
UC San Diego
UC San Diego Previously Published Works

Title
HyperGen: Compact and Efficient Genome Sketching using Hyperdimensional Vectors.

Permalink
https://escholarship.org/uc/item/41z9t2qk

Journal
Computer applications in the biosciences : CABIOS, 40(7)

Authors
Xu, Weihong
Hsu, Po-Kai
Moshiri, Alexander
et al.

Publication Date
2024-07-16

DOI
10.1093/bioinformatics/btae452

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/41z9t2qk
https://escholarship.org/uc/item/41z9t2qk#author
https://escholarship.org
http://www.cdlib.org/

Sequence analysis

HyperGen: compact and efficient genome sketching using
hyperdimensional vectors
Weihong Xu 1,�, Po-Kai Hsu2, Niema Moshiri1, Shimeng Yu2, Tajana Rosing1

1Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA 92093, United States
2School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
�Corresponding author. Department of Computer Science and Engineering, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United
States. E-mail: wexu@ucsd.edu (W.X.)
Associate Editor: Can Alkan

Abstract
Motivation: Genomic distance estimation is a critical workload since exact computation for whole-genome similarity metrics such as Average
Nucleotide Identity (ANI) incurs prohibitive runtime overhead. Genome sketching is a fast and memory-efficient solution to estimate ANI similar-
ity by distilling representative k-mers from the original sequences. In this work, we present HyperGen that improves accuracy, runtime perfor-
mance, and memory efficiency for large-scale ANI estimation. Unlike existing genome sketching algorithms that convert large genome files into
discrete k-mer hashes, HyperGen leverages the emerging hyperdimensional computing (HDC) to encode genomes into quasi-orthogonal vec-
tors (Hypervector, HV) in high-dimensional space. HV is compact and can preserve more information, allowing for accurate ANI estimation while
reducing required sketch sizes. In particular, the HV sketch representation in HyperGen allows efficient ANI estimation using vector multiplica-
tion, which naturally benefits from highly optimized general matrix multiply (GEMM) routines. As a result, HyperGen enables the efficient
sketching and ANI estimation for massive genome collections.
Results: We evaluate HyperGen’s sketching and database search performance using several genome datasets at various scales. HyperGen is
able to achieve comparable or superior ANI estimation error and linearity compared to other sketch-based counterparts. The measurement
results show that HyperGen is one of the fastest tools for both genome sketching and database search. Meanwhile, HyperGen produces
memory-efficient sketch files while ensuring high ANI estimation accuracy.
Availability and implementation: A Rust implementation of HyperGen is freely available under the MIT license as an open-source software
project at https://github.com/wh-xu/Hyper-Gen. The scripts to reproduce the experimental results can be accessed at https://github.com/wh-xu/
experiment-hyper-gen.

1 Introduction
In recent years, the burgeoning field of genomics has been
revolutionized by the advent of high-throughput sequencing
technologies (Soon et al. 2013), leading to exponential
growth in genomic data (Stephens et al. 2015). This deluge of
data presents a significant challenge for traditional genomic
analysis methods, particularly in terms of computational effi-
ciency and storage requirements. Calculating the Average
Nucleotide Identity (ANI) similarity of genome files is the key
step for various downstream workloads in genome analysis,
such as large-scale database search (Chaumeil et al. 2022),
clustering (Parks et al. 2020), and taxonomy analysis
(Hern�andez-Salmer�on et al. 2023). Traditional BLAST-based
methods (Kurtz et al. 2004, Lee et al. 2016) rely on base-level
alignment to perform accurate ANI calculations. However,
the alignment process is computationally expensive and
requires hours or days to calculate ANIs. The slow speed of
alignment-based approaches has become a major bottleneck
for large-scale genome analysis.

Several state-of-the-art works have tried to speed up large-
scale genome analysis by approximating the genome similar-
ity using more efficient data structures. These works can be
categorized into two types: mapping-based and sketch-based

approaches as follows. FastANI (Jain et al. 2018) and Skani
(Shaw and Yu 2023) are two representative mapping-based
algorithms that leverage k-mer-based alignment for ANI esti-
mation. FastANI is built upon the Mashmap sequence map-
ping algorithm (Jain et al. 2017) and achieves a significant
speedup compared to the alignment-based baseline (Kurtz
et al. 2004). Skani uses the sparse chaining to increase the sen-
sitivity of the mapping, further improving accuracy and effi-
ciency of ANI estimation. However, both FastANI and Skani
suffer from high memory consumption. For example, Skani
needs to store indexing files with a storage size comparable to
the original dataset. FastANI encounters out-of-memory issues
on large datasets as reported in (Shaw and Yu 2023).

In this work, we focus on the “genome sketching,” which
is regarded as a promising solution to address the aforemen-
tioned challenges because it significantly reduces storage size
while providing satisfactory accuracy of estimation (Hern�andez-
Salmer�on et al. 2023). Unlike alignment-based or mapping-
based tools (Kurtz et al. 2004, Lee et al. 2016, Jain et al. 2018,
Shaw and Yu 2023) that require expensive computation or large
memory space, sketch-based approaches (Brown and Irber
2016, Ondov et al. 2016, Baker and Langmead 2019, 2023)
only preserve the most essential features of the genome

Received: 5 March 2024; Revised: 9 July 2024; Editorial Decision: 11 July 2024; Accepted: 12 July 2024
© The Author(s) 2024. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 2024, 40(7), btae452
https://doi.org/10.1093/bioinformatics/btae452
Advance Access Publication Date: 16 July 2024
Original Paper

https://orcid.org/0000-0003-3766-3353
https://github.com/wh-xu/Hyper-Gen
https://github.com/wh-xu/experiment-hyper-gen
https://github.com/wh-xu/experiment-hyper-gen

(called the “sketch”). The sketch’s compact representation ena-
bles rapid and efficient ANI approximation for genome files.
Mash (Ondov et al. 2016) and Sourmash (Brown and Irber
2016) represent groundbreaking efforts to use MinHash
(Broder 1997) and FracMinHash (Irber et al. 2022, Hera et al.
2023) to estimate genomic similarity, respectively. Bindash
(Zhao 2019) improves the accuracy of ANI estimation over
Mash by adopting the one-permutation rolling MinHash with
optimal densification (Shrivastava 2017). Dashing 2 (Baker and
Langmead 2023) utilizes the SetSketch data structure (Ertl
2021) and incorporates multiplicities to produce memory-
efficient genome sketches and accurate estimation of ANI.

1.1 Motivation
By transforming raw genome data into more compact data
structures, genome sketching represents a paradigm shift in
bioinformatics, paving the way for more scalable and rapid
genomic analyses in the era of big data. Recent studies on
hyperdimensional computing (HDC) have demonstrated the
effectiveness of using HDC to accelerate bioinformatics
workloads, such as pattern matching (Kim et al. 2020,
Shahroodi et al. 2022, Zou et al. 2022, Kang et al. 2023) and
spectral clustering (Xu et al. 2023).

1.1.1 Limitations of existing HDC/SimHash-related
search algorithms
Table 1 summarizes the key features of state-of-the-art tools
that utilize HDC or SimHash algorithms. GenieHD (Kim et al.
2020), BioHD (Zou et al. 2022), and Demeter (Shahroodi
et al. 2022) are three representative HDC-based tools. Due to
the limitation of N-gram binding-based encoding, existing
HDC tools for genome search only supports short genomes
sequences with length ≤ 200. However, they require very large
sketch HV dimension (10k to 100k) to achieve good accuracy,
which degradates the overall efficiency. The N-gram binding-
based encoding shows high computational complexity. In com-
parison, HyperGen adopts a more efficiency encoding method
that combines FracMinHash and HDC aggregation.

Meanwhile, existing HDC-based tools do not support ANI
estimation and ANI-based search. They can only check the
containment of given query. These drawbacks limit their
downstream applications. The other related work is BLEND
(Firtina et al. 2023) that uses SimHash to encode genome
seeds. The difference includes: (i) HyperGen and BLEND are
for different tasks. BLEND is used for seed matching while
HyperGen is for more general-purpose ANI estimation and
database search; (ii) Compared to HyperGen, BLEND uses
much smaller sketch dimension for each seed.

1.1.2 Opportunities and limitations of DotHash
Recent DotHash (Nunes et al. 2023) shows superior space
and computational efficiency for the Jaccard similarity esti-
mation. DotHash leverages the HDC-based random indexing
(Kanerva et al. 2000, Sahlgren 2005) and is originally
designed for fast set intersection estimation. The main differ-
ence between DotHash and MinHash lies in the format of
generated sketch: MinHash represents a sketch as a hash set
with discrete values, while DotHash represents a sketch with
a nonbinary vector of high dimension. DotHash’s vector rep-
resentation of the sketch achieves faster processing speed
since it can fully exploit the low-level hardware parallelism
[such as CPU’s Single Instruction Multiple Data (SIMD) and
GPU] optimized for vector processing.

However, DotHash still suffers from two major limitations
that hinder its application to genome sketching. First,
DotHash is only applicable to non-genome data since it lacks
an effective k-mer sampling strategy to generate genomic
sketches. Second, DotHash uses high-precision floating point
numbers to represent random vectors, exhibiting large run-
time overhead and slow speed. Our goal in this work is using
HDC (Kanerva 2009, Nunes et al. 2023) to achieve better
tradeoffs between ANI estimation accuracy, runtime perfor-
mance, and memory efficiency over previous sketch-based
tools (Brown and Irber 2016, Ondov et al. 2016, Baker and
Langmead 2023).

1.2 Contributions
In this work, we propose HyperGen, a novel tool for efficient
genome sketching and ANI estimation. HyperGen exploits
the emerging HDC [similar to DotHash (Nunes et al. 2023)]
to boost genomic ANI calculation. Specifically, we optimize
DotHash’s efficiency by converting the sketch generation
process into a low bit-width integer domain. This allows us
to represent the genome sketch using the high-dimensional
vector (HV) at the cost of negligible runtime overhead. Based
on the HV sketch, we propose an approach to estimate the
Jaccard similarity using vector matrix multiplication. We also
introduce a lossless compression scheme using bit-packing to
further reduce the sketch size.

We benchmark HyperGen against several state-of-the-art
tools (Kurtz et al. 2004, Ondov et al. 2016, Jain et al. 2018,
Baker and Langmead 2023). For ANI estimation, HyperGen
demonstrates comparable or lower ANI estimation errors
compared to other baselines across different datasets. For
generated sketch size, HyperGen achieves 1:8 × to 2:7 ×
sketch size reduction as compared to Mash (Ondov et al.
2016) and Dashing 2 (Baker and Langmead 2023), respec-
tively. HyperGen also enjoys the benefits of the modern hard-
ware architecture optimized for vector processing. HyperGen

Table 1. Comparison for related works for genome search and seed matching.

Algorithm/tool GenieHD BioHD Demeter BLEND HyperGen

(Kim et al. 2020) (Zou et al. 2022) (Shahroodi et al. 2022) (Firtina et al. 2023) (This work)
Encoding method N-gram HDC binding N-gram HDC binding N-gram HDC binding SimHash FracMinHash þHDC
Supported sequence

length
≤ 200 ≤ 200 �150 150–20k Arbitrary

Sketch dimension 100k 10–40k 40k 30–50ka 2k-8k
Support

ANI estimation?
No No No No Yes

Supported application Containment search Containment search Containment search Seed matching ANI-based search
and clustering

a Sketch dimension for each seed.

2 Xu et al.

shows about 1:7 × sketch generation speedup over Mash and
up to 4:3 × search speedup over Dashing 2. To the best of our
knowledge, HyperGen offers the optimal trade-off between
speed, accuracy, and memory efficiency for ANI estimation.

2 Materials and methods
2.1 Preliminaries
Fast computation of Average Nucleotide Identity (ANI) is
pivotal in genomic data analysis (microbial genomics to de-
lineate species), as ANI serves as a standardized and genome-
wide measure of similarity that helps facilitate genomic data
analysis. Popular approaches to calculate ANI include: align-
ment (Kurtz et al. 2004, Lee et al. 2016), mapping (Jain et al.
2018, Shaw and Yu 2023), and sketch (Brown and Irber
2016, Ondov et al. 2016, Baker and Langmead 2019, 2023).
However, base-level alignment-based and k-mer -level
mapping-based methods involve either time-consuming pair-
wise alignments or memory-intensive mappings. In the follow-
ing sections, we focus on the sketch-based ANI estimation
with significantly better efficiency.

2.1.1 MinHash and Jaccard similarity
Existing sketh-based approaches (Ondov et al. 2016, Brown
and Irber 2016, Baker and Langmead 2019, 2023) do not di-
rectly compute ANI. Instead, they compute the Jaccard simi-
larity (Ondov et al. 2016), which is used to measure the
similarity of two given k-mer sets. Then the Jaccard similarity
is converted to ANI as shown in Equation (8). The conver-
sion between Jaccard similarity and ANI is computationally
trivial, so most efforts in previous works (Ondov et al. 2016,
Brown and Irber 2016, Baker and Langmead 2019, 2023) are
to find more efficient and accurate ways to estimate
Jaccard similarity.

Without loss of generality, we denote k-mer as consecutive
substrings with length k of the nucleotide alphabet, e.g. Pk
¼ fA;G;C;Tgk. SkðXÞ denotes the set of k-mers sampled

from genome sequence X based on a given condition.
HyperGen uses k-mer’s hash to represent SkðXÞ for better ef-
ficiency. Therefore, the Jaccard similarity for two sequences,
A and B, can be computed as follows:

JkðA;BÞ ¼
jSkðAÞ \ SkðBÞj
jSkðAÞ [SkðBÞj

; (1)

where JkðA;BÞ 2 ½0;1� is the Jaccard similarity indicating the
overlap between k-mer sets of two sequences. Note that
HyperGen uses canonical k-mers by default.

A straightforward idea to sample k-mer sets in Equation
(1) is to keep all k-mers. However, this incurs prohibitive
complexity since all unique k-mers need to be stored. The
resulting complexity is OðLÞ for a sequence of length L. To
alleviate the complexity issue, Mash (Ondov et al. 2016) and
its variants (Jain et al. 2017, Liu and Koslicki 2022) use
MinHash (Broder 1997) to approximate the Jaccard similar-
ity by only preserving a tiny subset of k-mers. In particular,
Mash keeps N k-mers that have the smallest hash values hð�Þ.
In this case, the Jaccard similarity is estimated as:

JðA;BÞ ¼ Pðmin
a2A

hðaÞ ¼ min
b2B

hðbÞÞ: (2)

Here, using MinHash helps to reduce the sketch complex-
ity from OðLÞ to a constant OðNÞ. The sampled k-mer set

SkðXÞ that stores N smallest k-mer hash values is regarded as
the genome file sketch required for ANI estimation.

2.1.2 Jaccard similarity using DotHash
A recent work (Nunes et al. 2023) demonstrates that the
speed and memory efficiency of Jaccard similarity approxi-
mation can be improved by using the DotHash based on
Random Indexing (Sahlgren 2005). The key step to compute
Jaccard similarity in Equation (1) is computing the cardinal-
ity of set intersection jA\Bj while the cardinality of set union
can be calculated through jA[Bj ¼ jAjþ jBj− jA\Bj.

In DotHash, each element of the set is mapped to a unique
D-dimensional vector in real number using the mapping func-
tion ϕðxÞ. Each set is expressed as an aggregation vector a 2
RD such that

a ¼
X

a2A

ϕðaÞ; (3)

where the aggregation vector sums all the elements’ vectors
generated by the mapping function ϕðxÞ. One necessary con-
straint for function ϕðxÞ is: the generated vectors should sat-
isfy the quasi-orthogonal properties:

ϕðaÞ � ϕðbÞ ¼
0; if a 6¼ b;
1; if a ¼¼ b:

(

(4)

The quasi-orthogonal property in Equation (4) can be visu-
alized in Supplementary Fig. S1. DotHash (Nunes et al.
2023) uses a pseudo random number generator (RNG) as the
mapping function ϕðxÞ because the RNG can generate uni-
form and quasi-orthogonal vectors in an efficient manner.

Using the quasi-orthogonal properties, the cardinality ap-
proximation for set intersection is transformed into the dot
product of two aggregation vectors:

jA \ Bj ¼ E½a � b�

¼ E
X

a2A

X

b2B

ϕðaÞ � ϕðbÞ
� �

¼
X

a2A

X

b2B

1ða ¼¼ bÞ

¼
X

x2A\B

1;

(5)

where those vectors not in the set intersection (a 6¼ b) have no
contribution to the inner product due to their quasi-
orthogonality as in Equation (4). DotHash effectively aggre-
gates all elements in a set to form an aggregation vector with
D dimension. The space and computational complexity of set
cardinality estimation is OðDÞ. Moreover, the computation
process of DotHash is highly vectorized and can be easily
boosted by existing hardware architecture optimized for gen-
eral matrix multiply (GEMM).

2.2 Proposed HyperGen sketching
The aforementioned DotHash provides both good accuracy
and runtime performance (Nunes et al. 2023). However, we
observe two major limitations of DotHash: 1. Although
DotHash can be used to calculate the cardinality of set inter-
section, it cannot be applied to genomic sketching because
DotHash lacks a k-mer sampling module that identifies the
useful k-mers; 2. The computation and space efficiency can

HyperGen 3

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae452#supplementary-data

be further optimized because the previous DotHash manages
and processes all vectors in floating-point (FP) numbers. The
mapping function ϕðxÞ incurs significantly overhead.

We present HyperGen for genomic sketching applications
that addresses the limitations of DotHash. Figure 1 shows the
algorithmic overview for (a) Mash-like sketching and (b)
HyperGen sketching schemes. The first step of HyperGen is
similar to Mash, where both Mash and HyperGen extract k-
mers by sliding a window through given genome sequences.
The extracted k-mers are uniformly hashed into the corre-
sponding numerical values by a hash function h(x). To ensure
low memory complexity, most k-mer hashes are filtered and
only a small portion of them are preserved in the k-mer hash
set to work as the sketch (or signature) of the associative ge-
nome sequence. The key difference is that HyperGen adds a
key step, called Hyperdimensional Encoding for k-mer Hash,
to convert k-mer hash values into binary hypervectors (HVs)
and aggregate to form the D-dimensional sketch HV. To dis-
tinguish itself from DotHash, the random vector in HyperGen
is named HV. Algorithm 1 summarizes the flow of generating
sketch hypervector in HyperGen. In the following sections, we
explain the details of HyperGen.

2.2.1 Step 1: k-mer hashing and sampling
Mash uses MinHash that keeps the smallest N hash values as
the genome sketch. In comparison, HyperGen adopts a different
k-mer hashing and sampling scheme. Specifically, HyperGen
performs a sparse k-mer sampling using FracMinHash (Irber
et al. 2022, Hera et al. 2023) (instead of MinHash in Mash).
Given a hash function h :

Pk
7!½0;M� that maps k-mers into

the corresponding nonnegative integer, the sampled k-mer hash
set is expressed as Line 2–4 in Algorithm 1:

SkðAÞ ¼ hðxÞj8x 2 A : hðxÞ≤
M
S

� �

; (6)

where M is the maximum hash value while S denotes the scaled
factor that determines the density of sampled k-mers in the set.
FracMinHash has been widely adopted in other tools, such
as Sourmash (Brown and Irber 2016) and Skani (Shaw and

Yu 2023), due to its excellent performance. The advantage of
using FracMinHash over MinHash (Broder 1997) is that it
ensures an unbiased estimation of the Jaccard similarity of
k-mer sets with very dissimilar sizes (Hera et al. 2023), provid-
ing better approximation quality than MinHash and its var-
iants (Ondov et al. 2016, Jain et al. 2017). However,
FracMinHash usually produces a larger hash set compared to
Mash (Hera et al. 2023), requiring more memory space. Step 2
in HyperGen alleviates the increased memory issue.

2.2.2 Step 2: hyperdimensional encoding for k-mer hash
In Fig. 1a, after the k-mer hashing and sampling process, Mash-
like sketching algorithms (such as Mash (Ondov et al. 2016),
Sourmash (Brown and Irber 2016), and Mash Screen (Ondov
et al. 2019)) directly use the sampled k-mer hash set as the
sketch to compute the Jaccard similarity for given sequences.

In Fig. 1b, HyperGen adds an additional step, called
Hyperdimensional Encoding for k-mer Hash (Line 5–13 in
Algorithm 1), before the sketch is generated. This step essen-
tially converts the discrete and numerical hashes in the k-mer
hash set to a D-dimensional and nonbinary vector, called
sketch hypervector. The hypervector dimension D is normally
large (1024–8192) to ensure good accuracy. In particular, each
hash value in the k-mer hash set is uniquely mapped to the as-
sociated binary HV hv as Line 6–11 of Algorithm 1.
HyperGen relied on recursive random bit generation to pro-
duce binary HVs of arbitrary length: the k-mer hash value is
set as the initial seed of the pseudo RNGðseedÞ7!rnd function.
For each iterative step, a 64b random integer rnd is generated
using seed. The generated integer rnd is not only assigned to
the corresponding bits in hv, but is also set as the next seed.

The hash function RNGð�Þ that maps the k-mer hash value
to the binary HV hv is the key component of HyperGen be-
cause it determines the speed and quality of genome sketch
generation. The following factors should be considered when
selecting a good RNGð�Þ function: (i) The function needs to
be fast enough to reduce the additional overhead for sketch

Hash

RNGBinary
Hypervectors

-mer
Hash Set

Seed

Aggregate

Hash

-mer
Hash Set

-mers Sketch

(a)

(b)

Sketch
Hypervector

-mers

Set Size =

Hypervector dim. =

Set Size =

Figure 1. Algorithmic overview for (a) Mash-like sketching, and (b)
HyperGen sketching for genome sequences. Mash stores the genome
sketch in a k-mer hash set with OðNÞ complexity while HyperGen
aggregates N k-mer hashes into a D-dimensional sketch HV with
OðDÞ complexity.

4 Xu et al.

generation. (ii) The generated random binary HVs need to be
able to provide enough randomness (i.e. the binary HVs are
as orthogonal as possible). This is because binary HVs are essen-
tially random binary bit streams that need to be nearly orthogo-
nal to each other to satisfy the quasi-orthogonal requirements.
(iii) The sketches results should be reproducible (i.e. the identical
bit streams can be generated using the same seed). We adopt a
fast and high-quality pseudo RNG (https://github.com/wangyi-
fudan/wyhash) in Rust language (Matsakis and Klock 2014),
which passes two randomness tests: TestU01 and Practrand
(Sleem and Couturier 2020). In this case, we can use the pseudo
RNG to stably generate high-quality and reproducible bi-
nary HVs.

Figure 2 shows an example of generating the sketch HVs
with dimension D¼8 for two genome sequences based on
k-mer size k¼ 3 and k-mer hash set size N¼4. Each sampled
k-mer hash value in the hash set is converted to the corre-
sponding binary HV hv 2 f0;1gD using the function RNGðxÞ.
Then, all N binary HVs are aggregated into a single sketch HV
H 2 ZD based on the following point-wise vector addition:

H ¼
XN

i¼1

hvi × 2 − 1; (7)

where the binary HV hv 2 f0;1gD is first converted to
f−1; þ1gD. hvi denotes the i-th binary HV in the set. Then
all binary HVs in the set are aggregated together to create the
corresponding sketch HV. Compared to Mash-liked sketch-
ing approaches (Brown and Irber 2016, Ondov et al. 2016,
Hera et al. 2023), HyperGen is more memory efficient be-
cause the sketch HV format is more compact with OðDÞ
space complexity, which is independent of the k-mer hash set
size N. Meanwhile, HyperGen’s hyperdimensional encoding
step helps to achieve better ANI similarity estimation quality
(see Section 3).

2.2.3 Step 3: ANI estimation using sketch hypervector
The generated sketch hypervector can be used to efficiently
estimate the ANI similarity. HyperGen estimates ANI value

using the same approach in (Ondov et al. 2016). The ANI un-
der the Poisson distribution is estimated as:

ANIðA;BÞ ¼ 1þ
1
k
� log

2 � JkðA;BÞ
1þ JkðA;BÞ

� �

× 100; (8)

where JkðA;BÞ denotes the Jaccard similarity between ge-
nome sequence A and sequence B while k is the k-mer size.

Therefore, ANI estimation in HyperGen becomes calculat-
ing Jaccard similarity based on sketch HVs. Equation (1)
shows that the intersection size and the set size of two k-mer
hash sets are the keys to calculating the Jaccard similarity.
For hvi 2 f−1; þ1gD, the cardinality of a set SkðAÞ is com-
puted as follows:

jSkðAÞj ¼
jjHAjj

2
2

D
¼

PN
i¼1 jjhvijj

2
2

D
¼

N �D
D
¼ N; (9)

which shows the set cardinality can be computed based on the
L2 norm of sketch HV. The computation of set intersection in
HyperGen is similar to DotHash (Nunes et al. 2023)’s Equation
(5) because HVs in HyperGen share the same quasi-orthogonal
properties as DotHash. Then, Equation (5) becomes:

jSkðAÞ \ SkðBÞj ¼
HA �HT

B

D

¼

P
iðhvi × 2 − 1Þ �

P
j ðhvj × 2 − 1ÞT

D

¼

P
i
P

j D � 1ðhvi ¼¼ hvjÞ

D
¼
X

i

X

j

1ðhvi ¼¼ hvjÞ

¼
X

x2SkðAÞ\SkðBÞ

1:

(10)

With Equation (9) and Equation (10), HyperGen first esti-
mates the following Jaccard similarity using the derived
sketch HVs:

AGACTT

Binary
Hypervectors-mer

Hash Set 0 1 1 0 1 0

1 0 1 0 1 1

0 0 0 1 1 1

1 0 1 1 1 0

-mers

2

1 0

0 0

1 0

1 1

-2 0 -2 2 0 4 0

Sketch
Hypervector

AGACTC

0 1 1 0 1 0

1 0 1 0 1 1

0 0 0 1 1 1

1 1 0 1 1 0

0

1 0

0 0

1 0

0 0

-4 0 0 0 0 4 0

AGA
GAC

ACT
CTT

CTC

AGA
GAC
ACT

Step 1: -mer
Hashing and Sampling

Step 2: Hyperdimensional
Encoding for -mer Hash

Figure 2. Sketch hypervector generation and set intersection computation in HyperGen. Each k-mer with size k¼ 3 first passes through a hash function h
(x). The k-mers (A ¼ AGACTT and B ¼ AGACTC) are hashed to hash set. Then each k-mer hash value is converted into the associated orthogonal binary
HV. The set intersection between two k-mer hash sets is computed using Equation (11).

HyperGen 5

https://github.com/wangyi-fudan/wyhash
https://github.com/wangyi-fudan/wyhash

JkðA;BÞ ¼
jSkðAÞ \ SkðBÞj

jSkðAÞj þ jSkðBÞj− jSkðAÞ \ SkðBÞj

¼
HA �HT

B

jjHAjj
2
2þ jjHBjj

2
2 − HA �HT

B

:

(11)

Then ANI in Equation (8) can be easily calculated.

2.3 Software implementation and optimization
HyperGen is developed using the Rust language, and the
code is available at https://github.com/wh-xu/Hyper-Gen. We
present the following optimizations to improve the speed and
efficiency of HyperGen.

2.3.1 Sketch quantization and compression
Although the sketch HV has a compact data format with
high memory efficiency, there still exists data redundancy in
sketch HVs that can be utilized for further sketch compression.
Our experimental observation is that the value range of sketch
HVs is distributed within a bell curve (see Supplementary
Fig. S2). Rather than store the full-precision sketch hypervec-
tor (e.g. INT32), we perform lossless compression by quantiz-
ing the HV to a lower bit width. The quantized bits are
concatenated together using bit-packing.

2.3.2 Fast HV aggregation using SIMD
The inner loop of binary HV aggregation step in Algorithm 1
incurs significant runtime overhead when a large HV dimen-
sion D is applied. We develop a parallelized HV aggregation
using single instruction, multiple data (SIMD) instruction to
reduce the impact of increased HV aggregation time. As shown
in Supplementary Fig. S3, the HV aggregation optimized by
SIMD only takes negligible portion of the total sketching time.

2.3.3 Parallel sketching
HyperGen provides two sketching modes: 1. normal mode
and 2. fast mode. The normal mode sketches genome files on
CPU with multithreading. The fast mode offloads genome
sketching to GPU with better computing capabilities. The fast
mode can be widely supported by commodity GPUs. Our
measurement results in Fig. 5 show that HyperGen’s fast
mode further improves the sketching speed by 1:8 × to 2:7 ×
over normal mode.

2.3.4 Pre-computation for HV sketch norm
The L2 norm of each sketch hypervector, jjHjj2, is precom-
puted during sketch generation phase. The L2 norm value is
stored along with the sketch hypervector to reduce redundant
computations for the ANI calculation phase.

3 Evaluation and results
3.1 Evaluation methodology
3.1.1 Genome dataset and hardware setting
The evaluation is conducted on a machine with a 16-core
Intel i7-11700K CPU with up to 5.0 GHz frequency, 2TB
NVMe PCIe 4.0 storage, and 64GB of DDR4 memory.
Unless otherwise specified, all programs are allowed to use
16 threads with their default parameters. Five genome data-
sets in Supplementary Table S2 are adopted for benchmark-
ing. The datasets include: Bacillus cereus, Escherichia coli,
NCBI RefSeq (Jain et al. 2018), Parks MAGs (Parks et al.
2017), and GTDB MAGs (Parks et al. 2018). These datasets
vary in terms of number of genomes, lengths, and sizes.

3.1.2 Benchmarking tools
We compare HyperGen with five state-of-the-art tools, in-
cluding Mash (Ondov et al. 2016), Bindash (Zhao 2019),
Sourmash (Brown and Irber 2016), Dashing 2 (Baker and
Langmead 2023), FastANI (Jain et al. 2018), Skani (Shaw
and Yu 2023), and ANIm (Kurtz et al. 2004). Mash,
Bindash, Sourmash, and Dashing 2 are sketch-based tools for
ANI estimation. In comparison, FastANI and Skani use
mapping-based methods while ANIm adopts the most accu-
rate base-level alignment-based method to calculate the
ANIs. ANIm results are regarded as the ground truth.
Specifically, we use NUCleotide MUMmer (Kurtz et al.
2004) to generate the alignment results and then convert the
alignment data into the corresponding ground-truth ANIs.
Dashing 2 uses its weighted bagminhash mode. HyperGen
(similar to Mash, Bindash, Sourmash, and Dashing 2) is an
ANI approximation tool for the high ANI regime. We follow
the previous work (Ondov et al. 2016) and only preserve
ANI values > 85. The versions and commands used are sum-
marized in Supplementary Table S1. HyperGen uses k-mer
size k¼21, scaled factor S¼ 1500 as suggested in previous
works (Brown and Irber 2016, Hera et al. 2023, Shaw and
Yu 2023). Our analysis in Section 3.2.1 shows that the HV
dimension D¼4096 achieves a good balance between ANI
estimation error and sketching complexity. So we set it as the
default parameter. HyperGen also supports the fast mode
which accelerates the sketching process on GPU.

3.1.3 Evaluation metrics
ANI Precision. One of the critical metrics for evaluating the
effectiveness of a genome sketching tool is the precision of
ANI estimation. We use three metrics to evaluate the ANI ap-
proximation errors: 1. mean absolute error (MAE), 2. root
mean squared error (RMSE), and 3. mean percentage abso-
lute error (MPAE). We also adopt the Pearson correlation co-
efficient to assess the linearity of the ANI estimate with
respect to ground truth.

Computation and Memory Efficiency. An ideal genome
sketching scheme should be able to generate compact sketch
files at the cost of short runtime, especially for large-scale
genomic analysis. To compare the computation and memory
efficiency of evaluated tools, we measure and report the wall-
clock runtime and sketch sizes during database search.

3.2 ANI estimation quality
In this section, we study the quality of ANI estimation by per-
forming the following pairwise ANI experiment. First, the
largest 100 genome files are collected from each dataset.
Then, each batch of 100 genome files is used to calculate the
pairwise and symmetric 100 × 100 ANI matrix.

3.2.1 HyperGen ANI quality using different parameters
We first evaluate the impact of HyperGen’s two algorithmic
parameters: scaled factor S and HV dimension D on the final
ANI estimation errors and linearity. The experimental results
are depicted in Fig. 3, where the scaled factor S and the HV
dimension D vary from 800 to 2000 and from 256 to 16 384,
respectively. It shows that: for all scaled factors, the ANI ap-
proximation errors decrease significantly as D increases from
256 to 4096. This is because a larger HV dimension can pro-
duce better orthogonality, which is helpful to reduce the ap-
proximation error of the set intersection according to the
theory in (Nunes et al. 2023). But increasing the HV

6 Xu et al.

https://github.com/wh-xu/Hyper-Gen
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae452#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae452#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae452#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae452#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae452#supplementary-data

dimension larger than D¼4096 does not yield a significant
error reduction or linearity improvement.

It is also observed that a smaller scaled factor S generally
leads to a worse ANI approximation error when using the
same HV dimension D. The reason behind this is: a smaller S
that produces a larger hash threshold value as in Equation
(2), will generate a denser sampling of k-mers. This increases
the size of sampled k-mer hash set. As a result, more binary
HVs need to be aggregated to the sketch HV. The excessive
number of binary HVs degrades the orthogonality between
binary HVs, reducing the approximation accuracy for set car-
dinality. To balance between the quality and complexity of
the ANI approximation, we choose S¼1500 and D¼ 4096
as the default scaled factor and HV dimension, respectively.

3.2.2 Comparison with other sketching tools
We also compare the quality of the ANI estimation for vari-
ous tools, including Mash, Bindash, Dashing 2, Sourmash,
FastANI and Skani. For fair comparison, the sketch-based tools
(HyperGen, Mash, Bindash, Sourmash, and Dashing 2) use the
same sketch size. Other parameters are the same as their default
parameters. Specifically, HyperGen uses D¼ 4096, while Mash
and Dashing 2 use a sketch size of 1024.

HyperGen can be used to estimate the Jaccard index. First
we perform Jaccard estimation experiment and compare
HyperGen to Mash, Bindash, Dashing 2, and Sourmash.
Supplementary Table S3 shows the error metrics with respect
to the true Jaccard results. The 100 × 100 Jaccard matrix for
Bacillus cereus and Escherichia coli datasets is computed.
HyperGen achieves competitive Jaccard estimation accuracy
with other baseline tools.

Table 2 summarizes the ANI error and linearity metrics
with respect to the ground truth values on Bacillus cereus and
Escherichia coli datasets. For the Bacillus cereus dataset,
HyperGen is slightly inferior to Bindash, FastANI and Skani,
which yields a comparable Pearson correlation coefficient

compared to the other sketch-based tools (Mash and Dashing
2). In the Escherichia coli dataset, HyperGen consistently sur-
passes all other sketch-based tools, providing both lower ANI
approximation errors and better linearity. Meanwhile,
HyperGen’s sketch size is over 800× smaller than Skani.
These experiments demonstrate that HyperGen is capable of
delivering a high quality of ANI estimation.

3.3 Genome database search
One critical workload that genome sketching tools can accel-
erate is the genome database search. Meanwhile, the genome
database search can be extended to multiple downstream
applications.

3.3.1 ANI linearity and quality
We extensively consider the five evaluated datasets as refer-
ence databases. We run FastANI, Skani, Mash, Bindash,
Dashing 2, and HyperGen using the commands and queries
listed in Supplementary Table S2. Sourmash is not considered
because it does not support multi-thread execution. The exe-
cution consists of two steps: (i) All tools first generate refer-
ence sketches for the target database; (ii) the second step is to
search for the query genomes (given in Supplementary Table)
against the built reference sketches. Note that FastANI and
Skani were unable to complete the database search on the
Parks MAGs and GTDB datasets in one shot because it
requires more memory than the available 64GB and experi-
enced out of memory issues. We divided FastANI and Skani
executions into smaller batches and measured the accumula-
tive runtime.

The estimated ANI values generated in Table 3 by each
tool in the NCBI RefSeq, Parks MAGs, and GTDB MAGs
datasets are depicted in Fig. 4 with their corresponding
ground truth values from ANIm. Data points with ANI < 85
are filtered. It shows that HyperGen produces good ANI line-
arity compared to the ground truth results.

Figure 3. Error metrics (MAE, RMSE, MPAE) and ANI linearity (Pearson coefficient) as a function of scaled factor S and HV dimension D.

HyperGen 7

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae452#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae452#supplementary-data

Quantitative results in terms of numerical error and linear-
ity metrics are summarized in Table 3. The ANI error distri-
bution for each tool can be seen in Supplementary Fig. S4. In
datasets Bacillus cereus, Escherichia coli, and NCBI RefSeq,
HyperGen achieves the lowest ANI errors among all sketch-
based tools, delivering more accurate ANI estimations as
compared to Mash, Bindash, and Dashing 2. HyperGen still
shows competitive accuracy over mapping-based FastANI and
Skani. In Escherichia coli and NCBI RefSeq, HyperGen out-
performs FastANI and Skani in terms of most error metrics
and produces comparable Pearson coefficients. HyperGen is
capable of achieving state-of-the-art error and linearity for
large-scale genome search. Meanwhile, the required sketch size
is two orders of magnitude smaller than Skani.

We study the impact of genome quality on the ANI estima-
tion accuracy. We calculate the BUSCO completeness value
(Sim~ao et al. 2015) for each reference genome file. As shown
in Supplementary Fig. S5, the more incomplete genomes of
GTDB MAGs have higher ANI estimation error. Hence, ap-
plying HyperGen to incomplete genomes leads to more signif-
icant ANI errors.

3.3.2 Runtime performance
The wall-clock time spent on two major steps during data-
base search: reference sketch generation and query search, is
illustrated in Fig. 5. HyperGen -Fast means using the fast
sketching mode on GPU. The reference sketching step is
mainly bounded by the sketch generation process, while the
search step is bounded by the sketch file loading and ANI cal-
culation. HyperGen without fast mode achieves the 2nd fast-
est sketching speed, slightly slower than Skani. After enabling
fast mode, HyperGen is the fastest sketching tool for most
evaluated datasets. The sketching speed of HyperGen is 2:7 ×
to 4:1 × faster than Bindash. HyperGen is significantly faster
(10 × to 13 ×) than the mapping-based FastANI.

For query search, HyperGen is also one of the fastest tools.
The search speedup of HyperGen over FastANI and Skani is
100 × to >3000 × because FastANI and Skani require slow

sequence mapping and large index file loading processes.
Moreover, the speedup of HyperGen is more significant for
larger datasets. Dashing 2 sketch size is about 2:6 × of
HyperGen so it takes more time to load sketch files. The re-
duced sketch size helps to save sketch loading time.
Meanwhile, the HV sketch format of HyperGen allows us to
adopt highly vectorized programs to compute ANI with a
short processing latency.

3.3.3 Memory efficiency
The file sizes of the reference sketches generated by Mash,
Dashing 2, and HyperGen, are listed in Table 3. We apply
the Sketch Quantization and Compression technique to
HyperGen. As a result, HyperGen consumes the smallest
memory space among the three sketch-based tools. The
sketch sizes produced by Mash and Dashing 2 are 1:8 × to
2:6 × of HyperGen’s sketch sizes. This suggests that
HyperGen is the most space-efficient sketching algorithm.
Compared to original datasets with GB sizes, a compression
ratio of 600− 1200 × can be achieved by only processing the
sketch files. This enables the large-scale genome search on
portable devices with memory constraints. HyperGen’s mem-
ory efficiency comes from two factors. First, the
Hyperdimensional Encoding for k-mer Hash step converts
discrete hash values into continuous high-dimensional sketch
HVs, which are more compact than hash values. Second,
HyperGen’s Sketch Quantization and Compression provides
additional 1:3 × compression through further removing re-
dundant information in sketch HVs.

Table 4 summarizes performance metrics in terms of peak
memory consumption and runtime for the GTDB MAG data-
set search. HyperGen achieve both the fastest sketching and
search speed due to the efficient HDC algorithm as well as
software optimizations. FastANI and Skani experience OOM
(out of memory) issues because they require a large memory
space to store intermediate data for sequence mapping. In
comparison, HyperGen consumes about 1GB of memory for
the sketching or searching phase, significantly lower than

Table 2. Error and linearity metrics for pairwise ANI estimation. (Underline: the best among sketch-based algorithms. Bold: the best among
all algorithms.).

Dataset: Bacillus cereus

Tool k Sketch size MAE # RMSE # MPAE # Pearson "

FastANI 16 – 0.312 0.368 0.334 0.999
Skani – 198MB (850×) 0.354 0.422 0.377 0.996
Mash 21 830KB (3.6×) 0.399 0.591 0.430 0.981
Bindash 21 351KB (1.5×) 0.360 0.530 0.385 0.986
Dashing 2 21 1.2MB (5.2×) 0.500 0.650 0.537 0.981
Sourmash 21 11MB (47×) 0.415 0.558 0.449 0.986
HyperGen -2048 21 233KB (1.0×) 0.411 0.707 0.442 0.975
HyperGen -4096 21 459KB (2.0×) 0.372 0.522 0.400 0.986

Dataset: Escherichia coli

Tool k Sketch size MAE # RMSE # MPAE # Pearson "

FastANI 16 – 0.680 1.152 0.705 0.899
Skani – 200MB (855×) 0.403 0.572 0.419 0.956
Mash 21 831KB (3.6×) 0.456 0.686 0.470 0.930
Bindash 21 351KB (1.5×) 0.442 0.658 0.456 0.936
Dashing 2 21 1.2MB (5.1×) 0.464 0.704 0.479 0.930
Sourmash 21 9.6MB (41×) 0.381 0.565 0.393 0.944
HyperGen -2048 21 234KB (1.0×) 0.449 0.644 0.464 0.942
HyperGen -4096 21 460KB (2.0×) 0.368 0.565 0.381 0.952

8 Xu et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae452#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae452#supplementary-data

FastANI and Skani. This indicates that HyperGen is friendly
to run on memory-limited device, such as laptop.

4 Discussion and conclusion
Fast and accurate estimation of Average Nucleotide Identity
(ANI) is considered crucial in genomic analysis because ANI
is widely adopted as a standardized measure of genome file
similarity. In this work, we present HyperGen: a genome
sketching tool based on hyperdimensional computing (HDC)

(Kanerva 2009, Nunes et al. 2023) that improves accuracy,
runtime performance, and memory efficiency for large-scale
genomic analysis. HyperGen inherits the advantages of both
FracMinHash -based sketching (Irber et al. 2022, Hera et al.
2023) and DotHash (Nunes et al. 2023). HyperGen first sam-
ples the k-mer set using FracMinHash. Then, the discrete k-
mer hash set is encoded into the corresponding sketch HV in
hyperdimensional space. This allows the genome sketch to be
presented in compact vectors without sacrificing accuracy.
HyperGen software implemented in Rust language deploys

Table 3. Sketch size, error, and linearity metrics for database search. (Underline: the best among sketch-based algorithms. bold: the best among
all algorithms.).

Dataset: Bacillus cereus

Tool k Sketch size MAE # RMSE # MPAE # Pearson "

FastANI 16 – 0.218 0.296 0.235 0.999
Skani 15 1.0GB (714×) 0.299 0.378 0.320 0.998
Mash 21 4.7MB (3.4×) 0.542 0.678 0.586 0.996
Bindash 21 2.0MB (1.4×) 0.467 0.579 0.502 0.994
Dashing 2 21 6.7MB (4.8×) 0.576 0.715 0.622 0.993
HyperGen -2048 21 1.4MB (1.0×) 0.355 0.480 0.382 0.994
HyperGen -4096 21 2.6MB (1.9×) 0.318 0.424 0.342 0.996

Dataset: Escherichia coli

Tool k Sketch size MAE # RMSE # MPAE # Pearson "

FastANI 16 – 0.215 0.391 0.221 0.950
Skani 15 6.9GB (697×) 0.198 0.277 0.203 0.983
Mash 21 36MB (3.6×) 0.226 0.529 0.231 0.877
Bindash 21 16MB (1.6×) 0.206 0.514 0.210 0.870
Dashing 2 21 51MB (2.6×) 0.234 0.536 0.239 0.873
HyperGen -2048 21 9.9MB (1:0 ×) 0.178 0.502 0.182 0.833
HyperGen -4096 21 20MB (2:0 ×) 0.153 0.491 0.156 0.851

Dataset: NCBI RefSeq

Tool k Sketch size MAE # RMSE # MPAE # Pearson "

FastANI 16 – 0.443 0.522 0.452 0.968
Skani 15 1.8GB (486×) 0.266 0.292 0.272 0.997
Mash 21 14MB (3.8×) 0.204 0.251 0.208 0.983
Bindash 21 5.9MB (1.6×) 0.238 0.269 0.243 0.988
Dashing 2 21 20MB (5.4×) 0.167 0.189 0.171 0.972
HyperGen -2048 21 3.7MB (1:0 ×) 0.216 0.304 0.234 0.991
HyperGen -4096 21 7.4MB (2:0 ×) 0.135 0.164 0.138 0.991

Dataset: Parks MAGs

Tool k Sketch size MAE # RMSE # MPAE # Pearson "

FastANI 16 – 0.457 0.551 0.490 0.998
Skani 15 6.6GB (367×) 0.310 0.456 0.335 0.997
Mash 21 65MB (1.9×) 1.090 1.298 1.137 0.990
Bindash 21 29MB (1.6×) 1.096 1.308 1.140 0.991
Dashing 2 21 93MB (5.2×) 2.163 2.466 2.251 0.921
HyperGen -2048 21 18MB (1:0 ×) 1.291 1.448 1.374 0.975
HyperGen -4096 21 35MB (1:9 ×) 1.146 1.297 1.211 0.983

Dataset: GTDB MAGs

Tool k Sketch size MAE # RMSE # MPAE # Pearson "

FastANI 16 – 0.436 0.592 0.469 0.976
Skani 15 66GB (458×) 0.466 0.630 0.500 0.969
Mash 21 533MB (3.7×) 0.584 0.668 0.632 0.980
Bindash 21 231MB (1.6×) 0.772 0.837 0.835 0.971
Dashing 2 21 770MB (5:3 ×) 0.994 1.283 1.078 0.892
HyperGen -2048 21 144MB (1:0 ×) 1.098 1.409 1.250 0.904
HyperGen -4096 21 287MB (2:0 ×) 0.982 1.138 1.094 0.974

HyperGen 9

vectorized routines for both sketch and search steps. The
evaluation results show that HyperGen offers superior ANI
estimation quality over state-of-the-art sketch-based tools
(Ondov et al. 2016, Baker and Langmead 2023). Meanwhile,
HyperGen delivers not only the fastest sketch and search
speed, but also the highest memory efficiency in terms of the
sketch file size.

Future directions of HyperGen include the follow-
ing aspects:

Further Compression and Faster Large-scale Search: The
vector representation of sketch HVs allows us to apply more
optimizations on the top of HyperGen. For instance, we can

Figure 4. Database search ANI comparison for FastANI, Mash, Dashing 2, HyperGen, and ground-truth ANIm on NCBI RefSeq, Parks MAGs, and GTDB
MAGs datasets.

(a)

(b)

Figure 5. Runtime performance comparison for genome search in Table 3. (a) Reference sketching time and (b) query search time.

Table 4. Benchmarking peak memory consumption and runtime for
single-query search on GTDB MAGs dataset. OOM: out of memory.

Tool Sketch phase Search phase

Peak memory Runtime Peak memory Runtime

FastANI OOM 1,638.9 s OOM 28.8 s
Skani 5.3GB 149.6 s OOM 70.2 s
Mash 1.9GB 437.0 s 1.0GB 0.7 s
Bindash 0.3GB 406.0 s 0.2GB 0.4 s
Dashing 2 8.9GB 5,632.2 s 0.6GB 0.7 s
HyperGen 1.0GB 130.4 s 0.9GB 0.3 s

10 Xu et al.

employ lossy vector compression techniques, such as product
quantization (J�egou et al. 2011, Guo et al. 2020) and residual
quantization (Lee et al. 2022), to reduce sketch size and mem-
ory footprint. This is advantageous for achieving rapid ge-
nome database search on embedded or mobile devices.

On the other hand, the search step in HyperGen requires
intensive GEMM operations to obtain ANI values between
genomes. The large-scale database search can be further ac-
celerated using advanced hardware architectures with high
data parallelism and optimized interfaces. Previous work (Xu
et al. 2023) demonstrates that deploying HDC-based bioin-
formatics analysis on GPU exhibits at least one order of mag-
nitude speedup over CPU.

More genome workloads: HyperGen can be extended to
support a wider range of genomic applications. For example,
in metagenome analysis, we can utilize HyperGen to perform
the containment analysis for genome files such as (Ondov
et al. 2019). To realize this, the sketch HVs generated by
HyperGen can be used to calculate the max-containment in-
dex instead of ANI. The ANI estimation error and memory
requirements of HyperGen can be reduced by considering
the more accurate ANI estimation based on multi-resolution
k-mers (Liu and Koslicki 2022).

Supplementary data
Supplementary data are available at Bioinformatics online.

Conflict of interest
None declared.

Funding
This work was supported in part by the Center for Processing
with Intelligent Storage and Memory (PRISM) (SRC grant
number 2023-JU-3135), CoCoSys, centers in JUMP 2.0, an
SRC program sponsored by DARPA, and TILOS AI Research
Institute (grant number NSF CCF-2112665).

Data availability
The source code of HyperGen used in this work is freely avail-
able at https://github.com/wh-xu/Hyper-Gen. The scripts to re-
produce the experimental results in this work can be accessed
at https://github.com/wh-xu/experiment-hyper-gen. All used
datasets can be downloaded from https://gtdb.ecogenomic.org
and http://enve-omics.ce.gatech.edu/data/fastani.

References
Baker DN, Langmead B. Dashing: fast and accurate genomic distances

with hyperloglog. Genome Biol 2019;20:265–12.
Baker DN, Langmead B. Genomic sketching with multiplicities and

locality-sensitive hashing using dashing 2. Genome Res 2023;
33:1218–27.

Broder AZ. 1997. On the resemblance and containment of documents.
In Proceedings. Compression and Complexity of SEQUENCES
1997 (Cat. No. 97TB100171), pages 21–29. IEEE.

Brown CT, Irber L. sourmash: a library for minhash sketching of DNA.
JOSS 2016;1:27.

Chaumeil P-A, Mussig AJ, Hugenholtz P et al. Gtdb-tk v2: memory
friendly classification with the genome taxonomy database.
Bioinformatics 2022;38:5315–6.

Ertl O. Setsketch: filling the gap between minhash and hyperloglog.
Proc VLDB Endow 2021;14:2244–57.

Firtina C, Park J, Alser M et al. Blend: a fast, memory-efficient and ac-
curate mechanism to find fuzzy seed matches in genome analysis.
NAR Genom Bioinform 2023;5:lqad004.

Guo R, Sun P, Lindgren E et al. Accelerating large-scale inference with
anisotropic vector quantization. In: International Conference on
Machine Learning, 2020. pp. 3887–3896. PMLR.

Hera MR, Pierce-Ward NT, Koslicki D. Deriving confidence intervals
for mutation rates across a wide range of evolutionary distances us-
ing fracminhash. Genome Res 2023; gr–277651.

Hern�andez-Salmer�on JE, Irani T, Moreno-Hagelsieb G et al. Fast
genome-based delimitation of enterobacterales species. PLoS One
2023;18:e0291492.

Irber L, Brooks PT, Reiter T et al. Lightweight compositional analysis
of metagenomes with fracminhash and minimum metagenome cov-
ers. BioRxiv 2022;2022–01.

Jain C, Dilthey A, Koren S et al. A fast approximate algorithm for map-
ping long reads to large reference databases. In International
Conference on Research in Computational Molecular Biology,
2017. pp. 66–81. Springer.

Jain C, Rodriguez-R LM, Phillippy AM et al. High throughput ani
analysis of 90k prokaryotic genomes reveals clear species bound-
aries. Nat Commun2018;9:5114.

J�egou H, Douze M, Schmid C et al. Product quantization for nearest
neighbor search. IEEE Trans Pattern Anal Mach Intell 2011;
33:117–28.

Kanerva P. Hyperdimensional computing: an introduction to comput-
ing in distributed representation with high-dimensional random vec-
tors. Cogn Comput 2009;1:139–59.

Kanerva P, Kristoferson J, Holst A. Random indexing of text samples
for latent semantic analysis. In: Proceedings of the Annual Meeting
of the Cognitive Science Society, volume 22, 2000.

Kang J, Xu W, Bittremieux W et al. Accelerating open modification
spectral library searching on tensor core in high-dimensional space.
Bioinformatics 2023;39:btad404.

Kim Y et al. Geniehd: efficient DNA pattern matching accelerator using
hyperdimensional computing. In: 2020 Design, Automation & Test
in Europe Conference & Exhibition (DATE), 2020. pp. 115–120.

Kurtz S, Phillippy A, Delcher AL et al. Versatile and open software for
comparing large genomes. Genome Biology 2004;5:1–9.

Lee D, Kim C, Kim S et al. Autoregressive image generation using residual
quantization. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2022. pp. 11523–11532.

Lee I, Ouk Kim Y, Park S-C et al. Orthoani: an improved algorithm and
software for calculating average nucleotide identity. Int J Syst Evol
Microbiol 2016;66:1100–3.

Liu S, Koslicki D. Cmash: fast, multi-resolution estimation of k-mer-
based jaccard and containment indices. Bioinformatics 2022;
38:i28–i35.

Matsakis ND, Klock FS. The rust language. Ada Lett 2014;34:103–4.
Nunes I, Heddes M, Verg�es P et al. Dothash: estimating set similarity

metrics for link prediction and document deduplication. In:
Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, 2023. pp. 1758–1769.

Ondov BD, Treangen TJ, Melsted P et al. Mash: fast genome and meta-
genome distance estimation using minhash. Genome Biol 2016;
17:132–14.

Ondov BD, Starrett GJ, Sappington A et al. Mash screen: high-
throughput sequence containment estimation for genome discovery.
Genome Biol2019;20:232–13.

Parks DH, Rinke C, Chuvochina M et al. Recovery of nearly 8,000
metagenome-assembled genomes substantially expands the tree of
life. Nat Microbiol2017;2:1533–42.

Parks DH, Chuvochina M, Waite DW et al. A standardized bacterial
taxonomy based on genome phylogeny substantially revises the tree
of life. Nat Biotechnol 2018;36:996–1004.

Parks DH, Chuvochina M, Chaumeil P-A et al. A complete domain-to-
species taxonomy for bacteria and archaea. Nat Biotechnol2020;
38:1079–86.

HyperGen 11

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae452#supplementary-data
https://github.com/wh-xu/Hyper-Gen
https://github.com/wh-xu/experiment-hyper-gen
https://gtdb.ecogenomic.org
http://enve-omics.ce.gatech.edu/data/fastani

Sahlgren M. 2005. An introduction to random indexing. In: Methods
and Applications of Semantic Indexing Workshop at the 7th
International Conference on Terminology and Knowledge
Engineering.

Shahroodi T, Zahedi M, Firtina C et al. Demeter: a fast and energy-
efficient food profiler using hyperdimensional computing in mem-
ory. IEEE Access 2022;10:82493–510.

Shaw J, Yu YW. Fast and robust metagenomic sequence
comparison through sparse chaining with skani. Nat Methods
2023;20:1661–5.

Shrivastava A. 2017. Optimal densification for fast and accurate min-
wise hashing. In International Conference on Machine Learning,
pages 3154–3163. PMLR.

Sim~ao FA, Waterhouse RM, Ioannidis P et al. Busco: assessing genome
assembly and annotation completeness with single-copy orthologs.
Bioinformatics 2015;31:3210–2.

Sleem L, Couturier R. Testu01 and practrand: tools for a randomness
evaluation for famous multimedia ciphers. Multimed Tools Appl
2020;79:24075–88.

Soon WW, Hariharan M, Snyder MP et al. High-throughput sequenc-
ing for biology and medicine. Mol Syst Biol 2013;9:640.

Stephens ZD, Lee SY, Faghri F et al. Big data: astronomical or genomi-
cal? PLoS Biol 2015;13:e1002195.

Xu W, Kang J, Bittremieux W et al. Hyperspec: ultrafast mass spectra
clustering in hyperdimensional space. J Proteome Res 2023;
22:1639–48.

Zhao X. Bindash, software for fast genome distance estimation on a
typical personal laptop. Bioinformatics 2019;35:671–3.

Zou Z, Chen H, Poduval P et al. Biohd: an efficient genome sequence
search platform using hyperdimensional memorization. In:
Proceedings of the 49th Annual International Symposium on
Computer Architecture, 2022. pp. 656–669.

© The Author(s) 2024. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits
unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Bioinformatics, 2024, 40, 1–12
https://doi.org/10.1093/bioinformatics/btae452
Original Paper

12 Xu et al.

	Active Content List
	1 Introduction
	2 Materials and methods
	3 Evaluation and results
	4 Discussion and conclusion
	Supplementary data
	Conflict of interest
	Funding
	Data availability
	References

