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Abstract
One of the ways to make reinforcement learning (RL) more ef-
ficient is by utilizing human advice. Because human advice is
expensive, the central question in advice-based reinforcement
learning is, how to decide in which states the agent should ask
for advice. To approach this challenge, various advice strate-
gies have been proposed. Although all of these strategies dis-
tribute advice more efficiently than naive strategies (such as
choosing random states), they rely solely on the agent’s inter-
nal representation of the task (the action-value function, the
policy, etc.) and therefore, are rather inefficient when this rep-
resentation is not accurate, in particular, in the early stages of
the learning process. To address this weakness, we propose an
approach to advice-based RL, in which the human’s role is not
limited to giving advice in chosen states, but also includes hint-
ing apriori (before the learning procedure) which sub-domains
of the state space require more advice. Specifically, we sug-
gest different ways to improve any given advice strategy by
utilizing the concept of critical states: states in which it is very
important to choose the correct action. Finally, we present ex-
periments in 2 environments that validate the efficiency of our
approach. Keywords: interactive machine learning; reinforce-
ment learning

Introduction
The learning process of Reinforcement Learning (RL) agents
in complex environments is often very slow. One of the ways
to speed up this process is by providing advice to the learning
agent. There exist two categories of advice strategies: Gen-
eral advice and contextual advice. Strategies that fall into the
first category (general advice), usually utilize expert demon-
strations, which should be available before the start of the
learning process. In contrast, strategies that fall into the sec-
ond category (contextual advice), ask a human expert for ac-
tion advice in individual states during the learning process.
This paper proposes an improvement for advice strategies that
fall into the second category.

Human advice requires time and effort from the human ex-
pert and thus is considered expensive. Therefore, the central
challenge can be formulated as follows: Given an RL agent
that is learning according to a given RL algorithm and a lim-
ited advice budget (amount of available advice), distribute the
advice budget such that the agent learns the given task as fast
as possible. To tackle this challenge, the learning agent needs
a criterion for deciding in which states it should ask for ad-
vice. The literature on advice-based RL proposes a variety of
such criteria (see the “Related Work” section).

In most advice strategies found in the literature, the criteria
used for selecting advice states (states in which the agent asks

for advice) are based solely on the agent’s model of the pol-
icy or the Q-function. In uncertainty-based advice (Da Silva,
Hernandez-Leal, Kartal, & Taylor, 2020), for example, the
selection criterion is the variance of the head outputs of the
multi-headed Q-function model. Although advice strategies
that use this type of criteria are usually more efficient than
primitive advice strategies, such as distributing advice ran-
domly or asking for advice in every state until the advice
budget is finished, all of these strategies suffer from a major
problem: they are based only on the current understanding of
the task by the agent. This is a crucial fact because the agent’s
understanding of the task can be rather poor—especially dur-
ing the early stage of the learning process. Consequentially, it
is likely that in the early stages of the learning process, when
advice is most needed, the agent will not be very good at se-
lecting those states in which advice would be most helpful.

The approach proposed in this paper addresses the weak-
ness of most advice strategies mentioned above by includ-
ing the human expert into the advice framework more exten-
sively. Whereas, in most advice strategies the expert is uti-
lized solely for giving action advice in individual states, in
the suggested approach the expert has the additional role to
mark sub-domains of the state space in which there might be
a strong need for advice. That is, the learning agent utilizes
the human expert in two ways: Firstly, to receive advice in
individual states; Secondly, to help selecting states in which
to ask for advice.

In order to determine states in which advice might be very
helpful, we use the concept of state criticality that was in-
troduced in (Spielberg & Azaria, 2019). State criticality is a
measure of variability in the expected return of the available
actions. States that have a high variability in the expected re-
turns should receive a high criticality value while states with
low variability in the expected returns should receive a low
criticality value. State criticality is a subjective measure, that
is assigned by a human designer of the criticality function
(the function that assigns a criticality value to each state from
the state space) and thus does not require any estimate of the
Q-function.

In summary, the major contributions of this paper are the
following:

1. We introduce criticality-based advice: An approach to
advice-based RL in which the human expert not only pro-
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vides action advice at individual states but also helps the
learning agent to select advice states using state criticality.

2. We present experiments in 2 environments (Gridworld and
Atari Pong) that prove the efficiency of criticality-based
advice.

Related Work
The current piece of research is closely related to multiple
sub-domains of the RL domain: advice-based RL, advice
strategies that are based on uncertainty metrics of the learn-
ing agent, and RL algorithms that use the notion of critical
states. This section reviews literature that is related to these
three sub-domains.

In the context of human-aided RL, one of the most popu-
lar techniques for speeding up the learning process is advice-
based RL (Thomaz & Breazeal, 2007; Tenorio-Gonzalez,
Morales, & Villaseñor-Pineda, 2010; Cruz, Twiefel, Magg,
Weber, & Wermter, 2015). We discuss only several selected
algorithms out of the vast amount that appears in the litera-
ture (see for example (Knox & Stone, 2009; Griffith, Subra-
manian, Scholz, Isbell, & Thomaz, 2013) ).

Importance-based advice strategies utilize the notion of
state importance to select states that require advice (Torrey
& Taylor, 2013). Unfortunately, the efficiency of this strategy
is compromised by the downside that the Q-function needs
to be initiated with strongly negative values. Zimmer et al.
succeeded in fixing this downside via an approach in which
the advisor is modeled as an RL agent (Zimmer, Viappiani, &
Weng, 2014).

Another remarkable approach in advice-based RL com-
bines contextual advice with learning from demonstrations
(LfD). In (Nicolescu & Mataric, 2003) and (Rybski, Yoon,
Stolarz, & Veloso, 2007) a LfD system is augmented with
verbal instructions, in order to make the learning agent per-
form certain actions during the demonstrations.

Another metric used for the selection of states that require
advice is agent uncertainty (Da Silva et al., 2020). Given the
many applications of agent uncertainty, several works stud-
ied how to define epistemic uncertainty measures. In some
of these works, agent uncertainty is calculated via dropout
schemes (Chen, Zhou, Chang, Yang, & Yu, 2017) or ensem-
ble of networks (Clements, Robaglia, Delft, Slaoui, & Toth,
2019). In Ad-hoc advising, the uncertainty estimate is based
on the number of visits in each state (Silva & Costa, 2019).
Ilhan et al. propose a Deep RL version of Ad-hoc advising,
estimating visit counts through a deep neural network (Ilhan,
Gow, & Perez Liebana, 2019). Alternatively, it is possible to
use Bayesian neural networks to estimate the epistemic un-
certainty of the agent and to ask for demonstrations based on
it (Thakur, Hoof, Higuera, Precup, & Meger, 2019).

While there exists a rich literature on the first two
sub-domains mentioned above (Najar & Chetouani, 2020)
(advice-based RL and uncertainty-based advice strategies),
the notion of critical states is not yet an established notion
in the RL domain. To the best of our knowledge, there exist

only two papers that discuss the usage of critical states in RL.
Spielberg and Azaria introduce the notion of a critical state as
a state in which the choice of action has a significant influence
on the agent’s total reward (Spielberg & Azaria, 2019). This
notion is then applied to tackle the challenge of choosing the
proper step number in n-step algorithms. In another paper,
critical states are utilized for a different purpose: to evaluate
the safety of an AI agent or robot (Huang, Bhatia, Abbeel,
& Dragan, 2018). Huang et al. advocate that safety can be
achieved more efficiently by observing the robot’s behaviour
in critical situations.

State Criticality
In the context of reinforcement learning, the criticality of a
state indicates how much the choice of action in that particu-
lar state influences the expected return (Spielberg & Azaria,
2019). State criticality can be defined as a measure of the
variability of the expected return with respect to the available
actions. The criticality of a state can range from 0 to 1 such
that 0 represents no variability between the expected return
of the actions (for example, if there is only a single action,
or if all actions result in the same expected return), and 1
represents high variability between the expected return of the
actions (for example when some actions result in a very high
expected return, while other actions result in a very low ex-
pected return). The criticality of a state can be linked to the
variance of the Q-function with respect to the action values
in that state - albeit loosely. Although there the criticality of
a state is not uniquely defined by any objective measure, be-
cause state criticality is subjective, it should satisfy the min-
imal requirement that a variance of 0 should result in a state
criticality of 0, while a variance greater than 0 should result
in a state criticality of greater than 0.

The notion of state criticality is particularly useful in learn-
ing situations that include a teacher and a student. An exam-
ple of such a learning situation is a driving lesson. If a stu-
dent driver approaches an obstacle on the road, her teacher
may state to her that she must watch out, without suggesting
exactly which action to take (e.g. slowing down, turning the
wheel right or left, etc.). This warning will motivate the stu-
dent driver to pay more attention to the situation and thereby
decrease the risk of a collision. Even in the case that the car
will hit that obstacle later, the student will understand that
she probably took a wrong action back when the teacher has
warned her and therefore, will learn more easily how to be-
have properly in such a situation. Clearly, the situation of a
driving lesson possesses the characteristics of a human-aided
reinforcement learning scenario in which the learning agent
finds itself in a certain state and needs to choose one action
from an array of possible actions. After having been informed
about the criticality level of the current state by the human
teacher, the learning agent utilizes the criticality information
to adjust its learning strategy.

According to the definition above, state criticality is as a
human centered concept, in the sense that it is a human esti-
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mate of the spread of consequences with respect to the avail-
able actions. Therefore, the definition implies that the criti-
cality function (that is, the function that assigns a criticality
level to each state of the environment) of a given environment
is not unique, but can be any element from a whole class of
functions that are loosely defined by the variance of the ex-
pected return (as described above).

Above, state criticality was introduced as a subjective esti-
mate of the variability of the Q-function it was not specified
to which policy this Q-function should belong. Considering
that the intuitive mind does not operate with explicit policies
but rather with high-level intuitive representations of policies
this vagueness was introduced on purpose, to ensure that state
criticality will be a human-friendly concept. Yet, the optimal
policy should appear in the definition of criticality at least
in an implicit manner, since ultimately it is that policy, that
the agent is supposed to learn. This might be achieved by
instructing the criticality provider that the criticality levels
should relate to a policy that is close to optimal. Such an
instruction is likely to be friendly to the criticality function
provider, since it is rather natural to think about an almost
optimal policy when estimating criticality levels of states.

Criticality-Based Advice
While expert advice helps RL agents to learn more efficiently,
it is also rather expensive. Hence, there is a need for strate-
gies that select states in which advice is most useful. There
exists a variety of techniques that are used to execute this se-
lection task. However, most of them only utilize the agent’s
knowledge and are therefore not very efficient in the early
stages of the learning process. The approach that we propose,
in contrast, also uses state criticality, which is an aspect of
a human’s knowledge about the learning environment. This
section describes how to use state criticality to make advice-
based RL more efficient.

The novel advice strategy that will be introduced in this pa-
per, criticality-based advice (CBA), utilizes a criticality func-
tion which is a function that assigns a criticality level to every
state in the environment, that has been generated by a human
expert apriori—before the beginning of the RL agent’s learn-
ing process. This paper introduces two versions of criticality-
based advice: The plain version (p-CBA) and the meta ver-
sion (m-CBA). p-CBA is based on criticality alone, which
means that the learning agent will receive advice in a given
state if and only if the criticality of that state is sufficiently
high. The more complex version, m-CBA, operates on top of
an underlying advice strategy. In m-CBA the criterion that
is being used to select advice states is a combination of the
criterion used by the underlying advice strategy and the state
criticality.

For m-CBA, there are various ways to combine state criti-
cality with the metric of the underlying advice strategy, such
as agent uncertainty in the case of (Da Silva et al., 2020).
The most straightforward way to do this is to use the log-
ical and operator (we will call thislogicand approach). In

this approach a state will be selected for advice if and only
if it is considered an advice state by the underlying advice
strategy and it’s criticality is sufficiently high. The benefit
of this approach is, that the agent will not waste its advice
budget on states in which the choice of action does has only
a small impact on the total reward. An efficient alternative
way to accomplish such a combination, could be multiplica-
tion: to multiply the metric of the underlying advice strat-
egy with state criticality. For this type of combination, the
selection thresholds for agent uncertainty and state critical-
ity should be fused into one threshold by multiplication too.
Both approaches—the logicand approach and the multiplica-
tive approach—are tested in this paper.

To determine whether the criticality of a state is sufficiently
high it is necessary to use a threshold with a value between
0 and 1. This threshold can be either stochastic or fixed.
The stochastic threshold is a threshold that is being sampled
in each state that the agent visits. In the simplest case, this
threshold could be sampled from a uniform distribution over
the [0,1] interval. When CBA is used with a fixed threshold
we face the challenge of choosing an appropriate threshold.
Clearly, in the case of a binary criticality function, which
produces only 2 possible values - 0 or 1 - the choice of the
threshold is irrelevant. However, in the case when the criti-
cality function is continuous, it is not obvious how to choose
a proper criticality threshold. In this case, one principle
that might be used to determine an appropriate threshold
could state that the portion of the state space that is below
the threshold should be sufficiently large. Although this
principle does not guarantee the efficiency of CBA, it pre-
vents inefficient criticality thresholds: those thresholds that
would rule out only a small portion of potential advice states.
The CBA algorithm (p-CBA)
trh: stochastic or deterministic criticality treshold
n=0:
budg: advice budget
RLalg: underlying RL algorithm (e.g. Q-Learning)
while S 6= Terminal

if (crit(S)> trh) and (n < budg)
ask for advice
a=advice
n+=1

else
select a according to RLalg

perform a
update all stuff (Qfunc, policy etc.) according to RLalg

Experiments

This section describes experiments that prove the efficiency
of criticality-based advice. Two environments serve as test
beds for the experiments: a gridworld environment and the
Atari Pong environment. All experiments presented in this
section were performed on a Nvidia Titan xp GPU.
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Gridworld

The first set of experiments was performed in a gridworld en-
vironment (fig. 1), in which the agent starts at the bottom left
corner and needs to reach the goal state located at the top left
corner. The agent receives a reward of 4 when it reaches the
final goal. The red circles represent radioactive states which
are associated with a small negative reward of −0.01 and the
black blocks represent walls. There is no negative reward for
each step but the agent will strive to reduce the number of
steps, because the discount factor is γ = 0.9 In order to obtain
the maximal total reward (∼ 1.15), the agent needs to walk
through the radioactive states. The total reward of the trajec-
tory that circumvents the wall is much smaller (∼ 0.4).

In the gridworld experiments, we tested p-CBA and used
a stochastic criticality threshold sampled from a uniform dis-
tribution over the [0,1] interval. The criticality function as-
signed a criticality of 1 to all radioactive states and their
neighbours and a criticality of 0 to all other states. The un-
derlying learning algorithm used for the gridworld experi-
ments was plain Q-learning. Moreover, we used importance-
based advice ((Torrey & Taylor, 2013)) as the alternative ad-
vice strategy that competed against criticality based-advice.
Importance-based advice was chosen as the alternative advice
strategy because it is one of the more modern advice strate-
gies and also because this strategy performs particularly well
with Q-learning. We perform two sets of experiments each
one with a different advice budget (200 and 500).

To compare the different learning methods, each method
was simulated 100 times such that each simulation was based
on a different random seed. The plots in fig. 2 shows the
average learning curves of the four learning methods: plain
Q-learning, the two versions of importance based advice with
different importance thresholds (0.02 and 0.05) and p-CBA.
The shaded buffers surrounding the curves represent the 95%
confidence intervals. Several findings can be derived from
the plots. Firstly, the plots show that all three advice-based
methods outperform the plain Q-learning method. Secondly,
p-CBA outperforms both versions of importance-based ad-
vice – which is the most important observation in our con-
text. While for the smaller advice budget p-CBA dominated
importance-based advice by a small margin, this margin was
more significant for the larger advice budget.

Pong

The second test bed for our novel advice strategy was the
Atari Pong environment 1. In contrast to the gridworld exper-
iments, where we tested p-CBA, here we experimented with
m-CBA. The underlying advice strategy was uncertainty-
based advice (Da Silva et al., 2020) which is one of the most
modern and efficient advice strategies for DQN type learners
(such as DDQN, Rainbow, BDQN etc.). The most important
parameter in this advice strategy is the uncertainty threshold,
which is used to select advice states. Only those states whose

1https://gym.openai.com/envs/Pong-v0/

Figure 1: In this gridworld the agent starts at the bottom left
corner and the goal is located at the top left corner. Red cir-
cles are radioactive states and black tiles are walls.

agent uncertainty is above the threshold are selected as advice
states.

Before starting the main series of simulations, we first ran
a separate series of experiments to determine the uncertainty
threshold for BDQN in the Pong environment. The results of
these experiments suggested that the agent performed partic-
ularly well with an uncertainty threshold of trhuncert = 0.04,
so we decided to use this value for the experiments. Further-
more, the advice budget was set to 150K, which is approxi-
mately 50% of the total advice consumption of an unlimited
advice agent until it reaches almost optimal performance.

Aside from the choice of the underlying advice strategy
and the advice budget, another important choice is the criti-
cality function. We use a continuous criticality function that
reflects an intuitive understanding of the game dynamics. The
principle that directs the design of the criticality function is
that the criticality of a state should be a monotonically de-
creasing function of the minimal distance that the ball needs
to cover to reach the learning agent. Hence, a state in which
the ball was just hit by the agent has a criticality close to 0, a
state in which the ball is close to the opponent’s baseline has
a criticality of about 0.5 and a state in which the ball is mov-
ing towards the agent and is very close to the agent’s baseline
has a criticality close to 1. When the ball moves towards the
agent, this criticality function can be expressed by the for-
mula:

crit(s) = 1− dist(ball to agent ′s baseline)−1
2∗ ( f ield length−1)

(1)
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Figure 2: Learning curves for the gridworld environment for
2 advice budgets (top: 200, bottom: 500). For both budgets,
the p-CBA agent (crit) outperforms the 2 importance-based
agents and the plain Q-Learning agent (no adv)

and when the ball moves away from the agent - by the for-
mula:

crit(s) =
dist(ball to agent ′s baseline)−1

2∗ ( f ield length−1)
. (2)

We use two versions of m-CBA corresponding to two dif-
ferent ways of integrating state criticality with the metric of
the underlying advice strategy: the logicand version (BDQN-
crit1) and the multiplicative version (BDQN-crit2).

In the logicand version, a state is selected for advice if both
the agent uncertainty and the criticality are sufficiently high
(crit > criticality threshold (trhcrit ) and uncert > uncertainty
threshold (trhuncrt )), with a criticality threshold of 0.5. In the
multiplicative version, a state was selected for advice if the
product crit(s) ∗ uncertainty(s) was greater than the product
between the criticality threshold and the uncertainty threshold

trhcrit ∗ trhuncert . This choice of the threshold accomplishes
the original motivation behind the multiplicative combina-
tion: a state with sufficiently high criticality can be selected
for advice, even if the uncertainty is relatively small.

To evaluate the efficiency of m-CBA, two baseline strate-
gies are used. The first strategy is BDQN without advice
(BDQN-plain), and the second is BDQN with uncertainty-
based advice (BDQN-adv). Both strategies are tested experi-
mentally.

To compare the learning curves of the different advice
strategies, every strategy is executed 5 times—each time with
a different random seed. The postprocessing procedure con-
sists of two steps. First, the learning curves are smoothened,
using a moving average with a window size of 5. Then, they
are synthesized into a single learning curve via averaging.
The resulting learning curves of the algorithms that partici-
pate in the comparison are shown in fig. 3.

There are several notable observations that can be made
upon a closer look at the plot. Firstly, the plot shows that
BDQN-adv outperforms BDQN-plain. This anticipated re-
sult confirms the usefulness of advice in the Atari Pong en-
vironment. The second observation is related to BDQN-adv
and BDQN-crit1. It can be seen from the plot, that BDQN-
crit1 outperforms BQQN-adv in the early stages of the learn-
ing process but does not retain this advantage throughout the
entire learning process. The third remarkable observation
is that BDQN-crit2 strongly outperformed both BDQN-adv
and BDQN-crit1. This can be seen clearly, upon observing
how many episodes the algorithms requires to reach machine-
level performance (a score of 0). While BDQN-adv requires
about 700 episodes for achieving machine-level performance,
BQQN-crit1 requires about 600 episodes, and BDQN-crit2
requires only about 450 episodes.

Aside from the learning curves, it might be also interesting
to take observe advice consumption of the various algorithms.
The advice consumption curves on fig. 4 correspond to the
three advice strategies that were discussed previously. There
are several remarkable phenomena that can be observed in the
plot. Firstly, the plot shows that BDQN-adv has a very high
advice consumption, such that the advice budget is depleted
at a relatively early stage of the learning process. In contrast,
BDQN-crit1 has the lowest advice consumption of the three
algorithms. The corresponding consumption curve is rela-
tively steep at the beginning, flattens out later, and then gains
momentum again in the more advanced stage of the learning
process. The consumption curve of BDQN-crit2 is located
between the two other consumption curves and from the curve
it can be implied that BDQN-crit2 runs out of advice at an in-
termediate stage of the learning process.

Discussion & Conclusion
The current paper introduced the criticality-based advice
strategy (CBA) for advice-based RL agents. The central idea
of CBA is to use state criticality in order to select advice states
more efficiently. In addition, the paper mentioned several
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Figure 3: Learning curves of different advice strategies in the
Pong environment. BDQN-adv and BDQN-crit1 outperform
BDQN-plain.

Figure 4: Advice consumption of the various advice strate-
gies in the Pong environment. BDQN-adv runs out of advice
quickly. The two other strategies use the advice budget more
economically.

ways to combine state criticality with the selection criteria
of the underlying advice strategy and described experiments
in two environments, which were conducted to test the ef-
ficiency of the proposed approach. In this section, we will
elaborate on the main conclusions that can be derived from
the experiments and on a few interesting observations. We
will also consider possible directions for future research.

CBA was tested in two environments. In the gridworld en-
vironment we tested the plain version of the method whereas

in the Pong environment we tested the meta version. In every
experiment performed, the novel method was able to beat al-
ternative advice strategies. Therefore, the main conclusion
that can be drawn from the conducted experiments is that
CBA can be considered as a promising method in the domain
of advice-based RL.

It might be important to mention one remarkable observa-
tion which is related to the m-CBA advice: the fact that the
multiplicative variant (BDQN-crit2) outperformed the logi-
cand variant (BDQN-crit1) by a significant margin (in Pong).
A possible explanation for this phenomenon could be that es-
pecially in the beginning of the learning process, states in
which advice is very useful might have low uncertainty and
thus would not be considered as potential advice states by the
underlying advice strategy. However, if the criticality values
of these states are sufficiently high, there is a good chance that
multiplying the criticality values with the uncertainty values
would produce numbers that are sufficiently high to be above
the CBA selection threshold used by (the underlying advice
strategy augmented with state criticality). Thus BDQN-crit2
might be more successful in selecting proper states for ad-
vice in the beginning of the learning process than BDQN-
crit1 and this might explain why BDQN-crit2 learns faster
than BDQN-crit1.

In this paper, CBA was tested in only two learning environ-
ments. Although the experiments indicate that CBA might be
an efficient way to improve advice-based RL methods, more
research is needed to confirm that the novel strategy is effi-
cient in other environments as well. It might be interesting
to test the novel method in more complex environments than
Pong, in which the criticality function has strong variations.
Specifically, CBA should be tested in environments where
the critical states constitute only a small portion of the state
space, such as Pacman or Montezuma’s Revenge. In these en-
vironments, it would be interesting to see whether agent un-
certainty will reflect critical states properly by assigning high
uncertainty to these states and whether agent uncertainty will
be low in uncritical states.

In this paper, CBA operated with a static criticality func-
tion which is only a function of the state but not of the current
skill level of the learning agent. Although both variants of
criticality-based advice with a static criticality function were
rather efficient, there might be many environments where a
static criticality function might lead to redundant advice. In p-
CBA, for example, a state with high criticality will keep on re-
ceiving advice even if the advice is no longer necessary. With
a policy-dependent criticality function (Spielberg & Azaria,
2019), however, this negative effect could be avoided, be-
cause the criticality of the state would decrease as the agent
becomes more confident in his actions. Furthermore, it might
be particularly interesting to compare the policy-dependent
criticality to agent uncertainty since both measures are dy-
namic (they evolve in the course of the learning process)
and agent uncertainty can be regarded as a form of policy-
dependent criticality.
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