocytes, we compared the transcriptome of
host mouse astrocytes (this study) with naïve mouse astrocytes
from a similar age26 and found differentially expressed genes
(Supplementary Data 6 and 7).

Species-dependent susceptibility to oxidative stress. To examine
responses of human and mouse astrocytes to environmental
perturbations, we treated human and mouse astrocytes with sev-
eral disease-relevant stimuli—including oxidative stress, hypoxia,
simulated viral infection, and an inflammatory cytokine—and
evaluated the responses.

Oxidative stress is produced by reactive oxygen species (ROS)
such as peroxides, superoxide, hydroxyl radical, singlet oxygen,
and alpha-oxygen. ROS are byproducts of normal metabolism in
most cell types in the body. Importantly, during pathogen
invasion, tissue damage, and inflammation, immune cells such as
neutrophils and macrophages produce high levels of ROS that
help fend off pathogen infections but may also damage healthy
cells in infected tissue. In the brain, oxidative stress is a key
pathological process underlying neurodegenerative disorders
(such as Alzheimer’s disease, Parkinson’s disease, Huntington’s
disease, and amyotrophic lateral sclerosis), stroke, and traumatic
injury.

To examine responses of human and mouse astrocytes to
oxidative stress, we purified human and mouse astrocytes from
developmentally equivalent stages [gestational week 17–20 for
human brains and postnatal day 1–3 (P1–3) for mouse brains; see
Methods for details on developmental stage matching]. Astro-
cytes have been shown to be regionally heterogeneous36. There-
fore, whenever possible, we matched anatomical locations in
human and mouse brains. We used whole cerebral cortex for
astrocyte purification for all mouse samples and a subset of
human samples with a clearly identifiable cerebral cortex. In cases
where identification of cerebral cortex was difficult due to tissue

Fig. 1 Comparison of astrocyte transcriptomes in vivo and in vitro and between human and mouse. a An astrocyte bound to an anti-HepaCAM antibody-
coated petri dish during immunopanning purification. RNA was extracted immediately after the cells stuck to the dish. These samples are referred to as
acutely purified. Scale bar: 10 μm. b Astrocytes in serum-free culture stained with anti-GFAP antibodies. Scale bar: 50 μm. c A bright-field image of an
astrocyte in serum-free culture. Scale bar: 20 μm. d Expression of reactive astrocyte marker genes in serum-selected and serum-free cultures of human
astrocytes. Z-score is calculated as (RPKM—average RPKM across all samples)/standard deviation. Genes with FDR < 0.1 between serum-selected and
serum-free cultures and RPKM> 1.5 are shown. e, f Scatter plots and Spearman’s correlation coefficients (ρ) of gene expression between cultured and
acutely purified human astrocytes using the serum-selected culture method and our serum-free culture method. For each condition, gene expression
across 3–5 patient samples was averaged. Only protein-coding genes were included. Two-tailed t-test. p < 2.2×10−16. g Scatter plot and Spearman’s
correlation of gene expression between acutely purified human and mouse astrocytes. Two-tailed t-test. p < 2.2×10−16. Human brain tissue was derived
from donors of different ages (8–63 years). Mouse brain tissue was derived from postnatal and adult mice. Additional information is provided in
Supplementary Data 8. h Number of genes with similar or species-dependent expression. Genes with percentile rankings in the top two-thirds were
included in this analysis to eliminate those not expressed or expressed at very low levels. Percentile rankings of the expression of each gene were
compared across human and mouse astrocyte samples and differences were tested by Welch’s T-test followed by post-hoc multiple comparison
adjustment using the Benjamini and Hochberg FDR method124–126. FDR < 0.05. i, j Protein interaction networks of genes expressed at higher levels by
mouse astrocytes than human astrocytes (i) and at higher levels by human astrocytes than mouse astrocytes (j) (percentile ranking difference > 0.4). FDR
< 0.05. Blue: genes associated with the GO term metabolism. Green: genes associated with the cellular component mitochondria. Red: genes associated
with the GO term defense response. Yellow: genes associated with the cellular component extracellular.
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fragmentation, we selected, to the best of our ability, fragments
most likely to be cortex (large thin sheets).

We performed immunopanning purification to obtain human
and mouse astrocytes, plated them at similar densities, and
cultured them using identical growth media. To examine
responses of human and mouse astrocytes to oxidative stress,

we treated cells cultured 3 days in vitro (div) with 100 μM H2O2.
We then examined cell survival by staining with the live-cell dye
calcein-AM and the dead-cell dye ethidium homodimer, 18 h
after treatment onset (Fig. 3a). We found that human astrocytes
were much more susceptible than mouse astrocytes to oxidative
stress (survival rates: 0.29 ± 0.01 for human astrocytes and
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0.54 ± 0.01 for mouse astrocytes; Fig. 3b–d; p < 0.001; data
represent average ± SEM unless otherwise noted). Since plating
density, H2O2 concentration, and treatment duration may affect
cell survival, we tested different combinations of these conditions
and again found that human astrocytes were much more
susceptible than mouse astrocytes to oxidative stress (Supple-
mentary Fig. 10).

Species differences in mitochondrial respiration. Mitochondria
are both sources and targets of ROS: the mitochondrial respira-
tion chain produces ROS, and ROS (either endogenous or exo-
genous) can damage mitochondrial function. Furthermore,
mitochondria play important roles in cell death. Therefore, to
identify the cellular mechanisms underlying the striking differ-
ence in the susceptibilities of human and mouse astrocytes to
oxidative stress, we examined mitochondrial metabolism in these
cells. We purified human and mouse astrocytes, cultured them
under the same conditions and assessed mitochondrial
metabolism.

Although human astrocytes are larger than mouse astrocytes
in vivo25 and in vitro26, the basal respiration rate per mouse
astrocyte (oxygen consumption rate, OCR) is almost twice as high
compared with human astrocytes (mouse: 1.41±0.11 pmol/min
per 1000 cells; human: 0.71±0.09 pmol/min per 1000 cells; p <
0.05; Fig. 4a). Furthermore, respiration for ATP production is
also higher in mouse than human astrocytes (mouse: 1.02±0.06
pmol/min per 1000 cells; human 0.58±0.08 pmol/min per 1000
cells; p < 0.05. Fig. 4b). Human and mouse astrocytes were plated
at similar densities and cultured with identical media for all
metabolic experiments (Supplementary Fig. 11).

These differences in the mitochondrial respiration rates in
human and mouse astrocytes raised the question of whether
energy substrates are utilized differently in these cells. Glucose is
the predominant energy substrate in healthy brains. Through
glycolysis, glucose becomes pyruvate, leading to two alternative
metabolic pathways (Fig. 4j): (1) Pyruvate can be converted to
acetyl-CoA, enter the tricarboxylic acid cycle, and eventually be
converted to substrates of oxidative phosphorylation and produce
ATP. This process occurs intracellularly within astrocytes. (2)
Pyruvate can be converted to lactate and exported to the
extracellular space. Neurons can take in lactate and use it as an
energy substrate, although the astrocyte-neuron-lactate-shuttle
hypothesis remains controversial. To examine the usage of
glucose by the two alternative pathways in human and mouse
astrocytes, we used Seahorse Respirometry’s pH-sensitive electro-
des to measure the extracellular acidification rate (ECAR), an
approximate measure of lactate production and the glycolysis
rate, and compared the ECAR to OCR, an approximate measure
of the oxidative phosphorylation rate. We found that the OCR/
ECAR ratio was higher in mouse astrocytes than in human
astrocytes (Fig. 4c). Thus, mouse astrocytes may utilize a larger

proportion of glucose for oxidative phosphorylation, which
provides energy for astrocytes themselves, whereas human
astrocytes utilize a larger proportion of glucose for lactate
production, which may serve as an energy substrate for neurons.

Having identified metabolic differences between human and
mouse astrocytes in unperturbed conditions, we next examined
changes in mitochondrial metabolism and physiology under
oxidative stress in human and mouse astrocytes. We treated the
astrocytes with 100 μM H2O2 and measured OCR 1, 3, and 5 h
after treatment onset. While mouse astrocytes exhibited a small
increase, human astrocytes exhibited a substantial reduction of
OCR under oxidative stress (Fig. 4f, g; mouse: 0 hr 1.41 ± 0.11, 5
hr 1.66 ± 0.12, p < 0.05; human: 0 hr 0.71 ± 0.09, 3 hr 0.53 ± 0.08,
p < 0.05). Similarly, we found that ATP-linked OCR is stable in
mouse astrocytes but reduced in human astrocytes under oxidative
stress (Fig. 4h, i). Therefore, mitochondria from mouse astrocytes
are highly resilient to oxidative damage; these organelles may work
harder as an adaptive response to oxidative damage and, as a
result, produce more ATP for cellular protective pathways (see
section on the detoxification pathway below). In contrast,
mitochondria from human astrocytes are quickly damaged and
cannot keep up with the cellular energy demand when exposed to
oxidative stress.

To further examine the physiological status of mitochondria
under oxidative stress, we performed fluorescence imaging using
tetramethylrhodamine ethyl ester (TMRE), a dye sensitive to the
membrane potential across the mitochondrial inner membrane37.
We found that the mitochondrial membrane potential remained
largely stable in mouse astrocytes but depolarized quickly in
human astrocytes (Fig. 4d, e; mouse 0.81 ± 0.02 at 1 hr, 0.74 ±
0.03 at 3 hr, not significant; human 0.77 ± 0.04 at 1 hr, 0.48 ± 0.03
at 3 hr, p < 0.05). Therefore, mitochondria in human astrocytes
are more susceptible to oxidative damage than those in mouse
astrocytes.

Species-dependent expression of detoxification pathway genes.
The species differences in oxidative stress susceptibility may be
because mouse astrocytes have evolved adaptive mechanisms,
such as more efficient detoxification pathways, under high ROS
conditions that render protection against oxidative stress. To
test this hypothesis, we examined the function of the peroxi-
some, an organelle involved in ROS detoxification38. We
blocked mitochondrial oxidation with Antimycin A, which
binds and inactivates Complex III39, to focus on non-
mitochondrial oxygen consumption, which has a large con-
tribution from peroxisomal oxidation40. We found that the
non-mitochondrial oxygen consumption rate was higher in
mouse astrocytes than in human astrocytes (Fig. 5c), consistent
with the possibility that peroxisome oxidation operates faster in
mouse astrocytes than human astrocytes. To evaluate molecular
differences in ROS detoxification pathways, we purified human

Fig. 2 The human-specific astrocyte gene signature is intrinsically programmed. a Experimental design. Gestational week 18 primary human astrocytes
were purified and injected into the brains of neonatal immunodeficient Rag2-knockout mice. After about 8 months, we purified astrocytes from xenografted
mouse brains by immunopanning. The astrocytes from both human grafts and mouse hosts were sequenced together and reads were mapped to human
and mouse genomes, respectively. GW, gestational week. P, postnatal day. b–d Xenografted human cells in host mouse brains stained with an antibody
against human nuclei (green). Scale bar: 100 μm. Dashed lines delineate the corpus callosum. e Xenografted human astrocytes in host mouse brains
stained with an anti-GFAP antibody that only reacts with human GFAP but not mouse GFAP. Scale bar: 50 μm. f Species differences in gene expression
(shown as percentile ranking in human minus percentile ranking in mouse) in xenografted and acutely purified astrocytes highly correlate. Genes with
percentile rankings > 0.33, species differences with FDR < 0.05, and species differences in percentile ranking > 0.4 are shown. r, Pearson’s correlation
coefficient. g Non-supervised hierarchical clustering of gene expression in serum-free cultures, acutely purified astrocytes, and transplanted human
astrocytes. Genes with significant differences between cultured and acutely purified astrocytes (FDR < 0.05, fold change > 4, average RPKM> 1) are
shown. h Non-supervised hierarchical clustering of gene expression of acutely purified astrocytes from patients of different ages and transplanted human
astrocytes. Genes with significant differences between age groups (fetal, child, adult; FDR < 0.05, fold change > 2, maximum RPKM> 1) are shown.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24232-3

6 NATURE COMMUNICATIONS | ��������(2021)�12:3958� | https://doi.org/10.1038/s41467-021-24232-3 | www.nature.com/naturecommunications



 

166 

 

and mouse astrocytes by immunopanning26,28,41 and per-
formed RNA-seq immediately after purification and after
5–6 days of culture in serum-free conditions (this study). We
found that the gene encoding a major peroxisomal ROS
detoxification enzyme, catalase42, is expressed at 3–6-fold
higher levels by mouse astrocytes than by human astrocytes

[reads per kilobase per million mapped reads (RPKM): acutely
purified, 2.04±0.24 for human astrocytes and 5.67±0.38 for
mouse astrocytes; in vitro, 1.14±0.10 for human astrocytes and
7.60±0.71 for mouse astrocytes; Fig. 5a]. An additional mole-
cular pathway, the pentose phosphate pathway, produces
NADPH, which neutralizes ROS43. The rate-limiting step of the

Fig. 3 Human astrocytes are more susceptible to oxidative stress than mouse astrocytes. a Experimental design. Hr, hour. b Human and mouse
astrocytes treated with H2O2 or medium control stained with the live cell dye calcein-AM (green) and the dead cell dye ethidium homodimer (red). Scale
bar: 200 μm. c Survival rate. Mouse astrocytes: N= 50 images from 12 cultures treated with medium control and 54 images from 12 cultures treated with
H2O2 generated from 6 litters of mice. Human astrocytes: N= 31 images from 7 cultures treated with medium control and 26 images from 6 cultures
treated with H2O2 generated from 3 patients. Data are presented as mean ± SEM in all figures, unless otherwise indicated. Mouse astrocytes: control vs.
H2O2, p= 0.0039. H2O2-treated mouse astrocytes vs. H2O2-treated human astrocytes, p= 0.0002. Human astrocytes: control vs. H2O2, p < 0.0001. *p <
0.05, **p < 0.01, ***p < 0.001 in all figures. Two-way analysis of variance (ANOVA) with Tukey’s test for multiple comparisons. N.S., not significant. The p-
values were calculated using average results from each litter of mice and each patient as independent observations, unless otherwise indicated. d Survival
rate of astrocytes treated with H2O2 normalized to the survival rate of medium control-treated cells. Replicate numbers N are defined in (c). p= 0.0096.
Two-tailed unpaired Welch’s t-test.
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pentose phosphate pathway is catalyzed by glucose-6-
phosphate dehydrogenase (G6PD), an important antioxidant
enzyme44. Using RNA-seq, we found that G6PD gene expres-
sion is 2–10-fold higher in mouse astrocytes than in human
astrocytes (RPKM: acutely purified, 0.17±0.05 for human
astrocytes and 2.14±0.48 for mouse astrocytes; in vitro, 2.05
±0.32 for human astrocytes and 4.39±0.32 for mouse astrocytes;
Fig. 5b). The expression levels of CAT and G6PD were con-
sistently higher in 15 strains of mice compared to humans
(Supplementary Fig. 12). We also explored other major

detoxification pathways and found generally comparable
expression by human and mouse astrocytes. Taken together,
higher amounts of catalase and G6PD may protect mouse
astrocytes from oxidative stress (Fig. 5d, e).

As we performed all our in vitro functional experiments using
developing astrocytes, we next obtained RNA-seq data from adult
human and mouse astrocytes (Supplementary Data 8). Notably, the
species differences persisted throughout development and adulthood
(Fig. 5a, b). Oxidative stress is a core pathological process in a range
of neurological conditions, including neurodegenerative disorders
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such as Alzheimer’s disease, Parkinson’s disease, Huntington’s
disease, and amyotrophic lateral sclerosis. Mouse models of
neurodegenerative disorders often have milder phenotypes com-
pared to human patients1–4. Our findings suggest that differences in
astrocytic responses to oxidative stress may contribute to the
increased resiliency of mouse models of neurodegeneration
compared to human patients (see Discussion).

To determine whether the lower expression of catalase and
G6pd in humans is an astrocyte-specific attribute or a more
general difference across species, we analyzed a single-cell RNA-
seq dataset of human and mouse brains45 to examine the
expression of these genes in all major cell types of the brain. We
found lower expression of catalase and G6pd in humans than in
mice in glutamatergic neurons, GABAergic neurons, oligoden-
drocyte precursor cells, and oligodendrocytes (Supplementary
Fig. 12). Therefore, lower expression of catalase and G6pd is
generally observed across multiple cell types in the human brain
compared to the mouse brain.

Hypoxia induces a molecular program for neural growth in
mice. Adult mouse models of ischemic stroke often achieve full
functional recovery5, whereas adult human stroke patients usually
have irreversible functional deficits. Dozens of neural protective
drug candidates that improved recovery in mouse models of
stroke have failed to show benefits in human clinical trials46.
Hypoxia is a key physical change in ischemic stroke. Responses of
mouse astrocytes to hypoxia have been closely examined pre-
viously but responses of human astrocytes are largely unknown.

We exposed human and mouse astrocytes to hypoxia (Fig. 6a)
and found that human and mouse astrocytes exhibited similarly
high levels of cell survival and had normal healthy morphology
under hypoxic and control conditions. We then performed RNA-
seq of all treated and control human and mouse astrocytes. To
assess transcriptional responses, we used a combination of
differential expression and weighted gene co-expression network
analysis (WGCNA) (Methods; Supplementary Fig. 13 and
Supplementary Data 9).

When we examined the extent to which hypoxia-induced genes
are shared between human and mouse astrocytes, we found that
3.4% of (11 out of 322) genes downregulated in human astrocytes
were also downregulated in mouse astrocytes and 5.3% of (7 out of
132) genes upregulated in human astrocytes were also upregulated
in mouse astrocytes, demonstrating partial conservation of hypoxic
responses between human and mouse (Fig. 6d, e; upregulated
overlap: 13.8-fold higher than expected by chance; p= 3.65e−07;

downregulated overlap: 6.0-fold higher than expected by chance;
p= 7.50e-07; FDR < 0.05; fold change > 1.5; average RPKM> 1;
overlap: genes meeting all three criteria in both species; see also
Supplementary Fig. 14). GO terms and KEGG pathway analyses
revealed that genes upregulated in both human and mouse
astrocytes were enriched in the GO term hypoxia response and
the hypoxia inducible factor 1 (HIF1) pathway (Fig. 6f and
Supplementary Data 2). Interestingly, astrocytes from both species
upregulated genes involved in glycolysis and positive regulation of
mitochondrial autophagy. Glycolysis provides an alternative path-
way to generate energy without oxygen and autophagy of idling
mitochondria may conserve resources within cells.

Despite the partial conservation of hypoxic responses between
human and mouse, hypoxia induced stronger molecular changes
in mouse astrocytes relative to human astrocytes in terms of the
number of differentially expressed genes (454 in mouse vs. 52 in
human; fold change > 1.5, FDR < 0.05, average RPKM > 1;
Fig. 6b–e) and effect size (Supplementary Fig. 15). Genes
upregulated by hypoxia in mouse, but not human, astrocytes
were enriched in GO terms such as nervous system development,
neurogenesis, neuron differentiation, and axon guidance (Fig. 6g
and Supplementary Data 2) and included genes encoding the
growth factor Ndnf, morphogen Bmp4, axon guidance molecule
Epha5, and cell adhesion molecule Cadm3 (Fig. 6h–o and
Supplementary Data 10, 11). Furthermore, we identified a module
(grey60) upregulated by hypoxia in mouse astrocytes but not in
human astrocytes (Supplementary Data 9 and Supplementary
Fig. 13). This module is involved in development and cell
adhesion, corroborating our finding that hypoxia induces a
molecular program that aids neural repair specifically in mouse
astrocytes. These differences may contribute to the differences in
functional recovery and responses to drug candidates between
human patients and mouse models of stroke.

Among the genes downregulated by hypoxia, we found that
genes associated with the GO terms amino acid transmembrane
transport and cellular response to nutrient levels were enriched in
both human and mouse astrocytes. In contrast, the GO terms L-
glutamate transmembrane transport and circadian rhythm were
only enriched in downregulated genes in human astrocytes, and
the terms cell cycle and electron transport chain were only
enriched in downregulated genes in mouse astrocytes (Supple-
mentary Data 2 and Supplementary Fig. 16).

Inflammatory signals induce antigen presentation pathways in
humans. Many viruses, such as human immunodeficiency virus,

Fig. 4 Mitochondrial metabolism differences between human and mouse astrocytes. a Basal oxygen consumption rate (OCR) of mouse and human
astrocytes. Each data point (circle or square) represents one well of astrocyte culture prepared from one human patient or one litter of 8–10 mice
throughout this figure. Mouse astrocytes: N= 7 cultures generated from 4 litters of mice in a–c. Human astrocytes: N= 6 wells of cultured cells generated
from 3 patients in a–c. p= 0.0365. Two-tailed unpaired Welch’s t-test. The p-values were calculated using average results from each litter of mice and
each patient as independent observations, unless otherwise indicated. b OCR linked to ATP production in the presence of oligomycin. p= 0.0497. Two-
tailed unpaired Welch’s t-test. c The ratio of OCR to extracellular acidification rate (ECAR). p= 0.0168. Two-tailed unpaired Welch’s t-test. d, e
Tetramethylrhodamine, ethyl ester (TMRE) fluorescence (reporting mitochondrial membrane potential) normalized by MitoTracker Green (MTG, a general
mitochondrial dye) fluorescence. Data represent H2O2-treated conditions normalized to medium control-treated conditions. N= 9 wells of cultured cells
generated from 3 litters of mice and 4 patients. Mouse astrocytes: 3 hr vs. 1 hr, p= 0.3959. Human astrocytes: 3 hr vs. 1 hr, p= 0.0373. Two-tailed
unpaired Welch’s t-test. N.S., not significant. f, g Basal OCR of astrocytes treated with 100 μM H2O2. 0 hr and 1 hr mouse astrocytes: N= 7 wells of
cultured cells generated from 4 litters of mice. 3 hr and 5 hr mouse astrocytes: N= 8 wells of cultured cells generated from 4 litters of mice. 0 hr, 3 hr, and
5 hr human astrocytes: N= 6 wells of cultured cells generated from 3 patients. 1 hr human astrocytes: N= 5 wells of cultured cells generated from 3
patients. Mouse astrocytes: 0 hr vs. 1 hr, p= 0.1883; 0 hr vs. 3 hr, p= 0.4246; 0 hr vs. 5 hr, p= 0.0285. Human astrocytes: 0 hr vs. 1 hr, p= 0.0954; 0 hr
vs. 3 hr, p= 0.0235; 0 hr vs. 5 hr, p= 0.1837. One-way repeated measure ANOVA with Dunnett’s multiple comparison test. h, i ATP-linked OCR of
astrocytes treated with 100 μM H2O2. The replicate numbers are defined in (f–g). Mouse astrocytes: 0 hr vs. 1 hr, p= 0.8885; 0 hr vs. 3 hr, p= 0.7597; 0
hr vs. 5 hr, p= 0.2198. Human astrocytes: 0 hr vs. 1 hr, p= 0.1639; 0 hr vs. 3 hr, p= 0.0016; 0 hr vs. 5 hr, p= 0.2583. One-way repeated measure ANOVA
with Dunnett’s multiple comparison test. j Diagram of glucose metabolism. TCA, tricarboxylic acid. NADPH, nicotinamide adenine dinucleotide phosphate.
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new world alpha viruses, and some flaviviruses (e.g., Zika virus),
are capable of infecting CNS cells, inducing neuroinflammatory
responses, and causing acute or long-lasting neurological
deficits47,48. Astrocytes, along with microglia, are CNS-resident
cells that modulate neuroinflammation. However, responses of
human astrocytes to viral infections and their consequences to
CNS homeostasis and function are poorly understood. In addi-
tion to viral infections, neuroinflammation is a core pathological
component of a range of neurological conditions such as trau-
matic injury, stroke, neurodegeneration, and aging. tumor
necrosis factor alpha (TNFα) is a major pro-inflammatory

cytokine involved in neuroinflammation that induces reactivity of
mouse astrocytes. Although researchers have long assumed that
TNFα induces similar changes in human astrocytes, no study has
compared the effect of this key pro-inflammatory cytokine on
human and mouse astrocytes.

We exposed human and mouse astrocytes to the viral mimetic
double-stranded RNA, poly I:C, or TNFα (Fig. 7a). Both human
and mouse astrocytes exhibited similarly high levels of cell
survival and had normal healthy morphology under treatment
and control conditions. We then performed RNA-seq of all
treated and control human and mouse astrocytes. In contrast to

Fig. 5 Detoxification pathway differences between human and mouse astrocytes. a, b Expression of ROS detoxification pathway genes catalase (a) and
glucose-6-phosphate dehydrogenase (G6pd in human/G6pdx in mouse) (b) by acutely purified astrocytes and serum-free cultures of astrocytes
determined by RNA-seq. N= 6 litters of mice and 18 human patients for acutely purified samples. N= 14 litters of mice and 9 human patients in vitro.
Acutely purified: Catalase, p < 0.0001; G6PD, p < 0.0001, two-tailed Mann-Whitney test. Serum-free cultures: Catalase, p < 0.0001; G6PD, p < 0.0001.
Two-tailed unpaired Welch’s t-test, unless otherwise indicated. Samples include children and adult patients as well as developing and adult mice. The ages
of the patients and mice are listed in Supplementary Data 8. c Non-mitochondrial OCR measured in the presence of antimycin-A. N= 7 wells of cultured
cells from each species generated from 4 litters of mice and 3 patients. p= 0.0126. Two-tailed unpaired Welch’s t-test. The p-values were calculated using
average results from each litter of mice and each patient as independent observations. d, e Model of glucose metabolism and detoxification pathways in
human and mouse astrocytes. The widths of the arrows represent the rate of the metabolic processes. Mouse astrocytes have higher rates of oxidative
phosphorylation, which presumably produce more ROS than human astrocytes. The higher abundance of detoxification pathway genes and the higher
peroxisomal activity in mouse compared to human may protect the cells against oxidative damage.
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Fig. 6 Molecular responses of human and mouse astrocytes to hypoxia. a Experimental design. b, c Volcano plots of genes that significantly differ
between hypoxia and control conditions. Each red dot represents a significantly different gene. FDR, false discovery rate. FC, fold change. RPKM, Reads Per
Kilobase of transcript, per Million mapped reads. d, e The number of significantly up or downregulated genes in hypoxia-treated human and mouse
astrocytes. Genes with FDR < 0.05, fold change > 1.5, and average RPKM of control or treated groups > 1 are shown. Genes in the overlapping regions are
those meeting all three criteria in both species. f Top shared gene ontology (GO) terms enriched in hypoxia-induced genes in human and mouse astrocytes
ranked by FDR. g Development-associated GO terms enriched only in hypoxia-induced genes in mouse but not human astrocytes. h–o Expression of genes
associated with the GO term nervous system development in control and hypoxia-treated human and mouse astrocytes. N= 4 litters of mice and 4 human
patients. Mouse: Ndnf, p= 0.002; Bmp4, p= 0.0015; Epha5, p= 0.0003; Cadm3, p= 0.0001. Multiple comparison-adjusted p values were calculated by
the DESeq2 package. N.S., not significant.
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hypoxia, we found that both poly I:C and TNFα induced stronger
molecular responses in human astrocytes relative to mouse
astrocytes in terms of the number of differentially expressed genes
(Fig. 7b-e and Supplementary Fig. 17a, b, d, e) and effect size
(Supplementary Fig. 17c, f). We next examined the extent to
which the poly I:C- and TNFα-induced gene changes were shared
between human and mouse astrocytes. We found that a
significant proportion (10.9%; 76 out of 700) of the down-
regulated genes in human astrocytes were also downregulated in

mouse astrocytes and a significant proportion (14.0%; 104 out of
745) of upregulated genes in human astrocytes were also
upregulated in mouse astrocytes under poly I:C treatment (Fig. 7b, c;
upregulated: 1.7-fold higher than expected by chance; p= 2.79e−07;
downregulated: 2.2-fold; p= 4.89e−12). A significant proportion
(4.3%; 6 out of 139) of genes downregulated by TNFα in human
astrocytes were also downregulated in mouse astrocytes and a
significant proportion (17.5%; 28 out of 160) genes upregulated by
TNFα in human astrocytes were also upregulated in mouse astrocytes,

Fig. 7 Molecular responses of human and mouse astrocytes to poly I:C and TNFα. a Experimental design. b–e The number of significantly up or
downregulated genes in poly I:C- and TNFα-treated human and mouse astrocytes. Genes with FDR < 0.05, fold change > 1.5, and average RPKM of control
or treated groups > 1 are shown. f, g Fold changes of Tlr3, NFκB, and interferon response pathway genes in poly I:C- and TNFα-treated human and mouse
astrocytes. Asterisks represent significance determined by DESeq2. h Selected antigen presentation-related GO terms enriched in poly I:C-induced genes
only in human astrocytes. i–n Expression of the top 3 highest-expressing MHC Class I antigen presentation genes in poly I:C-treated and control human
and mouse astrocytes. N= 4 litters of mice and 4 human patients. Mouse: H2-K1, p= 0.0051; H2-T24, p= 0.0019. Human: HLA-A, p < 0.0001; HLA-C,
p < 0.0001; HLA-E, p < 0.0001. Multiple comparison-adjusted p values were calculated by the DESeq2 package. N.S., not significant.
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reflecting partial conservation between human and mouse (Fig. 7d, e;
upregulated: 13.1-fold; p= 2.53e−25; downregulated: 5.1-fold; p=
9.85e−04). We also observed a significant correlation of fold change in
mouse vs. human (poly I:C, 0.236. TNFα 0.192; Supplementary
Fig. 14). GO term and KEGG pathway enrichment analysis of the
conserved genes (Supplementary Data 2) revealed enrichment for
genes involved in responses to cytokines and other organisms.

Furthermore, we examined genes induced by poly I:C or TNFα
only in human astrocytes. These genes showed enriched GO
terms associated with antigen processing and presentation of
peptide antigen via major histocompatibility complex (MHC)
class I (Fig. 7h and Supplementary Fig. 17h). The expression
levels of the three highest expressing MHC Class I genes in
human astrocytes (HLA-A, HLA-C, and HLA-E) and mouse
astrocytes (H2-K1, H2-D1, and H2-T24) are shown in Fig. 7i–n,
Supplementary Fig. 17h–m, and Supplementary Fig. 18. These
genes showed modest or no increase in poly I:C- or TNFα-treated
mouse astrocytes but a consistent and robust increase in human
astrocytes. Genes encoding additional MHC Class I-interacting
antigen processing and presenting proteins, such as Tap1, Tap2,
and ICAM1, showed similarly robust increases in human
astrocytes but no change in mouse astrocytes treated with poly
I:C (Supplementary Data 10, 11 and Supplementary Figs. 19 and
20). Interestingly, human induced pluripotent stem cell-derived
astrocytes also increased the expression of MHC Class I genes
upon TNFα treatment49, demonstrating the value of stem cell-
derived astrocytes in studying species-specific features of human
astrocytes.

Among the genes downregulated by poly I:C treatment, the GO
term virion assembly was enriched in both human and mouse,
potentially revealing a conserved defensive response to viral
infections. In addition, poly I:C treatment induced downregula-
tion of genes associated with cell cycle and CNS development
only in human astrocytes and genes associated with response to
hydrogen peroxide only in mouse astrocytes. No GO term was
enriched in genes downregulated by TNFα-treatment in either
human or mouse, likely because of the small number of genes
downregulated by TNFα in mouse astrocytes. Similar to poly I:C
treatment, TNFα induced downregulation of genes associated
with cell cycle and CNS development only in human astrocytes.
Additionally, TNFα induced downregulation of genes associated
with cell communication and glycerolipid metabolism only in
mouse astrocytes (Supplementary Data 2 and Supplementary
Fig. 16).

To identify coregulated gene networks changing under poly I:C
or TNFα treatment, we performed WGCNA and identified a
module (black) upregulated in human, but not mouse, astrocytes
under both treatment conditions (Supplementary Data 9 and
Supplementary Fig. 13). This module is involved in inflammatory
responses to double-stranded RNA. The network analyses
corroborated the finding that, at the specific dosage of poly I:C
or TNFα we used, human astrocytes showed stronger inflamma-
tory responses compared to mouse astrocytes.

Signaling pathways downstream of poly I:C treatment have
been well characterized in multiple cell types of the immune
system. Poly I:C binds the Toll-like receptor 3 (Tlr3), a pattern-
recognition receptor located in endosomes that recognizes the
danger signal. TLR3 signals through an adapter protein, Myd88,
which activates the nuclear factor kappa B (NFκB) signaling
pathway (e.g., Rel, Relb, Nfkb1, Nfkb2). NFκB activation and
nuclear translocation, in turn, activates the interferon signaling
pathway (interferon responsive genes include Irf1, Irf2, Ifr7, and
Irf9). The NFκB signaling pathway cross-talks with Stat3, the
phosphorylation of which is involved in astrocyte reactivity. We
found that all of the above-mentioned molecules are strongly
upregulated after poly I:C treatment in human astrocytes but

showed modest or no upregulation in mouse astrocytes (Fig. 7f
and Supplementary Fig. 21a). We found a similar pattern of
stronger activation of these genes in TNFα-treated human
astrocytes compared to mouse astrocytes (Fig. 7g and Supple-
mentary Fig. 21b).

To assess whether cell death affected our transcriptome
analyses, we examined cell survival in acutely purified and
cultured human and mouse astrocytes. By trypan blue staining of
dead cells, we found close to 100% survival of acutely purified
astrocytes from both humans and mice. Astrocyte cultures always
have a small proportion of dead cells, but we did not observe
differences in cell survival between human and mouse astrocytes
(Supplementary Fig. 22). To determine whether cell death may
have affected our RNA-seq analyses, we examined the expression
of cell death-associated genes50 in our RNA-seq data. We found
low or no expression of these genes in all conditions tested
(acutely purified, serum-selected culture, serum-free culture,
xenograft, host, hypoxia-, poly I:C-, TNFα-treated, and untreated
control astrocytes from both human and mouse; Supplementary
Data 12). None of the cell death-associated genes were
differentially expressed in any treatments we performed. There-
fore, cell death is unlikely to compromise RNA-seq analyses
under the conditions we tested.

We next examined whether astrocytes treated with various
challenges secrete signals that differentially affect neuronal
attributes. We treated cultured human and mouse astrocytes
with hypoxia and TNFα, collected astrocyte conditioned medium
(ACM), and applied the ACM to mouse cortical neurons. We did
not observe differences in neuronal survival, process outgrowth,
or NFκB activation between any groups of ACM-treated neurons.
We further assessed whether neurons exhibited molecular
changes in response to hypoxia or TNFα-treated human and
mouse ACM by performing RNA-seq of the treated neurons. We
found that neurons treated with hypoxia-mouse ACM showed
downregulation of non-coding RNAs such as Rn7sk
and Gm24187. Neurons treated with hypoxia-human ACM
showed downregulation of non-coding RNAs such as Rn7sk,
Bc1, and Gm24187 (Supplementary Data 13). No protein-coding
genes exhibited significant gene expression differences between
ACM treatment groups. TNFα-treated human and mouse ACM
did not induce significant gene expression changes in neurons. In
these experiments, we did not test contact-dependent astrocyte-
neuron interactions, which may be interesting to investigate in
future studies.

Poly I:C and TNFα induce common transcriptional responses.
We next investigated whether different types of perturbations
induce a shared core astrocyte reactivity program vs. distinct
programs specific to each perturbation. We found that, in both
species, very few genes were induced by all three stimuli (i.e.,
hypoxia, poly I:C, and TNFα; Supplementary Fig. 23). Poly I:C
and TNFα induced many common gene changes, but these genes
differed greatly from the hypoxia-induced genes, which was
corroborated by WGCNA results (Supplementary Fig. 13).

Comparison of treatment-induced changes with neurological
diseases. To compare hypoxia-, poly I:C-, and TNFα-induced
changes of cultured human and mouse astrocytes with neurolo-
gical disease-associated changes in human patients and mouse
models in vivo, we analyzed single-cell RNA-seq datasets of
Alzheimer’s disease51,52, multiple sclerosis53–55, and healthy
control patients and bulk RNA-seq data of glioblastoma-
associated astrocytes56 (see Methods for details). Interestingly,
we found that poly I:C- and TNFα-treated human astrocytes
exhibit shared gene expression changes with astrocytes from both
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Alzheimer’s disease and multiple sclerosis patients (Fig. 8). We
found that 38 genes showed consistent changes in astrocytes in
Alzheimer’s disease, multiple sclerosis, poly I:C treatment, and
TNFα treatment (25 genes were upregulated and 13 genes were
downregulated by diseases and treatments; Fig. 8b, c). The
upregulated genes include those involved in interferon (IFITM3),
NFκB (NFKBIA), and cytokine (CCL2, CXCL10) signaling,
immediately early genes (FOS, JUNB), and calcium signaling
modulators (S100A6, S100A10). The downregulated genes include
one encoding a protein that interacts with amyloid-β precursor
protein (ANKS1B) and two encoding glutamate receptors
(GRIA2, GRM3), suggesting changes in astrocytic responses to
synaptic glutamate release in multiple neurological disorders.
Because both poly I:C and TNFα can induce inflammatory
changes, and there are inflammatory changes in Alzheimer’s
disease and multiple sclerosis, these 38 genes are likely a core
group of signature inflammatory astrocyte genes in humans.
Using these genes as markers may facilitate the identification of
inflammatory-reactive astrocytes in multiple diseases in the

future. In contrast to poly I:C- and TNFα-treated human astro-
cytes, we did not detect any significant correlation between gene
expression changes of poly I:C- or TNFα-treated mouse astro-
cytes and Alzheimer’s disease or multiple sclerosis patients,
highlighting species-dependent gene signatures in astrocyte
reactivity (Fig. 8a).

We detected a weak correlation of gene expression changes in
hypoxia-treated human astrocytes with a small subset of disease
datasets. Therefore, hypoxia-induced changes are likely distinct
from changes of astrocytes in Alzheimer’s disease or multiple
sclerosis. We did not observe any correlation of glioblastoma-
associated astrocyte gene expression changes with any treatment-
induced changes in human or mouse astrocytes.

We next compared our identified treatment-induced gene
expression changes with gene expression changes in the astrocytes
of two mouse models of neurological disorders, bacterial
endotoxin lipopolysaccharide-induced inflammation and
ischemic stroke27, also referred to as A1 and A2 astrocytes in
the literature57,58. We did not observe any significant correlation

Fig. 8 Core inflammatory astrocyte genes shared in Alzheimer’s disease, multiple sclerosis, and poly I:C and TNFα treatments in humans.We analyzed
single-cell RNA-seq data from Alzheimer’s disease patients, multiple sclerosis patients, and healthy controls. We compared the differentially regulated
genes in astrocytes in these diseases with the hypoxia-, poly I:C-, and TNFα-induced genes we identified in cultures of human and mouse astrocytes.
a Significant concordant gene expression changes are present in disease conditions in vivo and in astrocyte treatments in vitro. To test whether treatment
A and disease B exhibited concordant gene expression changes, we counted the number of genes in the following four categories: (1) upregulated in
treatment A and upregulated in disease B; (2) upregulated in treatment A and downregulated in disease B; (3) downregulated in treatment A and
downregulated in disease B; and (4) downregulated in treatment A and upregulated in disease B. We used the number of genes in each of the four
categories in a contingency table and used two-sided Fisher’s exact test to detect significant concordance. MS, multiple sclerosis. b, c We found 38 core
inflammatory astrocyte genes shared by Alzheimer’s disease, multiple sclerosis, and poly I:C and TNFα treatment in humans, 25 of which are upregulated
(b) and 13 are downregulated (c) in diseases and treatments.
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between any of the treatments and A1 or A2-specific gene
expression changes (Supplementary Fig. 24).

Astrocyte heterogeneity and hypoxia-, poly I:C-, and TNFα-
induced changes. To examine astrocyte heterogeneity, we asses-
sed NFκB activation at the single-cell level in poly I:C-treated
human and mouse astrocytes. We performed immunostaining
with an antibody against the NFκB component p65, which is
localized at the nuclei when NFκB signaling is activated59. Upon
poly I:C treatment, a larger subpopulation of human astrocytes
compared to mouse astrocytes exhibited NFκB activation (Sup-
plementary Fig. 25; mouse: 0.9±0.4% in control, 2.9±0.5% in poly
I:C-treated; human: 1.0±0.2% in control, 13.9±1.7% in poly I:C-
treated; mouse poly I:C-treated vs. human poly I:C-treated: p <
0.001), revealing species-dependent properties of astrocyte sub-
population dynamics.

To assess whether hypoxia, poly I:C, or TNFα may induce
changes of previously characterized astrocyte subpopulations,
we compared our treatment-induced gene expression changes
with astrocyte subpopulation markers from single-cell RNA-seq
studies51,54,60,61. We found significant concordance between
poly I:C- and TNFα-treated human astrocytes with astrocyte
cluster 3 reported by Tsai and colleagues51 and anti-correlated
gene expression between poly I:C- and TNFα-treated human
astrocytes with astrocyte cluster 1 reported by Schwartz and
colleagues61 (Supplementary Fig. 26). Tsai et al. astrocyte
cluster 3 expresses well-known reactive astrocyte markers, such
as glial fibrillary acidic protein (GFAP), IFITM3, and CD44.
These observations suggest that poly I:C and TNFα treatment
increase the subpopulation of astrocytes with reactive char-
acteristics, which could result from dynamic gene expression
changes and/or selective proliferation/depletion of subpopula-
tions. In contrast to poly I:C and TNFα treatment, we did not
observe concordant gene expression changes between hypoxia
treatment and any reported astrocyte subpopulations. We did
not detect concordant gene expression between any of our
treatments with any astrocyte subpopulations reported by
Regev and colleagues60.

Discussion
In this study, we evaluated the conservation and divergence of
astrocytic responses to disease-relevant perturbations between
human and mouse. We used methods for isolating, culturing, and
stimulating resting/homeostatic astrocytes from developmentally
matched human and mouse astrocytes and applied equivalent,
controlled experimental paradigms for direct comparison. We
identified several important differences between both resting and
reactive human and mouse astrocytes: (1) The rates of mito-
chondrial resting state respiration differed between mouse and
human astrocytes. (2) Human astrocytes were more susceptible to
oxidative stress than mouse astrocytes, potentially contributing to
the observed differences in neurodegeneration between mouse
models and human patients. (3) Hypoxia induced a pro-growth
molecular program in mouse but not human astrocytes, poten-
tially underlying the greater functional recovery that occurs in
mouse models of ischemic stroke compared to human stroke
patients. (4) Poly I:C and TNFα induced antigen-presenting genes
in human but not mouse astrocytes.

Utilizing knowledge on the conservation and divergence of
human and mouse astrocytes for translational research
Identifying conserved and divergent cellular processes. We found
extensive conservation in gene expression levels between human
and mouse astrocytes in some cellular processes and divergence
in others. For example, genes with similar expression levels in

human and mouse astrocytes include those involved in mRNA
metabolic processes, intracellular transport, and glial cell differ-
entiation, whereas mitochondrial metabolism and cytokine sig-
naling genes are divergent across species. Therefore, findings on
mRNA metabolic processes, intracellular transport, and glial cell
differentiation using mouse models may be readily translatable to
humans. By contrast, more caution must be taken before extra-
polating mitochondrial and cytokine findings from mouse models
to human patients.

“Humanizing” mouse models of diseases. Mouse models of neu-
rodegeneration often have less severe defects compared to human
patients1–4. Oxidative stress is a critical pathological process in
neurodegeneration. Our finding of greater resilience of mouse
astrocytes to oxidative stress compared to human astrocytes
suggests that reducing detoxification activities in mouse models of
neurodegeneration (for example, using Catalase heterozygous or
knockdown mice) may improve the resemblance of these models
to human patients.

Improving neural repair in humans by investigating repair
mechanisms in mice. Mouse models of ischemic stroke typically
exhibit spontaneous functional recovery5,62, whereas human
patients often have limited functional recovery and permanent
disabilities. We showed that hypoxia induced HIF1 pathway
activation, increases in glycolysis, and stimulation of autophagy
in both species. However, hypoxia induced a pro-growth
molecular program specifically in mouse astrocytes; human
astrocytes were able to sense an oxygen shortage and make
adaptive changes but stopped short of activating the pro-growth
program. Investigating how signal transduction occurs in
mouse astrocytes that links hypoxia to neuronal growth genes
may lead to therapies that activate the pro-neuronal growth
program in human astrocytes.

Species differences in energy metabolism in astrocytes and
other cell types. A few genes are associated with the expansion of
the cerebral cortex in human evolution63–68; one such gene
encodes a protein targeted to mitochondria, implicating meta-
bolic changes in human brain evolution69. It is unclear whether
the species differences in metabolism that we identified are spe-
cific to astrocytes, but we found consistent species-dependent
expression of genes associated with reactive oxygen species
detoxification in multiple cell types in the brain. Other
studies have reported transcriptome and developmental differ-
ences between human and mouse brains29,70–72. However, very
few studies have compared the respiration rates of human and
mouse cells. One study that compared the metabolism of human
and mouse muscle cells reported mixed results73. At the organism
level, our results are consistent with the observation that smaller
mammals typically have higher metabolic rates per unit body
weight than larger mammals74.

Mitochondrial and energy metabolism changes are important
in the pathogenesis of many neurological disorders. For example,
many genes associated with Parkinson’s disease risk are involved
in mitochondrial function75, a large set of genes involved in
metabolism are induced after traumatic brain injury76, and
impairment of glycolysis-derived metabolites in astrocytes
contributes to cognitive deficits in Alzheimer’s disease77. Previous
studies have not directly compared the mitochondrial function
and energy metabolism between human and mouse for any cell
type of the central nervous system, to the best of our knowledge.
Our discovery of mitochondrial and energy metabolism differ-
ences between human and mouse cells should be taken into
consideration in translational research.
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Potential species-specific interactions between astrocytes and
neurons. Astrocytes are important for the development and
function of neurons. Previous studies have shown that trans-
plantation of human astrocytes into mouse brains affects neu-
ronal function and learning and memory30. In this study, we
compared the impact of secreted signals from human and mouse
astrocytes on neurons and did not observe significant species
differences. It is likely that contact-dependent interactions
between astrocytes and neurons exhibit species-specific attributes.
It is also possible that the concentration of astrocyte-conditioned
media we used is not high enough to induce detectable species-
dependent effects.

Potential limitations of the study. All in vitro experiments in
this study were performed using developing human and mouse
astrocytes. Therefore, we do not recommend extrapolation of our
conclusions to adult and/or aging contexts without further
investigation. Although it is important to directly compare adult
human and mouse astrocytes, it is challenging to obtain large
numbers of fresh healthy brain tissue donations from adults to
characterize astrocytic responses to disease-relevant stimuli with
sufficient statistical power. Nevertheless, we performed RNA-seq
of astrocytes purified from healthy brain tissue donated from
adults (Supplementary Data 8)26. Analysis of adult astrocyte
RNA-seq data showed human-mouse divergent pathways con-
sistent with our in vitro findings, suggesting that the potential
species differences are similar between developing and adult
stages (Fig. 5a, b).

Methods
Lead contact and materials availability. Further information and requests for
resources and reagents should be directed to and will be fulfilled by the Lead
Contact, Ye Zhang (yezhang@ucla.edu). This study did not generate new unique
reagents.

Experimental animals. All animal experimental procedures were approved by the
Chancellor’s Animal Research Committee at the University of California, Los
Angeles (UCLA) and were conducted in compliance with national and state laws
and policies. The research protocol for the transplantation of human cells into host
mouse brains to create chimera model was approved by the Chancellor’s Animal
Research Committee at UCLA and were conducted in compliance with national
and state laws and policies. We used C57BL6 mice group-housed in standard cages
(2–3 per cage). Rooms were maintained on a 12-h light/dark cycle at 20–26 °C,
30–70% humidity. Euthanasia and preparation of primary cultures of astrocytes
were performed during the light cycle. For each astrocyte culture batch, 8–10
mixed-sex pups at P1–3 from 1 to 2 L were combined.

Human tissue samples. Fetal human brain tissue without identifiable personal
information was obtained following elective pregnancy termination with exemp-
tion determination from the UCLA Office of the Human Research Protection
Program. All donors have provided informed consent. The consent forms indicate
that the donation is voluntary, refusal to donate tissue will not affect the donor’s
medical care or their relationship with their physicians, the donated material will
be used for purposes of education, research, or for the advancement of medical
science, and that there will be no payment to the donor. The next of keen were not
involved in providing informed consent. Samples from patients with genetic dis-
orders such as Down’s syndrome were excluded from the study when known.
Gestational week 17–20 brain tissue was immersed in 4 °C Dulbecco’s phosphate
buffered saline (PBS, Gibco, 14040182) and transferred to the lab for tissue dis-
sociation. In cases with largely intact brain tissue, we used whole cerebral cortex for
astrocyte purification. In cases with fragmented tissue, we used fragments most
likely to be cerebral cortex (typically large thin sheets). We included both female
and male brain tissue. Sample sizes are noted in figure legends for each experiment.
Results on astrocytes from children and adults was obtained by analyzing a pre-
viously published dataset26.

Primary cell culture. Primary astrocyte cultures from humans and mice were
generated by immunopanning and were maintained in a humidified 37°C incu-
bator with 10% CO2 (see method details below). Cells from both females and males
were used.

Immunopanning purification of astrocytes. To examine responses of human and
mouse astrocytes to stressors, we purified human and mouse astrocytes from
developmentally equivalent stages, to the best of our knowledge. In humans,
astrocytogenesis starts during the second trimester and continues through the third
trimester78–80. Human astrocytes reach maturity roughly around one year of age as
determined by gene expression70–72, although their physiological and functional
maturation timeline is unclear. In mice, astrocytogenesis starts at the perinatal
period (embryonic day 17.5 [E17.5] of a 19-day gestation) and peaks between P0
and P1481. Mouse astrocytes reach maturity roughly around one month of age as
determined by morphology and gene expression82. A single-cell RNA-seq study of
human and mouse brains found that molecular features of gestational week 16–20
human brains are similar to P0-P5 mouse brains83. Therefore, we purified astro-
cytes from gestational week 17–20 human brains and P1–3 mouse brains. Within
those age ranges, we did not observe age-dependent differences in any of the assays
we tested.

We started astrocyte purification experiments using human and mouse brain
tissue within similar postmortem intervals. For human samples, we received tissue
within 30 min to 1 h postmortem. We then performed a very simple dissection
procedure that takes <3 min. For mouse samples, we combined one to two litters of
8–10 mice to get enough cells for each experiment. We combined both male and
female mice for all experiments, although sex may not have been equally
represented in each litter of mice. Cerebral cortex dissection from all the mice
typically took ~45 min before we started the astrocyte purification experiments. We
purified human and mouse astrocytes according to a previously published
immunopanning protocol26,28,41. Briefly, we coated three 150 mm-diameter petri
dishes first with species-specific secondary antibodies and then with an antibody
against CD45 (BD550539, both human and mouse, 10 μl antibody in 12 ml buffer
per panning plate), a hybridoma supernatant against the O4 antigen (mouse, 4 ml
hybridoma supernatant in 8 ml buffer per panning plate) or an antibody against
CD90 (BD550402, human, 20 μl antibody in 12 ml buffer per panning plate), and
an antibody against HepaCAM (R&D Systems, MAB4108, 10 μl antibody in 12 ml
buffer per panning plate), respectively. We dissected cerebral cortices from human
and mouse in PBS and removed meninges. We then dissociated the tissue with
6 units/ml papain at 34.5°C for 45 min. We mechanically triturated the tissue with
5 ml serological pipets in the presence of a trypsin inhibitor solution. We then
depleted microglia/macrophages, oligodendrocyte precursor cells, and neurons
from the single-cell suspension by incubating the suspension sequentially on the
CD45, O4 (for mouse), or CD90 (for human) antibody-coated petri dishes. We
incubated the single-cell suspension on the HepaCAM antibody-coated petri dish.
After washing away nonadherent cells with PBS, we lifted astrocytes bound to the
HepaCAM antibody-coated petri dish using trypsin and plated them on poly-D-
lysine-coated plastic coverslips in a serum-free medium containing Dulbecco’s
modified Eagle’s medium (DMEM) (Life Technologies, 11960069), Neurobasal
(Life Technologies, 21103049), sodium pyruvate (Life Technologies 11360070),
glutamine (Life Technologies, 25030081), N-acetyl cysteine (Sigma, A8199), and
heparin-binding EGF-like growth factor (Sigma, E4643). For most of the H2O2,
TNFα, hypoxia, and poly I:C treatment experiments, with exceptions detailed
below, astrocytes were plated on 24-well culture plates at 75–100k per well. Human
and mouse astrocyte cultures had similar final densities for every type of
experiment. For high-density cultures for H2O2 treatment, 30k astrocytes were
plated in a 50 μl droplet in the middle of pre-dried poly-D-lysine-coated plastic
coverslips on 24-well plates. After allowing the cultures to settle for 20 min at 37°C,
additional media were added. For Seahorse Respiration Assays, astrocytes were
plated at 100–250k/well in Agilent Seahorse 96-well cell culture microplates
(cat#101085-004). For TMRE/MTG imaging, astrocytes were plated at 25–50k/well
on dark-walled flat-bottom 96-well assay plates (Corning, cat#3603). For poly I:C
treatment, astrocytes were plated directly on poly-D-lysine-coated 24-well culture
plates (Fisher, cat#08-772-1) without coverslips because poly I:C addition often
causes cell to float away from the coverslips. To purify xenografted human
astrocytes and host mouse astrocytes from adult host mouse brains, we dissociated
whole brains using 20 units/ml papain, depleted microglia/macrophages,
oligodendrocytes, and oligodendrocyte precursor cells with anti-CD45 antibody-,
GalC hybridoma supernatant-, and O4 hybridoma supernatant-coated plates,
respectively. Three consecutive plates with the same antibody were used for
depletion of each cell type. We then collected astrocytes with anti-HepaCAM
antibody-coated plates. The general procedures we used for the purification of
human and mouse astrocytes are based on a previously developed method for
purifying rat astrocytes41, although we used different versions of antibodies for the
isolation of cells from different species.

Serum-selection purification of astrocytes. Human brain tissue was dissociated
into single-cell suspensions as described above and plated on poly-D-lysine-coated
25 cm2 culture flasks (VWR, cat#10861-672) in DMEM (Gibco, cat#11960044)
with 10% fetal bovine serum (Gibco, cat#16140071) and 2 mM glutamine. After 4-6
days, we vigorously shook off the cells in the top layer (neurons and other glia) and
left the astrocytes on the bottom layer. We then harvested astrocytes for RNA-seq.

RNA-seq. We purified total RNA using the miRNeasy Mini kit (Qiagen,
cat#217004) and analyzed RNA concentration and integrity with TapeStation
(Agilent) and Qubit. All samples showed RNA integrity numbers higher than 8.4.
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We then generated cDNA using the Nugen Ovation V2 kit (Nugen), fragmented
the cDNA using a Covaris sonicator, and generated sequencing libraries using the
Next Ultra RNA Library Prep kit (New England Biolabs) with 9–10 cycles of PCR
amplification. We sequenced the libraries with Illumina HiSeq 4,000 and Nova-
Seq sequencers and obtained 16.3 ± 5.7 million (mean ± standard deviation)
50 bp and 100 bp single-endreads per sample.

RNA-seq data analysis. We mapped sequencing reads to human genome hg38
and mouse genome MM10 using the STAR package and HTSEQ to obtain raw
counts. We then used the EdgeR-Limma-Voom packages in R to obtain RPKM
values. We calculated differential gene expression with the DESeq2 package. Sta-
tistical significance of the overlap between two groups of genes was determined
using http://nemates.org/MA/progs/overlap_stats.cgi. Significance of the difference
between two correlation coefficients was calculated using http://vassarstats.net/
rdiff.html?.

Comparison of transcriptomes of acutely purified astrocytes. We mapped
RNA-seq data from our previously obtained acutely purified human and mouse
astrocyte datasets26,28 as described above. The ages of the samples is described in
Supplementary Data 8. We calculated percentile rankings of RPKM values of each
gene in each human and mouse astrocyte sample. We excluded genes with maximal
percentile rankings across all samples < 0.33, as these genes are not expressed or
very lowly expressed in all samples. We then performed Welch’s T-test between
human and mouse samples and multiple-comparison post-hoc adjustment using
the FDR method. Genes with FDR values < 0.05 and human-mouse percentile
ranking differences > 0.4 were used for GO and cellular component analyses using
string-db.org. Test gene lists were compared to background gene lists including all
genes expressed at RPKM > 0.05 in astrocytes.

Comparison of human data to transcriptome data of 14 mouse strains. To test
whether the human-mouse astrocytic gene expression differences are specific to the
C57/BL6 strain we used, we compared our data to an RNA-seq study of mouse
hippocampus from multiple strains (data are available from 15 strains)84. Notably,
the Neuner study84 and our study differ in technical details. Therefore, to avoid the
impact of technical batch effects in the comparison of our human data to mouse
data from 15 different strains, we took advantage of the fact that both studies
performed RNA-seq of the C57/BL6 mouse strain. We divided the expression of
each gene from our human samples by the average expression in our C57/BL6
mouse samples to obtain normalized expression of each gene from each sample.
Similarly, we divided the expression of each gene in each of the 14 strains (other
than C57/BL6) from the Neuner study by the average expression in the C57/
BL6 strain determined by the Neuner study to obtain normalized expression of
each gene from each sample in the Neuner study. We then compared normalized
expression in our study to normalized expression in the Neuner study. We avoided
direct comparison of expression levels (e.g., RPKM/ fragments per kilobase per
million mapped reads (FPKM)/transcripts per million (TPM)) across studies
because it would be complicated by technical batch effects.

Comparison of single-cell RNA-seq data of human and mouse astrocytes. To
validate our observed human mouse astrocyte gene expression differences, we
utilized single-cell expression data derived from human and mouse cortex29. For
human and mouse, respectively, we utilized the available trimmed-mean and
median expression TPM values for all genes in each of their identified cell-type
clusters. To calculate the human-mouse expression fold-change difference, we
calculated the mean expression of astrocyte clusters and compared the mean
expression between species. This fold-change species difference was compared to
the fold-change species difference calculated using acutely purified astrocytes from
both human and mouse.

WGCNA. Expression values from human and mouse were merged into a single
expression matrix using only one-to-one human-mouse orthologues. Genes were
retained if they had > 20% non-zero values and were subsequently log2 (+0.001)
transformed. We combined all conditions in the analyses. We removed expression
variation unrelated to the effect of treatment using the linear regression model
“expr ~ (1 | replicate)”. This maintained differences within each replicate pair,
capturing the effect of a treatment, but regressed out differences between replicate
pairs such as basal species differences or technical differences such as sequencing
batch. Network analysis was performed through WGCNA using biweight mid-
correlation (bicor) to reduce sensitivity to outliers. A soft threshold power of 18
was chosen to achieve scale-free topology (r2 > 0.8). The topological overlap matrix
was hierarchically clustered and modules were defined using a minimum module
size of 50 and deepSplit cut of 2. Module-trait correlations were used to assess
whether a module was significantly associated with a particular treatment in a
particular species.

H2O2 treatment. We treated human and mouse astrocytes cultured in 24-well
plates with 100–500 μM H2O2 (Sigma, cat#95321-100 ML) and performed the cell

survival assay, Seahorse respiration assay, and mitochondrial membrane potential
assay described below.

Cell survival assay. We incubated human and mouse astrocytes with the live cell
dye calcein-AM and the dead cell dye ethidium homodimer using the LIVE/
DEADTM Viability Kit (Invitrogen, cat#L3224) for 10 min at room temperature
protected from light and imaged the cells with an Evos FL Auto 2 inverted
fluorescence microscope (Invitrogen) with a 10× lens.

Seahorse respiration assay. We cultured human and mouse astrocytes with the
media detailed above and changed it to Seahorse assay medium with 10 mM
glucose, 2 mM glutamine, 1 mM pyruvate, and 5 mM HEPES on the day of the
Seahorse respiration assay. We used an Agilent Seahorse XFe96 Analyzer to
measure oxygen concentration and extracellular pH changes. We first measured
basal oxygen consumption rates in unperturbed conditions. We then added oli-
gomycin to inhibit ATP-synthase (mitochondrial complex IV). The differences
between the basal and oligomycin conditions reflect the amount of oxygen con-
sumption used for ATP production. We next added carbonyl cyanide-4 (tri-
fluoromethoxy) phenylhydrazone (FCCP), an uncoupling agent that collapses the
proton gradient and disrupts the mitochondrial membrane potential. As a result,
electron flow through the electron transport chain is uninhibited, and oxygen
consumption by complex IV reaches the maximum amount. Lastly, we added
antimycin A to block complex III and shut down mitochondrial respiration. In the
presence of antimycin A, the measured respiration rate represents non-
mitochondrial respiration, with major contributions from peroxisomes. We took
measurements every 5 min for 3–4 data points per condition. We sequentially
added 2 μM oligomycin, 0.5 μM and 0.9 μM FCCP, and 2 μM antimycin A. After
taking measurements, we stained cells with DAPI and counted the number of cells
in each sample. Results were then normalized by cell number. We used the Agilent
Seahorse Wave software to analyze Seahorse assay data.

Mitochondrial membrane potential assay. We loaded cultured human and
mouse astrocytes with 14 nM TMRE, 200 nM MTG, and 1 μg/ml Hoechst for 45
min, treated the cells with 100 μM H2O2, and then measured fluorescence at 1 and
3 h after H2O2 treatment. After staining, the cells were washed three times with
culture medium containing 14 nM TMRE to remove extra MTG and Hoechst dyes.
TMRE and MTG fluorescence were imaged with an Operetta High-Content
Imaging System (PerkinElmer). Fluorescence intensity after H2O2 treatment was
normalized to untreated control.

Hypoxia treatment. We first cultured immunopanned human and mouse astro-
cytes at atmospheric oxygen concentrations for three days. We then cultured them
at 1% oxygen for three days. Control cells were cultured at atmospheric oxygen
concentrations for 6 days. We then harvested RNA for RNA-seq.

Poly I:C treatment. We cultured immunopanned human and mouse astrocytes for
three days. We then added 200 μg/ml poly I:C (Sigma, cat#P1530-25MG) to the
culture medium and cultured the cells for an additional three days. We then
harvested RNA for RNA-seq.

TNFα treatment. We treated human and mouse astrocytes cultured for 3 days
with 30 ng/ml TNFα for 48 h and harvested the cells for RNA-seq. We treated
mouse astrocytes with TNFα from human (Cell Signaling Technology, 8902SF) and
mouse (Cell Signaling Technology, 5178SF) sources and sequenced them in
separate experiments. A similar number of genes were induced in mouse astrocytes
by TNFα from human and mouse sources. We used cells treated with human TNFα
for subsequent analyses.

Transplantation of human astrocytes into host mouse brains. We transplanted
human astrocytes into host mouse brains according to published protocols30–32.
Briefly, we purified human astrocytes as described above under the serum-selection
purification of astrocytes section. We then injected 100,000 cells per μl, 1 μl per
injection, and 4 injections per mouse at age P2–11. We used Rag2 immunodeficient
mice to avoid graft rejection. The mice were maintained in autoclaved cages with
autoclaved food and water in a pathogen-free facility.

Mapping xenograft reads to combined human-mouse reference genome.
RNA-seq data were assessed for quality parameters using FastQC (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc) and then trimmed with Trim_ga-
lore (https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/). The
RNA-seq reads were then mapped to an in silico combined human-mouse refer-
ence genome. Briefly, reference genome and gene annotation files of human (hg38)
and mouse (mm10) were downloaded from GENCODE. Human chromosomes
were tagged as “chr” and mouse chromosomes were renamed as “m.chr”. The two
fasta files for human and mouse were then concatenated and indexed using STAR
aligner, allowing only one top-scored locus to be mapped if multiple mappings
occur. Benchmarking results showed low false-alignment rates in both pure human
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(0.74%) and pure mouse RNA-seq (2.74%). After alignment, bam files were
separated based on the “chr” (human) and “m.chr” (mouse) labels, followed by
read counting using Rsubread to obtain the corresponding count matrix.

Non-supervised hierarchical clustering. We performed clustering in R using the
hclust() function.

Comparison of host vs. naïve mouse astrocytes. We compared the tran-
scriptomes of host mouse astrocytes (average age 8 months) to naïve mouse
astrocytes of a similar age (7 or 9 months) from our earlier study26. The percentile
ranking of each gene was calculated based on RPKM and differences in percentile
were tested by the t-test with post-hoc Bonferroni correction for multiple
comparisons.

Comparison with human patients and mouse models of disease. To analyze
Alzheimer’s disease- and multiple sclerosis-associated changes, we used single-cell
RNA-seq datasets51,52,54,55. For glioblastoma-associated changes, we used a bulk
RNA-seq dataset from purified astrocytes56. For single-cell RNA-seq datasets, we
only used differentially expressed genes in the astrocyte clusters. The comparison of
our treatment-induced signature from bulk RNA-seq data and published disease
signature from single-cell RNA-seq data must be conducted carefully to avoid
technical bias. There are major differences in the sample sources, sample collection
methods, and sequencing parameters between datasets. Notably, single-cell and
bulk RNA-seq data differ substantially in dynamic range. Therefore, direct com-
parison of counts or RPKM/FPKM/TPM between single-cell and bulk RNA-seq
datasets may be problematic. To perform comparisons with minimal complications
from technical variants, we compared the overlap of differentially expressed gene
lists from our treatment study and published disease studies. If treatment A and
disease B induce similar gene signature changes, we expect to find significantly
more genes changed in concordant directions in A and B compared to genes
changed in opposite directions in A and B. If a treatment and a disease do not
induce similar gene signature changes, we expect to find similar numbers of genes
changing in concordant vs. opposite directions in these two conditions as predicted
by chance. To test whether treatment A and disease B exhibited concordant gene
expression changes, we counted the number of genes in the following four cate-
gories: (1) upregulated in treatment A and upregulated in disease B; (2) upregu-
lated in treatment A and downregulated in disease B; (3) downregulated in
treatment A and downregulated in disease B; and (4) downregulated in treatment
A and upregulated in disease B. We used the number of genes in each of the four
categories in a contingency table and used Fisher’s exact test to detect significant
concordance. We used the lists of genes differentially expressed by astrocyte
clusters between disease and control patients from the published disease studies,
which used the statistical tests and parameters detailed in these
publications51,52,54,55. Specifically, the following gene lists were used for this ana-
lysis: Mathys et al.51, Supplementary Data 2, astrocyte cluster, no pathology vs.
pathology; Zhou et al.52, Supplementary Data 4, DEG tab, astrocyte cluster, Alz-
heimer’s disease vs. control; Schirmer et al.53, Supplementary Data 6, astrocyte
cluster, multiple sclerosis vs. control; Wheeler et al.54, Supplementary Data 10 and
12, astrocyte cluster, multiple sclerosis vs. control; and Heiland et al.56, Fig. 1b,
tumor vs. control.

Comparison with astrocyte subpopulation markers. We analyzed four pre-
viously published single-cell RNA-seq datasets from humans with subclusters of
astrocytes51, using a similar methodology as described above for comparison with
disease datasets. When the number of genes was <1000, we used Fisher’s exact test;
when the number of genes was equal to or more than 1000, we used Chi-square
test. We next performed Bonferroni correction for multiple comparisons to identify
concordant gene expression between each treatment and each astrocyte subcluster.
The following astrocyte subcluster differentially expressed gene lists were used in
this analysis: Mathys et al.51, Supplementary Data 6; Wheeler et al.54, Supple-
mentary Data 8; Habib et al.60, Supplementary Data 8; and Habib et al.61, Sup-
plementary Data 2.

ACM treatment of neurons. We plated primary human and mouse astrocytes
purified by immunopanning as described above in high-density cultures on 6-well
plates. To obtain TNFα-treated ACM, we added 30 ng/ml TNFα to the astrocytes at
3 div and harvested ACM at 6 div. To obtain hypoxia-treated ACM, we cultured
the astrocytes in atmospheric (21%) oxygen for 3 days and moved the cultures to
an incubator with 1% oxygen for 3 days and collected ACM at the end of the
treatment. We also collected untreated control ACM. We concentrated ACM with
centrifuge tubes with 3 kilodalton filters (Thermo Scientific, 88525) and spun them
at 6000–8000 g for 3–4 h at 4 °C and stored the ACM in single-use aliquots at −80°
C. We generated primary cortical neuron cultures from E17 mice, added ACM
(150 μg total protein/ml) at 0 div and then added AraC (5 μM) at 1 div to eliminate
contaminating astrocytes. We harvested the neurons at 6 div, collected RNA,
generated sequencing libraries, and performed sequencing and data analyses as
described above.

Principal component analysis. The R package ggplot2 was used for principal
component analysis with logRPKM as the input using all default settings.

Immunohistochemistry and immunocytochemistry. Mice were anesthetized with
isoflurane and transcardially perfused with PBS followed by 4% paraformaldehyde
(PFA). Brains were removed and further fixed in 4% PFA at 4°C overnight. The
brains were washed with PBS and cryoprotected in 30% sucrose at 4°C for two days
before being immersed in optimal cutting temperature compound (Fisher, cat#23-
730-571) and stored at −80°C. Brains were sectioned on a cryostat (Leica) and 30
μm floating sections were blocked and permeablized in 10% donkey serum with
0.2% Triton X-100 in PBS and then stained with primary antibodies against human
nucleus protein (Chemicon, cat#MAB1281, dilution 1:500) and human GFAP
(Sternberger, cat#SMI21, dilution 1:500) at 4°C overnight. Sections were washed
three times with PBS and incubated for 2 h at room temperature with secondary
antibodies followed by three additional PBS washes. The sections were then
mounted on Superfrost Plus microscope slides (Fisher, cat#12-550-15) and covered
with mounting medium (Fisher, cat#H1400NB) and glass coverslips.

For immunocytochemistry of cultured cells, we fixed and permeablized
astrocytes with 4% PFA and 0.2% Triton-X100 in PBS. After blocking in 10%
donkey serum, we stained astrocytes with primary antibody against NFκB p65
(1:200; Cell Signaling Technology, Cat#8242) and fluorescent secondary antibodies
(Invitrogen). After three washes in PBS, we stained the cells with DAPI (Thermo
Scientific, Cat#62248) and imaged them using an Evos FL Auto 2 inverted
fluorescence microscope (Invitrogen) with 10x and 20x lenses. We used Photoshop
CS5 and FIJI to process images.

Statistical analysis and reproducibility. The numbers of patients, animals, and
replicates are described in figures and figure legends. Experiments shown in the
figures were repeated independently for the times listed below with similar results:
Fig. 1a, 60 times. 1b, 10 times. 1c, twice. 2b-e, 12 times. 3b, 6 times with mouse
samples and 3 times with human samples. Supplementary Fig. 10b, 7 times with
mouse samples and 4 times with human samples. 25a, twice with mouse samples
and 3 times with human samples. RNA-seq data were analyzed as described in the
RNA-seq section above. For all non-RNA-seq data and RNA-seq data comparisons
between species, analyses were conducted using RStudio (Version 1.3.1093) and
Prism 8 software (Graphpad). Normality of data was tested by the Shapiro-Wilke
test. For data with a normal distribution, Welch’s two-sided t test was used for two-
group comparisons and a one-way ANOVA was used for multi-group compar-
isons. For data that deviate from the normal distribution, the Mann-Whitney test
was used. Data from technical replicates from the same patient or the same litter of
mice were averaged and used as a single biological replicate in statistical analyses.
An estimate of the variation in each group is indicated by the standard error of the
mean (SEM) or standard deviation (SD). *p < 0.05, **p < 0.01, ***p < 0.001.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data supporting the findings of this study are provided within the paper and its
supplementary information. A source data file is provided with this paper. We deposited
all RNA-seq data to the Gene Expression Omnibus repository under accession number
GSE147870. All additional information will be made available upon reasonable request to
the authors. Source data are provided with this paper.

Code availability
All codes used in this study have been previously published85,86 and are available (STAR,
HTseq, DESeq2, Limma, EdgeR). No custum code was generated in this study.

Received: 22 June 2020; Accepted: 27 May 2021;

References
1. Sasaguri, H. et al. APP mouse models for Alzheimer’s disease preclinical

studies. EMBO J. 36, 2473–2487 (2017).
2. Bezard, E., Yue, Z., Kirik, D. & Spillantini, M. G. Animal models of

Parkinson’s disease: Limits and relevance to neuroprotection studies. Mov.
Disord. 28, 61–70 (2013).

3. Masliah, E. et al. Dopaminergic loss and inclusion body formation in alpha-
synuclein mice: implications for neurodegenerative disorders. Science 287,
1265–1269 (2000).

4. Arnold, E. S. et al. ALS-linked TDP-43 mutations produce aberrant RNA
splicing and adult-onset motor neuron disease without aggregation or loss of
nuclear TDP-43. Proc. Natl Acad. Sci. U. S. A. 110, E736–E745 (2013).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24232-3

18 NATURE COMMUNICATIONS | ��������(2021)�12:3958� | https://doi.org/10.1038/s41467-021-24232-3 | www.nature.com/naturecommunications



 

178 

 

5. Manwani, B. et al. Functional recovery in aging mice after experimental stroke.
Brain. Behav. Immun. 25, 1689–1700 (2011).

6. Hay, M., Thomas, D. W., Craighead, J. L., Economides, C. & Rosenthal, J.
Clinical development success rates for investigational drugs. Nat. Biotechnol.
32, 40–51 (2014).

7. Pfrieger, F. W. & Barres, B. A. Synaptic efficacy enhanced by glial cells in vitro.
Science 277, 1684–1687 (1997).

8. Ullian, E. M., Sapperstein, S. K., Christopherson, K. S. & Barres, B. A. Control
of synapse number by Glia. Sci. (80-) 291, 657–661 (2001).

9. Blanco-Suarez, E., Liu, T.-F., Kopelevich, A. & Allen, N. J. Astrocyte-secreted
chordin-like 1 drives synapse maturation and limits plasticity by increasing
synaptic GluA2 AMPA receptors. Neuron 100, 1116–1132.e13 (2018).

10. Ma, Z., Stork, T., Bergles, D. E. & Freeman, M. R. Neuromodulators signal
through astrocytes to alter neural circuit activity and behaviour. Nature 539,
428–432 (2016).

11. Huang, Y. H., Sinha, S. R., Tanaka, K., Rothstein, J. D. & Bergles, D. E.
Astrocyte glutamate transporters regulate metabotropic glutamate receptor-
mediated excitation of hippocampal interneurons. J. Neurosci. 24, 4551–4559
(2004).

12. Parpura, V. et al. Glutamate-mediated astrocyte–neuron signalling. Nature
369, 744–747 (1994).

13. Pascual, O. et al. Astrocytic purinergic signaling coordinates synaptic
networks. Science 310, 113–116 (2005).

14. Nedergaard, M. Direct signaling from astrocytes to neurons in cultures of
mammalian brain cells. Science 263, 1768–1771 (1994).

15. Kelley, K. W. et al. Kir4.1-dependent astrocyte-fast motor neuron interactions
are required for peak strength. Neuron 98, 306–319.e7 (2018).

16. Chung, W.-S. et al. Astrocytes mediate synapse elimination through MEGF10
and MERTK pathways. Nature 504, 394–400 (2013).

17. Stogsdill, J. A. et al. Astrocytic neuroligins control astrocyte morphogenesis
and synaptogenesis. Nature 551, 192–197 (2017).

18. Anderson, M. A. et al. Astrocyte scar formation aids central nervous system
axon regeneration. Nature 532, 195–200 (2016).

19. Yu, X. et al. Reducing astrocyte calcium signaling in vivo alters striatal
microcircuits and causes repetitive behavior. Neuron 99, 1170–1187.e9 (2018).

20. Molofsky, A. V. et al. Astrocyte-encoded positional cues maintain
sensorimotor circuit integrity. Nature 509, 189–194 (2014).

21. Eroglu, Ç. et al. Gabapentin receptor α2δ-1 is a neuronal thrombospondin
receptor responsible for excitatory CNS synaptogenesis. Cell 139, 380–392
(2009).

22. Allen, N. J. et al. Astrocyte glypicans 4 and 6 promote formation of excitatory
synapses via GluA1 AMPA receptors. Nature 486, 410–414 (2012).

23. Farhy-Tselnicker, I. et al. Astrocyte-secreted glypican 4 regulates release of
neuronal pentraxin 1 from axons to induce functional synapse formation.
Neuron 96, 428–445.e13 (2017).

24. Oberheim, N. A. et al. Uniquely hominid features of adult human astrocytes. J.
Neurosci. 29, 3276–3287 (2009).

25. Oberheim, N. A., Wang, X., Goldman, S. & Nedergaard, M. Astrocytic
complexity distinguishes the human brain. Trends Neurosci. 29, 547–553
(2006).

26. Zhang, Y. et al. Purification and characterization of progenitor and mature
human astrocytes reveals transcriptional and functional differences with
mouse. Neuron 89, 37–53 (2016).

27. Zamanian, J. L. et al. Genomic analysis of reactive astrogliosis. J. Neurosci. 32,
6391–6410 (2012).

28. Zhang, Y. et al. An RNA-sequencing transcriptome and splicing database of
glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34,
11929–11947 (2014).

29. Hodge, R. D. et al. Conserved cell types with divergent features in human
versus mouse cortex. Nature 573, 61–68 (2019).

30. Han, X. et al. Forebrain engraftment by human glial progenitor cells enhances
synaptic plasticity and learning in adult mice. Cell Stem Cell 12, 342–353
(2013).

31. Windrem, M. S. et al. A competitive advantage by neonatally engrafted human
glial progenitors yields mice whose brains are chimeric for human glia. J.
Neurosci. 34, 16153–16161 (2014).

32. Windrem, M. S. et al. Neonatal chimerization with human glial progenitor
cells can both remyelinate and rescue the otherwise lethally hypomyelinated
shiverer mouse. Cell Stem Cell 2, 553–565 (2008).

33. Krencik, R., Weick, J. P., Liu, Y., Zhang, Z.-J. & Zhang, S.-C. Specification of
transplantable astroglial subtypes from human pluripotent stem cells. Nat.
Biotechnol. 29, 528–534 (2011).

34. Tchieu, J. et al. NFIA is a gliogenic switch enabling rapid derivation of
functional human astrocytes from pluripotent stem cells. Nat. Biotechnol. 37,
267–275 (2019).

35. Sloan, S. A. et al. Human astrocyte maturation captured in 3D cerebral
cortical spheroids derived from pluripotent stem cells. Neuron 95, 779–790.e6
(2017).

36. Chai, H. et al. Neural circuit-specialized astrocytes: transcriptomic, proteomic,
morphological, and functional evidence. Neuron 95, 531–549 (2017).

37. Crowley, L. C., Christensen, M. E. & Waterhouse, N. J. Measuring
mitochondrial transmembrane potential by TMRE staining. Cold Spring Harb.
Protoc. https://doi.org/10.1101/pdb.prot087361 (2016).

38. Dringen, R., Pawlowski, P. G. & Hirrlinger, J. Peroxide detoxification by brain
cells. J. Neurosci. Res. 79, 157–165 (2005).

39. Ma, X. et al. Mitochondrial electron transport chain complex III is required
for antimycin A to inhibit autophagy. Chem. Biol. 18, 1474–1481 (2011).

40. Nordgren, M. & Fransen, M. Peroxisomal metabolism and oxidative stress.
Biochimie 98, 56–62 (2014).

41. Foo, L. C. et al. Development of a method for the purification and culture of
rodent astrocytes. Neuron 71, 799–811 (2011).

42. Petriv, O. I. & Rachubinski, R. A. Lack of peroxisomal catalase causes a
progeric phenotype in caenorhabditis elegans. J. Biol. Chem. 279,
P19996–20001 (2004).

43. Xu, Y. et al. Glucose-6-phosphate dehydrogenase-deficient mice have
increased renal oxidative stress and increased albuminuria. FASEB J. 24,
609–616 (2010).

44. Ho, H. Y., Cheng, M. L. & Chiu, D. T. Y. Glucose-6-phosphate dehydrogenase
- From oxidative stress to cellular functions and degenerative diseases. Redox
Report 12, 109–118 (2007).

45. Bakken, T. E. et al. Single-cell RNA-seq uncovers shared and distinct axes of
variation in dorsal LGN neurons in mice, non-human primates and humans.
bioRxiv 2020.11.05.367482 (2020). https://doi.org/10.1101/2020.11.05.367482

46. Minnerup, J., Sutherland, B. A., Buchan, A. M. & Kleinschnitz, C.
Neuroprotection for stroke: current status and future perspectives. Int. J. Mol.
Sci. 13, 11753–11772 (2012).

47. Michalicová, A., Bhide, K., Bhide, M. & Kováč, A. How viruses infiltrate the
central nervous system Acta Virol. 61, 393–400 (2017).

48. Pellegrini, L. et al. SARS-CoV-2 infects the brain choroid plexus and disrupts
the blood-CSF barrier in human brain organoids. Cell Stem Cell https://doi.
org/10.1016/j.stem.2020.10.001 (2020).

49. Perriot, S. et al. Human induced pluripotent stem cell-derived astrocytes are
differentially activated by multiple sclerosis-associated cytokines. Stem Cell
Reports. 11, 1199–1210 (2018).

50. Sharma, D., Kim, M. S. & D’Mello, S. R. Transcriptome profiling of expression
changes during neuronal death by RNA-Seq. Exp. Biol. Med. 240, 242–251
(2015).

51. Mathys, H. et al. Single-cell transcriptomic analysis of Alzheimer’s disease.
Nature 571, 332–337 (2019).

52. Zhou, Y. et al. Human and mouse single-nucleus transcriptomics reveal
TREM2-dependent and TREM2-independent cellular responses in
Alzheimer’s disease. Nat. Med. https://doi.org/10.1038/s41591-019-0695-9
(2020).

53. Schirmer, L. et al. Neuronal vulnerability and multilineage diversity in
multiple sclerosis. Nature 573, 75–82 (2019).

54. Wheeler, M. A. et al. MAFG-driven astrocytes promote CNS inflammation.
Nature 578, 593–599 (2020).

55. Jäkel, S. et al. Altered human oligodendrocyte heterogeneity in multiple
sclerosis. Nature 566, 543–547 (2019).

56. Henrik Heiland, D. et al. Tumor-associated reactive astrocytes aid the
evolution of immunosuppressive environment in glioblastoma. Nat. Commun.
10, 2541 (2019).

57. Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated
microglia. Nature 541, 481–487 (2017).

58. Guttenplan, K. A. et al. Neurotoxic reactive astrocytes drive neuronal death
after retinal injury. Cell Rep. 31, 107776 (2020).

59. Chang, C. C., Zhang, J., Lombardi, L., Neri, A. & Dalla-Favera, R. Mechanism
of expression and role in transcriptional control of the proto-oncogene NFKB-
2/LYT-10. Oncogene 9, 923–933 (1994).

60. Habib, N. et al. Massively parallel single-nucleus RNA-seq with DroNc-seq.
Nat. Methods 14, 955–958 (2017).

61. Habib, N. et al. Disease-associated astrocytes in Alzheimer’s disease and aging.
Nat. Neurosci. 23, 701–706 (2020).

62. Ito, M. et al. RNA-sequencing analysis revealed a distinct motor cortex
transcriptome in spontaneously recovered mice after stroke. Stroke 49,
2191–2199 (2018).

63. Mekel-Bobrov, N. et al. Ongoing adaptive evolution of ASPM, a brain size
determinant in Homo sapiens. Science 309, 1720–1722 (2005).

64. Florio, M. et al. Human-specific gene ARHGAP11B promotes basal progenitor
amplification and neocortex expansion. Science 347, 1465–1470 (2015).

65. Long, K. R. et al. Extracellular matrix components HAPLN1, lumican, and
collagen I cause hyaluronic acid-dependent folding of the developing human
neocortex. Neuron 99, 702–719.e6 (2018).

66. Kalebic, N. et al. Neocortical expansion due to increased proliferation of basal
progenitors is linked to changes in their morphology. Cell Stem Cell 24,
535–550.e9 (2019).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24232-3 ARTICLE

NATURE COMMUNICATIONS | ��������(2021)�12:3958� | https://doi.org/10.1038/s41467-021-24232-3 |www.nature.com/naturecommunications 19



 

179 

 

67. Wang, X., Tsai, J.-W., LaMonica, B. & Kriegstein, A. R. A new subtype of
progenitor cell in the mouse embryonic neocortex. Nat. Neurosci. 14, 555–561
(2011).

68. Hansen, D. V., Lui, J. H., Parker, P. R. L. & Kriegstein, A. R. Neurogenic radial
glia in the outer subventricular zone of human neocortex. Nature 464,
554–561 (2010).

69. Namba, T. et al. Human-specific ARHGAP11B acts in mitochondria to
expand neocortical progenitors by glutaminolysis. Neuron 105, 867–881.e9
(2020).

70. Johnson, M. B. et al. Functional and evolutionary insights into human brain
development through global transcriptome analysis. Neuron 62, 494–509
(2009).

71. Kang, H. J. et al. Spatio-temporal transcriptome of the human brain. Nature
478, 483–489 (2011).

72. Miller, J. A. et al. Transcriptional landscape of the prenatal human brain.
Nature 508, 199–206 (2014).

73. Jacobs, R. A., Díaz, V., Meinild, A., Gassmann, M. & Lundby, C. The C57Bl/6
mouse serves as a suitable model of human skeletal muscle mitochondrial
function. Exp. Physiol. 98, 908–921 (2013).

74. Perlman, R. L. Mouse models of human disease: an evolutionary perspective.
Evol. Med. public Heal. 2016, 170–176 (2016).

75. Billingsley, K. J. et al. Mitochondria function associated genes contribute to
Parkinson’s Disease risk and later age at onset. npj Park. Dis 5, 8 (2019).

76. Arneson, D. et al. Single cell molecular alterations reveal target cells and
pathways of concussive brain injury. Nat. Commun. 9, 3894 (2018).

77. Le Douce, J. et al. Impairment of glycolysis-derived l-serine production in
astrocytes contributes to cognitive deficits in Alzheimer’s disease. Cell Metab.
31, 503–517.e8 (2020).

78. Choi, B. H. & Lapham, L. W. Radial glia in the human fetal cerebrum: A
combined golgi, immunofluorescent and electron microscopic study. Brain
Res 148, 295–311 (1978).

79. Roessmann, U. & Gambetti, P. Astrocytes in the developing human brain.
Acta Neuropathol. 70, 308–313 (1986).

80. Elder, G. A. & Major, E. O. Early appearance of type II astrocytes in
developing human fetal brain. Dev. Brain Res. 42, 146–150 (1988).

81. Molofsky, A. V. & Deneen, B. Astrocyte development: a guide for the
perplexed. Glia 63, 1320–1329 (2015).

82. Bushong, E. A., Martone, M. E. & Ellisman, M. H. Maturation of astrocyte
morphology and the establishment of astrocyte domains during postnatal
hippocampal development. Int. J. Dev. Neurosci. 22, 73–86 (2004).

83. Zhong, S. et al. Decoding the development of the human hippocampus.
Nature 577, 531–536 (2020).

84. Neuner, S. M., Heuer, S. E., Huentelman, M. J., O’Connell, K. M. S. &
Kaczorowski, C. C. Harnessing genetic complexity to enhance translatability
of Alzheimer’s disease mouse models: a path toward precision medicine.
Neuron 101, 399–411 (2019).

85. Liao, Y., Smyth, G. K. & Shi, W. The R package Rsubread is easier, faster,
cheaper and better for alignment and quantification of RNA sequencing reads.
Nucleic Acids Res 47, e47 (2019).

86. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

Acknowledgements
We thank Baljit Khakh, Mark Sharpley, Michael Sofroniew, Jill Haney, Ajit Divakaruni
for advice. We thank the UCLA Mitochondria Core, the Center for AIDS Research Core,
the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research,
UCLA BioSequencing Core Facility for their services, Kory Hamane, Mahnaz Akhavan
and Suhua Feng for their technical support. This work is supported by the Achievement
Rewards for College Scientists foundation Los Angeles Founder Chapter and the

National Institute of Mental Health of the National Institutes of Health (NIH) Award
T32MH073526 to M.I.G., the Dr. Sheldon and Miriam G. Adelson Medical Research
Foundation to S.A.G., H.I.K., and D.H.G., the National Institute of Neurological Dis-
orders and Stroke of the NIH R00NS089780, R01NS109025, the National Institute of
Aging of the NIH R03AG065772, National Center for Advancing Translational Science
UCLA CTSI Grant UL1TR001881, UCLA Eli and Edythe Broad Center of Regenerative
Medicine and Stem Cell Research Innovation Award, the W.M. Keck Foundation Junior
Faculty Award, the UCLA Jonsson Comprehensive Cancer Center and Eli and Edythe
Broad Center of Regenerative Medicine and Stem Cell Research Ablon Scholars Program,
and the Friends of the Semel Institute for Neuroscience & Human Behavior Friends
Scholar Award to Y.Z.

Author contributions
J.L. and Y.Z. conceived of the project and designed the experiments. J.L. performed all
experiments except those noted below. L.P. performed xenograft experiments and RNA-
seq of xenografted astrocytes. M.I.G. contributed to the generation of RNA-seq libraries.
M.C.C., A.G.A., and M.H. optimized xenografting conditions and assisted the xenograft
experiments under the supervision of H.I.K. W.G.P., J.E.R., and D.H.G. performed
WGCNA and analyzed some of the single-cell sequencing datasets. Y-W.C. and X.Y.
performed mapping of xenografted RNA-seq reads to human and mouse genomes. L.S.
performed Seahorse Respirometry and TMRE/MTG imaging experiments. A.Y.C. and I.
B.W. procured tissue samples. S.A.G. developed the xenograft method and provided
training for xenograft experiments. J.L. and Y.Z. analyzed the data and wrote the paper.
All authors read the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-24232-3.

Correspondence and requests for materials should be addressed to Y.Z.

Peer review information Nature Communications thanks Andras Lakatos and the other
anonymous reviewer(s) for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24232-3

20 NATURE COMMUNICATIONS | ��������(2021)�12:3958� | https://doi.org/10.1038/s41467-021-24232-3 | www.nature.com/naturecommunications



 

180 

 

Noble et al. Translational Psychiatry ���������(2021)�11:194�
https://doi.org/10.1038/s41398-021-01309-7 Translational Psychiatry

ART ICLE Open Ac ce s s

Gut microbial taxa elevated by dietary sugar
disrupt memory function
Emily E. Noble1, Christine A. Olson2, Elizabeth Davis3, Linda Tsan3, Yen-Wei Chen2, Ruth Schade1, Clarissa Liu3,
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Abstract
Emerging evidence highlights a critical relationship between gut microbiota and neurocognitive development.
Excessive consumption of sugar and other unhealthy dietary factors during early life developmental periods yields
changes in the gut microbiome as well as neurocognitive impairments. However, it is unclear whether these two
outcomes are functionally connected. Here we explore whether excessive early life consumption of added sugars
negatively impacts memory function via the gut microbiome. Rats were given free access to a sugar-sweetened
beverage (SSB) during the adolescent stage of development. Memory function and anxiety-like behavior were
assessed during adulthood and gut bacterial and brain transcriptome analyses were conducted. Taxa-specific
microbial enrichment experiments examined the functional relationship between sugar-induced microbiome
changes and neurocognitive and brain transcriptome outcomes. Chronic early life sugar consumption impaired
adult hippocampal-dependent memory function without affecting body weight or anxiety-like behavior.
Adolescent SSB consumption during adolescence also altered the gut microbiome, including elevated abundance
of two species in the genus Parabacteroides (P. distasonis and P. johnsonii) that were negatively correlated with
hippocampal function. Transferred enrichment of these specific bacterial taxa in adolescent rats impaired
hippocampal-dependent memory during adulthood. Hippocampus transcriptome analyses revealed that early life
sugar consumption altered gene expression in intracellular kinase and synaptic neurotransmitter signaling
pathways, whereas Parabacteroides microbial enrichment altered gene expression in pathways associated with
metabolic function, neurodegenerative disease, and dopaminergic signaling. Collectively these results identify a
role for microbiota “dysbiosis” in mediating the detrimental effects of early life unhealthy dietary factors on
hippocampal-dependent memory function.

Introduction
The gut microbiome has recently been implicated in

modulating neurocognitive development and consequent
functioning1–4. Early life developmental periods repre-
sent critical windows for the impact of indigenous gut
microbes on the brain, as evidenced by the reversal of
behavioral and neurochemical abnormalities in germ free
rodents when inoculated with conventional microbiota

during early life, but not during adulthood5–7. Dietary
factors are a critical determinant of gut microbiota
diversity and can alter gut bacterial communities, as
evident from the microbial plasticity observed in
response to pre- and probiotic treatment, as well as the
“dysbiosis” resulting from consuming unhealthy, yet
palatable foods that are associated with obesity and
metabolic disorders (e.g., Western diet; foods high in
saturated fatty acids and added sugar)8. In addition to
altering the gut microbiota, consumption of Western
dietary factors yields long-lasting memory impairments,
and these effects are more pronounced when consumed
during early life developmental periods vs. during
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adulthood9–11. Whether diet-induced changes in specific
bacterial populations are functionally related to altered
early life neurocognitive outcomes, however, is poorly
understood.
The hippocampus, which is well known for its role in

spatial and episodic memory and more recently for reg-
ulating learned and social aspects of food intake con-
trol12–17, is particularly vulnerable to the deleterious
effects of Western dietary factors9,18,19. During the juve-
nile and adolescent stages of development, a time when
the brain is rapidly developing, consumption of diets high
in saturated fat and sugar20–22 or sugar alone23–26 impairs
hippocampal function while in some cases preserving
memory processes that do not rely on the hippocampus.
While several putative underlying mechanisms have been
investigated, the precise biological pathways linking diet-
ary factors to neurocognitive dysfunction remain largely
undetermined11. Here we aimed to determine whether
sugar-induced alterations in gut microbiota during early
life are causally related to hippocampal-dependent
memory impairments observed during adulthood.

Methods and materials
Experimental subjects
Juvenile male Sprague Dawley rats (Envigo; arrival post-

natal day (PN) 26–28; 50–70 g) were housed individually in
standard conditions with a 12:12 light/dark cycle. All rats
had ad libitum access to water and Lab Diet 5001 (PMI
Nutrition International, Brentwood, MO; 29.8 % kcal from
protein, 13.4% kcal from fat, 56.7% kcal from carbohy-
drate), with modifications where noted. Treatment group
sizes for Aim 1 experiments are derived from power ana-
lyses conducted in Statistica Software (V7) based on our
published data, pilot data, and relevant publications in the
literature. All experiments were performed in accordance
with the approval of the Animal Care and Use Committee
at the University of Southern California.

Experiment 1
Twenty-one juvenile male rats (PN 26–28) were divided

into two groups with equal bodyweight and given ad
libitum access to (1) 11% weight-by-volume (w/v) solution
containing monosaccharide ratio of 65% fructose and 35%
glucose in reverse osmosis-filtered water (SUG; n= 11) or
2) or an extra bottle of reverse osmosis-filtered water
(CTL; n= 10). This solution was chosen to model com-
monly consumed sugar-sweetened beverages (SSBs) in
humans in terms of both caloric content and mono-
saccharide ratio27. In addition, all rats were given ad
libitum access to water and standard rat chow. Food
intake, solution intake, and body weights were monitored
thrice-weekly except were prohibited due to behavioral
testing. At PN 60, rats underwent Novel Object in Con-
text (NOIC) testing, to measure hippocampal-dependent

episodic contextual memory. At PN 67 rats underwent
anxiety-like behavior testing in the Zero Maze, followed
by body composition testing at PN 70 and an intraper-
itoneal glucose tolerance test (IP GTT) at PN 84. All
behavioral procedures were run at the same time each day
(4–6 h into the light cycle). Investigators were blind to
animal groups when scoring the behavioral tasks such that
the scorers did not know which animal was in which
group. Fecal and cecal samples were collected prior to
sacrifice at PN 104.
In a separate cohort of juvenile male rats (n= 6/group)

animals were treated as above, but on PN day 60 rats were
tested in the Novel Object Recognition (NOR) and Open
Field (OF) tasks, with two days in between tasks. Animals
were sacrificed and tissue punches were collected from
the dorsal hippocampus on PN day 65. Tissue punches
were flash-frozen in a beaker filled with isopentane and
surrounded dry ice and then stored at −80 °C until further
analyses.

Experiment 2
Twenty-three juvenile male rats (PN 26–28) were divi-

ded into two groups of equal bodyweight and received a
gavage twice daily (12 h apart) for 7 days (only one
treatment was given on day 7) of either (1) saline (SAL;
n= 8), or (2) a cocktail of antibiotics consisting of Van-
comycin (50 mg/kg), Neomycin (100 mg/kg), and Metro-
nidazole (100 mg/kg) along with supplementation with
1 mg/mL of ampicillin in their drinking water (ABX; n=
15), which is a protocol modified from28. Animals were
housed in fresh, sterile cages on Day 3 of the antibiotic or
saline treatment, and again switched to fresh sterile cages
on Day 7 after the final gavage. All animals were main-
tained on sterile, autoclaved water and chow for the
remainder of the experiment. Rats in the ABX group were
given water instead of ampicillin solution on Day 7.
Animals in the ABX group were further subdivided to
receive either gavage of a 1:1 ratio of Parabacteroides
distasonis and Parabacteroides johnsonii (PARA; n= 8) or
saline (SAL; n= 7) thirty-six hours after the last ABX
treatment. To minimize potential contamination, rats
were handled minimally for 14 days. Cage changes
occurred once weekly at which time animals and food
were weighed. Experimenters wore fresh, sterile PPE, and
weigh boxes were cleaned with sterilizing solution in
between each cage change. On PN 50 rats were tested in
NOIC, on PN 60 rats were tested in NOR, on PN 62 rats
were tested in the Zero Maze, followed by OF on PN 64.
Investigators were blind to animal groups when scoring
the behavioral tasks such that the scorers did not know
which animal was in which group when timing the
behavior (NOIC, NOR, Zero Maze, OF). On PN 73 rats
were given an IP GTT, and on PN 76 body composition
was tested. Rats were sacrificed at PN 83 and dorsal
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hippocampus tissue punches and cecal samples were
collected. Tissue punches were flash-frozen in a beaker
filled with isopentane and surrounded by dry ice and cecal
samples were placed in microcentrifuge tubes embedded
in dry ice. Samples were subsequently stored at −80 °C
until further analyses.

IP glucose tolerance test (IP GTT)
Animals were food-restricted 24 h prior to IP GTT.

Immediately prior to the test, baseline blood glucose
readings were obtained from the tail tip and recorded by
a blood glucose meter (One-touch Ultra2, LifeScan Inc.,
Milpitas, CA). Each animal was then intraperitoneally
(IP) injected with dextrose solution (0.923 g/ml by body
weight) and tail tip blood glucose readings were obtained
at 30, 60, 90, and 120 min after IP injections, as pre-
viously described23.

Zero Maze
The Zero Maze is an elevated circular track (63.5 cm fall

height, 116.8 cm outside diameter), divided into four
equal-length sections. Two sections were open with 3 cm
high curbs, whereas the 2 other closed sections contained
17.5 cm high walls. Animals are placed in the maze facing
the open section of the track in a room with ambient
lighting for 5 min while the experimenter watches the
animal from a monitor outside of the room. The experi-
menter records the total time spent in the open sections
(defined as the head and front two paws in open arms),
and the number of crosses into the open sections from the
closed sections.

The novel object in context task
NOIC measures episodic contextual memory based on

the capacity for an animal to identify which of two
familiar objects it has never seen before in a specific
context. Procedures were adapted from prior reports29,30.
Briefly, rats are habituated to two distinct contexts on
subsequent days (with the habituation order counter-
balanced by the group) for 5-min sessions: Context 1 is a
semi-transparent box (15 in. W × 24 in. L × 12 in. H) with
orange stripes and Context 2 is a grey opaque box (17 in.
W × 17 in. L × 16 in. H) (Context identify assignments
counterbalanced by the group), each context is in a
separate dimly lit room, which is obtained using two desk
lamps pointed toward the floor. Day 1 of NOIC begins
with each animal being placed in Context 1 containing
two distinct similarly sized objects placed in opposite
corners: a 500ml jar filled with blue water (Object A) and
a square glass container (Object B) (Object assignments
and placement counterbalanced by the group). On day 2
of NOIC, animals are placed in Context 2 with duplicates
of one of the objects. On NOIC day 3, rats are placed in
Context 2 with Objects A and Object B. One of these

objects is not novel to the rat, but its placement in Con-
text 2 is novel. All sessions are 5 min long and are video
recorded. Each time the rat is placed in one of the con-
texts, it is placed with its head facing away from both
objects. The time spent investigating each object is
recorded from the video recordings by an experimenter
who is blinded to the treatment groups. Exploration is
defined as sniffing or touching the object with the nose or
forepaws. The task is scored by calculating the time spent
exploring the Novel Object to the context divided by the
time spent exploring both Objects A and B combined,
which is the novelty or “discrimination index”. Rats with
an intact hippocampus will preferentially investigate the
object that is novel to Context 2, given that this object is a
familiar object yet is now presented in a novel context,
whereas hippocampal inactivation impairs the preferential
investigation of the object novel to Context 229.

Novel object recognition
The apparatus used for NOR is a grey opaque box

(17 in. W × 17 in. L × 16 in. H) placed in a dimly lit room,
which is obtained using two desk lamps pointed toward
the floor. Procedures are adapted from ref. 31. Rats are
habituated to the empty arena and conditions for 10 min
on the day prior to testing. The novel object and the side
on which the novel object is placed are counterbalanced
by the group. The test begins with a 5-min familiarization
phase, where rats are placed in the center of the arena,
facing away from the objects, with two identical copies of
the same object to explore. The objects were either two
identical cans or two identical bottles, counterbalanced by
the treatment group. The objects were chosen based on
preliminary studies which determined that they are
equally preferred by Sprague Dawley rats. Animals are
then removed from the arena and placed in the home cage
for 5 min. The arena and objects are cleaned with 10%
ethanol solution, and one of the objects in the arena is
replaced with a different one (either the can or bottle,
whichever the animal has not previously seen, i.e., the
“novel object”). Animals are again placed in the center of
the arena and allowed to explore for 3 min. Time spent
exploring the objects is recorded via video recording and
analyzed using Any-maze activity tracking software
(Stoelting Co., Wood Dale, IL).

Open Field
OF measures general activity level and also anxiety-

like behavior in the rat. A large gray bin, 60 cm (L) ×
56 cm (W) is placed under diffuse even lighting (30 lux).
A center zone is identified and marked in the bin (19 cm
L × 17.5 cmW). A video camera is placed directly over-
head and animals are tracked using AnyMaze Software
(Stoelting Co., Wood Dale, IL). Animals are placed in
the center of the box facing the back wall and allowed to
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explore the arena for 10 min while the experimenter
watches from a monitor in an adjacent room. The
apparatus is cleaned with 10% ethanol after each rat
is tested.

Body composition
Body composition (body fat, lean mass) was measured

using LF90 time-domain nuclear magnetic resonance
(Bruker NMR minispec LF 90II, Bruker Daltonics, Inc.).

Bacterial transfer
P. distasonis (ATCC 8503) was cultured under anaero-

bic conditions at 37 °C in Reinforced Clostridial Medium
(RCM, BD Biosciences). P. johnsonii (DSM 18315) was
grown in anaerobic conditions in PYG medium (modified,
DSM medium 104). Cultures were authenticated by full-
length 16S rRNA gene sequencing. For bacterial enrich-
ment, 109 colony-forming units of both P. distasonis and
P. johnsonii were suspended in 500 µL pre-reduced PBS
and orally gavaged into antibiotic-treated rats. When co-
administered, a ratio of 1:1 was used for P. distasonis and
P. johnsonii.

Gut microbiota DNA extraction and 16s rRNA gene
sequencing in sugar-fed and control rats
All samples were extracted and sequenced according

to the guidelines and procedures established by the Earth
Microbiome Project32. DNA was extracted from fecal
and cecal samples using the MO BIO PowerSoil DNA
extraction kit. Polymerase chain reaction (PCR) targeting
the V4 region of the 16S rRNA bacterial gene was per-
formed with the 515F/806R primers, utilizing the pro-
tocol described in Caporaso et al.33. Amplicons were
barcoded and pooled in equal concentrations for
sequencing. The amplicon pool was purified with the
MO BIO UltraClean PCR Clean-up kit and sequenced by
the 2 × 150 bp MiSeq platform at the Institute for
Genomic Medicine at UCSD. All sequences were
deposited in Qiita Study 11255 as raw FASTQ files.
Sequences were demultiplexed using Qiime-1 based
“split libraries” with the forward reads only dropping.
Demultiplexed sequences were then trimmed evenly to
100 bp and 150 bp to enable comparison to other studies
for meta-analyses. Trimmed sequences were matched to
known OTUs at 97% identity.

Gut microbiota DNA extraction and 16S rRNA gene
sequencing for Parabacteroides-enriched and control rats
Total bacterial genomic DNA was extracted from rat

fecal samples (0.25 g) using the Qiagen DNeasy Power-
Soil Kit. The library was prepared following methods
from (Caporaso et al.33). The V4 region (515F–806R) of
the 16S rDNA gene was PCR amplified using individu-
ally barcoded universal primers and 30 ng of the

extracted genomic DNA. The conditions for PCR were
as follows: 94 °C for 3 min to denature the DNA, with 35
cycles at 94 °C for 45 s, 50 °C for 60 s, and 72 °C for 90 s,
with a final extension of 10 min at 72 °C. The PCR
reaction was set up in triplicate, and the PCR products
were purified using the Qiaquick PCR purification kit
(QIAGEN). The purified PCR product was pooled in
equal molar concentrations quantified by nanodrop and
sequenced by Laragen, Inc. using the Illumina MiSeq
platform and 2 × 250 bp reagent kit for paired-end
sequencing. Amplicon sequence variants (ASVs) were
chosen after denoising with the Deblur pipeline. Tax-
onomy assignment and rarefaction were performed
using QIIME2-2019.10.

Hippocampal RNA extraction and sequencing
Hippocampi from rats treated with or without sugar or

Parabacteroides were subject to RNA-seq analysis. Total
RNA was extracted according to the manufacturer’s
instructions using RNeasy Lipid Tissue Mini Kit (Qiagen,
Hilden, Germany). Total RNA was checked for degrada-
tion in a Bioanalyzer 2100 (Agilent, Santa Clara, CA,
USA). Quality was very high for all samples, and libraries
were prepared from 1 µg of total RNA using a NuGen
Universal Plus mRNA-seq Library Prep Kit (Tecan
Genomics Inc., Redwood City, CA). Final library products
were quantified using the Qubit 2.0 Fluorometer (Thermo
Fisher Scientific Inc., Waltham, MA, USA), and the
fragment size distribution was determined with the
Bioanalyzer 2100. The libraries were then pooled equi-
molarly, and the final pool was quantified via qPCR using
the Kapa Biosystems Library Quantification Kit, according
to the manufacturer’s instructions. The pool was
sequenced in an Illumina NextSeq 550 platform (Illumina,
San Diego, CA, USA), in Single-Read 75 cycles format,
obtaining about 25 million reads per sample. The pre-
paration of the libraries and the sequencing were per-
formed at the USC Genome Core (http://uscgenomecore.
usc.edu/).

RNA-seq quality control
Data quality checks were performed using the FastQC

tool (http://www.bioinformatics.babraham.ac.uk/projects/
fastqc) and low-quality reads were trimmed with Trim_-
Galore (http://www.bioinformatics.babraham.ac.uk/projects/
trim_galore/). RNA-seq reads passing quality control were
mapped to Rattus novegicus transcriptome (Rnor6) and
quantified with Salmon34. Salmon directly mapped RNA-
seq reads to Rat transcriptome and quantified transcript
counts. Txiimport35 was used to convert transcript counts
into gene counts. Potential sample outliers were detected
by principal component analysis (PCA) and one control
and one treatment sample from the Parabacteroides
experiment were deemed outliers (Fig. S1) and removed.
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Identification of differentially expressed genes (DEGs)
DESeq236 were used to conduct differential gene

expression analysis between sugar treatment and the
corresponding controls or between Parabacteroides
treatment and the corresponding controls. Low-
abundance genes were filtered out and only those hav-
ing a mean raw count > 1 in more than 50% of the samples
were included. Differentially expressed genes were
detected by DESeq2 with default settings. Significant
DEGs were defined as Benjamini–Hochberg (BH) adjus-
ted false-discovery rate (FDR) < 0.05. For heatmap visua-
lization, genes were normalized with variance stabilization
transformation implemented in DESeq2, followed by
calculating a z-score for each gene.

Pathway analyses of DEGs
For the pathway analyses, DEGs at an unadjusted P

value < 0.01 were used. Pathway enrichment analyses were
conducted using enrichr37 by intersecting each signature
with pathways or gene sets from KEGG38, gene ontology
biological pathways, cellular component, molecular
function39, and Wikipathways40. Pathways at FDR < 0.05
were considered significant. Unless otherwise specified, R
3.5.2 was used for the analysis mentioned in the RNA
sequencing section.

Additional statistical methods
Data are presented as means ± SEM. For analytic com-

parisons of body weight, total food intake, and chow
intake, groups were compared using repeated-measures
ANOVA in Prism software (GraphPad Inc., version 8.0).
Taxonomic comparisons from 16S rRNA sequencing
analysis were analyzed by analysis of the composition of
microbiomes (ANCOM). When significant differences
were detected, Sidak post-hoc test for multiple compar-
isons was used. The area under the curve for the IP GTT
testing was also calculated using Prism. All other statis-
tical analyses were performed using Student’s two-tailed
unpaired t tests in excel software (Microsoft Inc., version
15.26). Normality was confirmed prior to the utilization of
parametric testing. For all analyses, statistical significance
was set at P < 0.05. A predetermined criterion for exclu-
sion was utilized and was based on the Grubbs Outlier
Test (Prism, Graphpad Inc.) using alpha= 0.05.

Results
Early life sugar consumption impairs hippocampal-
dependent memory function
Results from the NOIC task, which measures

hippocampal-dependent episodic contextual memory
function30, reveal that while there were no differences in
total exploration time of the combined objects on days 1
or 3 of the task (Fig. 1A, B), animals fed sugar solutions
in early life beginning at PN 28 had a reduced capacity to

discriminate an object that was novel to a specific con-
text when animals were tested during adulthood (PN 60),
indicating impaired hippocampal function (Fig. 1C).
Conversely, animals fed sugar solutions in early life
performed similarly to those in the control group when
tested in the novel object recognition task (NOR) (Fig.
1D), which tests object recognition memory independent
of context. Notably, when performed using the current
methods with a short duration between the familiariza-
tion phase and the test phase, NOR not hippocampal-
dependent but instead is primarily dependent on the
perirhinal cortex30,41–43. These data suggest that early
life dietary sugar consumption impairs performance in
hippocampal-dependent contextual-based recognition
memory without affecting performance in perirhinal
cortex-dependent recognition memory independent of
context23.
Elevated anxiety-like behavior and altered general

activity levels may influence novelty exploration inde-
pendent of memory effects and may therefore confound
the interpretation of behavioral results. Thus, we next
tested whether early life sugar consumption affects
anxiety-like behavior using two different tasks designed
to measure anxiety-like behavior in the rat: the elevated
zero mazes and the OF task, the latter of which also
assesses levels of general activity44. Early life sugar
consumption had no effect on time spent in the open
area or in the number of open area entries in the zero
maze (Fig. 1E, F). Similarly, early life sugar had no effect
on distance traveled or time spent in the center zone in
the OF task (Fig. 1G, H). Together these data suggest
that habitual early life sugar consumption did not
increase anxiety-like behavior or general activity levels
in the rats.

Early life sugar consumption impairs glucose tolerance
without affecting total caloric intake, body weight, or
adiposity
Given that excessive sugar consumption is associated

with weight gain and metabolic deficits45, we tested
whether access to a sugar solution during the adolescent
phase of development would affect food intake, body
weight gain, adiposity, and glucose tolerance in the rat.
Early life sugar consumption had no effect on body
composition during adulthood (Fig. 1I, Fig. S2A, B). Early
life sugar consumption also had no effect on body weight
or total kcal intake (Fig. 1J, K), which is in agreement with
the previous findings23,26,46. Animals steadily increased
their intake of the 11% sugar solution throughout the
study (Fig. 1L) but compensated for the calories con-
sumed in the sugar solutions by reducing their intake of
dietary chow (Fig. S2C). However, animals that were fed
sugar solutions during adolescence showed impaired
peripheral glucose metabolism in an IP GTT (Fig. S2D).
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Gut microbiota is impacted by early life sugar consumption
Principal component analyses of 16 s rRNA gene

sequencing data of fecal samples revealed a separation
between the fecal microbiota of rats fed early life sugar

and controls (Fig. 2A). Results from LEfSe analysis iden-
tified differentially abundant bacterial taxa in fecal sam-
ples that were elevated by sugar consumption. These
include the family Clostridiaceae and the genus 02d06

Fig. 1 Early life sugar consumption negatively impacts hippocampal-dependent memory function. A, B Early life sugar consumption had no effect
on total exploration time on days 1 (familiarization) or day 3 (test day) of the Novel Object in Context (NOIC) task. C The discrimination index was significantly
reduced by early life sugar consumption, indicating impaired hippocampal function (P < 0.05, n= 10,11; two-tailed, type 2 Student’s t test). D There were no
differences in exploration index in the Novel Object Recognition (NOR task) (n= 6; two-tailed, type 2 Student’s t test). E, F There were no differences in time
spent in the open arm or the number of entries into the open arm in the Zero Maze task for anxiety-like behavior (n= 10; two-tailed, type 2 Student’s t test).
G, H There were no differences in distance traveled or time spent in the center arena in the Open Field task (n= 8; two-tailed, type 2 Student’s t test). I There
was no differences in body fat % during adulthood between rats fed early life sugar and controls (n= 10,11; two-tailed, type 2 Student’s t test). J, K Body
weights and total energy intake did not differ between the groups (n= 10,11; two-way repeated-measures ANOVA), despite (L) increased kcal consumption
from sugar-sweetened beverages in the sugar group. CTL= control, SUG= sugar, PN= post-natal day; data shown as mean ± SEM.

Noble et al. Translational Psychiatry ���������(2021)�11:194� Page 6 of 16



 

186 

 

Fig. 2 Effect of adolescent sugar consumption on the gut microbiome in rats. A Principal component analysis showing separation between
fecal microbiota of rats fed early life sugar or controls (n= 11, 10; dark triangles= sugar, open circles= control). B Results from LEfSe analysis
showing Linear Discriminate Analysis (LDA) scores for microbiome analysis of fecal samples of rats fed early life sugar or controls. C A cladogram
representing the results from the LEfSe analysis with the class as the outermost taxonomic level and species at the innermost level. Taxa in red are
elevated in the sugar group. D Relative % abundance of fecal Parabacteroides are significantly elevated in rats fed early life sugar (P < 0.05; n= 11, 10,
two-tailed, type 2 Student’s t test). E Linear regression of log normalized fecal Parabacteroides counts against the shift from baseline performance
scores in the novel object in context task (NOIC) across all groups tested (n= 21). E–G Linear regression of the most abundant fecal Parabacteroides
species against shift from baseline performance scores in NOIC across all groups tested (n= 21). *P < 0.05; data are shown as mean ± SEM.
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within Clostridiaceae, the family Mogibacteriaceae, the
family Enterobacteriaceae, the order Enterobacteriales,
the class of Gammaproteobacteria, and the genus Para-
bacteroides within the family Porphyromonadaceae
(Fig. 2B, C). In addition to an elevated % relative abun-
dance of the genus Parabacteroides in animals fed early
life sugar (Fig. 2D), log-transformed counts of the Para-
bacteroides negatively correlated with performance scores
in the NOIC memory task (Fig. 2E). Of the additional
bacterial populations significantly affected by sugar
treatment, regression analyses did not identify any other
genera as being significantly correlated to NOIC memory
performance. Within Parabacteroides, levels of two
operational taxonomic units (OTUs) that were elevated by
sugar negatively correlated with performance in the NOIC
task, identified as taxonomically related to P. johnsonii
and P. distasonis (Fig. 2F, G). The significant negative
correlation between NOIC performance and Para-
bacteroides was also present within each of the diet
groups alone, but when separated out by diet group only
P. distasonis showed a significant negative correlation for
each diet group (P < 0.05), whereas P. johnsonii showed a
nonsignificant trend in both the control and sugar groups
(P= 0.06, and P= 0.08, respectively; Fig. S3A–C). The
abundance of other bacterial populations that were
affected by sugar consumption was not significantly
related to memory task performance.
There was a similar separation between groups in bac-

teria analyzed from cecal samples (Fig. S4A). LEfSe results
from cecal samples show elevated Bacilli, Actinobacteria,
Erysipelotrichia, and Gammaproteobacteria in rats fed
early life sugar, and elevated Clostridia in the controls
(Fig. S4B, C). Abundances at the different taxonomic
levels in fecal and cecal samples are shown in (Figs. S5 and
S6). Regression analyses did not identify these altered
cecal bacterial populations as being significantly corre-
lated to NOIC memory performance.

Early life Parabacteroides enrichment impairs memory
function
To determine whether neurocognitive outcomes due

to early life sugar consumption could be attributable to
elevated levels of Parabacteroides in the gut, we
experimentally enriched the gut microbiota of naïve
juvenile rats with two Parabacteroides species that
exhibited high 16S rRNA sequencing alignment with
OTUs that were increased by sugar consumption and
were negatively correlated with behavioral outcomes in
rats fed early life sugar. P. johnsonii and P. distasoni
species were cultured individually under anaerobic
conditions and transferred to a group of antibiotic-
treated young rats in a 1:1 ratio via oral gavage using the
experimental design described in Methods and outlined
in Fig. 3A, and from ref. 28. To confirm Parabacteroides

enrichment, 16SrRNA sequencing was performed on rat
fecal samples for SAL–SAL, ABX-SAL, and ABX-PARA
groups. Alpha diversity was analyzed using observed
OTUs (Fig. 3B), where both ABX-SAL and ABX-PARA
fecal samples have significantly reduced alpha diversity
when compared with SAL–SAL fecal samples, suggesting
that antibiotic treatment reduces microbiome alpha
diversity. Further, either treatment with antibiotics alone
or antibiotics followed by Parabacteroides significantly
alters microbiota composition relative to the SAL–SAL
group (Fig. 3C). Taxonomic comparisons from 16S
rRNA sequencing analysis were analyzed by analysis of
the composition of microbiomes (ANCOM). Differential
abundance on relative abundance at the species level
(Fig. 3D) was tested across samples hypothesis-free.
Significant taxa at the species level were corrected for
using FDR-corrected P values to calculate W in
ANCOM. Comparing all groups resulted in the highest
W value of 144 for the Parabacteroides genus, which was
enriched in ABX-PARA fecal samples after bacterial
gavage with an average relative abundance of 55.65%
(Fig. 3E). This confirms successful Parabacteroides
enrichment for ABX-PARA rats post-gavage when
compared to either ABX-SAL (average relative abun-
dance of 5.47%) or ABX-SAL rats (average relative
abundance of 0.26%).
All rats treated with antibiotics showed a reduction in

food intake and body weight during the initial stages of
antibiotic treatment, however, there were no differences
in body weight between the two groups of antibiotic-
treated animals by PN50, at the time of behavioral testing
(Fig. S7A–C). Similar to a recent report47, Parabacteroides
enrichment in the present study impacted body weight at
later time points. Animals who received P. johnsonii and
P. distasonis treatment showed reduced body weight
40 days after the transfer, with significantly lower lean
mass (Fig. S7D–F). There were no differences in percent
body fat between groups, nor were there significant
group differences in glucose metabolism in the IPGTT
(Fig. S7G). Importantly, the body weights in the ABX-
PARA group did not significantly differ from the ABX-
SAL control group at the time of behavioral testing.
Results from the hippocampal-dependent NOIC mem-

ory task showed that while there were no differences in
total exploration time of the combined objects on days 1
or 3 of the task, indicating similar exploratory behavior,
animals enriched with Parabacteroides showed a sig-
nificantly reduced discrimination index in the NOIC task
compared with either control group (Fig. 4A–C), indi-
cating impaired performance in hippocampal-dependent
memory function. When tested in the perirhinal cortex-
dependent NOR task30, animals enriched with Para-
bacteroides showed impaired object recognition memory
compared with the antibiotic-treated control group as

Noble et al. Translational Psychiatry ���������(2021)�11:194� Page 8 of 16



 

188 

 

Fig. 3 (See legend on next page.)
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indicated by a reduced novel object exploration index
(Fig. 4D). These findings show that, unlike sugar-fed
animals, Parabacteroides enrichment impaired perirhinal
cortex-dependent memory processes in addition to
hippocampal-dependent memory.
Results from the zero maze showed no differences in

time spent in the open arms nor in the number of open
arm entries for the Parabacteroides-enriched rats rela-
tive to controls (Fig. 4E, F), indicating that the enrich-
ment did not affect anxiety-like behavior. Similarly, there
were no differences in distance traveled or time spent in
the center arena in the OF test, which is a measure of
both anxiety-like behavior and general activity in rodents
(Fig. 4G, H). Together these data suggest that Para-
bacteroides treatment negatively impacted both
hippocampal-dependent perirhinal cortex-dependent
memory function without significantly affecting general
activity or anxiety-like behavior.

Early life sugar consumption and Parabacteroides
enrichment alter hippocampal gene expression profiles
To further investigate how sugar and Parabacteroides

affect cognitive behaviors, we conducted transcriptome
analysis of the hippocampus samples. Figure S1A, C
shows the results of principal component analysis
revealing moderate separation based on RNA sequencing
data from the dorsal hippocampus of rats fed sugar in
early life compared with controls. Gene pathway enrich-
ment analyses from RNA sequencing data revealed mul-
tiple pathways significantly affected by early life sugar
consumption, including four pathways involved in neu-
rotransmitter synaptic signaling: dopaminergic, glutama-
tergic, cholinergic, and serotonergic signaling pathways.
In addition, several gene pathways that also varied by
sugar were those involved in kinase-mediated intracellular
signaling: cGMP-PKG, RAS, cAMP, and MAPK signaling
pathways (Fig. 5A, Table S1).
Analyses of individual genes across the entire tran-

scriptome using a stringent FDR criterion further identi-
fied 21 genes that were differentially expressed in rats fed
early life sugar compared with controls, with 11 genes
elevated and 10 genes decreased in rats fed sugar com-
pared to controls (Fig. 5B). Among the genes impacted,

several genes that regulate cell survival, migration, dif-
ferentiation, and DNA repair were elevated by early life
sugar access, including Faap100, which encodes an FA
core complex member of the DNA damage response
pathway48, and Eepd1, which transcribes an endonuclease
involved in repairing stalled DNA replication forks,
stressed from DNA damage49. Other genes associated
with endoplasmic reticulum stress and synaptogenesis
were also significantly increased by sugar consumption,
including Klf9 , Dgkh, Neurod2 , Ppl, and Kirrel150–53.
Several genes were reduced by dietary sugar, including

Tns2 , which encodes tensin 2, important for cell migra-
tion54, RelA, which encodes an NF/kB complex protein that
regulates the activity-dependent neuronal function and
synaptic plasticity55, and Grm8 , the gene for the metabo-
tropic glutamate receptor 8 (mGluR8). Notably, reduced
expression of the mGluR8 receptor may contribute to the
impaired neurocognitive functioning in animals fed sugar,
as mGluR8 knockout mice show impaired hippocampal-
dependent learning and memory56.
Figure S1A, B, D shows the results of the principal

component analysis of dorsal hippocampus RNA
sequencing data indicating a moderate separation
between rats enriched with Parabacteroides and controls.
Gene pathway analyses revealed that early life Para-
bacteroides treatment, similar to effects associated with
sugar consumption, significantly altered the genetic sig-
nature of dopaminergic synaptic signaling pathways,
though differentially expressed genes were commonly
affected in opposite directions between the two experi-
mental conditions (Fig. S8). Parabacteroides treatment
also impacted gene pathways associated with metabolic
signaling. Specifically, pathways regulating fatty acid
oxidation, rRNA metabolic processes, mitochondrial
inner membrane, and valine, leucine, and isoleucine
degradation were significantly affected by Parabacteroides
enrichment. Other pathways that were influenced were
those involved in neurodegenerative disorders, including
Alzheimer’s disease and Parkinson’s disease, though most
of the genes affected in these pathways were mitochon-
drial genes (Fig. 5D, Table S2).
At the level of individual genes, dorsal hippocampal

RNA sequencing data revealed that 15 genes were

(see figure on previous page)
Fig. 3 Intestinal Parabacteroides is enriched by antibiotic treatment and oral gavage of P. distasonis and P. johnsonii. A Schematic showing
the timeline for the experimental design of the Parabacteroides transfer experiment. B Alpha diversity based on 16S rRNA gene profiling of fecal
matter (n= 7–8) represented by observed operational taxonomic units (OTUs) for a given number of sample sequences. C Principal coordinates
analysis of weighted UniFrac distance based on 16S rRNA gene profiling of feces for SAL–SAL, ABX-SAL, and ABX-PARA enriched rats (n= 7–8).
D Average taxonomic distributions of bacteria from 16S rRNA gene sequencing data of feces for SAL–SAL, ABX-SAL, and ABX-PARA enriched animals
(n= 7–8). E Relative abundances of Parabacteroides in fecal microbiota for SAL–SAL, ABX-SAL, and ABX-PARA enriched animals (n= 7–8) (ANCOM).
PN post-natal day, IP GTT intraperitoneal glucose tolerance test. Data are presented as mean ± S.E.M. *P < 0.05, **P < 0.01, ***P < 0.001. n.s. not
statistically significant, SAL–SAL rats treated with saline, ABX-SAL rats treated with antibiotics followed by sterile saline gavage, ABX-PARA rats treated
with antibiotics followed by a 1:1 gavage of Parabacteroides distasonis and Parabacteroides johnsonii.
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Fig. 4 Early life enrichment with Parabacteroides negatively impacts neurocognitive function. A, B Early life enrichment with a 1:1 ratio of
P. johnsonii and P. distasonis had no effect on total exploration time in the Novel Object in Context (NOIC) task. C Discrimination index was
significantly reduced by enrichment with P. johnsonii and P. distasonis, indicating impaired hippocampal function (n= 7,8; F(2, 19)= 4.92; P < 0.05, one-
way ANOVA with Tukey’s multiple comparison test). D There was a significant reduction in the exploration index in the Novel Object Recognition
(NOR task), indicating impaired perirhinal cortex function (n= 7,8; F(2, 19)= 3.61; P < 0.05, one-way ANOVA with Tukey’s multiple comparison test).
E, F There were no differences in time spent or a number of entries into the open arm by animals with P. johnsonii and P. distasonis enrichment in the
Zero Maze task for anxiety-like behavior (n= 7,8; one-way ANOVA). G, H There were no differences in distance traveled or time spent in the center
arena in the Open Field task (n= 7,8; one-way ANOVA). SAL–SAL saline–saline control, ABX-SAL antibiotics-saline control, ABX-PARA antibiotics-P.
johnsonii and P. distasonis enriched, PN post-natal day; data shown as mean ± SEM; *P < 0.05.
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Fig. 5 (See legend on next page.)
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differentially expressed in rats enriched with Para-
bacteroides compared with controls, with 13 genes ele-
vated and two genes decreased in the Parabacteroides
group compared with controls (Fig. 5C). Consistent with
results from gene pathway analyses, several individual
genes involved in metabolic processes were elevated by
Parabacteroides enrichment, such as Hmgcs2, which is a
mitochondrial regulator of ketogenesis and provides
energy to the brain under metabolically taxing conditions
or when glucose availability is low57, and Cox6b1 , a
mitochondrial regulator of energy metabolism that
improves hippocampal cellular viability following ische-
mia/reperfusion injury58. Parabacteroides enrichment was
also associated with incased expression of Slc27A1 and
Mfrp, which are each critical for the transport of fatty
acids into the brain across capillary endothelial cells59,60.

Discussion
Dietary factors are a key source of gut microbiome

diversity28,46,61–63 and emerging evidence indicates that
diet-induced alterations in the gut microbiota may be
linked with altered neurocognitive development28,63–65.
Our results identify species within the genus Para-
bacteroides that are elevated by habitual early life con-
sumption of dietary sugar and are negatively associated
with hippocampal-dependent memory performance.
Further, targeted microbiota enrichment of Para-
bacteroides perturbed both hippocampal- and perirhinal
cortex-dependent memory performance. These findings
are consistent with previous literature in showing that
early life consumption of Western dietary factors impairs
neurocognitive outcomes10,11, and further suggest that
altered gut bacteria due to excessive early life sugar con-
sumption may functionally link dietary patterns with
cognitive impairment.
Our previous data show that rats are not susceptible to

habitual sugar consumption-induced learning and mem-
ory impairments when 11% sugar solutions are consumed
ad libitum during adulthood, in contrast to effects
observed in the present and previous study in which the
sugar is consumed during early life development23. It is
possible that habitual sugar consumption differentially

affects the gut microbiome when consumed during ado-
lescence vs. adulthood. However, a recent report showed
that adult consumption of a high fructose diet (35% kcal
from fructose) promotes gut microbial “dysbiosis” and
neuroinflammation and cell death in the hippocampus,
yet without impacting cognitive function66, suggesting
that perhaps neurocognitive function is more susceptible
to gut microbiota influences during early life than during
adulthood. Indeed, several reports have identified early life
critical periods for microbiota influences on behavioral
and neurochemical endpoints in germ-free mice5,75.
However, the age-specific profile of sugar-associated
microbiome dysbiosis and neurocognitive impairments
remains to be determined.
Given that the adolescent rats consuming SSBs com-

pensated for these calories by consuming less chow, it is
possible that reduced nutrient (e.g., dietary protein) con-
sumption may have contributed to the deficits in hippo-
campal function. However, we think this is unlikely, as
adolescent SSB access did not produce any substantial
nutrient deficiency that would restrict growth, as evi-
denced by the similarities in body weight between the
experimental and control group. Furthermore, prior stu-
dies that directly examined the effects of adolescent
caloric (and thereby nutrient) restriction on learning and
memory in rats found that there were no differences in
hippocampal-dependent memory function when rats were
restricted by ~40% from PN 25 to PN 6767, Importantly,
the parameters in this study closely match those in the
present study, as our adolescent SSB access was given over
a similar developmental period prior to behavioral testing,
and produced a ~40% reduction in total chow kcal con-
sumption. Thus, it is likely that excessive sugar con-
sumption and not nutrient deficiency led to memory
deficits, although future work is needed to more carefully
examine these variables independently.
While our study reveals a strong negative correlation

between levels of fecal Parabacteroides and performance
in the hippocampal-dependent contextual episodic
memory NOIC task, as well as impaired NOIC perfor-
mance in rats given access to a sugar solution during
adolescence, sugar intake did not produce impairments in

(see figure on previous page)
Fig. 5 Effect of early life sugar or targeted Parabacteroides enrichment on hippocampal gene expression. A Pathway analyses for differentially
expressed genes (DEGs) at a P value < 0.01 in hippocampal tissue punches from rats fed early life sugar compared with controls. Upregulation by
sugar is shown in red and downregulation by sugar in blue. B A heatmap depicting DEGs that survived the Benjamini–Hochberg corrected FDR of P
< 0.05 in rats fed early life sugar compared with controls. Warmer colors (red) signify an increase in gene expression and cool colors (blue) a reduction
in gene expression by treatment (CTL control, SUG early life sugar; n= 7/group). C A heatmap depicting DEGs that survived the Benjamini–Hochberg
corrected FDR of P < 0.05 in rats with early life Parabacteroides enrichment compared with combined control groups. Warmer colors (red) signify an
increase in gene expression and cool colors (blue) a reduction in gene expression by treatment (n= 7, 14). D Pathway analyses for differentially
expressed genes (DEGs) at a P value < 0.01 in rats enriched with Parabacteroides compared with combined controls. Upregulation by Parabacteroides
transfer is shown in red and downregulation in blue. The dotted line indicates ±0.25 log2 fold change.
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the perirhinal cortex-dependent NOR memory task. This
is consistent with our previous report in which rats given
access to an 11% sugar solution during adolescence were
impaired in hippocampal-dependent spatial memory
(Barne’s maze procedure), yet were not impaired in a
nonspatial task of comparable difficulty that was not
hippocampal-dependent23. Present results revealing that
early life sugar consumption negatively impacts
hippocampal-dependent contextual-based object recog-
nition memory (NOIC) without influencing NOR mem-
ory performance is also consistent with previous reports
using a cafeteria diet high in both fat content and
sugar68,69. On the other hand, enrichment of P. johnsonii
and P. distasonis in the present study impaired memory
performance in both tasks, suggesting a broader impact
on neurocognitive functioning with this targeted bacterial
enrichment approach.
Gene pathway analyses from dorsal hippocampus RNA

sequencing identified multiple neurobiological pathways
that may functionally connect gut dysbiosis with memory
impairment. Early life sugar consumption was associated
with alterations in several neurotransmitter synaptic sig-
naling pathways (e.g., glutamatergic and cholinergic) and
intracellular signaling targets (e.g., cAMP and MAPK). A
different profile was observed in Parabacteroides-enriched
animals, where gene pathways involved with metabolic
function (e.g., fatty acid oxidation and branched-chain
amino acid degradation) and neurodegenerative disease
(e.g., Alzheimer’s disease) were altered relative to controls.
Given that sugar has effects on bacterial populations in
addition to Parabacteroides, and that sugar consumption
and Parabacteroides treatment differentially influenced
peripheral glucose metabolism and body weight, these
transcriptome differences in the hippocampus are not
surprising. However, gene clusters involved with dopami-
nergic synaptic signaling were significantly influenced by
both early life sugar consumption and Parabacteroides
treatment, thus identifying a common pathway through
which both diet-induced and gut bacterial infusion-based
elevations in Parabacteroidesmay influence neurocognitive
development. Though differentially expressed genes were
commonly affected in opposite directions in Para-
bacteroides enriched animals compared with early life
sugar treated animals, it is possible that perturbations to
the dopamine system play a role in the observed cognitive
dysfunction. For example, while dopamine signaling in the
hippocampus has not traditionally been investigated for
mediating memory processes, several recent reports have
identified a role for dopamine inputs from the locus
coeruleus in regulating hippocampal-dependent memory
and neuronal activity70,71. Interestingly, endogenous
dopamine signaling in the hippocampus has recently been
linked with regulating food intake and food-associated
contextual learning72, suggesting that dietary effects on gut

microbiota may also impact feeding behavior and energy
balance-relevant cognitive processes.
It is important to note that comparisons between the gene

expressional analyses in the Parabacteroides enrichment
and sugar consumption experiments should be made
cautiously given that there were slight differences in the
timing of the hippocampus tissue harvest between the
two experiments (PN 65 for sugar consumption vs. PN 83
for the Parabacteroides enrichment). Further, future
work is needed to determine whether differences in gene
expression observed in each experiment translates to
differential expression at the protein level. It is also worth
emphasizing that the levels of Parabacteroides conferred
by our enrichment study were substantially higher than in
the dietary sugar study, and thus it is not surprising that
Parabacteroides enrichment would confer a different
impact on host physiology, hippocampal gene expression,
and neurocognition compared to Parabacteroides eleva-
tions associated with SSB consumption. Regardless of
these caveats in comparing the two models, our data
extend the field by highlighting a specific bacterial
population that (1) is capable of negatively impacting
neurocognitive development when experimentally enri-
ched, and (2) is elevated by early life consumption of
dietary sugar with levels correlating negatively with
hippocampal-dependent memory performance.
Many of the genes that were differentially upregulated

in the hippocampus by Parabacteroides enrichment were
involved in fat metabolism and transport. Thus, it is
possible that Parabacteroides conferred an adaptation in
the brain, shifting fuel preference away from carbohydrate
toward lipid-derived ketones. Consistent with this fra-
mework, Parabacteroides were previously shown to be
upregulated by a ketogenic diet in which carbohydrate
consumption is drastically depleted and fat is used as a
primary fuel source due. Furthermore, enrichment of
Parabacteroides merdae together with Akkermansia
muciniphila was protective against seizures in mice28. It is
possible that P. distasonis reduces glucose uptake from
the gut, enhances glucose clearing from the blood, and/or
alters nutrient utilization in general, an idea further sup-
ported by the recent finding that P. distasonis is associated
with reduced diet- and genetic-induced obesity and
hyperglycemia in mice47.
The present findings produce several opportunities for

further mechanistic investigation. For example, how do
diet-induced alterations in gut bacteria impact the brain?
Several possible mechanisms have been investigated and
proposed, such as impaired gut barrier function and
endotoxemia63,73, perhaps related to altered short-chain
fatty acid production66,74. Moreover, it is well-known that
the liver is negatively impacted by excessive fructose
consumption75, and emerging evidence highlights a gut
microbiome–liver axis with crosstalk via bile acids and
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cytokines76. It is possible that dietary sugar-induced
microbiota changes alter the hepatic–gut axis, thus con-
tributing to altered cognitive function. Indeed, an altered
bile acid profile due to gut microbiota-produced bile acid
secondary metabolites is associated with cognitive dys-
function in Alzheimer’s Disease in humans77.
Taken together, our collective results provide insight

into the neurobiological mechanisms that link early life
unhealthy dietary patterns with altered gut microbiota
changes and neurocognitive impairments. Currently,
probiotics, live microorganisms intended to confer
health benefits, are not regulated with the same rigor as
pharmaceuticals but instead are sold as dietary supple-
ments. Our findings suggest that gut enrichment with
certain species of Parabacteroides is potentially harmful
to neurocognitive mnemonic development. These results
highlight the importance of conducting rigorous basic
science analyses on the relationship between diet,
microorganisms, brain, and behavior prior to widespread
recommendations of bacterial microbiome interventions
for humans.
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Single-cell multi-omics technologies are rapidly evolving, prompting both methodological
advances and biological discoveries at an unprecedented speed. Gene regulatory
network modeling has been used as a powerful approach to elucidate the complex
molecular interactions underlying biological processes and systems, yet its application in
single-cell omics data modeling has been met with unique challenges and opportunities.
In this review, we discuss these challenges and opportunities, and offer an overview of
the recent development of network modeling approaches designed to capture dynamic
networks, within-cell networks, and cell–cell interaction or communication networks.
Finally, we outline the remaining gaps in single-cell gene network modeling and the out-
looks of the field moving forward.

Introduction
Network modeling has long been employed as a powerful tool to understand and interpret complex
biological systems, with networks themselves serving both as a computational framework and a major
data type. Networks depict biological systems as nodes and edges, where nodes represent biological
entities such as genes, proteins, metabolites, phenotypic traits, cells, environmental exposures, or even
gut bacteria, and edges represent the relationships between nodes such as regulator–effector connec-
tions, statistical correlations, physical binding, and enzymatic or metabolic reactions (Figure 1A). As
the amount and types of biological data continue to grow at an exponential rate, so too do the
number and types of biological networks including protein–protein interaction networks [1], meta-
bolic networks [2 ], genetic interaction networks [3 ], gene/transcriptional regulatory networks (GRNs)
[4 ], and cell signaling networks [5 ]. While different network models possess inherent strengths and
limitations depending on their underlying assumptions, they share the common feature of being
graphical models which describe information flow in biological systems to help understand and inter-
pret the underlying biological processes.
Network modeling has seen extensive applications over the past decades to help understand key

biological processes and regulators of health and disease. In particular, the enormous complexity of
human physiology and pathophysiology demands a systems level understanding of how biological
molecules interact within individual cells and tissues and between cells and tissues to maintain
homeostasis, and how perturbations of these interactions lead to diseases. The omnigenic disease
model, which states that all genes interacting in networks can contribute to complex diseases, is
increasingly recognized and accepted [6 ]. These conceptual frameworks match perfectly with the cap-
acity of network biology, and, therefore, it is not surprising to witness the increasing use of network
modeling approaches in essentially all fields of biology. For example, many genetic variants can
influence disease, each through very small effects which make biological interpretation difficult.
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These convoluted genetic effects can be better understood through their relationships in transcriptional and
signaling networks and biological pathways [6,7]. Our group and others have leveraged network models for the
interpretation of genetic causes of complex diseases [8–20]. Similarly, networks can be used to understand the
molecular cascades involved in various environmental causes of diseases [21–23]. For example, by integrating
genetic association with tissue-specific GRNs, Chella Krishnan et al. [20] found that numerous genetic variants
associated with nonalcoholic fatty liver disease affect diverse biological pathways ranging from lipid metabol-
ism, immune system, cell cycle, transcriptional regulation to insulin signaling, Notch signaling, and oxidative
phosphorylation that interact in GRNs in the liver and adipose tissues. Based on network topology, they identi-
fied key regulators involved in mitochondrial function at the center of disease pathways and subnetworks.
In another study, network modeling of genetic risks of cardiovascular disease and type 2 diabetes using
tissue-specific GRNs revealed shared and disease-specific networks and regulators [10]. In a systematic effort,

Figure 1. Overview of molecular networks and single-cell network modeling approaches.
(A) Various types of network nodes and edges (connections) in a molecular network. (B) Concepts and example methods of
current single-cell network modeling approaches. Transcriptomes of single cells from tissue samples are first processed and
clustered using dimension reduction techniques, followed by cell identity determination using known cell markers. Cell
populations in various dynamic states can be ordered using pseudo-time and trajectory analyses, and the pseudo-time
information can be used in dynamic network modeling. Gene networks within a given cell population and cell–cell
communication networks can also be reconstructed based on various assumptions and algorithms.

© 2019 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and the Royal Society of Biology and distributed under the Creative Commons
Attribution License 4.0 (CC BY-NC-ND).
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Greene et al. [16] constructed 144 tissue/cell-specific networks and used these networks to predict and under-
stand lineage-specific responses to IL1B stimulation, tissue-specific activities and functions of LEF1, connection
of Parkinson’s disease with other diseases, and the tissue context and genes involved in hypertension.
While network-based approaches have furthered our understanding of complex diseases, it is important to

note that the majority of the network methodologies and applications have primarily relied upon omics data
derived from bulk tissues. At the bulk tissue level, many methodologies and algorithms have been developed
for network modeling, primarily focusing on predicting GRNs within [24–28] and between tissues [29–31]
with reasonable accuracy. However, bulk tissues like non-parenchymal cells in the liver are comprised of hetero-
geneous cell populations including Kupffer cells, sinusoidal endothelial cells, and hepatocyte satellite cells, all
with distinct functions associated with unique gene regulatory profiles [32]. Given the heterogeneous nature of
tissues, bulk tissue networks primarily represent the average activities of all cell populations which can be
dominated by the most abundant cell types. Therefore, tissue networks cannot capture the unique behaviors of
individual cell populations and how cells interact to perform higher-level tissue functions.
The recent explosion of high-throughput single-cell omics technologies brings exciting possibilities to model

dynamic, within-, and between-cell gene networks to elucidate the processes underlying cell development, func-
tional state, and cell–cell communications that are missing from bulk tissue networks. These single-cell omics
technologies give us the unprecedented ability to examine the transcriptional, protein, and epigenomic profiles
at single-cell resolution, which are necessary to tease apart the regulatory and functional relationships of bio-
molecules within individual cells or cell types, and between cell populations. In theory, similar framework and
methodologies that have been used for bulk tissue network modeling could be extended to single-cell data to
uncover the regulatory mechanisms governing functions within and between cells. However, as suggested by
Chen and Mar in their recent study [33], the models for bulk tissue may not be well suited to overcome the
unique challenges introduced by single-cell data.
Here, we discuss the existing network modeling approaches developed for bulk tissue omics data, the unique

challenges imposed by single-cell omics data for use in network modeling, the recent development of
approaches for network models which make use of single-cell data, and their key underlying algorithms, advan-
tages, and disadvantages. Lastly, we discuss the remaining gaps to be overcome and where we see the field
headed to achieve a more efficient and accurate modeling of gene regulatory networks based on single-cell
omics data.

Commonly used GRN modeling approaches for bulk tissue
data
Common GRN methods that have been developed and optimized for bulk tissue data are generally based on
correlation, regression, ordinary differential equations (ODEs), mutual information, Gaussian graphical models,
and Bayesian approaches [24–28]. For example, a correlation-based method named weighted gene coexpression
network analysis (WGCNA) is the most commonly used methodology [34,35]. WGCNA is used to find clusters
(or modules) of genes which are highly correlated and usually represent tightly regulated genes involved in
similar biological pathways or functions. Although coexpression-based methods are computationally efficient
and less dependent on assumptions, these methods mainly group genes involved in similar functions or under
similar regulation, but cannot infer directionality or direct regulatory relations and require integration with
other information to facilitate interpretability [28]. Regression-based methods such as GENIE3 resolve net-
works by determining the most predictive subset of genes for each network gene based on regression models
[36]. These methods perform well for linear cascades but not for feed-forward loops. For methods based on
mutual information, such as ARACNE [37] and CLR [38], network structure is determined by the degree of
dependencies between pairs of genes. These mutual information-based network methods can infer directional-
ity and potential causality, and can predict feed-forward loops more accurately but have limited performance
with linear cascades. Bayesian network (BN) modeling approaches offer flexible frameworks to incorporate and
integrate multi-omics data as prior information to infer causal and directional gene–gene interactions [39,40].
A BN encodes conditional dependencies between genes, where each gene is determined by the values of its
parent nodes. To improve accuracy, BNs search through the multivariate space of possible graphs which comes
at the expense of higher computation cost [25,41] and the lack of guarantee that optimal topology can be
detected. The different commonly used GRN inference algorithms come with different pros and cons, and the
integration of multiple methods can compensate for the disadvantages inherent to each method and provide a
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better interpretation of the data [27]. It is important to note that these methods were optimized for bulk tissue-
level data that generally conform to standard data distributions and have few missing values.

Single-cell technologies and data structures
Leveraging the recently developed single-cell technologies, we are now able to examine the transcriptional
(DropSeq [42], inDrop [43], 10× Genomics, SmartSeq v4, Mars-Seq [44], Seq-Well [45], SPLiT-seq [46],
sci-RNA-seq [47]), protein (CITE-seq [48]), and epigenomic profiles such as open chromatin (scATAC-seq
[49]) and methylation landscapes [50]. These single-cell technologies bring about exciting possibilities to
explore biology at an unprecedented resolution and scale. The most popular and widely available technologies
for interrogating single cells in a high-throughput manner are single-cell RNA sequencing (scRNAseq).
Typically, these high-throughput single-cell transcriptome technologies are based on counting transcript frag-
ments from the 30-end which are then aligned to reference genomes. The resulting data structure which aggre-
gates gene counts for each single cell is called a digital gene expression (DGE) matrix. For other data types,
similar cell by marker (e.g. protein, chromatin location, and methylation sites) matrices form the main data
structures. Although the projection of single-cell epigenome onto single-cell transcriptome [51] has been per-
formed, the integration of multi-omics data for GRN modeling has not been attempted to our knowledge and
is a future direction for methodological development. Multi-omics data can be incorporated in many ways,
including constructing a single network with edge confidence extrapolated across omics layers and multiple
networks from individual omics layers with interactions between the layers drawn from correlative relations or
known functional relevance. For example, open chromatin located in the promoter or enhancer regions of par-
ticular genes would allow a directed edge to be drawn between the scATAC-seq and scRNAseq layers; proteome
data may help infer interactions between proteins and provide information on regulatory proteins such as tran-
scription factors (TFs) and epigenomic regulators that regulate the transcriptome and epigenome. In this
review, we will focus on scRNAseq data as these are the most abundant single-cell data type investigated for
GRN modeling.

Performance of existing GRN approaches designed for bulk
tissue data in single-cell network modeling
Recently, Chen and Mar [33] evaluated the ability of five generalized network reconstruction methods that
were commonly used for bulk tissue data in network construction using both empirical and simulated single-
cell data. The methods used in their analyses included partial correlation, BN, GENIE3, ARACNE, and CLR
[36–38,52]. Using precision-recall and receiver operating characteristic curves to evaluate whether each method
can accurately recapitulate a reference network, it was found that all methods failed to perform significantly
better than random generation in both simulated and experimental single-cell datasets. Additionally, there was
limited overlap in network predictions between methods. These findings suggest a lack of generalizability and
applicability of the existing methods for network construction based on single-cell data. However, caution is
needed to interpret such comparison results as the validity of the gold standard reference network used and the
quality evaluation metric can significantly influence the comparison results.

Unique challenges, opportunities, and considerations in
network modeling of scRNAseq data
The potential lack of performance of existing methods can result from the unique challenges related to data
sparsity, distribution, and increased data dimension and capacity [53–55]. First, for scRNAseq using recent
high-throughput platforms, due to the miniscule amount of mRNA present in a single-cell and current techno-
logical limitations, most entries in DGE matrices are zeros which result in a very sparse matrix, making the
direct extension of methods designed for bulk tissue data difficult. Importantly, although these zeros can be a
result of stochastic gene expression in individual cells (biological zeros), they do not necessarily mean the
absence of mRNA molecules but rather the result of low technical sensitivity for moderate to lowly expressed
genes, termed dropouts. Of note, read count-based scRNAseq is zero-inflated, whereas scRNAseq incorporating
unique molecular identifier (UMI) counts has been found to possess ‘non-zero-inflated’ features resulting in
different distributions compared with the read count-based technologies [56]. The discrepancies in the under-
lying data distributions in read count and UMI-based scRNAseq demand the implementation of novel
methods that consider these different technologies in the future [57,58].

© 2019 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and the Royal Society of Biology and distributed under the Creative Commons
Attribution License 4.0 (CC BY-NC-ND).

382

Emerging Topics in Life Sciences (2019) 3 379–398
https://doi.org/10.1042/ETLS20180176

D
ow

nloaded from
 http://portlandpress.com

/em
ergtoplifesci/article-pdf/3/4/379/851059/etls-2018-0176c.pdf by guest on 20 April 2022



 

200 

 

In an attempt to assign values to dropouts, many single-cell imputation methods such as MAGIC [59],
scImpute [60], DrImpute [61], SAVER [62], BISCUIT [63], ScUnif [64], PBLR [65], and deepImpute [66] have
been developed in recent years; however, the performance of these methods varies significantly [67]. In bench-
marking, scImpute and DrImpute succeeded in simulated data but failed when faced with non-collinear empir-
ical data, while both SAVER and BISCUIT could only consistently impute dropouts with near-zero values [67].
Additionally, the primary metrics used to measure performance (e.g. rand index or mutual information) bench-
mark the ability of these methods to define cell clusters; it is unclear how these imputed values may affect
network structures. Without a consensus and experimental validation of the results from these imputation
methods, caution is needed when using imputed data for network construction. A straightforward and intuitive
approach taken by Han et al. [68] used subsets of cells from the same cell type and averaged the non-zero
values of each gene across cells from each subset to derive a ‘supercell’ gene expression matrix, which is less
inflated with zero values and may prove more biologically relevant. It is important to note that this practice
will reduce the cell numbers and sacrifice statistical power.
A second challenge, related to the dropout issue in single-cell data, is the nonstandard data distribution pat-

terns. The high number of dropout values significantly skews the data distribution from unimodal such as a
Gaussian distribution to multimodal distributions, which violate the statistical assumptions underlying most of
the classic GRN modeling approaches. Careful assessment of the data distribution patterns and tailoring of
appropriate statistical methods are needed for single-cell network construction. Several statistical methods such
as zero-inflated factor analysis (ZIFA) [69] and ZINB-WaVE (Zero-Inflated Negative Binomial-based Wanted
Variation Extraction) [70] have been developed to specifically model the zero-inflated single-cell data distribu-
tion. ZIFA is a dimensionality reduction method based on the assumption that lowly expressed genes are more
likely to result in dropouts than those that are highly expressed. ZIFA extends factor analysis by incorporating
a model of the dropout rate as an exponential decay based on the mean non-zero expression. However, there
are limitations to ZIFA in that it models strictly zero measurements and cannot account for near-zero values.
Additionally, ZIFA has an underlying linear transformation framework; however, nonlinear dimensionality
reduction techniques like t-SNE and UMAP have been demonstrated to be useful in the interpretation of
single-cell data, so the extension of zero-inflation modeling to these nonlinear approaches could be useful.
ZINB-WaVE is another dimensionality reduction technique which uniquely models the count nature of
scRNAseq data and offers normalization using a sample-level intercept and flexible gene-level and sample-level
covariate incorporation to address batch effects and sequence composition effects (e.g. gene length or GC
content). To address the zero inflation and overdispersion of the data, ZINB-WaVE modifies a standard nega-
tive binomial distribution which does not fit the data well, with a term that gives the probability of observing a
0 instead of an actual count. Although ZINB-WaVE is primarily demonstrated as a dimensionality reduction
technique for single-cell data, the authors suggest that the low-dimensional representation can be used in
downstream analyses like clustering or pseudo-time. Recently, Townes et al. [58] found that multinomial
methods outperform other current practices in feature selection and dimension reduction. Consideration of
these alternative statistical methods in GRN inference may prove useful. It should be noted that these statistical
methods have been developed for read count data and may not be suitable for UMI-based single-cell datasets
as they have different underlying data distributions which are not zero-inflated.
Thirdly, it is essential that the field masters the ability to correct for confounding factors and extrapolate

data acquired from multiple experiments into one common atlas. Challenges arise as the composition of cellu-
lar data remains variable across batches and studies, and even when batches contain the same cell types, the
cell number and transcriptional states of individual cell types can vary significantly due to procedural noise
(tissue dissociation, sorting, and reagent batches), scRNAseq platforms (e.g. 10× Genomics vs. Dropseq), and
chemistry versions (version 2 vs. 3 of 10× Genomics). Much like using batch correction within the bulk tissue
setting to adjust confounding factors, the integration of data sets produced by different experiments or even
labs are invaluable, as it bolsters the statistical strength and reproducibility. Methods originally developed for
bulk tissue batch correction such as limma [71] and ComBat [72] have been applied in the batch correction of
single-cell data [73–76]; however, there have been studies which demonstrate the limitations of applying these
methods developed for bulk data to both simulated and real single-cell data [77]. Recently, significant progress
has been made in this area, yielding methods developed specifically for single-cell batch correction such as
canonical correlation analysis (CCA) [78] and mnnCorrect [77] and methods for cell-type identification based
on a labeled reference dataset such as scmap [79] and singleR [80]. However, it is important to proceed to
downstream analyses like GRN construction with caution after applying a batch correction method to single-
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cell data, and it is necessary to understand the underlying algorithms and assumptions. Methods like CCA and
mnnCorrect only leverage the highly variable genes which are shared across datasets for integration and return
a corrected gene expression matrix which only contains the variable genes used for integration. These genes
primarily define cell-type-specific markers, and the process of CCA inherently introduces dependencies
between genes and violates the assumptions of statistical tests used for downstream analysis like differential
expression, so the authors of CCA caution against using CCA for more than conserved cell-type identification
across datasets. Broadly speaking, batch correction methods developed for bulk data perform more poorly in
batch correction, whereas methods developed for single-cell data are more accurate at clustering cell types from
different batches but may not be extended to downstream analyses. Therefore, there is a need for the develop-
ment of methods which can do both.
Lastly, compared with bulk tissue data which usually consists of experimental group IDs, sample IDs, and

feature measurements, single-cell data also present increased dimensionality and data volume by adding tens of
cell types and thousands of cells from each sample. Such increases in dimensionality and data volume not only
make network modeling more complex and computationally expensive, but also bring new possibilities from
the biological perspective that are beyond the capacity of existing methods. In addition to the typical question
of how genes are organized and interacting in a network, one can address many new provocative questions. For
example, what defines a cell type? How are genes organized in each cell type? How different are the network
architectures between cell types? What are the relationships between cells — do they come from the same or
different lineages and how do the lineages evolve? Are there different states of the same cell type? What gene
regulatory circuitry determines a cell state? How do cells transition from one state to another? Which cells
communicate with one another to determine higher-level functions, and through which genes and pathways do
they communicate? Many of these new questions are not considered or readily addressable by the existing
methods designed for bulk tissues. In addition to offering the opportunities to answer these important ques-
tions, the cell–cell variability or heterogeneity in the large numbers of cells measured in each sample also pro-
vides sufficient information to construct within-sample or profile-specific networks [55]. Such networks
describe the GRN of a single biological sample, which is not possible for bulk tissue profiling data. In other
words, the ability to exploit the large cell number dimension allows GRNs to be constructed for each sample
based on its constituent cell profiles, which can be used to derive consensus networks across samples to
enhance accuracy.

Recent methods for scRNAseq GRN modeling
Recognizing the need for new GRN modeling methods for single-cell data, many approaches have been recently
developed primarily based on scRNAseq data. We categorize these methods based on fundamental biological
questions (dynamic modeling, within-cell networks, and cell–cell interaction networks; Figure 1B), followed by
the specific biological assumptions (e.g. TF to target interactions, ligand–receptor interactions) and algorithms
(e.g. coexpression, regression, ODEs, Bayesian, and Boolean), as summarized in Table 1.
The most straightforward algorithm is coexpression in which the likelihood of a gene interacting with

another depends on the strength of their pairwise correlation coefficients. Though computationally tractable,
most of these methods do not provide directionality and likely infer functional relatedness rather than direct
regulation. More complex methods include ODEs, Boolean networks, and BNs, each with advantages and lim-
itations, as discussed earlier. Boolean networks require discretization of gene expression values and apply
Boolean functions to describe regulatory interactions, which likely result in oversimplification. ODE-based
methods involve using linear, nonlinear, or piecewise differential equations to model the dynamic nature of
mRNA content in a continuous, rather than discrete, manner. A BN is a directed acyclic graph (DAG) that
integrates prior information to guide its gene–gene interaction predictions and is probabilistic in nature. Lastly,
information theory measures describe statistical dependencies between biological entities and include entropy,
the notion that information is quantified based on the uncertainty of a random variable, and mutual informa-
tion, in which the observation of one random variable can inform on or reduce the uncertainty of another
random variable. This measure produces more general correlations that allow capturing of nonlinear dependen-
cies and is commonly employed in network inference.
Of note, with new methodologies being developed at rapid speed, it is not possible to exhaustively document

all available methodologies. Here, we highlight the broad categories for single-cell GRN modeling and discuss
example methods to illustrate the concepts and make note of their advantages and potential limitations. We
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also exclude methods that were developed based on data from older low-throughput single-cell platforms such
as single-cell qPCR, which do not share the same challenges as sparse high-throughput scRNAseq.

Dynamic networks
To date, the majority of the scRNAseq-based GRN modeling approaches were designed to address dynamic
cell-state transition (Figure 1B), as scRNAseq data contain information from asynchronous cell populations
which show temporal dynamics, allowing for the mapping of cellular transitions on a pseudo-time scale
[101,102]. Common models for expression dynamics or pseudo-time estimates assume that cellular changes
(i.e. development, activation, and deactivation) progress along a continuous curve or an idealized tree and that
each intermediate stage is short and captured through the sequencing of large numbers of cells. Under these
assumptions, computational modeling can infer the trajectories of cellular dynamics, which can be derived
based on known regulatory relations such as TF target information, similarities in gene expression, and RNA
velocity represented by immature and mature mRNA content [60]. However, it is important to note that the
simultaneous presence of various cellular states at a given snapshot does not represent real time course for the
inference of sequential or lineage information. Therefore, incorporating pseudo-time may not necessarily
improve GRN construction.
To date, more than 50 methods have been developed for trajectory inference to derive pseudo-time information,

and these have been reviewed and compared previously [101,102]. Pseudo-time ordering lends directionality and
interaction-type information for dynamic GRN modeling [40,82,83,85,86,103,104]. Such pseudo-time information
is integrated with commonly used network construction algorithms outlined above such as correlation [88,94,95],
ODE [82,83,103,104], Boolean [105,106], BN [39,40], information theory [91], and other methods [107].
Many of the dynamic GRN methods have been extensively reviewed by others [53–55], and we only discuss

a few examples of the different categories here. A Boolean network method, SCNS, is based on single-gene
changes between ordered cells where cells have been discretized into an on/off state [81]. Another method
SCODE uses a linear ODE, a pseudo-time estimation that assumes all cells are on the same trajectory, and a
TF-based framework to model TF dynamics that captures regulatory relationship between genes [82]. Building
on this, GRISLI was recently developed, which uses a similar approach to SCODE, but considers multiple cell
trajectories, does not assume a network structure, and has faster computation times [83]. GRISLI first estimates
the velocity of each cell, followed by solving a sparse regression problem to relate the gene expression of a cell
to its velocity profile to estimate the GRN. An information theory-based method, SINCERITIES, utilizes
Granger Causality for directionality information and quantifies temporal changes in the expression of each
gene between two subsequent (pseudo)timepoints [82]. Changes in TF expression are used to predict changes
in corresponding genes in the next time window using ridge regression, with edge direction and sign inferred
using partial correlation analysis on the expression of every gene pair. SCINGE also uses kernel-based Granger
Causality regression on ordered single-cell data to predict regulator-target gene interactions and then ranks the
predicted interactions by aggregating the regression results [86]. An additional method is PIPER [107], which
uses local Poisson graphical modeling to more effectively capture network changes during cellular differenti-
ation and highlight the key TFs that drive these changes. A BN inference approach, AR1MA1-VBEM
(Variational Bayesian Expectation-Maximization), applies a first-order autoregressive moving-average
(AR1MA1) model to fit the time-series with a linear model that represents observations as combinations of the
data at the previous timepoint and a noise term, and uses a VBEM framework that utilizes variational calculus
to optimize the marginal likelihood and posterior distributions of network models [40]. Scribe [85] is another
recently developed method, which uses restricted directed information (RDI) [108] to infer causal GRNs by
borrowing linked time-series data or inferred cell velocity from intronic (indicative of immature RNA) and
exonic reads. The authors demonstrate that Scribe outperforms other pseudo-time methods when true time-
series data are available; however, the performance of all methods suffers dramatically when temporal informa-
tion for the measurements is lost. Interestingly, Deshpande et al. [86] recently compared various methods and
found that incorporating pseudo-time does not always lead to better performance but can hurt network recon-
struction in certain cases. As discussed earlier, this is likely due to issues in the assumptions of pseudo-time
methods.

Within-cell population networks
The second category of methods focuses on modeling GRNs within-cell populations without considering cell
trajectories or dynamics. These methods include coexpression and TF-based [88,94,95], coexpression and
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TF-independent [89,90,109], and information theory [91] (Table 1 and Figure 1B). This is in line with the
basic concepts underlying GRN modeling of gene–gene interactions for a tissue, except here single-cell data are
modeled for specific cell populations.
Similar to dynamic network modeling, the simplest approach for modeling GRNs within-cell populations is

based on coexpression. Here, the coexpression methods are divided into two groups: those which utilize prior
information in the form of TFs and those that do not. For the methods which are TF-independent, the likeli-
hood of a gene interacting with another depends on the strength of their pairwise correlation coefficients and
all possible gene pairs are considered. In the TF-based methods, genes are grouped into modules based on
those with the strongest pairwise correlation coefficients with the different TFs or are segregated into potential
interactions based on prior literature or motif evidence. A more sophisticated approach for defining GRNs
within-cell populations, which can capture nonlinear gene dependencies, is partial information decomposition
which is derived from information theory. Here, the information provided by pairs of genes is used to quantify
unique, shared, and synergistic information about a third gene across all sets of three genes to infer a network
structure.
Several correlation-based methods have been developed that compare the gene expression patterns between

known or predicted TFs and target genes, or between all genes. For instance, SCENIC couples gene coexpres-
sion with TF-binding motif analyses of modules of coexpressed genes to identify GRN modules, predict TF reg-
ulators, and identify single-cell level activity of putative TF targets (called regulons) [88]. The activity of the
regulons can be used to cluster cell types, compare network conservation, and identify important cell states and
GRNs involved in disease. Another method SINCERA is a full analytical pipeline for processing scRNAseq
data. It first identifies candidate TFs and their targets for each cell type [95]. The interactions between two TFs
or a TF and a target gene are then determined using first-order conditional dependence on gene expression
[110], and the key TFs in each GRN are identified by integrating six different node importance metrics. An
additional coexpression-based GRN method, ACTION, uses a novel archetype orthogonalization approach to
construct cell-type-specific GRNs based on the key assumption that the functional identity of a cell is deter-
mined by a set of weak, but specifically expressed genes which are mediated by a set of TFs [94]. ACTION
describes each cell as a set of ‘cellular functions’ in high dimensional space and the number of these functions
is determined using a non-parametric approach. The genes which are unique to each cellular function are
determined using orthogonalization and the role of TFs in controlling the genes in these cellular functions is
assessed. The TF and associated target genes within a cellular function serve to constitute the network.
Pina et al. [89] and, more recently, Iacono et al. [90] also utilize coexpression but build global GRNs that are

not limited to TF target relations [89,90]. The former calculates pairwise Spearman rank correlations between
all sets of genes across cells within a cell type to infer cell-type GRNs in hematopoiesis, and significant pairwise
associations were identified using the odds ratio of linearly transformed expression data. Iacono et al. [109]
used a Pearson correlation-based method which first transforms the expression values using bigSCale to derive
a z-score for each gene using a probabilistic model to account for noise and variability inherent to single-cell
data. Pairwise correlations of z-scores are used to construct GRNs. The use of z-scores boosts the number of
significant gene-to-gene correlations.
To reveal complex gene dependencies not afforded by simpler correlation strategies, GRN inference methods

have employed techniques from information theory. Specifically, PIDC uses partial information decomposition
to find the unique information provided by any pair of two genes across all other possible genes [80]. The con-
fidence of an edge between two genes is the sum of the scores of those genes across all other genes in the set.
This multivariate information approach makes use of the large sample size present in single-cell analyses to
identify nonlinear dependencies between pairs of genes by leveraging a third gene.

Cell–cell communication networks
The basic functions of a given heterogeneous tissue are determined not only by the activities of individual cell
types within the tissue, but also by the intimate communications and coordination among cell populations. For
instance, neurons and astrocytes interact to ensure essential brain functions [111], and immune cells interact
with adipocytes in the adipose tissue to regulate energy metabolism and thermogenesis [112]. As such, cell–cell
communication is a critical biological question yet has not been comprehensively addressed due to the previous
lack of high-throughput, high-resolution singe-cell data. The unique ability of single-cell approaches to simul-
taneously capture numerous cells of diverse cell types makes it feasible to model cell–cell communication net-
works (Table 1 and Figure 1B). The underlying assumption for modeling such networks is that
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communications between cells can be captured by molecular patterns measured in individual cell populations.
For example, a pair of communicating cells may express genes and proteins involved in a particular function
(e.g. one expressing a ligand and another expressing the corresponding receptor to trigger signaling pathways)
in a coordinated fashion.
Early attempts to model cell–cell communication networks have been primarily based on the concept of

gene coexpression with or without the consideration of ligand–receptor interaction information. The under-
lying assumption is that gene correlation patterns between cells reflect true biological interactions. The validity
of this assumption has been supported by evidence at the level of tissue–tissue interactions. For instance, gene
coexpression between brain regions can recapitulate the functionally derived interactions of the mouse brain
connectome [113], and gene coexpression between five different mouse tissues revealed novel endocrine factors
mediating the communications which are subsequently validated with experiments [30].
Coexpression methods were quickly adapted to single-cell data when Han et al. built cell–cell connections

based on the similarities in gene expression profiles across cell types [68]. However, such networks more likely
reflect the similarities between cell types rather than interactions or communications. To modify the classical
coexpression framework, ligand–receptor-based methods have been proposed which rely on the assumption
that a significant portion of cell–cell communication occurs via the release of chemical molecules from one cell
that bind to receptors of another cell. Utilizing this assumption allows ligand–receptor-based methods to con-
struct reliable biology-based directed networks. However, it comes at the expense of heavily limiting the set of
potential genes in an inherently sparse data modality. It is important to note that coexpression-based analyses
typically utilize Pearson’s correlation coefficient, which may not be suitable for read-based single-cell datasets
due to the zero-inflated nature and unique distribution patterns. When using coexpression-based analysis on
single-cell data, it is important that data transformation and appropriate statistics are taken into consideration.
There are several methods illustrating cell–cell communication via ligand–receptor interactions. Zhou et al.

[97] curated a list of >25000 known ligand–receptor pairs to examine their changes in the transcriptomes of
∼4000 melanoma cells. To determine if a pair of cells were communicating, the ligand and corresponding
receptor had to be expressed above a certain tunable threshold in the two cell types. Similarly, Kumar et al.
[98] focused on ∼1800 literature-based ligand–receptor pairs, but implemented a different scoring scheme that
considers the product of average receptor expression and average ligand expression in the respective cell types
under examination. Ported as an R package with a data visualization tool, iTALK is another new ligand–recep-
tor interaction-based network construction method [96]. iTALK identifies ligand–receptor pairs (from a data-
base of >2600 pairs) between two cell types by interrogating the list of ranked genes derived from average
expression (single timepoint/condition) or differentially expressed genes (multiple timepoints/conditions) for
each cell type and the list of ligand–receptor pairs in the iTALK database. Additionally, iTALK is able to use
metadata (e.g. timepoints, groups, and cohorts) to find cell–cell interaction changes by identifying differentially
expressed ligand–receptor pairs. Similarly, Smillie et al. [114] have used thousands of literature-supported
receptor–ligand interactions from the FANTOM5 database to identify cell–cell interactions by requiring that
genes are cell marker genes or differentially expressed genes to call significant interactions between cells. In
most ligand–receptor approaches, ligand–receptor pairs are restricted to communicating cell types; however, in
scTensor, Tsuyuzaki et al. [100] took a more flexible approach where no such restrictions are made. In
scTensor, cell–cell interactions are represented as hypergraphs which describe directed edges of ligand–receptor
pairs determined using tensor decomposition. A recent method proposed by Vento-Tormo et al. [115] also
considers secreted molecules as well as cell-surface molecules and uses a permutation-based approach to find
enriched ligand–receptor pairs between cell types. To achieve this, the authors developed CellPhoneDB, a
public repository of ligand–receptor interactions curated from public resources of protein–protein interactions,
which includes the subunit composition of ligands and receptors to fully represent their interactions. For pro-
teins which are comprised of multiple subunits, expression of all subunits is required to infer accurate
interactions.
The above methods all focus exclusively on ligand–receptor pairs which heavily limit the putative genes to

sets of literature-curated gene pairs which can inform on cell–cell communication. Previously, a less restrictive
modeling approach that dissects tissue–tissue communication networks [30] based on the coexpression of
genes encoding secreted peptides from a source tissue and all genes in a target tissue has been developed.
Arneson et al. [99] adopted this concept to build cell–cell communication network maps in the hippocampus
of sham mice versus mice with traumatic brain injury, revealing extensive rewiring of networks in brain injury.
This method infers connections between cells based on the assumption that one cell communicates with
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another cell by secreting signaling molecules that bind to their receptors on the target cell to trigger down-
stream molecular events in the target cell. As such, it is likely that coexpression exists between the genes that
encode secreted signaling molecules (i.e. the ligands) in the source cell type and the receptors as well as the
downstream pathway genes in the target cell type. Additional methods can broaden the scope of cell–cell inter-
actions beyond ligand–receptor-based relationships by considering the patterns among all expressed genes
between cell types, although the biological interpretation of this approach is less straightforward.

Hybrid methods
Although most GRN methods tackle either dynamic or within-cell or between-cell networks, Wang et al. [87]
have proposed SoptSC, a unifying framework to conduct single-cell analysis starting from gene expression matri-
ces to basic analytical workflows (e.g. normalization, clustering, dimensionality reduction, and identifying cell
marker genes) and subsequently to infer both cell–cell communication networks and pseudotemporal ordering/
lineage. The key premise underlying SoptSC is that the structured cell-to-cell similarity matrix can help improve
the network inference steps. The similarity matrix is also used for pseudotemporal ordering by finding the short-
est path between cells on a weighted cluster-to-cluster graph. To infer cell–cell signaling networks, the likelihood
estimate of the interaction between two cells is calculated based on the expression of ligand–receptor pairs and
the directionality of downstream pathway target genes. A consensus network between clusters/cell types is gener-
ated by summarizing the probability of signaling between all cells of any two cell types.

Gene perturbation networks
All of the above methods utilize assumptions regarding information flow such as TF cascades and ligand–
receptor relationships, without direct causal information. Single-cell data containing gene perturbation informa-
tion are extremely useful for providing causal information for GRN construction, as targeted perturbation of a
gene is the source or trigger of downstream responses of other genes. A method proposed by Jackson et al. [92]
leverages gene deletion mutants. Specifically, they pooled 72 different yeast strains across 12 different genotypes
(TF deletions) and 11 different conditions to generate scRNAseq data for 38 000 cells. In addition to the
expression data, this method uses prior information from TF targets and biophysical parameters like TF activity
and mRNA decay rates to construct a GRN using a multitask learning (MTL) framework [116]. This allows for
the integration of information across different conditions and experiments that explains the relationships
between the TF perturbations and the observed gene expression changes. By directly deleting TFs, the authors
have created a valuable dataset which could serve as a useful benchmark for other single-cell network inference
methods. Leveraging single-cell data from Perturb-seq [117], which combines CRISPR/Cas9-mediated gene per-
turbation with single-cell sequencing to generate high-throughput interventional gene expression data, Wang
et al. [93] proposed an algorithm for inferring causal DAGs. The algorithm is based on Greedy SP which
restricts the permutation-based DAG search space, and potential network scores are evaluated using the Greedy
Interventional Equivalence Search [118]. To further extend this research on causal network inference, Wang
et al. [119] introduced a method which could identify differences between DAGs inferred from different data-
sets. The same group has also demonstrated that soft interventions used in Perturb-seq, such as those that
cause partial disruption of gene dependencies (e.g. RNAi or CRISPR-mediated gene activation), provide the
same amount of causal information as hard interventions (e.g. CRISPR/Cas9-mediated gene deletions), which
result in complete disruptions, despite being less invasive [120].

Performance assessment of single-cell GRN modeling
methods
Chen and Mar recently applied a few single-cell network modeling methods including SCENIC [88], SCODE
[82], and PIDC [39,91] to both simulated and empirical single-cell datasets to assess their ability to capture
known network interactions. They found that there was low agreement between methods. However, as each
method has unique assumptions and may not be designed to capture similar interactions, agreement between
methods is not necessarily appropriate to assess performance. Another comparison study that examined the
performance of multiple network inference methods that incorporate pseudo-time information, such as
SCINGE, SCODE, and SINCERITIES, also indicates that many regulator-target predictions can be near
random for each of the methods tested [86].
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These findings call for the refinement of single-cell network modeling approaches and comprehensive revalu-
ation of the performance of existing single-cell GRN methods. On the other hand, the ligand–receptor frame-
work that is driven by a biological assumption along with data-driven gene coexpression appears to be
promising for cell–cell communication network modeling. For example, modeling with this approach to
scRNAseq data recapitulated known cell–cell interactions within the hippocampus [99].

Remaining gaps and future directions
Single-cell multi-omics profiling technologies are rapidly evolving, bringing revolutionary forces to improve our
understanding of the basic unit of life, the cell, as well as the cross-talks between cells in physiological and
pathological conditions. Major progresses have been made to more accurately classify cell types, correct for con-
founding factors, and delineate cell lineages and cell-state transitions. However, these advances are not suffi-
cient to bring a complete understanding of the regulatory machinery underlying the functions of individual cell
populations and cell–cell interactions that determine higher-level tissue functions. Existing methodologies to
model gene networks that were optimized for bulk tissue data either perform poorly for single-cell data or
cannot accommodate the new biological questions brought about by single-cell data, and methods that effi-
ciently and accurately model the outpour of single-cell data into comprehensive GRN maps are still in infancy.
In particular, novel network methods that are designed to address the unique challenges of single-cell data,
such as data sparsity, multimodal distribution, and higher dimensionality, are still in great need. The data
sparsity issue can be addressed through the improvement of single-cell technologies to enhance signal capture,
or by more accurate imputation methods that are supported by strong experimental validation data. These
efforts will help mitigate the issues associated with nonstandard data distribution that limits the utilization of
existing network methodologies. Alternatively, methods built on more appropriate statistics and algorithms that
can better accommodate dropout values and the unique data distribution are warranted.
Another critical and less highlighted gap in network modeling of single-cell data is the missing spatial infor-

mation to restrain the modeling space. Many of the current high-throughput single-cell sequencing methods
lack the ability to maintain the spatial identity of individual cells, which reduces one’s ability to resolve cell net-
works accurately, particularly during development where development layers are in close proximity. Various
high-throughput fluorescence in situ hybridization (FISH) methods have been developed as tools to resolve
spatial information [121–128]. The spatial distances between pairs of single cells can be used as a prior to con-
struct more sophisticated and accurate network models under the assumption that cells which are located
closer together are more likely to communicate. This assumption is supported by the recent discovery of local-
ization of ligand-producing cells directly adjacent to target cells expressing the corresponding receptor [129].
Another key advantage of single-molecule FISH-based methods is that they are extremely quantitative and do
not suffer from dropouts which plague high-throughput single-cell sequencing-based methods. The absence of
dropouts allows for accurate single-cell level interrogation of network predictions. With the spatial single-cell
methods, it is also possible to combine phenotypes (i.e. behavior) with cellular activation (i.e. cFos) to integrate
into the model under the assumption that cells which are active during a particular phenotype or stimulus are
more likely to be communicating. This approach has been previously used by Moffitt et al. [130] to identify
sets of neurons activated during parenting. Therefore, coupling single-cell sequencing approaches with high-
throughput single-molecule imaging has enormous potential to improve network modeling at single-cell reso-
lution. Despite the potential, there are limitations and complications involved in using spatial data to construct
GRNs. First, cell segmentation of single-molecule FISH-based methods is non-trivial and GRN construction is
impossible without it. Additionally, a single image carries limited representation of the dynamic cellular land-
scape. In fact, many of these technologies can only achieve the imaging depth of a single cell, so it is essentially
a two-dimensional snapshot at a given time which may not capture cellular dynamics outside of the imaged
plane and time frame.
At present, the majority of the methods are designed for scRNAseq, and methods incorporating other single-

cell omics scales (genetic, epigenetic, and protein) are needed [55]. This faces the same challenge that has been
encountered by bulk tissue GRN inference, and recent progresses in multi-omics integration and modeling may
offer guidance for single-cell multi-omics modeling [131–134].
Lastly, the accuracy of predicted networks from empirical data is difficult to assess, as high-throughput valid-

ation through perturbing predicted regulators in single cells in vivo is more challenging than that for whole-
body knockout or knockdown. On a positive note, new high-throughput gene perturbation technologies such
as Perturb-seq in combination with scRNAseq have the potential to generate insight into true casual
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relationships between genes and cells. Data from such platforms can serve as more appropriate benchmarking
datasets to assess the predictions of existing network methods by testing how well each method can retrieve the
true regulatory or interactive relations known from the perturbation-response experiments. Along the same
line, use of known, experimentally validated gene–gene, cell–cell circuits from the literature can be used to
benchmark the methods. Even in the absence of validated network connections, a community-based approach
can be employed to improve the network performance in silico by combining multiple inferred networks from
various methods to obtain consensus networks. This approach has been shown to be invaluable for improving
the quality of the predicted networks [27,91,135,136].
In summary, we are entering a golden era where biological discoveries can be made at an unprecedented

resolution and throughput. Network modeling of single-cell multi-omics data represents one of the key tools to
unlock the convoluted molecular mechanisms underlying pathophysiology and guide precision medicine.
Despite numerous challenges, the field is rapidly evolving and ample opportunities for methodological innova-
tions await to more accurately depict the molecular maps of cells in health and disease.

Summary
• Single-cell omics data offer unique challenges and opportunities for molecular network

modeling.

• Significant progress has been made to dissect the dynamic, within-cell, and between-cell
gene regulatory networks.

• Performance of current methods await further evaluation.

• Significant gaps remain in the development of network modeling approaches that can accom-
modate unique statistical challenges, diverse omics domains, and spatial information.
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Prenatal Bisphenol A Exposure in Mice Induces
Multitissue Multiomics Disruptions Linking to
Cardiometabolic Disorders
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The health impacts of endocrine-disrupting chemicals (EDCs) remain debated, and their tissue and
molecular targets are poorly understood. In this study, we leveraged systems biology approaches to
assess the target tissues, molecular pathways, and gene regulatory networks associated with
prenatal exposure to the model EDC bisphenol A (BPA). Prenatal BPA exposure at 5 mg/kg/d, a dose
below most reported no-observed-adverse-effect levels, led to tens to thousands of transcriptomic
and methylomic alterations in the adipose, hypothalamus, and liver tissues in male offspring in
mice, with cross-tissue perturbations in lipid metabolism as well as tissue-specific alterations in
histone subunits, glucose metabolism, and extracellular matrix. Network modeling prioritizedmain
molecular targets of BPA, including Pparg, Hnf4a, Esr1, Srebf1, and Fasn as well as numerous less
studied targets such as Cyp51 and long noncoding RNAs across tissues, Fa2h in hypothalamus, and
Nfya in adipose tissue. Lastly, integrative analyses identified the association of BPA molecular
signatures with cardiometabolic phenotypes in mouse and human. Our multitissue, multiomics
investigation provides strong evidence that BPA perturbs diversemolecular networks in central and
peripheral tissues and offers insights into the molecular targets that link BPA to human car-
diometabolic disorders. (Endocrinology 160: 409–429, 2019)

Acentral concept in the Developmental Origins of
Health and Disease states that adverse environ-

mental exposure during early developmental stages is an
important determinant for later-onset adverse health
outcomes, even in the absence of continuous exposure in
adulthood (1–3). Bisphenol A (BPA) is one of the most
prevalent environmental metabolic disruptors identified

to date, with widespread exposure in human pop-
ulations, and likely plays a role in Developmental Origins
of Health and Disease (3–5). BPA is used in the pro-
duction of synthetic polymers, including epoxy resins and
polycarbonates and, with its advantageous mechanical
properties, is ubiquitously found in everyday goods such
as plastic bottles and inner coating of canned foods (6, 7).
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The ability of BPA to leach from these everyday products
is a primary route of human exposure (8). BPA has been
shown to have the ability to disrupt endocrine signaling
important for many biological functions and has been
linked to body weight, obesity, insulin resistance, diabetes,
metabolic syndrome (MetS), and cardiovascular diseases in
both human epidemiologic and animal studies (9–17).
Importantly, it has been suggested that the developing fetus
is particularly vulnerable to BPA exposure (9, 18). In-
trauterine growth retardation has been consistently ob-
served after developmental BPA exposure at intake doses
below the suggested human safety level and has been as-
sociated with low birth weight, elevated adult fat weight,
and altered glucose homeostasis (9, 19–22). As a pre-
caution, BPA has been banned from baby products in
Europe, Canada, and the United States. However, BPA is
still in use in nonbaby products, renewing concerns about
the continuous exposure of populations in addition to the
description of its ability to influence health outcomes,
including obesity and MetS, over several generations
(23–26). Together, these lines of evidence support an in-
triguing hypothesis that BPAmay have been a contributing
factor to the rise of MetS and cardiometabolic diseases
worldwide in the past decades (27–29).

Despite numerous studies connecting BPA with ad-
verse health outcomes, there remain ample conflicting
findings, as summarized by the European Food Safety
Agency (30), the BPA Joint Emerging Science Working
Group of the US Food and Drug Administration (31),
and the recent National Toxicology Program report,
CLARITY-BPA, in which functions of multiple organs
were examined (32). Although inconsistencies across
studies might be attributable to nonmonotonic dose

response, exposure window difference, and varying
susceptibility among testing models (14, 33), there are
also several additional layers of complexity and chal-
lenges hindering the full dissection of the biological ef-
fects of BPA. First, previous studies examining BPA in
various cell types and tissues suggest a broad impact on
biological systems (25, 34–36). Second, BPA has been
found to modulate multidimensional molecular events,
such as gene expression and epigenetic changes, which
are functionally important for processes such as metab-
olism and immune response (37–42). However, due to
most studies being designed to focus on one factor at a
time as well as noncomparable study designs, it is difficult
to directly compare effects across tissues or types of
molecular data to derive the molecular rules of sensitivity
to BPA exposures. These research gaps in our under-
standing of the pleiotropy of endocrine-disrupting
chemicals and toxicant biological actions necessitated
the establishment of the National Institute for Environ-
mental Health Sciences (NIEHS) TaRGET consortium
(43) and a more recent call for the research community
to systemically interrogate multiple -omics in multiple
tissues to accelerate the discovery of key biological fin-
gerprints of environmental exposure (44).

Here, we address some of the aforementioned limi-
tations of past studies by using a highly integrative ap-
proach. We conducted a multitissue, multiomics systems
biology study to examine the systems-level influence of
prenatal BPA exposure using modern integrative geno-
mics and network modeling approaches in a mouse
model (Fig. 1A). We first used next-generation se-
quencing technologies to characterize perturbations in
both the transcriptome and the epigenome across three

Figure 1. Overall study design and the measurements of metabolic traits in male and female offspring. (A) Framework of multiomics approaches
to investigate the impact of prenatal BPA exposure. (B and C) Comparison of body weight, serum lipids, and glucose level in male mice between
BPA and control groups at weaning age. (D and E) Comparison of body weight, serum lipids, and glucose level in female mice between BPA and
control groups at weaning age. n = 9 to 13 mice (3 to 4 litters from different dams) per group. **P , 0.01; ***P , 0.001 by two-sided
Student t test. FFA, free fatty acid; HDL, high-density lipoprotein; TC, total cholesterol; TG, triglyceride; UC, unesterified cholesterol.
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tissues (white adipose tissue, hypothalamus, and liver) in
mouse offspring that had experienced in utero exposure
to BPA. These tissues were chosen due to their important
role in energy and metabolic homeostasis. The hypo-
thalamus is the central regulator of endocrine and met-
abolic systems and plays a critical role in the regulation of
nutrient and energy sensing, feeding, and energy ex-
penditure (45); liver is critical for glucose and cholesterol
homeostasis (46); and white adipose tissue is essential for
energy and lipid storage, serves as a endocrine organ se-
creting numerous hormones related to metabolic regu-
lation, and contributes to inflammatory processes by
releasing various cytokines (47, 48). These tissues interact
with one another to coordinately regulate metabolism and
energy balance. Based on mounting evidence that genes
operate in highly complex tissue-specific regulatory net-
works, we hypothesized that prenatal BPA exposure in-
duces genomic and epigenomic reprogramming in the
offspring by affecting the organization and functions of
tissue-specific gene networks (49–52). Using both tran-
scription factor (TF) and Bayesian networks (BNs), we
modeled the dynamics of transcriptomic and epigenomic
signatures and predicted potential regulators that govern
the actions of BPA. Furthermore, the transcriptome, epi-
genome, and network information were layered upon
metabolic phenotypes such as body weight, adiposity,
circulating lipids, and glucose levels in the mouse offspring
to evaluate disease association. Lastly, to assess the rele-
vance of the BPAmolecular targets identified in ourmouse
model for human diseases, we applied integrative geno-
mics to bridge the mouse molecular signatures and genetic
disease association data from human studies. Our study
represents a comprehensive data-driven, systems-level
investigation of the molecular and health impact of BPA.

Materials and Methods

Ethics statement
All animal experiments were performed in accordance with

the Institutional Animal Care and Use Committee guidelines.
Animal studies and procedures were approved by the Chan-
cellor’s Animal Research Committee of the University of Cal-
ifornia, Los Angeles.

Mouse model of prenatal BPA exposure
Inbred C57BL/6J mice were maintained on a special diet

(5V01; LabDiet, St. Louis, MO), certified to contain,150 ppm
estrogenic isoflavones, and housed under standard housing
conditions (room temperature 22°C to 24°C) with a 12:12-hour
light/dark cycle before mating at 8 to 10 weeks of age. Upon
mating, female mice were randomly assigned to either the BPA
treatment group or the control group. From 1-day post-
conception to 20 days postconception, BPA (Sigma-Aldrich, St.
Louis, MO) dissolved in corn oil was administered to pregnant
female mice via oral gavage (mimicking the common exposure

route in humans) at 5 mg/kg/d on a daily basis. The dosage is
situated below most reported no-observed-adverse-effect levels
according to toxicity testing (https://comptox.epa.gov/dashboard/
dsstoxdb/results?search=Bisphenol+A) and was typically used in
previous studies (25, 53–55). We chose this dosage as a proof-of-
concept for our systems biology study design and to facilitate
comparisonwith previous studies. Control mice were fed the same
amount of corn oil as vehicle. We chose corn oil over other
solvents for BPA because BPA is water insoluble, and corn oil was
found to be the least toxic compared with other commonly used
solvents (56), but cannot exclude potential confounding from the
combined effects of corn oil and BPA. Polycarbonate-free water
bottles and cages were used to minimize any unintended exposure
to BPA. Both parents and offspring from each treatment were
maintained on a low-phytoestrogen special diet (5V01; LabDiet).
Offspring in the vehicle- and BPA-treated groups were derived
from three and four litters by different dams, respectively, to help
assess and adjust for litter effects (57).

Characterization of cardiometabolic phenotypes
and tissue collection

Male and female offspring were examined for a spectrum of
metabolic phenotypes. In the male set, the control group had n =
9, and the BPA group had n = 11. For females, the control group
had n = 9, and the BPA group had n = 13. There were two to
three mice from each of the three to four different litters for each
treatment group (57). We chose the weaning age to investigate
early molecular and phenotypic changes in the offspring, which
may predispose the offspring to late-onset diseases. Body weight
of offspring was measured daily from postnatal day 5 up to the
weaning age of 3 weeks. Mice were fasted overnight before
being euthanized, and plasma samples were collected through
retro-orbital bleeding. Serum lipid and glucose traits, including
total cholesterol, high-density lipoprotein (HDL) cholesterol,
unesterified cholesterol, triglycerides (TGs), free fatty acids
(FFAs), and glucose, were measured by enzymatic colorimetric
assays at the University of California, Los Angeles GTMMouse
Transfer Core as previously described (50). The liver, hypo-
thalamus, and gonadal white adipose tissues were collected
from each animal. The whole hypothalamus was collected by
first carefully dissecting out the brain and placing it onto an ice-
cold dissection board with the ventral side up. Using curved
forceps, the tissue was held down, and the whole hypothalamus
was gently pinched and spooned out. For the liver dissection, all
liver lobes were first dissected out, then a portion of the distal
part of the right lobe was collected for molecular profiling, and
the rest of the liver was stored separately. For white adipose
tissue, we chose the gonadal depot mainly due to its similarity to
abdominal fat, established relevance to cardiometabolic risks,
tissue abundance, and the fact that it is the most well-studied
adipose tissue in mouse models. The gonadal fat depot was
carefully dissected around the gonads, avoiding contamination
of the gonads. After each tissue collection, the samples were
flash frozen in liquid nitrogen and stored at 280°C. All mouse
experiments were conducted in accordance with and approved
by the Institutional Animal Care and Use Committee at Uni-
versity of California, Los Angeles.

Paired-end RNA-sequencing and data analysis
A total of 18 RNA samples were isolated from gonadal

adipose, hypothalamus, and liver tissues (n = 3 per group per
tissue; for each group, mice were randomly selected from litters
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of different dams in independent cages) from male offspring
using the AllPrep DNA/RNAMini Kit (Qiagen GmbH, Hilden,
Germany). The sample size was chosen based on previous
RNA-sequencing (RNA-seq) studies that demonstrate sufficient
reproducibility (50, 58–61). We focused on profiling male
tissues because of stronger phenotypes observed in males
(Fig. 1). Samples were processed for library preparation using
the TruSeq RNA Library Preparation Kit (Illumina, San Diego,
CA) for poly-A selection, fragmentation, and reverse tran-
scription using random hexamer primers to generate first-
strand cDNA. Second-strand cDNA was generated using
RNase H and DNA polymerases, and sequencing adapters were
ligated using the Illumina Paired-End sample prep kit. Library
products of 250-bp to 400-bp fragments were isolated, am-
plified, and sequenced. Paired-end read sequencing was per-
formed on an Illumina Hiseq2500 System. After quality control
using FastQC (62), the HISAT-StringTie pipeline (63) was used
for sequence alignment and transcript assembly. Identification
of differentially expressed genes (DEGs) was conducted using
DEseq2 (64). Sequenced reads were trimmed for adaptor se-
quence, masked for low-complexity or low-quality sequence,
and then mapped to GRCm38/mm10 whole genome using
HISAT v0.1.6. Default paired-end reads alignment parameters
for HISAT were used with option -p 8. To account for multiple
testing, we used the q-value method (65). After excluding genes
with extremely low expression levels (fragments per kilobase of
transcript per million mapped reads ,1), only DEGs demon-
strating differential expression comparing the BPA and control
groups per tissue at a false discovery rate (FDR) ,5% were used
for biological pathway analysis, network analysis, and phenotypic
data integration, as described later. The RNAseq quality matrix
showing the number of sequencing reads and mapping rate for
each sample is provided in an online repository (57). The number
of reads aligned with genome for each sample varies between 30
million and 65 million, which satisfies the recommended number
of reads needed for differential expression profiling (61).

Quantitative RT-PCR analysis
RNA from male and female liver, hypothalamus, and adi-

pose tissue samples (n = 3 per tissue per treatment of males and
n = 5 per tissue per treatment of females) were extracted using
the MiRNeasy Mini Kit purchased from Qiagen following the
manufacturer’s instruction. Concentration and quality of the
RNA were measured using the Thermo Fisher Scientific
NanoDrop instrument (Thermo Fisher Scientific, Waltham,
MA). cDNA synthesis was performed using the High-Capacity
cDNA Reverse Transcription Kit from Applied Biosystems
(Waltham, MA) following the manufacturer’s protocol with
minor modification by adding RNaseOUT Recombinant Ri-
bonuclease Inhibitor (20 U/mL) from Invitrogen (Carlsbad,
CA). Following the addition of reverse-transcription compo-
nents, samples were incubated at the following thermocycler
conditions: 10 minutes at 25°C, 120 minutes at 37°C, and then
5 minutes at 85°C. Upon completion, the cDNA was stored
at 220°C until quantitative RT-PCR (qPCR) was performed.
qPCR was done using the PowerUP SYBR Green Master Mix
from Applied Biosystems. For both male and female liver and
hypothalamus tissues, 20 ng of cDNAwas used for the reaction.
For the male and female adipose samples, 10 ng of cDNA was
used due to low concentration. For all primers, a final con-
centration of 0.5 mM was used in the reaction. The qPCR
reaction was run using the manufacturer’s instructions followed

by a melt-curve analysis. All primer sets displayed a single peak
demonstrating specificity. PCR products were also run on a
1.5% agarose gel to validate appropriate amplicon size. Primer
sequences are listed in an online repository (57). Gapdh was
used as a housekeeping gene to quantify relative expression
levels using the DD threshold cycle analysis. Statistics was
performed on the D threshold cycle using a t test.

Reduced representation bisulfite sequencing
and data analysis

We constructed reduced representation bisulfite sequencing
(RRBS) libraries for 18 DNA samples from adipose, hypo-
thalamus, and liver tissues from male offspring (n = 3 per group
per tissue from the same set of tissues chosen for transcriptome
analysis described previously). The DNA samples were quan-
tified using the Qubit dsDNA BR Assay Kit (Thermo Fisher
Scientific), and 100 ng of DNA was used for library prepara-
tion. After digestion of the DNAwith theMspI enzyme, samples
underwent an end-repair and adenylation process, followed by
adapter ligation using the TruSeq barcode adapter (Illumina),
size selection using AMPure Beads (Beckman Coulter, Brea,
CA), and bisulfite treatment using the Epitect Kit (Qiagen).
Bisulfite-treated DNA was then amplified using the TruSeq
Library Prep Kit (Illumina) and sequenced with the Illumina
Hiseq2500 System. Bisulfite-converted reads were processed
and aligned to the reference mouse genome (GRCm38/mm10
build) using the bisulfite aligner BSMAP (66). We then used
MOABS (67) for methylation ratio calling and identification of
differentially methylated CpGs (DMCs). FDR was estimated
using the q-value approach. Loci withmethylation level changes
of .5% between BPA and control groups and FDR ,5% for
each tissue were considered statistically significant DMCs. To
annotate the locations of the identified DMCs in relation to
gene regions and repetitive DNA elements accessed from the
UCSC Genome Browser, we used the Bioconductor package
“annotatr” (68). Specifically, gene regions were categorized
into: (i) 1 to 5 kb upstream of the transcription start site; (ii)
promoter (,1 kb upstream of the transcription start site); (iii) 50

untranslated region; (iv) exons; (v) introns; and (vi) 30 un-
translated region. The “annotatr” package was also used to
annotate DMCs for known long noncoding RNAs (lncRNAs)
based on GENCODE Release M16. Overrepresentation of
DMCs within each category was calculated using a one-sided
Fisher exact test. We further evaluated the link between DEGs
and their local DMCs (DMCs annotated as any of the six
above-mentioned gene regions) by correlating the methylation
ratio of DMCs with the expression level of DEGs.

Pathway, network, and disease association analyses
of DEGs and DMCs using the Mergeomics R package

To investigate the functional connections among the BPA-
associated DEGs or DMCs (collectively referred to as molecular
signatures of BPAs) and to assess the potential association
of BPA-affected genes with diseases in human populations,
we used the Mergeomics package (69), an open-source bio-
conductor R package (https://bioconductor.org/packages/devel/
bioc/html/Mergeomics.html) designed to perform various in-
tegrative analyses inmultiomics studies.Mergeomics consists of
two main libraries, Marker Set Enrichment Analysis (MSEA)
and Weighted Key Driver Analysis (wKDA). In the current
study, we used MSEA to assess: (i) whether known biological
processes, pathways, or TF targets were enriched for BPA
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molecular signatures as a means to annotate the potential
functions or regulators of the molecular signatures; and (ii)
whether the BPA signatures demonstrate enrichment for disease
associations identified in human genome-wide association
studies (GWAS) of various complex diseases (57). wKDA le-
verages gene network topology (interactions or regulatory re-
lations among genes) and edge weight (strength or reliability of
interactions and regulatory relations) information of graphical
gene networks to predict potential key regulators of a given
group of genes—in this case, the BPA-associated DEGs (57).
BothMSEA and wKDAwere built around x2-like statistics (57)
that yield robust findings that have been experimentally vali-
dated (51, 52, 69). Details of each usage of the Mergeomics
package are discussed later.

Functional annotation of DEGs and DMCs
To infer the functions of the DEGs and DMCs affected by

BPA, we used MSEA to annotate the DEGs or local genes
adjacent to the DMCs with known biological pathways curated
from the Kyoto Encyclopedia of Genes and Genomes (70) and
Reactome (71). In brief, we extracted the differential expression
P values of genes in each pathway from the differential ex-
pression or methylation analyses and compared these P values
against the null distribution of P values from random gene sets
with matching gene numbers. If genes in a given pathway
collectively show more significant differential expression or
differential methylation P values compared with random genes
based on a x2-like statistic, we annotate the DEGs or DMCs
using that pathway (57). DEGs and DMCs can have multiple
overrepresented pathways.

Identification of TF hot spots perturbed by BPA
To dissect the regulatory cascades of BPA, we first assessed

whether BPA-associated DEGs were downstream targets of
specific TFs. The hypothesis behind this analysis is that BPA
first affects TFs, which in turn regulate the expression of
downstream genes. We used TF regulatory networks for adi-
pose, brain, and liver tissue retrieved from the FANTOM5
database (72). Note that only a whole brain (instead of hy-
pothalamus) TF network was available, which may only par-
tially represent hypothalamic gene regulation. Each TF network
was processed to keep the edges with high confidence (57). To
identify TFs for which targets were perturbed by BPA, the
downstream nodes of each TF in the networkwere pooled as the
target genes for that TF. We then assessed the enrichment for
BPA exposure–related DEGs among the target genes of each TF
using MSEA. TFs with FDR ,5% were considered statistically
significant. Cytoscape software was used for TF network vi-
sualization (73).

BN and wKDA to identify potential
non-TF regulators

To further identify non-TF regulators that sense BPA and
then perturb downstream genes, we used BNs of adipose, hy-
pothalamus, and liver tissues constructed from genetic and
transcriptomic data from several large-scale mouse and human
studies (57). wKDA was used to identify network key drivers
(KDs), which are defined as network nodes for which neigh-
boring subnetworks are significantly enriched for BPA-
associated DEGs. Briefly, wKDA takes gene set G (i.e., BPA
DEGs) and directional gene network N (i.e., BNs) as inputs. For

every gene K in network N, neighboring genes within 1-edge
distance were tested for enrichment of genes in G using x2-like
statistics followed by FDR assessment by permutation (57).
Network genes that reached FDR ,5% were reported as po-
tential KDs.

Association of BPA DEGs and DMCs with mouse
phenotypes and human diseases/traits

To assess whether the BPAmolecular signatures were related
to phenotypes examined in the mouse offspring, we calculated
the Pearson correlation coefficient among expression level of
DEGs, methylation ratio of DMCs, and the measurement of
metabolic traits. For human diseases or traits, we accessed the
GWAS catalog database (74) and collected the lists of candidate
genes reported to be associated with 161 human traits/diseases
(P , 1e-5). These genes were tested for enrichment of the BPA
DEGs and DMCs in our mouse study using MSEA. We further
curated all publicly available full summary statistics for 61
human traits/diseases from various public repositories (57).
This allowed us to apply MSEA to comprehensively assess the
enrichment for human disease association among BPA tran-
scriptomic signatures using the full spectrum of large-scale
human GWAS. For each tissue-specific gene signature, we
used the single nucleotide polymorphisms (SNPs) within a
50-kb chromosomal distance as the representing SNPs for that
gene. The trait/disease association P values of the SNPs were
then extracted from each GWAS and compared with the P
values of SNPs of random sets of genes to assess whether the
BPA signatures were more likely to show stronger disease as-
sociation in human GWAS (57). This strategy has been suc-
cessfully used in our previous animal model studies to assess the
connection of genes affected by environmental perturbations
such as diets and trauma to various human diseases (50, 59).

Data availability
Supplemental methods, figures, and tables are available at

Figshare (doi.org/10.6084/m9.figshare.7451069.v2) (57). RNA-
seq and RRBS data have been submitted to the Gene Expression
Omnibus (GEO) under accession numbers GSE121603 (for
RNA-seq) and GSE121604 (for RRBS).

Results

Prenatal BPA exposure induces lower body weight
and alterations in cardiometabolic phenotypes

We exposed pregnant C57BL/6J mice to BPA during
gestation via oral gavage at the dosage of 5 mg/kg/d and
examined the male and female offspring for a spectrum of
metabolic phenotypes at weaning age. Compared with
the control group, both male and female offspring from
the BPA group showed significantly lower body weight
(Fig. 1B and 1D). There were also considerable decreases
in serum lipid parameters and an increase in serum
glucose level in males (Fig. 1C), but not in females
(Fig. 1E). The phenotypic differences between BPA and
control groups are not the results of litter effect, as
offspring from different dams in each group showed
similar patterns (57).
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Prenatal BPA exposure induces tissue-specific
transcriptomic alterations in male
weaning offspring

To explore the molecular basis underlying the po-
tential health impact of prenatal BPA exposure, we
collected three key metabolic tissues including white
adipose tissue, hypothalamus, and liver from male off-
spring (due to the stronger observed phenotypes) at
3 weeks. We used RNA-seq to profile the transcriptome
and identified 86, 93, and 855 DEGs in the adipose
tissue, hypothalamus, and liver tissue, respectively, at
FDR,5% (57). This supports the ability of prenatal BPA
exposure to induce large-scale transcriptomic disruptions
in offspring, with the impact appearing to be more
prominent in liver. The DEGs show distinct expression
patterns between the control and BPA groups, and
samples within each group generally agree with one
another on the upregulation or downregulation (Fig. 2A).
The DEGs were highly tissue specific, with only 12 out of
the 86 adipose DEGs and 16 out of the 93 hypothalamus
DEGs being found in liver. Interestingly, the hypotha-
lamic DEGs are predominantly upregulated in the BPA
group, whereas the other two tissues did not show such
direction bias (57). Only one gene, Cyp51 (sterol 14-a
demethylase), was shared across all three tissues but with
different directional changes (upregulated in hypothala-
mus and liver and downregulated in adipose) (Fig. 2B).

Replication of the DEG signatures using both qPCR
and independent studies

To validate the identified DEGs in the RNA-seq
analysis of the male samples, we selected 22 genes (14
from the liver, 4 from the hypothalamus, and 4 from the
adipose tissue) for qPCRanalysis.We found that themajority
(19 out of 22; 86%) of the genes tested in the male samples
were significantly altered in the BPA samples in our qPCR
data (Fig. 3A, 3C, and 3E). All 22 genes tested via qPCR
showed consistent directions in expression changes as
observed in our RNA-seq analysis (Fig. 3), supporting the
accuracy of our RNA-seq data.

Next, to evaluate the effect of BPA in different sexes,
we also analyzed the expression of the same 22 select
genes in the female cohort. We found that only one gene,
Lpl, in the liver was significantly affected in the female
offspring exposed to BPA (Fig. 3B). The liver expression
of Rgs16, Msm01, Pparg, and Mup3 in the exposed
females also showed very similar trends to the BPA male
group (Fig. 3B). These subtle changes in expression levels
are consistent with the weaker phenotypic data observed
in females (Fig. 1D and 1E).

To further assess the reproducibility of the differential
expression signatures identified in our study, we exam-
ined our DEG signatures using independent expression

profiling data deposited on the GEO (57). We identified
three GEO datasets related to BPA exposure in mice: two
from GSE26728 (75) and one from GSE43977 (76)
(Fig. 4A). These publicly available liver transcriptome
datasets were derived from studies of BPA exposure
during adulthood, as we were not able to identify other
publicly available datasets with the same in utero ex-
posure condition tested in our exposure paradigm,
making a direct replication difficult. However, we rea-
soned that if core mechanisms exist for BPA regardless of
experimental conditions, consistent signals should be
derived. We compared the differential expression sig-
natures from the three existing liver studies against ours
and found limited consistency in BPA signatures across
datasets, even for the two datasets that were originated
from the same study (GSE26728) (Fig. 4C). These results
support that BPA has condition-specific activities.
Nevertheless, 10% of our DEGs were replicated in the
other GEO datasets (P , 1e-4 compared with ran-
dom expectation via a permutation analysis) (Fig. 4C).
Srebf1, encoding a key TF in lipid metabolism, was
consistent across all four datasets, along with numerous
additional genes consistent in two or more studies
(Fig. 4B).

Due to the major difference in the exposure window
between our study and the previously noted publicly
available GEO datasets, we expanded our search by
collecting the BPA signatures that were reported in
published mouse studies on developmental BPA expo-
sure. We collected 24 unique DEGs from 7mouse studies
(22, 77–82), which evaluated BPA effects on liver during
development (57) and found that 6 (Cyp17a1, Fasn, Fdps
Gstt3, Pparg, and Scd1) of the 24 DEGs were also sig-
nificantly affected in our study. Similarly, we compared
our hypothalamic DEGs with those derived from three
mouse and rat studies with similar BPA exposure window
and found three overlapping genes with our study (Akt2,
Hip1r, and Ndufb7) (83–85). Recent adipose tissue gene
expression studies of developmental BPA exposure revealed
very few DEGs, and none overlapped with those in our
study (22, 37, 40, 86). These comparisons support certain
consistencies in liver and hypothalamus DEGs between
studies but limited overlaps for adipose DEGs.

Functional annotation of DEGs in adipose,
hypothalamus, and liver tissues

To better understand the biological implications of the
BPA exposure–related DEGs in individual tissues, we
evaluated the enrichment of DEGs for known biological
pathways and functional categories using the Mergeomics
package (69) (Fig. 2C–2E; full results in an online re-
pository) (57). We observed strong enrichment for
pathways related to lipid metabolism (lipid transport,
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fatty acid metabolism, and cholesterol biosynthesis) and
energy metabolism (biological oxidation and tricarbox-
ylic acid cycle) across all three tissues. Most of these
pathways appeared to be upregulated in all three tissues,

except that genes involved in biological oxidation in
adipose tissue were downregulated (Fig. 2C–2E). Indi-
vidual tissues also showed perturbations of unique
pathways: peroxisome proliferator–activated receptor

Figure 2. Prenatal BPA exposure induced transcriptomic alterations in adipose, hypothalamus, and liver. (A) Heat map of expression changes
in adipose, hypothalamus, and liver for the DEGs affected by BPA. Color indicates fold change of expression, with red and blue indicating
upregulation and downregulation by BPA, respectively. (B) Venn diagram demonstrating tissue-specific and shared DEGs between tissues. (C–E)
Significantly enriched pathways (FDR ,5%) among DEGs from each tissue. Enrichment P value (shown in parentheses following the name of
functional annotation) is determined by MSEA. The fold change and statistical significance for the top five DEGs in each pathway are shown.
*P , 0.05; **FDR ,5% in differential expression analysis using DEseq2.
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(PPAR) signaling and arachidonic acid pathways were
altered in liver; extracellular matrix–related processes
were enriched among hypothalamic DEGs; and core
histone genes were upregulated in adipose DEGs
(Fig. 2C–2E). In addition, TG biosynthesis and glucose
metabolism pathways were also moderately enriched
among adipose DEGs, whereas few changes were seen for
genes involved in adipocyte differentiation (57).

Next, we compared the enriched pathways from our
DEGs with those identified from independent GEO datasets
as described above to evaluatewhether distinct study-specific
signatures could converge onto similar biological processes.
The replicated pathways across studies include steroid
hormone biosynthesis, retinol metabolism, and fatty acid
metabolism, suggesting that these processes were consis-
tently influenced by BPA under varying exposure windows
and dosages (Fig. 4D). At FDR ,5%, 56.1% of the sig-
nificant pathways in our study were replicated in one or
more independent studies (P, 1e-4 compared with random
expectation via a permutation test; Fig. 4E). Pairwise
comparison revealed relatively higher overlap ratios between
our study and individual independent studies than between

the previous studies, despite the greater similarity in the study
design among the previous studies (Fig. 4E).

Prenatal BPA exposure induces tissue-specific
epigenetic alterations in male weaning offspring

Consistent with the observed gene expression dis-
ruptions at the transcriptomic level, we observed nu-
merous methylomic alterations using RRBS, which
characterizes DNA methylation states of millions of
potential epigenetic sites at single-base resolution. At
FDRs ,5%, 5136, 104, and 476 DMCs were found in
adipose, hypothalamus, and liver tissues, respectively (57).
The DMCs show distinct expression patterns between the
control and BPA groups, and samples within each group
generally agree with one another on the upregulation or
downregulation (Fig. 5A). When comparing our adipose
methylation signatures with a previous study (40), we were
able to replicate five out of seven peak hypomethylated genes
and six out of nine peak hypermethylated genes. In-
terestingly, BPA induced local methylation changes in
Gm26917 and Yam1, two lncRNAs with no previously
known link toBPA, consistently across three tissues (Fig. 5B).

Figure 3. qPCR analysis on identified DEGs in male and female offspring. Relative fold change in expression levels of 14 genes in liver samples
of (A) male and (B) female offspring. Relative fold change in expression of four genes in gonadal adipose samples of (C) male and (D) female
offspring. Relative fold change in expression of four genes in hypothalamus samples of (E) male and (F) female offspring. Data presented as
mean 6 SE of independent replicates. n = 3 per tissue per group for males and n = 5 per tissue per group for females. *P , 0.05 by two-sided
Student t test.
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The majority of the DMCs are located in intergenic regions
(32% to 38%), followed by introns (31% to 37%) and
exons (13% to 15%), but there is a paucity of DMCs in the
promoter region (3% to 5%) (57). Contrary to predictions
that promoter regions may be more prone to epigenetic
changes, we found that within-gene and intergenic methyl-
ation alterations in DNA methylation are more prevalent, a
pattern consistently observed in previous epigenomic studies
(50, 87). In addition, 5.0%, 8.6%, and 8.1%DMCs overlap
with repetitiveDNAelements in adipose, hypothalamus, and
liver, respectively, recapitulating a previous report of the
interaction between BPA and repetitive DNA (88).

For DMCs that are located within or adjacent to genes,
we further tested whether the local genes adjacent to those
DMCs show enrichment for known functional categories.
Unlike DEGs, top processes enriched for DMCs concen-
trated on intracellular and extracellular communication
and signaling-related pathways such as axon guidance,
extracellular matrix organization, and nerve growth fac-
tor signaling (Fig. 5C; full results in an online repository)
(57). The affected genes in these processes are related to
cellular structure, cell adhesion, and cell migration, in-
dicating that these functions may be particularly vulner-
able to BPA-induced epigenetic modulation.

Potential regulatory role of DMCs in transcriptional
regulation of BPA-induced DEGs

To explore the role of DMCs in regulating DEGs, we
evaluated the connection between transcriptome and

methylome by correlating the expression level of DEGs
with the methylation ratio of their local DMCs. For the
DEGs in adipose, hypothalamus, and liver tissue, we
identified 42, 36, and 278 local DMCs for which
methylation ratios were significantly correlated with gene
expression. At a global level, compared with non-DEGs,
DEGs are more likely to contain local correlated DMCs
(57). A closer look into the expression-methylation
correlation by different chromosomal regions fur-
ther revealed a context-dependent correlation pattern
(Fig. 5D). In adipose and liver, the 3% to 5% of DMCs in
promoter regions tend to show significant enrichment for
negative correlation with DEGs, whereas gene body
methylations for DEGs are more likely to show signficant
enrichment for positive correlation with gene expression.
In hypothalamus, however, positive correlations between
DEGs and DMCs are more prevalent across different
gene regions. In addition, liver DMCs within lncRNAs
were uniquely enriched for negative correlation with
lncRNA expression, although the lack of a reliable mouse
lncRNA target database prevented us from further in-
vestigating whether downstream targets of the lncRNAs
were enriched in the DEGs. Specific examples of DEGs
showing significant correlation with local DMCs include
adipose DEG Slc25a1 (solute carrier family 25member 1;
involved in TG biosynthesis), hypothalamic DEG Mvk
(mevalonate kinase; involved in cholesterol biosynthesis),
and liver DEG Gm20319 (an lncRNA with unknown
function) (57). These results support a role of BPA-induced

Figure 4. Comparison of the liver DEGs and their functional annotations against publicly available datasets relevant to BPA exposure in GEO. (A)
Descriptions of the study design of different datasets. (B) Venn diagram of the DEGs identified in different datasets. DEGs were determined by
Limma at P , 0.01. (C) The percentage of DEGs from the datasets in each row header that are replicated by the datasets in each column
header. Numbers in parentheses indicate the percentage of DEGs that are replicated by at least one independent study and the significance of
the replication percentage determined by permutation test. (D) Venn diagram of the functional annotations for the DEGs identified in different
datasets. Functional annotations were determined by MSEA at FDR ,5%. (E) The percentage of functional annotations from the datasets in
each row header that are replicated by the datasets in each column header. Numbers in parentheses indicate the percentage of annotations that
are replicated by at least one independent study and the significance of the replication percentage determined by permutation test.
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differential methylation in altering the expression levels of
adjacent genes.

Pervasive influence of prenatal BPA exposure on the
liver TF network

BPA is known to bind to diverse types of nuclear
receptors such as estrogen receptors and PPARs that

function as TFs, thus influencing the action of down-
stream genes (89, 90). PPARg in particular has been
shown to be a target of BPA in mouse and human and
mechanistically linking BPA exposure with its associated
effect onweight gain and increased adipogenesis (91–93).
To explore the TF regulatory landscape underlying BPA
exposure based on our genome-wide data, we leveraged

Figure 5. Prenatal BPA exposure induced methylomic level alteration in adipose, hypothalamus, and liver. (A) Heat map of methylation level
changes for the DMCs. Color indicates change in methylation ratio, with red and blue indicating upregulation and downregulation by BPA,
respectively. (B) Venn diagram of genes with local DMCs between tissues shows tissue-specific and shared genes mapped to DMCs. (C)
Significantly enriched pathways that satisfied FDR ,1% across DMCs from adipose, hypothalamus, and liver tissues. Enrichment P value is
determined by MSEA. (D) Fold enrichment for positive correlations (red bars) or negative correlations (blue bars) between DMCs and local DEGs,
assessed by different gene regions. *P , 0.05; **P , 0.01; ***P , 0.0001; enrichment P values were determined using Fisher exact test. Ctrl,
control; NGF, nerve growth factor; UTR, untranslated region.
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tissue-specific TF regulatory networks from the FANTOM5
project (72) and integrated them with our BPA tran-
scriptome profiling data. No TF was found to be dif-
ferentially expressed in adipose tissue, whereas 1 TF
(Pou3f1) and 14 TFs (such as Esrra, Hnf1a, Pparg, Tcf21,
and Srebf1) were found to be differentially expressed in
hypothalamus and liver, respectively. Due to the tem-
poral nature of TF action, changes in TF levels may
precede the downstream target genes and not be reflected
in the transcriptomic profiles measured at the time of
euthanization. Therefore, we further curated the target
genes of TFs from FANTOM5 networks and tested the
enrichment for the target genes of each TF among our
tissue-specific DEGs (57). This analysis confirmed that
BPA perturbs the activity of the downstream targets for
estrogen receptors Esrrg (P = 1.4e-3; FDR 1.9%) and
Esrra (P = 0.03; FDR 13%) in liver, as well as Esr1 in
both adipose (P = 7.2e-3; FDR 10.6%) and liver (P =
7.2e-3; FDR 4.7%). Targets of Pparg were also perturbed
in liver (P = 4.1e-3; FDR 3.8%). Therefore, we dem-
onstrated that our data-driven network modeling is able
to not only recapitulate results from previous in vitro and
in vivo studies showing that BPA influences estrogen
signaling and PPAR signaling (90), but also uniquely
point to the tissue specificity of these BPA target TFs.

In addition to these expected TFs, we identified 14
adipose TFs and 61 liver TFs for which target genes were
significantly enriched for BPA DEGs at FDR ,5%.
Many of these TFs showed much stronger enrichment for
BPA DEGs among their downstream targets than the
estrogen receptors (57). The adipose TFs include nuclear
TF Y subunit a (Nfya) and fatty acid synthase (Fasn),
both implicated in adipocyte energy metabolism (94).
The liver TFs include multiple genes from the hepatocyte
nuclear factors family and the CCAAT-enhancer-binding
proteins family, which are critical for liver development
and function, suggesting a pervasive influence of BPA on
liver TF regulation.

We further extracted the subnetwork containing 89
unique downstream targets of the significant liver TFs
that are also liver DEGs. This subnetwork showed sig-
nificant enrichment for genes involved in metabolic
pathways such as steroid hormone biosynthesis and fatty
acid metabolism. The regulatory subnetwork for the top
liver TFs (FDR ,5%) revealed a highly interconnected
TF subnetwork that potentially senses BPA exposure and
in turn governs the expression levels of their targets
(Fig. 6A), with Pparg and Hnf4 among the core TFs.
Some of the TFs in this network, including Esr1, Esrrg,
Foxp1, and Tcf7l1, also had local DMCs identified in our
study, indicating that BPA may perturb this liver TF
subnetwork via local modification of DNA methylation
of key TFs.

Identification of potential non-TF regulators
governing BPA induced molecular perturbations

To further identify regulatory genes that mediate the
action of BPA on downstream targets through non-TF
mechanisms, we leveraged data-driven tissue-specific
BNs generated from multiple independent human and
mouse studies (57). These data-driven networks are
complementary to the TF networks used previously and
have proven valuable for accurately predicting gene-gene
regulatory relationships and novel KDs that were ex-
perimentally validated (49–52, 95). KDs were defined as
network nodes for which surrounding subnetworks are
significantly enriched for BPA exposure–related DEGs.
At FDR ,1%, we identified 21, 1, and 100 KDs in
adipose, hypothalamus, and liver, respectively (57). The
top KDs in adipose (top 5 KDs Acss2, Pc, Agpat2,
Slc25a1, and Acly), hypothalamus (Fa2h), and liver (top
5 KDs Dhcr7, Aldh3a2, Fdft1, Mtmr11, and Hmgcr)
were involved in cholesterol, fatty acid, and glucose
metabolism processes. In addition, three KDs—Acss2
(acetyl-coenzyme A synthetase 2),Acat2 (acetyl-coenzyme
A acetyltransferase 2), and Fasn (fatty acid synthase)—
were involved in the upregulation ofDEGs in both adipose
and liver, despite the fact that few DEG signatures overlap
across tissues (Fig. 6B). These KDs are consistent with the
observed increased expression of several genes implicated
in lipogenesis, including Fasn, and help explain the liver
accumulation of TGs when mice are exposed to BPA (75).
Together, these results indicate that BPA may engage
certain common regulators that have tissue-specific tar-
gets. The distinct upregulatory pattern within the sub-
networks of individual KDs supports the potential
functional importance of KDs in orchestrating the action
of downstream genes. These KDs, along with the TFs
from the previous analysis, may represent regulatory
targets that transmit the in vivo biological effects of BPA.

BPA transcriptomic and methylomic signatures are
related to metabolic traits in mice

To assess the relationship between the BPA molecular
signatures and metabolic traits in the mouse model, the
DEGs and DMCs from individual tissues were tested for
correlation with the measured metabolic traits: body weight,
FFAs, total cholesterol, HDL cholesterol, TGs, and blood
glucose. AtP, 0.05, over two-thirds of tissue-specific DEGs
and.60%ofDMCswere identified to be correlatedwith at
least one metabolic trait (Fig. 7A and 7B). Notably, liver
DEGs exhibited stronger correlation with FFAs and TGs,
whereas adipose DEGs were uniquely associated with glu-
cose level, which is consistent with the pathway annotation
results for these tissues. In contrast, liver DMCs showed
stronger correlations with metabolic traits than those from
adipose and hypothalamus tissues.
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Cross-examination of correlation across gene expres-
sion, DNA methylation, and metabolic traits revealed 35
consistent DEG-DMC-trait associations (3 in adipose, 4
in hypothalamus, and 28 in liver) (57). For example, in
adipose tissue, Fasn (also a perturbed TF hot spot in
adipose and a shared KD in adipose and liver) was cor-
related with its exonic DMC at chr11:120816457, and
both were correlated with TG level; in hypothalamus,
Igf1r (insulin-like growth factor 1 receptor) was correlated
with its intronic DMC at chr7:68072768, and both were
correlated with blood glucose level; in liver,Adh1 (alcohol
dehydrogenase 1A) was correlated with its intronic DMC
at chr3:138287690, and both were correlated with body
weight (Fig. 7C). These results suggest that BPA alters
local DMCs of certain genes to regulate gene expression,
which may in turn regulate distinct metabolic traits.

Relevance of BPA signature to human
complex traits/diseases

Human observational studies have associated devel-
opmental BPA exposure with a wide variety of human
diseases ranging from cardiometabolic diseases to neu-
ropsychiatric disorders (15, 16, 96). Large-scale human
GWAS offer an unbiased view of the genetic architecture
for various human traits/diseases, and intersections of the
molecular footprints of BPA in our mouse study with
human disease risk genes can help infer the potential
disease-causing properties of BPA in humans. From the
GWAS Catalog (74), we collected associated genes for

161 human traits/diseases (traits with ,50 associated
genes were excluded) and evaluated the enrichment
for the trait-associated genes among DEG and DMC
signatures. At FDR ,5%, no trait was found to be
significantly enriched for BPA DEGs. Surprisingly,
despite the differences among tissue-specific DMCs
(Fig. 5B), 19 out of the 161 traits showed consistently
strong enrichment for DMCs across all 3 tissues at
FDR ,1%. The top traits include body mass index
(BMI) and type 2 diabetes (Table 1). As DNA meth-
ylation status is known to determine long-term gene
expression pattern instead of immediate dynamic gene
regulation, the BMI and diabetes-associated genes may
be under long-term programming by BPA-induced
differential methylation, thereby affecting later dis-
ease risks.

The previous analysis involving the GWAS catalog
focused only on small sets of the top candidate genes for
various diseases and may have limited statistical power.
To improve the statistical power, we curated the full
summary statistics from 61 human GWAS that are
publicly available (covering millions of SNP-trait asso-
ciations in each GWAS), which enabled us to extend the
assessment of disease association by considering addi-
tional human disease genes with moderate to low effect
sizes (see “Materials and Methods”). This analysis
showed that DEGs from all three tissues exhibited con-
sistent enrichment for genes associated with lipid traits
such as TGs, low-density lipoprotein cholesterol, and

Figure 6. TFs and KDs orchestrate BPA-induced gene expression level changes. (A) Liver TF regulatory networks for the top ranked TFs (FDR
,5%) based on enrichment of liver DEGs among TF downstream targets. Network topology was based on FANTOM5. For TFs with .20%
overlapping downstream targets, only the TF with the lowest FDR is shown. (B) Gene-gene regulatory subnetworks (BNs) for cross-tissue KDs.
Network topology was based on BN modeling of each tissue using genetic and transcriptome datasets from mouse and human populations (57).
For each tissue, if two or more datasets were available for a given tissue, a network for each dataset was constructed, and a consensus network
was derived by keeping only the high-confidence network edges between genes (edges appearing in two or more studies).
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HDL cholesterol (Fig. 8A–8C). Interestingly, enrichment
for birth weight and birth length was also observed for
hypothalamus and liver signatures, respectively. Liver
DEGs were also significantly associated with coronary
artery disease, inflammatory bowel disease, Alzheimer’s
disease, and schizophrenia. Top DEGs driving the in-
flammatory bowel disease association involve immune
and inflammatory response genes (PSMB9, TAP1, and

TNF), whereas association with Alzheimer’s disease and
schizophrenia involves genes related to cholesterol ho-
meostasis (APOA4, ABCG8, and SOAT2) and mito-
chondrial function (GCDH, PDPR, and SHMT2),
respectively. These results suggest that tissue-specific
targets of BPA are connected to diverse human com-
plex diseases through both the central nervous system
and peripheral tissues.

Figure 7. Correlation among gene expression, DNA methylation, and metabolic traits. (A) Percentage of tissue-specific DEGs that are correlated
with metabolic traits (P , 0.05). (B) Percentage of tissue-specific DMCs that are correlated with metabolic traits (P , 0.05). (A and B) P values
were determined using Pearson correlation test. (C) Pairwise correlation among expression level, methylation ratio, and metabolic profiles (TGs,
glucose level, and body weight) for Fasn, Igf1r, and Adh1. p_cor, P value was determined using Pearson correction test; p_DEG was determined
using differential expression test; p_DMC was determined using differential methylation test. Each dot represents a mouse. TC, total cholesterol;
UC, unesterified cholesterol.
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Discussion

This multitissue, multiomics integrative study represents
a systems biology investigation of prenatal BPA expo-
sure. By integrating systematic profiling of the tran-
scriptome and methylome of multiple metabolic tissues
with phenotypic trait measurements, large-scale human
association datasets, and network analysis, we uncovered
insights into the molecular regulatory mechanisms un-
derlying the health effects of prenatal BPA exposure.
Specifically, we identified tens to thousands of tissue-
specific DEGs and DMCs involved in diverse biologi-
cal functions such as metabolic pathways (oxida-
tive phosphorylation/tricarboxylic acid cycle, fatty acid,
cholesterol, glucose metabolism, and PPAR signaling),
extracellular matrix, focal adhesion, and inflammation
(arachidonic acid) with DMCs partially explaining the
regulation of DEGs. Network analysis helped reveal
potential regulatory circuits post-BPA exposure and
pinpointed both tissue-specific and cross-tissue regula-
tors of BPA activities, including TFs such as estrogen
receptors, Pparg, Srebf1, and Hnf1a, and non-TF KDs
such as Fasn. We also identified previously under-studied
targets such as Cyp51 and lncRNAs across tissues, Fa2h
in hypothalamus, and Nfya in adipose tissue. Further-
more, the BPA gene signatures and the predicted regu-
lators were found to be linked to a wide spectrum of
disease-related traits in both mouse and human.

Although our multitissue, multiomics design limits the
number of biological replicates we could have for each
group, the large-scale disruption we observed in the
transcriptome and methylome was consistent with pre-
vious reports (37, 40, 78, 97), with a number of dif-
ferential genes and methylation signals replicating
previous findings. Our qPCR results further strengthen
the validity of our data. Additionally, we focused our
analyses on evaluating the aggregated behavior of BPA
signatures using both pathway analysis and network
modeling to reduce the potential noise and false positives
at an individual gene level, because the random chance to
have multiple genes in the same pathway to be false

positives is much lower. Indeed, we found a generally
higher replication rate of the biological pathways be-
tween our study and the other studies than replication
between the previous studies. Moreover, our unique
study design of examining multiomics in multiple tissues
in parallel yields higher comparability when integrating
the results between data types and across tissues, as they
were from the same set of animals and were profiled
in the same conditions. For instance, the much larger
numbers of DEGs and more coherent network pertur-
bations revealed in the liver tissue compared with the
other two tissues derived from the same set of animals
suggest that liver might be a more sensitive target tissue
for BPA than the other tissues, although adipose and
hypothalamus also appear to be important targets.

Across all three tissues at the transcriptome level, we
found that lipid metabolism– and energy homeostasis–
related processes were consistently perturbed, with the
scale of perturbation being strongest in liver. This aligns
well with the signficant changes in the plasma lipid
profiles we observed in the offspring, the reported per-
turbation of lipid metabolism in fetal murine liver (78),
and the reported susceptibility for nonalcoholic fatty liver
diseases following BPA exposure (79, 98, 99). The only
shared gene across tissues, Cyp51, encodes a protein that
catalyzes metabolic reactions including cholesterol and
steroid biosynthesis and biological oxidation (100) and
is a critical regulator for testicular spermatogenesis (101).
The consistent alteration ofCyp51 across tissues suggests
that this gene is a general target of BPA, with the potential
to alter functions related to cholesterol, hormone, and
energy metabolism. The liver signature replicated across
our and previous studies (75, 76) and a top ranked TF
regulator in our TF analysis, Srebf1, is a main regulator
of lipid homeostasis, again supporting that metabolism
is a central target of BPA (75, 76). We also revealed an
intriguing link between BPA and lncRNAs across tissues,
for which functional importance in developmental pro-
cesses, disease progression, and response to BPA expo-
sure was increasingly recognized yet underexplored
(102). Our molecular data provide intriguing lncRNA

Table 1. Top 5 Human Traits for Which Associated Genes in GWAS Are Enriched for DMCs Across Adipose,
Hypothalamus, and Liver at FDR <1% in MSEA

Human Trait

Adipose Hypothalamus Liver

P FDR, % P FDR, % P FDR, %

Obesity-related traits 1.28E-16 0.00 3.03E-15 0.00 2.71E-19 0.00
BMI 1.30E-13 0.00 3.74E-07 0.00 9.66E-12 0.00
Postbronchodilator FEV1/FVC ratio 8.17E-09 0.00 1.45E-08 0.00 3.67E-07 0.00
Type 2 diabetes 1.21E-05 0.03 8.97E-09 0.00 0.001243 0.92
Platelet distribution width 8.16E-08 0.00 7.62E-05 0.16 5.20E-05 0.12

Abbreviations: FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity.
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candidates such as Gm20319, Gm26917 , and Yam1 for
future in-depth functional analyses.

For adipose tissue, clusters of genes responsible for
core histones were found to be uniquely altered. Along

with the strong adipose-specific differential methylation
status, our results revealed gonadal adipose tissues as an
especially vulnerable site for BPA-induced epigenetic
reprogramming. Besides, developmental BPA exposure
has been previously suggested to influence white adi-
pocyte differentiation (86, 103, 104). However, the ad-
ipocyte differentiation pathway was not significantly
enriched in our study. This is consistent with the report
by Angle et al. (104), in which increased adipocyte
number is only found in mouse offspring with prenatal
BPA exposure at 5 mg/kg/d and 500 mg/kg/d, but not
5 mg/kg/d. Additionally, we found significant enrichment
for TG biosynthesis and glucose metabolism genes at the
differential methylation sites, suggesting that prenatal
BPA exposure may affect fat storage and glucose ho-
meostasis in the adipose tissue. Although in this study we
mainly investigate gonadal adipose tissue as a surrogate
for abdominal fat in the context of metabolic disorders,
the information may be useful for exploring the re-
lationship between this fat depot and the gonad.

Concerning the hypothalamus, our study uses next-
generation sequencing technology to simultaneously in-
vestigate the effect of BPA on the transcriptome andDNA
methylome. Hypothalamus is an essential brain region that
regulates the endocrine system, peripheral metabolism, and
numerous brain functions. We identified BPA-induced
DEGs and DMCs that were enriched for extracellular
matrix–related processes such as axon guidance, focal
adhesion, and various metabolic processes. These hypo-
thalamic pathways have been previously associated with
metabolic (50, 51) and neurodegenerative diseases (50,
105), and they could underlie the reported disruption of
hypothalamic melanocortin circuitry after BPA exposure
(106). Our study highlights the hypothalamus as a critical
target for BPA. However, our study used the whole hy-
pothalamus containing heterogeneous nuclei, and future
studies to examine individual hypothalamic nuclei such as
the arcuate nucleus in the mediobasal hypothalamus will
offer better resolution of the specific nuclei and cell types
that may be targets of BPA.

By interrogating both the transcriptome and DNA
methylome in matching tissues, we were able to directly
assess both global and specific correlative relationships
between DEGs and DMCs. Specifically, we found that
DEGs are more likely to have correlated DMCs in the
matching tissue, a trend that persists in nonpromoter
regions. Our results corroborate previous findings re-
garding the importance of gene body methylation in
disease etiology (107, 108). Given that .90% of DMCs
were found in nonpromoter regions, closer investigation
of the regulatory circuits involving these regions may
unveil new insights into BPA response (87). Due to the
severe multiple testing penalty that limits the statistical

Figure 8. Association of differential expression signatures from (A)
adipose, (B) hypothalamus, and (C) liver with 61 human traits/
diseases, color-coded into nine primary disease categories. P values
are determined using MSEA. Red dashed line indicates the cutoff
for Bonferroni-corrected P = 0.05. Names of traits/diseases for
which P values did not pass Bonferroni-corrected cutoff are not
shown. LDL, low-density lipoprotein.
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power to assess all pairwise correlations, our analysis
was restricted to analyzing local relationships between
the two molecular scales. For DMCs with no marked
correlation to local gene expression, the underlying
reasons could be: (i) the long-range gene regulation by
DMCs through three-dimensional organization of nu-
cleus, and (ii) the long-term impact on expression
changes by DMCs, which is likely missed in our analysis
in which DNA methylation and gene expression are
measured at the same time point.

Known as an endocrine-disrupting chemical, BPA has
been speculated to exert its primary biological action by
modifying the activity of hormone receptors, including
estrogen receptors, PPARg, and glucocorticoid receptors
(90). Indeed, the activity for the downstream targets of
Pparg and three estrogen and estrogen-related receptors
were found to be disrupted in the liver by prenatal BPA
exposure. More importantly, our unbiased data-driven
analysis revealed many additional TFs and non-TF
regulatory genes that also likely mediate BPA effects.
In fact, many of the identified TF targets of BPA, such as
Fasn, Srebf1, and several hepatic nuclear factors, showed
much higher ranking in our regulator prediction ana-
lyses. In liver, a tightly interconnected TF subnetwork
was highly concentrated with BPA-affected genes in-
volved in metabolic processes such as cytochrome P450
system (Cyp3a25, Cyp2a12, and Cyp1a2), lipid (Apoa4,
Abcg5, and Soat2), and glucose (Hnf1a, Adra1b, and
Gck) regulation, with extensive footprints of altered
methylation status in the TFs and other subnetwork
genes. Therefore, our results support a widespread im-
pact of BPA on liver transcriptional regulation, and the
convergence of differential methylation and gene ex-
pression in this TF subnetwork implies that BPA perturbs
this subnetwork via epigenetic regulation of the TFs,
which in turn trigger transcriptomic alterations in
downstream genes. In hypothalamus, we identified Fa2h
as the strongest KD. This enzyme is highly expressed in
the brain and is important for the production of sphin-
golipids containing 2-hyroxylated fatty acids, the most
abundant lipid components of the myelin sheath. Mice
lacking Fa2h have impaired myelin maintenance (109),
and mutations in human FA2H have been associated
with neurodegeneration (110), hereditary spastic para-
plegia (111), and autism (112). In adipose, we discovered a
regulatory axis governed by Nfya and Fasn that are
known regulators of fatty acid metabolism and adipo-
genesis. NF-YA is a histone-fold domain protein that binds
to the inverted CCAAT element in the Fasn promoter (94,
113), and both Nfya and Fasn were found to be signifi-
cantly perturbed by BPA in our study. Moreover, Fasn
also serves as a cross-tissue KD, governing distinct groups
of upregulated lipid metabolism genes in adipose and liver

post-BPA exposure, supporting its role in mediating the
BPA-induced lipid dysregulation at the systemic level. A
previous study has also shown BPA-induced effects on
Fasn methylation after perinatal exposure (97). The sig-
nificant correlation of gene expression andmethylation for
Fasn with TG level furthers implicates its role as a
network-level regulator and biomarker for BPA-induced
lipid dysregulation. Our observation of Fasn is consistent
with evidence suggesting its susceptibility to methylation
perturbation under obesogenic feeding (114) and its causal
functional importance for fatty liver diseases (52, 115).
The causal regulatory role of these genes in BPA activities
warrants future testing via genetic manipulation studies,
such as knocking down or overexpressing the predicted
regulators to examine their ability to modulate BPA
activities.

One unique aspect of this study is the linking of the
molecular landscape of prenatal BPA exposure to traits/
diseases in both mouse and human. In our mouse study,
the observed changes in body weight, lipid profiles, and
glucose level are highly concordant with the functions of
the molecular targets. For instance, prenatal BPA ex-
posure perturbs both the expression levels and local DNA
methylation status of Fasn, Igf1r, andAdh1. These DEGs
and their local DMCs also significantly correlate with
phenotypic outcomes, thus serving as examples of how
DNA methylation and gene regulation bridge the gap
between BPA exposure and phenotypic manifestation.
To further enhance the translatability of our findings
from mouse to human, we searched for human diseases
linked to the BPA-affected genes. An intriguing discovery
is the prominent overrepresentation of differential methyl-
ation signals in adipose, hypothalamus, and liver within
known genes related to obesity and type 2 diabetes, sup-
porting that BPA may affect obesity and diabetes risk
through systemic reprogramming of DNA methylation.
More sophisticated analyses incorporating the BPA differ-
ential gene expression and the full statistics of human
GWAS corroborated the observed connection between
prenatal BPA exposure and lipid homeostasis (116), birth
weight (117), and coronary artery disease (15) reported in
observational studies. Moreover, our findings suggest the
involvement of prenatal BPA exposure in the development
of inflammatory bowel syndrome, schizophrenia, and
Alzheimer’s disease. These associations warrant future
investigations.

Designed as the discovery phase of a comprehensive
investigation of in vivo BPA activities, our study opens
numerous future lines of investigation. First, our current
molecular studies focused on male tissues because of the
stronger phenotypes observed in males. Our phenotypic
examination and qPCR experiments on females support
much subtler changes in females, and future studies will
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require larger sample sizes to uncover female-specific
biology. Secondly, our study design does not address
whether the observed BPA genomic effects are direct or
indirect, and radiotracing or substrate-binding experi-
ments are needed to elucidate this question. Thirdly, the
causal link between the genomic effects observed and the
phenotypes that result from BPA exposure is not estab-
lished, and genetic perturbation experiments are required
to test the causal roles of the predicted regulators of BPA
actions. Gene annotation accuracy may also affect the
results and interpretation. Lastly, we tested in utero BPA
exposure at one dose via oral gavage, which can cause
prenatal stress and confound the results, and examined
phenotypes and molecular profiles only at weaning age
as a proof-of-concept for our systems biology frame-
work. Considering that the effects of early-life exposure
to BPA are highly variable and dependent on factors such
as the dose, window, route (e.g., using food as an al-
ternative), and frequency of exposure as well as genetic
background, age, and sex (14), future studies testing
these additional variables using large sample sizes are
necessary to generate a comprehensive understandings of
BPA risks under various exposure conditions.

In summary, our study represents a multitissue, mul-
tiomics integrative investigation of prenatal BPA ex-
posure. The systems biology framework we applied
revealed how BPA triggers cascades of regulatory circuits
involving numerous TFs and non-TF regulators that
coordinate diverse molecular processes within and across
core metabolic tissues, thereby highlighting that BPA
exerts its biological functions via much more diverse
targets than previously thought. As such, our findings
offer a comprehensive systems-level understanding of
tissue sensitivity and molecular perturbations elicited by
prenatal BPA exposure and offer promising candidates
for targeted mechanistic investigation as well as much-
needed network-level biomarkers of prior BPA exposure.
The strong influence of BPA on metabolic pathways and
cardiometabolic phenotypes merits its characterization
as a general metabolic disruptor posing systemic health
risks.
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to bisphenol A alters early adipogenesis in the rat. Environ Health
Perspect. 2009;117(10):1549–1555.

87. Lou S, Lee HM,Qin H, Li JW, Gao Z, Liu X, Chan LL, Kl LamV,
SoWY,Wang Y, Lok S,Wang J,Ma RC, Tsui SK, Chan JC, Chan
TF, Yip KY. Whole-genome bisulfite sequencing of multiple in-
dividuals reveals complementary roles of promoter and gene body
methylation in transcriptional regulation. Genome Biol. 2014;
15(7):408.

88. Faulk C, Kim JH, AndersonOS,NaharMS, Jones TR, SartorMA,
Dolinoy DC. Detection of differential DNA methylation in re-
petitive DNA of mice and humans perinatally exposed to
bisphenol A. Epigenetics. 2016;11(7):489–500.

89. Acconcia F, Pallottini V, Marino M. Molecular mechanisms of
action of BPA. Dose Response. 2015;13(4):1559325815610582.

90. MacKay H, Abizaid A. A plurality of molecular targets: The
receptor ecosystem for bisphenol-A (BPA). Horm Behav. 2018;
101:59–67.

91. Wang J, Sun B, HouM, PanX, Li X. The environmental obesogen
bisphenol A promotes adipogenesis by increasing the amount of
11b-hydroxysteroid dehydrogenase type 1 in the adipose tissue of
children. Int J Obes. 2013;37(7):999–1005.

92. Ahmed S, Atlas E. Bisphenol S- and bisphenol A-induced adi-
pogenesis of murine preadipocytes occurs through direct perox-
isome proliferator-activated receptor gamma activation. Int J
Obes. 2016;40(10):1566–1573.

93. Vafeiadi M, Roumeliotaki T, Myridakis A, Chalkiadaki G,
Fthenou E, Dermitzaki E, Karachaliou M, Sarri K, Vassilaki M,
Stephanou EG, Kogevinas M, Chatzi L. Association of early life
exposure to bisphenol Awith obesity and cardiometabolic traits in
childhood. Environ Res. 2016;146:379–387.

94. Nishi-Tatsumi M, Yahagi N, Takeuchi Y, Toya N, Takarada A,
Murayama Y, Aita Y, Sawada Y, Piao X, Oya Y, Shikama A,
Masuda Y, Kubota M, Izumida Y, Matsuzaka T, Nakagawa Y,
Sekiya M, Iizuka Y, Kawakami Y, Kadowaki T, Yamada N,
Shimano H. A key role of nuclear factor Y in the refeeding re-
sponse of fatty acid synthase in adipocytes. FEBS Lett. 2017;
591(7):965–978.

95. Zhang B, Gaiteri C, Bodea LG, Wang Z, McElwee J,
Podtelezhnikov AA, Zhang C, Xie T, Tran L, Dobrin R, Fluder E,
Clurman B,Melquist S, NarayananM, Suver C, ShahH,Mahajan
M, Gillis T, Mysore J, MacDonald ME, Lamb JR, Bennett DA,
Molony C, Stone DJ, Gudnason V, Myers AJ, Schadt EE,
Neumann H, Zhu J, Emilsson V. Integrated systems approach

identifies genetic nodes and networks in late-onset Alzheimer’s
disease. Cell. 2013;153(3):707–720.

96. Inadera H. Neurological effects of bisphenol A and its analogues.
Int J Med Sci. 2015;12(12):926–936.

97. Kim JH, Sartor MA, Rozek LS, Faulk C, Anderson OS, Jones TR,
Nahar MS, Dolinoy DC. Perinatal bisphenol A exposure pro-
motes dose-dependent alterations of the mouse methylome. BMC
Genomics. 2014;15(1):30.

98. Ke ZH, Pan JX, Jin LY, Xu HY, Yu TT, Ullah K, Rahman TU,
Ren J, Cheng Y, Dong XY, Sheng JZ, Huang HF. Bisphenol A
exposure may induce hepatic lipid accumulation via reprog-
ramming the DNAmethylation patterns of genes involved in lipid
metabolism. Sci Rep. 2016;6(1):31331.

99. Yang S, Zhang A, Li T, Gao R, Peng C, Liu L, Cheng Q, Mei M,
Song Y, XiangX,WuC, XiaoX, Li Q. Dysregulated autophagy in
hepatocytes promotes bisphenol A-induced hepatic lipid accu-
mulation in male mice. Endocrinology. 2017;158(9):2799–2812.

100. LewinskaM, Juvan P, PerseM, Jeruc J, Kos S, Lorbek G, Urlep Z,
Keber R, Horvat S, Rozman D. Hidden disease susceptibility and
sexual dimorphism in the heterozygous knockout of Cyp51 from
cholesterol synthesis. PLoS One. 2014;9(11):e112787.

101. Keber R, Rozman D, Horvat S. Sterols in spermatogenesis and
sperm maturation. J Lipid Res. 2013;54(1):20–33.

102. Karlsson O, Baccarelli AA. Environmental health and long
non-coding RNAs. Curr Environ Health Rep. 2016;3(3):
178–187.

103. Vom Saal FS, Nagel SC, Coe BL, Angle BM, Taylor JA. The
estrogenic endocrine disrupting chemical bisphenol A (BPA) and
obesity. Mol Cell Endocrinol. 2012;354(1-2):74–84.

104. Angle BM, Do RP, Ponzi D, Stahlhut RW, Drury BE, Nagel SC,
Welshons WV, Besch-Williford CL, Palanza P, Parmigiani S, vom
Saal FS, Taylor JA. Metabolic disruption in male mice due to fetal
exposure to low but not high doses of bisphenol A (BPA): evidence
for effects on body weight, food intake, adipocytes, leptin, adi-
ponectin, insulin and glucose regulation. Reprod Toxicol. 2013;
42:256–268.

105. Vercruysse P, Vieau D, Blum D, Petersén Å, Dupuis L. Hypo-
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SUMMARY

How artificial environmental cues are biologically
integrated and transgenerationally inherited is still
poorly understood. Here, we investigate the mecha-
nisms of inheritance of reproductive outcomes
elicited by the model environmental chemical Bi-
sphenol A in C. elegans. We show that Bisphenol A
(BPA) exposure causes the derepression of an epige-
nomically silenced transgene in the germline for 5
generations, regardless of ancestral response. Chro-
matin immunoprecipitation sequencing (ChIP-seq),
histone modification quantitation, and immunofluo-
rescence assays revealed that this effect is associ-
ated with a reduction of the repressive marks
H3K9me3 and H3K27me3 in whole worms and in
germline nuclei in the F3, as well as with reproductive
dysfunctions, including germline apoptosis and
embryonic lethality. Furthermore, targeting of the
Jumonji demethylases JMJD-2 and JMJD-3/UTX-1
restores H3K9me3 and H3K27me3 levels, respec-
tively, and it fully alleviates the BPA-induced transge-
nerational effects. Together, our results demonstrate
the central role of repressive histonemodifications in
the inheritance of reproductive defects elicited by a
common environmental chemical exposure.

INTRODUCTION

The elicitation and inheritance of phenotypes from environ-
mental cues have been the subject of intense research and
debate. Best understood is the transfer of biological informa-
tion triggered by natural exposures, such as temperature,

hyperosmotic stress, diet, or starvation, thanks to research
advances in a variety of model systems from plants to rodents
(reviewed in Heard and Martienssen, 2014). Recent reports
have shown that the heritability of effects elicited by such nat-
ural cues across generations is conditioned by changes in the
epigenome, or the molecular tags that alter gene expression
and that are mitotically and/or meiotically heritable but do not
entail a change in DNA sequence (Wu and Morris, 2001). These
mechanisms include small RNA-based pathways (Gapp et al.,
2014; Rechavi et al., 2014; Zhong et al., 2013) as well as
through the regulation of the complex collection of covalent
modifications of histone proteins (Gaydos et al., 2014; Greer
et al., 2014; Kishimoto et al., 2017; Klosin et al., 2017; Siklenka
et al., 2015). By contrast, the transgenerational inheritance of
man-made environmental chemicals has remained controver-
sial, particularly in mammalian settings. Several rodent studies
have indicated that a one-generation parental (P)0 exposure to
compounds, such as the fungicide Vinclozolin (Anway et al.,
2005), or to mixtures of plastic compounds, such as Bisphenol
A (BPA) and phthalates (Manikkam et al., 2013), is sufficient to
cause a transgenerational decrease in the number and quality
of germ cells in F3 and F4 adults, and it correlates with an alter-
ation of DNA methylation patterns (Anway et al., 2005, 2006).
However, some of these studies have been challenged (Heard
and Martienssen, 2014; Hughes, 2014), have not provided a
clear mechanism of inheritance, and have not explored the
involvement of other epigenetic marks besides DNA methyl-
ation, such as histone modifications.
The nematode Caenorhabditis elegans has proven to be a

valuable model system to study the effects of environmental
exposures on the epigenome due to its ability to respond to a va-
riety of stressors (Kishimoto et al., 2017; Klosin et al., 2017; Re-
chavi et al., 2014; Rudgalvyte et al., 2017). Here, we exploited the
tractability ofC. elegans to study the transgenerational impact of
chemical exposure on reproductive function and dissect its un-
derlying mechanisms of inheritance. These experiments were
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greatly facilitated by the nematode’s short generation time,
approximately 4 days at 20!C; its well-characterized distribution
and regulation of chromatin marks (Bessler et al., 2010; Ho et al.,
2014; Liu et al., 2011); and its ability to silence repetitive trans-
genes in the germline via repressive histone modifications in a
fashion similar to the silencing of repetitive elements in mamma-
lian germ cells (Kelly and Fire, 1998; Liu et al., 2014). Using these
features, we investigated the mechanism of transgenerational
inheritance following exposure to the model environmental
chemical BPA. BPA is a widely used, high-production volume
plastic manufacturing chemical highly prevalent in human sam-
ples (Vandenberg et al., 2010). We show that ancestral BPA
exposure causes a histone 3, lysine 9 (H3K9) and a histone 3,
lysine 27 (H3K27) trimethylation-dependent transgenerational

A

C

D

B Figure 1. BPA Exposure Elicits a Transge-
nerational Desilencing of a Repetitive Array
(A) Exposure scheme. Nematodes are exposed to

the chemicals of interest for 48 hr at the parental

(P0) generation. Worms carrying the integrated

array pkIs1582 [let-858::GFP; rol-6(su1006)] ex-

press GFP in all somatic nuclei but silence the

array in the germline. This strain is used to monitor

the array desilencing over multiple generations.

(B) Representative example of silenced (top) and

desilenced (bottom) pkIs1582 array expression in

F3 germlines (dashed lines). Scale bar, 50 mm.

(C) Percentage of worms displaying germline de-

silencing (y axis) at each generation (x axis).

n = 5–10, 30 worms each; *p % 0.05, **p % 0.01,

and ***p% 0.001. Significance is indicated for BPA

versus DMSO above the BPA line and DMSO

versus water above the DMSO line.

(D) Lineage analysis of the germline desilencing

response. Worms were sorted following exposure

at the P0 generation based on their germline GFP

expression. Their progeny was then followed and

examined for 3 additional generations. n = 5–10, 30

worms each; ***p % 0.001. BPA is compared to

DMSOwithin eachGFP status category (e.g., BPA/

GFP+ versus DMSO/GFP+). All data are repre-

sented as mean ± SEM.

chromatin-desilencing response in the
germline that spans five generations and
is associated with germline dysfunction
and elevated progeny lethality.

RESULTS

Germline Transgene Desilencing
following Chemical Exposure
To capture single, multi-, and transge-
nerational environmental effects stem-
ming from chemical exposure, we used
a germline desilencing reporter (Kelly
et al., 1997). The assay that we developed
(Figure 1A) is based on the strain NL2507
carrying an integrated low-complexity,
highly repetitive array composed of a

transgene coding for a fusion product between nuclear-localized
LET-858 and GFP (pkIs1582[let-858::GFP; rol-6(su1006)]). This
transgene is expressed in somatic cells, but it is transcriptionally
silenced in the germline (Figure 1B) via accumulation of the
repressive marks H3K9me3 and H3K27me3 (Kelly and Fire,
1998; Schaner and Kelly, 2006).
We first tested the reporter NL2507 strain in a chemical assay

by using a variety of well-characterized inhibitors of chromatin-
modifying enzymes (Figure S1). All drug exposures were per-
formed at the P0 generation for 48 hr, encompassing the window
of L4 stage to day 1 of adulthood. Drug responses were
compared to the vehicle DMSO in the context of which a low
rate of desilencing is observed (14.3% ± 1.6%). Following treat-
ment with all tested inhibitors of H3K9 or H3K27 demethylases,
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of non-selective methyltransferases or demethylases, as well as
of histone acetyltransferases, the transgene expression re-
mained silenced at levels comparable to the DMSO control.
Conversely, HDAC inhibitors or methyltransferase inhibitors
against either H3K9 or H3K27 all led to an increase in pkIs1582
germline expression, with exposure to the class I HDAC inhibitor
sodium butyrate and the SAM and EZH2 inhibitor 3-Deazanepla-
nocin A (DZnep) showing the highest levels of desilencing at P0,
32.5% ± 3.1% and 38.2% ± 1.9%, respectively (p % 0.0001 for
both). Together, these results indicate that the desilencing of the
pkIs1582 array may serve as a sensitive and relevant indicator of
chromatin mark-regulated transcriptional modulation.

BPA Exposure Causes a Heritable, Transgenerational
Chromosomal Array-Desilencing Response
BPA was chosen as a test compound in the array-desilencing
assay based on several lines of evidence that include changes
in H3K27 histone methyltransferase Enhancer of Zeste homolog
2 (EZH2) expression (Bhan et al., 2014) and decreases in
H3K9me3 levels in post-natal mouse oocytes (Trapphoff et al.,
2013) and in H3K9 and H3K27 methylation levels in a variety of
somatic cell types (Doherty et al., 2010; Singh and Li, 2012;
Yeo et al., 2013).

First, we tested a range of BPA concentrations (10, 50, 100,
and 500 mM), chosen based on previous dose-response ana-
lyses (Chen et al., 2016), to identify the lowest dose that led to
a maximal desilencing effect. We initially performed the expo-
sures at a single generation (P0) at L4 stage for 48 hr. We
observed a dose-response relationship of the germline array de-
silencing across generations, reaching saturation at 100 mM
(45.0% ± 3.3% desilencing at the F3, p % 0.001) (Figure S2A).
We also tested additional 48-hr exposure windows, including
from L1 to L4 (Figure S2B) and from day 0 of adulthood (24 hr
post-L4) to day 2 (Figure S2C). In all cases, we observed a signif-
icant desilencing of the germline array in the F3, although the
generational kinetics varied between exposure windows and
none reached the maximum F3 desilencing levels achieved by
the L4-to-day 1 exposure window (Figure S2A). Thus, for all sub-
sequent experiments, we exposed the worms to a single 100-mM
BPA dose from L4 to day 1. This external dose is below previ-
ously characterized C. elegans doses measured by gas chroma-
tography-mass spectrometry (GC-MS) to lead to an internal BPA
concentration within human physiological range (Chen et al.,
2016).

We then examined the rate of array desilencing over six gener-
ations following the single P0 generation BPA exposure at
100 mM (Figure 1C). The solvent control DMSO led to a pro-
nounced elevation in desilencing in F1 animals (34.6% ± 5.4%
of worms display GFP expression in their germline) compared
to water alone (8.6% ± 0.8%). However, GFP levels in the
DMSO group sharply declined after the F1 generation and
were statistically indistinguishable from the water control at the
F4 generation. This effect of DMSO is likely due to its described
positive activity in DNA relaxation, transcription enhancement,
and promotion of an active chromatin state (Iwatani et al.,
2006; Juang and Liu, 1987; Kim and Dean, 2004). By contrast,
BPA exposure led to a dramatic increase in desilencing in the
F1 generation (50.0% ± 3.5%). This BPA-induced desilencing

rate was consistently higher than DMSO’s and remained that
way until the F5 generation. These results therefore indicate a
potent transgenerational desilencing response stemming from
BPA exposure and spanning 5 generations (P0–F4).
To determine whether most of the desilencing effect observed

in the first transgenerational (F3) generation is primarily caused
by descendants of strong P0 responders, we performed a series
of lineage studies where individual P0 worms were segregated
based on their germline GFP expression following BPA or
DMSO exposure. Worms that showed germline desilencing at
P0 following BPA exposure gave rise to F1, F2, and F3 progenies
with a high rate of desilencing, nearing 60% (Figure 1D). By
contrast, DMSO-exposed animals, whether silenced or desi-
lenced at P0, showed a reduced rate of desilencing in the F2
and F3 generations, nearing 20%. Surprisingly, BPA-treated
but GFP-negative P0 worms gave rise to progeny showing a
higher rate of desilencing at each subsequent generation, such
that there was a statistically significant difference when
compared to DMSO in the F2 and F3 generations. In the latter,
the proportion of descendants of BPA-exposed but GFP-nega-
tive P0s showing germline desilencing reached 42.3% ± 2.8%
(p % 0.01 versus DMSO/GFP!). Interestingly, the mating of
ancestrally exposed F1 hermaphrodites with unexposed males
did not rescue the germline desilencing response, indicating
that the primary mode of inheritance of BPA’s effect is through
the female germline (Figure S2D).
Collectively, these findings identify a matrilineal transgenera-

tional inheritance of a repetitive array-desilencing response
that is only partially conditioned by the ancestral (P0) response
to BPA exposure.

BPA Exposure Causes a Transgenerational Alteration of
the Germline Transcriptome
To investigate the impact of ancestral BPA exposure on the
germline and distinguish it from that of DMSO, which also led
to a mild transgenerational germline desilencing in the F3
compared to water, we performed RNA sequencing (RNA-
seq) analysis on isolated F3 germlines. We identified a total
of 264 transcripts that were differentially up- or downregulated
at p % 0.05 in F3 germlines ancestrally exposed to BPA
compared to DMSO, with 152 transcripts having a fold induc-
tion %0.5 or R1.5 (Table S1; Figure S3A). There was little over-
lap between the transcripts that were differentially expressed in
all 3 groups, BPA versus DMSO, BPA versus water, and DMSO
versus water (Figure S3B), suggesting that DMSO’s transge-
nerational impact on the germline transcriptome is mostly
distinct from that of BPA. A gene ontology analysis of the func-
tional categories represented by the differentially expressed
transcripts also highlighted the lack of overlap between the
different treatment group comparisons. Interestingly, however,
the second most represented functional category in the BPA
versus DMSO group was reproduction, which was not repre-
sented in the DMSO versus water group (Figure S3C). This
category includes 61 genes, many of them normally expressed
in the germline tissue and essential for germline function
(Table S2). These results therefore suggest that ancestral
BPA exposure may deregulate reproductive processes by
altering the germline transcriptome.
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Ancestral BPA Exposure Leads to a Deregulation of
Repressive Histone Marks in F3 Nematodes
Several recent reports in C. elegans have implicated various
histone modifications as important mediators of a variety of
environmental effects across generations (Kishimoto et al.,
2017; Klosin et al., 2017). We therefore assessed whether
BPA exposure in P0 worms could lead to observable changes
in the chromatin of F3 worms. To this aim, we performed chro-
matin immunoprecipitation sequencing (ChIP-seq) in whole
adult worms at the F3 generation ancestrally exposed to
BPA, DMSO, and water. Just as for the RNA-seq analysis,
these experiments were performed on a large population of
worms that were not selected based on their GFP expression.
We focused our analysis on two repressive marks, H3K9me3
and H3K27me3, which have both been previously implicated
in chromatin silencing in the germline of a wide range of spe-
cies as well as in the repression of low-complexity transgenes
in the C. elegans germline (Bessler et al., 2010; Greer et al.,
2014; Leung et al., 2014; Liu et al., 2014; Schaner and Kelly,
2006; Towbin et al., 2012).

C

D

A B Figure 2. BPA-Induced Transgenerational
Reduction in H3K9me3 andH3K27me3 Identi-
fied by ChIP-Seq
(A) Examples of ChIP-seq gene plots for H3K9me3

and H3K27me3 from F3 nematodes.

(B) Venn diagram from genes with peak calling in

each of the treatment groups.

(C) Average H3K9me3 histone modification fold

enrichment signals from gene bodies of either

silenced upregulated genes (left panel) or silenced

non-upregulated genes (right panel) after BPA

treatment. Lightly shaded regions indicate the SE.

(D) Average H3K27me3 histone modification fold

enrichment signals from gene bodies of either

silenced upregulated genes (left panel) or silenced

non-upregulated genes (right panel) after BPA

treatment. Lightly shaded regions indicate the SE.

We first mined the ChIP-seq data to
identify genes with significantly altered
H3K9me3 and H3K27me3 levels (see the
Experimental Procedures; Figures 2A
and 2B). Among the three conditions, wa-
ter, DMSO, and BPA, we identified
between 3,740 and 4,951 broad peaks
for H3K9me3 and between 19,019 and
21,741 for H3K27me3 (Table S3). A total
of 1,055 and 1,780 genes were associated
with broad peak calls, i.e., showed enrich-
ment in their gene bodies, for H3K9me3
and H3K27me3, respectively. The majority
of these peak calls were shared among all
three treatment groups, although the
BPA treatment group generated 88 and
59 unique peaks for H3K9me3 and
H3K27me3, respectively (Figure 2B). The
gene ontology (GO) analysis of biological
processes at false discovery rate (FDR) <

0.05 and p < 0.001 for the genes associated with a loss of
H3K27me3 broad peaks in BPA samples compared to DMSO
confirmed the relevance of the epigenomic effect detected, as
the second most prominent GO category was related to the
response to steroid hormone stimulus, in line with BPA’s well-
described estrogenic activity (Table S4).
Next we compared the ChIP-seq and RNA-seq datasets by

examining the levels of H3K9me3 and H3K27me3 under all 3
treatment conditions in genes that either had a low expression
level in DMSO (first quartile, i.e., silenced genes) and were not
upregulated or were upregulated >2-fold based on the RNA-
seq data. As expected, we found that upregulated genes had
on average 40%–50% lower H3K9me3 and H3K27me3
compared to their not-upregulated counterparts (Figures 2C
and 2D). The levels and distributions of the marks were consis-
tent with their described patterns in the C. elegans larval chro-
matin, where both H3K9me3 and H3K27me3 predominantly
occupy the gene body of silenced genes (Ho et al., 2014).
Comparing the three treatment groups, we did not observe a dif-
ference in H3K9me3 based on expression levels, perhaps due to
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the tissue sources used for the two datasets (whole worms for
ChIP-seq and isolated germlines for RNA-seq). However, we
observed a decrease in H3K27me3 in the BPA treatment group
compared to DMSO and water for genes that were upregulated
(Figure 2D, lightly shaded area indicates SE). These results were
similar for all genes, irrespective of expression level, where
H3K27me3 was significantly reduced in the gene body
compared to DMSO and water groups (Figure 3A).

Finally, we asked whether ancestral BPA exposure might not
only affect H3K9me3 and H3K27me3 gene body levels but
also their distribution along the chromosome axes. To this aim,
we calculated the average fold enrichment of each mark over
input by 1% increments along all 6 chromosomes. The data
were normalized using aZ score for each individual chromosome
and treatment group to allow the visualization of the marks’
redistribution (Figure 3B). For each 1% increment, we also iden-
tified the number of peaks that were present in BPA but absent in
DMSO (Figure 3C). These two complementary chromosome-
wide analyses revealed a reduction of both marks from the distal
chromosomal regions, largely heterochromatic (Garrigues et al.,
2015), and a slight enrichment in the chromosome centers when

Figure 3. BPA Treatment Causes Transge-
nerational Intra-chromosomal Redistribu-
tion of Histone Modifications
(A) Average H3K9me3 (left) and H3K27me3 (right)

histone modification fold enrichment signals

from gene bodies of all genes. Shaded regions

indicate SE.

(B) Heatmap of averaged H3K9me3 (left) and

H3K27me3 (right) histone modification fold

enrichment signals in 100 sub-regions across all

chromosomes. Z scores were calculated on aver-

aged values in each chromosome and sample.

(C) Difference in unique peak-calling numbers be-

tween BPA and DMSO from H3K9me3 (left) and

H3K27me3 (right) along all chromosome sub-re-

gions. The y axis indicates unique peak numbers

calculated by BPA minus DMSO by region.

comparing BPA to DMSO (Figures 3B
and 3C). It also suggested a decrease of
the marks’ levels on the X chromosome.
We validated the decrease in the levels
of the marks by performing a multiplex
histone post-translation modification
(PTM) quantitation assay on pooled F3
whole-worm extracts (Table S5). The
assay revealed a 25%–33% decrease in
H3K9 mono-, di-, and trimethylation
and a more pronounced 29%–56%
decrease in H3K27 di- and trimethylation
at the F3 generation in BPA-exposed
P0 nematodes compared to DMSO.
Conversely, another histone modification,
H3K36me3, remained largely unchanged.
Together, these results indicate a potent
transgenerational impact of BPA on the
chromatin, altering both the levels of the

two repressive marks H3K9me3 and H3K27me3 as well as their
distribution along chromosomal axes.

Ancestral BPA Exposure Leads to a Deregulation of
Repressive Histone in the Germline
A transgenerational effect implies that the epigenomic alter-
ations described above must also occur in the germline in order
to be inherited. We therefore performed immunofluorescence
against H3K9me3 and H3K27me3 in dissected germlines of
the NL2507 strain containing the integrated pkIs1582 transgene
at the F3, when desilencing is pronounced, and at the F7, when
germline desilencing has returned to control levels. At the pachy-
tene stage of the F3 germline, we observed significant 26% and
24% reductions in global H3K9me3 and H3K27me3 levels,
respectively, between BPA and DMSO (Figures 4A and 4B). By
contrast, no significant differences were observed between wa-
ter and DMSO. A similar decrease of total nuclear levels of these
marks was seen in the strain PD7271, where the transgene is
episomally maintained (ccEx7271): 23.3% and 34.6% reduc-
tions for H3K9me3 and H3K27me3, respectively (Figure S4).
At the F7 generation, the germline levels of H3K9me3 and
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H3K27me3 in the BPA group were statistically indistinguishable
from DMSO controls (Figure S5).
The use of the PD7271 ccEx7271 array-bearing strain also al-

lowed us to separately examine the levels of repressive modifica-
tions on the autosomes; the X chromosomes, which tend to lay
apart from the rest of the chromosomes during the pachytene
stage in hermaphrodites (Schaner and Kelly, 2006); and the extra-
chromosomal array (Figures 5A and 5B).Weobservedmarkedde-
creases in both H3K9me3 and H3K27me3 on autosomes (24.8%
and 34.3%, respectively), X chromosomes (25.3% and 41.5%),
and the extrachromosomal array (39.6% and 51.3%). We exam-
ined whether the trend toward a larger decrease of these marks
on the X chromosomes compared to autosomes was significant
by measuring the X:A ratio for each germline nucleus (Figure 5C).
F3 germline nuclei showed a significant X:A ratio decrease in
H3K27me3 levels when ancestrally exposed to BPA compared
to DMSO (0.98 versus 1.09, respectively, a 10% decrease;
p = 0.03), while H3K9me3 showed a trend toward a decreased
X:A ratio between DMSO and BPA. Consistent with these results
and with the described role of H3K27me3 in X silencing in the
germline (Bender et al., 2006; Gaydos et al., 2012), we observed
a modest but significant (p = 0.01) 2.36% increase in overall
X-related genes with fragments per kilobase of transcript per
million (FPKM) > 1 in our F3 germline RNA-seq data (Figure 5D).

Figure 4. Ancestral BPA Exposure De-
creases H3K9me3 and H3K27me3 Levels in
F3 Germlines
(A and B) Immunofluorescence images of mid-to-

late pachytene germline nuclei from F3 worms

ancestrally exposed to DMSO or BPA and stained

for H3K9me3 (A) or H3K27me3 (B). DAPI is repre-

sented in blue and the histone mark of interest in

magenta in the merge. All images shown were

selected representative images of the mean values

obtained after quantification of all germline nuclei

from that exposure group. The corresponding

fluorescence intensity quantification is shown on

the right panels. n = 11–12 worms, 10 nuclei per

worm; *p % 0.05, **p % 0.01, ***p % 0.001, and

****p % 0.0001, one-way ANOVA with Sidak

correction. Scale bar, 5 mm. All data are repre-

sented as mean ± SEM.

Taken together, these experiments indi-
cate a broad transgenerational impact on
the germline chromatin of F3 nematodes
not only confined to the repetitive arrays
but also affecting the autosomes and the
X chromosomes.

BPA Exposure Elicits a
Transgenerational Increase in
Embryonic Lethality and Germline
Dysfunction
Next, we examined whether the transge-
nerational alteration of the germline chro-
matin was associated with reproductive
defects. For these and all subsequent ex-

periments, we chose to only compare BPA to DMSO, as BPA
is dissolved in DMSO and the RNA-seq and ChIP-seq data indi-
cated chromatin and expression BPA signatures distinct from
those of DMSO. While the number of embryos produced was
not dependent on ancestral exposure (Figure 6A), we observed
a significant 85% (D = 3.83 and B = 7.07) increase in embryonic
lethality in F3 worms ancestrally exposed to BPA when
compared to DMSO (Figure 6B). We also examined the rate of
embryonic lethality at the F7, a generation at which desilencing
is not observed. Surprisingly, a trend between DMSO and BPA
was still apparent even if it did not reach significance (86%,
D = 3.58 and B = 6.67) (Figure 6B). The F3 embryonic lethality
defect was not caused by the spurious expression of the
pkIs1582 transgene in the germline, as it was also observed in
wild-type (N2) worms (Figure S6). Additionally, we assessed
whether the increased embryonic lethality correlated with the
transgene desilencing by separately assessing the embryonic
survival of GFP-negative and GFP-positive F3 worms’ progeny
(Figure 6C). We observed a significantly higher level of embry-
onic lethality in the offspring of GFP-positive F3 worms ances-
trally exposed to BPA when compared to both GFP-negative/
BPA F3 offspring and GFP-positive/DMSO F3 offspring.
Finally, we monitored germline health by measuring the in-

duction of germline apoptosis using acridine orange staining
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(Gartner et al., 2008) at the late prophase stage, when synapsis
and recombination-dependent checkpoint activation results in
programmed germline nuclear culling (Bhalla and Dernburg,
2005; Gartner et al., 2008). We observed a significant increase
in germline apoptosis in F3 worms ancestrally exposed to BPA
when compared to DMSO (Figures 6D and 6E), which was lost
at the F7. Thus, together, these results show that ancestral
BPA exposure elicits a clear transgenerational reproductive
dysfunction effect. They also indicate that BPA-induced transge-
nerational effects mostly resolve by the F7.

Jumonji Histone Demethylase Activity Is Required for
the Inheritance of BPA-Induced Transgenerational
Effects
Since BPA exposure at the P0 generation was correlated with a
decrease in repressive histone modifications in the germline of
the F3 worms, we hypothesized that BPA’s effects may be

Figure 5. Ancestral BPA Exposure Leads
to a Sharp Decrease in H3K9me3 and
H3K27me3 on Autosomes, X Chromosomes,
and an Extrachromosomal Array and an Up-
regulation of X-Linked Genes
(A) Quantification of H3K9me3 and H3K27me3

levels on autosomes, X chromosomes, and an

extrachromosomal array in the F3 generation

following P0 exposure to either DMSO or BPA.

Gray, DMSO; red, BPA. n = 8 worms, 5 nuclei per

worm; *p % 0.05, **p % 0.01, and ***p % 0.001.

(B) DAPI- (top) and H3K9me3- (bottom) stained

nuclei. The colored dashed lines identify the auto-

somes (blue) and the X chromosomes (orange). The

red arrowheads identify the extrachromosomal

array that is enriched in H3K9me3.

(C) Fluorescence intensity quantification of

H3K9me3 and H3K27me3 levels is shown on the

right. Gray is the X:A ratio for DMSO and red for

BPA. n = 8 worms, 5 nuclei per worm; *p % 0.05.

(D) Gene expression data from dissected F3

germlines showing all transcripts with FKPM > 1

following ancestral DMSO (blue) or BPA (red)

exposure. X-linked genes show a modest but sig-

nificant overall 2.36% increase in expression

(p = 0.01). All data are represented as mean ± SEM.

dependent on levels of these marks and
on the activity of the enzymes that regulate
them. This hypothesis was partially sup-
ported by the RNA-seq data from which
7 differentially expressed chromatin fac-
tors were identified: sir-2.4, ZK1127.3,
sop-2, TO7E3.3, met-2, jmjd-1.2, and
set-26 (Table S1). MET-2, a SET domain
histone H3 lysine 9 histone methyltrans-
ferase (HMTase) (Bessler et al., 2010),
was significantly downregulated, while
set-26, another H3K9 methyltransferase
(Greer et al., 2014), was represented by
two functionally equivalent transcript iso-
forms, one upregulated and one downre-

gulated. Therefore, to functionally implicate the dysregulation
of H3K9me3 and H3K27me3 in BPA’s transgenerational out-
comes, we attempted to rescue its effects by genetically or
chemically modulating several histone demethylases after the
initial P0 exposure but prior to the F3 (Figures 7A and S8A).
We first assessed whether the deregulation of repressive

H3-lysine methylation marks by BPA is required for the transge-
nerational inheritance of BPA-induced effects. To this end, we
used a feeding RNAi strategy to downregulate the expression
of jmjd-2 (H3K9me3/H3K36me3 histone lysine demethylase
[KDM]) (Greer et al., 2014; Whetstine et al., 2006) or jmjd-3/
utx-1 (H3K27me3 KDM) (Agger et al., 2007), and we monitored
two hallmarks of BPA’s transgenerational effects, namely, the
germline array desilencing as well as the increase in embryonic
lethality. When compared to control RNAi, the downregulation
of jmjd-2 or jmjd-3/utx-1 at the F1-to-F2 transition was sufficient
to increase the levels of H3K9me3 and H3K27me3, respectively,
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in the F3 germlines (Figure 7B; quantification shown in Fig-
ure S7A). Also, while the control RNAi conditions slightly
elevated the rates of desilencing and embryonic lethality
compared to no-RNAi conditions, the downregulation of either
jmjd-2 or jmjd-3/utx-1 led to a complete rescue of BPA-induced
responses in the F3, except for the embryonic lethality effect un-
der jmjd-2 RNAi conditions, which was strongly reduced but did
not reach significance (Figure 7C). Interestingly, single RNAi
against jmjd-3 or utx-1 dramatically increased the proportion of
desilenced germlines under both ancestral DMSO and BPA ex-
posures, suggesting a partial compensation between jmjd-3
and utx-1 in the C. elegans germline (Figure S7B). This increase
is similar to that of RNAi against the H3K27 HMT Polycomb
Group complex member mes-6 or against the SET domain
H3K36 HMT mes-4, which functions to limit H3K27me3
spreading away from silenced chromatin (Figure S7B) (Gaydos
et al., 2012).
We further implicated the deregulation of H3K9me3 and

H3K27me3 as central to BPA’s transgenerational effects by per-
forming drug rescue experiments using the KDM4/JMJD-2 in-
hibitor IOX-1 (King et al., 2010), which has been shown to elevate
H3K9me3 levels in vitro and in cell culture settings, (Hu et al.,
2016; King et al., 2010; Schiller et al., 2014), and the potent se-
lective Jumonji JMJD-3/UTX-1 H3K27 demethylase inhibitor
GSK-J4 (Kruidenier et al., 2012). We first examined whether a
combination of the two histone demethylase inhibitors would
be sufficient to decrease the germline array desilencing and em-
bryonic lethality effects. The co-treatment of the F1 generation

A

EC

DB Figure 6. Transgenerational Impact of BPA
on Fertility
(A) Number of eggs produced by F3 or F7 worms

following P0 exposure to DMSO control (gray) or

BPA (red).

(B) Percentage of lethality of embryos generated

by F3 or F7 worms ancestrally exposed to either

DMSO control or BPA. n = 23–33; ***p % 0.001,

two-way ANOVA.

(C) Embryonic lethality of F3 or F7 worms’ progeny

based on the GFP expression in the germline of F3

or F7 worms. n = 10; *p % 0.05, two-way ANOVA.

(D) Number of apoptotic nuclei per gonadal arms of

F3 or F7 worms. n = 7 repeats, 20 worms each;

**p % 0.01 and ***p % 0.001, two-way ANOVA.

(E) Representative examples of acridine orange-

stained F3 nematodes following P0 DMSO or

BPA exposure. All data are represented as

mean ± SEM.

with 100 mM IOX-1 and 100 mM GSK-J4
led to a significant reduction in BPA-
induced array desilencing and embryonic
lethality by 15.8% and 27.0%, respec-
tively (Figure S8B). Finally, we tested the
effect of the two inhibitors independently.
Remarkably, F1 exposure to either IOX-1
or GSK-J4 was sufficient to suppress
the elevation in array desilencing and em-
bryonic lethality in P0 BPA-exposed

worms compared to DMSO (Figure S8C). Thus, two distinct
means of rescuing BPA’s transgenerational effects, by RNAi or
chemical inhibitors, indicate that the activity of either JMJD-2
or JMD-3/UTX-1 is required for the inheritance of BPA-induced
reproductive effects.

DISCUSSION

In the present study, we aimed to characterize the molecular
mechanisms of memory of environmental exposures using
BPA as a model chemical. We showed that ancestral BPA expo-
sure leads to a transgenerational decrease in the germline levels
of H3K9me3 and H3K27me3 dependent on the activity of the
JMJD-2 and JMJD-3/UTX-1 demethylases. Interestingly, our re-
sults indicate that, while the overt germline desilencing effect
lasts only up to 5 generations, some modest impacts on repro-
duction extend at least until the F7 generation. These results
therefore suggest that the transgenerational impact of BPA
may differ depending on the type of genetic loci examined,
with repetitive loci, such as the transgene, being less affected
than other loci controlling C. elegans reproductive function.
We found that modulation of either JMJD-2 or JMJD-3/

UTX-1 activity, chemically or genetically, is sufficient to dramat-
ically reduce the inheritance of transgenerational effects. While
JMJD-2 acts as both an H3K9me3 and H3K36me3 demethy-
lase, the ability of jmjd-2 RNAi to rescue desilencing’s effects
is likely caused by its action on H3K9me3, as H3K36me3 is
considered an active mark in the C. elegans germline (Gaydos
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et al., 2012) and RNAi against jmjd-2 increases its levels
(Whetstine et al., 2006), which is inconsistent with the observed
decrease in BPA-induced desilencing in jmjd-2 RNAi F3 ani-
mals. Our results thus suggest a cooperation between
H3K9me3 and H3K27me3 for proper chromatin silencing in
the C. elegans germline. Such cooperation is understood in
mammalian embryonic stem cells (ESCs) to emerge from the
interaction between Jarid2/Jumonji and Polycomb Repressive
Complex 2 (PRC2) (Pasini et al., 2010; Peng et al., 2009) and
to be important for heterochromatin formation and/or mainte-
nance through PRC2’s effect on increasing the binding effi-
ciency of HP1 to H3K9me3 (Boros et al., 2014). In C. elegans’
embryonic or larval chromatin, there is a strong overlap be-
tween H3K27me3 and H3K9me3 at genome-wide levels (Gar-
rigues et al., 2015; Ho et al., 2014). This overlap is particularly
significant at chromosomal arms of heterochromatic nature
as well as lamina-associated domains (Ho et al., 2014), some-
thing also observed in our data (Figure 3B). In the C. elegans
meiotic germline, the overlap between H3K27me3 and
H3K9me3 chromosomal distribution is likely to be high, as
H3K27me3 distribution is greater than that of H3K9me3
(Bender et al., 2004; Bessler et al., 2010; Schaner and Kelly,
2006).

Figure 7. jmjd-2 and jmjd-3/utx-1 Demethy-
lases Are Required for BPA-Induced Transge-
nerational Response
(A) Exposure and rescue experimental scheme.

Following exposure to DMSO or BPA at the P0 gen-

eration, the progeny of GFP-positive P0 worms was

collected and subjected to feeding RNAi until the F2.

F3 worms were then collected and analyzed.

(B) Immunofluorescence images of mid-to-late

pachytene germline nuclei from F3worms ancestrally

exposed to BPA and GFP-positive at the P0, stained

for H3K9me3 or H3K27me3. DAPI is represented in

blue and the histone mark of interest in magenta in

the merge. All images shown were selected repre-

sentative images of the mean values obtained after

quantification of all germline nuclei from that expo-

sure group (Figure S7A). Scale bar, 5 mm.

(C) RNAi rescue of ancestral DMSO- (gray) or BPA-

(red) induced effects following either no F1 treatment,

empty vector control, jmjd-2, or jmjd-3/utx-1 feeding

RNAi. n = 7–17 repeats, 30 worms each for desi-

lencing assay and n = 4–8 repeats, 3–4 worms each

for the embryonic lethality assay; *p % 0.05, **p %

0.01, and ****p % 0.0001, two-way ANOVA. All data

are represented as mean ± SEM.

Our results are consistent with previous
observations in mouse germ cells, where
exposure of growing oocytes to low BPA
concentrations decreased H3K9me3
levels (Trapphoff et al., 2013). However,
the effect of BPA may also be context
dependent, as an increase in EZH2
expression and, consequently, an eleva-
tion of H3K27me3 was detected in mam-

mary tissues following BPA exposure (Doherty et al., 2010).
Our work suggests that, at least inC. elegans, the tight regulation
of H3K9 and H3K27 methylation is central to the epigenetic
memory of ancestral exposures. It will be crucial to examine
how histone-based epimutationsmay be inherited across gener-
ations in mammalian models, since the mammalian epigenome
undergoes two distinct waves of reprogramming, once in the pri-
mordial germ cells (PGCs) and a second time after fertilization in
the pre-implantation embryo (reviewed in Tang et al., 2016). Dur-
ing the first reprogramming in PGCs, there is a wide fluctuation in
H3K9me2 level, which becomes depleted (Seki et al., 2005), and
in H3K27me3 level, which is gradually enriched globally (Hajkova
et al., 2008). However, H3K9me3 is maintained in a dotted
pattern in the pericentric heterochromatic regions as well as on
endogenous retroviruses (Liu et al., 2014; Seki et al., 2005).
Thus, H3K9me3 could serve in mammals as a molecular medi-
ator of exposure memory in the germline.
The centrality of H3K9me3 in the inheritance of natural envi-

ronmental effects has recently been further highlighted in
C. elegans, where temperature-mediated alteration of transgene
expression was detected for up to 14 generations (Klosin et al.,
2017). However, other environmental cues, such as starvation
or hyperosmosis, have been shown, depending on the studies,
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to require small RNA-based mechanisms and/or H3K4 trimethy-
lase activity (Kishimoto et al., 2017; Rechavi et al., 2014). While
these pathways may be mechanistically related, it will be neces-
sary to examine whether a unifying mechanism of environmental
inheritance can be identified, especially as we also identified a
requirement for the regulation of H3K27 methylation for the
transgenerational inheritance of BPA’s exposure. Finally, our
findings on the transgenerational memory of exposure to the
model toxicant BPA and its impact on the germline’s epigenome
and reproduction also raise important questions for human risk
from exposure, as our work identified transgenerational repro-
ductive effects even in the absence of such a response in the
earlier generations and at BPA concentrations lower than those
previously characterized and that yielded internal concentrations
close to those found in human reproductive tissues (Chen et al.,
2016; Schönfelder et al., 2002; Vandenberg et al., 2010).
In conclusion, we have uncovered a transgenerational effect

on reproduction stemming from exposure to the environmental
chemical BPA and mediated in part by a deregulation of repres-
sive histone modifications. These findings, therefore, highlight
the need to comprehensively examine the effect of our chemical
environment on the unique context of the germline epigenome,
and they also offer interventional means to prevent the transmis-
sion of such effects across generations.

EXPERIMENTAL PROCEDURES

Culture Conditions and Strains
Standardmethods of culturing and handling ofC. eleganswere followed (Stier-

nagle, 2006). Worms were maintained on nematode growth medium (NGM)

plates streaked with OP50 E. coli, and all experiments were performed at

20!C (at 25!C, a pronounced desilencing of pkIs1582 is observed in the germ-

line). Strains used in this study were obtained from the C. elegans Genetics

Center (CGC) and include the following: NL2507 (pkIs1582[let-858::GFP;

rol-6 (su1006 )]), PD7271 (pha-1(e2123) III; ccEx7271), and N2 (wild-type).

Chemical Exposure and GFP Scoring
The exposure and GFP germline desilencing assessments were performed as

previously described (Lundby et al., 2016). Briefly, all chemicals tested were

obtained from Sigma-Aldrich and were dissolved in DMSO to a stock concen-

tration of 100mM.Wormswere synchronized by bleaching an adult population

of the strain of interest, plating the eggs, and allowing the synchronized pop-

ulation to reach L4 larval stage (approximately 50 hr). These were then

collected and incubated for 48 hr in 50 mL OP50 bacteria, 500 mL M9, and

0.5 mL of the chemical of interest for a final chemical concentration of

100 mM. After 48 hr, the worms were collected and allowed to recover on

NGM plates for 1–2 hr (mixed population) or immediately plated as individual

worms to separately labeled 35-mm seeded NGM plates (GFP+/" population

sorting) and recovered there.Wormswere scored for germlineGFP expression

using a Nikon H600L microscope at 403 magnification.

Apoptosis Assay and Embryonic Lethality Assessment
Apoptosis assay was performed by acridine orange staining on synchronized

adult hermaphrodites collected at 20–24 hr post-L4, as previously described

(Allard and Colaiácovo, 2011; Chen et al., 2016). Embryonic lethality was per-

formed by monitoring the numbers of embryos produced by each worm of

each day of its reproductive life and subsequent larvae hatched from these

embryos. The ratio of the latter measure by the former and multiplied by 100

generates the rate of embryonic lethality.

Chemical Rescue
F1 L4 larvae were obtained from DMSO- or BPA-exposed GFP-positive P0

worm populations, and they were exposed for 48 hr to the chemical rescue

drugs IOX-1 and GSK-J4 dissolved in DMSO to a stock concentration of

100 mM. In combination treatments, one drug was prepared at a higher con-

centration so that the final DMSO concentration never exceeded 0.11%. The

exposed F1 adult worms were then allowed to recover on NGM plates, and

their offspring were followed until the F3 generation for GFP scoring and em-

bryonic lethality assessment.

RNAi Experiments
Worms were exposed to RNAi by feeding (Kamath and Ahringer, 2003) with

E. coli strains containing either an empty control vector (L4440) or expressing

double-stranded RNA. RNAi constructs against jmjd-2, jmjd-3, utx-1, mes-4 ,

andmes-6 were obtained from the Ahringer RNAi library and sequence verified.

P0 worms were exposed to BPA or DMSO for 48 hr following the procedure

described above. For jmjd-2 and jmjd-3/utx-1 RNAi, F1 adult worms from

GFP-positive P0 worms were placed on plates of E. coli containing an empty

control vector (L4440) or expressing double-stranded RNA to lay overnight. F2

worms were grown on RNAi bacteria from hatching until the first day of

adulthood, at which point they were transferred to non-RNAi OP50 plates. The

subsequent generation (F3)wascollectedat adulthood (24hr post-L4) for further

analysis. Formes-4 andmes-6 RNAi, the sameprocedurewas followedbut from

the F2 to F3 generation to circumvent their associated maternal sterility

phenotype.

Immunofluorescence
Immunofluorescence images were collected at 0.5-mm z intervals with an

Eclipse Ni-E microscope (Nikon) and a cooled charge-coupled device (CCD)

camera (model CoolSNAP HQ, Photometrics) controlled by the NIS Elements

AR system (Nikon). The images presented and quantified are projections

approximately halfway through 3D data stacks of C. elegans gonads, which

encompass entire nuclei. Images were subjected to 3D landweber deconvolu-

tion analysis (5 iterations) with the NIS Elements AR analysis program (Nikon).

H3K27me3 and H3K9me3 quantification in mid-late pachytene germ cell

nuclei was performed with the ImageJ software. F3 worms were staged

at L4, and gonad dissection and immunofluorescence were performed

20–24 hr post-L4, as previously described (Chen et al., 2016). Primary anti-

bodies were used at the following dilutions: rabbit a-H3K9me3, 1:500 (Abcam);

and mouse a-H3K27me2me3, 1:200 (Active Motif). Secondary antibodies

were used at the following dilutions: Cy3 a-rabbit, 1:700; and TxRed a-mouse,

1:200, (Jackson ImmunoResearch).

Germline RNA Amplification and RNA-Seq Analysis
Total RNA was extracted from needle-dissected gonads of F3 adult worms

obtained from a mixed population of H2O-, DMSO-, and BPA-exposed P0

nematodes. The experiments were performed on 4 biological replicates of

30 gonads each that were processed through the NucleoSpin RNA XS, Ma-

cherey Nagel kit. cDNA was synthesized using the SMART-Seq v4 Ultra Low

Input RNA Kit for sequencing, amplified 103, and purified using agentcourt

AMPure beads.

Nextera XT Library Prep Kit was used to prepare the sequencing libraries

from 1 ng cDNA. Single-end sequencing at 50-bp length was performed on

an Illumina Hiseq 4000 system (Illumina, CA, USA), and a total of #350 million

reads was obtained for 12 samples (3 treatment groups3 4 replicates/group).

Data quality checks were performed using the FastQC tool (http://www.

bioinformatics.babraham.ac.uk/projects/fastqc). RNA-seq reads passing

quality control (QC) were analyzed using a pipeline comprised of HISAT (Kim

et al., 2015), StringTie (Pertea et al., 2015), and Ballgown (Frazee et al.,

2015) tools. HISAT was used to align reads against the C. elegans genome

to discover the locations from which the reads originated and to determine

the transcript splice sites. Then, StringTie was used to assemble the RNA-

seq alignments into potential transcripts. Ballgown was used to identify the

transcripts and genes that were differentially expressed between the BPA

and DMSO groups, between the BPA and control (water) groups, and between

the DMSO and control groups. FPKMs for each transcript were obtained by

Ballgown and used as the expression measure. We filtered out the low-abun-

dance transcripts and kept those having amean FPKM > 1 across all samples.

To test the transcriptional impact of BPA on individual chromosomes, we

applied a Student’s t test to determine whether the differences in the mean
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log2(FPKM + 1) values between the BPA and DMSO groups were significant

for all transcripts with FPKM > 1 on each chromosome. p% 0.05 was consid-

ered significant.

ChIP-Seq and Multiplex PTM Assay
Histone modification H3K9me3 and H3K27me3 ChIP-seq data were gener-

ated as a service by Active Motif using their in-house antibodies from 3 biolog-

ical repeats of frozen F3 nematode populations, with 200 mLworms per sample

repeat. The sequencing data were obtained through Illumina Nextseq and

mapped to ce10 genome by Burrows-Wheeler Aligner (BWA) algorithm

(Li and Durbin, 2009). Following pooling of the sequencing data per exposure

category (Yang et al., 2014), the data were normalized to input and million

reads to produce a signal track file by MACS2 (Zhang et al., 2008). For chro-

mosome-wide mark distribution analysis, each chromosome was divided

into 100 sub-regions and average fold enrichment score per base in sub-re-

gions. We normalized signals with Z score for each chromosome and each

sample.

For gene body histone modification analysis, deepTools (Ramı́rez et al.,

2014) was utilized to obtain aggregated signal from !500 bp of the upstream

transcription start site (TSS) to +500 bp of the downstream transcription end

site (TES). We first summarized genes with multiple transcripts into a single

gene by the one with the most significant difference from BPA and DMSO

from RNA-seq results. Silenced genes were defined as genes expressed in

the lowest 25% (Q1, 1,801 genes) of all genes in the DMSO group, and upre-

gulated genes were defined as silenced genes upregulated more than 2-fold

after BPA treatment (244 genes) based on RNA-seq results. We called peaks

by MACS2 broad peak function with q value = 0.1 (cutoff). Broad peak is used

as a peak-calling category when analyzing data for protein-DNA association

with broader DNA coverage, such as for H3K9me3 and H3K27me3. It joins

nearby narrower peak calling into one broader peak. To compare differential

peak, unique peak method was used to compare BPA and DMSO samples

(Steinhauser et al., 2016). Non-overlapping broad peaks called by MACS2

were defined as unique peaks. Unique peaks from BPA and DMSO in 100

sub-regions along each chromosome were compared. We further define

peaked genes as genes with any peak calling in gene body region. Unless

specified, analyses were conducted by R 3.4.0 (R Core Team, 2017) and Bio-

conductor (Huber et al., 2015).

The multiplex PTM quantitation assay was also generated as service by

Active Motif on a Luminex platform, and it was performed on pooled samples

(totaling 100 mL) generated from 3–4 individual repeats per exposure condition.

Statistical Analyses
Unless indicated otherwise, an unpaired t test assuming unequal variance with

Welch’s correction was applied. For multi-group comparisons, a one-way

ANOVA with Sidak correction or two-way ANOVA was used.
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Towbin, B.D., González-Aguilera, C., Sack, R., Gaidatzis, D., Kalck, V., Meis-

ter, P., Askjaer, P., and Gasser, S.M. (2012). Step-wise methylation of histone

H3K9 positions heterochromatin at the nuclear periphery. Cell 150, 934–947.

Trapphoff, T., Heiligentag, M., El Hajj, N., Haaf, T., and Eichenlaub-Ritter, U.

(2013). Chronic exposure to a low concentration of bisphenol A during follicle

culture affects the epigenetic status of germinal vesicles and metaphase II

oocytes. Fertil. Steril. 100, 1758–1767.e1.

Vandenberg, L.N., Chahoud, I., Heindel, J.J., Padmanabhan, V., Paumgartten,

F.J.R., and Schoenfelder, G. (2010). Urinary, circulating, and tissue bio-

monitoring studies indicate widespread exposure to bisphenol A. Environ.

Health Perspect. 118, 1055–1070.

Whetstine, J.R., Nottke, A., Lan, F., Huarte, M., Smolikov, S., Chen, Z., Spoo-

ner, E., Li, E., Zhang, G., Colaiacovo,M., and Shi, Y. (2006). Reversal of histone

lysine trimethylation by the JMJD2 family of histone demethylases. Cell 125,

467–481.

Wu, C.T., and Morris, J.R. (2001). Genes, genetics, and epigenetics: a corre-

spondence. Science 293, 1103–1105.

Yang, Y., Fear, J., Hu, J., Haecker, I., Zhou, L., Renne, R., Bloom, D., and

McIntyre, L.M. (2014). Leveraging biological replicates to improve analysis in

ChIP-seq experiments. Comput. Struct. Biotechnol. J. 9, e201401002.

Yeo, M., Berglund, K., Hanna, M., Guo, J.U., Kittur, J., Torres, M.D., Abramo-

witz, J., Busciglio, J., Gao, Y., Birnbaumer, L., and Liedtke, W.B. (2013). Bi-

sphenol A delays the perinatal chloride shift in cortical neurons by epigenetic

effects on the Kcc2 promoter. Proc. Natl. Acad. Sci. USA 110, 4315–4320.

Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B.E.,

Nusbaum, C., Myers, R.M., Brown, M., Li, W., and Liu, X.S. (2008). Model-

based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137.

Zhong, S.H., Liu, J.Z., Jin, H., Lin, L., Li, Q., Chen, Y., Yuan, Y.X., Wang, Z.Y.,

Huang, H., Qi, Y.J., et al. (2013). Warm temperatures induce transgenerational

epigenetic release of RNA silencing by inhibiting siRNA biogenesis in Arabi-

dopsis. Proc. Natl. Acad. Sci. USA 110, 9171–9176.

2404 Cell Reports 23, 2392–2404, May 22, 2018



 

251 

References 

1 Sultana J, Cutroneo P, Trifirò G. Clinical and economic burden of adverse drug reactions. 

J Pharmacol Pharmacother 2013;4:S73–7. https://doi.org/10.4103/0976-500X.120957. 

2 Afshin A, Sur PJ, Fay KA, Cornaby L, Ferrara G, Salama JS, et al. Health effects of 

dietary risks in 195 countries, 1990&#x2013;2017: a systematic analysis for the Global 

Burden of Disease Study 2017. Lancet 2019;393:1958–72. 

https://doi.org/10.1016/S0140-6736(19)30041-8. 

3 Jardim TV, Mozaffarian D, Abrahams-Gessel S, Sy S, Lee Y, Liu J, et al. Cardiometabolic 

disease costs associated with suboptimal diet in the United States: A cost analysis based 

on a microsimulation model. PLOS Med 2019;16:e1002981. 

4 Scarborough P, Bhatnagar P, Wickramasinghe KK, Allender S, Foster C, Rayner M. The 

economic burden of ill health due to diet, physical inactivity, smoking, alcohol and obesity 

in the UK: an update to 2006–07 NHS costs. J Public Health (Bangkok) 2011;33:527–35. 

https://doi.org/10.1093/pubmed/fdr033. 

5 Sacks JJ, Gonzales KR, Bouchery EE, Tomedi LE, Brewer RD. 2010 National and State 

Costs of Excessive Alcohol Consumption. Am J Prev Med 2015;49:e73–9. 

https://doi.org/10.1016/j.amepre.2015.05.031. 

6 Griswold MG, Fullman N, Hawley C, Arian N, Zimsen SRM, Tymeson HD, et al. Alcohol 

use and burden for 195 countries and territories, 1990&#x2013;2016: a systematic 

analysis for the Global Burden of Disease Study 2016. Lancet 2018;392:1015–35. 

https://doi.org/10.1016/S0140-6736(18)31310-2. 

7 Igarashi Y, Nakatsu N, Yamashita T, Ono A, Ohno Y, Urushidani T, et al. Open TG-

GATEs: a large-scale toxicogenomics database. Nucleic Acids Res 2015;43:D921-7. 

https://doi.org/10.1093/nar/gku955. 

8 Microbial Status and Genetic Evaluation of Mice and Rats: Proceedings of the 1999 



 

252 

US/Japan Conference. Washington (DC); 2000. 

9 Chella Krishnan K, Kurt Z, Barrere-Cain R, Sabir S, Das A, Floyd R, et al. Integration of 

Multi-omics Data from Mouse Diversity Panel Highlights Mitochondrial Dysfunction in 

Non-alcoholic Fatty Liver Disease. Cell Syst 2018;6:103-115.e7. 

https://doi.org/10.1016/j.cels.2017.12.006. 

10 Wong SK, Chin K-Y, Suhaimi FH, Fairus A, Ima-Nirwana S. Animal models of metabolic 

syndrome: a review. Nutr Metab (Lond) 2016;13:65. https://doi.org/10.1186/s12986-016-

0123-9. 

11 Weinhouse C, Truong L, Meyer JN, Allard P. Caenorhabditis elegans as an emerging 

model system in environmental epigenetics. Environ Mol Mutagen 2018;59:560–75. 

https://doi.org/10.1002/em.22203. 

12 Prior H, Haworth R, Labram B, Roberts R, Wolfreys A, Sewell F. Justification for species 

selection for pharmaceutical toxicity studies. Toxicol Res (Camb) 2020;9:758–70. 

https://doi.org/10.1093/toxres/tfaa081. 

13 Johnson RJ, Perez-Pozo SE, Sautin YY, Manitius J, Sanchez-Lozada LG, Feig DI, et al. 

Hypothesis: could excessive fructose intake and uric acid cause type 2 diabetes? Endocr 

Rev 2009;30:96–116. https://doi.org/10.1210/er.2008-0033. 

14 Halpern KB, Shenhav R, Matcovitch-Natan O, Toth B, Lemze D, Golan M, et al. Single-

cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature 

2017;542:352–6. https://doi.org/10.1038/nature21065. 

15 Malik R, Selden C, Hodgson H. The role of non-parenchymal cells in liver growth. Semin 

Cell Dev Biol 2002;13:425–31. 

16 Aguet F, Brown AA, Castel SE, Davis JR, He Y, Jo B, et al. Genetic effects on gene 

expression across human tissues. Nature 2017;550:204–13. 

https://doi.org/10.1038/nature24277. 



 

253 

17 Taylor JY, Kraja AT, de Las Fuentes L, Stanfill AG, Clark A, Cashion A. An overview of 

the genomics of metabolic syndrome. J Nurs Scholarsh  an Off Publ Sigma Theta Tau Int 

Honor Soc Nurs 2013;45:52–9. https://doi.org/10.1111/j.1547-5069.2012.01484.x. 

18 Áine D, Marie V, Amanda D, Hong-Hee W, L. RJ, S. FI, et al. Tissue-specific genetic 

features inform prediction of drug side effects in clinical trials. Sci Adv 2022;6:eabb6242. 

https://doi.org/10.1126/sciadv.abb6242. 

19 Chuang H-Y, Hofree M, Ideker T. A decade of systems biology. Annu Rev Cell Dev Biol 

2010;26:721–44. https://doi.org/10.1146/annurev-cellbio-100109-104122. 

20 Barabasi AL, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to 

human disease. Nat Rev Genet 2011;12:56–68. https://doi.org/10.1038/nrg2918. 

21 Tu Z, Keller MP, Zhang C, Rabaglia ME, Greenawalt DM, Yang X, et al. Integrative 

analysis of a cross-loci regulation network identifies App as a gene regulating insulin 

secretion from pancreatic islets. PLoS Genet 2012;8:e1003107. 

https://doi.org/10.1371/journal.pgen.1003107. 

22 Shu L, Chan KHK, Zhang G, Huan T, Kurt Z, Zhao Y, et al. Shared genetic regulatory 

networks for cardiovascular disease and type 2 diabetes in multiple populations of 

diverse ethnicities in the United States. PLoS Genet 2017;13:e1007040. 

https://doi.org/10.1371/journal.pgen.1007040. 

23 Guney E, Menche J, Vidal M, Barábasi A-L. Network-based in silico drug efficacy 

screening. Nat Commun 2016;7:10331. https://doi.org/10.1038/ncomms10331. 

24 Cheng F, Desai RJ, Handy DE, Wang R, Schneeweiss S, Barabási A-L, et al. Network-

based approach to prediction and population-based validation of in silico drug 

repurposing. Nat Commun 2018;9:2691. https://doi.org/10.1038/s41467-018-05116-5. 

25 Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, et al. The STRING 

database in 2017: quality-controlled protein–protein association networks, made broadly 



 

254 

accessible. Nucleic Acids Res 2017;45:D362–8. https://doi.org/10.1093/nar/gkw937. 

26 ALGHAMDI N, Chang W, Dang P, Lu X, Wan C, Gampala S, et al. A graph neural 

network model to estimate cell-wise metabolic flux using single-cell RNA-seq data. 

Genome Res  2021. https://doi.org/10.1101/gr.271205.120. 

27 Blencowe M, Arneson D, Ding J, Chen Y-W, Saleem Z, Yang X. Network modeling of 

single-cell omics data: challenges, opportunities, and progresses. Emerg Top Life Sci 

2019;3:379–98. https://doi.org/10.1042/ETLS20180176. 

28 Hwang B, Lee JH, Bang D. Single-cell RNA sequencing technologies and bioinformatics 

pipelines. Exp Mol Med 2018;50:96. https://doi.org/10.1038/s12276-018-0071-8. 

29 Schwartzman O, Tanay A. Single-cell epigenomics: techniques and emerging 

applications. Nat Rev Genet 2015;16:716. 

30 Bell S, Abedini J, Ceger P, Chang X, Cook B, Karmaus AL, et al. An integrated chemical 

environment with tools for chemical safety testing. Toxicol Vitr 2020;67:104916. 

https://doi.org/https://doi.org/10.1016/j.tiv.2020.104916. 

31 Kavlock R, Chandler K, Houck K, Hunter S, Judson R, Kleinstreuer N, et al. Update on 

EPA’s ToxCast Program: Providing High Throughput Decision Support Tools for 

Chemical Risk Management. Chem Res Toxicol 2012;25:1287–302. 

https://doi.org/10.1021/tx3000939. 

32 Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem in 2021: new data 

content and improved web interfaces. Nucleic Acids Res 2021;49:D1388–95. 

https://doi.org/10.1093/nar/gkaa971. 

33 Dimitrov SD, Diderich R, Sobanski T, Pavlov TS, Chankov G V, Chapkanov AS, et al. 

QSAR Toolbox - workflow and major functionalities. SAR QSAR Environ Res 

2016;27:203–19. https://doi.org/10.1080/1062936X.2015.1136680. 

34 Ding J, Blencowe M, Nghiem T, Ha S, Chen Y-W, Li G, et al. Mergeomics 2.0: a web 



 

255 

server for multi-omics data integration to elucidate disease networks and predict 

therapeutics. Nucleic Acids Res 2021. https://doi.org/10.1093/nar/gkab405. 

35 Morgan S, Grootendorst P, Lexchin J, Cunningham C, Greyson D. The cost of drug 

development: a systematic review. Health Policy 2011;100:4–17. 

https://doi.org/10.1016/j.healthpol.2010.12.002. 

36 Yu HWH. Bridging the translational gap: collaborative drug development and dispelling 

the stigma of commercialization. Drug Discov Today 2016;21:299–305. 

https://doi.org/https://doi.org/10.1016/j.drudis.2015.10.013. 

37 Lin Z, Will Y. Evaluation of Drugs With Specific Organ Toxicities in Organ-Specific Cell 

Lines. Toxicol Sci 2011;126:114–27. https://doi.org/10.1093/toxsci/kfr339. 

38 Denayer T, Stöhr T, Van Roy M. Animal models in translational medicine: Validation and 

prediction. New Horizons Transl Med 2014;2:5–11. 

https://doi.org/https://doi.org/10.1016/j.nhtm.2014.08.001. 

39 Subramanian A, Narayan R, Corsello SM, Peck DD, Natoli TE, Lu X, et al. A Next 

Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles. Cell 

2017;171:1437-1452.e17. https://doi.org/10.1016/j.cell.2017.10.049. 

40 Cheng F, Desai RJ, Handy DE, Wang R, Schneeweiss S, Barabási A-L, et al. Network-

based approach to prediction and population-based validation of in silico drug 

repurposing. Nat Commun 2018;9:2691. https://doi.org/10.1038/s41467-018-05116-5. 

41 Hall CJ, Wicker SM, Chien A-T, Tromp A, Lawrence LM, Sun X, et al. Repositioning 

drugs for inflammatory disease – fishing for new anti-inflammatory agents. Dis Model 

Mech 2014;7:1069. 

42 Corbett A, Pickett J, Burns A, Corcoran J, Dunnett SB, Edison P, et al. Drug repositioning 

for Alzheimer’ s disease. Nat Rev Drug Discov 2012;11:833. 

https://doi.org/10.1038/nrd3869. 



 

256 

43 Godoy P, Bolt HM. Toxicogenomic-based approaches predicting liver toxicity in vitro. 

Arch Toxicol 2012;86:1163–4. https://doi.org/10.1007/s00204-012-0892-5. 

44 Low Y, Uehara T, Minowa Y, Yamada H, Ohno Y, Urushidani T, et al. Predicting Drug-

Induced Hepatotoxicity Using QSAR and Toxicogenomics Approaches. Chem Res 

Toxicol 2011;24:1251–62. https://doi.org/10.1021/tx200148a. 

45 AbdulHameed MD, Ippolito DL, Stallings JD, Wallqvist A. Mining kidney toxicogenomic 

data by using gene co-expression modules. BMC Genomics 2016;17:790. 

https://doi.org/10.1186/s12864-016-3143-y. 

46 Toutain P-L, Ferran A, Bousquet-Melou A. Species differences in pharmacokinetics and 

pharmacodynamics. Handb Exp Pharmacol 2010:19–48. https://doi.org/10.1007/978-3-

642-10324-7_2. 

47 Wong CH, Siah KW, Lo AW. Estimation of clinical trial success rates and related 

parameters 2018. https://doi.org/10.1093/biostatistics/kxx069. 

48 Davis AP, Grondin CJ, Johnson RJ, Sciaky D, King BL, McMorran R, et al. The 

Comparative Toxicogenomics Database: update 2017. Nucleic Acids Res 2017;45:D972–

8. https://doi.org/10.1093/nar/gkw838. 

49 Wang Z, Clark NR, Ma’ayan A. Drug-induced adverse events prediction with the LINCS 

L1000 data. Bioinformatics 2016;32:2338–45. 

https://doi.org/10.1093/bioinformatics/btw168. 

50 Wang Z, Monteiro CD, Jagodnik KM, Fernandez NF, Gundersen GW, Rouillard AD, et al. 

Extraction and analysis of signatures from the Gene Expression Omnibus by the crowd. 

Nat Commun 2016;7:12846. 

51 Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. NCBI 

GEO: archive for functional genomics data sets—update. Nucleic Acids Res 

2013;41:D991–5. https://doi.org/10.1093/nar/gks1193. 



 

257 

52 Kolesnikov N, Hastings E, Keays M, Melnichuk O, Tang YA, Williams E, et al. 

ArrayExpress update—simplifying data submissions. Nucleic Acids Res 2015;43:D1113–

6. https://doi.org/10.1093/nar/gku1057. 

53 Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, et al. Mergeomics: 

multidimensional data integration to identify pathogenic perturbations to biological 

systems. BMC Genomics 2016;17:874. https://doi.org/10.1186/s12864-016-3198-9. 

54 Wang Z, Lachmann A, Keenan AB, Ma’ayan A. L1000FWD: fireworks visualization of 

drug-induced transcriptomic signatures. Bioinformatics 2018;34:2150–2. 

55 Liss KHH, Finck BN. PPARs and nonalcoholic fatty liver disease. Biochimie 2017;136:65–

74. https://doi.org/10.1016/j.biochi.2016.11.009. 

56 Abd El-Haleim EA, Bahgat AK, Saleh S. Resveratrol and fenofibrate ameliorate fructose-

induced nonalcoholic steatohepatitis by modulation of genes expression. World J 

Gastroenterol 2016;22:2931–48. https://doi.org/10.3748/wjg.v22.i10.2931. 

57 Ratziu V, Charlotte F, Bernhardt C, Giral P, Halbron M, Lenaour G, et al. Long-term 

efficacy of rosiglitazone in nonalcoholic steatohepatitis: results of the fatty liver 

improvement by rosiglitazone therapy (FLIRT 2) extension trial. Hepatology 2010;51:445–

53. https://doi.org/10.1002/hep.23270. 

58 Ratziu V, Giral P, Jacqueminet S, Charlotte F, Hartemann-Heurtier A, Serfaty L, et al. 

Rosiglitazone for nonalcoholic steatohepatitis: one-year results of the randomized 

placebo-controlled Fatty Liver Improvement with Rosiglitazone Therapy (FLIRT) Trial. 

Gastroenterology 2008;135:100–10. https://doi.org/10.1053/j.gastro.2008.03.078. 

59 Zhang N, Lu Y, Shen X, Bao Y, Cheng J, Chen L, et al. Fenofibrate treatment attenuated 

chronic endoplasmic reticulum stress in the liver of nonalcoholic fatty liver disease mice. 

Pharmacology 2015;95:173–80. https://doi.org/10.1159/000380952. 

60 Laurin J, Lindor KD, Crippin JS, Gossard A, Gores GJ, Ludwig J, et al. Ursodeoxycholic 



 

258 

acid or clofibrate in the treatment of non-alcohol-induced steatohepatitis: a pilot study. 

Hepatology 1996;23:1464–7. https://doi.org/10.1002/hep.510230624. 

61 Fernandez-Miranda C, Perez-Carreras M, Colina F, Lopez-Alonso G, Vargas C, Solis-

Herruzo JA. A pilot trial of fenofibrate for the treatment of non-alcoholic fatty liver disease. 

Dig Liver Dis 2008;40:200–5. https://doi.org/10.1016/j.dld.2007.10.002. 

62 Hertz R, Bar-Tana J. Peroxisome proliferator-activated receptor (PPAR) alpha activation 

and its consequences in humans. Toxicol Lett 1998;102–103:85–90. 

63 Kawaguchi K, Sakaida I, Tsuchiya M, Omori K, Takami T, Okita K. Pioglitazone prevents 

hepatic steatosis, fibrosis, and enzyme-altered lesions in  rat liver cirrhosis induced by a 

choline-deficient L-amino acid-defined diet. Biochem Biophys Res Commun 

2004;315:187–95. https://doi.org/10.1016/j.bbrc.2004.01.038. 

64 Nan Y-M, Fu N, Wu W-J, Liang B-L, Wang R-Q, Zhao S-X, et al. Rosiglitazone prevents 

nutritional fibrosis and steatohepatitis in mice. Scand J Gastroenterol 2009;44:358–65. 

https://doi.org/10.1080/00365520802530861. 

65 Neuschwander-Tetri BA, Brunt EM, Wehmeier KR, Oliver D, Bacon BR. Improved 

nonalcoholic steatohepatitis after 48 weeks of treatment with the PPAR-gamma ligand 

rosiglitazone. Hepatology 2003;38:1008–17. https://doi.org/10.1053/jhep.2003.50420. 

66 Torres DM, Jones FJ, Shaw JC, Williams CD, Ward JA, Harrison SA. Rosiglitazone 

versus rosiglitazone and metformin versus rosiglitazone and losartan in the treatment of 

nonalcoholic steatohepatitis in humans: a 12-month randomized, prospective, open- label 

trial. Hepatology 2011;54:1631–9. https://doi.org/10.1002/hep.24558. 

67 Pastori D, Polimeni L, Baratta F, Pani A, Del Ben M, Angelico F. The efficacy and safety 

of statins for the treatment of non-alcoholic fatty liver disease. Dig Liver Dis 2015;47:4–

11. https://doi.org/https://doi.org/10.1016/j.dld.2014.07.170. 

68 Sigler MA, Congdon L, Edwards KL. An Evidence-Based Review of Statin Use in Patients 



 

259 

With Nonalcoholic Fatty Liver Disease. Clin Med Insights Gastroenterol 2018. 

https://doi.org/10.1177/1179552218787502. 

69 Park HS, Jang JE, Ko MS, Woo SH, Kim BJ, Kim HS, et al. Statins Increase 

Mitochondrial and Peroxisomal Fatty Acid Oxidation in the Liver and Prevent Non-

Alcoholic Steatohepatitis in Mice. Diabetes Metab J 2016;40:376–85. 

https://doi.org/10.4093/dmj.2016.40.5.376. 

70 Bravo M, Raurell I, Hide D, Fernández-Iglesias A, Gil M, Barberá A, et al. Restoration of 

liver sinusoidal cell phenotypes by statins improves portal hypertension and histology in 

rats with NASH. Sci Rep 2019;9:20183. https://doi.org/10.1038/s41598-019-56366-2. 

71 Simon TG, Henson J, Osganian S, Masia R, Chan AT, Chung RT, et al. Daily Aspirin Use 

Associated With Reduced Risk For Fibrosis Progression In Patients With Nonalcoholic 

Fatty Liver Disease. Clin Gastroenterol Hepatol 2019;17:2776-2784.e4. 

https://doi.org/10.1016/j.cgh.2019.04.061. 

72 Chella Krishnan K, Floyd RR, Sabir S, Jayasekera DW, Leon-Mimila P V, Jones AE, et al. 

Liver Pyruvate Kinase Promotes NAFLD/NASH in Both Mice and Humans in a Sex-

Specific Manner. Cell Mol Gastroenterol Hepatol 2021;11:389–406. 

https://doi.org/10.1016/j.jcmgh.2020.09.004. 

73 Hui ST, Parks BW, Org E, Norheim F, Che N, Pan C, et al. The genetic architecture of 

NAFLD among inbred strains of mice. Elife 2015;4:e05607. 

https://doi.org/10.7554/eLife.05607. 

74 Norheim F, Chella Krishnan K, Bjellaas T, Vergnes L, Pan C, Parks BW, et al. Genetic 

regulation of liver lipids in a mouse model of insulin resistance and hepatic steatosis. Mol 

Syst Biol 2021;17:e9684. https://doi.org/https://doi.org/10.15252/msb.20209684. 

75 Chakravarthy M V, Lodhi IJ, Yin L, Malapaka RR V, Xu HE, Turk J, et al. Identification of 

a physiologically relevant endogenous ligand for PPARalpha in liver. Cell 2009;138:476–



 

260 

88. https://doi.org/10.1016/j.cell.2009.05.036. 

76 Wu J, Wang C, Li S, Li S, Wang W, Li J, et al. Thyroid hormone-responsive SPOT 14 

homolog promotes hepatic lipogenesis, and its expression is regulated by Liver X 

receptor α through a sterol regulatory element-binding protein 1c–dependent mechanism 

in mice. Hepatology 2013;58:617–28. https://doi.org/https://doi.org/10.1002/hep.26272. 

77 Lee S, Zhang C, Liu Z, Klevstig M, Mukhopadhyay B, Bergentall M, et al. Network 

analyses identify liver-specific targets for treating liver diseases. Mol Syst Biol 

2017;13:938. https://doi.org/10.15252/msb.20177703. 

78 Conway JR, Lex A, Gehlenborg N. UpSetR: an R package for the visualization of 

intersecting sets and their properties. Bioinformatics 2017;33:2938–40. 

https://doi.org/10.1093/bioinformatics/btx364. 

79 Gremse M, Chang A, Schomburg I, Grote A, Scheer M, Ebeling C, et al. The BRENDA 

Tissue Ontology (BTO): the first all-integrating ontology of all organisms for enzyme 

sources. Nucleic Acids Res 2011;39:D507–13. https://doi.org/10.1093/nar/gkq968. 

80 Wu Z, Irizarry RA, Gentleman R, Martinez-Murillo F, Spencer F. A Model-Based 

Background Adjustment for Oligonucleotide Expression Arrays. J Am Stat Assoc 

2004;99:909–17. https://doi.org/10.1198/016214504000000683. 

81 Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential 

expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 

2015;43:e47–e47. https://doi.org/10.1093/nar/gkv007. 

82 Kolde R, Laur S, Adler P, Vilo J. Robust rank aggregation for gene list integration and 

meta-analysis. Bioinformatics 2012;28:573–80. 

https://doi.org/10.1093/bioinformatics/btr709. 

83 Kuleshov M V, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: 

a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids 



 

261 

Res 2016;44:W90–7. https://doi.org/10.1093/nar/gkw377. 

84 Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on 

genomes, pathways, diseases and drugs. Nucleic Acids Res 2017;45:D353–61. 

https://doi.org/10.1093/nar/gkw1092. 

85 Expansion of the Gene Ontology knowledgebase and resources. Nucleic Acids Res 

2017;45:D331-d338. https://doi.org/10.1093/nar/gkw1108. 

86 Draghici S, Khatri P, Tarca AL, Amin K, Done A, Voichita C, et al. A systems biology 

approach for pathway level analysis. Genome Res 2007;17:1537–45. 

https://doi.org/10.1101/gr.6202607. 

87 Voichita C, Ansari S, Draghici S. ROntoTools: R Onto-Tools suite 2020. 

88 Zhu J, Wiener MC, Zhang C, Fridman A, Minch E, Lum PY, et al. Increasing the power to 

detect causal associations by combining genotypic and expression data in segregating 

populations. PLoS Comput Biol 2007;3:e69. https://doi.org/10.1371/journal.pcbi.0030069. 

89 Zhu J, Zhang B, Smith EN, Drees B, Brem RB, Kruglyak L, et al. Integrating large-scale 

functional genomic data to dissect the complexity of yeast regulatory networks. Nat Genet 

2008;40:854–61. https://doi.org/10.1038/ng.167. 

90 Derry JM, Zhong H, Molony C, MacNeil D, Guhathakurta D, Zhang B, et al. Identification 

of genes and networks driving cardiovascular and metabolic phenotypes in a mouse F2 

intercross. PLoS One 2010;5:e14319. https://doi.org/10.1371/journal.pone.0014319. 

91 Wang SS, Schadt EE, Wang H, Wang X, Ingram-Drake L, Shi W, et al. Identification of 

pathways for atherosclerosis in mice: integration of quantitative trait locus analysis and 

global gene expression data. Circ Res 2007;101:e11-30. 

https://doi.org/10.1161/CIRCRESAHA.107.152975. 

92 Yang X, Schadt EE, Wang S, Wang H, Arnold AP, Ingram-Drake L, et al. Tissue-specific 

expression and regulation of sexually dimorphic genes in mice. Genome Res 



 

262 

2006;16:995–1004. https://doi.org/10.1101/gr.5217506. 

93 Zhong H, Beaulaurier J, Lum PY, Molony C, Yang X, MacNeil DJ, et al. Liver and 

Adipose Expression Associated SNPs Are Enriched for Association to Type 2 Diabetes. 

PLOS Genet 2010;6:e1000932. 

94 Clark NR, Hu KS, Feldmann AS, Kou Y, Chen EY, Duan Q, et al. The characteristic 

direction: a geometrical approach to identify differentially expressed genes. BMC 

Bioinformatics 2014;15:79. https://doi.org/10.1186/1471-2105-15-79. 

95 Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, Kanoni S, et al. 

Discovery and refinement of loci associated with lipid levels. Nat Genet 2013;45:1274–

83. https://doi.org/10.1038/ng.2797. 

96 Tweedie S, Braschi B, Gray K, Jones TEM, Seal RL, Yates B, et al. Genenames.org: the 

HGNC and VGNC resources in 2021. Nucleic Acids Res 2021;49:D939–46. 

https://doi.org/10.1093/nar/gkaa980. 

97 Sing T, Sander O, Beerenwinkel N, Lengauer T. ROCR: visualizing classifier 

performance in R. Bioinformatics 2005;21:3940–1. 

https://doi.org/10.1093/bioinformatics/bti623. 

98 Zhu K, Hu M, Yuan B, Liu J-X, Liu Y. Aspirin attenuates spontaneous recurrent seizures 

in the chronically epileptic mice. Neurol Res 2017;39:744–57. 

https://doi.org/10.1080/01616412.2017.1326657. 

99 FOLCH J, LEES M, SLOANE STANLEY GH. A simple method for the isolation and 

purification of total lipides from animal  tissues. J Biol Chem 1957;226:497–509. 

100 Warnick GR. Enzymatic methods for quantification of lipoprotein lipids. Methods Enzymol 

1986;129:101–23. https://doi.org/10.1016/0076-6879(86)29064-3. 

101 Hedrick CC, Castellani LW, Warden CH, Puppione DL, Lusis AJ. Influence of mouse 

apolipoprotein A-II on plasma lipoproteins in transgenic mice. J Biol Chem 



 

263 

1993;268:20676–82. 

102 Wickham H, Chang W, Henry L, Pedersen TL, Takahashi K, Wilke C, et al. ggplot2: 

Create Elegant Data Visualisations Using the Grammar of Graphics 2020. 

103 Caputo C, Wood E, Jabbour L. Impact of fetal alcohol exposure on body systems: A 

systematic review. Birth Defects Res Part C Embryo Today Rev 2016;108:174–80. 

https://doi.org/https://doi.org/10.1002/bdrc.21129. 

104 La Vignera S, Condorelli RA, Balercia G, Vicari E, Calogero AE. Does alcohol have any 

effect on male reproductive function? A review of literature. Asian J Androl 2013;15:221–

5. https://doi.org/10.1038/aja.2012.118. 

105 Nizhnikov ME, Popoola DO, Cameron NM. Transgenerational Transmission of the Effect 

of Gestational Ethanol Exposure on Ethanol Use-Related Behavior. Alcohol Clin Exp Res 

2016;40:497–506. https://doi.org/10.1111/acer.12978. 

106 Hollander J, McNivens M, Pautassi RM, Nizhnikov ME. Offspring of male rats exposed to 

binge alcohol exhibit heightened ethanol intake at infancy and alterations in T-maze 

performance. Alcohol 2019;76:65–71. https://doi.org/10.1016/j.alcohol.2018.07.013. 

107 Lam MK-P, Homewood J, Taylor AJ, Mazurski EJ. Second generation effects of maternal 

alcohol consumption during pregnancy in rats. Prog Neuro-Psychopharmacology Biol 

Psychiatry 2000;24:619–31. https://doi.org/https://doi.org/10.1016/S0278-5846(00)00097-

X. 

108 Yohn NL, Bartolomei MS, Blendy JA. Multigenerational and transgenerational inheritance 

of drug exposure: The effects of alcohol, opiates, cocaine, marijuana, and nicotine. Prog 

Biophys Mol Biol 2015;118:21–33. https://doi.org/10.1016/j.pbiomolbio.2015.03.002. 

109 Davis JR, Li Y, Rankin CH. Effects of Developmental Exposure to Ethanol on 

Caenorhabditis elegans. Alcohol Clin Exp Res 2008;32:853–67. 

https://doi.org/https://doi.org/10.1111/j.1530-0277.2008.00639.x. 



 

264 

110 Alaimo JT, Davis SJ, Song SS, Burnette CR, Grotewiel M, Shelton KL, et al. Ethanol 

metabolism and osmolarity modify behavioral responses to ethanol in C. elegans. Alcohol 

Clin Exp Res 2012;36:1840–50. https://doi.org/10.1111/j.1530-0277.2012.01799.x. 

111 Cao J, Packer JS, Ramani V, Cusanovich DA, Huynh C, Daza R, et al. Comprehensive 

single-cell transcriptional profiling of a multicellular organism. Science (80- ) 2017. 

https://doi.org/10.1126/science.aam8940. 

112 Packer JS, Zhu Q, Huynh C, Sivaramakrishnan P, Preston E, Dueck H, et al. A lineage-

resolved molecular atlas of C. Elegans embryogenesis at single-cell resolution. Science 

(80- ) 2019. https://doi.org/10.1126/science.aax1971. 

113 Camacho J, Truong L, Kurt Z, Chen Y-W, Morselli M, Gutierrez G, et al. The Memory of 

Environmental Chemical Exposure in C. elegans Is Dependent on the Jumonji 

Demethylases jmjd-2 and jmjd-3/utx-1. Cell Rep 2018;23:2392–404. 

https://doi.org/10.1016/j.celrep.2018.04.078. 

114 Camacho J, Allard P. Histone Modifications: Epigenetic Mediators of Environmental 

Exposure Memory. Epigenetics Insights 2018;11:2516865718803641–

2516865718803641. https://doi.org/10.1177/2516865718803641. 

115 Kelly WG. Transgenerational epigenetics in the germline cycle of Caenorhabditis 

elegans. Epigenetics Chromatin 2014;7:6. https://doi.org/10.1186/1756-8935-7-6. 

116 Kishimoto S, Uno M, Okabe E, Nono M, Nishida E. Environmental stresses induce 

transgenerationally inheritable survival advantages via germline-to-soma communication 

in Caenorhabditis elegans. Nat Commun 2017;8:14031. 

https://doi.org/10.1038/ncomms14031. 

117 Young MD, Behjati S. SoupX removes ambient RNA contamination from droplet-based 

single-cell RNA sequencing data. Gigascience 2020;9:giaa151. 

https://doi.org/10.1093/gigascience/giaa151. 



 

265 

118 Alvarez M, Rahmani E, Jew B, Garske KM, Miao Z, Benhammou JN, et al. Enhancing 

droplet-based single-nucleus RNA-seq resolution using the semi-supervised machine 

learning classifier DIEM. Sci Rep 2020;10:11019. https://doi.org/10.1038/s41598-020-

67513-5. 

119 Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, et al. 

Comprehensive Integration of Single-Cell Data. Cell 2019. 

https://doi.org/10.1016/j.cell.2019.05.031. 

120 Waltman L, Van Eck NJ. A smart local moving algorithm for large-scale modularity-based 

community detection. Eur Phys J B 2013. https://doi.org/10.1140/epjb/e2013-40829-0. 

121 Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. Highly Parallel 

Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell 

2015;161:1202–14. https://doi.org/10.1016/j.cell.2015.05.002. 

122 Wilcoxon F. Individual Comparisons by Ranking Methods BT  - Breakthroughs in 

Statistics: Methodology and Distribution. In: Kotz S, Johnson NL, editors. New York, NY: 

Springer New York; 1992. p. 196–202. 

123 Maeda I, Kohara Y, Yamamoto M, Sugimoto A. Large-scale analysis of gene function in 

<em>Caenorhabditis elegans</em> by high-throughput RNAi. Curr Biol 2001;11:171–6. 

https://doi.org/10.1016/S0960-9822(01)00052-5. 

124 Angeles-Albores D, N. Lee RY, Chan J, Sternberg PW. Tissue enrichment analysis for C. 

elegans genomics. BMC Bioinformatics 2016;17:366. https://doi.org/10.1186/s12859-016-

1229-9. 

125 Qiu X, Hill A, Packer J, Lin D, Ma Y-A, Trapnell C. Single-cell mRNA quantification and 

differential analysis with Census. Nat Methods 2017;14:309–15. 

https://doi.org/10.1038/nmeth.4150. 

126 Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R package for comparing biological 



 

266 

themes among gene clusters. OMICS 2012;16:284–7. 

https://doi.org/10.1089/omi.2011.0118. 

127 Davis P, Zarowiecki M, Arnaboldi V, Becerra A, Cain S, Chan J, et al. WormBase in 

2022—data, processes, and tools for analyzing Caenorhabditis elegans. Genetics 

2022;220:iyac003. https://doi.org/10.1093/genetics/iyac003. 

128 Barton MK, Kimble J. fog-1, a regulatory gene required for specification of 

spermatogenesis in the germ line of Caenorhabditis elegans. Genetics 1990. 

129 Hao Y, Hao S, Andersen-Nissen E, Mauck WM, Zheng S, Butler A, et al. Integrated 

analysis of multimodal single-cell data. Cell 2021;184:3573-3587.e29. 

https://doi.org/https://doi.org/10.1016/j.cell.2021.04.048. 

130 Burd L, Blair J, Dropps K. Prenatal alcohol exposure, blood alcohol concentrations and 

alcohol elimination rates for the mother, fetus and newborn. J Perinatol 2012;32:652–9. 

https://doi.org/10.1038/jp.2012.57. 

131 Arneson D, Zhang G, Ying Z, Zhuang Y, Byun HR, Ahn IS, et al. Single cell molecular 

alterations reveal target cells and pathways of concussive brain injury. Nat Commun 

2018. https://doi.org/10.1038/s41467-018-06222-0. 

132 Liu W, Venugopal S, Majid S, Ahn IS, Diamante G, Hong J, et al. Single-cell RNA-seq 

analysis of the brainstem of mutant SOD1 mice reveals perturbed cell types and 

pathways of amyotrophic lateral sclerosis. Neurobiol Dis 2020. 

https://doi.org/10.1016/j.nbd.2020.104877. 

133 Perez MF, Lehner B. Vitellogenins - Yolk Gene Function and Regulation in 

Caenorhabditis elegans. Front Physiol 2019;10:1067. 

https://doi.org/10.3389/fphys.2019.01067. 

134 Selewa A, Dohn R, Eckart H, Lozano S, Xie B, Gauchat E, et al. Systematic Comparison 

of High-throughput Single-Cell and Single-Nucleus Transcriptomes during Cardiomyocyte 



 

267 

Differentiation. Sci Rep 2020. https://doi.org/10.1038/s41598-020-58327-6. 

135 Kaufman MH, Bain IM. Influence of ethanol on chromosome segregation during the first 

and second meiotic divisions in the mouse egg. J Exp Zool 1984. 

https://doi.org/10.1002/jez.1402300217. 

136 Hunt PA. Ethanol-induced aneuploidy in male germ cells of the mouse. Cytogenet 

Genome Res 1987. https://doi.org/10.1159/000132333. 

137 Kaufman MH. Ethanol-induced chromosomal abnormalities at conception. Nature 1983. 

https://doi.org/10.1038/302258a0. 

138 Oh KH, Sheoran S, Richmond JE, Kim H. Alcohol induces mitochondrial fragmentation 

and stress responses to maintain normal muscle function in Caenorhabditis elegans. 

FASEB J 2020;34:8204–16. https://doi.org/10.1096/fj.201903166R. 

139 Charmpilas N, Tavernarakis N. Mitochondrial maturation drives germline stem cell 

differentiation in Caenorhabditis elegans. Cell Death Differ 2020;27:601–17. 

https://doi.org/10.1038/s41418-019-0375-9. 

140 Voutev R, Killian DJ, Hyungsoo Ahn J, Hubbard EJA. Alterations in ribosome biogenesis 

cause specific defects in C. elegans hermaphrodite gonadogenesis. Dev Biol 

2006;298:45–58. https://doi.org/https://doi.org/10.1016/j.ydbio.2006.06.011. 

141 Mercer M, Jang S, Ni C, Buszczak M. The Dynamic Regulation of mRNA Translation and 

Ribosome Biogenesis During Germ Cell Development and Reproductive Aging   . Front 

Cell Dev Biol   2021. 

142 Branicky R, Desjardins D, Liu J-L, Hekimi S. Lipid transport and signaling in 

Caenorhabditis elegans. Dev Dyn 2010;239:1365–77. 

https://doi.org/https://doi.org/10.1002/dvdy.22234. 

143 Watts JL, Browse J. Dietary manipulation implicates lipid signaling in the regulation of 

germ cell maintenance in C. elegans. Dev Biol 2006;292:381–92. 



 

268 

https://doi.org/10.1016/j.ydbio.2006.01.013. 

144 Bacaj T, Tevlin M, Lu Y, Shaham S. Glia are essential for sensory organ function in C. 

elegans. Science (80- ) 2008. https://doi.org/10.1126/science.1163074. 

145 Killian DJ, Hubbard EJA. Caenorhabditis elegans germline patterning requires 

coordinated development of the somatic gonadal sheath and the germ line. Dev Biol 

2005;279:322–35. https://doi.org/https://doi.org/10.1016/j.ydbio.2004.12.021. 

146 Mendrick DL, Diehl AM, Topor LS, Dietert RR, Will Y, La Merrill MA, et al. Metabolic 

Syndrome and Associated Diseases: From the Bench to the Clinic. Toxicol Sci 

2017;162:36–42. https://doi.org/10.1093/toxsci/kfx233. 

147 Rochlani Y, Pothineni NV, Kovelamudi S, Mehta JL. Metabolic syndrome: 

pathophysiology, management, and modulation by natural compounds. Ther Adv 

Cardiovasc Dis 2017;11:215–25. https://doi.org/10.1177/1753944717711379. 

148 Lyssiotis CA, Cantley LC. F stands for fructose and fat. Nature 2013;502:181. 

149 Rodríguez-Correa E, González-Pérez I, Clavel-Pérez PI, Contreras-Vargas Y, Carvajal K. 

Biochemical and nutritional overview of diet-induced metabolic syndrome models in rats: 

what is the best choice? Nutr Diabetes 2020;10:24. https://doi.org/10.1038/s41387-020-

0127-4. 

150 Johnson RK, Lichtenstein AH, Anderson CAM, Carson JA, Després J-P, Hu FB, et al. 

Low-Calorie Sweetened Beverages and Cardiometabolic Health: A Science Advisory 

From  the American Heart Association. Circulation 2018;138:e126–40. 

https://doi.org/10.1161/CIR.0000000000000569. 

151 Malik VS, Popkin BM, Bray GA, Després J-P, Hu FB. Sugar-sweetened beverages, 

obesity, type 2 diabetes mellitus, and cardiovascular  disease risk. Circulation 

2010;121:1356–64. https://doi.org/10.1161/CIRCULATIONAHA.109.876185. 

152 Nakagawa T, Hu H, Zharikov S, Tuttle KR, Short RA, Glushakova O, et al. A causal role 



 

269 

for uric acid in fructose-induced metabolic syndrome. Am J Physiol Renal Physiol 

2006;290:F625-31. https://doi.org/10.1152/ajprenal.00140.2005. 

153 Yang Z-H, Miyahara H, Takeo J, Katayama M. Diet high in fat and sucrose induces rapid 

onset of obesity-related metabolic syndrome partly through rapid response of genes 

involved in lipogenesis, insulin signalling and inflammation in mice. Diabetol Metab Syndr 

2012;4:32. https://doi.org/10.1186/1758-5996-4-32. 

154 Burchfield JG, Kebede MA, Meoli CC, Stöckli J, Whitworth PT, Wright AL, et al. High 

dietary fat and sucrose results in an extensive and time-dependent  deterioration in health 

of multiple physiological systems in mice. J Biol Chem 2018;293:5731–45. 

https://doi.org/10.1074/jbc.RA117.000808. 

155 Patel C, Douard V, Yu S, Gao N, Ferraris RP. Transport, metabolism, and endosomal 

trafficking-dependent regulation of intestinal  fructose absorption. FASEB J  Off Publ Fed 

Am Soc  Exp Biol 2015;29:4046–58. https://doi.org/10.1096/fj.15-272195. 

156 Jang C, Hui S, Lu W, Cowan AJ, Morscher RJ, Lee G, et al. The Small Intestine Converts 

Dietary Fructose into Glucose and Organic Acids. Cell Metab 2018;27:351-361.e3. 

https://doi.org/10.1016/j.cmet.2017.12.016. 

157 Kim M-S, Krawczyk SA, Doridot L, Fowler AJ, Wang JX, Trauger SA, et al. ChREBP 

regulates fructose-induced glucose production independently of insulin signaling. J Clin 

Invest 2016;126:4372–86. https://doi.org/10.1172/JCI81993. 

158 Jais A, Brüning JC. Hypothalamic inflammation in obesity and metabolic disease. J Clin 

Invest 2017;127:24–32. https://doi.org/10.1172/JCI88878. 

159 Traber MG, Buettner GR, Bruno RS. The relationship between vitamin C status, the gut-

liver axis, and metabolic  syndrome. Redox Biol 2019;21:101091. 

https://doi.org/10.1016/j.redox.2018.101091. 

160 Kahn CR, Wang G, Lee KY. Altered adipose tissue and adipocyte function in the 



 

270 

pathogenesis of metabolic  syndrome. J Clin Invest 2019;129:3990–4000. 

https://doi.org/10.1172/JCI129187. 

161 Dabke K, Hendrick G, Devkota S. The gut microbiome and metabolic syndrome. J Clin 

Invest 2019;129:4050–7. https://doi.org/10.1172/JCI129194. 

162 Samuel VT, Shulman GI. Mechanisms for insulin resistance: common threads and 

missing links. Cell 2012;148:852–71. https://doi.org/10.1016/j.cell.2012.02.017. 

163 Wakil SJ, Abu-Elheiga LA. Fatty acid metabolism: target for metabolic syndrome. J Lipid 

Res 2009;50:S138–43. https://doi.org/https://doi.org/10.1194/jlr.R800079-JLR200. 

164 Taskinen M-R, Packard CJ, Borén J. Dietary Fructose and the Metabolic Syndrome. 

Nutrients 2019;11:1987. https://doi.org/10.3390/nu11091987. 

165 Hannou SA, Haslam DE, McKeown NM, Herman MA. Fructose metabolism and 

metabolic disease. J Clin Invest 2018;128:545–55. https://doi.org/10.1172/JCI96702. 

166 Meng Q, Ying Z, Noble E, Zhao Y, Agrawal R, Mikhail A, et al. Systems Nutrigenomics 

Reveals Brain Gene Networks Linking Metabolic and Brain Disorders. EBioMedicine 

2016;7:157–66. https://doi.org/10.1016/j.ebiom.2016.04.008. 

167 Majka SM, Miller HL, Helm KM, Acosta AS, Childs CR, Kong R, et al. Chapter Fifteen - 

Analysis and Isolation of Adipocytes by Flow Cytometry. In: Macdougald OABT-M in E, 

editor. Methods Adipose Tissue Biol. Part A, vol. 537. Academic Press; 2014. p. 281–96. 

168 Kremski VC, Varani L, DeSaive C, Miller P, Nicolini C. Crypt cell isolation in the small 

intestine of the mouse. J Histochem Cytochem 1977;25:554–9. 

https://doi.org/10.1177/25.7.894003. 

169 Mederacke I, Dapito DH, Affò S, Uchinami H, Schwabe RF. High-yield and high-purity 

isolation of hepatic stellate cells from normal and fibrotic mouse livers. Nat Protoc 

2015;10:305. 

170 Petukhov V, Guo J, Baryawno N, Severe N, Scadden DT, Samsonova MG, et al. dropEst: 



 

271 

pipeline for accurate estimation of molecular counts in droplet-based single-cell RNA-seq 

experiments. Genome Biol 2018;19:78. https://doi.org/10.1186/s13059-018-1449-6. 

171 Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast 

universal RNA-seq aligner. Bioinformatics 2013;29:15–21. 

https://doi.org/10.1093/bioinformatics/bts635. 

172 Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell 

transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 

2018;36:411. 

173 Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful 

Approach to Multiple Testing. J R Stat Soc Ser B 1995. https://doi.org/10.1111/j.2517-

6161.1995.tb02031.x. 

174 Michael Dewey. metap: meta-analysis of significance values 2020. 

175 Arneson D, Bhattacharya A, Shu L, Mäkinen V-P, Yang X. Mergeomics: a web server for 

identifying pathological pathways, networks, and key regulators via multidimensional data 

integration. BMC Genomics 2016;17:722. https://doi.org/10.1186/s12864-016-3057-8. 

176 Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation 

PLINK: rising to the challenge of larger and richer datasets. Gigascience 2015;4:7. 

https://doi.org/10.1186/s13742-015-0047-8. 

177 Browaeys R, Saelens W, Saeys Y. NicheNet: modeling intercellular communication by 

linking ligands to target genes. Nat Methods 2020;17:159–62. 

https://doi.org/10.1038/s41592-019-0667-5. 

178 UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res 2021;49:D480–

9. https://doi.org/10.1093/nar/gkaa1100. 

179 Uhlen M, Zhang C, Lee S, Sjöstedt E, Fagerberg L, Bidkhori G, et al. A pathology atlas of 

the human cancer transcriptome. Science (80- ) 2017;357:eaan2507. 



 

272 

https://doi.org/10.1126/science.aan2507. 

180 Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a 

software environment for integrated models of biomolecular interaction networks. 

Genome Res 2003;13:2498–504. https://doi.org/10.1101/gr.1239303. 

181 Helsley RN, Moreau F, Gupta MK, Radulescu A, DeBosch B, Softic S. Tissue-Specific 

Fructose Metabolism in Obesity and Diabetes. Curr Diab Rep 2020;20:64. 

https://doi.org/10.1007/s11892-020-01342-8. 

182 Glendinning JI, Breinager L, Kyrillou E, Lacuna K, Rocha R, Sclafani A. Differential 

effects of sucrose and fructose on dietary obesity in four mouse strains. Physiol Behav 

2010;101:331–43. https://doi.org/10.1016/j.physbeh.2010.06.003. 

183 Montgomery MK, Fiveash CE, Braude JP, Osborne B, Brown SHJ, Mitchell TW, et al. 

Disparate metabolic response to fructose feeding between different mouse strains. Sci 

Rep 2015;5:18474. https://doi.org/10.1038/srep18474. 

184 Kim S-J, Xiao J, Wan J, Cohen P, Yen K. Mitochondrially derived peptides as novel 

regulators of metabolism. J Physiol 2017;595:6613–21. 

https://doi.org/https://doi.org/10.1113/JP274472. 

185 Malakar P, Stein I, Saragovi A, Winkler R, Stern-Ginossar N, Berger M, et al. Long 

Noncoding RNA MALAT1 Regulates Cancer Glucose Metabolism by Enhancing mTOR-

Mediated Translation of TCF7L2. Cancer Res 2019;79:2480 LP – 2493. 

https://doi.org/10.1158/0008-5472.CAN-18-1432. 

186 Renner SW, Walker LM, Forsberg LJ, Sexton JZ, Brenman JE. Carbonic anhydrase III 

(Car3) is not required for fatty acid synthesis and does not protect against high-fat diet 

induced obesity in mice. PLoS One 2017;12:e0176502–e0176502. 

https://doi.org/10.1371/journal.pone.0176502. 

187 Lu K, Liu G, Yang L, Liu F, Gao L, Shi J, et al. Sustainable inflammation transforms 



 

273 

hepatic cells by causing oxidative stress injury and potential epithelial-mesenchymal 

transition. Int J Oncol 2016;49:971–80. https://doi.org/10.3892/ijo.2016.3580. 

188 Brown J, Sagante A, Mayer T, Wright A, Bugescu R, Fuller PM, et al. Lateral 

Hypothalamic Area Neurotensin Neurons Are Required for Control of Orexin Neurons and 

Energy Balance. Endocrinology 2018;159:3158–76. https://doi.org/10.1210/en.2018-

00311. 

189 Timper K, Brüning JC. Hypothalamic circuits regulating appetite and energy homeostasis: 

pathways to obesity. Dis Model Mech 2017;10:679–89. 

https://doi.org/10.1242/dmm.026609. 

190 Coll AP, Farooqi IS, O’Rahilly S. The hormonal control of food intake. Cell 2007;129:251–

62. https://doi.org/10.1016/j.cell.2007.04.001. 

191 Feng D, Tang Y, Kwon H, Zong H, Hawkins M, Kitsis RN, et al. High-fat diet-induced 

adipocyte cell death occurs through a cyclophilin D intrinsic signaling pathway 

independent of adipose tissue inflammation. Diabetes 2011;60:2134–43. 

https://doi.org/10.2337/db10-1411. 

192 Ruiz-Ojeda FJ, Méndez-Gutiérrez A, Aguilera CM, Plaza-Díaz J. Extracellular Matrix 

Remodeling of Adipose Tissue in Obesity and Metabolic Diseases. Int J Mol Sci 

2019;20:4888. https://doi.org/10.3390/ijms20194888. 

193 Jang C, Wada S, Yang S, Gosis B, Zeng X, Zhang Z, et al. The small intestine shields the 

liver from fructose-induced steatosis. Nat Metab 2020;2:586–93. 

https://doi.org/10.1038/s42255-020-0222-9. 

194 Tse EK, Salehi A, Clemenzi MN, Belsham DD. Role of the saturated fatty acid palmitate 

in the interconnected hypothalamic control of energy homeostasis and biological rhythms. 

Am J Physiol Metab 2018;315:E133–40. https://doi.org/10.1152/ajpendo.00433.2017. 

195 Mihalik SJ, Steinberg SJ, Pei Z, Park J, Kim DG, Heinzer AK, et al. Participation of two 



 

274 

members of the very long-chain acyl-CoA synthetase family in  bile acid synthesis and 

recycling. J Biol Chem 2002;277:24771–9. https://doi.org/10.1074/jbc.M203295200. 

196 Priest C, Tontonoz P. Inter-organ cross-talk in metabolic syndrome. Nat Metab 

2019;1:1177–88. https://doi.org/10.1038/s42255-019-0145-5. 

197 Oishi Y, Manabe I. Organ System Crosstalk in Cardiometabolic Disease in the Age of 

Multimorbidity   . Front Cardiovasc Med   2020:64. 

198 Srikanthan K, Feyh A, Visweshwar H, Shapiro JI, Sodhi K. Systematic Review of 

Metabolic Syndrome Biomarkers: A Panel for Early Detection, Management, and Risk 

Stratification in the West Virginian Population. Int J Med Sci 2016;13:25–38. 

https://doi.org/10.7150/ijms.13800. 

199 Poritsanos NJ, Mizuno TM, Lautatzis M-E, Vrontakis M. Chronic increase of circulating 

galanin levels induces obesity and marked alterations in lipid metabolism similar to 

metabolic syndrome. Int J Obes 2009;33:1381–9. https://doi.org/10.1038/ijo.2009.187. 

200 Nakamura K, Velho G, Bouby N. Vasopressin and metabolic disorders: translation from 

experimental models to clinical use. J Intern Med 2017;282:298–309. 

https://doi.org/https://doi.org/10.1111/joim.12649. 

201 Melander O. Vasopressin, from Regulator to Disease Predictor for Diabetes and 

Cardiometabolic Risk. Ann Nutr Metab 2016;68(suppl 2:24–8. 

https://doi.org/10.1159/000446201. 

202 den Hartigh LJ, Wang S, Goodspeed L, Ding Y, Averill M, Subramanian S, et al. Deletion 

of serum amyloid A3 improves high fat high sucrose diet-induced adipose tissue 

inflammation and hyperlipidemia in female mice. PLoS One 2014;9:e108564–e108564. 

https://doi.org/10.1371/journal.pone.0108564. 

203 Collins KH, Paul HA, Hart DA, Reimer RA, Smith IC, Rios JL, et al. A High-Fat High-

Sucrose Diet Rapidly Alters Muscle Integrity, Inflammation and Gut Microbiota in Male 



 

275 

Rats. Sci Rep 2016;6:37278. https://doi.org/10.1038/srep37278. 

204 Ritchie SC, Lambert SA, Arnold M, Teo SM, Lim S, Scepanovic P, et al. Integrative 

analysis of the plasma proteome and polygenic risk of cardiometabolic diseases. Nat 

Metab 2021. https://doi.org/10.1038/s42255-021-00478-5. 

205 Andres-Hernando A, Jensen TJ, Kuwabara M, Orlicky DJ, Cicerchi C, Li N, et al. 

Vasopressin mediates fructose-induced metabolic syndrome by activating the V1b 

receptor. JCI Insight 2021;6:. https://doi.org/10.1172/jci.insight.140848. 

206 Pan Y, Kong L-D. High fructose diet-induced metabolic syndrome: Pathophysiological 

mechanism and treatment by traditional Chinese medicine. Pharmacol Res 

2018;130:438–50. https://doi.org/https://doi.org/10.1016/j.phrs.2018.02.020. 

207 Bursać BN, Vasiljević AD, Nestorović NM, Veličković NA, Vojnović Milutinović DD, Matić 

GM, et al. High-fructose diet leads to visceral adiposity and hypothalamic leptin 

resistance in  male rats--do glucocorticoids play a role? J Nutr Biochem 2014;25:446–55. 

https://doi.org/10.1016/j.jnutbio.2013.12.005. 

208 Rask-Madsen C, Kahn CR. Tissue-specific insulin signaling, metabolic syndrome, and 

cardiovascular disease. Arterioscler Thromb Vasc Biol 2012;32:2052–9. 

https://doi.org/10.1161/ATVBAHA.111.241919. 

209 Sárvári AK, Van Hauwaert EL, Markussen LK, Gammelmark E, Marcher A-B, Ebbesen 

MF, et al. Plasticity of Epididymal Adipose Tissue in Response to Diet-Induced Obesity at 

Single-Nucleus Resolution. Cell Metab 2021;33:437-453.e5. 

https://doi.org/https://doi.org/10.1016/j.cmet.2020.12.004. 

210 Rajbhandari P, Arneson D, Hart SK, Ahn IS, Diamante G, Santos LC, et al. Single cell 

analysis reveals immune cell–adipocyte crosstalk regulating the transcription of 

thermogenic adipocytes. Elife 2019;8:e49501. https://doi.org/10.7554/eLife.49501. 

211 Zhang G, Byun HR, Ying Z, Blencowe M, Zhao Y, Hong J, et al. Differential metabolic 



 

276 

and multi-tissue transcriptomic responses to fructose  consumption among genetically 

diverse mice. Biochim Biophys Acta Mol Basis Dis 2020;1866:165569. 

https://doi.org/10.1016/j.bbadis.2019.165569. 

212 Surwit RS, Kuhn CM, Cochrane C, McCubbin JA, Feinglos MN. Diet-induced type II 

diabetes in C57BL/6J mice. Diabetes 1988;37:1163–7. 

https://doi.org/10.2337/diab.37.9.1163. 

213 Surwit RS, Feinglos MN, Rodin J, Sutherland A, Petro AE, Opara EC, et al. Differential 

effects of fat and sucrose on the development of obesity and diabetes  in C57BL/6J and 

A/J mice. Metabolism 1995;44:645–51. https://doi.org/10.1016/0026-0495(95)90123-x. 

214 Black BL, Croom J, Eisen EJ, Petro AE, Edwards CL, Surwit RS. Differential effects of fat 

and sucrose on body composition in A/J and C57BL/6 mice. Metabolism 1998;47:1354–9. 

https://doi.org/10.1016/s0026-0495(98)90304-3. 

215 Li H, Zhao Q, Chang L, Wei C, Bei H, Yin Y, et al. LncRNA MALAT1 modulates ox-LDL 

induced EndMT through the Wnt/β-catenin signaling pathway. Lipids Health Dis 

2019;18:62. https://doi.org/10.1186/s12944-019-1006-7. 

216 Puthanveetil P, Chen S, Feng B, Gautam A, Chakrabarti S. Long non-coding RNA 

MALAT1 regulates hyperglycaemia induced inflammatory process in the endothelial cells. 

J Cell Mol Med 2015;19:1418–25. https://doi.org/https://doi.org/10.1111/jcmm.12576. 

217 Yan C, Chen J, Chen N. Long noncoding RNA MALAT1 promotes hepatic steatosis and 

insulin resistance by increasing nuclear SREBP-1c protein stability. Sci Rep 

2016;6:22640. https://doi.org/10.1038/srep22640. 

218 Taveau C, Chollet C, Waeckel L, Desposito D, Bichet DG, Arthus M-F, et al. Vasopressin 

and hydration play a major role in the development of glucose intolerance and hepatic 

steatosis in obese rats. Diabetologia 2015;58:1081–90. https://doi.org/10.1007/s00125-

015-3496-9. 



 

277 

219 Shen L, Tso P, Woods SC, Clegg DJ, Barber KL, Carey K, et al. Brain Apolipoprotein E: 

an Important Regulator of Food Intake in Rats. Diabetes 2008;57:2092 LP – 2098. 

https://doi.org/10.2337/db08-0291. 

220 Liu Z, Tang Q, Wen J, Tang Y, Huang D, Huang Y, et al. Elevated serum complement 

factors 3 and 4 are strong inflammatory markers of the metabolic syndrome development: 

a longitudinal cohort study. Sci Rep 2016;6:18713. https://doi.org/10.1038/srep18713. 

221 Marfà S, Jimenez W. Fibrinogen α-Chain as a Serum Marker of Liver Disease BT  - 

Biomarkers in Liver Disease. In: Preedy VR, editor. Dordrecht: Springer Netherlands; 

2016. p. 1–20. 

222 Imperatore G, Riccardi G, Iovine C, Rivellese AA, Vaccaro O. Plasma Fibrinogen: A New 

Factor of the Metabolic Syndrome: A population-based study. Diabetes Care 1998;21:649 

LP – 654. https://doi.org/10.2337/diacare.21.4.649. 

223 Leibowitz SF, Akabayashi A, Wang J. Obesity on a high-fat diet: role of hypothalamic 

galanin in neurons of the anterior paraventricular nucleus projecting to the median 

eminence. J Neurosci 1998;18:2709–19. https://doi.org/10.1523/JNEUROSCI.18-07-

02709.1998. 

224 Onat A, Özhan H, Erbilen E, Albayrak S, Küçükdurmaz Z, Can G, et al. Independent 

prediction of metabolic syndrome by plasma fibrinogen in men, and predictors of elevated 

levels. Int J Cardiol 2009;135:211–7. https://doi.org/10.1016/j.ijcard.2008.03.054. 

225 Lang R, Gundlach AL, Holmes FE, Hobson SA, Wynick D, Hökfelt T, et al. Physiology, 

Signaling, and Pharmacology of Galanin Peptides and Receptors: Three Decades of 

Emerging Diversity. Pharmacol Rev 2015;67:118 LP – 175. 

https://doi.org/10.1124/pr.112.006536. 

226 Alotibi MN, Alnoury AM, Alhozali AM. Serum nesfatin-1 and galanin concentrations in the 

adult with metabolic syndrome. Relationships to insulin resistance and obesity. Saudi 



 

278 

Med J 2019;40:19–25. https://doi.org/10.15537/smj.2019.1.22825. 

227 Le Foll C. Hypothalamic Fatty Acids and Ketone Bodies Sensing and Role of FAT/CD36 

in the Regulation of Food Intake   . Front Physiol   2019:1036. 

228 Herman MA, Samuel VT. The Sweet Path to Metabolic Demise: Fructose and Lipid 

Synthesis. Trends Endocrinol Metab 2016;27:719–30. 

https://doi.org/10.1016/j.tem.2016.06.005. 

229 Jiang L, Chen T, Sun S, Wang R, Deng J, Lyu L, et al. Nonbone Marrow CD34+ Cells 

Are Crucial for Endothelial Repair of Injured Artery. Circ Res 2021;129:e146–65. 

https://doi.org/10.1161/CIRCRESAHA.121.319494. 

230 Scalzo RL, Foright RM, Hull SE, Knaub LA, Johnson-Murguia S, Kinanee F, et al. Breast 

Cancer Endocrine Therapy Promotes Weight Gain With Distinct Adipose Tissue Effects in 

Lean and Obese Female Mice. Endocrinology 2021;162:. 

https://doi.org/10.1210/endocr/bqab174. 

231 Stancill JS, Kasmani MY, Khatun A, Cui W, Corbett JA. Single-cell RNA sequencing of 

mouse islets exposed to proinflammatory cytokines. Life Sci Alliance 

2021;4:e202000949. https://doi.org/10.26508/lsa.202000949. 

232 Armingol E, Officer A, Harismendy O, Lewis NE. Deciphering cell–cell interactions and 

communication from gene expression. Nat Rev Genet 2021;22:71–88. 

https://doi.org/10.1038/s41576-020-00292-x. 

233 Gosak M, Markovič R, Dolenšek J, Slak Rupnik M, Marhl M, Stožer A, et al. Network 

science of biological systems at different scales: A review. Phys Life Rev 2018;24:118–

35. https://doi.org/https://doi.org/10.1016/j.plrev.2017.11.003. 

234 Yu D, Kim M, Xiao G, Hwang TH. Review of biological network data and its applications. 

Genomics Inform 2013;11:200–10. https://doi.org/10.5808/GI.2013.11.4.200. 

235 Cheng F, Kovács IA, Barabási A-L. Network-based prediction of drug combinations. Nat 



 

279 

Commun 2019;10:1197. https://doi.org/10.1038/s41467-019-09186-x. 

236 Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network 

analysis. BMC Bioinformatics 2008;9:559. https://doi.org/10.1186/1471-2105-9-559. 

237 Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P. Inferring Regulatory Networks from 

Expression Data Using Tree-Based Methods. PLoS One 2010;5:e12776. 

238 Rowan-Carroll A, Reardon A, Leingartner K, Gagné R, Williams A, Meier MJ, et al. High-

Throughput Transcriptomic Analysis of Human Primary Hepatocyte Spheroids Exposed 

to Per- and Polyfluoroalkyl Substances as a Platform for Relative Potency 

Characterization. Toxicol Sci 2021;181:199–214. https://doi.org/10.1093/toxsci/kfab039. 

239 Newman AM, Steen CB, Liu CL, Gentles AJ, Chaudhuri AA, Scherer F, et al. Determining 

cell type abundance and expression from bulk tissues with digital cytometry. Nat 

Biotechnol 2019;37:773–82. https://doi.org/10.1038/s41587-019-0114-2. 

240 Aibar S, González-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, et 

al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods 

2017;14:1083–6. https://doi.org/10.1038/nmeth.4463. 

 




