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in the Finnish Population Is Associated With Fasting
Insulin Levels and Type 2 Diabetes Risk
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and Pierre Fontanillas,1,10 et al.*
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To identify novel coding association signals and facil-
itate characterization of mechanisms influencing gly-
cemic traits and type 2 diabetes risk, we analyzed
109,215 variants derived from exome array genotyping
together with an additional 390,225 variants from
exome sequence in up to 39,339 normoglycemic individ-
uals from five ancestry groups. We identified a novel
association between the coding variant (p.Pro50Thr) in
AKT2 and fasting plasma insulin (FI), a gene in which rare
fully penetrant mutations are causal for monogenic glyce-
mic disorders. The low-frequency allele is associated with
a 12% increase in FI levels. This variant is present at 1.1%
frequency in Finns but virtually absent in individuals from
other ancestries. Carriers of the FI-increasing allele had
increased 2-h insulin values, decreased insulin sensitivity,
and increased risk of type 2 diabetes (odds ratio 1.05). In
cellular studies, the AKT2-Thr50 protein exhibited a partial
loss of function. We extend the allelic spectrum for coding
variants in AKT2 associated with disorders of glucose ho-
meostasis and demonstrate bidirectional effects of vari-
ants within the pleckstrin homology domain of AKT2.

The increasing prevalence of type 2 diabetes is a global
health crisis, making it critical to promote the development
of more efficient strategies for prevention and treatment
(1). Individuals with type 2 diabetes display both pancreatic
b-cell dysfunction and insulin resistance. Genetic studies of
surrogate measures of these glycemic traits can identify
variants that influence these central features of type 2 di-
abetes (2), highlighting potential pathways for therapeutic
manipulation. Comprehensive surveys of the influence of

common genetic variants on fasting plasma glucose (FG)
and fasting plasma insulin (FI) have highlighted defects in
pathways involved in glucose metabolism and insulin pro-
cessing, secretion, and action (3). Recent studies have iden-
tified type 2 diabetes–associated alleles that are common in
one population but rare or absent in others (4–6). These
associations were observed either due to an increase in
frequency of older alleles based on population dynamics
and demography (5) or the emergence of population-spe-
cific alleles (4,6).

We set out to identify and characterize low-frequency
allele (minor allele frequency [MAF] ,5%) glycemic trait
associations by meta-analysis of exome sequence and exome
array genotype data in a multiancestry sample. We also
performed in vitro functional studies of protein expression,
localization, and activity to understand the consequences of
our novel findings.

RESEARCH DESIGN AND METHODS

Genetic Association Studies

Study Samples
The Genetics of Type 2 Diabetes (GoT2D) and Type 2
Diabetes Genetic Exploration by Next-generation sequenc-
ing in multi-Ethnic Samples (T2D-GENES) Consortia were
initially designed to evaluate the contribution of coding
variants to type 2 diabetes risk (7). We performed a discov-
ery association analysis to find novel coding variants asso-
ciated with fasting glycemic traits in 14 studies from
GoT2D that contributed exome array information on
33,231 individuals without diabetes of European ancestry.
Further discovery analysis was performed with GoT2D and
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T2D-GENES with exome sequence data (average 803 cov-
erage) in five ancestral groups comprised of 12,940 individ-
uals (6,504 with type 2 diabetes, 6,436 without) with
measured FG or FI levels available in 2,144 European,
508 South Asian, 1,104 East Asian, 844 Hispanic, and
508 African American individuals without diabetes. We
performed a replication analysis and an assessment of al-
lele frequency distributions in 5,747 individuals from four
Finnish cohorts: The Cardiovascular Risk in Young Finns
Study (YFS) (8), Helsinki Birth Cohort Study (HBCS) (9),
Health 2000 GenMets Study (GenMets) (10), and National
FINRISK Study 1997 and 2002 (11). We also assessed the
allele frequencies of novel findings in 46,658 individuals
from the Cohorts for Heart and Aging Research in Genomic
Epidemiology (CHARGE) Consortium with available exome
array data (12), although none of the studies passed our
quality control filter of a minor allele count (MAC) greater
than 5 for inclusion in our replication analysis. See Supple-
mentary Table 1 for study details, sample characteristics,
ascertainment criteria, detailed genotype calling, and quality
control procedures for each cohort. The relevant institutional
review boards, conducted according to the Declaration of
Helsinki, approved all human research, and all participants
provided written informed consent. A detailed description of
ethics permissions is provided in the Supplementary Data.

Phenotypes
For the discovery and replication analysis, we excluded
individuals from the analysis if they had a diagnosis of type 2
diabetes, were currently receiving oral or injected diabetes
treatment, had FG measures$7 mmol/L, had 2-h postload
glucose measures $11.1mmol/L, or had HbA1c measures
$6.5% (48 mmol/mol). Additional exclusions occurring at
the study level included pregnancy, nonfasting at time
of exam, type 1 diabetes, or impaired glucose tolerance.
See Supplementary Table 1A for details. Within each study,
we adjusted FG and log-transformed FI levels for age,
sex, BMI, and additional study-specific covariates. We
applied rank-based inverse-normal transformations to
study- or ancestry-specific residuals to obtain satisfactory
asymptotic properties of the exome-wide association tests.

We tested for genetic associations with type 2 diabetes,
hypertension (HTN), and other related quantitative traits in
the Finnish discovery and replication cohorts. We analyzed
lipid levels (total cholesterol, HDL cholesterol, LDL choles-
terol, and triglycerides), blood pressure (systolic [SBP] and
diastolic [DBP] blood pressure and HTN), height, BMI,
central adiposity measures (waist-to-hip ratio, waist cir-
cumference, hip circumference), adiponectin level, 2-h in-
sulin level, and Matsuda index, which is known to correlate
with whole-body insulin sensitivity as measured by the
hyperinsulinemic-euglycemic clamp (r = 0.7, P , 1.0 3
1024) (13). For quantitative traits and HTN, we adjusted
for age, sex, BMI (for glycemic, blood pressure and central
adiposity measures), stratified by type 2 diabetes status and
sex (for central adiposity measures) within study. We ad-
justed LDL and total cholesterol for use of lipid-lowering

medication, by dividing total cholesterol by 0.8 if on lipid-
lowering medication, prior to calculating LDL cholesterol
using the Friedewald equation (14). SBP and DBP were
adjusted for use of blood pressure–lowering medication
by adding 15 mmHg to SBP and 10 mmHg to DBP mea-
surements if an individual reported taking blood pressure–
lowering medication (15). The Matsuda index was log
transformed and analyzed in individuals without diabe-
tes only. After adjusting for covariates, traits were inverse-
normalized within strata. In addition to studying these
metabolic outcomes, we used ICD codes to query electronic
medical records in the METSIM (METabolic Syndrome In
Men) study and FINRISK 1997 and 2002 cohorts (in all
individuals regardless of type 2 diabetes status) and cate-
gorized affection status for lipodystrophy, polycystic ovary
disease, and ovarian or breast cancer.

Statistical Analysis
Discovery Analysis. We performed association analyses
within each study for the exome array data sets and within
ancestry for the exome sequence data sets. We used linear
mixed models implemented in EMMAX (16) to account for
relatedness. Within each study/ancestry, we required vari-
ants to have a MAC greater than or equal to five alleles for
single variant association tests. We meta-analyzed the single
variant results from the (European ancestry) exome array
studies using the inverse-variance meta-analysis approach
implemented in METAL (17) and combined these with the
European ancestry exome sequence results. Then, we meta-
analyzed summary statistics across ancestries. We used P,
5 3 1027 as exome-wide statistical significance thresholds
for the single variant tests (18). We used the binomial
distribution to assess enrichment of previously reported
associations with FG or FI by calculating a P value for the
number of nonsignificant variants with consistent direction
of effects.
Gene-Based Association Analysis. We performed gene-
based association tests using variants with MAF ,1%
(including rare variants with MAC #5), annotating and
aggregating variants based on predicted deleteriousness us-
ing previously described methods (7). Briefly, we defined
four different variant groupings: “PTV-only,” containing
only variants predicted to severely impair protein func-
tion; “PTV+missense,” containing protein-truncating vari-
ants (PTV) and nonsynonymous (NS) variants with
MAF ,1%; “PTV+NSstrict,” composed of PTV and NS vari-
ants predicted damaging by five algorithms (SIFT, LRT,
MutationTaster, PolyPhen-2 HDIV, and PolyPhen-2
HVAR); and “PTV+NSbroad,” composed of PTV and NS var-
iants with MAF ,1% and predicted damaging by at least
one prediction algorithm above. We used the sequence ker-
nel association test (SKAT) (19) and a frequency-weighted
burden test to conduct exome array meta-analyses in an
unrelated subset of individuals using RAREMETAL (20).
We conducted exome sequence gene-based analyses within
ancestry using a linear mixed model to account for related-
ness and combined results across ancestries with MetaSKAT
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(21), which accounts for heterogeneous effects. We further
combined gene-based results from exome array and exome
sequences using the Stouffer method with equal weights.
For gene-based tests, we considered P , 2.5 3 1026 as
exome-wide significant, corresponding to Bonferroni correc-
tion for 20,000 genes in the genome (18).
Replication Analysis. The AKT2 p.Pro50Thr variant was
observed at sufficient frequency in the independent Finnish
cohorts to perform single variant association test of associ-
ation with FI. We tested association in SNPTEST (22)
(v.2.4.0) in each study with the same additive linear model
used in the discovery analysis. Covariate adjustments for FI
levels were sex, age, and 10 principal components, and
models were run with and without adjustment for BMI.
Estimate of Effect on Raw FI Level and Variance
Explained. To characterize the association between AKT2
p.Pro50Thr and FI, we examined full regression models with
raw FI in three studies (Finland-United States Investigation
of NIDDM Genetics [FUSION], METSIM, and YFS). We es-
timated the raw effect on log-transformed FI levels with a
fixed-effects meta-analysis. The variance in log-transformed
FI explained by AKT2 p.Pro50Thr was estimated by a
weighted average of the narrow-sense heritability of AKT2
p.Pro50Thr seen in these three studies.
Population Genetics and Constraint. We used the Exome
Aggregation Consortium (ExAC) for constraint metrics and
allele frequencies (23). We obtained sequence alignments
for AKT proteins and mRNAs in 100 vertebrates from the
University of California, Santa Cruz Genome Browser (24),
used Shannon entropy (normalized K = 21) as a conserva-
tion score (25), and plotted the sequence logos in R using
the RWebLogo library (26).
Associations With Other Traits. We conducted association
tests for traits other than FI and FG within studies for both
discovery studies as well as the independent Finnish studies
used for replication. P values for type 2 diabetes and HTN
came from EMMAX (16) or the Wald test from logistic
regression (Finnish replication data sets) and meta-analyzed
using an N-weighted meta-analysis (17). Odds ratios (ORs)
were obtained from logistic regression adjusting for age,
sex, with and without BMI, and principal components
and meta-analyzed using an inverse-variance meta-analysis.
Trait Distributions and Phenotype Clustering. We exam-
ined distributions of traits among AKT2 missense allele
carriers (p.Pro50Thr, p.Arg208Lys, and p.Arg467Trp) in
the T2D-GENES exome sequencing data set. We used non-
parametric rank–based methods (kruskal.wallis and permKS
functions in R) on both the inverse-normalized covariate-
adjusted traits used in the genetic association studies and
normalized raw trait values (scale function in R). We clus-
tered AKT2 missense allele carriers on scaled trait values
(pheatmap function in R).

In Vitro Functional Studies

Plasmids and Cell Lines
The generation of the AKT2 allelic series was initiated by
the production of pDONR223-AKT2 through PCR of the

human AKT2 open reading frame with the integration of
terminal attR sites using primers (see below). HeLa, HuH7,
and 293T cells were obtained at The Broad Institute and
maintained in 10% FBS DMEM, 100 units/mL penicillin
and 100 mg/mL streptomycin, and documented mycoplasma-
free. HeLa and HuH7 cells were starved for 18 h and stim-
ulated for 15 min with 100 nmol/L insulin for activation
analyses.

Primers for Functional Work
The generation of the AKT2 allelic series was initiated by
the production of pDONR223-AKT2 through PCR of the
human AKT2 open reading frame with the integration of
terminal attR sites using primers FWD: 59-GGGGACAAGT-
TTGTACAAAAAAGTTGGCACCATGAATGAGGTGTCTGTCA-
TC239, REV: 59-GGGGACCACTTTGTACAAGAAAGTTGG-
CAACTCGCGGATGCTG239 and subsequent Gateway BP
reaction into pDONR223 obtained from The Broad Insti-
tute Genetic Perturbation Platform. Site-directed mutagen-
esis was then performed to generate AKT2.E17K (AKT2.
Lys17), AKT2.P50T (AKT2.Thr50), AKT2.R208K (AKT2.
Lys208), AKT2.R274H (AKT2.His274), AKT2.R467W
(AKT2.Trp467) with the following primers: AKT2.E17K:
FWD: 59-GGCTCCACAAGCGTGGTAAATACATCAAGACCT-
GG239, REV: 59-CCAGGTCTTGATGTATTTACCACGCTTG-
TGGAGCC239; AKT2.P50T: FWD: 59-AGGCCCCTGATCA-
GACTCTAACCCCCTTAAAC239, REV: 59-GTTTAAGGGG-
GTTAGAGTCTGATCAGGGGCCT239; AKT2.R208K: FWD:
59-GTCCTCCAGAACACCAAGCACCCGTTCC239, REV: 59-
GGAACGGGTGCTTGGTGTTCTGGAGGAC239; AKT2.
R274H: FWD: 59-GGGACGTGGTATACCACGACATCAAGCT-
GGA239, REV39REV: 59-TCCAGCTTGATGTCGTGGTATAC-
CACGTCCC239; and AKT2.R467W: FWD: 59-GGAGC-
TGGACCAGTGGACCCACTTCCC239, REV: 59-GGGAAG-
TGGGTCCACTGGTCCAGCTCC239. COOH-terminal, V5-
tagged lentiviral pLX304-AKT2.E17K, pLX304-AKT2.P50T,
pLX304-AKT2.R208K, pLX304-AKT2.R274H, and pLX304-
AKT2.R467W were each generated by subsequent Gateway
LR reactions with pDONR223-AKT2.E17K, pDONR223-
AKT2.P50T, pDONR223-AKT2.R208K, pDONR223-AKT2.
R274H, and pDONR223-AKT2.R467W, respectively, and
pLX304 obtained from The Broad Institute Genetic Pertur-
bation Platform. Control plasmid pLX304-empty vector was
additionally acquired from The Broad Institute Genetic Per-
turbation Platform.

Antibodies
Anti-Akt (#4685), anti–phospho-Akt S473 (#4060), anti–
phospho-Akt T308 (#9275), anti–b-actin (#4970), anti-
GSK3b (#9315), anti–phospho-GSK3b (#9336), anti-GST
(#2625), and anti-V5 (#13202) were purchased from Cell
Signaling Technologies. Horseradish peroxidase–conjugated
anti-rabbit and anti-mouse IgG antibodies were purchased
from Millipore.

3-D Modeling
The 3-D structure of AKT2 with the full allelic series was
predicted using IntFOLD (27) and visualized in PyMOL (28).
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In Vitro Kinase Assays
Following lentiviral infection and subsequent 5mg/mL blas-
ticidin selection, V5-AKT2, V5-AKT2.Lys17, V5-AKT2.
Thr50, V5-AKT2.Lys208, V5-AKT2.His274, and V5-AKT2.
Trp467 variants were each isolated from HeLa cell lysate
with V5 agarose beads (Sigma-Aldrich) and incubated
with 150 ng GST-GSK3b substrate peptide (Cell Signaling
Technologies) and 250 mmol/L cold ATP in kinase assay
buffer (Cell Signaling Technologies) for 35 min at 30°C.

Proliferation Assay
Lentiviral pLX304 control or V5-AKT2 variant infected
HuH7 cells were cultured in 24-well plates for 72 h in
10% FBS /phenol red-free DMEM for 72 h. We added
WST-1 (Takara Clontech) to each well at the manufacturer-
recommended 1:10 ratio and incubated for 4 h at 37°C prior
to absorbance measurement at 450 nm with BioTek Syn-
ergy H4 plate reader.

Immunoblots
We washed cells with PBS and lysed in EBC buffer
(120 mmol/L NaCl, 50 mmol/L Tris-HCl [pH 7.4],
50 nmol/L calyculin, cOmplete protease inhibitor cocktail
[Roche], 20 mmol/L sodium fluoride, 1 mmol/L sodium
pyrophosphate, 2 mmol/L ethylene glycol tetraacetic acid,
2 mmol/L ethylenediaminetetraacetic acid, and 0.5%
NP-40) for 20 min on ice. To preclear cell lysates, we
centrifuged at 12,700 rpm at 4°C for 15 min. We measured
protein concentration with Pierce BCA protein assay kit
using a BioTek Synergy H4 plate reader. We resolved lysates
on Bio-Rad Any kD Mini-PROTEAN TGX polyacrylamide
gels by SDS-PAGE and transferred by electrophoresis to
nitrocellulose membrane (Life Technologies) at 100 V for
70 min. We blocked membranes in 5% nonfat dry
milk/TBST (10 mmol/L Tris-HCl, 150 mmol/L NaCl,
0.2% Tween 20) buffer pH 7.6 for 30 min. We incubated
blots with indicated antibody overnight at 4°C. The mem-
brane was then washed in TBST, three times at 15-min
intervals, before a 1-h secondary horseradish peroxidase–
conjugated antibody incubation at room temperature. We
again washed nitrocellulose membranes in TBST, three
times for 15 min, prior to enhanced chemiluminescent sub-
strate detection (Pierce).

Statistical Analysis
The quantified results of the in vitro kinase and pro-
liferation assays were normalized to internal control values
for each replicate. We used generalized linear models of the
quantified assay results to assess effects of variants within
and across replicate rounds, allowing for interaction by
replicate. The graphical representation was produced using
functions in the effects (v 3.0-3) package in R.

Gene Expression Studies

Study Samples
We compared the expression pattern of AKT2 to the two
other members of the AKT gene family, AKT1 and AKT3,
using multitissue RNA sequencing (RNA-seq) data from the

pilot phase of the Genotype-Tissue Expression (GTEx) proj-
ect (dbGaP accession number: phs000424.v3.p1) in 44 tis-
sues with data from more than one individual. Detailed
procedures for sample collection, RNA extraction, RNA-
seq, and gene and transcript quantifications have been
previously described (29). Using data from the Identifying
Biomarkers of Ageing using whole Transcriptome Sequenc-
ing (EuroBATS) project, samples from photo-protected sub-
cutaneous adipose tissue from 766 twins were extracted
(130 unrelated individuals, 131 monozygotic and 187 dizy-
gotic twin pairs) and processed as previously described
(30,31). Using data from METSIM, subcutaneous fat biopsy
samples were obtained from a sample of 770 participants
and processed as previously described (32).

Phenotypes
We studied the association of age, BMI, and FI levels with
gene expression levels and with expression-associated SNPs
(expression quantitative trait loci [eQTL]) in the AKT2 re-
gion. Age and sex were available for the GTEx study sam-
ples. In additional to age and BMI, FI level was measured at
the same time point as the fat biopsies in the EuroBATS
sample data, following a previously described protocol (33).
Baseline age, BMI, and FI levels were used for the METSIM
participants (34).

Statistical Analysis
The comparison of expression levels of AKT2 versus
AKT1 and AKT2 versus AKT3 was performed using log2-
transformed reads per kilobase per million mapped reads
(RPKMs). We studied BMI, age, and FI (not available in
GTEx data) associations with AKT2 expression using linear
mixed models as implemented in the lme4 package in R.
The gene expression RPKM values were inverse-variance
rank normalized for these analyses. Covariates included
study-specific fixed- and random-effects (see Supplemen-
tary Data for additional details on each cohort), using sex,
BMI, and age as additional fixed-effects as appropriate. The
eQTL analysis was performed on single nucleotide polymor-
phisms (SNPs) within a 1 Mb of AKT2 using linear mixed
models to assess the association of the SNPs with the in-
verse-normalized RPKM expression values.

RESULTS

Genetic Association Studies
We tested the association of FI and FG with 390,225
variants from exome sequence data (GoT2D and T2D-
GENES) and 109,215 variants derived from exome array
genotyping (GoT2D) (7) (individual study genomic inflation
factor [lGC] ,1.06; Supplementary Fig. 1). We examined
variants that had been previously associated with FG and FI
(3,18). Of 28 FG and 14 FI loci with the reported SNPs
or close proxies in our data set, 13 FG and 4 FI showed
directionally consistent significant associations. Among the
remaining genome-wide association study loci not significant
in our data, we observed directionally consistent associations
in 14 of 15 FG and 9 of 10 FI loci (Penrichment = 53 1024 for
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FG and 0.01 for FI) (Supplementary Data, Supplementary
Table 2).

In addition, we identified a novel significant single
variant association between rs184042322 and FI (MAF
1.2%, P = 1.2 3 1027), a coding variant in AKT2 (V-AKT
Murine Thymoma Viral Oncogene Homolog 2) where amino
acid Pro50 is substituted with a threonine (NP_001617.1:
p.Pro50Thr) (Fig. 1, Supplementary Fig. 1). The same allele
drove a significant FI signal for AKT2 in gene-based analysis
(P = 6.1 3 1027), in which we discovered two additional
significant gene-based associations between GIMAP8 and
FG (PPTV = 2.3 3 1026) and between NDUFAF1 and FI
(PPTV+NSBroad = 9.2 3 1027) (Supplementary Fig. 2, Supple-
mentary Table 2D).

In an effort to replicate the single variant association of
AKT2 Pro50Thr with FI, we aggregated the allele frequency
estimates of AKT2 Pro50Thr in our data with data from the
CHARGE Consortium and the four Finnish studies. In ExAC,
rs184042322 is multiallelic (p.Pro50Thr and p.Pro50Ala)
but Pro50Ala is observed only twice in the Latino popula-
tion sample and not seen in our exome sequencing data,
which includes 1,021 individuals of Hispanic ancestry.
AKT2 Pro50Thr was observed at a much higher frequency
in Finnish individuals (MAF 1.1%) than other non-
Finnish pooled European (MAF 0.02%), African Amer-
ican (MAF 0.01%), Asian (MAF ,0.01%), or Hispanic
(MAF ,0.01%) individuals (Fig. 1). We replicated the asso-
ciation between FI and AKT2 Pro50Thr by meta-analysis of
the association in the four Finnish studies (P = 5.4 3 1024,
N = 5,747) with the discovery studies (Pcombined = 9.98 3
10210, N = 25,316). We observed no evidence of effect-size
heterogeneity between studies (Pheterogeneity = 0.76). The

minor T allele was associated with a 12% (95% CI 7–18)
increase in FI levels in the discovery and replication studies,
a per allele effect of 10.4 pmol/L (95% CI 6.6–14.3).

The serine/threonine protein kinases AKT1, AKT2, and
AKT3 are conserved across all vertebrates (Fig. 2). Pro50
and the seven preceding residues in the pleckstrin homol-
ogy (PH) domain appear to be specific for the AKT2 iso-
form. Population genetic studies show a strong intolerance
to missense and loss-of-function (LoF) variation in AKT2
(Supplementary Data, Supplementary Fig. 3, Supplementary
Fig. 4, Supplementary Table 3). Notably, in ExAC data,
AKT2 contains fewer missense variants than expected
(the missense constraint metric, Z = 3.5, is in the 94th
percentile of all genes) and extreme constraint against
LoF variation (estimated probability of being LoF intol-
erant = 1).

AKT2 is a primary transducer of PI3K signaling down-
stream of the insulin receptor and is responsible for
mediating the physiological effects of insulin in tissues
including liver, skeletal muscle, and adipose. Akt2 null mice
are characterized by hyperglycemia and hyperinsulinemia,
and some develop diabetes (35,36). In humans, highly pen-
etrant rare alleles in AKT2 cause familial partial lipodystro-
phy and hypoinsulinemic hypoglycemia with hemihypertrophy
(Glu17Lys) (37,38) and a syndrome featuring severe insulin
resistance, hyperinsulinemia, and diabetes (Arg274His)
(39). Additional rare alleles have been observed in individ-
uals with severe insulin resistance (Arg208Lys and
Arg467Trp), but no variant has been associated with glyce-
mic traits at the population level (40).

Given the spectrum of diseases and traits associated with
AKT2 (41), we hypothesized that AKT2 Pro50Thr would be

Figure 1—AKT2 Pro50Thr association with FI levels. A: For each study, the square represents the estimate of the additive genetic effect for the
association of the AKT2 Pro50Thr allele with log-transformed FI levels and the horizontal line gives the corresponding 95% CI of the estimate.
Inverse-variance meta-analyses were performed for all discovery studies, all replication studies, and all studies combined. The vertical dashed
lines indicate the 95% CI for the estimate obtained in the meta-analysis of all studies combined. DPS, The Finnish Diabetes Prevention Study;
DR’s EXTRA, Dose-Responses to Exercise Training study; FIN-D2D, National Diabetes Prevention Programme in Finland; PPP, Prevalence,
Prediction and Prevention of Diabetes (PPP)-Botnia study. B: MAF for each available region and ancestry. Across countries of the world, the
MAF ranges from 0 to 1.1%. The relative sample sizes (N) for each region/ancestry are displayed with the blue circles and the relative MAFs of
AKT2 Pro50Thr are displayed with the purple circles, with the size of the circles showing comparative differences. Within Finland (inset), where
the MAF ranges from 0.9 to 1.7%, birthplace and study center data were used to show the allele distribution across the country. aFINRISK 2007,
bFIN-D2D 2007, cFINRISK 1997 and 2002.
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associated with features of metabolic syndrome or lipodys-
trophy. In quantitative trait analysis in the initial discovery
and replication cohorts, we did observe a constellation of
features indicative of a milder lipodystrophy-like phenotype
associated with the rare allele: associations with increased
2-h insulin values (effect = 0.2 SD of log-transformed 2-h
insulin, 95% CI 0.1–0.4, P = 7.93 1028, N = 14,150), lower
insulin sensitivity (effect = 20.3 SD of the log-transformed
Matsuda index, 95% CI20.5 to 20.2, P = 1.2 3 1026, N =
8,566), and increased risk of type 2 diabetes (OR 1.05, 95%
CI 1.0–1.1, P = 8.1 3 1025, 9,783 individuals with type
2 diabetes and 22,662 without diabetes), with no effects on
FG, postprandial glucose, or fasting lipid levels (P $ 0.01)
(Supplementary Table 4). In the T2D-GENES exome se-
quencing data where FG and FI levels were available in
individuals with diabetes, we observed one individual who
was homozygous for the P50T allele with FI and FG levels in
the 99.8th and 98.8th percentiles, respectively. There was a
significant difference in trait distributions by P50T geno-
type (FI, P = 0.002; FG, P = 0.02) (Supplementary Fig. 5,

Supplementary Table 4). Next, we used electronic health
records available in the Finnish METSIM and FINRISK co-
horts to characterize the impact of AKT2 Pro50Thr on dis-
ease risk. We found no evidence for association with any
cancer, polycystic ovary disease, or acanthosis nigricans
(Supplementary Table 5); however, these tests are under-
powered due to the low number of cases and potential for
misclassification. Nor did we find evidence for enrichment
of low-frequency associations in any AKT2-related pathways
or genes implicated in monogenic forms of glycemic disease
(Supplementary Data, Supplementary Table 6, Supplemen-
tary Table 7, Supplementary Fig. 6, Supplementary Fig. 7).

In Vitro Functional Studies
To understand the functional consequences of the AKT2
Pro50Thr variant on the protein, we investigated protein
expression, activation, kinase activity, and downstream ef-
fector phosphorylation.

First, we used in silico classifiers that predict potential
functional consequences of alleles on protein function. Two
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Figure 2—Expression and conservation properties. A: Amino acid alignment and conservation of the three AKT proteins in vertebrates. The
x-axis gives the amino acid position and the height of the lines shows the conservation score across 100 vertebrate genome alignments. The
functional domains are the PH domain (blue) and the kinase domain (green). The position of AKT2 Pro50Thr is shown in red and the locations
of the other AKT2 disease-causing mutations (37–40) are shown in orange: Glu17Lys, Arg208Lys, Arg274His, and Arg467Trp. B: WebLogo
plots of amino acids 35–60 are shown for AKT2, AKT1, and AKT3, contrasting the homology of the three isoforms. The height of letters gives
the relative frequency of different amino acids across the 100 vertebrate species, with the colors showing amino acids with similar charge.
C: Expression of AKT1, AKT2, and AKT3 in eight insulin-sensitive tissues using RNA sequencing data from the GTEx Consortium. subcut.,
subcutaneous.
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of the five classifiers predicted AKT2 Pro50Thr to be dele-
terious (Supplementary Table 3). Second, we used 3-D mod-
els of AKT2 viewed in the PyMol software, which predicted
that the Pro50Thr variant causes a change in the confor-
mations of the lipid binding pleckstrin homology (PH) do-
main (Fig. 3, Supplementary Fig. 8). We hypothesized that
the variant protein is inefficiently recruited to the plasma
membrane thereby impacting AKT2 phosphorylation and
downstream activity.

To assess the molecular and cellular consequence of the
AKT2 Thr50 variant on protein function, we performed a
comparative analysis of AKT2-Thr50 with inactivating and
activating alleles implicated in monogenic disorders of in-
sulin signaling. Analysis of AKT2-Thr50 expression showed
that while AKT2 protein levels remained unchanged,
there was a partial loss of AKT2-Thr50 phosphorylation
at its activation sites (Thr308 and Ser473) in HeLa cells,

suggesting impaired AKT2 signaling (Fig. 3, Supplementary
Fig. 9). Similar effects were observed in human liver–
derived HuH7 cells (Supplementary Fig. 10). AKT2-Thr50
also showed a reduced ability to phosphorylate its down-
stream target GSK3b. These defects in AKT2-Thr50 activity
were confirmed through an in vitro kinase assay (P , 0.01)
(Fig. 3). AKT2-Thr50 showed a similar decrease in kinase
function to the lipodystrophy-causing AKT2-His274 variant.
Using a 4-h time course analysis of AKT2 activity, we verified
a reduction in both maximally phosphorylated Thr308 and
Ser473 in AKT2-Thr50 (Supplementary Fig. 11). To under-
stand how this loss of activity could manifest as a defect in
a known cellular function of AKT2 (42), we determined the
impact of AKT2-Thr50 on cell proliferation in HuH7 cells.
While the addition of AKT2 stimulated hepatocyte pro-
liferation, the response to AKT2-Thr50 was reduced (effect =
21.2, P , 1.0 3 1023) (Fig. 3C, Supplementary Fig. 12).

Figure 3—Functional properties of AKT2-Thr50. A: Predicted protein structure of AKT2. Domain and variants are highlighted as in
Fig. 2A. The relative spatial positioning of the AKT2-Pro50 residue is magnified within the inset. B: HeLa cells were infected with lentiviral
V5-AKT2, V5-AKT2-Lys17, V5-AKT2-Thr50, V5-AKT2-Lys208, V5-AKT2-His274, or V5-AKT2-Trp467; starved for 18 h (white bar); and stimu-
lated for 20 min with 100 nmol/L insulin (gray bar). V5-tagged AKT2 was isolated from cell lysates with anti-V5 agarose beads and
incubated with GSK3b-GST peptide in an in vitro kinase assay. Quantification of phosphorylated substrate peptide (pGSK3b) relative to
total peptide (GST-GSK3b) is shown at the inset. Immunoblots and quantification shown are representative of three independent
replicates. Linear model statistical analyses across all three independent replicates are available in Supplementary Fig. 9. The
in vitro kinase was immunoblotted (IB) with the indicated antibodies. C: HuH7 cells were infected with lentiviral V5-AKT2, V5-AKT2-
Thr50, or control pLX304. At 72 h, relative cellular proliferation was determined with WST-1 assay of HuH7 cells. Error bars represent
SD. ***P = 4.5 3 1025.
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Gene Expression Studies
We queried RNA sequencing data from the GTEx Project
and found that, in agreement with previous studies (43),
AKT2 is highly and ubiquitously expressed across all tissues
(44 tissue types, 3–156 individuals/tissue). Notably the
AKT2 Pro50Thr containing exon is expressed in all tissues
and individuals (Supplementary Fig. 13), suggesting that
the PH domain is important to AKT2 function (44). Of
the three AKT homologs, AKT2 had 1.4-fold higher expres-
sion in skeletal muscle than AKT1 (P = 1.5 3 10219) and
11-fold higher expression than AKT3 (P = 7.8 3 10291).
Skeletal muscle was the only tested tissue displaying such
pronounced AKT2 enrichment (Fig. 2, Supplementary Data,
Supplementary Fig. 14, Supplementary Table 8).

Motivated by the age-related loss of adipose tissue in
Akt2 null mice (35,36) and the growth and lipodystrophy
phenotypes in carriers of fully penetrant alleles (37–40), we
examined associations of expression levels of AKT2 with
BMI, FI, and age in the three adipose tissue data sets (Sup-
plementary Table 9). We found an association between
lower BMI levels and higher AKT2 expression in two co-
horts (EuroBATS: effect = 20.07 SD, P = 6.1 3 10228;
METSIM: effect = 20.06 SD, P = 8.1 3 1028) and also
observed that higher AKT2 expression was associated with
lower log-transformed FI (EuroBATS: effect = 20.04 SD,
P = 1.1 3 1023; METSIM: effect = 20.4 SD, P = 3.3 3
10211). We next tested for gene eQTL and found an eQTL
in the 59UTR of AKT2 (rs11880261, MAF 35%, r2 = 0.002,
D’ = 0.47 in the Finnish 1000 Genomes samples) with the
common allele associated with lower AKT2 expression levels
(METSIM: P = 6.9 3 10214; EuroBATS: P = 2.3 3 1028;
GTEx: P = 0.08) (Supplementary Fig. 15). No association
was detected between rs11880261 and FI levels, suggest-
ing that the common variant eQTL does not drive the ini-
tial FI association (Supplementary Data, Supplementary
Table 10).

DISCUSSION

Meta-analyses of exome sequence and array genotyping
data in up to 38,339 normoglycemic individuals enabled the
discovery, characterization, and functional validation of a FI
association with a low-frequency AKT2 coding variant. Rare,
penetrant variants in genes encoding components of the
insulin-signaling pathway, including AKT2, cause mono-
genic but heterogeneous glycemic disorders (45). In parallel,
common alleles in or near many of these genes impact
FI levels—the AKT2 Pro50Thr association shows an effect
5–10 times larger than those of these previous published
associations (3). This discovery expands both the known
genetic architecture of glucose homeostasis and the allelic
spectrum for AKT2 coding variants associated with glucose
homeostasis into the low-frequency range and highlights
the effects of both locus and allelic heterogeneity (Fig. 4).

Individuals of Finnish ancestry drove the AKT2
Pro50Thr association signal. This demonstrates the value
of association studies in different ancestries where frequen-
cies of rare alleles may increase due to selective pressure or

stochastic changes from population bottlenecks and genetic
drift. The allele associated with increased FI most likely rose
to a higher frequency due to genetic drift and exists within
the spectrum of rare and low-frequency variation observed
in Finland, the excess of which facilitates the study of com-
plex trait associations (46).

Although the AKT2 Pro50Thr allele shows a strong effect
on all of the insulin measures and modest increased type 2
diabetes risk (OR 1.05), we see no effect on any of the
glucose measures in individuals without diabetes. Due to
the effects of both type 2 diabetes and its treatment on
glucose homeostasis, we have not tested genetic associa-
tions of FG and FI in individuals with type 2 diabetes,
although we observed an individual with diabetes homozy-
gous for P50T with extreme FI and FG levels. The mecha-
nism for such heterogeneous effects is unclear and detailed
in vivo physiological studies are needed.

Figure 4—Genetic architecture of rare, low-frequency, and common
variants associated with FI levels. In this plot, the absolute values of
the percent change in FI level due to rare monogenic mutations (dia-
monds) and common genetic variants (circles) are plotted against the
MAF of the variant. The extremely rare monogenic mutations (above
the dashed line to the left of the x-axis) were observed in 2–18 indi-
viduals (3,37–40,48,53,54), with the height of the point indicating
the percent change in FI levels of mutation carriers from 40 pmol/L,
an estimate of population mean FI level. Mutations in INSR and AKT2
p.Arg274His cause compensatory hyperinsulinemia, individuals with
TBC1D4 p.Arg363Ter show normal FI levels but postprandial hyper-
insulinemia, and mutations in PTEN cause enhanced insulin sensitivity
providing protection against type 2 diabetes. For common variants,
the percent change in FI levels per insulin-increasing allele is plotted
above the solid horizontal axis. These observations are from sequenc-
ing (6) and array-based genome-wide association studies (3). For sev-
eral genes, the effects from rare mutations can be compared with the
effects of common variants in or near the gene: PPARG (blue),
TBC1D4 (green), PTEN (orange), and AKT2 (red). aDonohue syndrome:
biallelic LoF mutations in INSR (54). bRabson-Mendenhall syndrome:
biallelic LoF mutations in INSR (54). cPostpubertal severe insulin re-
sistance: heterozygous or homozygous LoF mutations in INSR (54).
dLoF PTEN mutations cause Cowden syndrome in which carriers
exhibit a lowered FI level (mean 29 pmol/L) compared with matched
control subjects (3). eCarriers with the AKT2 p.Glu17Lys mutation were
described with hypoinsulinemic hypoketotic hypoglycemia and hemi-
hypertrophy with undetectable serum insulin (37,38).
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We leveraged similar findings to generate hypotheses for
future work on AKT2 and downstream targets to further
illuminate tissue-specific mechanisms. All reported carriers
of the lipodystrophy-causing AKT2 Arg274His allele are
hyperinsulinemic, and three of the four carriers have dia-
betes (39). These observations are similar to the ones made
for TBC1D4 (which encodes a protein that acts as a sub-
strate immediately downstream of AKT2 in the PI3K path-
way). In TBC1D4, a population-specific, protein-truncating
variant (Arg684Ter) is associated with increased type 2 di-
abetes risk (OR 10.3), increased postprandial glucose and
insulin levels, and a modest decrease in FI and FG levels (6)
(Fig. 4). Arg363Ter, another stop codon allele in TBC1D4, is
rare (not observed in ExAC) and has been reported with a
modest elevation in FI levels but extreme postprandial
hyperinsulinemia and acanthosis nigricans (47). Small in-
terfering RNA–mediated gene knockdown of AKT2 in hu-
man primary myotubes completely abolishes insulin action
on glucose uptake and glycogen synthesis (48), which high-
lights the importance of an intact AKT2-TBC1D4 signaling
pathway in the regulation of insulin sensitivity in humans.
TBC1D4 is ubiquitously expressed with adipose and skeletal
muscle tissue ranking among the tissues with highest
expression in GTEx. TBC1D4 Arg363Ter seems to have
an effect in adipocytes (47), whereas Arg684Ter falls in
an exon that is exclusively expressed in skeletal and
heart muscle (6,49). This is a likely cause of the TBC1D4
Arg684Ter tissue specificity, which appears to differ from
the other TBC1D4 Arg363Ter variant as well as the AKT2
variants.

The phenotypes exhibited by carriers of rare, penetrant
AKT2 alleles reflect differential AKT2 activation with kinet-
ically inactivating variants, resulting in hyperinsulinemia
and lipodystrophy, whereas kinetically activating variants
lead to hypoglycemia (37–39). The decrease of cellular pro-
liferation we observe demonstrates that the downstream
signaling changes caused by AKT2-Thr50 are sufficient in
hepatocytes to impair AKT2 function at the cellular level
while maintaining varying portions of regulatory capacity.
Along with the observed association with increased FI
levels in human populations, these results support AKT2
Pro50Thr as a partial LoF variant. The inactivating AKT2
Pro50Thr variant contrasts with the known activating
AKT2 Glu17Lys mutation and showcases bidirectional ef-
fects within the PH domain of AKT2. Although the Pro50
residue is conserved in AKT2 throughout all vertebrates,
the variant lies within the PH domain that is not conserved
between AKT isoforms (Fig. 2). These residues, harboring
the Pro50 variant, may functionally distinguish AKT2 from
AKT1 and AKT3. Although AKT isoforms are activated in
the same mechanism within the PI3K pathway downstream
of insulin, the Akt22/2 mouse is the only knockout of the
gene family to be characterized by insulin resistance and
diabetes (35,50–52). A deeper understanding of what
makes the AKT2 isoform distinct could offer potential sites
for therapeutic intervention and enable more targeted ap-
proaches to disease prevention.
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