UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
An Approach to Constructing Student Models: Status Report for the Programming Domain

Permalink
https://escholarship.org/uc/item/41x8j3pq
Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 11(0)

Author
Spohrer, James C.

Publication Date
1989

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California


https://escholarship.org/uc/item/41x8j3ps
https://escholarship.org
http://www.cdlib.org/

An Approach to Constructing Student Models:
Status Report for the Programming Domain

James C. Spohrer

Yale Universit
Computer gctl‘lence ngartment

(As of Sept. ‘89, Apple Computer)

ABSTRACT

Student models are important for guiding the development of instructional systems. An
approach to constructing student models is reviewed. The approach advocates constructing
student models in two steps: (1) develop a descriptive theory of correct and buggy student
responses, then (2) develop a process theory of the way students actually generate those
responses. The approach has been used in the domain of introductory programming. A
status report is provided: (1) Goal-And-Plan (GAP) trees have been developed to describe
student program variations, and (2) a Generate-Test-and-Debug (GTD) impasse/repair
architecture has been developed to model the process of student program generation.

INTRODUCTION: MOTIVATIONS AND GOALS

The long-term goal of the research reported here is to build computer-based applications
that help students learn design skills (i.e., planning, constructing, evaluating, and
debugging artifacts such as computer programs). Therefore, one purpose of this paper is
to present a brief overview of a long-term research plan for building instructional systems.
A key part of these systems is a student model. This paper provides a status report on the
development of a student model for the domain of introductory programming.

Previously [SSP85], we have advocated an approach to constructing student models that
decomposes the problem into two steps: (1) develop a descriptive theory of the alternative
correct and buggy responses students generate, and (2) develop a process theory of the
way students actually generate those responses. In [SSP85], we present a descriptive
theory of correct and buggy student generated Pascal programs that is based on the notion
of a Goal-And-Plan (GAP) tree. However, a descriptive theory provides only a systematic
enumeration of what the alternatives are, and does not address the question of how the
alternatives originate in the first place. In this paper, we present a model of the way
different students write alternative programs. The problem solving behavior of students
writing programs will be described in terms of a generate-test-and-debug (GTD) problem
solving architecture in which impasse/repair knowledge plays a key role.

The paper will: (1) describe a long-term research plan for building instructional systems,
(2) illustrate the important role of student models in the plan by arguing that limitations in
existing instructional systems can be traced back to weaknesses in those systems' student
models, (3) describe some alternative programs that real students generate, and finally (4)
explain the process by which our student model generates these programs.



SPOHRER

WHAT'S DMATA?

DMATA is an acronym for a long-term research plan aimed at developing and studying the
development of computer-based applications, especially instructional systems.

APPLIC-
ATION

Tools -
Automate

Tools -
Automate

The DMATA plan advocates using Data from empirical studies to first construct Models of
people performing problem solving in some domain, and then to use the models to build
Applications that support human problem solving. However, we are also interested in
developing Tools that help researchers construct models from data and that help researchers
build applications from models. Eventually, we would like to Automate the data-model-
application development path.

Some application builders would argue that it is unnecessary to construct separate models
of human problem solving before building applications. In fact, constructing a separate
model is no guarantee that a successful applications can then be built. Nevertheless,
weaknesses in existing instructional systems for the programming domain can be traced
back to limitations in their underlying student models, as described in the next section.

COGNITIVE REVERSE-ENGINEERING: APPLICATIONS -» MODELS

In general, computer-based applications for design domains incorporate, either explicitly or
implicitly, a model of the way humans solve tasks in those domains. We term the process
of extracting a model from an application "cognitive reverse-engineering" (see [CK89] for a
related concept). For instance, the student model underlying the PROUST system [JS85]
might be termed an enumeration student model, because to find bugs in student programs
PROUST requires a large knowledge-base that enumerates alternative correct solutions
(i.e., plan library) and incorrect solutions (i.e., bug library) for a programming task.
Alternatively, the student model underlying the GREATERP system [ABR85] might be
termed a restriction student model, because students are forced to follow in the "foot-steps”
of an ideal student and tutorial advice is provided as soon as a student deviates from the
restricted ideal solution path.

In sum, PROUST and GREATERP deal with the variability problem -- the problem of
coping with alternative correct and buggy programs -- by an enumeration and restriction
approach, respectively. Unfortunately, enumerating plans and bugs is very time
consuming and can never be totally complete. However, restricting the possible solutions
does not give students a chance to acquire skills for exploring and evaluating alternative
designs. Thus, neither the enumeration or restriction student models are entirely
satisfactory. For design domains, we argue that computational generative models [BV80]
are the preferred type of model to use to guide the development of computer-based
applications because they parsimoniously account for variability.

901



SPOHRER

DESCRIPTIVE THEORY OF PROGRAMS: GAP TREES

Because real students generate so many different correct and buggy programs when asked
to solve even simple introductory programming tasks, some way must be found to
systematically organize and describe all the variations before attempting to build a
generative student model. For instance, consider a programming task that must process a
series of input values, stopping when a sentinel value is entered. Figure 1 shows some
alternative pseudo-code solutions. The solutions are based on actual Pascal programs.

CORRECT (DUPLICATE INPUT) CORRECT (DUMMY INIT) ~ CORRECT (MORE-DATA)

input init-to-not-sentinel input(more-data)
while not-sentinel while not-sentinel while not-sent.(more-data)
do begin do begin do begin
calculate input input
output if not-sentinel calculate
input then begin output
end calculate input(more-data)
output end
end
end
B MISSIN -INPUT]1 B Y (MISSIN B Y (MISSING RE-INPUT2
input init-to-not-sentinel input(more-data)
while not-sentinel while not-sentinel while not-sent.(more-data)
do begin do begin do begin
calculate input input
output calculate calculate
end output output
end end

Figure 1: Example variability for an "alternate" type task.

These examples illustrate a few of the many alternative correct and buggy programs we
have catalogued in the GAP tree for this particular type of programming task [SPL*85].
The alternatives illustrate three correct plans for the sentinel-controlled-input goal, as well
as a single buggy version of each plan. Because a programming task is composed of
several goals, and each goal has several plans, and each plan may have several bugs, a
GAP tree with bugs indexed off plans provides a concise description of the programs that
students generate. In the next section, we will present a generative student model that can
account for some of the alternative programs that a GAP tree only enumerates.

PROCESS THEORY OF PROGRAMMERS: GTD IMPASSE/REPAIR MODEL

The development of the generative model (i.e., a process theory) could only occur after a
systematic organization of the the alternative correct and buggy programs had been
developed (i.e. a descriptive theory). In addition, thinking-aloud protocol data -- complete
problem solving behavior traces of the verbally reported planning, implementation, and
debugging steps involved in writing a program -- had to be collected and analyzed. Based
on the previously developed descriptive theory and the additional thinking-aloud protocol

902



SPOHRER

data, a process theory has been developed that employs a generate-test-and-debug (GTD)
impasselrepair problem solving architecture (see [Su75], [Ham86], [Si88], and also
[BV80] [BS85] [NS72]). The three problem solving phases of the architecture are:

Generate Phase: During the generate phase, students use different generation mechanisms
to write code to achieve the goals of the task specification. The students either (1) used
previously acquired programming knowledge to write the code, or (2) created new
programming knowledge by translating relevant non-programming knowledge (i.c.,
"commonsense” plans) into code. Non-programming knowledge (see [BS85] for a related
concept) is a key part of the model and corresponds intuitively to knowledge that would
allow a student to easily do a hand calculation. For instance, a student may be able to
calculate the average of an arbitrary set of numbers by hand, but have a great deal of
difficulty writing a program to do the same.

Test Phase: During the test phase, students use different program testing mechanisms to
detect one of a few types of problems, or impasses. The students either (1) compared a
simulation of their programs to a simulation of an internal representation (i.e., mental
model) of the expected solution or (2) checked for specific commonly occurring bugs.
Impasses in MARCEL might more appropriately be called expectations violations, because
they are unlike the impasses caused by lack of domain knowledge as in [BV80] and
[BS85]. However, because repairing the impasses in all these model can lead to bugs, we
prefer the term impasse to expectation violation.

Debug Phase: During the debug phase, impasses are fixed using one of small set of repairs.
Associated with each impasse are between two and six repairs that might be applied to fix
the impasse. One way variability can arise in the model is when different repairs are used
to fix the same impasse.

A simulation program, called MARCEL, implements the model, and can be used to
simulate students writing both correct and buggy Pascal programs [S89]. In the remainder
of this paper, we will focus on accounting for the generation of alternative correct and
buggy programs in terms of impasse/repair knowledge.

PROGRAM VARIABILITY IN TERMS OF IMPASSE/REPAIR TREES

In this section, a small set of impasses and repairs which students appear to use will be
described. As in the subtraction domain [BV80], we will see that a small set of impasses
and repairs can give rise to a great deal of variability. However, because the amount of
variability in the programming domain (a design domain) is enormous compared to
variability in the subtraction domain (a procedural skill domain), we do not yet make
specific quantitative claims about the coverage of our model, but instead support the model
with short quotes or snippets from thinking aloud protocol data.

To understand the impasses and repairs used in the model one should begin by viewing a
program as a consumer-producer system in which certain goals consume some objects and
produce others (e.g., the calculation goal consumes the input objects and produces the
output objects). Most of the impasses and repairs used in the model are domain-
independent, and can be applied to a variety of consumer-producer systems (e.g.,
biological systems, economic systems, etc.). For instance, a coal company produces coal
that is consumed by an electric company to produce smoke and electricity. If the coal
contains impurities (i.e., BAD-KIND) that lead to too much pollution, then a number of
repairs can tried: separate the impurity before the coal is burned (i.e., INSERT-SPLIT), or
scrub the smoke (i.e., INSERT-CONSUMER).

903



SPOHRER

In programs (or any other consumer-producer system) six types of impasses can occur:

11. NOT-PRODUCED: An object is consumed before it has a value (before produced).
"If I just start with a WHILE-DO statement, the variable is not gonna have any value yet.” (AAS7.15).

[2. BAD-NEXT-GOAL: The next goal is not the expected goal,

"I'm thinking what will happen if they put in less than zero (invalid], and I still try to print out the
answer [on invalid should stop, not output).” (AVMS5.126).

13. DOUBLE-USE: A goal uses (consumes) the same value twice.
.1 had to put it in a place so it wouldn't be affected [by the same value again)...” (JBH7.232).

14. BAD-SOURCE: An object's value is not from the user.
"I'd have to rewrite the first line instead of... automatically [dummy initialization)... assigning to the
value... I could prompt [get value from user]" (AVM6.415).

IS. OVER-WRITE: A value is destroyed before it is used (consumed by a goal).
“Every time it goes through its gonna see sum gets zero...so maybe I'll put that outside the whole loop
[sum initalization over-writes the update).” (JBH7.111).

16. BAD-KIND: A value is inappropriate for the case.
"Everything is gonna have to deal with... wait it did say something about impossible values [the
calculation almost got run on invalid values).” (JB115.62).

The protocol data contain examples of impasse/repair episodes on average once every 2.5
minutes. Protocol snippets guided the development of the impasse/repair component of the

model, and provide support for the cognitive plausibility of the model.

During the debug phase, a repair is selected for an impasse. All of the repairs involve
simple operations (insert, delete, move, change, duplicate) on a few basic types of program
elements (producer, consumer, expected, encountered, object, test, split), defined when a
particular impasse is detected in a particular program context (see [S89] for details). For

example, consider the small set of repairs that apply to the impasse NOT-PRODUCED:

Repairs to 11:NOT-PRODUCED: When a consumer goal tries to consume an object whose value has not

yet been produced, try one of the following repairs:

R1:CHANGE-OBJECT - If the consumer of the not-produced object is a split, then try changing the

object to an auxiliary object.

R2:INSERT-PRODUCER - If the producer is not in the program yet, then insert the producer

directly before the consumer.

R3:MOVE-PRODUCER If the producer is somewhere clse in the program, then move the

producer directly before the consumer.

R4:MOVE-CONSUMER If the producer is somewhere else in the program, then move the

consumer to directly after the producer.
R5:DELETE-CONSUMER - Delete the offending consumer.

R6:DUPLICATE-PRODUCER If the producer is somewhere else in the program, then make a

duplicate of the producer and insert it before the consumer.

Like the impasses, all of the repairs used in the model are derived from protocol snippets,

and supported by additional snippets (see example below).
904



SPOHRER

R3:MOVE-PRODUCER

R12:DUPLICATE-EXPECTED

START-HERE
while not-sentinel input input .
do begin while not-sentinel while not-sentinel
i i do begin
input do begin i
calculate .’ calculate calculate
output output pulput
end input
end end
I1:NOT-PRODUCED \. 12:BAD-NEXT-GOAL it
R1-CHANGE-OBJECT R6:DUPLICATE-PRODUCER R21:MOVE-PRODUCER
: . = input input
wdrl’llzegir:.'ol sentinel(more?) whila nabasniisel wlrile SE——
input do begin do begin
calculate "‘p:" | calculate
calculate Ol.llpul
e::!pul output input
end end
11:NOT-PRODUCED I5:OVER-WRITE -
R2:INSERT-PRODUCER R22:CHANGE-SOURCE R20:MOVE-CONSUMER
input(more?) initialize input _
while not-sentinel(more?) while not-sentinel while not-sentinel
do bEgll'I do begin do begin
input input calculate
calculate calculate input
oulput oulpul outpul
end end end
I3:DOUBLE-USE 16:BAD-KIND 12:BAD-NEXT-GOAL

R15:IDUPLICATE-PRODUCER R23:INSERT-SPLIT R9-MOVE-EXPEGTED
input(more?) initialize ) T—
while ‘not-sennnel(more?) while pol-santinel while: not-ssntinei
do begin do begin do begin
input IRy . calculate
calculate if not-sentinel output
output then calculate input
input(more?) output end
end end
oK 12:BAD-NEXT-GOAL b
R10:MOVE-ENCOUNTERED 211 INSERT-SPLIT
initialize initiali
while not-sentinel ml':"lla 1ize —
do begin wdc: ebe ril:l-sen ine
if not-sentinel 3 T —
nn beg:llculale then calculate
output if not-sentinel
end " then output
end
oK OK
Figure 2: Correct and buggy programs in an impasse/repair tree.

905



SPOHRER

Often when students tried to write a program to process a series of input values, they
would start by saying something like -- what I need to do is a standard input-calculate-
output, but with a loop wrapped around it. This would result in a program whose pseudo-
code structure was like that in the upper left corner of Figure 2 (i.e., START-HERE).
Since the "not-sentinel” test in the WHILE is testing a variable that has not yet been
produced (the input is inside the loop), some students detect a NOT-PRODUCED impasse
(e.g., If I just start out with WHILE-DQ statement, the variable is not gonna have any
value yer." (AAS7.15).) After detecting the impasse, some student may decide to repair the
impasse by testing a different variable instead of the one which is input inside the loop, so
they use a CHANGE-OBIJECT repair (e.g.,"l could create another variable and just say
WHILE..." (AVM6.59).) The CHANGE-OBIJECT repair (repair R1 above), after being
applied would result in a program whose pseudo-code structure was like that shown in the
first box in the second row of Figure 2. Other students might decide to move the input
from inside the loop to above the loop, so they use a MOVE-PRODUCER repair (e.g.,
“that’s gonna be outside of the loop... because its got to prompt before the loop."

(AAS7.15)). The MOVE-PRODUCER repair (repair R3 above) would result in a program
like that shown in the second box in the first row in Figure 2.

Sometimes students add new bugs to a program when they are trying to fix a bug [GO86],
and in a related phenomena repairing an impasse often leads to a new impasse. Because
impasses can give rise to repairs that can give rise to new impasses, an impasse/repair tree
is a convenient representational device for describing a large set of programs that students
might conceivably generate. For instance, all of the correct and buggy programs of Figure
1 occur in the impasse/repair tree shown in Figure 2 ("duplicate input" third column and
first row, "dummy init" second column and fifth row, "more data" first column and fourth
row, "missing re-inputl” second column and first row, "missing guard" second column
and third row, and "missing re-input2" first column and third row). Three questions that
remain are: How do students generate the initial program hypothesis? Why do some
students detect an impasse, while others do not? Why do different students select different
repairs for the same impasse? (see [S89] for some preliminary answers).

CONCLUDING REMARKS: MODEL -> APPLICATION

We have claimed that computational generative student models are to be preferred over
enumeration or restriction student models when building computer-based applications to
help students perform design activities and acquire design skills. Admittedly, this claim
lacks convincing support until we complete the next stage of our research effort and build
such an application. Nevertheless, to the extent that design domains are characterized by
variability, and to the extent that generative models capture important aspects of that
variability in a parsimonious model, we feel we are on the right track. If students can be
explicitly and effectively taught how to detect the six impasses and apply the necessary
repairs, then a programming environment that supports exploring and evaluating alternative
programs via impasse/repair trees should help the students exercise and develop important
design skills.

Acknowledgements: Elliot Soloway provided support and direction for this research. This
work was supported in part by National Science Foundation Grant MDR-88-96240. 1
would like to thank David Littman for his comments on drafts of this paper.

906



[ABR85]

[BS85]

(BV80]

[CK89]

[GO86]

[Ham86]

[JS85]
[NS72]

[Si88]

[SS89]

[SPL*85]

[SSP85]

[S89]

[Su75]

SPOHRER

REFERENCES

J.R. Andcrson, C.F. Boyle, and B. J. Reiser. Intelligent tutoring systems. Science,
228(4698):456-462, 1985.

J. Bonar and E. Soloway. Preprogramming knowledge: A major source of misconceptions
in novice programmers. Human-Computer Interactions, 1(2):133-161, 1985. (Reprinted
in [SS89]).

J. S. Brown and K, VanLehn. Repair theory: a generative theory of bugs in procedural
skills. Cognitive Science, 4:379-426, 1980.

J.M. Carroll and W.A. Kellogg. Artifacts as theory-nexus: Hermeneutics meets theory-
based design. IBM Research Paper. Yorktown Heights, NY.

Leo Gugerty and Gary M. Olson. Comprehension differences in debugging by skilled and
novice programmers. In Empirical Studies of Programmers, Soloway and Iyengar (Eds).
Ablex: Norwood, NJ. 1986.

K.J. Hammond. Case-Based Planning: An Integrated Theory of Planning, Learning, and
Memory. PhD Diss, CS TR 488, Yale, New Haven CT, Oct 1986.

W.L. Johnson and E. Soloway. PROUST. Byte Magaz. 10(4) 179-192, 1985.
A. Newell and H.A. Simon. Human Problem Solving. Prentice Hall NJ, 1972,

R. Simmons. A theory of debugging plans and interpretations. In Proceedings of AAAI-
88. Saint Paul, MN, pp 94-99, Aug. 21-26, 1988.

E. Soloway and J.C. Spohrer, Editors. Studying the Novice Programmer. Lawrence
Erlbaum Publishers, Hillsdale NJ, 1989,

J.C. Spohrer, E.Pope, M. Lipman, W. Sack, S. Freiman, D. Liuman, W.L.Johnson, and
E. Soloway. BUG CATALOGUE: I1Ill, IV. CS TR 386, Yale New Haven CT, May
1985.

J.C. Spohrer, E. Soloway, and E. Pope. A goal/plan analysis of buggy Pascal programs.
Hum.-Com. Inter., 1(2):163-207, 1985. (in [SS89]).

J.C. Spohrer. MARCEL: A GTD impasse/repair model of student program generation and
individual differences. Ph.D. Diss. CS TR 687, Yale New Haven CT, 1989.

G. Sussman. A Computer Model of Skill Acquisition. Elsevier: NY, 1975.

%07



	cogsci_1989_900-907



