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Abstract

Objectives—Direct comparative work in morphology and growth on widely dispersed wild
primate taxa is rarely accomplished, yet critical to understanding ecogeographic variation, plastic
local variation in response to human impacts, and variation in patterns of growth and sexual
dimorphism. We investigated population variation in morphology and growth in response to
geographic variables (i.e., latitude, altitude), climatic variables (i.e., temperature and rainfall), and
human impacts in the vervet monkey (Chlorocebus spp.).

Methods—We trapped over 1600 wild vervets from across Sub-Saharan Africa and the
Caribbean, and compared measurements of body mass, body length, and relative thigh, leg, and
foot length in four well-represented geographic samples: Ethiopia, Kenya, South Africa, and St.
Kitts & Nevis.

Results—We found significant variation in body mass and length consistent with Bergmann’s
Rule in adult females, and in adult males when excluding the St. Kitts & Nevis population, which
was more sexually dimorphic. Contrary to Rensch’s Rule, although the South African population
had the largest average body size, it was the least dimorphic. There was significant, although very
small, variation in all limb segments in support for Allen’s Rule. Females in high human impact
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areas were heavier than those with moderate exposures, while those in low human impact areas
were lighter; human impacts had no effect on males.

Conclusions—\Vervet monkeys appear to have adapted to local climate as predicted by
Bergmann’s and, less consistently, Allen’s Rule, while also responding in predicted ways to
human impacts. To better understand deviations from predicted patterns will require further
comparative work in vervets.

Keywords

Chlorocebus, vervet; growth; life history; sexual dimorphism

INTRODUCTION

Morphological variation in widespread taxa may arise by a number of mechanisms: natural
selection, developmental plasticity in response to local environmental forces, and random
processes like genetic drift. Locally differentiable morphological variation in subpopulations
of taxa with wide distributions has historically been used to indicate the possible beginnings
of speciation (Hill, 1966; Kingdon, 1997). In populations with significant amounts of gene
flow, local polytypy and substructuring can result in morphological clines within a single
taxon (e.g., Cardini et al. 2007; Roseman & Auerbach, 2015), as well as geographically
distinct taxa comprised of multiple environmentally driven phenotypes that may ultimately
become fixed by natural selection (Kuzawa and Bragg, 2012; Kuzawa and Thayer, 2011;
Lomolino et al. 2006).

Although data from animals living in diverse habitats throughout a taxon’s range are crucial
to understanding population differentiation, they are rarely collected in primates. Museum
specimens can provide information from a limited number of skins and skeletonized
specimens, although the geographic range and number of animals can often be substantial,
especially if multiple collections are used (e.g., Fooden, 1979; Groves, 2001; Kingdon,
2013; Albrecht et al., 1990; Cardini et al., 2007; Elton et al. 2010). Data on morphological
variation are also often collected from populations of living animals at a single location.
Such populations often have limited geographic distributions (e.g., booted macaques:
Schillaci and Stallmann, 2005; Gombe chimpanzees: Pusey et al., 2005; ring tailed lemurs:
Cuozzo and Sauther, 2006) or are housed in laboratories or semi-naturalistic environments
(e.g., rhesus macaques: Tanner et al., 1990; Schwartz and Kemnitz, 1992; Turnquist and
Kessler, 1989; mangabeys: Deputte, 1992; baboons: Coelho and Rutenberg, 1989; mandrills:
Setchell et al., 2001). Finally, comparisons of morphological variation more broadly within
genera may be made across numerous independent study sites, collected by different
research groups. Comparison across baboons, for example, may be based on the work of
Jolly and Phillips-Conroy (2003) on baboons in the Awash Park, Ethiopia; Altmann and
colleagues on baboons in Amboseli National Park, Kenya (Altmann et al., 1981; Altmann et
al., 1993); Strum and colleagues on baboons in the Rift Valley area of Kenya (Strum, 1991;
Eley et al., 1989) and Johnson (2003) on animals from Botswana. Comparative
morphological data are also available for populations of macaques from Singapore (Schillaci
et al., 2007), Kojima Island in Japan (Hamada et al., 1986) and Polonnaruwa (Cheverud et
al., 1992). Only rarely is information available from free ranging animals living in multiple
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locations within a taxon’s range and collected by the same researchers using comparable
protocols (e.g., macaques: Albrecht, 1980; vervets: Turner et al., 1997; Whitten & Turner,
2004).

Furthermore, in these cases where geographically widespread data are available for adult
animals of a particular taxon, it is rare to also have comparable information on multiple life
stages. Where comparable data have been collected on immature mammals, the contribution
of developmental patterns to adult phenotypes has been critical to understanding adult
selective regimes (e.g., Ozgul et al., 2010; Ozgul et al., 2009). Information on animals of
various life stages within and across closely related but widely dispersed populations is
necessary for a complete understanding of the life history trade-offs that may underlie adult
variation in response to the selective challenges of differing environments.

The study reported here relies on morphological measurements obtained from over 1600 free
ranging vervet monkeys (the genus Chlorocebus, also called savannah monkeys or African
green monkeys; population-specific names include grivets, malbroucks, and others) from
multiple locations spanning the range of the genus. Vervets are highly adaptable, semi-
terrestrial foragers, able to occupy a variety of tropical and subtropical, seasonal habitats that
provide sufficient trees and water, especially in savanna-woodland and open country with
riverine forest. Vervets are found throughout sub-Saharan Africa. The genus most likely
originated in East/Central Africa, first diverging into West African Ch. sabaeus ~531 kya,
followed by the isolation and divergence of Ch. aethiops ~ 446 kya, and a southern
expansion from East Africa around ~265 kya (comprised of the ancestral population of CA.
pyaerythrus hilgerti, Ch. cynosuros, and Ch. p. pygerythrus, which diverged around ~129
kya), after which populations were introduced to several islands in the Caribbean from West
Africa ~350 years ago (Jasinska et al., 2013; Warren et al., 2015; Svardal et al. 2017).
Throughout their evolutionary history in Sub-Saharan Africa, these taxa show long histories
of gene flow, although they have more recently become genetically isolated (Svardal et al.,
2017). They have been observed living in hot and arid areas, as well as more temperate and
cooler areas where winter nighttime temperatures may fall below freezing (e.g., Lubbe et al.
2014; Kingdon, 1997). Vervets live in multi-male, multi-female groups, with males
migrating between groups in early adulthood, and groups range in size up to 50 animals,
although most are considerably smaller (Struhsaker, 1967; Hall & Gartlan, 1965; Fedigan &
Fedigan, 1988; Cheney & Seyfarth, 1983; Enstam & Isbell, 2007). Chlorocebus are regarded
as pests throughout much of their range since they raid crops and houses for food (Grobler et
al. 2006; Brennan et al. 1985; Boulton et al., 1996; Dore, 2013).

It is generally agreed that Chlorocebus may be divided into several diagnosable and
geographically defined subspecies or species based on phenotypic characters (Hill, 1966;
Groves, 2001; Grubb et al. 2003). Recent genetic work (Turner et al., 2016a; Haus et al.,
2013) generally supports these taxonomic groupings, although current taxonomic
distinctions below the genus level are disputed (Warren et al., 2015), as well as the status of
these groupings as species nested in Chlorocebus or subspecies nested in Chlorocebus
aethiops. Svardal et al. (2017) use established taxonomic names for genomically clustered
population groups within the samples studied in this paper, with Ch. aethiops describing
populations sampled from Ethiopia, Ch. p. hilgertifor populations sampled in Kenya, Ch. p.
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pygerythrus for populations sampled from South Africa, and Ch. sabaeus for populations
sampled in St. Kitts & Nevis with an origin in West Africa. Although Svardal et al.
recognize Ch. p. hilgertiand Ch. p. pygerythrus as two genomically distinct populations,
with Ch. p. hilgertibeing at least as distinguishable from Ch. p. pygerythrusas Ch.
cynosuros, current taxonomy subsumes Ch. p. hilgertiand Ch. p. pygerythrusinto the Ch.
pygerythrus species or subspecies (Groves 2001; Grubb et al. 2003). To avoid further
discussion of this taxonomic uncertainty, here we refer to each population by either their
country of origin or accepted taxonomic names according to Groves (2001) and Butynski et
al. (2013): Ch. aethiops, Ch. p. hilgerti, Ch. p. pygerythrus, and Ch. sabaeus.

The breadth of our sample allows us to examine several predictions suggested by established
hypotheses regarding the evolution of body size:

Q) Bergmann’s Rule (Bergmann, 1847; Meiri & Dayan, 2003) hypothesizes that
animals in colder climates (i.e., geographically at higher latitudes and altitudes
and climatically at lower temperatures) will be larger in body size compared to
those in warmer climates to stave off the loss of body heat.

a. Animals at higher latitudes and altitudes will be larger in body size
than those in equatorial latitudes and low altitudes.

b. Animals experiencing lower mean annual and winter temperatures will
be larger in body size than those experiencing warmer annual and
winter temperatures.

(2) Allen’s Rule (Allen, 1877) hypothesizes that animals in colder climates (e.qg.,
geographically at higher latitudes and altitudes and climatically at lower
temperatures) will have relatively short limbs to preserve body heat.

a. Animals at higher latitudes and altitudes will have relatively short
limbs compared to those in equatorial latitudes and low altitudes.

b. Animals experiencing lower mean annual and winter temperatures will
have relatively shorter limbs than those experiencing warmer annual
and winter temperatures.

(3) Rensch’s Rule (Rensch, 1950; Clutton-Brock et al., 1977) hypothesizes that
sexual dimorphism will be greater in populations that exhibit greater overall
body mass.

The animals in our sample come from 61 trapping locations across three countries in Sub-
Saharan Africa and two islands in the Caribbean (Fig. 1), representing a wide range and
mosaic of ecogeographic, anthropogenic, and climatic variation (Table 1). Our East African
sample (Ch. aethiopsand Ch. p. hilgerti) comes from mid to high altitudes but with a range
of human impacts and climatic variability. Our sample from St. Kitts and Nevis (Ch.
sabaeus) come from uniformly low altitudes, high human impacts, and relatively mild and
uniformly tropical climate. Our largest sample, from South Africa (Ch. p. pygerythrus), is
also the most diverse for all variables, representing high and low altitudes, a range of
latitudes, and local climatic variation ranging from wet and temperate to dry and very cold.
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Employing traditional analysis of geographic variation by altitude and latitude, we predict
that (a) Ch. p. pygerythrus will be the largest, Ch. sabaeus intermediate, and Ch. p. hilgerti
and Ch. aethiops the smallest, and (b) Ch. p. pygerythrus and high-altitude populations in
Ch. p. hilgerti should have relatively short limbs. Although recent analyses of Bergmann’s
and Allen’s Rules show mixed results regarding the importance of any one climatic variable
to the patterns noted in size variation in animals across large geographic areas, including
primates (e.g., Meiri & Dyan, 2003; Dunham et al. 2013; Guillaumet et al. 2008), we have
also included these in our analysis. We also predict that patterns of dimorphism within
Chlorocebus will follow the pattern suggested by Rensch’s Rule. We further suggest that
body size and proportion will follow climatic variability as opposed to taxonomic categories.
We expect this to be particularly noticeable within the larger Ch. pygerythrus clade, wherein
the distance between Kenyan (C#h. p. hilgerti) and South African (Ch. p. pygerythrus)
populations is over 5000 km along the eastern side of Africa; this should leave them open to
higher environmentally mediated intrapopulational variance in body size and proportion than
what we will see within Ch. sabaeus or Ch. aethigps.

Given previous work showing that developmental variation underlies adult patterns in
variation, we predict that the rate and pattern of growth will also differ across these
populations, such that populations that reach a larger adult size will either be consistently
larger throughout development (Smith & Leigh 1998), and/or show a more exaggerated
spurt of growth around pubertal age (Shea 1985).

Evolutionary responses to local selection pressures, however, cannot account for all variation
in body size. Phenotypic plasticity in body mass is well noted in wild primates, especially in
response to environments altered by humans, such as increased caloric availability due to
garbage dumps, human crops and food waste, and laboratory diets (Altmann et al., 1993;
Alberts & Altmann 2005; Turner et al. 1997; Turner et al. 2016b). As such, we also predict
that:

4) Local, human-mediated resource availability will lead to within-population
variability in body mass and length. In particular, populations exposed to
environments more highly impacted by humans (e.g., near garbage dumps,
crops, or otherwise human-modified areas) will also have larger body mass than
those found in environments more isolated from human impacts.

MATERIALS AND METHODS

The data derive from field collections made over many years using a common protocol:
Ethiopia in 1973, Kenya in 1978-79; South Africa in 2002-2008, and several African
countries and the Caribbean in 2009-2011 in collaboration with the International Vervet
Research Consortium (Jasinska et al., 2013). The International \ervet Research Consortium
is a multidisciplinary research group that has, in addition to morphological variation, studied
variation in patterns of growth and development (Schmitt et al., 2017), genetic/genomic
(Jasinska, et al., 2013; Turner et al. 2016a; Warren et al. 2015; Svardal et al., 2017; Schmitt
et al., 2017) and transcriptomic (Jasinska et al., 2017) variation, SIV immune response (Ma
& Jasinska et al. 2013; Ma & Jasinska et al. 2014; Svardal et al., 2017), hormonal variation
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(Fourie et al., 2015), C4 isotopes variation in hair (Loudon et al., 2014), gut parasite and
disease variation (Gaetano et al. 2014; Senghore et al., 2016), genital morphology and
appearance (Cramer et al. 2013; Rodriguez et al. 2015a, 2015b), and other biological
parameters within the genus Chlorocebus.

Vervet monkeys were trapped at locations across sub-Saharan Africa, including South
Africa, Botswana, Zambia, Ethiopia, The Gambia, Ghana, and on the Caribbean islands of
St. Kitts and Nevis (Fig. 1). Trapping in Africa employed individual drop traps as described
by Brett et al. (1982) and Grobler and Turner (2010), while trapping in St. Kitts and Nevis
was done by local trappers using large group traps (Jasinska et al., 2013). Animals were
anesthetized while in the trap and then removed to a processing area. Sex was determined by
visual and manual inspection, while age classes were assigned from dental eruption
sequences and based on previous observations (Table 2). All animals were weighed with
either an electronic or hanging scale, and measured with a tape measure and sliding calipers.
Parameters and protocols describing all measurements are available through the Bones and
Behavior Working Group (2015; http://www.bonesandbehavior.org/). All animals were
released to their social group after sampling and recovery from anesthesia. Observations
during trapping allowed us to confirm the animals' social group and local population
affiliation.

For the present study, we chose metrics representative of skeletal size (body length, thigh
length, leg length, and foot length) and body mass from a total of 1613 vervets in four
geographically and genomically distinct populations: Ch. aethiops in Ethiopia, Ch. p. hilgerti
in Kenya, Ch. p. pygerythrus in South Africa, and Ch. sabaeus on the Caribbean islands of
St. Kitts and Nevis (Table 3). The Caribbean populations are known to be descended from
West African Ch. sabaeus brought to the Caribbean several hundred years ago (Warren et al.
2015). Of the whole sample, 288 females and 460 males were dentally immature. Sexual
maturity is typically not reached in vervets until near the time of canine tooth eruption, here
denoting the beginning of dental age 6 (Cramer et al., 2013; Rodriguez et al., 2015a);
although somatic and skeletal growth often continues beyond the emergence of the third
molar, which is here denoted as adult (Bolter & Zihlman, 2003). As is common, dental age
and skeletal age are presumed to be similarly correlated across the genus, meaning that
comparable dental age implies comparable skeletal developmental age across populations
(Seselj, 2013).

All measurements were developed by CJJ and TRT and other measurers (CAS and JDC)
were trained directly by TRT. During training, repeated measures of the same individual
were conducted in tandem with TRT until concordance was reached.

The location of each trapping site is reported in decimal degrees (Table 1), and for most sites
measured using hand-held GPS units. For those trapping sites lacking GPS readings, a
general latitude and longitude for the trapping area (e.g., game reserve, town) was used.
Human impact at each trapping location was assessed according to conditions during the
time of trapping using a previously published index developed by Pampush (2010) to study
variation in vervet body size, and subsequently used by Loudon et al. (2014) and Fourie et
al. (2015) (Table 1). This index includes presence/absence measures of reliable access to 1)
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agricultural land, 2) human food, 3) rubbish or garbage dumps, and 4) whether animals are
regularly provisioned, as well as a three-level scale of human activity within the presumed
home range of the group (low, moderate, or high). In the index, point values are assigned to
each value, with the lowest tier of human impact each receiving a 1, scaling up by 1 for each
level. Added together, these values comprise a human impact group ranging from low
(lowest score in each category; index=5), to moderate (index=6-8), to high (index=9-11).
These measures take into account only the ecological impact of humans, and do not address
local ecological variables (such as native plant productivity) that might also influence body
size and growth. As a proxy for these measures, we collected several climatic variables for
trapping sites from the WorldClim 2 database, which has a spatial resolution of about 1 km?
(Fick & Hijmans, 2017). Climatic variables considered for inclusion in our models were 1)
annual mean temperature (in degrees Celsius), 2) temperature seasonality (measured as the
standard deviation of annual mean temperature multiplied by 100), 3) the minimum
temperature of the coldest month (in degrees Celsius), 4) the mean temperature of the
coldest quarter of the year, 5) annual precipitation (in mm), and 6) precipitation seasonality
(measured as the coefficient of variation of monthly precipitation). Climate data were
accessed via the R package rasterv. 2.6—7 (Hijmans & van Etten, 2012), and assigned to
trapping sites based on latitude and longitude.

Statistical analyses

Summary statistics of somatic measures are presented as mean * standard deviation for each
population and age category (Table 3) Due to the uneven sample sizes and differences in
variance structure across age/sex/taxon categories, we assessed differences in mean
measures using a Welch ANOVA with a Games-Howell Tukey post hoc test implemented
using the package userfriendlysciencev. 03-0 (Peters, 2015) in R v. 3.2.0 (R Core Team
2017). We used linear mixed modeling, also implemented in R, to assess the influence of
latitude (in decimal degrees), altitude (in meters), human impacts (using the human impact
group), and climatic variables on adult body mass and length. We used the absolute value of
latitude to allow for negative latitudinal values in the southern hemisphere. We included
country of origin as a random effect to control for potentially uncontrolled effects that might
be the result of large-scale population differences. With models fit in /me4v. 1.1-13 (Bates
et al., 2015), we used the Akaike Information Criterion with a correction for finite sample
sizes (AlCc) to compare models with differing fixed effects structures (Burnham &
Anderson, 2002) using the package A/Ccmodavgv. 2.1-1 (Mazerolle, 2017). Final models
were assessed for goodness of fit to the data using the R? for mixed models method reported
by Nakagawa and Schielzeth (2013), implemented in the package MuM/nv. 1.15.6 (Barton,
2016). We used MCMC-estimated P values to assess the significance of fixed effects (a =
0.05) for the final models in the package MCMCglmmv. 2.24 (Hadfield, 2010), using flat
priors. We allowed the Markov chains a burn-in period of 1,000 iterations, after which we
ran 100,000 iterations and sampled every 20t iteration for the posterior distribution.

Relative hind limb lengths were measured as the ratio of each limb segment to body length,
respectively (e.g., thigh length/body length). We used the methods above to fit generalized
linear mixed models for the hind limb proportions with the exception that models were fit
with a beta distribution in the package g/mmADMB v. 0.8.3.3 (Fournier et al., 2012) to
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appropriately model proportions, with country of origin as a random effect. We selected the
best model based on comparatively lowest AIC using the package bbmlev. 1.0.20 (Bolker,
2017). To estimate goodness-of-fit, pseudo- R values for the best beta regression models
were derived from fixed effects only in the package betaregv. 3.1-0 (Cribari-Neto & Zeileis,
2010). To allow for sexual dimorphism, all models were run separately for males and
females. Sexual dimorphism for each taxon was measured as the average mass of adult
males divided by the average mass of adult females (Smith 1999). We assessed whether
differences in sexual dimorphism between populations were significant using the method of
Relethford and Hodges (1985).

In our data set, relying on cross-sectional dental eruption means that a range of
chronological ages may be encompassed within a single dental age category, as age at
particular tooth eruption can vary both within and across taxa, although typically not
between sexes (Smith et al., 1994). Turner et al. (1997) and Bolter and Zihlman (2003) have
suggested that, in vervets (Ch. p. hilgertiand Ch. tantalus, respectively), these dental age
categories represent uneven, approximately 3—12 month periods of age up until adulthood,
which contains all adults from the eruption of the third molar onward (Table 2). Here, we
interpret significant changes in size between these categories as indicative of patterns of
growth. Longitudinal measurement data on wild individuals of known ages will be necessary
to validate this assumption. This interpretation of growth is limited, however, to those
intervals represented by age categories 6 and prior, after which point the relatively wide
chronological age range encompassed by of ‘adult’ age assignment, here after the emergence
of the third molar, obscures the pattern of any further growth.

We visualize and compare growth patterns within and across taxa using loess smoothers, or
nonparametric locally weighted quadratic least squares regression, implemented in ggplot2
(Wickham, 2009). Localized loess smoothers make no assumptions about the shape of the
curve, and are robust to uneven samples (e.g., Leigh 1992; Leigh & Shea 1996). We
modeled each trait in each sex within each taxon separately. We attempted this model fitting
using estimated chronological age categories from within the range suggested by previous
work (Turner et al., 1997; Bolter & Zihlman, 2003). In loess models, estimated
chronological age categories were treated as continuous variables, and taxonomic
designation and geographic origin were modeled as random effects. For all tests, we
considered a Pvalue of less than 0.05 to be significant.

Prediction 1: Population variation in vervet body size will follow Bergmann’s Rule (larger in
higher latitudes and altitudes)

As predicted and consistent with Bergmann’s Rule, our linear model shows a significant
positive relationship between body mass and latitude in adult females, with body mass
increasing as latitude increases (p=0.033, p = 0.022; RZGLMM(C) =0.690; Table 4), but not
with altitude (B = 0.000, p = 0.678). Loess curves for adult female body mass suggest that
the high latitude Ch. p. pygerythrus population (23° — 34° S) maintains a heavier mass than
all other taxa throughout development (Fig. 2a; Table 3), significantly so for dental ages 1 (p
< 0.05), 6 (p < 0.001; all populations but Ch. sabaeus), and adults (p < 0.001). Although
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females of the intermediate latitude Ch. sabaeus population (17° N in St. Kitts; 13° N in
ancestral populations in The Gambia) maintain an intermediate mass similar to the sampled
Ch. p. hilgertiand Ch. aethiops populations for most of development, between dental ages 5
and 6 they experience a steep increase in mass that nearly catches up in size to Ch. p.
pygerythrus females. This rapid growth in Ch. sabaeus females apparently levels off sooner
in adulthood than in Ch. p. pygerythrus, as the latter females ultimately reach a significantly
higher average adult size. The lower latitude, East African Chlorocebus females, Ch. p.
hilgerti (3° S — 1° N) and Ch. aethiops (7° — 12° N), maintain masses similar to each other
throughout the life course, with the notable exception that female Ch. aethiops are much
smaller than all other taxa at dental age 1, but grow rapidly at this stage to catch up to Ch. p.
hilgertiand Ch. sabaeus females by dental age 2. The end result of these growth patterns is a
scale of mass in Chlorocebus females that follows Bergmann’s Rule, with the equatorial
East African females being the smallest, mid-range Ch. sabaeus females being intermediate,
and the high latitude Ch. p. pygerythrus females being the largest.

The scaling of Bergmann’s Rule, however, does not adequately describe the variation seen in
males, as there is no significant relationship between body size and latitude ( = —0.358, p =
0.231) or altitude (p =-0.011, p = 0.179; RZGLMM(C) =0.616; Table 4). Although the size
relationship between the larger Ch. p. pygerythrus and smaller East African taxa holds, the
relatively rapid growth of Ch. sabaeus males from Dental Age 2 onward to eventually match
the mass of Ch. p. pygerythrus adult males is unexpected within the context of Bergmann’s
Rule (Fig. 2b; Table 4). Indeed, when the CA. sabaeus males are removed from the
regression equation, Bergmann’s Rule is supported, with significant positive relationships
between body weight and both latitude ( = 0.083, p = 0.006) and altitude (p = 0.001, p =
0.011; Table 4). Both Ch. p. hilgertiand Ch. aethiops males, like the females, remain
matched in size, and significantly smaller than both CA. p. pygerythrus and Ch. sabaeus for
much of their development.

Models including climatic variables in models for body mass show no effects of latitude and
altitude, but also no consistent evidence of climatic effects on body mass variation. In
females, the best model indicated no significant effects on body mass of any covariate
considered (Table 5). In males, there were significant but negligibly small effects of
temperature seasonality and annual precipitation, and, consistent with Bergmann’s Rule,
slightly larger negative effects on body mass of the minimum temperature of the coldest
month (B =-0.055, p = 0.046). A small but negative relationship between body mass and
precipitation seasonality (B = —0.017, p < 0.001; Table 5) suggests that male body size may
decrease in areas with highly seasonal rainfall, which may also be consistent with
Bergmann’s Rule. For the sake of consistency, we also ran the global model with climatic
variables on males excluding Ch. sabaeus, and found the same significant but small effects
of temperature seasonality and annual precipitation, as well as a larger negative relationship
between male body mass and annual mean temperature, consistent with Bergmann’s Rule.
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Prediction 2: Population variation in vervet limb length will follow Allen’s Rule (shorter in
higher latitudes and altitudes)

Contrary to expectations according to Allen’s Rule, both thigh and leg lengths for the adult
equatorial Ch. p. hilgerti population are absolutely and relatively (compared to body length)
shorter than those in Ch. p. pygerythrus, at almost every age, or Ch. sabaeus from dental age
6 onward (Fig. 4 and Fig. 5; Table 6). Our models that only take into account latitude,
altitude, and human impacts do suggest that relative limb length is significantly related to
altitude, latitude, and their interaction effects, supporting Allen’s Rule in both sexes for both
the thigh and the leg. However, the magnitudes of the effects of these predictors are so small
in each trait that they do not appear to have a large influence on trait variation (Table 6).
Differences among taxa in relative thigh and leg length are already apparent by dental age 1,
and growth in all taxa appears to be uniform across age categories. The one exception is Ch.
p. hilgerti, in which a small sample size and some large individuals trapped at dental age 5 in
Mosiro result in outliers having a profound effect on loess models at that age, although they
do not appear to have influenced the Allen’s Rule model.

Foot size in Chlorocebus shows the same steady growth pattern across age classes as thigh
and leg (Fig. 6; Table 6). As in the rest of the lower limb, and consistent with Allen’s Rule,
there is a significant relationship between foot length and latitude, altitude, and their
interaction effect for both sexes (Table 6). Additionally, in males there was a significant
effect of human impacts, with males in low impact sites having a significantly smaller ratio
of foot length to body length (B = -0.961, p = 0.023), or relatively small feet. The estimated
effects of these predictors are near zero, however, and for relative foot length goodness-of-fit
of the models are not as high as for the rest of the lower limb (Table 6). In dental age 1, Ch.
p. pygerythrus individuals of both sexes have significantly larger feet than in Ch. sabaeus
and Ch. p. hilgerti, but a relatively high rate of growth leads to adults in the Ch. sabaeus
population having feet comparable in size to Ch. p. pygerythrus adults and significantly
larger than Ch. p. hilgertiadults (p < 0.001).

Models including climatic variables, for the most part, show latitude and altitude to be
insignificant to morphological variation, with the exception of relative leg length in females,
which increased slightly with latitude (B = 0.006, p = 0.013; Table 7). There were consistent
effects of two individual climatic variables across the lower limb in both sexes: a slight
increase in relative thigh, leg, and foot length with increased annual mean temperature, and
increases of similar magnitude in relation to decreased minimum temperature of the coldest
month (Table 7); the former is consistent with Allen’s Rule, while the latter is not. Unlike
females, males show a consistent effect of human impacts (longer relative limb segment
lengths in low impact areas compared to high), annual precipitation (minimal but positive),
and precipitation seasonality (small but negative) across all sections of the lower limb.
Models for thigh length in females also suggest a positive relationship with temperature
seasonality, while leg length in females show small but significant effects of annual
precipitation and precipitation seasonality similar to those seen in males. Finally, there is
also a positive relationship between mean temperature of the coldest quarter of the year and
relative foot length in females, which is consistent with Allen’s Rule.
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Prediction 3: Sexual dimorphism in vervet populations will follow Rensch’s Rule, with
large taxa also having larger dimorphism

Considerable sexual dimorphism in adult body mass and length was found in each
population (Table 8). In Ch. aethiops, Ch. p. hilgerti, and Ch. sabaeus males were not
significantly larger than same-aged females in age classes 1-6, for either trait, while in Ch.
p. pygerythrus there was significant sexual dimorphism in mass from dental age 6 (p < 0.05;
Figs. 2 and 3; Tables 3 and 8). Contrary to Rensch’s Rule and our predictions, the sexual
dimorphism in Ch. p. pygerythrus (the population with the largest overall body mass) was
the least pronounced, although it did not differ significantly from the dimorphism seen in
Ch. p. hilgertiand Ch. aethiops. The most pronounced sexual dimorphism was found in the
Ch. sabaeus population, which was significantly more dimorphic than Ch. aethiops (t =
-3.848, df = 220, p < 0.001), Ch. p. hilgerti (t = 4.86, df = 301, p < 0.001), and Ch. p.
pygerythrus (t = 3.59, df =419, p < 0.001) populations.

Prediction 4: Regional variation in size will scale with human-mediated resources

Body Mass—In keeping with our predictions, results from our linear models without
climate covariates indicate that human impacts have a large and significant effect on body
mass in female Chlorocebus. In adult females, this impact is scaled in accordance with the
level of impact, with body mass being significantly lower in low human impact sites (B =
-0.378, p = 0.044; Table 4) and significantly higher with high human impacts ( = 0.297, p
= 0.029) compared to sites with moderate impacts. In males, both including and excluding
Ch. sabaeus males, there was no discernible effect of human impacts on body size (Table 4).
With climatic variables included, human impacts appear to only affect adult males, where
lower human impacts correspond to shorter body length (Table 5) and longer relative limb
lengths (Table 7).

Due to small regional sample sizes and subsequently large confidence intervals surrounding
growth curves for regional populations, regional differences in body mass are difficult to
differentiate in our loess models, although there were some clear outliers in most taxa. In
keeping with a previously published report on these data (Turner et al., 1997), the Naivasha
population was significantly heavier than the other three Ch. p. hilgerti populations, with this
difference being most extreme in males; females in Kimana were also heavier than those
from either Mosiro or Samburu (Suppl. Fig. 1a).

Within Ch. p. pygerythrus, access to human resources may also mediate body size. The
largest-bodied Ch. p. pygerythrus population, for both males and females, comes from
Gauteng, South Africa, and was trapped at or near Woodhill Golf Estate in the southeast of
the city of Pretoria (Suppl. Fig. 1b). There is also a steep, early increase in size in male Ch.
p. pygerythrus from the Northern Cape. This early gain in size is lost by adulthood, at which
point Northern Cape males fall within the range of all other Ch. p. pygerythrus populations.

Within Ch. sabaeus, males from the two islands of St. Kitts and Nevis cannot be
differentiated, while females do show some differences across islands in body mass (Suppl.
Fig. 1c). Females from St. Kitts appear to be larger at almost every dental age, with the
difference being particularly pronounced in dental ages 5 and 6. By adulthood this pattern
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has reversed, with females from Nevis growing past the size of females from St. Kitts. Due
to the large age range binned within dental age 7, however, it is unclear whether this is the
result of rapid or sustained post-pubertal growth, or from oversampling of older individuals
in the adult category on Nevis compared to St. Kitts.

Within Ch. aethiops, very few individuals were weighed in non-Awash trapped populations.
While females trapped in the Awash largely mirror the general pattern also seen in Ch. p.
hilgertito grow slowly to a relatively small adult size, males and females trapped in non-
Awash areas including near the Lake Tana textile mill (n = 2) and the tourist area of
Hawaasa (n = 7) appear to be of a size comparable to Ch. p. pygerythrus and Ch. sabaeus
(Suppl. Fig. 1d).

Body Length—In both adult males (B = -29.460, p = 0.002; Table 4) and females ( =
-4.181, p = 0.008) body length is significantly smaller in areas with low human impacts
compared to those with moderate or high human impacts. Also in both sexes, there appears
to be a significant positive interaction between latitude and human impacts, such that both
males (f = 0.873, p = 0.002) and females (B = 0.152, p < 0.001) have significantly shorter
body lengths at lower latitudes when human impacts are low compared to moderate or high.
Although the best model for females did not include an interaction between altitude and
human impacts, in males this same effect is seen with altitude (B = 0.022, p = 0.002). These
results suggest that areas with moderate to high human impacts may buffer body length from
the effects responsible for Bergmann’s Rule in this trait.

As in regional comparisons of body mass, body lengths in Ch. p. hilgerti females from
Naivasha and Kimana appear to be longer than other populations, although Naivasha males
at dental age 1 are significantly smaller than in other populations (Suppl. Fig. 2a). Similar
patterns to those seen in body mass can also be seen in Ch. p. pygerythrus, with longer body
lengths in Gauteng vervets, as well as an early increase in length in the Northern Cape
(Suppl. Fig. 2b). A comparably large, but slightly later at dental age 4, early increase in body
length can be seen in those vervets sampled from Mpumalanga.

Within Ch. sabaeus, growth in body length is slightly different than in body mass. While
males again appear largely undifferentiated across islands, females from Nevis appear
significantly larger both as juveniles and adults, although infants (dental age 1) and
subadults (dental age 6) appear similar in size (Suppl. Fig. 2c).

As with body mass, average body length in Ch. aethiops individuals sampled outside the
Awash region appears to be large compared to that seen in the Awash (Suppl. Fig. 2d).
However, small sample sizes from outside the Awash urge caution in interpreting these
differences.

Hind Limb Length—Models for relative hind limb length show no significant effect of
human impacts nor any interaction effect between latitude and human impacts. Regional
variation in thigh and leg lengths appear largely similar within taxa, with the exception of
generally high variation at dental age 1 (Suppl. Fig. 3 and Suppl. Fig. 4). Potential
exceptions include apparent divergences in females younger than ~30 months, in which we
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see relatively long thighs and legs in females and, to a lesser extent, males in Ch. p.
pygerythrus from Limpopo in South Africa (Suppl. Fig. 3b and 4b). There are no significant
regional differences in foot length (Suppl. Fig. 5).

DISCUSSION

Ecogeographic Variation and Climate

Information on body size and shape from individuals representing multiple taxa in a widely
distributed group of closely related organisms allows for an assessment of the ways in which
form may be modulated by local environmental constraints and selective pressures. Both
excluding and including climatic variables, the patterns in mass and relative limb length
noted in this study differ from those found in previous assessments of pan-African variation
in vervets based on cranial size and shape (Cardini et al., 2007; Elton et al., 2010), wherein
clinal variation in cranial size was consistently larger in populations nearer the Congo basin
rather than in higher latitudes and, according to the authors, most probably associated with
levels of rainfall. Differences among taxa in adult phenotypes and sexual dimorphism
suggest some unique adaptive interpretations both within and across taxa as well as plastic
responses to human impact, while variation in developmental patterns appears to underlie
these differences. Our results, taken into consideration with those of Cardini et al. (2007),
seem to also suggest that the cranium may be responding to different ecogeographic
pressures than the body, and that size variation across populations in these two sets of traits
may not be tightly correlated.

In our global models not incorporating climatic variables, geographic variation like latitude
and altitude, along with human impacts in the case of body mass, consistently come out as
significant covariates consistent with the patterns predicted by Bergmann’s and Allen’s
Rules. With the climatic variables included, the geographic variables and human impacts
become unimportant to variation in these traits, although there are no universal climatic
effects across all measures, and those measures that do come out as significant are not
always in accord with Bergmann’s and Allen’s Rules. This variation suggests that different
aspects of physiology and parts of the body must respond to climatic variation in unique
ways.

The hind limb shows some surprising patterns in Chlorocebus. Sexual dimorphism in the
thigh begins at dental age 5, which is earlier than either body mass or body length. The thigh
length of juvenile Ch. p. hilgertivervets is also significantly less than that of the CA. p.
pygerythrus populations, despite the fact that Ch. p. Ailgerti are similar in body length at this
age. That Ch. p. hilgerti should have such relatively short hind limbs conflicts with an
ecogeographic interpretation of relative limb size differences between these two closely-
related taxa, and calls for a more systematic investigation of the factors affecting limb
morphology that might take into account other potential intervening factors, such as
differences in substrate use and relative biomechanical advantage of these relative limb
differences between taxa both in adults (e.g., Weinstein, 2011), and on an ontogenetic scale
that takes allometry into account (e.g., Shea, 1992; Young, 2005; Bezanson, 2009).
Systematic deviations across taxa are often presumed to carry some signal of selection, as
independent morphological changes in the foot and hind limb can be adaptations to species-

Am J Phys Anthropol. Author manuscript; available in PMC 2019 July 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Turner et al.

Page 14

and age-specific needs during locomotor ontogeny (Carrier, 1996; Lawler 2006). A closer
investigation of how tightly the development of the hind limb is integrated with the rest of
the body, taking into account ontogenetic allometry, along with comparative data on
locomotor behavior, would be necessary to accurately characterize this relationship and to
determine whether it is adaptively linked to functional constraints (e.g., Lawler, 2006, 2008).

Anthropogenic Impacts and Local Variation

In addition to supporting larger adaptive patterns of ecogeographic variation in body size
represented by Bergmann’s Rule, both our linear and growth models suggest an equally
significant role of plastic responses to human impacts on vervet body size and relative limb
length. In Kenyan C#h. p. hilgerti, according to Turner et al. (1997), the divergent adult body
mass and length and their associated growth patterns in Naivasha and Kimana are more
likely due to access to human foods in intensely cultivated areas than to any evolutionary
responses to either altitude or climate.

Similar human impacts can be seen within South African populations. The very large body
sizes seen in Gauteng Ch. p. pygerythrus are largely due to sampling in the southeast of
urban Pretoria — in such an urban setting, access to human food could lead to a higher
calorie diet and increased body size, as seen in other primate species (Altmann et al. 1993;
Altmann & Alberts 2005). The notable early increase in size in males from the Northern
Cape is more difficult to attribute to a particular source. Further sampling and investigation
may be needed to ascertain whether these differences are due to sampling error or local
ecological factors selecting for an earlier increase in size in these populations. Contrary to
published reports that primates in captivity or sanctuaries are often larger than wild
populations due to the increased caloric value of human-provisioned diets (i.e., as found by
Turner et al., 2016b, on St. Kitts), vervets of both sexes from the well-sampled Riverside
Wildlife Rehabilitation Centre in Limpopo do not appear to be significantly heavier than
wild-trapped populations in South Africa, although they were considerably smaller in body
length at almost every age while also appearing to have comparatively long thigh and leg
lengths relative to other populations sampled in South Africa. This differently proportioned
body may reflect the poor nutrition or early life trauma that are characteristic of pets or
rescued wildlife (e.g., Jones-Engel et al., 2001), as stunting based on poor nutrition and
systemic disease has been noted to affect body length disproportionately to limb length,
resulting in relatively longer limbs (e.g., Krishna et al., 1996; van den Berg et al., 2016). The
divergent growth patterns in body length of vervets sampled in Mpumalanga may be due to
their being largely sampled at or near tourist resorts at Swadini, Londolozi, and Blyde River
Canyon. Vervets in these areas may also have had access to human provisioning, but why
there is a more apparent increase in body length than body mass in these groups is unclear.

Differences in Dimorphism

Bergmann’s rule appears to hold across taxa in the genus Chlorocebus, with the notable
exception of Ch. sabaeus males from St. Kitts & Nevis. Among primates, sexual dimorphism
is attained via a number of developmental routes, and can vary markedly even between
closely related taxa (Leigh 1992; Leigh and Shea, 1996; Turner et al. 1997). As in previous
studies (Bolter and Zihlman, 2003; Turner et al. 1997), within each Chlorocebus population
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there is some evidence of modular differences in both rate of growth and overall patterns of
growth. While growth patterns in Ch. sabaeus appear generally different from those seen in
the South and East African taxa, the male pattern, with comparatively rapid growth in all
traits during late development (age classes 4-6), leads to a particularly large adult male size
relative to females.

Pronounced adult sexual dimorphism, as seen in Ch. sabaeus, is often attributed to sexual
selection based on increased male-male competition rather than sex-specific responses to
environmental stress (e.g., Gaulin and Sailer, 1984; Leutenegger, 1978). Although such
selective pressures may be operational in all vervets, which show at least moderate sexual
dimorphism, these results suggest it may be extreme in Ch. sabaeus. As directly comparative
behavioral data are currently lacking across Chlorocebus populations, it is unclear whether
Ch. sabaeus males face more extreme intrasexual competition than their congeners. Another
physiological trait that separates Ch. sabaeus from other taxa of Chlorocebus is their
remarkably blanched scrota; while most Chlorocebus males have vivid blue scrota, scrota in
Ch. sabaeus blanch during development to become pale or white in adults (Cramer et al.,
2013). Previous work seeking to understand the social role of this secondary sexual
coloration has found it to mediate dominance status among males (Gerald, 2001), and that it
may be a reliable signal of male health or quality (Gartlan & Brain, 1968; Isbell, 1995),
although color itself does not appear to influence female mate choice (Gerald, 2010).
Whether the extreme body size dimorphism found in Ch. sabaeus represents an adaptive
response to (or perhaps cause of) this lack of color — representing a shift in signals most
associated with reproductive success for males (e.g., Badyaev et al., 2002), be it through
intrasexual assessment or female choice — remains a question for future study. Comparative
behavioral studies on the various vervet populations could help answer these questions by
examining male-male competition and female availability in different taxa. Given that
scrotal coloration varies during ontogeny, and that the developmental pattern of Ch. sabaeus
appears to differ from the rest of the genus, developmental studies could shed a particularly
interesting light on this question. All we can say, at the moment, is that Ch. sabaeus is a
compelling case suggesting that both ecogeographic factors and differing levels of sexual
selection may be operating across populations to produce the pattern seen, and that more
direct, comparative studies combining behavioral and morphological data between these taxa
could yield interesting results.

That South African vervets are the heaviest population and yet are also the least dimorphic
contradicts larger phylogenetic patterns that support Rensch’s Rule in primates (Clutton-
Brock et al., 1977; Leutenegger and Cheverud, 1982; Leutenegger, 1978), although some
previous intrageneric comparisons within primates have similarly shown a lack of support
(Gordon, 2006). There are several potential explanations for this unexpected pattern, all of
which remain speculative: intralocus sexual conflict in South African but not in other vervet
populations, a phenomenon by which body size evolution towards a particular sex-specific
optimum (e.g., larger body size for males) forces mass and size in the sexes to converge
(e.g., Tarka et al., 2014; Lande, 1980), could explain this pattern; some unique fitness benefit
for females in South Africa to become comparatively large independent of selection acting
on males (e.g., fecundity advantage models: Darwin, 1874; Shine, 1988); sexual selection
for larger females via either male choice or to combat male coercion (although the literature
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shows varying accounts of male coercion and choice in vervets: Isbell et al., 2002; Fairbanks
& McGuire, 1987; Keddy, 1986; Young et al., 2017); or, to return to Bergmann’s Rule, the
increase in mass overall in the South African population could be due to sexually unbiased
selective pressures acting on both sexes to increase size. South African vervets live in areas
that are seasonally very cold, and are exposed to particularly low nighttime temperatures that
can drop well below freezing, which has been noted to cause large seasonal fluctuations in
core body temperature (Lubbe et al., 2014). These have been offset by both larger body size,
which stabilizes core body temperature in Ch. p. pygerythrus (Henzi et al., 2017), and also
the adoption of behavioral (Danzy et al., 2012) and social (McFarland et al., 2015; Henzi et
al., 2017) strategies to mitigate the loss of body heat that have not yet been noted in other
Chlorocebus taxa. That larger body size occurs in both males and females in South Africa
also suggests a common etiology within the population, which need not be genetic in origin:
recent work in humans, for example, suggest that such clinal variation in body mass as seen
in Chlorocebus may also be reached by adaptive shifts in gut microbiota across populations
(Suzuki and Worobey, 2014). Exactly how this clinal variation is achieved in response to
temperature, and how it informs sexual dimorphism, will require further genomic and
physiological comparisons between vervet taxa, with perhaps the most fruitful being in the
latitudinally wide-spread clade consisting of Ch. p. hilgerti, Ch. cynosuros, and Ch. p.

pygerythrus.

CONCLUSION

Our results suggest that the taxonomic divisions often recognized between populations of the
genus Chlorocebus do show some significant differences in both adult phenotype and
developmental patterns, but also that widely geographically separated populations within
taxa also carry with them significant differences in morphology and growth. These
population differences may reflect unique responses in each to ecogeographic, socio-sexual,
or biomechanical selective pressures acting on adult phenotypes via natural selection or
during ontogeny via developmental plasticity; further, more targeted work across
populations is needed to adequately address the variation seen in this sample. This work
generates many more questions than answers. Why does the Ch. pygerythrus clade show
divergent ecogeographic signals with respect to Allen’s rule? Is the exaggerated sexual
dimorphism of the St. Kitts & Nevis Ch. sabaeus due to more intense male-male competition
than other vervet populations, and does it represent a trade-off in sexual signaling? What are
the genetic systems that underlie these traits, and can they give us an idea of how these
growth and adult phenotypes function and are related? Finally, exactly how much of this
variation is truly adaptive, how much due to plastic responses to local conditions and
random effects related to species-specific demographic and population history? To truly
tease apart the pressures and processes that underlie these phenotypic differences will
require much more extensive comparative work in behavioral ecology and developmental
morphology within and across these populations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Chlorocebus sample collection locations in Africa. Individual collection sites in St. Kitts &

Nevis were extensive and distributed widely across both islands, and so are not shown here
(see Jasinska et al., 2013, for a complete map of trapping sites).
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Loess models for changes in body mass (kg) by estimated chronological age in Chlorocebus
a) females, and b) males with 95% confidence sheaths. Each cluster of points represents the
midpoint of the interval of a single dental age category, from 1 to 6. Category 7, or *‘Adult’,
includes adults in whom at least one third molar has erupted, and whose mean age is
unknown. Their data points are therefore situated on the plot at 50 months, the start of this

age interval, when the animal is at or close to adult size.
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Loess models for changes in body length (cm) by estimated chronological age in
Chlorocebus a) females, and b) males with 95% confidence sheaths. Each cluster of points
represents the midpoint of the interval of a single dental age category, from 1 to 6. Category
7, or “Adult’, includes adults in whom at least one third molar has erupted, and whose mean
age is unknown. Their data points are therefore situated on the plot at 50 months, the start of
this age interval, when the animal is at or close to adult size.
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Fig. 4.

Lc?ess models for changes in relative thigh length (cm) by estimated chronological age in
Chlorocebus a) females, and b) males with 95% confidence sheaths. Each cluster of points
represents the midpoint of the interval of a single dental age category, from 1 to 6. Category
7, or “‘Adult’, includes adults in whom at least one third molar has erupted, and whose mean
age is unknown. Their data points are therefore situated on the plot at 50 months, the start of
this age interval, when the animal is at or close to adult size.
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Fig. 5.

Lc?ess models for changes in relative leg length (cm) by estimated chronological age in
Chlorocebus a) females, and b) males with 95% confidence sheaths. Each cluster of points
represents the midpoint of the interval of a single dental age category, from 1 to 6. Category
7, or ‘Adult’, includes adults in whom at least one third molar has erupted, and whose mean
age is unknown. Their data points are therefore situated on the plot at 50 months, the start of
this age interval, when the animal is at or close to adult size.
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Fig. 6.

Lc?ess models for changes in relative foot length (cm) by estimated chronological age in
Chlorocebus a) females, and b) males with 95% confidence sheaths. Each cluster of points
represents the midpoint of the interval of a single dental age category, from 1 to 6. Category
7, or “‘Adult’, includes adults in whom at least one third molar has erupted, and whose mean
age is unknown. Their data points are therefore situated on the plot at 50 months, the start of
this age interval, when the animal is at or close to adult size.
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Table 2

Page 32

Dental Age Classes based on dental eruption sequences for Chlorocebus. Age range listed is the lower range
for initiation of that age class.

Dental Age Class

Permanent Dentition Present  Age Range (months)

1

a A~ w N

Adult

All deciduous 6 — 115 days
All deciduous, M1 12-14
M1, 11, 12 22-27
M1, 11, 12, M2 26-31
M1, 11, 12, M2, P3, P4 32-40
M1, 11, 12, M2, P3, P4, C 38-41
Eruption of M3 > 38
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