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Abstract

Efficient Natural Language Processing with Limited Data and Resources

by

Hong Wang

Natural language processing (NLP) has long been regarded as the pinnacle of artificial

intelligence, aiming to achieve a comprehensive understanding of human languages. In

recent years, the field has experienced significant advancements with the transition from

rule-based approaches to deep learning methodologies. However, the standard approaches

often rely on vast amounts of data for learning, highlighting the necessity for more data-

efficient techniques. Additionally, effectively utilizing available resources while addressing

the challenges of frequent model updates and safeguarding against malicious attacks that

exploit limited resources presents another significant problem in NLP.

This dissertation focuses on the development of efficient natural language processing

(NLP) models under limited data and the effective utilization of available resources. In

the first part, we address the challenge of learning models with limited data. For scenarios

where only a few examples are available, we propose a meta-learning approach that

leverages task-specific meta information to effectively learn new models. For cases with

a moderate amount of data but still insufficient for more demanding tasks, we introduce

self-supervised learning techniques to enhance performance by incorporating additional

learning tasks from the available data. We also explore the limitations of even state-of-

the-art language models, such as GPT-3, in handling out-of-distribution data shifts and

propose a tutor-based learning approach that converts out-of-distribution problems into

in-distribution ones through step-by-step demonstrations.

In the second part, we shift our focus to optimizing resource utilization in NLP. Given

x



the rapidly changing nature of the world, frequent updates of deployed models with

new data are crucial. We present innovative approaches for effectively updating models

in lifelong learning scenarios. As the adoption of large language models as backbone

dialogue systems gains popularity, resource limitations become a significant concern. To

counter malicious attacks, particularly Distributed Denial of Service (DDoS) attacks,

we investigate the detection of bot imposters using a single question. By accurately

distinguishing between human users and bots, our objective is to maximize resource

allocation for real users and ensure uninterrupted service.
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Chapter 1

Introduction

1.1 Motivation

Language serves as an indispensable tool, playing a crucial role in human communica-

tion for countless generations. It enables the exchange and transmission of information,

thoughts, ideas, emotions, and knowledge, bridging the gaps between individuals and fos-

tering collaboration, shared experiences, and mutual understanding. Through language,

societies have effectively preserved and shared accumulated wisdom, cultural heritage,

and scientific breakthroughs, contributing to the continuous progress and development

of civilizations.

However, in the era of information technology, machines have significantly evolved

in their power and user-friendliness. Despite their capabilities, machines still rely on

human input to understand task requirements and carry out operations. For example,

human intervention is necessary when taking a customer’s order at a restaurant. Conse-

quently, human communication has become a bottleneck in our society, hindering overall

efficiency. Unlike machines, humans cannot duplicate themselves, work round the clock,

or instantaneously process information by reading documents or gathering data.
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Introduction Chapter 1

Fortunately, Natural Language Processing (NLP) has emerged as a promising solution

to reduce the extensive need for human involvement in various processes. By harness-

ing the power of NLP, machines can directly comprehend and execute human language,

thereby diminishing reliance on human intervention. This advancement enables seamless

communication and interaction between humans and machines, streamlining tasks and

enhancing overall efficiency. In the past, machine interactions primarily relied on user in-

terfaces and machine-specific languages, resulting in certain limitations and complexities.

However, the introduction of NLP has revolutionized this landscape, simplifying human-

machine interactions. When combined with external tools such as robots, NLP offers

a significant boost in capabilities, empowering machines to perform a broader range of

tasks. Imagine a future scenario where everyone has access to a personalized robot assis-

tant equipped with advanced NLP capabilities. These robot assistants become invaluable

allies, capable of understanding and fulfilling various requirements. By delegating tasks

to these assistants, individuals gain more time and freedom to focus on other meaningful

endeavors, while the assistants efficiently handle intricate details and comprehend the

needs of others.

In recent years, Natural Language Processing (NLP) has witnessed remarkable progress,

driven in large part by the emergence of pre-trained language models like BERT [1] and

GPT-2 [2]. These advancements have been pivotal in propelling the field forward. Build-

ing on these successes, subsequent developments, such as GPT-3 [3], demonstrated the

transformative potential of scaling up model sizes, leading to significant performance

improvements. Furthermore, ingenious techniques like instruction tuning and reinforce-

ment learning from human feedback have enabled ChatGPT [4] to achieve astonishing

results in text generation, empowering users in various downstream tasks such as sum-

marization, question answering, and polished writing. Its exceptional capabilities quickly

captivated the attention of 1 million users in just 5 days. However, despite its impres-

2
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sive text generation abilities, ChatGPT remains limited to pattern matching solely on

text-to-text interactions. Expanding on these foundations, GPT-4 [5] took a significant

step forward by incorporating image inputs in addition to text, broadening the scope of

possibilities. Moreover, ChatGPT Plugins [6] further extended the model’s capabilities

by integrating additional tools like OpenTable, allowing the model to directly book tables

through its interface. This trend highlights the increasing utilization of Large Language

Models, such as ChatGPT, as the core component capable of processing diverse input

data, including text and visual inputs, and generating outputs in the form of text or

performing operations on various software, tools, or even robots.

1.2 Challenges

After highlighting the significance and motivation behind NLP, it is essential to ad-

dress some of the challenges posed by limited data and resources.

One major challenge arises when dealing with tasks that have only a limited number

of examples. In such scenarios, there is a risk of the model overfitting to the available

examples, leading to poor generalization to new cases. Additionally, certain situations

may involve encountering out-of-distribution (OOD) data, where the distribution during

training differs from that during inference. Consequently, the model struggles to gen-

eralize to the new distribution, even if it is a large language model, which presents a

significant limitation.

Another crucial challenge is the constraint of resources. With limited resources at

hand, it becomes essential to strategize how to maximize their usage while avoiding any

misuse. As the world evolves rapidly, datasets and tasks continue to update, necessitat-

ing the constant need to train new models incorporating all the accumulated knowledge.

This process can be resource-intensive. Lifelong learning seeks to address this concern

3
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by focusing on learning new knowledge while ensuring the model maintains good per-

formance on previously learned tasks. However, lifelong learning faces the challenge of

catastrophic forgetting, where the model tends to easily forget the knowledge acquired

from previous tasks.

1.3 Contributions

In the first part of this dissertation, our focus centers on addressing the challenges

of learning with limited data. To tackle learning with few-shot examples, we introduce

few-shot learning applied to the task of multi-hop reasoning over knowledge graphs. To

facilitate this, we present two meticulously crafted datasets specifically designed for this

purpose. Our proposed approach involves employing a meta-encoder, which encodes

task-specific information to generate a superior task-dependent model for new tasks. In

the context of multi-hop reasoning, we leverage neighbor encoders and path encoders to

incorporate task-specific information, and our experiments demonstrate the effectiveness

of the augmented meta-encoder in enhancing model performance.

Moving beyond learning solely from the available data, we delve into self-supervised

learning for the summarization task. We explore the use of the entire document to learn

contextualized sentence representations through self-supervision, without relying on any

human annotations. We experiment with various self-supervised approaches for extrac-

tive summarization, and one of these approaches achieves state-of-the-art results using

a basic hierarchical model. Benefiting from self-supervised pre-training, the summariza-

tion model demonstrates enhanced sample efficiency and faster convergence compared to

models trained from scratch.

Subsequently, we investigate the problem of handling out-of-distribution (OOD) data

with large language models (LMs). Specifically, we study the limitations of LMs in

4
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arithmetic and symbolic induction tasks when facing OOD scenarios. Through rigorous

experimentation, we identify a set of simple symbolic manipulation tasks that reveal the

challenges LMs encounter in these domains. To address these limitations, we explore sev-

eral potential techniques, including positional markers, fine-grained computation steps,

and LMs with callable programs. While these techniques offer some mitigation, they do

not fully solve the generalization problem. Finally, we demonstrate the effectiveness of

LMs with tutor-based training, achieving 100% accuracy in OOD and repeated symbol

situations. Our comprehensive analysis sheds light on new possibilities to overcome the

limitations of LMs in symbolic manipulation tasks, providing valuable insights for future

research in this domain.

In the second part of this dissertation, we shift our focus towards optimizing resource

utilization in NLP, recognizing the importance of updating deployed models with new

data in the ever-changing world. To address this, we present innovative approaches for

effectively updating models in lifelong learning scenarios. First, we introduce the lifelong

relation detection problem and construct lifelong relation detection benchmarks using

two datasets with extensive relation vocabularies: SimpleQuestions [7] and FewRel [8].

In tackling this challenge, we propose a simple yet powerful memory replay approach,

which outperforms current popular methods such as EWC and GEM. Additionally, we

propose an alignment model designed to mitigate the catastrophic forgetting problem,

which slows down the rapid changes in the embedding space during lifelong learning.

This approach offers a promising solution to enhance model performance and preserve

previously learned knowledge while adapting to new tasks.

As large language models increasingly serve as the backbone of dialogue systems,

there arises a pressing concern regarding their potential misuse for malicious purposes.

Among the most significant threats is the impersonation of human users by these mod-

els, enabling nefarious activities like fraud, spamming, or denial-of-service attacks. To

5
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safeguard against such misuse, we propose a novel framework called FLAIR, designed

for detecting conversational bots in an online environment. This approach effectively

differentiates human users from bots by using questions that are easy for humans but

difficult for bots, and vice versa. Through comprehensive experiments, we demonstrate

the effectiveness of this framework and identify the strengths of different question types.

By providing online service providers with a new tool to safeguard against fraudulent

activities, FLAIR ensures that resources are utilized optimally for real humans.

6
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Learning with Limited Data

7



Chapter 2

Task-Dependent Meta-Learning with

Few-Shot Examples

2.1 Introduction

Knowledge Graphs [9, 10, 11] represent entities’ relational knowledge in the form of

triples, i.e., (subject, predicate, object), and has been proven to be essential and helpful

in various downstream applications such as question answering [12, 13, 14, 15]. Since

most existing KGs are highly incomplete, a lot of studies [16, 17, 18] have been done

in automatically completing KGs, i.e., inferring missing triples. However, most of these

studies only focus on frequent relations and ignore the relations with limited training

samples. As a matter of fact, a large portion of KG relations are actually long-tail, i.e.,

they have very few instances. Therefore, it is important to consider the task of knowledge

graph completion under few-shot learning setting, where limited instances are available

for new tasks. Previous research [19] first propose a graph network based metric-learning

framework for this problem but the metric is learned upon graph embeddings and their

method does not provide reasoning rationales for the predictions.

8



Task-Dependent Meta-Learning with Few-Shot Examples Chapter 2

In contrast, we propose a meta reasoning agent that learns to make predictions along

with multi-hop reasoning chains, thus the prediction of our model is fully explainable.

In this problem setting, each task corresponds to a particular relation and the goal is

to infer the end entity given the start entity (i.e., the query). Following the recent

work [20, 21, 22, 23, 24, 25] on meta-learning, we aim to learns a reasoning agent that

can effectively adapt to new relations with only a few examples. This is quite challenging

since the model must learn to leverage its prior learning experience for fast adaptation

and at the same time avoid overfitting on the few-shot training examples. Model-agnostic

meta-learning algorithm (MAML) [21] is a popular and general algorithm to solve this

problem. It aims to learn an initial model that captures the common knowledge shared

within the tasks so that it can adapt on the new task quickly. But one problem of MAML

is that it only learns a single initial model, which can not fit the new task without training,

and has limited power in the case of diverse tasks [26]. Another problem is that MAML

only learns the common knowledge shared within the tasks without taking advantage of

the relationship between them since no task-specific information is used when learning

the initial model.

In order to learn the relationship between tasks, the model must be aware of the

identity of the current task, such as the query relation in our problem. But simply using

task identity will be a problem, since there is no way to initialize the identity of the new

task except random initialization. We try to solve this problem via a meta-encoder that

learns the task representation from meta-information which is available on the new task

as well. Specifically, the meta-encoder is used to encode the task-specific information

and generate the representation of the task as part of parameters. Through this way,

different tasks will have different representations, thus different initial models. Also, since

the presentation of the task is available, the model can leverage the relationship between

different tasks. To apply this idea in our problem, we propose two meta-encoder to encode

9
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two different kinds of task-specific information. One is to use the neighbor encoder to

encode the start entity and the end entity, and then use the difference between the

embedding of the start entity and the end entity as the task representation. But this

take-specific information is not robust when the number of neighbors is small. Thus we

propose another way for the case which encodes the path from the start entity to the

end entity. On two constructed few-shot multi-hop reasoning datasets, we show that

the augmented meta-encoder yields much better initial point and outperforms several

few-shot learning baselines.

The main contributions of this work include:

• We introduce few-shot learning on the task of multi-hop reasoning over knowledge

graph, and present two constructed datasets for this task.

•We propose to use meta-encoder to encode task-specific information so as to generate

better task-dependent model for the new task.

• We apply neighbor encoder and path encoder to leverage the task-specific infor-

mation in multi-hop reasoning task, and experiments verify the effectiveness of the aug-

mented meta-encoder.

2.2 Related Work

Reasoning over Knowledge Graphs Knowledge graph reasoning aims to infer the

existence of a query relation between two entities. There are two general approaches

for knowledge graph reasoning. The embedding based approaches [27, 16, 28, 17, 29]

learn the representations of the relations and entities in the KG with some heuristic self-

supervised loss functions, while path search based approaches [18, 30, 31, 32, 33, 34, 35]

solve this problem through multi-hop reasoning, i.e., finding the reasoning path between

two entities. In spite of the superior performance of embedding-based methods, they can

10
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not capture the complex reasoning patterns in the KG and are lack of explainability.

Due to its explainability, multi-hop reasoning has been investigated a lot in recent

years. The Path-Ranking Algorithm (PRA) [18] is a primal approach that learns random

walkers to leverage the complex path features. [36, 37] improves upon PRA by computing

feature similarity in the vector space. Recursive random walk integrates the background

KG and text [38]. There are also other methods using convolutional neural network [39]

and recurrent neural networks [30]. More recently, [31] first applies reinforcement learning

for learning relational paths. [32] proposes a more practical setting of predicting end

entity given the query relation and the start entity. [34] reshapes the rewards using pre-

trained embedding model. [35] uses Monte Carlo Tree Search to overcome the problem

of sparse reward.

Meta-learning Meta-learning aims to achieve fast adaption on new tasks through

meta-training on a set of tasks with abundant training examples. It has been widely

applied in few-shot learning settings where limited samples are available [22, 23]. One

important category of meta-learning approaches is initialization based methods, which

aims to find a good initial model that can fast adapt to new tasks with limited samples [21,

40]. However, they only learn a single initial model and do not leverage the relationship

between tasks. [41] proposes to learn a data-dependent latent generative representation

of the model parameters and conduct gradient-based adaptation procedure in this latent

space. Another related work is Relation Network [24], which consists of am embedding

module to encode samples and a relation module to capture the relation between samples.

11
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2.3 Background

In this section, we will first introduce the multi-hop reasoning task. Then we will

extend it to the meta-learning setting and introduce the popular framework (MAML) for

few-shot learning.

2.3.1 Multi-hop Reasoning Problem

In this problem, there is a background graph G, and a set of query relations R. Each

query relation has its own training and testing triple (es, r, et), where es, and et are the

start entity and end entity in the KB, while r is the query relation. Given the start

entity es and the query relation r, the task is to predict the end entity et, along with a

support reasoning path from es to et in G. The length of the path is set to be fixed, and

an additional STOP edge is added for each entity to point at itself so that the model is

able to stay in the end entity.

We give an example to better explain this task. Consider the relation of Nationality

with a training triple: (Obama, Nationality, American). Given the start entity and the

query relation, (Obama, Nationality), the model is expected to find a path with a fixed

length in G from Obama to American. A general framework to solve this problem is

to train an agent that predicts the next relation based on the current entity, the query

relation, and the visited path at each step. In expectation, the agent should give the

reasoning path (BornIn, CityIn, ProvinceIn), and predict the end entity as American.

2.3.2 Meta-learning for Multi-hop Reasoning

For multi-hop reasoning problem, we define a task as the inference of a specific re-

lation’s end entity conditioned on the start entity. It is easy to see that each relation

forms an individual task. In the meta-learning framework, the tasks are divided into

12
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three disjoint sets called meta-training, meta-dev, and meta-test set respectively. The

goal of meta-learning is to train an agent that can quickly adapt on the new tasks in

meta-test set with limited data by leveraging prior learning experience.

Following standard meta-learning setting as in [21], our setting consists of two phases,

the meta-training and meta-test phase. In the meta-training phase, the agent learns

on a set of meta-training tasks T = {T1, T2, · · · , TN}, where each task Ti has its own

training and validation set denoted as {Dtrain
i , Dvalid

i }. By learning on the meta-training

tasks T , the agent is expected to gain some knowledge about the reasoning process, which

can help learn faster on new tasks.

In the meta-test phase, the trained agent will be evaluated on a set of new tasks

in the meta-dev/meta-test task set T ′ = {T ′
1 , T ′

2 , · · · , T ′
N ′}. Each task T ′

i has its own

training and testing set denoted as {D′train
i , D′test

i }, whereD′train
i only has limited training

samples. The agent will be fine-tuned on each task T ′
i using D′train

i for fixed gradient

steps, and be evaluated after each gradient step. The macro-average on all tasks in T ′ is

reported as its performance of meta-learning. Note that the number of fine-tuning steps

should be chosen according to the model’s performance on meta-dev tasks, and use the

fixed chosen steps on meta-test tasks directly, since there are only limited samples in the

new task, which are not sufficient for choosing a feasible fine-tuning step.

2.3.3 MAML Framework

Let f denotes the reasoning model in our setting that maps the observation to the

action, i.e., next relation to be taken. The objective of MAML [21] is to find a good model

initialization fθ which can quickly adapt to the new tasks after a few adaptions. We will

first introduce the objective function of MAML, and then illustrate how to optimize it

in the following part.

13
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Let θ denote the parameter of the current model, and θ′ denote the updated parameter

using samples from task Ti. For example, suppose we use one gradient update on Ti, then

we have:

θ′i = θ − α∇θLTi (fθ) .

The meta-objective is to optimize the performance of fθ′i across tasks sampled from p(T ).

More formal definition is as follows:

min
θ

∑
Ti∼p(T )

LTi

(
fθ−α∇θLTi (fθ)

)

To optimize this problem, we sample a batch of tasks Ti ∼ p(T ). For each task Ti,

two subsets (Di and D′
i) of training examples will be sampled independently. Di is used

to compute the updated parameters θ′. Then θ is optimized to minimize the objective

function using D′
i. Formally, we have

θ′i = θ − α∇θLDi
Ti (fθ) .

θ = θ − β∇θ

∑
Ti∼p(T )

LD′
i

Ti (fθ′i)

The above optimization requires the computation of second-order gradient, which is

computationally expensive. In practice, people usually use first-order update rule instead,

which has similar performance but needs much less computation [21, 40]:

θ = θ − β∇θ′

∑
Ti∼p(T )

LD′

Ti (fθ′)

14
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2.4 Meta-Learning of Deep Reasoners

2.4.1 MAML with Task-specific Initialization

MAML learns a single initial model that does not depend on any task-specific infor-

mation. It works by adapting the initial model through gradient update on the target

task. In other words, the initial model learns some common knowledge shared by the

tasks, so that it can adapt to new tasks quickly. However, MAML is not able to capture

the relationship between different tasks because it is lack of task-specific information.

One easy way to inject task information is to use task identity, such as the embedding of

query relation in our KB reasoning problem. But this solution could incur two problems.

First, the model will learn some knowledge that only applies to a specific task, which is

hard to transfer when adapting to new tasks. Second, when there comes a new task, we

can not easily initialize the task identity, e.g. the embedding of a new query. Therefore,

we propose to use a meta-encoder to encode the task-specific information, which can not

only enable the model to learn the relationship between different tasks but also allows

the model adapt in the new task faster since the model can leverage the task-specific

information of the new tasks as well.

Let x and x̂ denote the input data and task-specific information respectively. g is the

meta-encoder that encodes x̂, and f is the model which takes both x and g(x̂) as inputs

to predict the outputs, i.e., f(x, g(x̂)) is used for prediction. Note that we hope g(x̂)

can encode the information about the whole target task instead of just x itself so that

g(x̂) can also benefit other instances x′ within the same task Ti, i.e., f(x′, g(x̂)) should

perform well for any x′ ∈ Ti. This is because the task-specific information may not be

available for the testing sample. For example, the end entity we use as the task-specific

information is not available in new testing samples. To achieve this goal, we apply meta-

gradient methods which is similar to MAML. Given a task Ti, we will sample two subsets
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of instances Di and D′
i. The updated parameter is computed using Di:

θ′i = θ − α∇θLTi

(
fθ(Di, gθ(D̂i))

)
.

Then meta-gradient is computed using D̂i and D′
i, where D̂i is used for initialization.

θ = θ − β∇θ

∑
Ti∼p(T )

LTi(fθ′i(D
′
i, gθ′i(D̂i)))

The first order update rule can be written as:

θ = θ − β∇θ′i

∑
Ti∼p(T )

LTi(fθ′i(D
′
i, gθ′i(D̂i)))

The details are shown in Algorithm 1. At first, a batch of tasks will be sampled.

For each task Ti, we sample two subsets of instances (Di, D
′
i), and compute the meta

information D̂i based on Di, which is the neighbor of start and end entity or the reasoning

path between them for the multi-hop reasoning problem. In the following procedure, the

updated parameters θ′i will be computed for each task (line 7-9). In meta-update step

(line 11), we update θ to minimize the loss of θi using new instances D′
i and the task

representation D̂i.

For testing on a new task T ′
i , we obtain the task representation g(x̂) based on the

few-shot samples x ∈ D′train
i . Then we fine-tune f and g using the data D′train

i . The

model makes prediction on testing samples x′ ∈ D′test
i using f(x′, g(x̂)).

2.4.2 Model

The general framework of our model is shown in Figure 2.1. The original reasoning

agent takes start entity and query relation as inputs, and output the reasoning path and
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Query triple:    (Barack Obama, Nationality, ???)
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American
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Figure 2.1: The model we use for meta-reasoning over knowledge graph. a) is the
general framework of the model. b) and c) are our neighbor encoder and path encoder
respectively.

Algorithm 1 MAML with Meta-Encoder
Require:

p(T ): the distribution of tasks
α, β: learning rates for adaptation and meta-update
k: the number of adaptations
f, g: the reasoning model and meta-encoder

1: Randomly initialize θ
2: for step = 0 : M-1 do
3: for batch of tasks Ti ∼ p(T ) do
4: Sample task instances (Di, D

′
i) from Ti

5: Compute task specific information D̂i

6: Set θ′i = θ
7: for i = 0 : k do
8: θ′i ←− θ′i − α∇θ′i

LTi(fθ′i(Di, gθ′i(D̂i)))
9: end for
10: end for
11: θ ←− θ − β∇θ

∑
Ti∼p(T ) LTi(fθ′i(D

′
i, gθ′i(D̂i)))

12: end for

end entity. But this agent will not work well under meta-learning setting, where the

embedding of the new query relation is hard to be initialized. Our method replaces the

query relation with a meta-encoder that encodes some meta information about the task,

which is available on a new task. In the following parts, we will introduce more about
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the reasoning agent and meta-encoder.

Reasoning Agent

We use the policy proposed in [32], which is called MINERVA. They formulated this

problem as a reinforcement learning problem. The state is defined as the combination

of the query, the answer, and the current location (an entity in KB). But the answer is

not observed, so the observation only includes the query and the current location. The

actions are defined as the outgoing edges of the current location. The reward is +1 is

reaching the answer, otherwise, it is 0.

The policy uses LSTM to encode the history information, i.e. the visited path.

ht = LSTM(ht−1, [at−1;ot])

where ht−1 is previous hidden state, at−1 is the embedding for the chosen relation at time

t− 1, and ot is the embedding of the current entity. The hidden state of the LSTM, ht

is then concatenated with the embedding of the current entity ot and the query relation

rq. The action distribution dt is computed by applying softmax on the matching score

between the action embedding and the projection of the concatenated embedding, i.e.,

dt = softmax (At (W2ReLU (W1 [ht;ot; rq]))) .

The model structure is the same as proposed in [32], which uses two linear layers (W1

and W2) to encode the observation. Next action is sampled from the action distribution

dt.
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Meta-encoder

We can regard the embedding of query relation used in the above MINERVA model

as the task identity. But when there comes a new task, there is no good way to find

an initial embedding for the new query relation that fits into the reasoning model well.

Therefore, we need another meta-encoder that leverage some meta-information about

the new task and generate the embedding of query relation, based on which the model

will be able to make reasonable outputs. Here we introduce two task-specific encoders

to achieve this, neighbor encoder and path encoder.

Neighbor Encoder Given an instance, i.e., a triple (es, r, et), we use the difference

between the embedding of start entity es and end entity et as an representation of the

query relation r [16]. To better represent the entity, we borrow the idea of neighbor

encoder from [19]. Let Ne denotes the neighbor of entity e. For each relation-entity pair

(ri, ei) ∈ Ne, We compute the feature representation Cri,ei as

Cri,ei = Wc (vri ⊕ vei) + bc,

where vri and vei are the embedding for ri and ei respectively, ⊕ denotes concatenation,

and Wc and bc are parameters of a linear layer. Then the neighbor embedding of the

given entity e is computed as the average of the feature representations of all neighbors,

i.e.,

NEe = σ(
1

|Ne|
∑

(ri,ei)∈Ne

Cri,ei),

where σ = tanh is the activation function. Then the representation of the query relation

is defined as the difference between the neighbor embedding of es and et like TransE [16]:

Rr = NEet − NEes .
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Dataset # Entities # Relations # Triples # Tasks
# Degree

average median

FB15K-237 14505 237 239266 237 20.00 14
NELL 68272 358 181109 67 3.99 1

Table 2.1: Statistics of the datasets. # Entities, # Relations, # Triples, # Tasks
denotes the number of entities, relations, triples, tasks in the corresponding dataset
respectively. In the column of # Degree, average and median denote the average and
median outgoing degree of each entity respectively.

Path Encoder The neighbor encoder needs to encode the neighbor as the representa-

tion for the start and end entity, and it will not work well when the number of neighbors

is small. Thus we propose another encoder for this case called path encoder. Path en-

coder takes into consideration of the successful path in the graph, i.e., the reasoning path

from start entity to end entity for a given query relation. Since not all the paths from

start entity to end entity are meaningful, this path encoder is noisier than the neighbor

encoder.

Let Pe denotes all the paths from start entity es to end entity et. For any path

pi ∈ Pe, we have pi = {r1i , · · · , rni }, where rji is the selected relation at step j in path pi,

and n is the max length of reasoning path. We use LSTM [42] to encode each path:

ht = LSTM(ht−1, r
j
i),

where ht is the hidden state of the LSTM at step t, and rji is the embedding for relation

rji . The last hidden state hn is used as the embedding Cpi for path pi, i.e., Cpi = hn.

The final path embedding PEe for the given triple (es, e, et) is average embedding of all

the paths, i.e.,

PEe =
1

|Pe|
∑
pi∈Pe

Cpi .
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Setting Method
FB15K-237 NELL

Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR

Full Data MINERVA .124 .146 .187 .142 .137 .176 .202 .163

Best

Baselines
Random .017 .028 .043 .027 .047 .100 .165 .086
Transfer .010 .012 .054 .019 .041 .070 .128 .066
MAML .021 .041 .052 .035 .067 .086 .139 .087
MAML-Mask .009 .023 .045 .019 .032 .054 .080 .058

Ours
Neighbor .065 .073 .128 .080 .045 .066 .106 .064
Path .041 .067 .101 .060 .108 .141 .200 .137

Initial

Baselines
Random .000 .000 .005 .002 .021 .074 .105 .056
Transfer .000 .005 .023 .006 .037 .055 .077 .051
MAML .005 .005 .023 .010 .017 .031 .054 .032
MAML-Mask .000 .014 .045 .012 .021 .050 .081 .043

Ours
Neighbor .043 .054 .092 .056 .026 .047 .091 .045
Path .000 .005 .058 .012 .082 .109 .164 .104

Table 2.2: The results on 5-shot experiments. We also report the performance of
MINERVA on these tasks using full data for better comparison. Full Data denotes us-
ing MINERVA algorithm on these tasks with full training data. Best denotes the best
performance for each method after fine-tuning, and Initial denotes the performance
of method at the initial point. We report the average performance on the meta-test
tasks. Best result for each evaluation matrix is marked in bold.

(a) FB15K-237 (b) NELL

Figure 2.2: The change of the performance with the size of few-shot samples for each
method. Here we choose the size to be 1, 2, 5, 10, 20, 50. MRR of each model after
fine-tuning is reported.
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2.5 Experiments

To verify the effectiveness of the proposed methods, we compare it with several base-

lines on two knowledge completion datasets, FB15K-237 [39], and NELL [43]. In the

following part, we will introduce how we construct the meta-learning setting for knowl-

edge graph reasoning and the baselines we use, then we will show the main results and

other analytic experiments.

2.5.1 Datasets and Settings

We construct the meta-learning setting from two well-known knowledge completion

datasets: FB15K-237 [39] and NELL [43]. FB15K-237 is created from original FB15K by

removing various sources of test leakage. Every relation in the training set of FB15K-237

is regarded as an individual task. For the NELL dataset, we use the modified version

from [19], which chooses relations with more than 50 triples, and less than 500 triples as

one-shot tasks. Here we used those selected tasks as meta-learning tasks. The statistics

of the two datasets are shown in Table 2.1.

Let Dtrain, Ddev, and Dtest denotes the training data, validation data and test data

in original dataset such as FB15K-237. We choose some tasks with positive transfer

(task that has better performance when training together with other tasks than training

solely) as meta-dev and meta-test tasks. More specifically, we choose task with at least

0.04 and 0.02 positive transfer on FB15K-237 and NELL dataset respectively, from which

we only keep tasks with more than 20 samples in the dev set. Note that 0.04 and 0.02

are carefully chosen threshold so that we can get enough tasks with reasonable positive

transfer. Through this way, we get 5/10 and 4/7 relations for meta-dev/meta-test on

FB15K-237 and NELL respectively, and other relations left are used for meta-training.

We denote the partitioned relation set as Rmeta-train/Rmeta-dev/Rmeta-test, and each relation
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has its own training/test data.

2.5.2 Baselines and Hyper-parameters

We compare our methods with the following baselines. Random method trains a

separate model for each task from random initialization. Transfer method will learn

an initial model by using samples from Dmeta-train
train . MAML uses the training framework

of MAML to learn an initial point, and the task identity (the query relation) is given.

MAML-Mask uses the same training framework as MAML, the difference is that we

mask the task identity by setting the query relation for all tasks to be 0. Neighbor

and Path method means we use the neighbor encoder and path encoder to encode the

task-specific information respectively.

We tuned the hyper-parameters for all the baselines and our methods, and they are

set as follows. For Transfer, the batch size in the pre-training phase is set to be 128. For

MAML, MAML-Mask, Neighbor, and Path, the batch size is set to be 5. For Path, 1

adaption step is applied to compute the updated parameters, and α = 0.01, β = 0.001.

For Neighbor, MAML, and MAML-Mask, 5 and 1 adaption steps are applied on FB15K-

237 and NELL respectively, and α = 0.01 when the number of adaption step k = 1,

α = 0.001 when k = 5, and β = 0.001. Other parameters are set as default as in [32].

2.5.3 Results

We conduct our experiments under 5-shot learning setting, i.e., there are 5 training

samples for each task in Rmeta-dev and Rmeta-test. We use the mean reciprocal rank (MRR)

and Hits@K to evaluate each model. For each method, we will first fine-tune and test the

initial model on meta-dev tasks, through which we choose the number of fine-tune steps

and fix it on meta-test tasks. For example, if a model has the best performance after 5
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fine-tune steps on meta-dev tasks, then the model will be tested after 5 fine-tune steps

on meta-test tasks. We report the best performance on meta-test tasks for each method

in Table 2.2 as Best group. We also list the results using full data for better comparison.

From the results, we can see that neighbor encoder and path encoder achieves the best

performance on FB15K-237 and NELL dataset respectively. It is reasonable that neighbor

encoder does not perform well on NELL dataset since the median outgoing degree on

this dataset is only 1. We also note that path encoder outperforms other baselines on

FB15K-237, which verify the consistent effectiveness of the task-specific encoder. While

other baselines do not show much difference as the simple Random baseline, sometimes

they even underperform Random baseline.

In order to show that our model can have better initial point than others, we report

the performance of the initial point without any training in Table 2.2 as Initial group.

We notice that the baselines have very poor initial performances on FB15K-237, which is

reasonable since the model has never seen the new relation. From the results, we can see

that the neighbor encoder and path encoder achieves much better initial point than other

baselines in FB15K-237 and NELL respectively. The path encoder has a fair performance

which is similar to the best of the baselines MAML-Mask, we think the reason that path

encoder does not perform very well is the path encoder is noisier than neighbor encoder

as we mentioned before.

2.5.4 Few-shot Size

To investigate the impact of the few-shot size on the performance of the model, we

evaluate the model using various few-shot size: 1, 2, 5, 10, 20, 50. The results are shown

in Figure 2.2. From the results, we can see that for MAML and MAML-Mask, their

performances remain nearly the same after the size reaches 10 on FB15K-237 dataset.
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Setting
FB15K-237

Hits@1 Hits@3 Hits@10 MRR

Encoder-1-shot .047 .058 .117 .064
Encoder-50-shot .049 .070 .128 .069
No-encoder .008 .035 .084 .032

Table 2.3: The comparison of performance for model with different initialization on
FB15K-237 dataset. Encoder-1-shot and Encoder-50-shot denotes using neighbor en-
coder with 1 and 50 samples. No-encoder means using a random initialization. We
report the average performance on meta-test tasks. Best result for each evaluation
matrix is marked in bold.

The performance of MAML is not stable on NELL dataset, while MAML-Mask keeps

increasing. Both methods underperform the Random baseline when the size increases.

For Transfer method, its performance increases with the few shot size on FB15K-237, but

there is a huge drop on NELL when the size is 50, which indicates it is not stable enough,

and sensitive to the noise in the data. The neighbor encoder has the best performance on

FB15K-237 dataset, but not well on NELL due to the small neighbor size. Path encoder

seems to be less stable compared with neighbor encoder since there is performance drop

once on both datasets, but it achieves the best performance on NELL and second-best

performance when size is larger than 5 except 20.

2.5.5 Ablation Study

To verify the effectiveness of the encoder, we compare the model using task-specific

initialization with the model using random initialization at the initial point. We choose

the neighbor encoder on FB15K-237 dataset to conduct the ablation study. The compar-

ison results are shown in Table 2.3. The three models in the table use the same reasoning

model, the only difference is the task representation. Encoder-1-shot and Encoder-50-

shot apply neighbor encoder to generate the task representation using 1 and 50 samples

respectively, while No-encoder uses a randomly initialized representation. By comparing
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Encoder-1-shot with No-encoder, we can see that the model can achieve much better

performance through the way of encoding task-related information, even using only one

sample, which also indicates the generated task representations are meaningful. Also,

better initialization can be achieved when using more samples, since the performance of

Encoder-50-shot is better than that of Encoder-1-shot.

2.6 Conclusion

In this chapter, we consider multi-hop reasoning over knowledge graphs under few-

shot learning setting, where limited samples are available on new tasks. We improve

upon MAML by using a meta-encoder to encode task-specific information. Through this

way, our method can create a task-dependent initial model that better fits the target

task. Neighbor encoder and path encoder are proposed for our problem. Experiments

on FB15K-237 and NELL under meta-learning setting show that our task-specific meta-

encoder yields a better initial point and outperforms other baselines.
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Chapter 3

Self-Supervised Learning on

Document Level Structure

3.1 Introduction

Extractive summarization aims at shortening the original article while retaining the

key information through the way of selection sentences from the original articles. This

paradigm has been proven effective by many previous systems [44, 45, 46, 47]. In order

to decide whether to choose a particular sentence, the system should have a global view

of the document context, e.g., the subject and structure of the document. However,

previous works [48, 49, 50, 51] usually directly build an end-to-end training system to

learn to choose sentences without explicitly modeling the document context, counting on

that the system can automatically learn the document-level context.

We argue that it is hard for these end-to-end systems to learn to leverage the document

context from scratch due to the challenges of this task, and a well pre-trained embedding

model that incorporates document context should help on this task. In recent years,

extensive works [52, 53, 54, 55, 56, 57, 58, 59, 60] have been done in learning the word
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Last week, I went to attend a one-day meeting.
I booked the flight in advanced.
[masked sentence]
The earliest next flight will be a few days later.
I had to use the online discussion instead.

But the flight was cancelled due to the weather.
But I lost my passport.
The meeting was cancelled.
The weather is good today.

Masked 
Paragraph

Candidate 
Sentences

Figure 3.1: An example for the Mask pre-training task. A sentence is masked in the
original paragraph, and the model is required to predicted the missing sentence from
the candidate sentences.

or sentence representations, but most of them only use a sentence or a few sentences

when learning the representation, and the document context can hardly be included in

the representation. Hence, we introduce new pre-training methods that take the whole

document into consideration to learn the contextualized sentence representation with

self-supervision.

Self-supervised learning [61, 62, 63, 64] is a newly emerged paradigm, which aims to

learn from the intrinsic structure of the raw data. The general framework is to construct

training signals directly from the structured raw data, and use it to train the model. The

structure information learned through the process can then be easily transformed and

benefit other tasks. Thus self-supervised learning has been widely applied in structured

data like text [65, 66, 55, 56, 67] and images [62, 63, 64, 68]. Since documents are well

organized and structured, it is intuitive to employ the power of self-supervised learning

to learn the intrinsic structure of the document and model the document-level context

for the summarization task.

In this chapter, we propose three self-supervised tasks (Mask, Replace and Switch),

where the model is required to learn the document-level structure and context. The

knowledge learned about the document during the pre-training process will be transferred

and benefit on the summarization task. Particularly, The Mask task randomly masks
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some sentences and predicts the missing sentence from a candidate pool; The Replace task

randomly replaces some sentences with sentences from other documents and predicts if a

sentence is replaced. The Switch task switches some sentences within the same document

and predicts if a sentence is switched. An illustrating example is shown in Figure 3.1,

where the model is required to take into account the document context in order to

predict the missing sentence. To verify the effectiveness of the proposed methods, we

conduct experiments on the CNN/DM dataset [69, 70] based on a hierarchical model.

We demonstrate that all of the three pre-training tasks perform better and converge

faster than the basic model, one of which even outperforms the state-of-the-art extractive

method NeuSum [50].

The contributions of this work include:

• To the best of our knowledge, we are the first to consider using the whole document

to learn contextualized sentence representations with self-supervision and without any

human annotations.

• We introduce and experiment with various self-supervised approaches for extrac-

tive summarization, one of which achieves the new state-of-the-art results with a basic

hierarchical model.

• Benefiting from the self-supervised pre-training, the summarization model is more

sample efficient and converges much faster than those trained from scratch.

3.2 Model and Pre-training Methods

3.2.1 Basic Model

As shown in Figure 3.2, our basic model for extractive summarization is mainly com-

posed of two parts: a sentence encoder and a document-level self-attention module. The
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X₁ X₂ Xₙ
…

LSTM LSTM LSTM…

S₁ S₂ Sₙ
…

Self Attention Self Attention Self Attention…

D₁ D₂ Dₙ
…

Linear Linear Linear

Figure 3.2: The structure of the Basic Model. We use LSTM and self-attention module
to encode the sentence and document respectively. Xi represent the word embedding
for sentence i. Si and Di represent the independent and document involved sentence
embedding for sentence i respectively.
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sentence encoder is a bidirectional LSTM [42], which encodes each individual sentence Xi

(a sequence of words) and whose output vector at the last step is viewed as the sentence

representation Si. Given the representations of all the sentences, a self-attention mod-

ule [71] is employed to incorporate document-level context and learn the contextualized

sentence representation Di for each sentence.1 Finally, a linear layer is applied to predict

whether to choose the sentence to form the summary.

3.2.2 Self-supervised Pre-training Methods

In this section, we will describe three self-supervised pre-training approaches. Through

solving each pre-training task, the model is expected to learn the document-level contex-

tualized sentence embedding model from the raw documents, which will then be used to

solve the downstream summarization task. Note that we are only pretraining the sen-

tence encoder and document-level self-attention module of the basic model for extractive

summarization.

Mask Similar to the task of predicting missing word, the Mask task is to predict the

masked sentence from a candidate pool. Specifically, we first mask some sentences within

a document with the probability Pm and put these masked sentences (xm
1 ,xm

2 , · · · ,xm
t )

into a candidate pool Tm. The model is required to predict the correct sentence from the

pool for each masked position i. We replace the sentence in the masked position i with

a special token ⟨unk⟩ and compute its document contextualized sentence embedding Di.

We use the same sentence encoder in the basic model to obtain the sentence embedding

Sm for these candidate sentences in Tm. We score each candidate sentence j in Tm by

1We leave the combination of different architectures such as replacing the self-attention module with
LSTM for future work.
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using the cosine similarity:

Θ(i, j) = cos(Di, S
m
j )

To train the model, we adopt a ranking loss to maximize the margin between the gold

sentence and other sentences:

ℓm = max{0, γ −Θ(i, j) + Θ(i, k)}

where γ is a tuned hyper-parameter, j points to the gold sentence in Tm for the masked

position i, and k points to another non-target sentence in Tm.

Replace The Replace task is to randomly replace some sentences (with probability Pr)

in the document with sentences from other documents, and then predict if a sentence is

replaced. Particularly, we use sentences from 10, 000 randomly chosen documents to form

a candidate pool T r. Each sentence in the document will be replaced with probability Pr

by a random sentence in T r. Let Cr be the set of positions where sentences are replaced.

We use a linear layer fr to predict if the sentence is replaced based on the document

embedding D, and minimize the MSE loss:

ℓr = MSE(fr(Di), yri )

where yri = 1 if i ∈ Cr (i.e., the sentence in position i has been replaced), otherwise

yri = 0.

Switch The Switch task is similar to the Replace task. Instead of filling these selected

sentences with sentences out of the document, this task chooses to use sentences within

the same document by switching these selected sentences, i.e., each selected sentence will

be put in another position within the same document. Let Cs be the set of positions
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Figure 3.3: This figure shows the Rouge-2 score for each pre-training method and the
basic model on the development set during the training process.

where the sentences are switched. Similarly, we use a linear layer fs to predict if a

sentence is switched and minimize the MSE loss:

ℓs = MSE(fs(Di), ysi )

where ysi = 1 if i ∈ Cs, otherwise ysi = 0.

3.3 Experiment

To show the effectiveness of the pre-training method (Mask, Replace and Switch),

we conduct experiments on the commonly used dataset CNN/DM [69, 70], and compare

them with a popular baseline Lead3 [72], which selects first three sentences as the sum-

mary, and the state-of-the-art extractive summarization method NeuSum [50], which

jointly scores and selects sentences using pointer network.
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3.3.1 On CNN/DM Dataset

Model and training details We use the rule-based system from [50] to label sentences

in a document, e.g., sentences to be extracted will be labeled as 1. Rouge score2 [73]

is used to evaluate the performance of the model, and we report Rouge-1, Rouge-2,

and Rouge-L as in prior work. We use the pre-trained glove embedding [52] with 100

dimensions to initialize the word embedding. A one-layer bidirectional LSTM [42] is

used as the sentence encoder, and the size of hidden state is 200. A 5-layer Transformer

encoder [71] with 4 heads is used as the document-level self-attention module. A linear

classification layer is used to predict whether to choose the sentence.

The training process consists of two phrases. First, we use the pre-training task to

pre-train the basic model using the raw article from the CNN/DM dataset without labels.

Second, we fine-tune the pre-trained model for the extractive summarization task using

the sentence labels. The learning rate is set as 0.0001 in the pre-training phase and

0.00001 in the fine-tune phase. We train each pre-training task until it is converged or

the number of training epochs reaches the upper bound 30. We set the probability to

mask, replace or switch sentences as 0.25.

Results We show the Rouge score on the development set during the training pro-

cess in Figure 3.3, and present the best Rouge score for each method in Table 3.1. All

pre-training methods improve the performance compared with the Basic model. Espe-

cially, Switch method achieves the best result on all the three evaluations compared with

other pre-training methods, and is even better than the state-of-the-art extractive model

NeuSum3.

In the terms of convergence, the Mask, Replace and Switch task takes 21, 24, 17 epochs

2We use PyRouge https://pypi.org/project/pyrouge/ to compute the Rouge score.
3We use code from https://github.com/magic282/NeuSum to train the model, and evaluate it using

our evaluation script.
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Method Rouge-1 Rouge-2 Rouge-L

Basic 41.07 18.95 37.56

LEAD3 39.93 17.62 36.21
NeuSum 41.18∗ 18.84 37.61

Mask 41.15∗ 19.06∗ 37.65∗

Replace 41.21∗ 19.08∗ 37.73∗

Switch 41.36 19.20 37.86

SentEnc 41.17∗ 19.04∗ 37.69∗

Switch 0.15 41.35∗ 19.18∗ 37.85∗

Switch 0.35 41.27∗ 19.12∗ 37.77∗

Table 3.1: The Rouge [73] scores for the basic model, baselines, pre-training methods,
and analytic experiments. All of our Rouge scores have a 95% confidence interval of
at most ±0.25 as reported by the official ROUGE script. The best result is marked
in bold, and those that are not significantly worse than the best are marked with ∗.

in the training phase respectively, and 18, 13, 9 epochs to achieve the best performance

in the fine-tune phase. The basic model takes 24 epochs to obtain the best result.

From Figure 3.3, we can see that the Switch task converges much faster than the basic

model. Even adding on the epochs taken in the pre-training phase, Switch method (26

epochs) takes roughly the same time as the Basic model (24 epochs) to achieve the best

performance.

3.3.2 Ablation Study

Reuse only the sentence encoder Our basic model has mainly two components:

a sentence encoder and a document-level self-attention module. The sentence encoder

focuses on each sentence, while document-level self-attention module incorporates more

document information. To investigate the role of the document-level self-attention mod-

ule, we only reuse the sentence encoder of the pre-train model, and randomly initialize

the document-level self-attention module. The results is shown in Table 3.1 as SentEnc.

We can see that using the whole pre-training model (Switch 0.25) can achieve better
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performance, which indicates the model learn some useful document-level information

from the pre-training task. We notice that only using the sentence encoder also get some

improvement over the basic model, which means that the pre-training task may also help

to learn the independent sentence representation.

On the sensitivity of hyper-parameter In this part, we investigate the sensitivity of

the model to the important hyper-parameter Pw, i.e., the probability to switch sentences.

In the previous experiment, we switch sentences with probability 0.25. We further try

the probability of 0.15 and 0.35, and show the results in Table 3.1 as Switch 0.15 and

Switch 0.35. We can see Switch 0.15 achieve basically the same result as Switch 0.25,

and Switch 0.35 is slightly worse. So the model is not so sensitive to the hyper-parameter

of the probability to switch sentences, and probability between 0.15 and 0.25 should be

able to work well.

3.4 Conclusion

In this chapter, we propose three self-supervised tasks to force the model to learn

about the document context, which will benefit the summarization task. Experiments

on the CNN/DM verify that through the way of pre-training on our proposed tasks, the

model can perform better and converge faster when learning on the summarization task.

Especially, through the Switch pre-training task, the model even outperforms the state-

of-the-art method NeuSum [50]. Further analytic experiments show that the document

context learned by the document-level self-attention module will benefit the model in

summarization task, and the model is not so sensitive to the hyper-parameter of the

probability to switch sentences.
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Chapter 4

Learning with Tutor for

Out-of-Distribution Problem

4.1 Introduction

Figure 4.1: Examples of addition: the baseline setting (top) and Scratchpad [74]
with intermediate computation steps (bottom). A similar method with more detailed
demonstration is introduced in [75].

Transformer-based large pretrained Language Models, such as GPT3 and T5 [76, 3,
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77], have been widely used as few-shot learners in many NLP tasks. Recent work even

finds these models can achieve state-of-the-art performance in arithmetic and symbolic

reasoning [74, 78]. Although these models exhibit surprisingly impressive capabilities

in complex arithmetic reasoning tasks, such as MultiArith [79] and GSM8k [80], it has

also been pointed out that they tend to make certain calculation errors and perform

significantly worse when the number of math operations increases in equations [78]. GPT3

[3] displays strong proficiency in 2-digit arithmetic addition, but struggles in arithmetic

addition on numbers with more than three digits. Previous research [81] also observe

that the fine-tuned T5 model can not correctly add or subtract arbitrarily long numbers.

Larger models might perform better on the testing data, but worse on numbers that are

longer than the training data (out-of-distribution, OOD) [81]. However, even with the

largest T5 model they experimented, the out-of-distribution (OOD) accuracy is not as

high as the in-distribution accuracy, and increasing the training data does not improve

OOD generalization beyond a critical amount.

Figure 4.2: The horizontal axis is the number of digits and the vertical axis is the
accuracy. The prompts for GPT3 consist of 4 examples. The T5 models are trained
on 1-5 digits of up to 2,000 examples and each training example consists of random
numbers in the format of 2 4 1. In-dist: in-distribution. Out-of-dist.: out-of-distri-
bution (OOD). In-distribution refers to training on up to k-digit numbers and testing
on up to k-digit numbers while out-of- distribution refers to training on up to k-digit
numbers and testing on numbers with more digits. α indicates the repetition level
of the examples. An example x1 · · ·xn with n digits are sampled with the next digit
probability p(xi+1|xi) = α, when xi+1 = xi; otherwise, (1− α)/9. Larger α indicates
a higher repetition level.

Figure 4.1 shows two possible addition exemplars for LMs. Addition can be considered

38



Learning with Tutor for Out-of-Distribution Problem Chapter 4

as a basic arithmetic operation and a simple symbolic manipulation task. The scratch-

pad version gives more details on how humans do basic arithmetic. Previous research

[74] shows that with more fine-grained demonstrations, the accuracy of addition can be

improved dramatically with fine-tuning. Yet, it still can not achieve 100% on OOD data,

even with thousands of training data points provided. Figure 4.2 shows the performance

of GPT-3 and T5 on addition using the scratchpad version of training data. The problem

becomes more severe when there are repeating digits in the addition operands.

As the performance drops with repeating digits, we suspect that LMs might not

handle the repeating symbols well. Figure 4.2 illustrates the performance of GPT-3 and

T5 on the copy task, one of the simplest symbolic manipulation operations. GPT-3 and

T5 still can not perform well on OOD. We further do a preliminary experiment where a

T5 model is fine-tuned using the data containing repeating numbers of up to 80 digits,

T5 still can not achieve 100% in-distribution accuracy on long repeating digits. The

results indicate that there are two problems intervening: Transformers are not good at

handling repeating symbols and OOD generalization. The repeating symbols can also be

a problem even for in-distribution data.

Why do large pretrained LMs that can do complex language generation fail on a

simple symbolic manipulation task?

In this chapter, we investigate the potential causes behind this phenomenon. We

believe that overcoming the aforementioned limitations is of critical importance for the

future application of Transformer-based LMs to reasoning-intensive tasks. What are

the necessary steps to take to significantly improve or even approach 100% accuracy on

these simple but fundamentally important induction tasks? We examine a set of possible

mitigation solutions including fine-grained computation steps, positional markers, and

LMs with callable programs.

Since incorporating computation steps improves the OOD generalization in arithmetic
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addition [74], one possible direction is to provide more fine-grained computation steps in

the fine-tuning data or the few-shot prompt. However, it may not be sufficient to alleviate

the problem of repeating numbers. When a human does addition, the position of each

digit is used to differentiate the repeating digits. However, the self-attention mechanism

in the Transformer may not tell which “1” is referred to in the input. This prompts us to

explore using positional markers to differentiate the important tokens. Using these two

methods to augment the reasoning process, we find that the performance of pretrained

LMs still can not reach satisfying results. Then we resort to a method where the copy

operation is implemented as a primitive function and explore whether the LM can further

boost its performance.

We experiment with three symbolic manipulation tasks: copying, reversing, and ad-

dition. Experimental results show that although generalization in these symbolic manip-

ulation tasks is straightforward for humans, it is still challenging for LMs, and none of

these mitigation methods fully solves the problems. In the end, we introduce LMs with

tutor which demonstrates every single step of teaching, pinpointing where these digits

come from. LMs with tutor is able to deliver 100% accuracy in situations of OOD and

repeated symbols. In this design, LMs are used to generate actions that mimic oper-

ations in multiple tape Turing machines, rather than the intermediate results. These

actions generate the intermediate results on tapes. We hope this could shed light on the

capability of Transformer-based LMs in addition to providing large training datasets or

scaling up the size of these models.

To conclude, our main contributions are:

• We identify a set of simple symbolic manipulation tasks and uncover the limitations

of the LMs in arithmetic and symbolic induction.

• We examine a set of potential techniques including positional markers, fine-grained
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computation steps, and LMs with callable programs. Though these techniques

could mitigate the limitations of the LMs, none of them can completely solve the

generalization problem.

• Finally, we demonstrate that LMs with tutor is able to deliver 100% accuracy in

situations of OOD and repeated symbols. Our analysis could inspire new thoughts

to overcome the limitation of LMs in symbolic manipulation.

4.2 Related Work

Previous research in using LMs for symbolic induction improves the model perfor-

mance in the following three directions.

Large Pretrained Language Models: GPT3 [3] exhibits strong proficiency on

2-digit addition and subtraction using simply few-shot prompting, without any task-

specific training. Furthermore, the larger the LM, the better the performance. Following

GPT3, PaLM [82] further scale the Transformer-based LMs to a 540-billion parameter

model, called Pathways Language Model (PaLM). Same as GPT-3 [3], PaLM [82] find

that scaling the LMs consistently results in better arithmetic reasoning ability with few-

shot prompting. However, the reasoning ability of the large LMs is still limited. GPT3

struggles with 3-digit arithmetic and with direct prompting, even 540B PaLM can not

achieve high performance on complex tasks requiring multi-step reasoning. Therefore

CoT [78] propose to augment the large pretrained LMs with the following prompting

method.

Chain-of-Thought Prompting: This prompting method provides a few chain-of-

thought demonstrations, which is a series of intermediate reasoning steps, as exemplars

in the prompting. Therefore, given a complex reasoning task, the model is allowed to

calculate the intermediate results step-by-step before generating the final answer. With
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chain-of-thought prompting, a complex reasoning task is decomposed into a list of simple

operations and LMs can derive these operations one by one. Previous research [83] adopt

faithful explanations that accurately represent the reasoning process behind solving a

math word problem. CoT [78] show that combining chain-of-thought prompting and a

sufficiently large LM, 540B PaLM, can significantly improve the LMs’ reasoning ability

on complex tasks, such as math word problems.

Fine-tuning with Large Training Datasets: Instead of few-shot prompting, an-

other direction is to fine-tune large LMs with a sufficient amount of training data. In

[81], they fine-tune T5 with different ways of representing numbers, but even with the

best-performing representation, the fine-tuned model can not achieve as good accuracy on

out-of-distribution testing examples as in-distribution testing examples. In [74], they pro-

pose to use Scratchpad to improve the out-of-distribution accuracy. Scratchpad combines

step-by-step reasoning with fine-tuning. The training examples include the intermediate

steps of an algorithm in target, so the model is trained to generate not only the final an-

swer, but also the intermediate steps, which is similar to chain-of-thought, but requires

more training data. In [74], they show that using the training data augmented with

intermediate steps significantly improves the model performance, but even with 100k

augmented training examples for the addition task, the fine-tuned 1B LM still does not

perform well on out-of-distribution addition.

Our work is also related to [84], which extends the capabilities of Recurrent Neural

Networks to two simple symbolic manipulation tasks, copy and sort, by augmenting

the model with external memory resources. Instead of using hundreds of thousands of

training examples, we focus on large pretrained LMs with few-shot prompting or fine-

tuning settings in this work.
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4.3 Observations

We first analyze the difficulty of generalizing the copy operation, one of the most

fundamental, simplest symbolic manipulation operations. We start by copying random

numbers. For GPT3, we augment each testing example with the few-shot prompt as

shown in Figure 4.3.

copy: 8 3 2 2
result: 8 3 2 2
copy: 7 7 7 7
result: 7 7 7 7
copy: 3 9 4 3 2
result: 3 9 4 3 2
copy: 6 6 6 6 6
result: 6 6 6 6 6

Figure 4.3: The prompt for GPT3 on the copy task.

We also fine-tune a T5 model for copying. The training data follows the same format

as above and consists of random numbers of up to 5 digits. We first evaluate the prompted

GPT3 and fine-tuned T5 on copying random numbers of up to 80 digits (α = 0.1 in

Figure 4.2). GPT3 achieves nearly 100% accuracy on all the testing examples of up to

80 digits when α is 0.1. The finetuned T5 does not generalize well beyond 7 digits, and

it achieves nearly 100% accuracy on all the testing examples of 7 digits, except for a few

error cases as follows:

‘‘input’’: copy: · · · 9 8 9 8 9 4 · · ·

‘‘pred’’: · · · 9 8 9 4 · · ·

‘‘input’’: copy: · · · 6 0 6 0 6 5 · · ·

‘‘pred’’: · · · 6 0 6 5 · · ·

A common feature of these error cases is that they all contain consecutive repeating

numbers and the model tends to mistakenly skip part of them or over-replicate them.
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Figure 4.4: An illustration of GPT3 and T5 performance on copying repeating numbers.

Therefore we further do a copying task where the testing examples consist only of

repeated digits, such as copy: 2 2 2 2 2. The results are shown in Figure 4.4. Although

T5 performs well at copying random numbers of up to 7 digits, its accuracy at copying

5-digit repeating numbers drops below 80%. Similarly, the prompted GPT3 can not

generalize to copying more than 30 repeating digits. Both GPT3 and T5 are Transformer-

based LMs, which use the self-attention mechanism. When copying numbers, the models

are required to use self-attention to locate the next digit to copy. When copying random

numbers without repeated digits, it usually would be sufficient to locate the next digit

by comparing the previous few digits. However, when copying repeated digits, this

mechanism no longer works since all the previous digits are the same. Instead, the model

needs to locate the next digit either by counting the repetitive digits or by remembering

the previous position. Therefore, the results suggest that the Transformer-based LMs,

such as GPT3 and T5, might have limited capability of locating in symbolic manipulation.
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4.4 Mitigation Methods

In order to mitigate the limitations, we examine a few potential solutions.

4.4.1 Positional Markers

We first explore possible methods to mitigate the problem of repeating numbers. We

introduce two types of positional markers: implicit positional markers and explicit ones.

As stated above, LMs tend to make mistakes when the input contains repeating

numbers. When humans deal with repeating numbers in basic arithmetic, we usually

use indices to distinguish those digits in the input. Positional encoding in large LMs

is closely related to this human practice. Most Transformer-based LMs encode the po-

sitional information into positional vectors and add each of them to the corresponding

word vector. Although large LMs have already incorporated positional encoding in the

model architecture (Figure 4.5), results in Figure 4.2 indicate that the positional encod-

ing commonly used in large LMs may not be sufficient to locate each repeating digit

effectively.

Instead of representing each token by the sum of its contextual token embedding and

the position embedding, DeBERTa [85] represents each token with a token embedding

and a position embedding, respectively, and the attention weights are computed using

disentangled matrices based on both embeddings, respectively (Figure 4.5). In other

words, the self-attention in DeBERTa is disentangled. With the disentangled relative

position embeddings, the attention scores between tokens depend not only on the content

but also on the relative position between the tokens, so the disentangled relative position

embeddings act as implicit position markers within DeBERTa, which might make it easier

for the model to learn the latent position relationship in the training data of the symbolic

manipulation tasks.
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Figure 4.5: An illustration of standard Transformer attention (left) and DeBERTa
disentangled attention (right).

Although DeBERTa uses disentangled attention mechanism, it was not originally in-

troduced to enhance the locating capability of LMs, so no pretraining task was specifically

proposed for training the position embeddings in DeBERTa. This may potentially lead

to limited generalization ability of DeBERTa on the induction tasks requiring accurate

locating.

Rather than relying on implicit positional markers, another, more straightforward

approach is to add explicit positional markers in the input for the model. For example,

the input string 2 2 2 is augmented with positional markers A, B, C, · · · . We explore

two methods of adding explicit positional markers:

Ordered marker: The markers are inserted into the input in order. 2 2 2 → A 2 B 2

C 2

Random marker: The markers are inserted into the input in random order. 2 2 2 →

E 2 X 2 J 2

With the explicit positional markers, each repeating 2 becomes different for the model.

When doing symbolic manipulation, the Transformer-based LMs can easily locate the

digit by recognizing the explicit positional markers. Essentially, adding explicit positional

markers breaks the repeating numbers into a non-repeating input sequence. This method
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is also related to pointer networks [86], which uses attention as a pointer to select the

position indexes of the input tokens as the output. A hybrid pointer-generator network

can also be leveraged to copy number from the source text, while retaining the ability

to produce new numbers through the generator [87]. Compared with implicit markers,

explicit markers provide more direct and clearer location information in text format.

However, similar to the implicit positional markers, whether using the explicit positional

markers can generalize to arbitrary length or unseen markers is still questionable.

4.4.2 Fine-grained Computation Steps

We then explore possible methods to alleviate the OOD generalization problem. One

observation is that the complexity of addition with long digits is larger than that of the

1-digit addition. Thus, the model should be given more computation time on the task

when the numbers are large. The fine-tuned T5 and prompted GPT3 mentioned above,

however, is required to generate the answer with a fixed amount of computation, so one

possible direction to mitigate this limitation is to allow the model to operate step-by-step

instead of generating the answer in one forward pass. For example, in k-digit addition,

the model is allowed to break it down into k simple 1-digit addition and the model is

allowed to generate k intermediate addition results to get the final answer.

Generating fine-grained computation steps can potentially alleviate the generalization

problem, but may not contribute to the locating capability of the Transformer-based LMs.

To mitigate the locating problem, we add positional markers to scratchpad [74] (Figure

4.6):

We also experiment a more comprehensive scheme where each number in the demon-

stration is associated with an explicit positional marker or reference marker. A reference

marker refers the positional marker where the following number is copied from as shown
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question: 1 1 + 2 5
solution:
convert 1 1 into ☞ 1, ☛ 1.
convert 2 5 into ☞ 2, ☛ 5.
☛ 1 5, carry 0, so 1 + 5 + 0 = 6. carry 0, step result 6. 
combine 6 and result, get result 6.
☞ 1 2, carry 0, so 1 + 2 + 0 = 3. carry 0, step result 3. 
combine 3 and result 6, get result 3 6.
carry 0, combine 0 and result 3 6, final result 3 6.

Figure 4.6: The prompt for GPT3 on the addition task. We use ¬ and ¬ to denote
optional different markers as described in Section 4.4.1 if they are applied.

in Figure 4.7.

question: question: S[B] 1 S[A] 1 + T[B] 2 T[A] 5
solution:
S[A] 1 + T[A] 5 + Z[A] 0 = R[A] 6, Z[B] 0
S[B] 1 + T[B] 2 + Z[B] 0 = R[B] 3, Z[C] 0
result: Z[C] 0 R[B] 3 R[A] 6

Figure 4.7: The demonstration of comprehensive scheme for addition problem, where
position marker is marked red and reference marker is marked in green.

Through our experiments, we found that although these markers can help achieve

higher accuracy for in domain data. It does not help much for OOD data. It clearly

indicates the limitation of Transformers and pre-trained language models in induction.

In the following discussion, we will shed some insights on how to eliminate such limitation.

4.4.3 LM with callable Programs

If both implicit positional markers and explicit positional markers do not generalize

well in a symbolic reasoning task, then an alternative is to combine LMs with callable pro-

grams to replace the basic symbolic operations when possible, since callable programs do

not have the generalization problem. For example, when combined with the fine-grained

computation steps in the addition task, the convert, add, or combine operations can be

considered callable programs. When the LM generates the text sequence add(1,5), the
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callable function add will be invoked and return the result in text: carry C: 0, result

6.

Following the example in Section 4.4.2, with callable functions, the prompt format is

as follows:

question: 1 1 + 2 5
solution:
call convert (1 1, 2 5), return ☞ (1 2), ☛ (1 5).
☛ (1 5), call add (1, 5), return carry C: 0, result 6.
call combine (6, ), return 6.
☞ (1 2), call add (C: 0, 1, 2), return carry C: 0, result 3.
call combine (3, 6), return 3 6.
call combine (C: 0, 3 6), return 3 6, final result 3 6.

Figure 4.8: The prompt for GPT3 on the addition task with callable programs. ¬
and ¬ are positional markers. Different callable programs (convert, add and combine)
are marked in different colors, and the results they returned are underlined with the
corresponding color.

Given a testing example, the prompted GPT3 first generates the solution step by step.

During the process, the results of the function calls will be appended to the generated

result to be used in the following steps.

Callable programs can be viewed as decomposing a complex task to smaller, simpler

jobs. The remaing issue is to learn chaining these smaller jobs together to complete the

task.

Callable programs can guarantee the correctness of output given correct input for a

given job. However, even augmented with callable programs, LMs may still suffer from

the locating problem since the callable programs rely on LMs to decide which token to

copy (Figure 4.9). Unfortunately, LMs cannot guarantee the correctness of this copy

action.
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Figure 4.9: An error example of GPT3 with callable functions. The error is highlighted.

4.4.4 LM with Tutor

Scratchpad [74] ignores the visual process when an elementary school tutor visually

illustrates how to perform addition step by step: Pinpointing where each digit in the

output sequence comes from, adding single digits together and iterating. It turns out

that these details and abstractions are important in order to simplify the learning process

and help kids learn how to do addition in a few shots.

A tutor shows every single step visually and sometimes calls an already learned sub-

module to complete a task. In this way, the hypothesis space between two consecutive

steps can be dramatically simplified; hence the chance of learning a correct model can

be improved.

Taking copy as an example. Instead of providing a training example: copy: 1 1 1

2 2 2 result: 1 1 1 2 2 2, we need to demonstrate where the first 1, the second 1,

the third 1 in the output sequence comes from, which exactly imitates the finest action

a human could do to perform such an operation. Suppose there is a cursor placed at the

beginning of the input sequence, a “rmov” operation moves the cursor one token to the

right. A “cpy” operation copies a single digit to the output sequence. An “end” opera-

tion checks if the marker reaches the end of the sequence. “T” and “F” represent true

and false respectively. We assume all these actions are unitary and have been learned.
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Figure 4.10: An illustration of doing copy with pattern matching.

Then a possible action sequence to complete the copy operation is as follows:

rmov, end=F, cpy, rmov, end=F, cpy, . . . , rmov, end=T.

This fine-grained action sequence accurately describes the whole copy operation. Cer-

tainly, there are other ways to perform copying. For example, instead of using a cursor,

one can use a pattern match to perform the copy operation (Figure 4.10). We suspect

that the copy operation learned from Transformer is following this pattern-matching ap-

proach, which is error-prone when the pattern has repeating symbols and when the long

pattern is out-of-distribution. Positional markers do not help either as it seems unable

to handle the OOD generalization problem.

If we take the action sequence “rmov, end=F, . . . ” to train a Transformer for copying,

the hypothesis space is simplified, thus making it possible to find the simplest model that

can simulate the whole action sequence. This is related to imitation learning [88, 89].

Although there is no guarantee that Transformer can definitely find the correct model,

the chance is much higher. One can also relate the setting with a multiple tape Turing

machine where state transition is conducted among the positions of tape heads and

read/write operations. The Transformer is trained to learn such state transition, thus

completing the programming of a Turing machine.

As for the addition operation, a similar action sequence can be obtained to simulate

how humans tutor kids do addition at an early age (Figure 4.11). Let “lmov” denote
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Figure 4.11: An illustration of the LM with Tutor method. With the tutor (right),
the LM (left), or just a transformer generates an action sequence that simulates how
humans do arithmetic addition.

moving the cursor one token to the left. The “add” operation adds three single digits

together, one from each of the two operands and the third one from the carry digit,

appends the result to the output, and updates the carry digit. Assume “add” is a callable

program as kids have learned how to do single digits addition. Suppose the cursor starts

from the end of the operands. The entire action sequence looks like the following.

lmov, end=F, add, lmov, end=F, add, . . . , lmov, end=T.

The main difference between the tutor and the Scratchpad method [74] is the abstract

callable function and detailed action sequence. The action sequence includes all the state

transitions needed to complete the task. It perfectly overcomes the OOD issue and does

not require many training examples in order to achieve 100% accuracy.

While there is a great effort to enlarge Transformer-based LMs such as PALM [82] and

Minerva [90], to improve the performance in symbolic and logical reasoning, our result

reveals that it might be necessary to demonstrate the action sequence with reasonable

abstraction to the Transformer to leverage its full strength.

The action sequence “rmov, end=F, ...” can also be viewed as an algorithm execution

instance. It is well known that if one step is missing in an algorithm, it will most likely

not produce the expected output. In order to fill the gap in case one step is missed during
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demonstration, we have to rely on training examples of that step and learn it, which will

likely incur errors. As the number of missing steps increases, errors will accumulate and

eventually make learning more difficult and hard to generalize. To make learning in

symbolic reasoning easier, it will be important to have a detailed action sequence as we

have demonstrated in Figure 4.11.

4.5 Experiments

In this section, we conduct experiments on three different problems including copying,

addition, and another basic symbolic manipulation operation, reverse. We illustrate the

limitation of LMs in symbolic and arithmetic induction and the improvement that could

be achieved by the introduced mitigation methods.

4.5.1 Experiment configuration

For fine-tuning the T5-base and DeBERTa model, we use the learning rate 5e-5,

batch size 16, training epochs 200. The maximum generation length is set to 512. The

checkpoints are evaluated every 1000 optimization steps. The random seed is fixed to

42. We use the implementation for HuggingFace [91]. For GPT3, we set temperature=0,

top p=1, frequency penalty=0, and presence penalty=0. All the experiments are con-

ducted on NVIDIA RTX A6000 GPUs.

4.5.2 Copy Operation

Copying is the most basic operation used in symbolic manipulation and arithmetic

reasoning. We experiment with the following methods:

GPT3: We use the prompt as shown in Section 4.3.
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Figure 4.12: Experimental results. (a): results of copying repeating numbers. (b)(c):
results of reversing the list. (d)(e)(f): results on arithmetic addition. The x-axis is
the number of digits or number of items.

DeBERTa / T5: The training example is as follows: copy: 1 2 3 4 result: 1 2 3 4

T5 + ordered marker: The training data is augmented with explicit positional mark-

ers. copy: A 1 B 2 C 3 result: A 1 B 2 C 3

T5 + random marker: Same as above, but the augmented positional markers are in

random order. copy: E 1 A 2 F 3 result: E 1 A 2 F 3

T5 / GPT3 + tutor: The training and testing examples are as described in Sec-

tion 4.4.4.

We experiment with the T5-base (220M) model, DeBERTa-base (140M) model, and

GPT3 text-davinci-002. The models are initiated with the pretrained parameters and

further fine-tuned on the training data. For GPT3 or T5 with tutor, the training data

consists of 15 examples of up to 5 digits. For all the other T5 models and DeBERTa, the
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training data consists of 2,000 random numbers of up to 5 digits. We evaluate all the

models on copying repeating numbers of up to 80 digits. The results are illustrated in

Figure 4.12(a).

As shown in Figure 4.12(a), GPT3 achieves 100% accuracy on the in-distribution

testing data (1-5 digits) but the fine-tuned T5 achieves 78% accuracy on the 5-digit

repeating numbers although they are in-distribution. Augmented with random or ordered

positional markers, the T5 models achieve 100% in-distribution accuracy, and so does

using implicit positional markers (DeBERTa). This suggests that both implicit positional

markers and explicit positional markers may help with the locating capability of LMs.

However, using explicit positional markers, either ordered or random, the model exhibits

significantly better generalization to OOD testing data whereas DeBERTa fails on OOD

data. GPT3 exhibits better OOD generalization than T5 with positional markers but it

does not generalize well beyond 30 digits. Both T5 + tutor and GPT3 + tutor keeps

100% accuracy when the number of digits increases.

question: 1 1 + 2 5
result: 3 6
question: 5 0 2 + 7 0 3
result: 1 2 0 5
question: 1 9 2 7 + 4 2 1 8
result: 6 1 4 5
question: 3 1 3 9 8 + 4 7 2 7 1
result: 7 8 6 6 

Figure 4.13: The prompt for GPT3 on the addition task without intermediate steps.

4.5.3 Addition

For arithmetic addition, we experiment with the following methods:

GPT3: The exemplars are shown in Figure 4.13.
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GPT3 + coarse-grained steps: The exemplar is similar to that in Figure 4.6, but the

instructions for the result combination and the computation of the carry digit and step

result are omitted.

GPT3 + fine-grained steps (+ ordered marker): The exemplar we use is as shown

in Figure 4.6.

GPT3 + callable programs: The exemplar is shown in Figure 4.8.

DeBERTa / T5: The training data follows the format of the exemplar for GPT3.

DeBERTa / T5 + fine-grained steps: The training data used in this setting follow

the format as the exemplar in GPT3 + fine-grained steps.

T5 + ordered / random marker: The training example is augmented with ordered

or random markers. For example, question: G 1 C 1 + G 2 C 5 result: G 3 C 6.

T5 + fine-grained steps + ordered / random marker: The training data in this

setting follow a similar format as the exemplar in GPT3 + fine-grained steps + ordered

marker, but the positional markers can be in random order.

T5 / GPT3 + tutor: The training and testing examples are as described in Sec-

tion 4.4.4.

The model settings are the same as in the above copy experiments. For LMs with

tutor, the training data or prompt consists of 15 examples of up to 5 digits. In other

settings, the training data consists of 1,000 examples of 1-5 digit addition and for GPT3,

the prompt includes 4 examples. We evaluate all the models on the addition of up to 30

digits. The results are shown in Figure 4.12(d)(e)(f).

As shown in Figure 4.12(d), both coarse-grained and fine-grained computation steps

contribute to the in-distribution performance of GPT3, and using finer-grained steps

achieves larger performance gains on both in-distribution data and OOD data. The per-

formance is further boosted with explicit positional markers. Experiments on T5 (Figure

4.12(e)(f)) also show the effectiveness of using explicit positional markers, with or with-
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out fine-grained computation steps, indicating that the explicit positional markers might

make it easier for LMs to learn the induction in the arithmetic reasoning tasks. Similar

to the results on the copying task, both DeBERTa and DeBERTa + fine-grained steps

achieve near 100% in-distribution accuracy but 0% OOD accuracy, suggesting that the

relative position embedding of DeBERTa might have limited OOD generalization ability.

On T5, incorporating fine-grained computation steps does not improve the OOD perfor-

mance as significantly as on GPT3 (Figure 4.12(f)). The reason might be that fine-tuning

T5 tends to overfit more easily than prompting GPT3. Unsurprisingly, GPT3 + callable

programs achieves much better OOD generalization. However, its OOD performance still

degrades as the number of digits increases. Same as in the copy experiments, LMs +

tutor keeps 100% accuracy on all the experimented numbers of digits.

4.5.4 Reverse List

Besides copying and addition, we also experiment with reversing. Reversing is similar

to copying. Both require replicating the items in the input, but reversing might be more

challenging than copying in the terms of locating. In copying, the distance between each

source digit and the replicated digit is the same for each digit in the number. However,

when reversing, the distance between the source item and the replicated item keeps

increasing during the generation. For this problem, we experiment with the following

methods:

GPT3: The prompt without any intermediate steps is used, as shown in Figure 4.14.

DeBERTa / T5: reverse the list: bike, apple, book result: bike, cat, pen

GPT3 / DeBERTa / T5 + fine-grained steps: The training example for T5 and

the exemplar for GPT3 are shown in Figure 4.15.

T5 + ordered marker: The list items are augmented with the ordered positional
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reverse the list: bike, cat, pen
result: pen, cat, bike
reverse the list: chair, bike, apple, book
result: book, apple, bike, chair
reverse the list: book, phone, fish, orange, fish
result: fish, orange, fish, phone, book

Figure 4.14: The prompt for GPT3 on the reverse task without intermediate steps.

reverse the list: bike, cat, pen
solution:
A is bike. B is cat. C is pen.
Now to reverse, change the order to:
C is pen. B is cat. A is bike.
Result: pen, cat, bike

Figure 4.15: The prompt for GPT3 on the reverse task with fine-grained steps.

markers in the input. reverse the list: A bike, B cat, C pen result: pen, cat,

bike.

T5 / GPT3 + tutor: The training and testing examples are very similar to that for

the copy task. The only difference is the direction of the move operation. “rmov” in the

copy task is replaced by “lmov” here.

The model settings are the same as in the above experiments and the training data

consists of examples of 1-5 items, which are randomly sampled from a predefined list

of single-token nouns. For LMs with tutor, the training data or prompt consists of 15

examples of up to 5 items. In other settings, the training data consists of 1,000 examples

for T5, and for GPT3, each prompt includes 4 examples. We evaluate all the models on

reversing the list of up to 30 items. The results are shown in Figure 4.12(b)(c).

Although GPT3 can generalize to 80 digits on copying random numbers (Figure 4.2),

it does not generalize well beyond 20 items on reversing, which suggests that reversing

might require stronger locating capability than copying. This problem also occurs on
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DeBERTa and T5. When tested on the OOD data, the models tends to generate only

a sublist of the input. Using fine-grained steps (Figure 4.12(b)) or positional markers,

whether implicit or explicit (Figure 4.12(c)), does not significantly improve the general-

ization of the experimented models. The reason might be the increasing distance between

the source item and the replicated item as stated above. Again, LMs + tutor maintains

100% accuracy throughout the experiments.

4.5.5 Reference marker

As shown in Figure 4.7, we apply two different markers in the demonstration. The

positional marker is used to define the value stored in the marker, while reference marker

is used to explicitly copy the value from the positional marker with the same name. Each

number in this demonstration is uniquely marked with positional or reference marker.

For the positional marker, the model needs to generate both the marker and its value.

For the reference marker, the model only needs to generate the marker and the value will

be explicitly copied from its corresponding positional marker.

Similar to previous experiments on the addition problem, we train the model on 1-5

digits and test its performance on both in-domain (1-5 digits) and out-of-domain (6-10

digits) settings. The experimental results show that the model is able to achieve 100%

accuracy on in-domain data, but get 0% accuracy on out-of-domain data. We also tried

to extend the in-domain to 10 digits and get the same results that the model can solve

in-domain problems, but fail to generalize to out-of-domain.

We show one error case of this model in Figure 4.16, where the error step is highlighted

in yellow. On this 6-digit addition problem, the model skipped the last digit and directly

jump to the result, which causes the error. The problem is the model doesn’t learn to

how to generalize from 1-5 digits to 6 digits. Instead, it is overfitting to the training
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question: S[F] 5 S[E] 2 S[D] 8 S[C] 1 S[B] 7 S[A] 1 +
T[F] 6 T[E] 5 T[D] 0 T[C] 2 T[B] 4 T[A] 5

solution: 
S[A] 1 + T[A] 5 + Z[A] 0 = R[A] 6, Z[B] 0. 
S[B] 7 + T[B] 4 + Z[B] 0 = R[B] 1, Z[C] 1. 
S[C] 1 + T[C] 2 + Z[C] 1 = R[C] 4, Z[D] 0. 
S[D] 8 + T[D] 0 + Z[D] 0 = R[D] 8, Z[E] 0. 
S[E] 2 + T[E] 5 + Z[E] 0 = R[E] 7, Z[F] 0. 
result: Z[F] 0 R[E] 7 R[D] 8 R[C] 4 R[B] 1 R[A] 6

Figure 4.16: Error case for T5 model with positional and reference marker on addition
problem.

data, which makes it directly output the results after adding 5 digits. How to reduce the

hypothesis space and force the model to learn to generalize to out-of-domain data would

be one future research direction to solve this problem.

4.5.6 Discussion

From the experimental results, we observe that fine-grained computation steps may

improve the LM’s induction ability on the arithmetic reasoning tasks and the granularity

of the steps has an impact on the performance improvement. Finer-grained computation

steps may contribute to larger performance improvement.

Positional markers, whether implicit or explicit, improves LMs’ in-distribution per-

formance on all the symbolic manipulation tasks in our experiments. However, We find

that augmented with the relative position embeddings, DeBERTa tends to face more

severe over-fitting than T5 during fine-tuning. In the reversing experiment, using the T5

model without pretrained parameters, the fine-tuned model can not achieve a good in-

distribution performance after 200k optimization steps. However, the DeBERTa model

without pretrained parameters achieves 100% in-distribution accuracy within only 2k op-

timization steps while the OOD accuracy drops, indicating that it has overfitted within

2k optimization steps. In other words, the relative position embeddings in DeBERTa
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significantly improve the model’s capacity of positions, which improves in-distribution

performance on simple symbolic manipulation tasks, but may not generalize well on

OOD data. Compared with the implicit positional markers (relative position embed-

dings in DeBERTa), explicit positional markers might have better OOD generalization

ability. However, incorporating symbolic manipulation tasks in the LM pretraining stage

might alleviate this problem, so incorporating implicit positional markers can still be

a possible direction of improving the LM’s performance on reasoning tasks requiring

locating ability.

Using LM with callable programs exhibits strong OOD performance on addition,

suggesting that the LMs’ ability to perform simple symbolic operations, such as copying,

splitting, and combining, can be critical for improving their performance on reasoning

tasks. How to further improve the LMs’ performance on more complex reasoning tasks

in this direction is left for future work.

4.6 Conclusion

In this work, we explore the limitations of pretrained LMs on arithmetic reasoning

and symbolic manipulation. We experiment with three simple symbolic manipulation

tasks and show that improving the locating and induction capability of LMs can be

important for further improving their performance on induction tasks. Our method that

combines abstraction and finest-grained step-by-step tutoring demonstrates its potential

to generalize correctly, shedding light on possible directions orthogonal to scaling up LMs

for future work in this area.
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Chapter 5

Effective Model Updates through

Lifelong Learning

5.1 Introduction

The task of relation detection/extraction aims to recognize entity pairs’ relationship

from given contexts. As an essential component for structured information extraction, it

has been widely used in downstream tasks such as automatic knowledge-based comple-

tion [92] and question answering [93, 94].

Existing relation detection methods always assume a closed set of relations and per-

form once-and-for-all training on a fixed dataset. While making the evaluation straight-

forward, this setting clearly limits the usage of these methods in realistic applications,

where new relations keep emerging over time. To build an evolving system which auto-

matically keeps up with the dynamic data, we consider a more practical lifelong learning

setting (also called continual learning) [95, 96, 97], where a learning agent learns from a

sequence of tasks, where each of them includes a different set of relations. In such sce-

narios, it is often infeasible to combine the new data with all previous data and re-train
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the model using the combined dataset, especially when the training set for each task is

huge.

To enable efficient learning in such scenarios, recent lifelong learning research [98, 99]

propose to learn the tasks incrementally, while at the same time preventing catastrophic

forgetting [100, 101, 102, 103], i.e., the model abruptly forgets knowledge learned on

previous tasks when learning on the new task. Current lifelong learning approaches

address such challenge by either preserving the training loss on previously learned tasks

(GEM) [99], or selectively dimming the updates on important model parameters (EWC) [98].

These methods usually involve adding additional constraints on the model’s parameters

or the updates of parameters by utilizing stored samples. Despite the effectiveness of

these methods on simple image classification tasks, there is little research validating the

practical usage of these methods in realistic NLP tasks. In fact, when applying these

methods to our relation extraction task, we observe that they underperform a simple

baseline that updates the model parameters (i.e., learning by SGD) with a mix of stored

samples from previous tasks and new samples from the incoming task. We further test

this simple baseline on commonly used continual learning benchmarks and get similar

observations.

In this work, we thoroughly investigate two existing continual learning algorithms on

the proposed lifelong relation extraction task. We observe that recent lifelong learning

methods only operate on the models’ parameter space or gradient space, and do not

explicitly constraint the feature or embedding space of neural models. As we train the

model on the new task, the embedding space might be distorted a lot, and become

infeasible for previous tasks. We argue that the embedding space should not be distorted

much in order to let the model work consistently on previous tasks. To achieve this, we

propose an alignment model that explicitly anchors the sentence embeddings derived by

the neural model. Specifically, the alignment model treats the saved data from previous
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tasks as anchor points and minimizes the distortion of the anchor points in the embedding

space in the lifelong relation extraction. The aligned embedding space is then utilized

for relation extraction. Experiment results show that our method outperforms the state-

of-the-art significantly in accuracy while remaining efficient.

The main contributions of this work include:

•We introduce the lifelong relation detection problem and construct lifelong relation

detection benchmarks from two datasets with large relation vocabularies: SimpleQues-

tions [7] and FewRel [8].

• We propose a simple memory replay approach and find that current popular meth-

ods such as EWC and GEM underperform this method.

•We propose an alignment model which aims to alleviate the catastrophic forgetting

problem by slowing down the fast changes in the embedding space for lifelong learning.

5.2 Problem Definition

Generic definition of lifelong learning problems In lifelong learning, there is a

sequence of K tasks {T (1), T (2), . . . , T (K)}. Each task T (k) is a conventional supervised

task, with its own label set L(k) and training/validation/testing data (T
(k)
train, T

(k)
valid, T

(k)
test),

each of which is a set of labeled instances {(x(k), y(k))}. Note that x(k) is the input data

of the context and candidate relations, and y(k) is the ground-truth label. The goal of

lifelong learning is to learn a classification model f . At each step k, f observes the task

T (k), and optimizes the loss function on its training data with a loss function ℓ(f(x), y).

At the same time, we require the model f learned after step k could still perform well on

the previous k − 1 tasks. That is, we evaluate the model by using the average accuracy

of k tasks at each step as 1
k

∑k
j=1 accf,j.

To make f perform well on the previous tasks, during the lifelong learning process,
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we usually allow the learner to maintain and observe a memoryM of samples from the

previous tasks. Practically, with the growth of the number of tasks, it is difficult to

store all the task data1. Therefore, in lifelong learning research, the learner is usually

constrained on the memory size, denoted as a constant B. Thus at each step k, the

learner is allowed to keep training samples from {T (j)|j = 1, . . . , k − 1} with size less or

equal to B.

Lifelong relation detection In this chapter we introduce a new problem, lifelong

relation detection. Relation detection is an important task that aims to detect whether

a relation exists between a pair of entities in a paragraph. In many real-world scenarios,

relation detection naturally forms a lifelong learning problem because new relation types

emerge as new knowledge is constantly being discovered in various domains. For example,

in the Wikidata [104] knowledge graph, the numbers of new items and properties are

constantly increasing2. So we need to keep collecting data and updating the model over

time in order to handle newly added relations.

The problem of lifelong relation detection has the same definition as above with only

one difference: during prediction time, we hope to know whether an input paragraph

contains any relation observed before. Therefore at time k, given an input x from task

j′<k, instead of predicting an y ∈ L(j′), we predict y(k) ∈
⋃k

j=1 L
(j). That says, the

candidate label set is expanding as the learner observes more tasks, and the difficulty of

each previous task is increasing over time as well.

1Even the data can be stored, it is unrealistic to make full usage of the stored data. For example, ran-
dom sampling from all previous task data (e.g., for the methods in Section 5.4) will become statistically
inefficient.

2https://www.wikidata.org/wiki/Wikidata:News
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5.3 Evaluation Benchmarks for Lifelong Learning

5.3.1 Previous non-NLP Benchmarks

Lifelong MNIST MNIST is a dataset of handwriting ten digits [105], where the input

for each sample is an image, and the label is the digit the image represents. Two variants

of the MNIST dataset were proposed for lifelong learning evaluation. One is MNIST

Permutations [98], where a task is created by rearranging pixels according to a fixed

permutation. K different permutations are used to generate K tasks. Another variant

is MNIST Rotations [99], where each task is created by rotating digits by a fixed angle.

K angles are chosen for creating K tasks. In our experiments, we follow [99] to have

K = 20 tasks for each benchmark.

Lifelong CIFAR CIFAR [106] is a dataset used for object recognition, where the input

is an image, and the label is the object the image contains. Lifelong CIFAR100 [107] is a

variant of CIFAR-100 (CIFAR with 100 classes) by dividing 100 classes into K disjoint

subsets. Each task contains samples from 100
K

classes in one subset. Following [99], we

have K = 20 tasks, where each of them has 5 labels.

5.3.2 The Proposed Lifelong Relation Detection Benchmarks

Lifelong FewRel FewRel [8] is a recently proposed dataset for few-shot relation de-

tection. There are 80 relations in this dataset. We choose to create a lifelong benchmark

based on FewRel because there are a sufficient number of relation labels. We extract the

sentence-relation pairs from FewRel and build our lifelong FewRel benchmark as follows.

Each sample contains a sentence with the ground-truth relation it refers, and a set of 10

randomly chosen false relations from all the whole relations set. The model is required to

distinguish the right relation from the candidates. We apply K-Means over the averaged
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word embeddings of the relation names and divide 80 relations into 10 disjoint clusters.

This results in 10 tasks in this benchmark, and each task contains relations from one

cluster. Candidate relations will be masked if they do not appear in the history tasks.

Lifelong SimpleQuestions SimpleQuestions is a KB-QA dataset containing single-

relation questions [7]. [94] created a relation detection dataset from SimpleQuestions that

contains samples of question-relation pairs. For each sample, a candidate set of relations

is also provided. Similar to lifelong FewRel, we divide relations into 20 disjoint clusters

by using K-Means. This results in 20 tasks, and each task contains relations from one

cluster.

5.4 Simple Episodic Memory Replay Algorithm for

Lifelong Learning

Catastrophic forgetting is one of the biggest obstacles in lifelong learning. The prob-

lem is particularly severe in neural network models, because the learned knowledge of

previous tasks is stored as network weights, while a slight change of weights when learn-

ing on the new task could have an unexpected effect on the behavior of the models on

the previous tasks [103].

Currently, the memory-based lifelong learning approaches, which maintain a working

memory of training examples from previous tasks, are proved to be one of the best solu-

tions to the catastrophic forgetting problem. In this section, we first propose a memory-

based lifelong learning approach, namely Episodic Memory Replay (EMR), which uses

the working memory by sampling stored samples to replay in each iteration of the new

task learning. Surprisingly, such a straightforward approach with a clear motivation

was never used in previous research. We first compare EMR with the state-of-the-art
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memory-based algorithm Gradient Episodic Memory (GEM). We also show that the

EMR outperforms GEM on many benchmarks, suggesting that it is likely to be among

the top-performed lifelong learning algorithms, and it should never be ignored for com-

parison when developing new lifelong learning algorithms.

5.4.1 Episodic Memory Replay (EMR)

EMR is a modification over stochastic gradient descent algorithms. It replays ran-

domly sampled data from memory while training on a new task, so the knowledge of

previous tasks could be retained in the model. After training on each task k, EMR

selects several training examples to store in the memoryM, denoted asM
⋂
T

(k)
train.

3

To handle the scalability, EMR stochastically replays the memory. Specifically, when

training on task k with each mini-batch D
(k)
train ⊂ T

(k)
train, EMR samples from the memory

M to form a second mini-batch D
(k)
replay ⊂M. Then two gradient steps are taken on the

two mini-batches of D
(k)
train and D

(k)
replay. Note that EMR could work with any stochas-

tic gradient optimization algorithm, such as SGD, Adagrad, AdaDelta, and Adam, to

optimize the model f with the mixed mini-batches.

We try two variations of D
(k)
replay sampling: first, task-level sampling, which samples

from one previous task j each time, i.e., D
(k)
replay ⊂ M

⋂
T

(j)
train. Second, sample-level

sampling, which samples all over the memory, i.e., D
(k)
replay ⊂M.

The two approaches differ in the task instance sampling probability. The task-level

approach assumes a uniform distribution over tasks, while the sample-level approach has

a marginal distribution on tasks that is proportional to the number of their training data

in M.4 When tasks are balanced like MNIST and CIFAR, or when the stored data in

3Previous research [108] propose to dynamically change the size of memory set for each task during
training. The followup work and this chapter all use fixed sets, and we will investigate the usage of
dynamic sets in future work.

4The two approaches hence favor different evaluation metrics – the former fits macro averaging better
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the memory for different tasks are balanced, the two approaches become equivalent.

However, the sample-level strategy could sometimes make the code implementation

more difficult: for some lifelong learning benchmarks such as MNIST Rotation, MNIST

Permutation, and CIFAR-100 used in [99], the tasks could differ from each other in

the input or output distribution, leading to different computation graphs for different

training examples. From our preliminary study, the task-level approach could always give

results as good as those of the sample-level approach on our lifelong relation detection

benchmarks (see Table 5.1) , so in our experiments in Section 5.6 we always use the

task-level approach.

5.4.2 Comparing EMR with State-of-the-art Memory-based Life-

long Algorithm

In this part, we will first thoroughly introduce a state-of-the-art memory-based life-

long learning algorithm called Gradient Episodic Memory (GEM) [99], and then compare

EMR with it in both time complexity and experimental results on several benchmarks.

Gradient Episodic Memory (GEM) The key idea of GEM [99] is to constrain the

new task learning with previous task data stored in memory. Specifically, it constrains

the gradients during training with the following operation. When training on task k,

for each mini-batch D
(k)
train ⊂ T

(k)
train, it first computes the gradient g

(k)
train on D

(k)
train, and

the average gradients on the stored data of each previous task j, denoted as g
(j)
task. More

concretely, we define

g
(j)
task =

∑
i′ ∇ℓ(f(x

(j)
i′ ), y

(j)
i′ )

|M
⋂
T

(j)
train|

,

and the latter fits micro averaging better.
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where j<k, ℓ(·) is the loss function, and (x
(j)
i′ , y

(j)
i′ ) ∈ M

⋂
T

(j)
train, i.e. (x

(j)
i′ , y

(j)
i′ ) is a

training instance in T (j) that was stored in memory M. Then the model f is updated

along the gradient g̃ that solves the following problem:

ming̃ ||g̃ − g
(k)
train||2

s.t. ⟨g̃, g(j)task⟩ ≥ 0, j = 1, . . . , k − 1.

g̃ is the closest gradient to the gradient on the current training mini-batch, g
(k)
train, without

decreasing performance on previous tasks much since the angle between g̃ and g
(j)
task is

smaller than 90◦.

Time Complexity One difference between EMR and GEM is that EMR deals with

unconstrained optimization and does not require the gradient projection, i.e., solving

g̃. But since the model f is deep networks, empirically the time complexity is mainly

dominated by the computation of forward and backward passes. We analyze the time

complexity as below:

In task k, suppose the mini-batch size is |D| and the memory replay size is m, our

EMR takes |D| +m forward/backward passes in each training batch. Note that m is a

fixed number and set to be equal to the number of instances stored for each previous

task in our experiments. While for GEM, it needs to compute the gradient of all the

data stored in the memoryM, thus |D| + |M| forward/backward passes are taken. Its

complexity is largely dominated by the size |M| (upper bounded by the budget B). When

the budget B is large, with the number of previous tasks increases, M grows linearly,

and GEM will become infeasible.

Superior Empirical Results of EMR The EMR algorithm is much simpler com-

pared to the GEM. However, one interesting finding of this chapter is that the state-of-
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Task
EMR

GEM
sample task

MNIST Rotation – 0.828 0.860
MNIST Permutation – 0.824 0.826

CIFAR-100 – 0.675 0.675
FewRel 0.606 0.620 0.598

SimpleQuestions 0.804 0.808 0.796

Table 5.1: The average accuracy across all the tasks at last time step for EMR and
GEM on both non-NLP and our lifelong relation detection benchmarks. For the
experiments on MNIST and CIFAR, we follow the setting in [99] (see section 5.6.1
for details). For the experiments on FewRel and SimpleQuestions, we use the same
setting in Section 5.6. We only implement task-level EMR for MNIST and CIFAR
because of the relatively easy implementation.

the-art GEM is unnecessarily more complex and more inefficient, because EMR, a simple

stochastic gradient method with memory replay, outperforms it on several benchmarks.

The results are shown in Table 5.1. The numbers are the average accuracy, i.e.

1
k

∑k
j=1 accf,j, at last time step. For both algorithms, the training data is randomly sam-

pled to store in the memory, following [99]. On lifelong relation detection, the EMR

outperforms GEM on both of our created benchmarks. To further show its generalizabil-

ity, we apply the EMR to previous lifelong MNIST and CIFAR benchmarks and compare

to the results in [99] with all the hyperparameters set as the same. Still, EMR performs

similarly to GEM except for the MNIST Rotation benchmark.5

From the above results, we learned the lesson that previous lifelong learning ap-

proaches actually fail to show improvement compared to doing memory replay in a

stochastic manner. We hypothesise that GEM performs worse when there is positive

transfer among tasks, making the gradient projection an inefficient way to use gradients

computed from memory data. Therefore, in the next section, we start with the basic

EMR and focus on more efficient usage of the historical data.

5Even on MNIST Rotation, it has achieved a competitive result, since the conventional training on
shuffled data from all the tasks in this benchmark gives ∼ 0.83 according to [99].
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5.5 Embedding Aligned EMR (EA-EMR)

Based on our basic EMR, this section proposes our solution to lifelong relation de-

tection. We improve the basic EMR with two motivations: (1) previous lifelong learning

approaches work on the parameter space. However, the number of parameters in a deep

network is usually huge. Also, deep networks are highly non-linear models, and the pa-

rameter dimensions have complex interactions, making the Euclidean space of parameters

not a proper delegate of model behavior [103]. That is, a slight change in parameter space

could affect the model prediction unexpectedly. The above two reasons make it hard to

maintain deep network behaviors on previous tasks with constraints or Fisher informa-

tion. Therefore, we propose to alleviate catastrophic forgetting in the hidden space (i.e.,

the sentence embedding space). (2) for each task, we want to select the most informative

samples to store in the memory, instead of random sampling like in [99]. Therefore the

budget of memory can be better utilized.

5.5.1 Embedding Alignment for Lifelong Learning

This section introduces our approach which performs lifelong learning in the embed-

ding space, i.e., the Embedding Aligned EMR (EA-EMR).

In EA-EMR, for each task k, besides storing the original training data (x(k), y(k)) in

the memoryM, we also store the embeddings of x(k). In the future after a new task is

trained, the model parameters are changed thus the embeddings for the same (x(k), y(k))

would be different. Intuitively, a lifelong learning algorithm should allow such parameter

changes but ensure the changes do not distort the previous embedding spaces too much.

Our EA-EMR alleviates the distortion of embedding space with the following idea:

if the embedding spaces at different steps are not distorted much, there should exist a

simple enough transformation a (e.g., a linear transformation in our case) that could
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transform the newly learned embeddings to the original embedding space, without much

performance degeneration on the stored instances. So we propose to add a transformation

a on the top of the original embedding and learn the basic model f and the transformation

a automatically. Specifically, at the k-th task, we start with the model f (k−1), and the

transformation a(k−1), that trained on the previous k − 1 tasks. We want to learn the

basic model f and the transformation a such that the performance on the new task and

stored instances are optimized without distorting the previous embedding spaces much.

min
f(·),a(·)

∑
(x,y)∈D(k)

train

ℓ(a(f(x)), y)+

∑
(x,y)∈D(k)

replay

(
ℓ(a(f(x)), y) + ∥a(f(x))− a(k−1)(f (k−1)(x))∥2

)

We propose to minimize the above objective through two steps. In the first step, we

optimize the basic model f by:

min
f(·)

∑
(x,y)∈D(k)

train

⋃
D

(k)
replay

ℓ
(
a(k−1)(f(x)), y

)

This step mainly focuses on learning the new task without performance drop on the

stored samples.

In second step, we optimize a to keep the embedding space of the current task and

restore the previous embedding space of all stored samples:

min
a(·)

∑
(x,y)∈D(k)

train

∥a(f(x))− a(k−1)(f(x))∥2

+
∑

(x,y)∈D(k)
replay

∥a(f(x))− a(k−1)(f (k−1)(x))∥2

Embedding Alignment on Relation Detection Model We introduce how to add

embedding alignment to relation detection models. The basic model we use is a ranking

model that is similar to HR-BiLSTM [94]. Two BiLSTMs [42] are used to encode the
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Figure 5.1: This figure shows how we add the alignment model (a linear model in our
case) on the basic relation detection model, where two BiLSTMs are used to encode
the text and relation, and cosine similarity between their embeddings are computed
as the score.

sentence and relation respectively given their GloVe word embedding [52]. Cosine simi-

larity between the sentence and relation embedding is computed as the score. Relation

with maximum score is predicted by the model for the sentence. Ranking loss is used

to train the model6. This base model is our model f , which is trained on a new task k

at each step and results in an updated model f (k). Our proposed approach (Figure 5.1)

inserts an alignment model a to explicitly align to embedding space for stored instances

and maintain the embedding space of the current task. Note that the label y (the relation

here) also has embedding, so it needs to pass through the alignment model a as well.

6Though the basic model is simple, it achieves reasonable results on the two datasets when training
with all the data, i.e., 0.837 on FewRel and 0.927 on SimpleQuestions.
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5.5.2 Selective Storing Samples in Memory

When the budget of memory is relatively smaller, how to select previous samples will

greatly affect the performance. Ideally, in order to make the memory best represents a

previous task, we hope to choose diverse samples that best approximate the distribution

of task data. However, distribution approximation itself is a hard problem and will be

inefficient due to its combinatorial optimization nature. Therefore, many recent works

such as GEM ignore this step and randomly select samples from each task to store in the

memory.

In [108], they proposed to select exemplars that best approximate the mean of the

distribution. This simplest distribution approximation does not give an improvement in

our experiments because of the huge information loss. Therefore, we propose a better

approach of sample selection by clustering over the embedding space from the model, and

choose one representative from each cluster to store in the memory. More specifically,

The embedding after alignment model is used to represent the input because the model

makes prediction based on that. Then we apply K-Means (the number of clusters equals

the budget given to the specific task) to cluster all the samples of the task. For each

cluster, we select the sample closest to the centroid to store in the memory.

We leave more advanced approaches of representative sample selection and their em-

pirical comparison to future work.

5.6 Experiments

5.6.1 Experiment setting

On MNIST and CIFAR Following the setting in [99], the size of memory for each

task is set to be 256. The learning rate is set to be 0.1. The epoch for training the model
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on each task is set to be 1. Plain SGD and minibatch of 10 samples are used. For the

MNIST dataset, each task has 1000 samples of 10 classes. For the CIFAR dataset, each

task has 2500 samples of 5 classes.

On relation extraction benchmarks We conduct experiments on our lifelong bench-

marks: lifelong SimpleQuestions [7] and lifelong FewRel [8] to compare our proposed

methods EA-EMR, EA-EMR without Selection (EA-EMR NoSel), EA-EMR without

Alignment (EA-EMR noAlign), and EMR with the following baselines.

• Origin, which simply trains on new tasks based on the previous model.

• EWC [98], which slows down updates on important parameters by adding L2

regularization of parameter changes to the loss.

• GEM [99], which projects the gradient to benefit all the tasks so far by keeping a

constraint for each previous task.

• AGEM [109], which only uses one constraint that the projected gradient should

decrease the average loss on previous tasks.

On both FewRel and SimpleQuestions, the epoch to train on each task is set to be

3. Learning rate for the basic model is set to be 0.001. The hidden size of LSTM is set

to be 200. The batch size is set to be 50. For each sample in the memory, 10 candidate

relations is randomly chosen from all observed relations to alleviate the problem that

new relations are emerging incessantly.

Parameters for our model and baselines are set as follows. For EA-EMR and EA-

EMR NoSel, when training the alignment model, the learning rate is set to be 0.0001, and

the training epoch is set to be 20 and 10 for FewRel and SimpleQuestions respectively.

For AGEM, 100 samples are randomly chosen from all the previous tasks to form a

constraint. For EWC, we set the balancing parameter α = 100. For GEM and EMR

related methods, memory size of each task is set to be 50.
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(a) FewRel (b) SimpleQuestions

Figure 5.2: This figure shows the average accuracy of all the observed tasks on the
benchmarks of lifelong FewRel and lifelong SimpleQuestions during the lifelong learn-
ing process. The average performance of 5 runs is reported, and the average running
time is shown in the brackets.

(a) FewRel (b) SimpleQuestions

Figure 5.3: This figure shows the accuracy on the whole testing data on the benchmark
of lifelong FewRel and lifelong SimpleQuestions during the lifelong learning process.
The average performance of 5 runs is reported, and the average running time is
shown in the brackets.

5.6.2 Lifelong Relation Detection Results

Evaluation Metrics We use two metrics to evaluate the performance of the model:

• Average performance on all seen tasks after time step k, which highlights the catas-

trophic problem:

ACCavg =
1

k

k∑
i=1

accf,i
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Method
FewRel SimpleQuestions

Whole Avg Whole Avg

Origin 0.189 0.208 0.632 0.569
Baselines

GEM 0.492 0.598 0.841 0.796
AGEM 0.361 0.425 0.776 0.722
EWC 0.271 0.302 0.672 0.590

Ours
Full EA-EMR 0.566 0.673 0.878 0.824
w/o Selection 0.564 0.674 0.857 0.812
w/o Alignment 0.526 0.632 0.869 0.820
w/o Alignment but keep

0.545 0.655 0.871 0.813
the architecture

EMR Only 0.510 0.620 0.852 0.808

Table 5.2: This table shows the accuracy on the whole testing data (”Whole” column),
and average accuracy on all observed tasks (”Avg” column) after the last time step.
The average performance of 5 runs are listed here and the best result on each dataset
is marked in bold.

• Accuracy on the whole testing data of all tasks:

ACCwhole = accf,Dtest

Results on FewRel and SimpleQuestions We run each experiment 5 times inde-

pendently by shuffling sequence of tasks, and the average performance is reported. The

average accuracy over all observed tasks during the whole lifelong learning process is

presented in Figure 5.2, and the accuracy on the whole testing data during the process is

shown in Figure 5.3. We also list the result at last step in Table 5.2. From the results, we

can see that EWC and GEM are better than the Origin baseline on both two datasets,

which indicates that they are able to reduce the catastrophic forgetting problem. How-

ever, our EA-EMR perform significantly better than these previous state-of-the-arts. The

proposed EMR method itself achieves better results than all baselines on both datasets.

The ablation study shows that both the selection and the alignment modules help on

both tasks.
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The Effect of Embedding Alignment To investigate the effect of our embedding

alignment approach, we conduct two ablation studies as below: First, we remove both

the alignment loss in equation 5.5.1, as well as the alignment module a, which results in

significant drop on most of the cases (the line “w/o Alignment” in Table 5.2). Second, to

make sure that our good results do not come from introducing a deeper model with the

module a, we propose to only remove the embedding alignment loss, but keep everything

else unchanged. That means, we still keep the module a and the training steps, with

the only change on replacing the loss in step 2 with the one in step 1 (the line “w/o

Alignment but keep the architecture” in Table 5.2). We can see that this decreases

the performance a lot. The above results indicate that by explicitly doing embedding

alignment, the performance of the model can be improved by alleviating the distortion

of previous embedding space.

Comparison of Different Sample Selection Strategies Here we compare different

selection methods on lifelong FewRel and SimpleQuestions. EMR Only randomly choose

samples. [108] propose to choose samples that can best approximate the mean of the

distribution. We compare their sampling strategy (denoted as iCaRL) with our proposed

method (K-Means) which encourages to choose diverse samples by choosing the central

sample of the cluster in the embedding space. From the results in Table 5.3, we can

see that our method outperforms iCaRL and the random baseline. While iCaRL is not

significantly different from the random baseline.

5.7 Related Work

Lifelong Learning without Catastrophic Forgetting Recent lifelong learning re-

search mainly focuses on overcoming the catastrophic forgetting phenomenon [103, 100,
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Method
FewRel SimpleQuestions

Whole Avg Whole Avg

EMR Only 0.510 0.620 0.852 0.808
+ K-Means 0.526 0.632 0.869 0.820
+ iCaRL 0.501 0.615 0.854 0.806

Table 5.3: Comparison of different methods to select data for EMR. The accuracy on
the whole testing data (”Whole” column), and average accuracy on all observed tasks
(”Avg” column) is reported. We run each method 5 times, and give their average
results.

102, 101], i.e., knowledge of previous tasks is abruptly forgotten when learning on a new

task.

Existing research mainly follow two directions: the first one is memory-based approach

[99, 109], which saves some previous samples and optimizes a new task with a forgetting

cost defined on the saved samples. These methods have shown strength in alleviating

catastrophic forgetting, but the computational cost grows rapidly with the number of

previous tasks. The second direction is to consolidate parameters that are important to

previous tasks [98, 110, 111, 112]. For example, Elastic Weight Consolidation (EWC) [98]

slows down learning on weights that are important to previous tasks. These methods

usually do not need to save any previous data and only train on each task once. But

their abilities to overcome catastrophic forgetting are limited.

Lifelong Learning with Dynamic Model Architecture There is another related

direction on dynamically changing the model structure (i.e., adding new modules) in order

to learn the new task without interfering learned knowledge for previous tasks, such as

[113, 114, 115]. These approaches could successfully prevent forgetting. However, they do

not suit many lifelong settings in NLP. First, it cannot benefit from the positive transfer

between tasks. Second, the size of the model grows dramatically with the number of

observed tasks, which makes it infeasible for real-world problems where there are a lot of
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tasks.

Remark It is worth noting that the term lifelong learning is also widely used in [116,

117, 118, 119], which mainly focus on how to represent, reserve and extract knowledge of

previous tasks. These works belong to a research direction different from lifelong learning

without catastrophic forgetting.

5.8 Conclusion

In this chapter, we introduce lifelong learning into relation detection, and find that

two state-of-the-art lifelong learning algorithms, GEM and EWC, are outperformed by

a simple memory replay method EMR on many benchmarks. Based on EMR, we fur-

ther propose to use embedding alignment to alleviate the problem of embedding space

distortion, which we think is one reason that causes catastrophic forgetting. Also, we

propose to choose diverse samples to store in the memory by conducting K-Means in

the model embedding space. Experiments verify that our proposed methods significantly

outperform other baselines.

82



Chapter 6

Maximizing Resource Allocation for

Real User Services

6.1 Introduction

Recently, the development of Large Language Models (LLMs) such as GPT-3 [3],

PaLM [120], and ChatGPT [4] has brought significant advances in natural language

processing, enabling superior performance in downstream tasks such as language un-

derstanding [121, 120], question answering [122, 123], and dialogue systems [124, 125].

These models have shown remarkable abilities in understanding and generating human-

like language, providing benefits across various domains, including healthcare, education,

finance, and entertainment. With their ability to learn from massive amounts of data,

these models are constantly improving and becoming more versatile, paving the way for

new and exciting applications.

However, with the proliferation of these models, concerns have emerged regarding

their potential misuse for malicious purposes. One of the most significant threats is

the use of large language models to impersonate human users and engage in nefarious
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activities, such as fraud, spamming, or denial-of-service attacks. For instance, Chat-

GPT agents could be used by hackers to occupy all customer service channels of various

corporations, such as e-commerce, airlines, and banks. Moreover, with the help of text-

to-speech (TTS) techniques, machine-generated voices could even occupy public service

lines like 911, leading to severe public crises [126]. These attacks could cause significant

harm to online service providers and their users, eroding the trust and integrity of online

interactions.

Differentiating between human users and malicious bots is a long-standing topic of

interest for both industry and academia. Conventional techniques, such as the use of

CAPTCHAs [127], have been developed to determine whether a user is a human or

a bot in order to prevent bot spamming and raiding. A commonly used CAPTCHA

method involves asking users to recognize distorted letters and digits. However, these

approaches face significant challenges when it comes to detecting chatbots involving text

and voice only. This is where the emergence of large language models such as GPT-3

and ChatGPT has further complicated the problem of chatbot detection, as they are

capable of generating high-quality human-like text and mimicking human behavior to a

considerable extent. Although recent studies such as DetectGPT have proposed methods

to classify if text is generated by ChatGPT or not, they focus on the offline setting. A

recent study [128] shows that these detectors are not reliable under paraphrasing attacks,

where a light paraphraser is applied on top of the generative text model. This limitation

highlights the need for more robust and accurate methods to differentiate large language

models from human users and detect their presence in online chat interactions.

In this chapter, we propose a novel framework named FLAIR, Finding LLM Au-

thenticity with a Single Inquiry and Response, to take full advantage of the strength and

weakness of LLMs for LLM-based conversational bot detection. Specifically, we intro-

duce a set of carefully designed questions that induce distinct responses between bots
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Humans good at Humans not good at

Bots good at ×
√ memorization

computation

Bots not good at
√

symbolic manipulation
noise filtering
randomness
graphical understanding

×

Table 6.1: Leveraging tasks that Bots and Humans are (not) good at

and humans. These questions are tailored to exploit the differences in the way that

bots and humans process and generate language. As shown in Table 6.1, certain ques-

tions in the fields of symbolic manipulation, noise filtering, and graphical understanding

are difficult for bots but relatively easy for humans. Examples include the counting,

substitution, positioning, noise injection, and ASCII art. On the other hand, memoriza-

tion and computation was relatively easy for bots but difficult for humans. Specifically,

counting requires users to count the number of times a particular character appears in

a string. Substitution involves substituting the characters of a random string according

to a given rule. In positioning, users are asked to identify the k-th character after the

j-th appearance of a given character c in a random string. Random editing involves

performing random operations, such as dropping, inserting, swapping, and substituting

characters, on a randomly generated string and producing three distinct outputs. Noise

injection presents common-sense questions that have been modified with additional char-

acters. ASCII art require users to identify what is being depicted by ASCII characters.

Memorization asks questions that demand the enumeration of items within a category

or domain-specific knowledge that are challenging for humans to recall. Computation

requires users to provide answers to complex math questions, such as calculating the

product of two randomly sampled four-digit numbers. Our experimental results demon-

strate that FLAIR is effective in practice and offers a viable alternative to traditional
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CAPTCHAs. The proposed approach shows promise in developing more robust and

accurate methods to detect bots quickly and protect online interactions.

The rest of the chapter is organized as follows. Section 6.2 shows some related work in

this field. Sections 6.3 and 6.4 present our proposed approaches to detect LLMs by lever-

aging their weaknesses and strengths respectively. Section 6.5 shows the experimental

results. Finally, Section 6.6 concludes the chapter.

6.2 Related Works

6.2.1 CAPTCHAs

CAPTCHA [127] is a common technique used to block malicious applications like

dictionary attacks, E-mail spamming, web crawlers, phishing attacks, etc. There are

different types of CAPTCHAs. Text-Based CAPTCHAs require the users to recognize

letters and digits in distortion form [129, 130, 131], while Image-Based CAPTCHAs [132]

require users to choose images that have similar properties such as traffic lights. Video-

Based CAPTCHAs [133] require the user to choose three words that describe a video,

and Audio-Based CAPTCHAs [134] ask the user to listen to an audio and submit the

mentioned word [135]. Puzzle CAPTCHAs [136] require the user to combine segments

to form a complete picture. These techniques are used to differentiate between human

users and bots, preventing malicious activities.

6.2.2 Large Language Models

The emergence of Large Language Models significantly advances the state-of-the-art

(SOTA) for NLP tasks and benchmarks. Enabled by the paradigm of large-scale self-

supervised pre-training and task-specific tuning, the early LLMs [1, 137, 138, 139, 2, 77]
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demonstrate incredible capability in resolving multiple downstream tasks like text clas-

sification, natural language inference, machine translation, reading comprehension, etc.

Additionally, via fusing multimodal knowledge like tables, images, and graphs into lan-

guage modeling process, LLMs have been endowed with the ability to handle multimodal

tasks beyond text, including entity typing [140], node classification [141], visual question-

answering [142], multimodal commonsense reasoning [143], etc. Furthermore, through

the scaling up on both model parameters and context length, LLMs like GPT-3 [3] can

even work as few-shot learners and resolve unseen tasks via in-context learning with

several demonstrations. Then, to further facilitate LLMs to follow a user’s intent, In-

structGPT [144] is proposed to aligning LLMs with human intent instructions via deep

reinforcement learning on human feedback. Later, ChatGPT [4] and GPT-4 [5], as lat-

est variants of InstructGPT, ignites the enthusiasm of AI-Generated-Content (AIGC).

Through collaboration with vector databases and plugin tools [6], GPT-4 currently sup-

ports thousands of downstream applications.

6.2.3 ChatGPT offline detection

Since its introduction, ChatGPT has become widely used and raised public concerns

about potential misuse. For instance, students may use ChatGPT to complete written

assignments, making it difficult for instructors to accurately assess student learning.

As a result, there is a growing need to detect whether a piece of text was written by

ChatGPT. To tackle this problem, DetectGPT [145] proposes a solution by comparing

the log probabilities of the original passage with that of the perturbations of the same

passage. The hypothesis behind this method is that minor rewrites of text generated by

the model would likely result in lower log probabilities compared to the original sample,

while minor rewrites of text written by humans may result in either higher or lower log
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probabilities. Another line of study model this problem as binary classification problem

and fine-tune another model using supervised data [146]. Most recently, [147] fine-tunes a

Transformer-based model and uses it to make predictions, which are then explained using

SHAP [148]. Another area of research focuses on adding watermarks to AI-generated text

in order to facilitate their identification, which involves imprinting specific patterns on

the text to make it easier to detect [149]. Soft watermarking, as proposed by [150],

involves dividing tokens into green and red lists in order to create these patterns. When

generating text, a watermarked LLM is more likely to select a token from the green list,

which is determined by the prefix token. These watermarks are often subtle and difficult

for humans to notice.

However, as demonstrated in [151], a range of detection methods, including water-

marking schemes, neural network-based detectors, and zero-shot classifiers, can be easily

defeated by paraphrasing attacks. These attacks involve applying a light paraphraser

to text generated by a language model. Furthermore, a theoretical analysis suggests

that even the best possible detector can only perform marginally better than a random

classifier when dealing with a sufficiently good language model. This highlights the fun-

damental challenge in offline detection of text generated by advanced language models,

which can produce writing that is virtually indistinguishable from human-written text.

Thus, it is more meaningful and crucial to shift the focus to online detection settings

where users engage in live chat interactions with the system.

In the following discussion, we will present our FLAIR framework for detecting

Large Language Models, such as ChatGPT, in an online setting where users engage in

real-time conversations with the system. Our method involves asking users questions

and distinguish bots from humans based on the correctness of their answers. We have

categorized the FLAIRs into two types. The first type includes questions that are

difficult for LLMs but easy for humans. These types of questions typically require skills
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such as symbolic manipulation, noise filtering, and graphical understanding, which are

not strong points of LLMs [152]. It is possible to bypass these tests by fine-tuning

LLMs with failed testing cases or using plug-ins of specific routines. We argue that

these tests show the fundamental weaknesses inside LLMs. The second type includes

questions that are easy for LLMs but difficult for humans. These questions typically

require memorization and computation, which is not a strong suit of humans. In the

following sections, we will discuss each of them in detail.

6.3 Leveraging the Weakness of LLM

6.3.1 Counting

State-of-the-art LLMs cannot accurately count characters in a string, while humans

can do so with ease. This limitation of LLMs has inspired the design of a counting FLAIR

to differentiate humans and LLMs. Participants are asked to count the number of times a

specific character appears in a given string. To increase the difficulty of the problem, the

appearance of the character is explicitly increased in the string. The generated questions

are used as prompts for LLMs [3, 144]. Here’s an example question-answering prompt

and the generated results from GPT-3, ChatGPT, and a human:

Q: Please count the number of t in eeooeotetto

GPT-3: There are 5 t’s in eeooeotetto.

ChatGPT: There are a total of 5 t’s in the string ”eeooeotetto”.

Human: 3

As we can see from the example, both GPT-3 and ChatGPT are unable to accurately
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count the number of times the given character appears in the string, whereas humans

can easily give the correct answer.

6.3.2 Substitution

It is known that LLMs often output contents that are inconsistent with context [153,

154]. It is a shared weakness of current LLMs. We ask LLMs to spell a random word

under a given substitution rule, testing if they can follow the rule consistently. The

random word has a length between five to ten characters, which is randomly sampled

from a dictionary. Here is an example used to test both LLMs and humans:

Q: Use m to substitute p, a to substitute e, n to substitute a, g to substitute c, o

to substitute h, how to spell peach under this rule?

GPT-3: mogno

ChatGPT: Using the given rule to substitute letters, ”peach” would be spelled as

”enmog”.

Human: mango

Despite the fact that LLMs have been trained to learn the rule of ”substitution”

during pretraining, they still struggle with applying this rule consistently and repeatedly

as in the above substitution task. This testing concept could be further generalized to

encryption scheme where a string is transformed based rules.

6.3.3 Positioning

Following the speculation about why LLMs cannot count, we further explored whether

LLMs have the ability to position. For each question, a random string is generated under
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the same rule described in subsection 2.1. LLMs should output the k-th character in

the string after the j-th appearance of a given character c, where k and j are random

integers and c is a random character chosen form the set of characters in the string. The

question below is an example:

Q: Please output the 4th character after the second s in the string rjsjuubrjjsjsucuj

GPT-3: u

ChatGPT: The second ”s” in the string ”rjsjuubrjjsjsucuj” is at index 6 (counting

from 0), so the 4th character after it would be at index 10. Therefore, the output

is the letter ”j”.

Humans: c

In this example, both ChatGPT and GPT3 are unable to correctly locate the char-

acter. ChatGPT failed on finding the position of the second s.

6.3.4 Random Editing

Random editing is a technique used to evaluate the robustness of natural language

processing models against noisy inputs. The technique involves presenting the model

with a string of characters (sampled from the set of [0, 1]) and randomly dropping, in-

serting, swapping, or substituting some characters. To verify that the model is capable

of performing these random operations, it is required to generate three different outputs

under the same conditions. By ensuring that the three outputs are different, we can

confirm that the model is applying the random operation.

For random drop, the model is asked to randomly remove k occurrences of a given

character c from the string, where k is a random number and c is a random character
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that appears in the string. For random insert, the model is asked to randomly insert

k occurrences of a given character c into the string at random positions. For random

swap, the model is asked to randomly swap k pairs of characters c and d in the string,

where c and d are different characters that appear in the string. Finally, for random

substitution, the model is asked to randomly replace k occurrences of character c with

another character d in the string. Below we show an example of LLMs and humans

output on the random drop task:

Q: randomly drop two 1 from the string: 0110010011. Give me three different

outputs.

GPT-3: 0111010011, 0110001011, 0110011011

ChatGPT: 010010011, 011000011, 0010010011

Human: 00010011, 01000011, 01100001

As we can seen from the above example, both GPT-3 and ChatGPT failed on this

task, while humans can easily solve this problem.

6.3.5 Noise Injection

We first generate a set of common sense questions using the ChatGPT model with the

following prompt: Ask 100 common sense questions and answer them, the answers should

be a single word. Below is an example question and answer generated by ChatGPT:

Q: Is water wet or dry?

A: wet

To introduce noise into the questions, we appended a random uppercase word to
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each word. Although these uppercase letters may be easily ignored by humans, they can

confuse large language models (LLMs) that rely on subword tokens. For instance, we

transformed the original question ”is water wet or dry? into ”isCURIOSITY waterAR-

CANE wetTURBULENT orILLUSION drySAUNA?”, and below are the prompt and

outputs from GPT-3 and ChatGPT on this task:

Q: isCURIOSITY waterARCANE wetTURBULENT orILLUSION drySAUNA?

GPT-3: Sauna is dry.

ChatGPT: I’m sorry, but I’m not sure what you’re asking. The terms ”CURIOS-

ITY,” ”waterARCANE,” ”wetTURBULENT,” ”orILLUSION,” and ”drySAUNA”

don’t seem to form a coherent question or statement. Can you please provide

more context or clarify your question?

Human: wet.

The example question we generated demonstrates the confusion caused by the added

noise in our approach. This noise, which involves appending uppercase letters to each

word, can significantly impact the judgement of large language models (LLMs) and thus,

could be used to construct FLAIRs against current LLMs.

6.3.6 ASCII Art

Understanding ASCII arts requires a visual abstraction capability, which is lacking

in language models. We collected ASCII arts from ASCII Art Archive1. Here are a few

1ASCII Art Archive: www.asciiart.eu
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examples of ASCII art:

/ _ \
\_\(_)/_/
_//o\\_
/   \

(a) Spider

_,-._
/ \_/ \
>-(_)-<
\_/ \_/
`-'

(b) Flower

+
A_
/\-\
_||"|_
~^~^~^~^

(c) House

_.+._
(^\/^\/^)
\@*@*@/
{_____}

(d) Crown

Figure 6.1: Examples of ASCII arts.

We fed this ASCII art with the same format shown in Figure 6.3.6 to GPT-3, Chat-

GPT and human, here are the answers:

GPT-3: Unknown

ChatGPT: The ASCII art depicts a person sitting cross-legged with their arms

raised above their head in a meditative or yoga position. The forward slashes

represent the person’s raised legs, the underscores represent the person’s torso,

and the backslashes represent the person’s arms. The parentheses and the letter

”o” represent the person’s hands and head, respectively. Overall, the ASCII art

conveys a sense of peace and serenity.

Human: spider

Graphical understanding is still a challenge for LLMs. Although ChatGPT provided

lots of analysis to try to understand ASCII arts, it cannot globally process the characters

to give the correct answer. All of the analysis provided by ChatGPT is based on locating

character groups.
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6.4 Leveraging the Strength of LLM

In this section, we will discuss the methods that capitalize on the strengths of LLMs.

These questions are typically challenging for humans, but are relatively easy for LLMs

due to their ability to memorize vast amounts of information or perform complex compu-

tation, thanks to their large number of parameters and pre-training on massive corpora.

On the other hand, memorization and complex computation are not typically a strong

suit for humans.

6.4.1 Memorization

The primary idea behind this type of questions is to ask users to enumerate items

within a given category. Below is and example question and answers from GPT-3 (we

only list a few items from the output):

Q: List the capitals of all the states in US:

GPT-3: 1. Montgomery, Alabama 2. Juneau, Alaska 3. Phoenix, Arizona

... 48. Charleston, West Virginia 49. Madison, Wisconsin 50. Cheyenne,

Wyoming

For humans, this type of question is not easy as it require a good memorization.

There are several choices when designing enumerating questions. The first option is to

contain many items to make it more challenging for humans to remember, such as all the

countries in the world. The second option is to include relatively old information that

people may not have encountered, such as all the movies in 1970s. The third option is

domain-specific information that people are unlikely to know, such as the names of all

Intel CPU series. We can determine the likelihood of the answer coming from a bot by

95



Maximizing Resource Allocation for Real User Services Chapter 6

verifying the overlap between the given answer and the ground truth. If the overlap is

greater than a threshold, then it is more likely that the answer comes from a bot.

In addition to the questions of enumerating all the items in a given category, we also

propose domain-specific questions that may not be encountered in daily life. Humans may

not have a strong motivation to remember such information, whereas LLMs have been

pre-trained on large corpora that are likely to contain such long-tailed and infrequently

used information. Below are two example questions and the answer generated by GPT-3:

What is the fist 50 digits of π?

GPT-3: The first 50 digits of π are

3.1415926535897932384626433832795028841971693993751.

What is the cabin volume of a typical Boeing 737?

GPT-3: The cabin volume of a typical Boeing 737 is 1,858 cubic feet.

The answers generated by GPT3 for the provided questions were quite accurate and

precise, indicating that LLMs are well-equipped to answer long-tail questions that are

not commonly known or encountered in daily life. On the other hand, humans may

not have the required knowledge or motivation to remember such specific information,

which may make it challenging for them to answer such questions accurately. Therefore,

incorporating questions that require specialized knowledge not commonly held by humans

can be an effective strategy for distinguishing between LLMs and humans.

6.4.2 Computation

Performing complex calculations, such as multiplication, without the aid of a com-

puter or external notes is difficult for humans due to the challenges of recalling interme-
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diate steps. In contrast, LLMs excel in remembering the results of common equations,

such as the square of π. For instance, below is an example question and the answer

generated by GPT-3:

What is the square of π?

GPT-3: The square of π is π2, which is equal to 9.8696.

Moreover, by utilizing external tools, such as Wolfram, ChatGPT Plugins can even

solve more intricate problems, including Algebra. However, for equations that are un-

common, GPT-3 may hallucinate a false answer, as demonstrated by its response to the

question

What is the result of 3256*354?

GPT-3: 1153664

where it provided 1153664 instead of the true answer 1152624. This behavior can be

leveraged to distinguish LLMs from humans, as humans are unlikely to fabricate answers

and will typically respond by admitting they do not know the solution.

6.5 Experiments

In this section, we present the experimental results of our proposed single questions

for distinguishing between humans and LLMs. We curate a dataset for each category of

the proposed questions, which is used to evaluate the performance of both humans and

LLMs. By contrasting the accuracy of responses, we aim to differentiate between the

two. In the subsequent subsections, we describe the process of constructing the datasets

and report our findings.
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6.5.1 Datasets

To evaluate the performance of both LLMs and humans, we constructed a dataset for

each category of questions and open-sourced it on https://github.com/hongwang600/

FLAIR.

Counting We used the entire alphabet set as the candidate character set. First, we

randomly selected a character as the target to count. Then we randomly sampled the

target count k from the interval [10, 20]. We set the total length of the string to be 30,

consisting of k target characters and 30 − k characters sampled from the rest. For the

generated string, the ground truth answer would be k.

Substitution To create our dataset, we began by collecting the top 1500 nouns from

the Talk English web site2. We then filtered the words to include only those with a length

between 5 and 10 characters. Next, we randomly generated 100 pairs of words, each with

a corresponding substitution map that could transform one word into the other. To

ensure the validity of our pairs, we excluded any that would require one character to

be mapped to more than one character, which would result in a conflict. The resulting

questions presented to participants included the substitution rule and the original word,

with the answer requiring another word produced through the substitution.

Positioning We use the full alphabet set as candidate character set. We randomly

generate a string of length 30 from this set and two random position index j and k. Also,

we randomly sample another character c. The question presented to the participant is

”what is the k-th character after the j-th appearance of the character c in the string”.

The ground truth of this question can be calculated through a program and we ensure j

2website URL: https://www.talkenglish.com/vocabulary/top-1500-nouns.aspx
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and k are random integer within feasible interval, e.g., character c has appeared at least

j times.

Random Editing For random editing, we support four different operations including

drop, insert, swap and substitute as described in Section 6.3.4. For each operation, we

generate a random string of length 20 from the [0, 1] set to make it easier to read. We

randomly sample the parameters such as interested character and operation count. Then

the participant is asked to give three different outputs after the random operation. To

check the correctness of the output, we will first check the correctness of each output by

comparing the output with the original one from left to right. Then we will check if the

three output differs from each other. Only when each individual output is correct and

three output are different will the answer be counted as correct.

Noise Injection We constructed a dataset of 80 common sense questions using Chat-

GPT with the following prompt: Ask 80 common sense questions and answer them, the

answers should be a single word. To increase the difficulty level and add noise to the

questions, we append a random uppercase word to each word. In order to do so, we

randomly created a set of 400 random words. For each word in the question, we will

randomly select one word from the list and append it to the particular word within the

sentence. The ground truth answer to each noisy question is the same as the answer to

the original question.

ASCII Art We curated a dataset of 50 ASCII arts from the website ASCII Art Archive.

Each ASCII art was assigned a ground truth label. Participants were presented with an

ASCII art and asked to provide the corresponding label as the answer.
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Memorization We used a set of questions that required the user has a good memo-

rization. There are two types of question under this category including enumerating and

domain-specific questions. For enumerating, the user is asked list items within a given

category. We manually collected 100 categories containing more than 50 items or those

that were difficult for humans to know with the help of ChatGPT. The question asked

users to list the items within the given category, and we calculated the coverage of the

response against the ground truth. If the coverage exceeded the threshold of 95%, we

considered the answer to have been generated by an LLM. For domain specific questions,

we manually collected a set of 100 questions whose answers are difficult for people to

recall or access, such as ”What is the weight of the world’s heaviest lemon in grams?”.

Although these questions may be challenging for humans to answer, they are relatively

easy for large language models (LLMs) due to their pre-training on large corpora that

includes these questions.

Computation To create the computation dataset, we selected the problem of four-

digit multiplication. Specifically, we randomly sampled 100 pairs of four-digit numbers

and calculated their product as the ground truth. Participants were asked to solve these

multiplication problems and were considered correct if absolute difference between their

answer and the ground truth was within 10%. For humans, it can be difficult to accurately

calculate these multiplications without the aid of notes or a calculator, leading them to

often respond with ”I don’t know”. In contrast, large language models (LLMs) have

seen many similar equations during pre-training and tend to provide a guess that is often

close to, or the same as, the ground truth. This testing can be further extended to any

complicated computation like division, exponents, etc.
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6.5.2 Main Results

We conducted experiments using various OpenAI models, including GPT-3 [3], and

ChatGPT [4]. Additionally, we evaluated recent open-sourced models, such as LLaMA [155],

Alpaca [156], and Vicuna [157]. For each model, we evaluated its performance on each

proposed category of questions and recorded its accuracy. Furthermore, we asked a group

of human-workers to answer the questions and reported their accuracy as well (they are

required to answer each question in 10 seconds).

Count Substitution Positioning Random Edit Noise Injection ASCII Art Memorization Computation

Humans 100% 100% 100% 100% 100% 94% 6% 2%

GPT3 13% 2% 15% 0% 0% 0% 94% 95%
ChatGPT 17% 3% 23% 2% 0% 8% 99% 98%
LLaMA 4% 0% 16% 0% 0% 0% 91% 91%
Alpaca 8% 0% 12% 1% 0% 0% 85% 99%
Vicuna 15% 1% 15% 0% 0% 0% 93% 100%

Table 6.2: The comparison between LLMs and Human on different FLAIRs. The left
part are the questions that are easy for humans while hard for LLMs. The right part
are the questions that are hard for humans while easy for LLMs.

The results are presented in Table 6.2. In the left section, we compare the performance

of humans and LLMs on questions that are considered easy for humans but difficult for

LLMs. The results show that humans achieved perfect scores (100%) on all tasks except

for ASCII Art, where their accuracy was 94%. On the other hand, most LLMs had

difficulty with tasks such as substitution, random edit, noise injection, and ASCII Art,

with their accuracy being nearly 0%. However, the LLMs performed better on the count

and positioning tasks, as the solution space for these problems is much smaller compared

to other tasks, making it easier for the models to guess the correct answer.

In the right section, we compared human performance with LLMs on questions that

are difficult for humans but easy for LLMs. The results indicate that humans performed

poorly on these questions, as they require good memorization or computation abilities.

In contrast, the performance of LLMs was excellent, with some models achieving almost
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100% accuracy.

6.6 Conclusion

In conclusion, this chapter proposes a new framework called FLAIR for detecting

conversational bots in an online environment. The proposed approach targets a sin-

gle question scenario that can effectively differentiate human users from bots by using

questions that are easy for humans but difficult for bots, and vice versa. Our experi-

ments demonstrate the effectiveness of this approach and show the strengths of different

types of questions. This framework provides online service providers with a new way

to protect themselves against fraudulent activities and ensure that they are serving real

users. Furthermore, we have open-sourced our dataset on GitHub and welcome further

contributions to enlarge the detection datasets.
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Conclusion

In conclusion, this dissertation has delved into critical challenges and presented innovative

solutions in the field of Natural Language Processing (NLP). Our work has focused on

two fundamental areas that are vital for the advancement of NLP: learning with limited

data and optimizing resource utilization. By addressing these challenges, we have made

significant contributions to the development of robust and efficient NLP models.

In the first part, we tackled the essential concern of learning with limited data, where

the scarcity of annotated examples demands effective generalization of models. Our ap-

proach to few-shot learning for multi-hop reasoning over knowledge graphs introduced

meticulously constructed datasets, and the meta-encoder method proved its efficacy in

generating task-dependent models for improved multi-hop reasoning performance. More-

over, our exploration of self-supervised learning for summarization showcased promising

results in learning contextualized sentence representations, offering enhanced sample effi-

ciency and faster convergence. Additionally, our investigation into the limitations of large

language models when encountering out-of-distribution data shifts has laid the ground-

work for potential mitigating techniques. The use of LMs with tutor-based training

exhibited impressive results, inspiring new avenues of research in symbolic manipulation
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tasks.

In the second part of the dissertation, we focused on optimizing resource utilization

in NLP. Recognizing the rapidly changing nature of the world, we presented innova-

tive approaches for updating models in lifelong learning scenarios, ensuring continuous

adaptation to new data. Our proposed memory replay approach and alignment model ef-

fectively addressed the catastrophic forgetting problem, improving model performance in

lifelong learning. Considering the resource constraints and the growing adoption of large

language models in dialogue systems, we addressed the challenge of safeguarding against

malicious Distributed Denial of Service (DDoS) attacks. The FLAIR framework pro-

vided a powerful tool to detect conversational bots, enabling optimal resource allocation

for real users and protecting online service providers against fraudulent activities.

Throughout this dissertation, we demonstrated the value of innovative approaches

and extensive experimentation in overcoming NLP challenges. Our contributions not

only advance the field of NLP but also hold great potential in real-world applications,

impacting dialogue systems, summarization, and security measures against malicious

bots. As we conclude this work, we acknowledge that the journey of NLP research is

ongoing and ever-evolving. The challenges and opportunities that lie ahead are vast,

from handling limited data and resource constraints to exploring novel techniques for

better language understanding and generation. We hope that our contributions inspire

further exploration, collaboration, and progress in the field of NLP, ultimately leading to

more intelligent, versatile, and efficient language models that positively impact various

domains of human life.
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