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PORTFOLIO OPTIMIZATION WITH MANY ASSETS:

THE IMPORTANCE OF SHORT-SELLING

ABSTRACT

We investigate the properties of mean-variance efficient portfolios when the number

of assets is large. We show analytically and empirically that the proportion of assets

held short converges to 50% as the number of assets grows, and the investment

proportions are extreme, with several assets held in large positions. The cost of the

no-shortselling constraint increases dramatically with the number of assets. For about

100 assets the Sharpe ratio can be more than doubled with the removal of this

constraint. These results have profound implications for the theoretical validity of the

CAPM, and for policy regarding short-selling limitations.
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I. Introduction

The Capital Asset Pricing Model (CAPM), which was developed by Sharpe

[1964], Lintner [1965a], and Mossin [1966], is one of the cornerstones of modern

finance. The CAPM is founded on Markowitz’s mean-variance framework and on the

assumptions of homogeneous expectations and no limitations on short-selling. Based

on these (and other) assumptions, the CAPM derives a simple linear relation between

risk and return, and predicts that the optimal mean-variance portfolio should coincide

with the market portfolio.

As the CAPM allows for short-selling, it is possible, in principle, that the

optimal mean-variance portfolio involves short positions in some stocks. However,

this is in contradiction with the model’s prediction that the optimal portfolio should

coincide with the market portfolio. Thus, for the CAPM to be self-consistent, one

must ensure that the optimal portfolio does not involve short positions. Indeed, several

researchers attack this important problem by characterizing conditions that guarantee

efficient portfolios with no short positions. Roll [1977] provides conditions which

ensure that all positions in the global minimum-variance portfolio are positive (see

also Rudd [1977]). Roll and Ross [1977] later show that while these conditions are

sufficient, they are not necessary. Although Roll and Ross conclude that “…the

prospect appears dim for general and useful qualitative results” (p. 265), by

employing duality theory Green [1986] succeeds in finding general conditions

ensuring the existence of a mean-variance efficient portfolio with no short positions.

While Green’s conditions are intuitively appealing, empirical  studies find that

in typical mean-variance efficient portfolios many assets are held short. For example,

Green and Hollifield [1992] compute the global minimum-variance portfolio for
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different sets of 10 assets with empirically estimated parameters. They find that of the

90 sets of assets examined, 89 of the global minimum-variance portfolios involve

short positions. Levy [1983] constructs the efficient frontier for a set of 15 stocks. He

finds that throughout the efficient frontier 7-8 stocks, which constitute about 50% of

the assets in the portfolio, are held short.1 While several researchers suggest that these

results may be due to measurement errors in the estimation of the assets’ means and

the covariance matrix (see, for example, Frost and Savarino [1986], [1988])2,  Levy

shows that his results are robust even when he takes possible estimation errors into

account, and when various estimation methods are employed. Are Levy’s results

coincidental, or are they general? If they are general, what is the reason for this result?

Obviously, if it is a general result that a large proportion of the assets are held short in

the mean-variance optimal portfolio, this constitutes a severe blow to the CAPM.

If the optimal mean-variance portfolio involves extensive short positions, this

not only questions the self-consistency of the CAPM, but may also have very

important practical policy implications. As many institutional investors are not

allowed to hold short positions (either through explicit regulations or by the implicit

threat of lawsuits), they are restricted to holding sub-optimal portfolios. How sub-

optimal are these portfolios? In other words, what is the cost of the no-short

restriction? (in terms of the Sharpe ratio, for example).

In this paper we empirically and theoretically investigate the properties of

mean-variance efficient portfolios in markets with a large number of assets.  Our main

                                                          
1 This is also consistent with the results of Pulley [1981], Kallberg and Ziemba [1983], and Kroll,
Levy, and Markowitz [1984]. Jagannathan and Ma [2001] report similar results for the global minimum
variance portfolio.

2 See also Ledoit [1996], [1999] and Ledoit and Santa Clara [1998] for a discussion of covariance
matrix estimation.
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 results are:

(1) When the number of assets is large, the proportion of assets held short in mean-

variance efficient portfolios typically converges to 50%.

(2)  The investment proportions are extreme: a small number of assets are held in

large positions (long or short). (This is consistent with the findings of Green and

Hollifield [1992]).

(3)  The investment proportion in each stock is not directly related to any of the

stock’s intrinsic properties such as its mean, variance, or its average correlation

(or covariance) with the other stocks. Rather, it depends on the exact composition

of the market.

(4)  The cost of the no-shortselling constraint is extremely high. For portfolios with

many assets, the Sharpe ratio can be more than doubled by relaxing this

constraint.

Result (1) implies that the optimal mean-variance portfolio can not coincide with

the market portfolio, and therefore the CAPM can not be self-consistent. This problem

is different in essence than previous criticisms of the CAPM, such as its testability

(Roll [1977])3, or the validity of its underlying assumptions (in particular the

homogeneous expectation assumption, see Levy [1978], Merton [1987], and

Markowitz [1991]). Result (1) implies that even if the model’s assumptions do hold

perfectly, in large markets the CAPM can not possibly hold because of this theoretical

                                                          
3 See also the discussion in Roll and Ross [1994] and Kandel and Stambaugh [1995].



4

internal inconsistency4. While there is an ongoing debate  as  to the empirical  validity

of the CAPM (see, for example, Lintner [1965c], Black, Jensen, and Scholes [1972],

Miller and Scholes [1972], Levy [1978], Amihud, Christensen and Mendelson [1992],

Fama and French [1992], and  Jagannathan and Wang [1993]), according to result (1)

the CAPM can not hold even in theory. Result (2) implies that the optimal mean-

variance portfolio is very different than  portfolios constructed by “naive

diversification” strategies, such as the 1/n heuristic described by Benartzi and Thaler

[2001]. Thus, naive diversification may be very sub-optimal; the theory of portfolio

optimization is therefore of great practical importance. Result (3) implies that there is

no straightforward way to characterize a stock as “good” or “bad” in the context of

large  portfolios. Even if a stock has a high expected return, a low variance, and a low

average correlation with all other stocks, when the number of assets is large, there is

no guarantee whatsoever that this stock will be held long in the optimal portfolio.

Result (4) implies that the restriction on short-selling is extremely costly. This result

has very important implications for policy-makers setting the regulations concerning

short-selling.

The structure of the paper is as follows: The next section describes empirical

results about mean-variance efficient portfolios. We find that approximately half of

the assets are held short, and that investment proportions are extreme. Moreover, it is

difficult to explain the  proportion of a  stock in the  optimal  portfolio in  terms of any

                                                          
4 Of course, to avoid this problem one can find the efficient frontier and the optimal portfolio under the
restriction of no shortselling. However, in this case the problem becomes analytically complicated and
one needs to employ the critical-line algorithm developed by Markowitz [1956], [1987] (see also Elton,
Gruber, and Padberg [1976], [1978], Alexander [1993], and Kwan [1997]). More importantly, when
short-selling is not allowed the CAPM’s linear risk-return relationship breaks down (see Markowitz
[1990], Tobin [1990], and Sharpe [1991]). Our results are derived for general sets of parameters, thus,
one could argue that the equilibrium  parameters are endogenously determined by prices such that the
optimal portfolio weights are all positive. In section V  we show that this approach can not ensure
positive portfolio weights, and therefore does not solve the CAPM’s internal inconsistency problem.
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simple characteristic of the stock. The cost of the no-short-sell constraint is analyzed

in terms of the Sharpe ratio. Section III provides an intuition and a mathematical

explanation for the results. Section IV discusses the robustness of the results to

estimation errors. Section V concludes and discusses the implications of the results to

the theoretical validity of the CAPM, and to policy-making regarding limitations  on

short-selling.

II. Empirical Properties of Mean-Variance Efficient Portfolios

In this section we describe the main properties of empirical mean-variance

efficient portfolios. We conduct this analysis  by estimating the assets’ parameters

from the Center for Research in Security Prices (CRSP) monthly returns file, from the

period January 1979 to December 1999. We randomly selected firms from the set of

all CRSP firms, and then retained 200 of those firms selected with complete records

over the entire period.5 In our analysis we take the monthly risk-free rate as 0.32%

(for an annual rate of 3.9%, see Ibbotson [2000]). However, the results reported below

do not depend on the specific value of the risk-free rate. In this section we employ the

sample estimates and do not consider sampling errors or shrinkage methods. These

issues are discussed in section IV.

Result (1): Percentage of Assets Held Short

Figure 1 shows the percentage of stocks held short in the optimal portfolio as a

function of the number of stocks in the portfolio, N. For each N we randomly draw a

                                                          
5 This is similar to the procedure employed by Green and Hollifield [1992]. However, as Green and
Hollifield construct portfolios of up to 50 stocks, they require only a five year period of complete
monthly records (in order for covariance matrix estimated from historical data to be non-singular, the
number of time periods over which returns are observed must exceed the number of assets). We take  a
twenty-year period because we construct portfolios of up to 200 stocks. While this introduces a
survivorship bias,  we do not believe that this bias plays any significant role in our empirical analysis,
and we obtain similar results in simulations where the expected returns and covariances are drawn
randomly from some distributions, as described in the next section,  rather than estimated empirically.
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sub-set of N stocks out of  our set of 200 stocks,  we calculate the mean-variance

optimal portfolio for this sub-set, and we record the number of assets held short in this

portfolio6. We repeat this 10 times for each N (each time with a different sub-set of N

stocks). Figure 1 reports the average proportion of stocks held short for each value of

N. As the figure shows, the percentage of stocks held short in the optimal portfolios

approaches 50% as the number of assets increases. This result is consistent with Levy

[1983],  who  finds that in  his sample of stocks only 1 stock on average is held short

when the portfolio is constructed from 5 stocks, but when the portfolio is constructed

from 15 stocks 7-8 stocks are held short.

(Insert Figure 1 About Here)

Result (2): Extreme Investment Proportions

While result (1) shows that about 50% of the stocks are optimally held short,

we also find that some of these positions are rather extreme. We calculate the optimal

mean-variance portfolio for the set of all of the 200 stocks and construct the

distribution of portfolio weights. Figure 2 reports this distribution. The heavy line is

the empirical distribution7. The light line is the best normal fit. As Figure 2

demonstrates, the normal distribution is a very good approximation for the

                                                          
6 Different assumptions regarding the terms of short selling are made by different models. The original
CAPM, as well as Black [1972] and Merton [1972] assume that the short seller does not have to put up
any initial margin and can use the short proceeds. Lintner [1965b] suggests that an amount of money
equal to the short proceeds is put up as margin, with the short seller receiving the riskfree interest rate
on both the short proceeds and the margin. He shows that when borrowing is allowed this framework is
identical to having no margin requirements in terms of portfolio optimization. Dyl [1975] assumes that
the short seller puts up initial margin that is less than the short proceeds, but receives no interest on the
margin or on the short proceeds. Here we adopt the framework  of the original CAPM, Lintner, Black,
and Merton, for the sake of simplicity. See Markowitz [1987], Price [1989] and Weiss [1991] for a
description of shortselling procedures in practice, and Alexander [1993] for an excellent  review of
alternative modeling assumptions and a unifying modeling framework for shortselling.

7 The empirical distribution is obtained by employing a non-parametric density estimate with a
Gaussian kernel and the "normal reference rule," (see Scott 1992, pg. 131).
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distribution of optimal portfolio weights. This distribution implies that while most

stocks are held in small proportions, a few stocks are held in very large positions

(both long and short). This result is consistent with the findings of Green and

Hollifield who analyze the portfolio weights in empirical minimum-variance

portfolios. For portfolios of 50 assets they report an average absolute value of

portfolio weights of up to 24%(!) (while “naive” diversification leads to weights of

only 2%).  The finding of extreme portfolio weights is in sharp contrast to notions of

“naive” diversification.

(Insert Figure 2 About Here)

Result (3): Portfolio Weight and Stock Characteristics

What determines which stocks are held long and which are shorted in the

optimal portfolio? In other words, what are the characteristics of a “good” stock,

which one would like to hold long in the portfolio? While it is well-known that when

stocks are correlated the optimal weight of each stock is affected by the parameters of

all the other stocks (for example, see Merton [1972], Levy [1973], Roll [1977], and

Stevens [1998]), it would seem intuitive that high mean return, low variance, and low

correlations with the other stocks are desirable characteristics, and that stocks with

these characteristics will tend to be held long. While this intuition may be helpful for

small portfolios, when considering portfolios of many assets this intuition is

misleading. When the number of assets in the portfolio is large, the very large number

of cross-interactions are dominant, and there is no simple way to characterize “good”

stocks, or to predict which stocks will have positive weights. Figure 3a shows the

relationship between stocks’ expected returns and their portfolio weights, in the mean-

variance optimal portfolio of the 200 stocks. There is no clear relationship between
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expected return and portfolio weight. Similarly, Figure 3b shows that low standard

deviation does not imply positive portfolio weight. It is interesting to note, though,

that small standard deviation generally implies more extreme positions in the stock

(positive or negative). Finally, as Figure 3c shows, even average correlation with the

other stocks is not related to the optimal portfolio weight (nor is the average

covariance). While the figures show that the optimal investment proportion does not

seem related to expected return, standard deviation, or average correlation when each

of these factors is considered separately, one may suspect that a combination of these

three factors may better explain the portfolio weight. However, multivariate

regression of portfolio weight on these three variables reveals an 2R of only 0.042

(adjusted 2R  of 0.027).

(Insert Figure 3 About Here)

Result (4): The Cost of the No-Shortselling Constraint

While the optimal mean-variance portfolio in a market with many assets involves

short positions in about 50% of the assets, one may argue that this result is not

necessarily significant in an economic sense, because it may be possible that there is a

portfolio with no short positions which is only slightly sub-optimal. In order to

address this issue of the economic cost of the short-selling restriction we calculate the

Sharpe ratio of the mean-variance optimal portfolio (with shortselling), and compare

it with the Sharpe ratio of the optimal portfolio constructed from the same assets, but

under the restriction of no shortselling. We make the Sharpe ratio comparison for

various portfolio sizes, N, where N is the number of assets in the portfolio. For each N

we randomly select N stocks out of the 200 stocks, and we calculate the optimal
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portfolios with and without shortselling, and their Sharpe ratios. Figure 4 reports the

results.

(Insert Figure 4 About Here)

For portfolios with relatively few stocks, the difference in the Sharpe ratios is

not very big, consistent with Sharpe’s observation regarding the no-shortselling

constraint that “… magnitudes of the departures from the implications of the original

CAPM might be small” (see Sharpe [1991], p. 505). However, as the number of assets

in the portfolio increases, the Sharpe ratio of the unrestricted portfolios grows at an

almost steady rate, while the Sharpe ratio of the portfolios with the no-shortsell

constraint almost levels off. For portfolios of a little over 100 stocks the Sharpe  ratio

can be more than doubled by removing the no-shortsell constraint. This is clearly a

tremendous economic difference.

III. Explanation of the Results

This section provides a mathematical and intuitive explanation for the empirical

results reported in previous studies and in the preceding section. These results are

shown to be a general property of mean-variance optimal portfolios when the number

of assets is large. Graphical analysis may provide some insight and intuition. Figure 5

shows Markowitz’s mean-variance plane, and the efficient frontier derived for a set of

N stocks. Now, suppose that we add a new stock, stock N+1. One can think of the

possible portfolios of the N+1 stocks as combinations of portfolios of the N “old”

stocks and the new stock. In order for the new stock to  have a non-zero portfolio

weight in any efficient portfolio, one of these combinations must improve the “old”

efficient frontier. However, notice that if no shortselling is allowed and most

covariances are positive, combinations of the new stock with existing portfolios are

most likely to be interior to the frontier (see solid lines in Figure 5). Thus, if no



10

shortselling is allowed and there are many assets in the market, adding one more asset

does not typically extend the efficient frontier, and the weight of this newly added

stock in efficient portfolios will typically be 0. This is consistent with the results of

Figure 4, showing that when shortselling is not allowed, at some stage the Sharpe

ratio almost does not increase as more stocks are being added.

(Insert Figure 5 About Here)

However, when shortselling is allowed, the situation is very different. In this case,

one can extend the efficient frontier by considering combinations of the new stock

with other portfolios, in which either the new stock, or the portfolio of “old” stocks

are held short. As Figure 5 shows, for a “typical” stock both cases are similarly likely

(see dotted lines). Thus, for a given riskfree rate, we would expect that every newly

added stock has roughly the same probability of being positively or negatively

weighted. Hence, when the number of stocks is large, we can expect efficient

portfolios to have about half of the stocks held short, as indeed observed in Figure 1.

For a mathematical explanation of the empirical findings described in the previous

section, one has either to assume a specific covariance matrix, or alternatively to

derive statistical results for certain covariance matrix classes. In what follows we take

both approaches. First, we analyze the equal pairwise correlation case advocated by

Elton and Gruber  [1973] and Schwert and Seguin [1990], and we prove that this

covariance structure generally leads to about half of the assets being held short and to

extreme portfolio weights. In the second approach we consider covariance matrices

drawn at random from some ensemble, and prove that the Sharpe ratio increases

indefinitely with the number of assets when shortselling is allowed, but levels-off

when shortselling is not allowed.
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Equal Correlations

Consider the Elton-Gruber [1973] case in which all  pairwise correlations are

identical. For simplicity, assume first that all variances are identical. For N stocks, the

covariance matrix in this case is an NxN matrix with 2σ  on the diagonal and

2ρσ elsewhere. The inverse of this matrix is 22 )1N()2N(1
)2N(11a

ρ−−ρ−+
ρ−+

σ
=  on the

diagonal, and 22 )1N()2N(1
1b

ρ−−ρ−+
ρ−

σ
= elsewhere. Denoting   excess   returns

by µ ,   the (unscaled) investment proportion of stock i  in the optimal portfolio is:

µ+µ−=∑ µ+µ=ω
≠
=

Nb)ba(ba i
n

ij
1j

jii , where ∑µ=µ
=

N

1j
jN

1  is the mean value of the

assets’ expected returns (for the scaled proportions one has to divide iω by ∑
=

n

1j
jω ).

Writing a and b explicitly, we find that an asset is held short if 
)N/)1((1i ρρ−+

µ<µ .

For small values of N this condition may not hold for any of the assets. However,

when the number of assets is large, each stock is held short if its expected return is

slightly smaller than the average expected return µ  (and held long if it is larger than

this average). If the distribution of excess returns is not very skewed, this implies that

about half of the stocks are held short in the optimal portfolio. Notice that this result

holds for any value of the correlation ρ , as long as it is not 0 or 1.

In addition, the portfolio weights are extreme in the sense that they do not become

smaller as the number of assets increases. To see this, recall that the scaled portfolio
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weights are given by 
∑ω

ω

=

n

1j
j

i . As ∞→N  iω converges to 
)1(2

i

ρ−σ
µ−µ . The denominator,

∑ω
=

n

1j
j , converges to 

ρσ
µ
2 . Thus, the scaled portfolio weight of asset i converges to

ρ−
ρ

µ
µ−µ

1
i , and does not get small even when the number of assets becomes very

large. For example, if 5.0=ρ and a stock has an expected return 20% higher than the

average expected return, this stock will have a weight of 20% in the optimal portfolio,

even if there are thousands of other stocks in the portfolio.

In the case where stocks have different variances, the arguments are very similar.

In this case the covariance matrix can be written as:











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
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
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



=

n

2

n
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1
1
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C

σ
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σ

ρρ
ρ

ρ
ρρ

σ

σ
σ
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M
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L
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L

L

MO

M

L

and when N is large stock i will be held short if ∑
≠
=−

<
n

ij
1j j

j

i

i

1n
1

σ
µ

σ
µ . Again, if the

distribution of 
σ
µ  is not very skewed, we would expect about half of the assets to be

held short8.

Kandel [1984] shows that for any set of N-1 assets one can mathematically

construct an Nth asset such that the mean-variance optimal portfolio is positively

                                                          
8 As σ is bounded by 0, if the distribution of 

σ
µ is skewed, it is probably positively skewed, implying

that even more than 50% of the assets will be held short.
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weighted (see Theorem 1, p. 67 in Kandel [1984], and Green and Hollifield [1992] p.

1066).  While such  an Nth asset  always exists  mathematically,  in large  markets this

asset may be very a-typical and unrealistic. To see this, consider the 200 assets

randomly selected from the CRSP file as described in section II. What are the

characteristics of the 201st asset which makes the optimal portfolio positively

weighted (say, with an investment proportion of 1/201 in each asset)? Following the

procedure in Kandel for characterizing this asset (p. 67), we find that the added asset

should have a monthly standard deviation of at least 642%.9 The expected monthly

return of this asset is 64,020% (!). Thus, while it is always possible to mathematically

construct an Nth asset which makes the optimal portfolio positively weighted, this

does not imply that it is reasonable to expect the existence of a positively weighted

optimal portfolio for a general (or empirical) set of parameters.

Random Covariance Matrix Analysis

Obviously, any specific set of covariances and expected returns determines a

specific set of optimal portfolio weights.  However, one can derive general properties

of optimal portfolios by making some assumptions on the space of covariance

matrices and taking a statistical approach10.   Namely, one can assume that

covariance  matrices are drawn randomly from some ensemble, and derive statistical

results regarding optimal portfolio weights. This approach is commonly employed in

physics when one is not interested (or does not know) the parameters of a specific

system, but rather one tries to make a statement about the  properties of “typical”

                                                          
9 As Kandel shows, the added  Nth asset is not unique. We report here the added 201st asset with the
minimal possible standard deviation. The other possibilities involve even more extreme parameters.

10 Longstaff, Santa-Clara, and Schwartz [2001a, 2001b] recently employ a similar approach to
investigate the covariance structure among forwards.
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systems of a certain type (see, for example,  Wigner [1951], Carmeli [1983], and

Mehta [1991]). Below we conduct such an analysis to show that the Sharpe ratio

increases indefinitely with the number of assets when shortselling is allowed, but

levels-off when shortselling is not allowed (as found empirically and reported in

Figure 4).  We would like to stress that while Theorem 1 below assumes a certain

covariance structure, extensive numerical analysis indicates that the results are quite

general.

Theorem 1:

Consider an NN ×  covariance matrix  given by: += MC '11α , where M is a

standard Wishart matrix with d<N degrees of freedom, 1 is a vector of 1’s, and α  is a

positive constant. Let the vector of excess returns be non-degenerate. As the number

of assets grows to infinity ( ∞→N ) the Sharpe ratio grows indefinitely when

shortselling is allowed, but levels-off when shortselling is not allowed.

Comment 1: The Wishart matrix M can be written as X'X , where X is a Nd × matrix

with random N(0,1) elements. This construction implies a linear factor structure (see,

for example, Carmeli [1983]).

Comment 2: α  is the average covariance.

Comment 3: M is symmetric positive definite, and therefore so is C.

Proof:

Denote the vector of excess returns by µ . If shortselling is allowed, the unscaled

optimal investment proportions vector, ω , is given by µ1C−  (the scaled proportions

are given by ω /( '1 ω ), see Merton [1972];  since we are deriving the Sharpe ratio, it

does not make a difference if one is working with the scaled or unscaled proportions).
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The expected return is given by ωµ ' or µµ 1C' − . Notice, however, that µ can be

written as:

1)'1(MC ωαωωµ +== . (1)

Rearranging we have:

1)'1(M ωαµω −= . (2)

Multiplying by 1−M we obtain:

1M)'1(M 11 −− −= ωαµω , (3)

or: 1M'1)'1(M'1'1 11 −− −= ωαµω . (4)

Rearranging eq.(4) yields:

11M'1
M'1'1 1

1

+
= −

−

α
µω (5)

Substituting this expression for ω'1 in eq.(3), we have:

1M
11M'1

M'1M 1
1

1
1 −

−

−
−

+
−=

α
µαµω . (6)

Thus, the expected return, µµ 1C' −  or ωµ ' is given by: (7)

( )
11M'1

M')M'1(1M'1M'
11M'1

)M'1(M'' 1

12111

1

21
1

+
+−=

+
−= −

−−−−

−

−
−

α
µµµµµα

α
µαµµωµ .

Since the eigenvalues of the Wishart matrix M are bounded away from 0 and are

bounded from above (Silverstein [1986], Mehta [1991] p. 75), both expressions

µµ 1M' −  and 1M'1 1− are of order N, where N is the number of assets (and dimension of

the vectors µ  and 1). The difference 2111 )M'1(1M'1M' µµµ −−− −  , which is positive

by the Schwartz inequality, is therefore  of order 2N . Hence, the expected return

ωµ ' is of order N.
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The standard deviation of the optimal portfolio is ωω C' . As µω 1C−=  we

have:

=σ ωω C' = ωµ=µµ=µµ −−− 'C'CCC' 111 , (8)

which is the square root of the expression in eq.(7), and is therefore of the order of

N . Thus, when the number of assets, N,  is large, and shortselling is allowed, the

Sharpe ratio is of order N
N

N = , and it grows indefinitely with the number of

assets.

In contrast, if shortselling is not allowed, the Sharpe ratio levels off:

0
max

>ω
µ

αωα
µω

ωαωω
µω

ωω
µω max1

'1
'

)'1(M'
'

C'
'

2
≤≤

+
≤ . (9)

Q.E.D.

While the above analysis makes an assumption regarding the structure of the

covariance matrix, numerical simulations show that the results are very general, and

hold under a variety of other covariance structures. For example, Figure 6 displays the

results of numerical simulations in which the correlation between any two stocks is

drawn randomly from a uniform distribution. After the correlation matrix is drawn

this way, we check whether it is positive definite- if it is not we reject it and draw

another matrix. The results in Figure 6 are obtained with the following parameters:

ijρ is drawn from a uniform distribution on the segment [0.4, 0.5]11, the excess return

iµ is drawn from a uniform distribution on the segment [0, 0.2], and the standard

deviation iσ  is drawn from a uniform distribution on the segment [0.2, 0.5]. As

                                                          
11 We choose a relatively narrow range for the correlations, because otherwise, as the number of assets
becomes large, it becomes increasingly difficult to generate positive definite matrices by the procedure
described above.
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Figure 6 shows, the results we find empirically are also obtained in the simulation

analysis, and they are therefore not likely to be due to empirical estimation errors or to

a survivorship bias. Similar numerical results are obtained with various parameter

values and distributional assumptions.

(Insert Figure 6 About Here)

IV. Robustness to Estimation Error

The analysis up to this point, as well as the CAPM framework, assume that the

expected returns and covariances are known. In practice, however, these parameters

are not given, and have to be estimated, which typically involves some estimation

error. To what extent do the above results carry through when estimation error is

involved?

In order to deal with estimation errors it is common to employ shrinkage

estimators, or to impose portfolio weight constraints to avoid extreme positions. In a

recent innovative paper Jagannathan and Ma (2001) that these two approaches are in

fact very closely linked. The effect of employing portfolio weight constraints depends

on two main factors: the magnitude of the estimation error, and the difference in

performance between the optimal and the constrained portfolios with the “true”

parameters. If this performance difference is large, and the estimation errors are small,

imposing  constraints is likely to hurt performance, and vice versa. Jagannathan and

Ma (2001) employ simulations to investigate the benefits of the constraints as a

function of the estimation error. Here we take a similar approach.

As shown in the preceding sections, when the number of assets is large, the

difference in performance between the optimal and the constrained portfolios with the

“true” parameters is very large. Hence for large portfolios we expect the

unconstrained portfolio to outperform the constrained portfolio even when substantial
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estimation error is involved. We investigate this issue numerically by randomly

drawing a “true” covariance matrix and “true” excess returns as described in section

III. Then we create the “estimated” or observed parameters by adding estimation

error, or “noise”, to the true parameters. Specifically, we take

)~1(i
0
i µε+µ=µ (10)

)~1(i
0
i σε+σ=σ (11)

where µ  and σ  are the “true” parameters, the superscript 0 denotes the observed

parameters, and µε
~ and σε~ are error terms which are normally distributed N(0, 2

εσ ),

and are independent of each other and across assets. Given the observed parameters,

the optimal portfolio weights, 0ω , (with and without shortselling) are derived. We

calculate the actual performance of the constructed portfolios by employing the “true”

parameters, in terms of the Sharpe ratio:

00

0

C'

'

ωω

µω  .

The performance of the portfolios with and without shortselling as a function of the

estimation error εσ  is described in Figure 7. The number of assets is 100, and the

Sharpe ratios reported are averaged over 10 independent simulations at each error

level. For comparison, the figure also describes the performance of a “naive”

diversification portfolio with a proportion 
100

1  in each asset. For low error levels

( 0≈σε ) the observed parameters are close to the “true” parameters, and shortselling

dramatically increases the portfolio performance, as reported previously in Figures 4

and 6. As the error increases, the Sharpe ratio of both portfolios (with and without

shortselling) declines, and the advantage of shortselling also decreases, as reported in
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Jagannathan and Ma. Notice, however, that even with a significant level of error (e.g.

%30=σε ) employing shortselling results in doubling the Sharpe ratio.

(Insert Figure 7 About Here)

V. Summary and Discussion

In this paper we investigate the properties of mean-variance efficient

portfolios in markets with a large number of assets and a general return and

covariance structure. Our main results are:

(1)  The proportion of assets held short in mean-variance efficient portfolios

converges to  50% as the number of assets increases.

(2)  The investment proportions are extreme: several assets are held in very large

positions (long or short).

(3)  The investment proportion in each stock is not directly related to any simple

intrinsic characteristic of the stock such as its mean, variance, or its average

correlation (or covariance) with the other stocks. Thus, in the context of large

portfolios it is not straightforward to characterize a “good” stock.

(4) The cost of the no-shortselling constraint is extremely high. For large portfolios

the Sharpe ratio can be more than doubled by relaxing this constraint.

These results are obtained empirically under various estimation methods,

analytically, and in numerical simulations. Thus, the results seem to be fundamental

properties of mean-variance efficient portfolios in large markets.

The first result reveals a severe theoretical inconsistency of the CAPM. On the

one hand, the model predicts that the optimal mean-variance portfolio coincides with

the market portfolio; On the other hand, result (1) states that for large markets about

half of the assets are held short in the optimal portfolio, which means that the market
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portfolio can not possibly coincide with the optimal portfolio. As Green and Hollifield

[1992] and Kandel [1984] show, there are conditions which ensure a mean-variance

efficient portfolio with no short positions. However, result (1) indicates that for large

markets these conditions may be very unlikely to hold.

One line of defense for the CAPM could be based on the notion that in

equilibrium prices are determined such that the optimal portfolio has all weights

positive. Specifically, according to Lintner’s approach to the CAPM companies’ end-

of-period value distributions are given, and market prices “adjust and readjust” until

in equilibrium the vector of asset prices yields a vector of expected returns and a

covariance matrix which lead to the linear SML relation between beta and expected

return (see Lintner [1965a] p. 598). Taking this approach, one may hope that the price

vector can be determined such that not only the SML holds, but in addition the

optimal portfolio is positively weighted. However, this line of defense is problematic

for at least two reasons. First, as Nielsen [1988] elegantly shows, Lintner’s approach

leads to the problem of multiple CAPM equilibria. In order to reduce the infinite set

of possible equilibria, specific preferences and initial endowments have to be

considered. However, this does not automatically ensure a unique equilibrium. Even

with specific assumptions regarding preferences and endowments one can have

multiple equilibria, a unique equilibrium, or no equilibrium at all.   Second, even if

the preferences and endowments are such that there is a unique equilibrium, this does

not  solve  the  more severe  problem of short positions in  the optimal  mean-variance
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portfolio.12 Thus, it seems that this line of defense does not save the model from its

internal inconsistencies. One promising avenue which may offer a solution to this

problem is the segmented market approach of Levy [1978], Merton [1987],

Markowitz [1990] and Sharpe [1991]. According to the segmented market approach

investors may hold only a limited number of assets due to transaction costs,

asymmetric information, or various biases. In this case each investor may hold several

assets short in his portfolio, while the market portfolio can have all positive weights.

The second and third results of this paper state that the optimal mean-variance

portfolio is very different from “naively diversified” portfolios. As the forth result

shows, this difference is economically very significance. This implies that naively

diversifying between many stocks or between several mutual funds (as many

investors do) is very sub-optimal. Thus, there is great practical and economic value to

the portfolio optimization taught to us by Markowitz.

The cost of the no-shortselling constraint depends on the magnitude of the

estimation error (Jagannathan and Ma [2001]), and on the number of assets. When the

number  of   assets  is large  the cost  of this constraint may be  tremendous.  Although

                                                          
12 For example, consider an economy with a single constant-absolute-risk-aversion investor with risk
aversion parameter a. Given a riskfree rate r and a market portfolio with expected return mR and

variance 2
mσ , such an investor optimally invests 

a
rRT 2

m

m
0 σ

−=  dollars in the market portfolio. Lintner

[1965a] defines the market price of risk, γ , as  
0

2
m

m

T
rR

σ
γ −= . Thus, a=γ , and in this case the market

price of risk is just the investor’s risk aversion parameter. To see that negative prices are possible in
this framework, assume, for example, a=2, and a market with a riskfree rate of 10% and two risky
assets with 5.0,2,4.0,10P,1P 122121 =ρ=σ=σ== , where all of these relate to end-of-period values
(recall that in this framework the firms’ end-of-period value distributions are given, and today’s prices
simultaneously determine the expected returns and covariances). Let there be one share of each risky
asset. Employing Lintner’s formulas for equilibrium prices (Lintner, 1965a, eq.17 on pg. 600) with a
market price of risk of 2, we obtain a price of -$0.109 for asset 1, and $1.091 for asset 2. While it is
counter-intuitive to have an asset with a negative price, this results from the CAPM framework with
normal distributions, which implies that negative terminal values are possible.
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short-selling may have a speculative and therefore risky connotation, used responsibly

in a large portfolio context it implies the exact opposite. Funds that are not allowed to

sell short because of “safety considerations” could reduce their risk by more than half

while maintaining the same expected return if they were allowed to sell short.
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Figure 6: Simulation Results






