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Abstract

This paper describes a model that learns to pronounce English
words. Learning occurs in two modules: 1) a rule-based mod-
ule that constructs pronunciations by phonetic analysis of the
letter string, and 2) a whole-word module that learns to asso-
ciate subsets of letters to the pronunciation, without phonetic
analysis. In a simulation on a corpus of over 300 words the
model produced pronunciation latencies consistent with the ef-
fects of word frequency and orthographic regularity observed
in human data. Implications of the model for theories of visual
word processing and reading instruction are discussed.

Introduction

Mastering English word pronunciation is made difficult by the
many inconsistencies in English spelling to sound correspon-
dences. As a result, the skilled reader of English cannot be
content with learning a small set of generally applicable rules,
but instead must master a large number of highly specific
rules and their exceptions. For example, a rule that would
pronounce the word ‘bough’ would have to specify the entire
word to distinguish it from ‘rough’ or ‘through.” It is not
surprising that many children have great difficulty learning to
read English, and many adults remain poor readers. If we un-
derstood how knowledge about pronunciation was acquired
and represented, it might be possible to design more effective
instructional techniques.

Our understanding of how pronunciation knowledge is
learned and represented can be furthered by modeling the
process with the goal of simulating the behavior of the hu-
man learner. This approach has been taken by Coltheart et al
(1993), Seidenberg & McClelland (1989), and Seidenberg et
al (1995). The model of Coltheart et al (1993) learns sym-
bolic pronunciation rules which specify letter-phoneme cor-
respondences for specific letter contexts. Each rule receives a
weight proportional to the number of different words in which
the rule applies. This procedure weights letter-phoneme cor-
respondences on the basis of their predictive value across
words, rather than on the frequency of occurrence alone. This
model generates correct pronunciations for a large proportion
of English words.

The models of Seidenberg & McClelland (1989) and Sei-
denberg et al (1995) learn to pronounce words by adjusting
the weights between word features and phoneme units in a
connectionist network. Their models are sensitive to the rel-
ative frequency of specific letter-phoneme correspondences
in specific contexts. Both Seidenberg & McClelland (1989)
and Seidenberg et al (1995) train their systems by presenting
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words in proportion to their (log) frequency of occurrence in
English text. Thus, weights in their models are sensitive to
both the regularity across words and the frequencies of the
individual words in which specific mappings appear. The two
connectionist models differ considerably, but each has been
successful in accounting for important regularities in isolated
word and nonword pronunciation, demonstrating that a uni-
form process of phonetic analysis can simulate a diverse range
of human pronunciation data.

In general, however, the psychological literature suggests
that multiple distinct memory systems are involved in learn-
ing complex tasks (see Baddeley 1990). Researchers in read-
ing have long debated the role of phonetic analysis and vi-
sual recognition in reading individual words (e.g., Paap et al
1987). Differences in learning strategy or ability can result
in different patterns of performance. Teaching methods have
tended to reflect the changing preferences for phonetic anal-
ysis vs. whole-word recognition with little understanding of
how this affects reading fluency.

In this paper we report results of simulations that explore
how multiple learning algorithms could cooperate to learn
to pronounce a large corpus of English words. Because we
ultimately simulate the acquisition of reading skill under dif-
ferent instructional techniques, we choose an architecture that
can capture the contribution of both phonetic analysis and
whole-word techniques. Learning proceeds in two distinct
modules: 1) a rule-based module that learns specific letter-
to-phoneme rules, and 2) a whole-word module that learns to
map word features to the complete pronunciation without pho-
netic analysis. After training, some words are pronounced by
the application of phonetic rules, others by complete or partial
mappings of letters to whole word pronunciations.

Model Description

The model is implemented in the Soar cognitive architecture
(Newell 1990). In Soar, all knowledge is stored in long-
term memory as productions, which fire when their condi-
tions are matched by elements in working memory. When a
production fires its output is placed in working memory. In
Soar, productions propose, select, and apply operators, which
are Soar’s basic units for modifying internal representations.
When a Soar model initially encounters a problem, it may
not yet have the productions needed to propose or select the
appropriate operator. At this point, Soar reaches an impasse
and must create a subgoal in which other existing knowledge
can be used to resolve the impasse. For example, Soar may
engage in look-ahead search by trying out one of the com-
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peting operators to see if it produces a familiar word. Soar
learns by resolving impasses. Once an impasse is resolved,
the subgoal knowledge used in the resolution is “chunked”
into a single production which will then immediately fire the
next time the same problem is encountered. Since a chunk
summarizes the performance of several operators, chunking
produces more efficient processing resulting in a speed-up
in performance. Also, depending on the generality of the
chunked production, the selection knowledge may transfer to
similar problems. Soar’s chunking mechanism is the basis for
our model’s learning algorithms.

The important functionality of the model is contained in
two modules: the rule-based module, and the whole-word
module. The rule-based module attempts to construct a pro-
nunciation by phonetic analysis. Knowledge about letter-
phoneme correspondences are stored as rules that produce
phonemes given a letter context. Prior to training, the rule-
based module is given rules for all individual letter-phoneme
correspondences (including letter pairs, such as ‘th,” that map
onto single phonemes). These rules are not sufficient to reli-
ably construct pronunciations. All vowels and some conso-
nants have more than one phoneme correspondence, and the
model must learn to resolve this ambiguity by learning rules
for choosing the correct phoneme. The greater the consis-
tency in letter-phoneme mapping for a particular context, the
greater the opportunity for learning rules that generalize to
other words.

The whole-word module begins with no domain knowl-
edge. During training, its algorithm will create rules which
map one or more of the letters in a word to the entire pronun-
ciation for the word.

To describe the model’s functioning, consider how the
model might learn to pronounce its first word, ‘dog’ [/dog/]
(the phonetic notationused in Seidenberg & McClelland, 1989
will be used throughout). The model first attempts to match
a pronunciation production to the entire letter string (‘dog’).
With sufficient exposure to a word there is a high likelihood
that a chunk will have been created that associates the entire
letter string to the correct pronunciation. If so, the model
produces the pronunciation in the minimum number of steps.
If no such chunk exists, as is the case upon initial presenta-
tion of a word, an impasse results and the model first tries
to construct a pronunciation by phonetic analysis in the rule
system.

In the rule system, phonetic analysis proceeds by succes-
sively selecting a phoneme for each letter working from the
beginning of the word to the end. An index pointer is set
to the first letter (‘d’) and rules that assign phoneme values
to the letter ‘d’ are proposed. Since there are some double
letters that map onto single phonemes (e.g., ‘th’ — /T/) and
since prior learning may have produced rules which consider
the subsequent letter context, rules that map ‘do’ and ‘dog’
are also matched. Rules which match a larger context are
preferred, thereby creating a bias in favor of rules with more
specific context-sensitive assignments during learning. At the
outset, however, there are no more specific rules for the ‘d’ in
‘dog’ and given that ‘d’ is unambiguous, the phoneme /d/ is
chosen as the first phoneme, and the index pointer updated to
the "o’.

The vowel "0’ has several phonetic realizations. An im-
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passe is reached because there is no knowledge yet to use
to select one of the options. A subgoal is created to resolve
this impasse. In the current implementation, operators in the
subgoal choose randomly from the set of possible phonemes
and then attempt to complete the word pronunciation. If
the correct pronunciation is generated, the model learns by
associating the correct pronunciation of the ‘o’ with the sub-
sequent two letters. For the "o’ in ‘dog’ it will build a rule
that prefers the phoneme /o/ for the letter ‘o’ when followed
by a word-final ‘g’.

If the model chooses correctly in this subgoal, it returns
the correct phoneme for ‘0’ to the phonetic analysis subgoal.
If the model chooses incorrectly, our current implementation
expends no further resources and simply guesses among the
remaining operators. In either case, the index pointer ad-
vances to "g’, which can either be realized as a hard or soft
g’. Again, an impasse results and the subgoal process is
repeated for 'g’.

If the rule-based module correctly assembles the pronunci-
ation, it summarizes its processing by building a chunk that
produces /dog/ from ‘dog’. It may also have built a rule to
pronounce ‘o’ when followed by word-final ‘g’ and/or a rule
to pronounce word-final "g’. The chances of correctly pro-
nouncing ‘dog’ on the first try are about 1 in 12. The initial
set of letter-phoneme rules specify 6 alternate phonemes for
‘o’ and 2 for ‘g’. Both mappings must be correctly assigned
before learning will occur. Likewise, the rule for "o’ followed
by word-final ‘g’ has a 1 in 12 chance of being learned, since
again both mappings must be correctly assigned. The final ‘g’
rule however has a 1 in 2 chance of being learned. In general,
our model is biased to resolve ambiguities at or near the end
of a word before those at or near the beginning.

Repeated exposures to the word ‘dog’ will increase the like-
lihood of one or more of the rules being learned. Likewise,
repeated exposure to words with word-final ‘g’ and with word-
final "og’ will eventually produce rules that resolve those am-
biguities. Thus, with a few exposures to ‘dog’ and ‘log’ there
is a reasonable probability of quickly generating pronunci-
ations for ‘bog’, ‘cog’ and even nonwords such as ‘mog’.
The model will learn less useful chunks if initially exposed to
many words with irregular letter-phoneme correspondences.
Since the more regular letter-phoneme correspondences oc-
cur more often by definition, there is a greater probability of
learning regular correspondences in the rule-based module.

Initially, the chance of correctly pronouncing a word is
small, even for a very regular word like ‘dog’. If the phonetic
analysis fails the whole-word module attempts to generate a
pronunciation. The algorithm used in the whole-word module
is adapted from the Symbolic Category Acquisition (SCA) al-
gorithm of Miller (1993). Input to SCA is an object defined by
features; output is a category to which the object is assigned
based on the set of features. Here, SCA treats the letters
in a word as features, and the pronunciation as the category.
As training progresses SCA builds productions that map an
increasing number of letters in a word to the pronunciation.
In this way, repeated exposure leads to more specific produc-
tions, until at the end there is a production that associates
the entire letter string with the correct pronunciation. It is
possible to learn to pronounce a word solely by the whole-
word module. Once there is a chunk that matches the entire



letter string that chunk will fire in the first stage of process-
ing and will be pronounced in minimum time, regardless of
whether that chunk was created in the rule-based module or
the whole-word module.

Because letter strings are always being matched to whole
pronunciations, the whole-word system does not learn pro-
ductions of general utility. In contrast, productions in the
rule-based system specify single letter pronunciations for spe-
cific contexts that can appear in many words. This distinction
captures an important difference between whole-word reading
and phonetic analysis.

Simulation

We evaluated the model by training it on a corpus of words
of varying frequency and orthographic regularity. The com-
bined effects of word frequency and orthographic regularity
produce a highly reliable pattern of pronunciation times in
human data. High frequency words are pronounced more
rapidly than low frequency words. Orthographically regu-
lar low frequency words are pronounced more rapidly than
orthographically irregular low frequency words. But, regu-
larity has no effect on high frequency words, many of which
are irregular. If our model correctly simulates pronunciation
difficulty, then it should produce pronunciation latencies that
at least preserve the ordinal relationships seen in the human
data.

We use the number of Soar operators selected as a measure
of pronunciation latency. The greater the number of operators
required for a task, the greater the difficulty and, hence, the
greater the latency. Our model requires a minimum of 2
operators for a fully learned word: one to perceive the letter
string, and one to generate the pronunciation. If a word
is not fully learned, additional operators will be needed for
the phonetic analysis and the whole-word generation. The
maximum number of operators depends on the nature of the
input and prior exposure and cannot be calculated directly.
The maximum observed in this simulation was 46 operators.

J. McClelland graciously provided us with the word list
used by Seidenberg & McClelland (1989). We created a
word list containing regular and exception words by selecting
items from the Seidenberg & McClelland word list that had
already been categorized on the basis of orthographic regu-
larity (see Seidenberg & McClelland, 1989). Consistent and
regular words have regular orthography and were both cate-
gorized as regular. Exception words and some strange words
(e.g. ‘aisle’) have irregular orthography and were grouped to-
gether as exception words. The strange words with consistent,
regular orthography (e.g. “yelp’) were categorized as regular.
This yielded a total of 208 regular words and 127 exception
words.

To simulate word frequency, the number of exposures to
each word was determined by dividing its log frequency by
the log frequency of the least frequent word. This procedure
maintains the ratio of log frequencies between words. For
analysis, the resulting frequency ratios were then partitioned
into three equally spaced frequency categories. Each word
was thus categorized as a ‘high’ ‘medium’ or ‘low’ frequency
word. The resulting list was randomized to avoid biasing the
model by systematic presentation effects. Five repetitions of
the list were run and statistics computed after each run.
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Table 1: Model Latencies by Frequency

Freq Regular Exception E-R

Low  10.12 1220 208
Med  3.50 422 72
High 227 234 07

Table 2: Model Latencies by Training Cycle

Freq Run Regular Exception E-R
Low 1 20.04 21.67 1.63
2 11.50 14.15 2.65
3 p )| 10.28 251
4 6.13 826 2.13
5 5.26 6.64 1.38
Med 1 8.86 12.63 3.77
2 2.67 2.50 -17
3 2.00 2.00 0
4 2.00 2.00 0
5 2.00 2.00 0
High 1 333 3.70 43
2 2.00 2.00 0
3 2.00 2.00 0
4 2.00 2.00 0
5 2.00 2.00 0

Table 1 shows a frequency by regularity interaction similar
to that seen in the human data. The advantage of regular-
ity seen for low frequency words is systematically reduced
with increasing frequency. Table 2 shows the data broken
down by runs. The advantage of regularity decreases in all
frequency groups as the number of runs increases. However,
this decrease is much less for the lowest frequency words.
Interestingly, with enough exposure all words are pronounced
very quickly. This too is a feature of the human data. Good
readers do not show the effect of orthographic regularity for
low frequency words, presumably because they have seen
even moderately low frequency words many times. Like our
model, human readers seem to be sensitive to the absolute
amount of exposure, not just to the relative frequency.

The rule-based system learns chunks that resolve letter am-
biguities by looking at the immediate letter context. These
rules should generalize to words with similar contexts, speed-
ing up the learning of new words. This trend appears in
Table 2. If the rule-based system is learning useful chunks,
generalization should be more effective with regular words
than exception words. Table 3 shows that 59% of the cor-
rect recognitions occurred in the rule-based module, 41% in
the whole-word module. The conditional probability of a
rule-based solution given a regular word was p(rule | regular)
= .66, while p(whole | regular) = .34. The rule-based sys-
tem pronounced almost twice as many regular words as the
whole-word module. In contrast, the conditional probabilities
for exception words was: p(rule | exception) = .46, p(whole
| exception) = .54. The whole-word module pronounced a
slightly greater proportion of exception words than the rule-
based module. This is consistent with our initial expectation
that analysis should be more effective for regular words than
for irregular words.



Table 3: Relative Frequency of Process Method
Rule-Based Whole-Word

Regular 44 23
Exception 15 A8
Discussion

We have shown how even a simple two-process model can
account for important aspects of human data on visual word
pronunciation.

One obvious concern is that we have produced only qualita-
tive fits, relying on the overall similarity of patterns between
the human response time results and operator count, which
measures the computational complexity of the problem for
our Soar model. A related concern is that the model learns too
quickly. Performance is at asymptote after only 15 exposures
to a corpus of over 300 words. Surely, this exceeds human
learning rates. Consider, however, that there are many param-
eters that could be adjusted to improve the correspondence to
response time and learning rate data. Changing the input fea-
tures from letters to letter features, for example, would alter
the learning rate of both modules, create chunks that mapped
fragments of two letters onto a phoneme, and affect the con-
texts over which generalization would occur. Likewise, by
tinkering with the phonetic analysis and the SCA algorithm
we could fine tune the number of operators. For example,
gradually increasing the specificity of the chunks with train-
ing would alter both the learning rate and the relative number
of operators for regular and exception words. And so on. For
present purposes though we deliberately avoided the tempta-
tion to adjust parameters to achieve a better fit. Because we
are striving for a model with breadth that could also simulate
different methods of reading instruction, it seemed prudent to
explore a very simple, straightforward architecture, and not
risk overfitting by arbitrarily adjusting parameters.

A reliance on ordinal fits also avoids assumptions about
the relative scale properties of response time and operators.
Newell (1990) derives a estimate of 60-120 msec for a de-
cision cycle which has proven useful in fitting data in some
contexts. Each decision cycle represents the selection of an
operator, and any such estimation assumes that each operator
takes an approximately constant time. This approximation
may fail because it does not adequately reflect brain process-
ing, or because operators within a model are not matched for
computational complexity. Ordinal fits make fewer poten-
tially erroneous assumptions.

What do we feel are the theoretically important features of
our model? Certainly, there is a theoretical stance taken in
using a dual-route approach. Because we wish ultimately to
model the effects of different instructional methods, it is im-
portant to explore the hypothesis that they produce different
internal representations. The model also asserts that phonetic
analysis rules are taught, not inferred from practice. The ef-
fect of practice is to condition the application of the rules.
The model currently has no way of creating phonetic rules
without explicit knowledge of the individual letter-phoneme
correspondences. Without this knowledge all learning will
be done in the whole-word system, whose rules will not gen-
eralize. This is a strong assertion. Later implementations

may relax this to enable the model to reason about the pos-
sible letter-phoneme relationships in words it has learned in
the whole-word module. However, we know of no data that
would suggest that such reasoning is done implicitly when
reading, nor data that would suggest that the rules for phonetic
analysis can be learned implicitly from whole-word instruc-
tion/reading. Our current hypothesis is that if children can
learn phonetic rules by inference, then it is not a by-product
of reading, but a separate deliberate process.

Another feature of the model is the assumption that fully
learned words are “recognized” and not pronounced by pho-
netic analysis. Phonetic analysis occurs only for words that
have not been fully learned. With enough exposure then,
many words will be pronounced as whole-words. Currently,
this exposure is in terms of absolute frequency. The higher
a word’s frequency, the more often it is encountered, and the
greater the opportunity for one of the two system to learn it
completely. The only effect of relative frequency is to alter
the probability that a given word will be encountered. It is not
clear yet whether the strong form of this is correct. The evi-
dence that good readers show no difference in pronunciation
times for regular and irregular words suggests that the abso-
lute number of times a word is encountered is important. Our
model perhaps exaggerates the effect of absolute frequency
by learning so quickly, but this serves the useful purpose of
focusing interest on this factor.

Finally, the model is sensitive to the order in which it en-
counters training examples. If given regular words, it will
learn chunks that can be usefully generalized. If first exposed
to irregular words, the chunks will be less useful. Again,
the effect may be exaggerated by the simplicity of the model,
but this too leads to interesting and testable predictions for
reading instruction.

A simple dual process model of human visual word pro-
nunciation was presented that successfully simulates the com-
bined effects of word frequency and orthographic regularity.
The simplicity of the model exaggerates the effects of cer-
tain factors, such as absolute frequency and order effects in
training, providing useful insights into factors which may also
affect how we learn to read.
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