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Linear Optimal Control for
Autonomous Pattern Generation

Taylor Ludeke and Tetsuya Iwasaki

Abstract—An important objective in the design of feedback
control systems is the pattern generation. The term ‘pattern’
denotes the behavior of the individual plant states relative to one
another in steady-state, e.g. periodic with a specified frequency
and phase offset. Here we solve the optimal, linear, output
feedback problem in which the controller is autonomous, achieves
pattern generation, and minimizes the L2 norm of the transient
portion of the impulse response. Our result reveals the optimal
control architecture comprising a linear quadratic regulator
and a Kalman filter, along with additional feedback/feedforward
to/from a pattern generator, with gains constrained by the
regulator equation and its dual, respectively. In contrast to the
standard output regulation, the pattern generator is embedded in
the feedback loop, allowing the reference signals to be modified
autonomously in response to disturbances. A design example
illustrates the controller’s ability to recalculate and track the
target trajectory following a disturbance.

Index Terms—Optimal control, eigenstructure assignment, pat-
tern formation, autonomous control, linear systems

I. INTRODUCTION

Pattern formation is a process of dynamical systems in
which the state converges to a persistent trajectory with a
specific spatiotemporal property in the steady state. Various
phenomena in nature exhibit such behaviors [1]: blinking fire-
flies, bird flocking, fish schooling, hurricanes, neural oscillator
network, and periodic gaits in animal locomotion. Partly mo-
tivated by such natural phenomena, pattern formation is also
central to certain engineering designs, including bio-inspired
mobile robots, aircraft/satellite formations, vehicle platooning,
and swarm robotics. The associated technical problems are
often formulated in some abstracted form, such as multiagent
coordination and coupled oscillator synchronization [2]–[4].
The theory of pattern formation would have a broad range of
applications extending to economic and social studies.

A standard way to achieve persistent steady-state trajecto-
ries is by output regulation which tracks a persistent signal
generated by an exosystem with an internal model in the
controller [5]–[8]. This method is advantageous when the ref-
erence trajectory is fixed regardless of the operating condition.
Alternatively, embedding the pattern generator in the feedback
loop such that the closed-loop system is autonomous, allows
the controller to adjust the reference signal in response to
disturbances and changes in the environment.

Autonomous control architecture is found in biology. The
central pattern generator (CPG) is a neuronal circuit that com-
mands rhythmic muscle contractions during animal locomo-
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tion [9]–[11]. The CPG creates a basic gait when isolated, and
has the ability to adjust the gait autonomously in accordance
with the sensory feedback information [12]. Such capability
for autonomous oscillations is valuable in the design of robotic
locomotion systems where various gait patterns are generated
as stable limit cycles [13]–[15]. Also in some context of
engineering, feedback mechanisms for multiagent coordination
or coupled oscillator synchronization are typically designed to
make a global pattern emerge autonomously from the network
formed by local interactions, rather than from forced response
driven by an exosystem.

In the control of multiple subsystems, consensus or syn-
chronization can readily be achieved autonomously if the sub-
systems are homogeneous and share the same target dynamics
[16]–[20]. The idea is to stabilize the synchronous subspace
by diffusive network connections that functionally vanish in
the subspace. For heterogeneous subsystems, a clean solution
is available within the framework of the output regulation if
autonomy is not required and each subsystem can be forced to
track a command from a network of homogeneous reference
generators [21]. However, the problem is much harder when
autonomy is required, and early results relied on special
properties (e.g. minimum phase, small gain) to guarantee
synchronization [22]–[24]. More recently, the framework of
eigenstructure assignment has provided a new perspective on
autonomous control for constant formation [25], modal con-
sensus [26], and general coordination [27] of heterogeneous
subsystems with endogenous or explicit internal models.

Eigenstructure assignment is a classical subject in control
theory where the goal is to assign a given set of eigenvalues
and eigenvectors to the closed-loop system using a feedback
controller [28], [29]. Methods have been developed to tackle
various control problems over the years including decoupling
of flight modes for improved control [30], [31] and vibration
suppression [32]. The classical theory of eigenstructure as-
signment was limited by the small design freedom associated
with static state/output feedback. However, an expansion of the
design space to include dynamic feedback has allowed for an
exact characterization of assignable eigenstructures in terms of
the regulator equation, and a parametrization of all controllers
that assign a given eigenstructure [27]. More importantly, the
result provided a bridge between traditional output regulation
and autonomous pattern formation, and a general framework
for heterogeneous multiagent coordination.

In this paper, we consider the optimal eigenstructure as-
signment problem for linear systems. A special case of this
where the target dynamics of the exosystem are augmented
within the generalized plant, i.e., the optimal output regulation
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problem, has been solved with some generality in the literature
[33]. When autonomous pattern formation is considered for a
general class of plants, however, the problem remains open
(or has not even been posed) and no solution has been
available even when the controller is centralized to allow
for an arbitrary (all-to-all) network topology. We solve the
problem under the stabilizability assumption (which excludes
the output regulation problem) for the centralized case, which
is directly relevant for pattern formation in mechanical systems
with multiple degrees of freedom, such as gait generation in
robotic locomotion systems. Moreover, our result would lay a
theoretical foundation for optimal multiagent coordination.

We solve an optimal control problem for linear output
feedback that meets the following criteria: 1) The controller
achieves pattern generation for the closed-loop system with an
arbitrary initial state, for which the target behavior is described
by persistent signals in the steady-state; periodic, constant,
growing, or a combination. 2) The controller minimizes an
H2 cost function, or the L2 norm of the transient portion
of the impulse response. The pattern is prescribed by an
eigenstructure (a set of eigenvalues and eigenvectors), but the
actual trajectory, to which the state converges, depends on the
initial state and/or disturbances that affect the magnitude and
time shift. The optimal controller turns out to be autonomous
such that a pattern generator is embedded within the feedback
loop, allowing for the controller to respond to (impulse)
disturbances by optimizing the freedom in the target trajectory
to minimize the transient cost.

Our approach is to exploit a parametrization of all con-
trollers assigning a given eigenstructure [27], and perform
an analytical optimization in the state space. The control
architecture is given by diffusive coupling of the plant and
a pattern generator, with the design freedom in the coupling
dynamics. The main challenge is the lack of an explicit
characterization of the transient cost due to the fact that, by
design, the closed-loop system is not stabilized, invalidating
the standard characterizations of the H2 norm using Gramians.
The key idea is to find a state transformation that allows for
decomposition of the closed-loop system into the steady-state
dynamics for the target pattern and the transient dynamics that
define the cost for optimization. We find that the dual of the
regulator equation plays a major role for the decomposition.

Once decomposed, the problem reduces to a standard H2

control problem except for the dependence of the generalized
plant on additional design parameters — the solution of the
dual regulator equation, which substantially complicates the
design. We develop an extension of the change of variables
used for multiobjective control [34], [35] and convert the
problem to a convex optimization in terms of linear matrix
inequalities (LMIs). While the optimal controller can be com-
puted by the LMI optimization, we proceed further to gain
analytical insights and reveal the optimal control architecture.
As a result, the design reduces to the standard two Riccati
equations for the optimal H2 control, and an additional convex
optimization over solutions of the dual regulator equation.

The optimal control architecture is found analogous to the
Youla parametrization [36], and is described by the standard
Kalman filter and the linear quadratic regulator (LQR), plus a

pattern generator. The solution of the dual regulator equation
defines the feedback gain to the pattern generator which
determines the optimal target trajectory based on the feedback
information. The solution of the regulator equation defines the
feedforward gain from the pattern generator to add input to the
standard H2 control to achieve the steady state pattern. The
result reveals the profound symmetry/duality of the optimal
control architecture. While the Kalman gain and the LQR gain
are computed independently of the solutions to the primal/dual
regulator equations, the separation principle does not hold in
the sense that the optimal output feedback control cannot be
recovered by adding the Kalman filter to the optimal state
feedback because the optimal feedback gain to the pattern
generator for the output feedback is different from the one
for the state feedback in general.

The main contributions of this paper can be summarized
as follows. We add a fundamental result to the body of
literature on linear optimal control theories by formulating
and solving a novel problem of optimal autonomous pattern
generation within the framework of eigenstructure assignment.
The optimal control is shown to have the architecture of the
Youla parametrization, where the LQR and Kalman filter are
interfaced with a pattern generator through solutions to the
primal/dual regulator equations in a linear fractional manner.
The new theory complements and extends the traditional out-
put regulation theory toward autonomous motion coordination,
and lays a foundation for various applications such as consen-
sus/synchronization of multiple agents and gait generation for
robotic locomotion systems.

A preliminary result has been reported in [37], where we
solved the optimal eigenstructure assignment for the state
feedback case to minimize a quadratic cost on the initial
state response. The class of controllers for optimization was
limited to those with the pattern generator plus static state
feedback. Here we provide a result for the general dynamic
output feedback to optimize the H2 performance with respect
to arbitrarily specified input-output channels.

We use the following notation. For a square matrix A,
eig(A) denotes the set of eigenvalues of A, and He(A)
is the Hermitian part He(A) := A + AT. Notations
diag(M1, . . . ,Mn), col(M1, . . . ,Mn), and row(M1, . . . ,Mn)
denote the matrices obtained by stacking matrices Mi with
i = 1, . . . , n on the diagonal, column, and row, respectively.
For real symmetric matrices A and B, inequality A > B
means that A−B is positive definite. For a transfer function
Fs(s), its H2 norm is denoted by ∥Fs∥2. A state space system
with realization Θ is denoted by Θ̊, that is, the system[

ẋ
y

]
= Θ

[
x
u

]
, Θ :=

[
A B
C D

]
is expressed as

y = Θ̊u, Θ̊ =

(
A B
C D

)
,

where x, u, and y are the state, input, and output. Note that
Θ̊ is a system (an operator that maps a signal to a signal),
while Θ is a constant matrix that defines the system Θ̊. Lastly,
α(t) → β(t) means ∥α(t)−β(t)∥ approaches zero as t → ∞.
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II. PROBLEM FORMULATION

A. Problem Statement

Consider the generalized plant described by

ẋ = Ax+B1w +B2u,
p = Cpx+Dpu,
z = C1x+D1u,
y = C2x+D2w,

(1)

where x(t) ∈ Rn is the state, u(t) ∈ Rnu is the control input,
y(t) ∈ Rny is the measured output available for feedback
control, w(t) ∈ Rnw is the disturbance input, and z(t) ∈ Rnz

and p(t) ∈ Rnp are the performance outputs. The objective
is to determine an optimal controller u = κ̊y that achieves
pattern formation for output p(t) in the steady state while
minimizing a transient cost associated with z(t).

The pattern formation constraint in the control design is
described by the convergence property

p(t) → ΠeΛtρo (2)

for the closed-loop system with an arbitrary initial state under
no disturbance input (w(t) = 0), where the matrix pair
(Π,Λ) ∈ Rnp×r×Rr×r prescribes the target pattern and ρo is
an arbitrary vector that depends on the initial state. Since (2)
specifies the steady state behavior, the pattern should contain
no decaying term. Thus we impose the following.

Assumption 1: Λ has no eigenvalue with negative real part.
For practical purposes, Λ would typically have eigenvalues

on the imaginary axis to achieve convergence to oscillations or
constants. When Λ has an eigenvalue with positive real part,
the response would diverge and the design may not be useful.
However, we do not exclude this case to keep generality of the
theory developed in this paper. Also, such case may become
useful for achieving convergence to prescribed constants by
introducing saturation nonlinearities, which is beyond the
scope of this paper but may be addressed in the future.

The convergence property (2) is ensured by an appropriate
eigenstructure for the closed-loop system, defined as follows.

Definition 1: Consider the plant (1), target pattern (Π,Λ),
and controller u = κ̊y with state vector xκ. Let the unforced
(w(t) ≡ 0) dynamics of the closed-loop system be described by
ẋ = Acℓx and p = Hcℓx with x = col(x, xκ). The controller
is said to be admissible if the following conditions

AcℓXcℓ = XcℓΛ, Π = HcℓXcℓ,
eig(Acℓ)\eig(Λ) ∈ C−

(3)

hold for some full column rank Xcℓ, where C− is the set
of complex numbers with negative real parts. The set of
admissible controllers is denoted by A.

Condition (3) specifies that the closed-loop system has the
eigenstructure (Xcℓ,Λ) and all the eigenvalues of Acℓ except
for those shared with Λ are in the open left half plane. By the
standard linear system theory, every state trajectory converges
to the range space of Xcℓ, in which the temporal dynamics is
specified by Λ. Thus (3) implies x(t) → Xcℓe

Λtρo for some
vector ρo, and Π = HcℓXcℓ then ensures (2). Conversely,
necessity of (3) for pattern generation (2) can be formally
proven through the concept of asymptotic equivalence [27].

Let us now define the cost function to be minimized over the
set of admissible controllers κ̊ ∈ A. The closed-loop transfer
function from w to z, denoted by F(s), has the dynamics
dictated by the eigenvalues of Acℓ. When the controller is
admissible, Acℓ is similar to diag(Λ,A) for some Hurwitz
matrix A due to (3), and F(s) can be decomposed as

F(s) = Fa(s) + Fs(s), (4)

where Fa(s) is anti-stable with eigenvalues of Λ, and Fs(s)
is stable with eigenvalues of A. The cost function we seek to
minimize is the square of the H2 norm of the stable part:

γ(κ̊) := ∥Fs∥22. (5)

The basic problem we address is formally stated as follows.
Problem 1: Consider the plant (1) and the set of admissible

controllers A as described in Definition 1 for a given target
pattern (Π,Λ) satisfying Assumption 1. Solve

γ∗ := inf
κ̊∈A

γ(κ̊), (6)

i.e., determine an admissible controller κ̊ ∈ A that gives the
cost value γ(κ̊) equal (or arbitrarily close) to γ∗.

The cost function (5) defined in the frequency domain has a
time domain interpretation based on the Plancherel’s equality
[38], i.e., the H2 norm of a scalar transfer function is equal
to the L2 norm of its impulse response. Suppose the initial
state of the closed-loop system is zero, x(0) = 0. When an
impulsive disturbance w(t) = woδ(t) is applied to the closed-
loop system, we have, from the decomposition (4),

z(t) → za(t) := ZeΛtρo, ρo := Wwo, (7)

where δ(t) is the Dirac delta function, and Z and W are the
state space matrices of Fa(s):

Fa(s) = Z(sI − Λ)−1W.

For fast convergence, we penalize the transient zs := z − za,
which is the impulse response of the stable part Fs(s). Let zk

be the response to the impulse with wo = ek, and zks be the
corresponding transient output, where ek is the kth column
of the nw × nw identity matrix. By Plancherel’s equality, the
cost function γ is then given in terms of the L2 norm of zks (t),
summed over all directions of wo ∈ Rnw as follows:

γ(κ̊) =

nw∑
k=1

∫ ∞

0

∥zks (t)∥2dt. (8)

Thus, the problem is to design an optimal controller κ̊ that
achieves convergence of p(t) as in (2) with an arbitrary initial
state, while minimizing the transient cost γ(κ̊) associated with
z(t) in response to the impulse disturbance in w(t).

B. Significance

The optimal eigenstructure assignment formulated as Prob-
lem 1 has various applications to which traditional control
theories do not apply. The main distinction is that the closed-
loop system is not stabilized by the design, but rather is forced
to embed unstable dynamics Λ. One of the simplest examples
that motivate our problem is bringing a sliding block to an
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arbitrary, stationary position after the block has experienced
an impulsive disturbance force. The problem is to design a
controller u = κ̊y such that ẏ(t) → 0 for the plant

ÿ = u+ w, w(t) = δ(t).

Since y(t) is allowed to converge to a nonzero constant, the
closed-loop system should not be stabilized, but should have
an eigenvalue Λ = 0.

This type of design requirements can be generalized as
the pattern generation for vector variable p as in (2), where
Λ ∈ Rr×r determines the temporal pattern (oscillation, con-
stant, growth) and Π ∈ Rnp×r the spatial pattern (relative
amplitudes/phases) as described in [27]. For example, an
oscillation pattern oi(t) = ai sin(ωt+ bi) is specified by

Λ =

[
0 ω
−ω 0

]
,

Π = col(Π1, . . . ,Πnp),
Πi :=

[
ai cos(bi) ai sin(bi)

]
,

and (2) is equivalent to pi(t) → αoi(t + τ) where (α, τ)
is specified by ρo ∈ R2. It should be noted that the design
requirement in (2) specifies the oscillation pattern by (Π,Λ)
but its spatial size α and temporal phase τ are not prescribed
by the design constraint since ρo is arbitrary. This property
holds for the general case of (2), i.e., the pattern is specified
by (Π,Λ) but the size and phase are left unspecified within the
freedom of ρo. Thus, Problem 1 is distinct from the traditional
optimal tracking problem with a completely prescribed target
trajectory, and aims at the control design for the optimal
autonomous behavior with the ability to adjust the target
trajectory when perturbed by disturbances.

During a steady operation of the control system, distur-
bances can perturb the state away from the desired trajectory.
The controller is tasked to make the state converge back to a
steady operation, which may not have to be the same trajectory
as the one before the disturbance. For example, the temporal
phase of an oscillatory trajectory does not matter for steady
progress of robotic locomotion systems. Hence, the target
trajectory should be adjusted in real time to achieve fast and
efficient return to the steady operation. Our design captures
this desired property by the freedom ρo in (2). Formalizing the
perturbation by the impulse disturbance w(t) = woδ(t), where
wo specifies the direction and magnitude of the perturbation,
we recognize that ρo is a function of wo; in fact, ρo = Wwo as
in (7). The controller that solves Problem 1 specifies W so that
the optimal steady state trajectory for the given perturbation
wo is selected to minimize the transient.

We focus on minimization of the H2 norm, which is
equivalent to the L2 norm of the impulse response as shown
earlier. This time-domain interpretation is directly related to
the cost in the classical linear quadratic regulator (LQR). The
H2 performance can also be interpreted in terms of the output
variance in response to stochastic noises as is well known
in the linear quadratic Gaussian (LQG) control. Yet another
interpretation of the H2 norm is the energy-to-peak gain,
which is the largest L∞ norm of the output among those
resulting from all possible disturbances with L2 norm less than
or equal to one [39]. Thus, the cost function (5) has multiple
interpretations relevant for various applications. Moreover, as
we point out in Section IV-A, the theory we develop for the

H2 performance can be applied, with slight modifications,
to multiobjective control with various performance measures,
including the energy-to-energy gain (i.e. H∞ norm) and upper
bounds on the impulse-to-peak and peak-to-peak gains [34].

Based on the internal model principle [27], the design spec-
ification (2) requires that the target dynamics Λ be embedded
in the feedback controller as a pattern generator. In general,
the pattern generator receives sensory signals from the plant,
which allows for real-time adjustment of the size and timing
of the pattern in response to disturbances and changes in the
environment. This is distinct from the standard paradigm of the
output regulation [5], [7], [8], where an exogenous system sits
outside of the feedback loop and generates a fixed command
pattern, and a feedback controller is designed to achieve exact
tracking. The autonomous pattern generation with sensory
feedback is found in biological control mechanisms that ex-
hibit adaptive behaviors [12], and is advantageous for certain
engineering applications such as robotic locomotion [15] and
multiagent coordination [20], [40].

C. Preliminaries from Eigenstructure Assignment Theory

This section provides a basis for solving Problem 1 by
reviewing and extending some results from [27], which essen-
tially solved the feasibility part of the problem. In particular,
[27] characterized when the set A of admissible controllers is
nonempty, and gave a parametrization of an essential subset
of A. The following lemma shows that any cost (5) achieved
by an admissible controller can be achieved by a controller in
this subset. The implication is that the optimization over the
subset is equivalent to the original problem in (6).

Lemma 1: Consider the plant (1) and target dynamics
(Π,Λ), where Assumption 1 holds and (C2, A) is detectable.
The set of admissible controllers A in Definition 1 is nonempty
if and only if there exists a matrix pair (X,U) such that

XΛ = AX +B2U,
Π = CpX +DpU,

(9)

hold and (A,Bx
2) is stabilizable, where Bx

2 := [ B2 − X ].
Consider Problem 1 and the infimum cost value γ∗. Let γo
be an arbitrary feasible cost, i.e., γo > γ∗. Then a controller
κ̊ ∈ A such that γ(κ̊) = γo is given by[

u

ξ̇

]
=

[
U
Λ

]
ξ + Θ̊(y − C2Xξ) (10)

for some Θ̊ that stabilizes the augmented plant (A,Bx
2, C2)

and for some (X,U) satisfying (9). For this controller, the
unforced (w(t) ≡ 0) closed-loop trajectory satisfies

x(t) → Xξo(t), p(t) → Πξo(t), ξ(t) → ξo(t),
u(t) → Uξo(t), z(t) → Zξo(t), ξo(t) := eΛtρo,

(11)

for some ρo ∈ Rr depending on the initial state, where

Z := C1X +D1U. (12)

Proof. See Appendix A.
The controller formula (10) parametrizes a subset of A in

terms of (X,U) satisfying (9) and Θ̊ stabilizing (A,Bx
2, C2).

Lemma 1 shows that an arbitrary feasible cost γo can be
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achieved by a controller of the form (10). Hence an optimal
(or near optimal) controller solving (6) belongs to this subset,
and Problem 1 can be solved by minimizing γ(κ̊) over (X,U)
and Θ̊. Thus, the explicit parametrization of controllers as in
(10) is directly useful for solving Problem 1.

The parameter pair (X,U) satisfying (9) is not unique in
general and the choice will affect the transient cost. However,
we will focus on the optimization after the choice is made.
Since (X,U) specifies the steady state behavior as in (11), it
may be chosen to optimize the cost for maintenance of the
target pattern p(t) = ΠeΛtρo. For instance, the magnitude
of the control input ∥U∥ may be minimized over (X,U)
satisfying (9), which can readily be solved using a semidefinite
programming package since the norm ∥U∥ is a convex func-
tion of U and constraint (9) is linear in (X,U). Once (X,U)
is fixed, the cost (5) can be optimized over Θ̊. To make a
formal statement of this problem, let us introduce:

Assumption 2:
(i) For the target pattern (Π,Λ), a pair (X,U) exists and is

fixed such that (A,Bx
2) is stabilizable and (9) holds.

(ii) (C2, A) is detectable.
For a given pair (X,U), let Ao ⊂ A be the subset of ad-
missible controllers captured by (10) with some Θ̊ stabilizing
(A,Bx

2, C2). The problem is then formulated as follows.
Problem 2: Consider Problem 1 and suppose Assumption 2

holds. Solve Problem 1 with A replaced with Ao.
The rest of the paper is focused on solving Problem 2,

which is not equivalent to Problem 1 since (X,U), i.e., the
relative spatial sizes and temporal phases of (x, u), is fixed.
The optimal cost value of Problem 1 is always no worse
than that of Problem 2 since (X,U) is chosen to optimize
the transient cost in Problem 1. However, Problem 2 may
be more practically valuable than Problem 1 since it would
make more sense to also penalize the steady state cost during
the design, justifying a separate optimization of (X,U) as
described above.

III. REFORMULATION VIA DUAL REGULATOR EQUATION

A. Overview of the Approach

Problem 2 is much more difficult than traditional optimal
control problems, which focus on stabilization of the closed-
loop system, due to the fact that the autonomous pattern
formation requires the closed-loop system to have eigenvalues
with nonnegative real parts to achieve convergence, not to the
origin, but to a pattern. Also by the requirement of autonomy,
the target steady state trajectory is not prescribed, which makes
the dependence of the transient cost on the controller much
more complex than in the traditional optimal control theories.

We will solve Problem 2 through a series of reparametriza-
tions of the feasible controller set Ao as follows:

Ao ↔ A1 ↔ A2, Ā2 = Ā3, A3 ↔ A4 ↔ A5, (13)

where Ai ↔ Aj indicates existence of a bijective mapping
between the two sets Ai and Aj , and Āi denotes the closure
of Ai. Problem 2 is reduced to a constrained H2 optimization
over A2 using a Sylvester equation, and then eventually to an
unconstrained H2 optimal control problem over A5 using a

dual regulator equation. This section provides an overview of
this approach, while the sections that follow will provide the
details and theoretical justifications.

To explain the idea, let us introduce some system matrices.
Let the state space realization of Θ̊ in (10) be denoted by

Θ̊ =

(
Aθ Bθ

Cθ Dθ

)
, Cθ =

[
Cθ1

Cθ2

]
, Dθ =

[
Dθ1

Dθ2

]
, (14)

where each of Cθ and Dθ is partitioned in accordance with
the row dimensions of U and Λ, and define

Ψ̊ =

(
Aθ Bθ

Cθ1 Dθ1

)
, Γ :=

[
Cθ2 Dθ2

]
, (15)

so that Θ = col(Ψ,Γ). We also define augmented matrices

 Â B̂1 B̂2

Ĉ1 0 D̂1

Ĉ2 D̂2 0

 :=


A 0 B1 0 B2

0 0 0 I 0
C1 0 0 0 D1

0 I 0 0 0
C2 0 D2 0 0

 ,

X̂ :=

[
X
0

]
, Û :=

[
0
U

]
,

B̂x
2 :=

[
B̂2 −X̂

]
,

D̂x
1 :=

[
D̂1 0

]
,

where the sizes of the zero and identity matrices should
become clear from the context.

By definition, Ao is parametrized by (10) with Θ in

A1 := {Θ : Â+ B̂x
2ΘĈ2 is Hurwitz}, (16)

which corresponds to the set of controllers Θ̊ stabilizing
the augmented plant (A,Bx

2, C2). Since there is a bijective
mapping between Ao and A1, the optimization of the cost
γ(κ̊) over κ̊ ∈ Ao can be equivalently transformed into an
optimization over Θ ∈ A1. However, the dependence of the
cost on Θ ∈ A1 is not simple due to the fact that the closed-
loop system contains unstable dynamics Λ, and the cost is
defined for the stable part of the closed-loop system.

It turns out that the unstable dynamics can be isolated
using a state coordinate transformation specified by the unique
solution Ŷ to the Sylvester equation

ΛŶ − Ŷ (Â+ B̂x
2ΘĈ2) = ΓĈ2. (17)

The stable part of the closed-loop transfer function, Fs(s), can
then be parametrized by (Θ, Ŷ ) ∈ A2 where

A2 := {(Θ, Ŷ ) : Θ ∈ A1, (17) holds}. (18)

The reparametrization of the feasible controllers Ao in terms
of A2 thus reduces Problem 2 to a constrained optimization
of the H2 norm ∥Fs∥2 over (Θ, Ŷ ) ∈ A2. The problem is still
difficult due to the constraint (17).

To further reduce the problem to a tractable unconstrained
H2 optimization, we introduce a slack variable V̂ as

V̂ = Ŷ B̂2Ψ+ (I − Ŷ X̂)Γ, (19)

so that the Sylvester equation (17) is written as

ΛŶ = Ŷ Â+ V̂ Ĉ2. (20)

This is recognized as the dual of the regulator equation

X̂Λ = ÂX̂ + B̂2Û , (21)
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which is equivalent to the first condition in (9). Note that
the design freedom in Γ can be equivalently captured by V̂
through (19) when I−Ŷ X̂ is nonsingular. That is, there exists
a bijective mapping between A3 and A4, where

A3 := {(Θ, Ŷ ) ∈ A2 : det(I − Ŷ X̂) ̸= 0}, (22)

A4 := {(Ψ, Ŷ , V̂ ) : det(I − Ŷ X̂) ̸= 0, (20),

col(Ψ, (I − Ŷ X̂)−1(V̂ − Ŷ B̂2Ψ)) ∈ A1}.
(23)

We will show that A3 is nonempty and the closure of A3

coincides with the closure of A2 when (A,B2) is stabi-
lizable. Therefore, under the stabilizability assumption on
(A,B2), Problem 2 reduces to the H2 norm optimization over
(Ψ, Ŷ , V̂ ) ∈ A4. At this point, the variables Ψ and (Ŷ , V̂ )
are not subject to an algebraic constraint, making the problem
more tractable, unlike the case for A3 in which Θ and Ŷ are
constrained by (17).

An additional step is necessary for further simplification
of the conditions defining the set A4, especially the stability
requirement dictated by A1. We will seek a reparametrization
of Ψ so that the stability constraint in A4 can be expressed as
the stability of the closed-loop system for a simple auxiliary
plant and a controller Φ̊, where the new parameter Φ replaces
Ψ. We first note that (Ŷ , V̂ ) satisfies (20) if and only if

Ŷ =
[
Y Ỹ

]
, V̂ =

[
ΛỸ V

]
, (24)

hold for some Ỹ and (Y, V ) satisfying

ΛY = Y A+ V C2, (25)

which is the dual of the first regulator equation in (9). It turns
out that if we define the auxiliary controller as

Φ̊ =

(
Aϕ Bϕ

Cϕ Dϕ

)
, S := (I − Y X)−1, (26)

Aϕ := Aθ +BθC2XSỸ , Bϕ := Bθ,

Cϕ := Cθ1 + (Dθ1C2X − U)SỸ , Dϕ := Dθ1,
(27)

then the design freedoms of (Ŷ , V̂ ) and Ψ are captured by
(Y, V, Ỹ ) and Φ, respectively, and the feasible controllers will
be reparametrized by the bijective mapping A4 ↔ A5, where

A5 := {(Φ, Y, V, Ỹ ) : det(T ) ̸= 0, T := I −XY,

(25), Φ̊ stabilizes C2(sT −A+XΛY )−1B2}.
(28)

This parametrization reduces Problem 2 to a standard H2

optimal control problem over Φ̊ when (Y, V, Ỹ ) is fixed so
that det(T ) ̸= 0 and (25) hold.

B. Reduction to Constrained H2 Optimal Control

This section describes the first major step of our approach
outlined in the previous section, i.e., reparametrization of the
admissible controllers A1 ↔ A2. We will isolate the transient
dynamics (i.e., stable modes) and decompose the closed-loop
transfer function as in (4) so that the cost function in (5) is
properly characterized. This is done by the following lemma.

Lemma 2: Consider the plant (1) and target pattern (Π,Λ).
Suppose Assumptions 1 and 2 hold. Let a controller κ̊ be

given by (10) with a Θ̊ stabilizing (A,Bx
2, C2). Then κ̊ ∈ Ao

holds, and the cost function γ(κ̊) in (6) is given by

γ(κ̊) = ∥Fs∥22, Fs(s) := C(sI −A)−1B+D, (29)

where A is Hurwitz,

A := Â+ B̂x
2ΘĈ2, C := Ĉ1 + D̂x

1ΘĈ2 − ZŶ ,

B := B̂1 + B̂x
2ΘD̂2, D := D̂x

1ΘD̂2,
(30)

and Ŷ is the unique solution to the Sylvester equation (17).
Moreover, given the zero initial state and impulse input w(t) =
woδ(t), the closed-loop trajectory satisfies (11) with

ρo := Wwo, W := ŶB+ ΓD̂2. (31)

Proof. We designate q(t) ∈ Rnq as the state vector of Θ̊ with
the state space realization in (14). Defining the coordinate

r :=

[
χ
q

]
, χ := x−Xξ, (32)

the closed-loop system is given by[
ξ̇
ṙ

]
=

[
Λ ΓĈ2

0 A

] [
ξ
r

]
+

[
ΓD̂2

B

]
w, (33)

where A is Hurwitz since Θ̊ stabilizes (A,Bx
2, C2). Hence,

when the impulsive input w(t) = woδ(t) is applied, r captures
the transient behavior while ξ(t) converges to eΛtρo with ρo
determined by wo. Since ξ(t) is not equal to eΛtρo for all
t ≥ 0, the transient component in ξ(t) further needs to be
isolated for properly characterizing the cost in (5).

Using Lemma 8 of [27], one can find a transformation
that decouples the target behavior from the transient behavior
and makes the system block diagonal. More specifically there
exists a unique solution Ŷ to the Sylvester equation (17)
since the spectra of Λ and A are disjoint. Using Ŷ for the
coordinate transformation, the closed-loop system in (33) is
block diagonalized as

ρ̇ = Λρ+Ww, ρ := ξ + Ŷ r,
ṙ = Ar +Bw,

(34)

with the performance output z given by

z = zs + za, zs := Cr +Dw, za := Zρ.

Hence the closed-loop transfer function F(s) from w to z
can be decomposed as in (4) with the stable part Fs(s)
given by (29). Finally, consider the response to the impulsive
disturbance w(t) = woδ(t). Since A is stable and Λ is anti-
stable, r(t) is the transient variable that converges to zero, and
ρ(t) = eΛtρo is the steady state (or persistent) variable. Then
(11) follows from the definitions of the state variables.

For the controller (10), the closed-loop system is given by
(33), which clearly has the Λ-eigenspace spanned by the right
eigenvectors col(I, 0) for the state col(ξ, r). The correspond-
ing left eigenvectors are row(I, Ŷ ), where the eigenvalue-
eigenvector equation is exactly given by the Sylvester equation
(17). In the original state space coordinates x := col(x, q, ξ),
denote the closed-loop system with w = 0 by ẋ = Acℓx. Then
its right and left eigenvectors are given by

AcℓXcℓ = XcℓΛ, Xcℓ := col(X̂, I), row(Y, Ỹ ) := Ŷ ,

YcℓAcℓ = ΛYcℓ, Ycℓ := row(Ŷ , I − Y X),
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where the eigenvectors are normalized so that YcℓXcℓ = I . It
follows from the standard system theory that the steady state
response is given by x(t) → Xcℓe

Λtρo with ρo := Ycℓx(0).
A special case of this is the impulse response in Lemma 2

where the initial state x(0) is set from wo so that ρo is
given by (31). The eigenstructure analysis enabled isolation
of the transient part zs(t) from the performance output z(t)
so that the stable part of the closed-loop transfer function,
Fs(s), is explicitly characterized. The key for this isolation is
the solution Ŷ to the Sylvester equation (17), which defines
the coordinate transformation to separate transient and steady
state dynamics. Problem 2 is thus equivalently reformulated in
Lemma 2 as the minimization of the H2 norm ∥Fs∥2 in (29)
over (Θ, Ŷ ) ∈ A2, where A2 is defined in (18).

C. Reduction to Unconstrained H2 Optimal Control

The constrained H2 optimization over A2 is difficult due
to the coupling of Ŷ and Θ through (17). For tractable
reparametrizations of the admissible controllers, let us proceed
to the next step in Section III-A, i.e., Ā2 = Ā3 under
stabilizability of (A,B2), which is formally stated as follows.

Lemma 3: Consider Lemma 2 and the sets A2 and A3

defined in (18) and (22), respectively. The set A3 is nonempty
if and only if (A,B2) is stabilizable. Moreover, if A3 is
nonempty, then the closures of A2 and A3 coincide.
Proof. See Appendix B.

Based on Lemma 3, under stabilizability of (A,B2), the
optimal control that minimizes ∥Fs∥2 in (29) over (Θ, Ŷ ) ∈
A2 is obtained by minimizing the same cost function over
(Θ, Ŷ ) ∈ A3. This is because, due to Ā2 = Ā3, any
optimal control in A2 can be approached by a sequence of
controllers within A3. Thus we can restrict our search for
an optimal controller within A3. This makes the problem
tractable since the regularity det(I − Ŷ X̂) ̸= 0 enables
a series of reparametrizations of the admissible controllers,
A3 ↔ A4 ↔ A5 as outlined in Section III-A, leading to an
unconstrained optimization. This step of the development is
summarized as follows.

Lemma 4: Consider the plant (1) and target dynamics
(Π,Λ). Suppose (A,B2) is stabilizable and Assumptions 1 and
2 hold. Then Problem 2 is equivalent to

℘∗ := inf
Φ̊∈S,Y,V

℘(Φ̊, Y, V ), (35)

subject to (25) and

det(I −XY ) ̸= 0, (36)

where ℘(Φ̊, Y, V ) is the H2 norm squared of the closed-loop
transfer function Fs(s) from w to zs for the augmented plant T χ̇o

zs
y

 =

 A−XΛY Bo B2

Co 0 D1

C2 D2 0

 χo

w
u

 , (37)

T := I −XY, Bo := TB1 −XVD2,
S := (I − Y X)−1, Co := C1T −D1UY,

(38)

and controller u = Φ̊y, and S is the set of controllers
that internally stabilize the augmented plant. In particular,

the optimal cost values are equal to each other, γ∗ = ℘∗.
Moreover, given a feasible solution (Φ̊, Y, V ) of (35) with
℘o := ℘(Φ̊, Y, V ), an admissible controller κ̊ given by (10)
achieves the cost value γ(κ̊) = ℘o, where Θ̊ in (10) is
specified by (14) with

Φ̊ =

(
Aϕ Bϕ

Cϕ Dϕ

)
, (39)

Aθ := Aϕ −BϕC2XSỸ , Bθ := Bϕ,

Cθ1 := Cϕ − (DϕC2X − U)SỸ , Dθ1 := Dϕ,

Cθ2 := S(ΛỸ − Ỹ Aθ − Y B2Cθ1),

Dθ2 := S(V − Ỹ Bθ − Y B2Dθ1),

(40)

with an arbitrary matrix Ỹ .
Proof. We first show that, given an admissible controller
κ̊ ∈ Ao, there exist a controller Φ̊ ∈ S and parameters (Y, V )
such that the constraints in (25) and (36) are satisfied, and the
difference in the cost value |℘(Φ̊, Y, V )− γ(κ̊)| is arbitrarily
small. Fix κ̊ ∈ Ao as in (10) with a Θ̊ in (14). From Lemma 2,
there exists a solution Ŷ to the Sylvester equation (17), and
the cost value γ(κ̊) is equal to the H2 norm squared of Fs(s)
in (29). Partition Θ and Ŷ to define (Ψ,Γ) and (Y, Ỹ ) by
(15) and (24), where Y ∈ Rr×n. We assume, without loss of
generality, that det(T̂ ) ̸= 0 for T̂ := I− X̂Ŷ , or equivalently,
(36) holds. If the determinant is zero, one can redefine κ̊ by
slightly perturbing Θ so that the determinant becomes nonzero,
while keeping κ̊ admissible and the cost value γ(κ̊) arbitrarily
close to the original value. This perturbation is possible under
the stabilizability of (A,B2) due to Lemma 3.

Introducing a slack variable V , the Sylvester equation (17)
is equivalently written as (25) and

Γ = (I− Ŷ X̂)−1(V̂ − Ŷ B̂2Ψ), V̂ :=
[
ΛỸ V

]
. (41)

The regulator equation (9) and its dual in (25) can be written

ÂX̂ + B̂2Û = X̂Λ,

Ŷ Â+ V̂ Ĉ2 = ΛŶ .
(42)

Using (41) and (42), one can verify that the state space
matrices for Fs(s) in (30) are given by

A = T̂−1ÂT̂ ,

B = T̂−1B̂,

C = ĈT̂ ,

D = D̂,

Â = Â+ B̂2(ΨĈ2 − Û Ŷ )T̂−1,

B̂ = T̂ B̂1 + (B̂2Ψ− X̂V̂ )D̂2,

Ĉ = Ĉ1 + D̂1(ΨĈ2 − Û Ŷ )T̂−1,

D̂ = D̂1ΨD̂2.

(43)

Now, the realization of Fs(s) given by

ṙa = Âra + B̂w,

zs = Ĉra + D̂w,

ra := T̂ r = col(Tχo, q),

χo := χ−XSỸ q,
(44)

can be recognized as the closed-loop system of the augmented
plant (37) and controller Φ̊ in (39) specified by solving (40)
for (Aϕ, Bϕ, Cϕ, Dϕ), where the state of Φ̊ is q. Therefore,
the closed-loop transfer function from w to zs coincides with
Fs(s), and we conclude that ℘(Φ̊, Y, V ) = γ(κ̊).

To show the converse, let a feasible (Φ̊, Y, V ) satisfying
the constraints of (35) be given, i.e., Φ̊ ∈ S with state space
realization (39) internally stabilizes the augmented plant (37),
and (Y, V ) satisfies (25) and (36). Choose an arbitrary matrix
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Ỹ and define Θ̊ by (14) and (40), Ŷ by (24), and V̂ by (41).
Then one can verify that condition (17) is satisfied by noting
that (17) is equivalent to (25) and (41). Let the state space
matrices for Fs(s) be defined by (30). Then the closed-loop
system of the augmented plant (37) and controller Φ̊ (which is
independent of Ỹ ) is given by (44) with state space matrices
(Â, B̂, Ĉ, D̂) in (43) (which apparently depends on Ỹ but in
fact Ỹ cancels out to make it independent). This system is
related to (A,B,C,D) in (30) by similarity transformation
(43). Thus we conclude that ℘(Φ̊, Y, V ) = γ(κ̊).

The original problem with (Θ, Ŷ ) ∈ A3 in Lemma 2 is
now reduced to that with (Φ, Y, V, Ỹ ) ∈ A5 in Lemma 4.
There exists a bijective mapping between A3 and A5 as
explained in Section III-A. The transfer function Fs(s) in
Lemma 2, depending on (Θ, Ŷ ) ∈ A3, coincides with the
closed-loop transfer function from w to zs in Lemma 4,
depending on (Φ, Y, V, Ỹ ) ∈ A5, provided (Θ, Ŷ ) and
(Φ, Y, V, Ỹ ) are related by the bijective mapping. A benefit
of this reparametrization is that Θ̊ and Ŷ are constrained by
(17) but Φ̊ and (Y, V, Ỹ ) are independent of each other. Also,
Lemma 4 shows that the freedom in Ỹ can be ignored in
the optimization since it does not affect the cost. With (Y, V )
fixed, the minimization of ℘(Φ̊, Y, V ) in (35) over Φ̊ ∈ S is a
standard H2 problem that can readily be solved. However, the
optimization over the additional parameters (Y, V ) still makes
the problem challenging. The next section will address this
issue and present the main result.

IV. AUTONOMOUS PATTERN GENERATION

A. Optimal Control for Pattern Generation
We will first solve Problem 2 without additional assump-

tions on the plant. The approach is to extend the linearizing
change of variables in [34], [35] to deal with the additional
parameters (Y, V ) that are constrained by the dual regulator
equation (25) and affect the cost in (35). The result is a
tractable characterization of feasible controllers as follows.

Theorem 1: Consider the plant (1) and target pattern (Π,Λ).
Suppose (A,B2) is stabilizable and Assumptions 1 and 2 hold.
Let γo ∈ R be given and consider Problem 2. There exists a
controller κ̊ ∈ Ao such that the cost in (5) satisfies γ(κ̊) < γo
if and only if there exist parameters (P,Q, Y, V,M,G,H,L)
and f such that tr(f) < γo,[

M+MT HT

H −I

]
< 0,

[
P G
GT f

]
> 0, L = 0, (45)

and the dual regulator equation (25) hold, where[
M G
H L

]
:=

 AQ+B2H AT +B2E TB1 +ND2

M PA+GC2 PB1 +GD2

C1Q+D1H C1T +D1E D1LD2

 ,

P :=

[
Q T
T T P

]
, T := I−XY,

N := B2L−XV,
E := LC2 − UY.

In this case, one such controller κ̊ is given by (10) with Θ̊
specified by (14) and (40) with

Aϕ = A+B2K +BϕC2T
−1 +R−1J,

Bϕ = (T TR)−1G−R−1P̂N,
Cϕ = ET−1 −K, K := HQ−1,
Dϕ = L,

(46)

where Ỹ in (40) is an arbitrary matrix and

J := P̄AK +AT
KP̄+ CT

KCK + CT
ϕ(K +BT

2P̄+DT
1C1),

AK := A+B2K, CK := C1 +D1K,

P̂ := (T T)−1PT−1, R := P̂ − P̄, P̄ := Q−1.

Proof. See Appendix C.
For a given γo, the design condition given by (45), (25), and

tr(f) < γo is nonconservative, and is feasible for sufficiently
large γo, provided the stated supposition is satisfied. The
condition becomes more difficult to satisfy as γo gets smaller,
and is infeasible when γo is smaller than the optimal value γ∗
defined in (6). Thus, Problem 2 is reduced to the minimization
of tr(f) over (P,Q, Y, V,M,G,H,L) and f subject to (45)
and (25). This is a convex optimization problem involving
LMIs, and can readily be solved numerically. The optimal
controller is then calculated from (46). The change of variables
used in the proof of Theorem 1 is applicable not only for this
H2 control synthesis but also for other general multiobjective
control problems [34] extended for autonomous pattern gener-
ation with H∞ and various system gain performance measures.

Next, we build on Theorem 1 and derive a characterization
of the optimal controller in terms of Riccati equations with
the following standard assumptions [41] on the plant:

Assumption 3:

i) (A,B1) is stabilizable and (C1, A) is detectable;
ii) (A,B2) is stabilizable and (C2, A) is detectable;

iii) DT
1[ C1 D1 ] = [ 0 I ].

iv) D2[ B
T
1 DT

2 ] = [ 0 I ].

The value of Theorem 1 is that the design process applies
to a general plant with no assumptions, and it shows the
proper change of variables applicable to many other cost
functions than the H2 norm, demonstrating a broader impact
of our design theory. In contrast, the next result (Theorem 2)
will provide an analytical insight into the optimal control
architecture when the plant satisfies Assumption 3. As a design
tool, Theorems 1 and 2 provide alternative methods, where
the latter may be slightly preferred if the plant satisfies the
assumption since commercially available software for the H2

optimal control can be used.
We now present the solution to the standard optimal control

problem for autonomous pattern generation.
Theorem 2: Consider Problem 2 for the plant (1) and target

pattern (Π,Λ). Suppose Assumptions 1, 2 and 3 hold. Let P
and Q be the stabilizing solutions of the Riccati equations and
define the corresponding gains:

PA+ATP− PB2B
T
2P+ CT

1C1 = 0, K := −BT
2P,

AQ+ QAT − QCT
2C2Q+B1B

T
1 = 0, F := −QCT

2.
(47)

Let (Y, V ) be a solution of

ϱ∗ := min
(Y,V )

ϱ(Y, V ), subject to Y A+V C2 = ΛY,

where, with Bo, Co, and T defined in (38),

ϱ(Y, V ) := tr(PBoBo
T + QKo

TKo), Ko := KT + UY,
= tr(QCo

TCo + PFoFo
T), Fo := XV + TF.
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Then the minimum cost γ∗ of Problem 2 is equal to ϱ∗, and
an optimal controller that yields γ∗ is given by

˙̂x = Ax̂+B2u+ F(C2x̂− y),

ξ̇ = Λξ + (Y F − V )(C2x̂− y),
u = (U −KX)ξ +Kx̂.

(48)

Moreover, the trajectory of the closed-loop system, with arbi-
trary initial states, in response to the impulse input w(t) =
woδ(t), converges as in (11) with

ρo := (Y B1 + V D2)wo + Y (x(0)− x̂(0)) + ξ(0).

Proof. See Appendix D.
The result in Theorem 2 resembles the solution to the

standard H2 optimal control problem, including a combination
of the optimal state feedback controller, the LQR with gain
K for (A,B2, C1, D1), and the optimal observer, the Kalman
filter with gain F for (A,B1, C2, D2). However, there are
additional terms due to the complexity of the problem, re-
quiring a static minimization of the cost ϱ(Y, V ) over (Y, V ).
The cost is expressed in the two alternative forms that are
dual to each other. In either expression, the cost is a convex
quadratic function of (Y, V ) and can be minimized, subject to
the linear constraint of the dual regulator equation, by standard
numerical methods. In the trivial case where (X,U) = (0, 0),
the controller (48) reduces to the standard H2 optimal control.

The pattern generation property of the controller (48) is
rather easy to see. The closed-loop system is given by ˙̂x

ξ̇
ė

 =

A+B2K B2(U −KX) −FC2

0 Λ (V − Y F)C2

0 0 A+ FC2

 x̂
ξ
e

 ,

where e := x − x̂, assuming no input w = 0. It is easy to
verify that the closed-loop system has eigenvalues Λ with right
eigenvector col(X, I, 0) and left eigenvector row(0, I, Y ). The
other closed-loop eigenvalues are those of A+B2K and A+
FC2, which are Hurwitz. Thus the steady state trajectory is
given by x = x̂ = Xξ and ξ = eΛtρo with ρo specified by the
initial state or the impulse input.

Theorem 2 revealed the fundamental feedback architecture
of the optimal controller as shown in Fig. 1. The plant
dynamics are copied in the blue blocks to give the standard
Kalman filter plus LQR, while the red blocks embed a pattern
generator (Λ dynamics). The control architecture has the same
linear fractional structure as the Youla parametrization of all
stabilizing controllers [36], where the central controller is the
LQG controller, and the free parameter Q is set to

Q(s) = (U −KX)(sI − Λ)−1(Y F − V ),

which is the pattern generator (sI − Λ)−1 interfaced through
the feedforward gains (X,U) and feedback gains (Y, V ) that
are constrained by the primal and dual regulator equations:

AX +B2U = XΛ,
Y A+ V C2 = ΛY.

In the steady state, the pattern generator creates ξ = eΛtρo
without feedback since y = C2x̂, and the control input u = Uξ
drives the plant since x̂ = Xξ. Any nonzero errors, y−C2x̂ ̸=
0 and/or x̂−Xξ ̸= 0, would add corrective components in u
to yield convergence back to the steady state.

Fig. 1. The architecture of the optimal control in (48)

B. Absence of the Separation Principle

The separation principle similar to the standard H2 optimal
control does not hold for the optimal control for autonomous
pattern generation. If we replace x̂ by x assuming state
feedback in Theorem 2, the controller (48) reduces to

ξ = Λξ, u = Uξ +K(x−Xξ). (49)

However, addition of the Kalman filter to this state feedback
controller is not enough for the output feedback case in general
since nonzero value of (Y, V ) may reduce the H2 cost. In fact,
the state feedback in (49) is not optimal as shown below.

The closed-loop system with (49) is given by ẋ

ξ̇
z

 =

 A+B2K B2(U −KX) B1

0 Λ 0
C1 +D1K D1(U −KX) 0

 x
ξ
w

 ,

which has the eigenstructure (Xcℓ,Λ) with Xcℓ = col(X, I),
and A+B2K is Hurwitz. Hence, the state feedback controller
is admissible. It can readily be verified that the transfer
function Fs from w to z is stable since the Λ modes are uncon-
trollable, and its H2 norm is given by ∥Fs∥22 = tr(BT

1PB1).
This cost value turns out to be non-optimal:

Corollary 1: Consider Problem 2 as in Theorem 2 except
that we assume y = x, i.e., C2 = I and D2 = 0. Let P be the
stabilizing solution of the Riccati equation and define K as in
(47). Then the minimum cost γ∗ of Problem 2 is given by

γ∗ = tr(BT
1PxB1), Px := P− PX(XTPX)−1XTP,

and an optimal state feedback that yields γ∗ is given by

η̇ = Λη + Y B2u− V x, V := ΛY − Y A,
u = (U −KX)(Y x− η) +Kx, Y := (XTPX)−1XTP,

provided XTPX is invertible. Moreover, with the zero initial
state, the trajectory of the closed-loop system in response to
w(t) = woδ(t) converges as in (11) with ρo := Y B1wo.

The optimal state feedback is equivalent (with a different
realization) to the controller in [37], where its optimality
was proven within the class of controllers of the form (10)
with static Θ̊. The result here proves its optimality among
all dynamic admissible controllers. Corollary 1 also gives an
explicit formula for the optimal choice of (Y, V ), which is
valid when XTPX is invertible. The nonzero choice of (Y, V )
reduces the cost to a value less than tr(BT

1PB1), which is
the cost for the controller (49). The reduction is achieved
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by the feedback to the internal model dynamics of η so that
the phase and amplitude of the steady state η = eΛtρo is
adjusted appropriately for the given impulse disturbance w.
Indeed, assuming full information (i.e. not only x but also w
are available for the controller), the optimal state feedback in
Corollary 1 can be equivalently implemented as

ξ̇ = Λξ + Y B1w, u = Uξ +K(x−Xξ),

which is derived by defining ξ := Y x−η. A comparison with
(49) indicates a clear advantage of the optimal control with
the additional term Y B1w. Thus, the sensory feedback to the
pattern generator through (Y, V ) is essential.

Finally, if the separation principle holds, then the optimal
controller in Theorem 2 should be recovered by adding the
Kalman filter to the optimal state feedback in Corollary 1 and
replacing x with x̂. However, introducing the new variable
ξ := Y x̂ − η, the process will result in the output feedback
controller of the form (48) with the specific choice of (Y, V )
uniquely determined by

Y (A+ FC2)− ΛY = YoFC2, V = (Y − Yo)F,

where Yo := (XTPX)−1XTP. This choice does not minimize
the cost ϱ(Y, V ) in general (as easily shown by numerical
examples), and thus the optimal output feedback controller
cannot be obtained through the separation principle.

V. DESIGN EXAMPLE: INVERTED PENDULUM ON A CART

A. Plant and Target Motion Patterns

We consider an inverted pendulum
on a cart as shown in Fig 2. The
pendulum is a point mass atop a
rigid, massless rod. The control in-
put force u is applied to the cart,
and a disturbance force d acts on
the pendulum point mass, resulting
in the pendulum angle θ and the cart
displacement xc with no friction.
The sensor reads the cart position
and contains noise v.

d

M

x

g θ

��������������
��������������
��������������

��������������
��������������
��������������

u

l
c

m

Fig. 2. The physical plant.

The equations of motion are given by(
M +m(1− cos2 θ)

)
ẍc + f(θ, θ̇) = u− d(1− cos2 θ),

mℓθ̈ −mg sin θ +mẍc cos θ = −d cos θ (50)
f(θ, θ̇) := mg sin θ cos θ −mℓθ̇2 sin θ.

where M and m are the mass of the cart and pendulum respec-
tively, ℓ is the rod length, and g is the gravity constant. The
equations of motion linearized about the vertical position are
assembled with performance channels to give the generalized
plant (1) with

x = col(θ, θ̇, xc, ẋc),
C1 = col(~xI, 0), D1 = col(0, 1),
C2 = row(0, 0, 1, 0), D2 = row(0, 1),[
A B1 B2

]
=


0 1 0 0 0 0 0

(M+m)g
Mℓ 0 0 0 ~d

mℓ 0 −1
Mℓ

0 0 0 1 0 0 0
−mg
M 0 0 0 0 0 1

M

 ,

(51)

where ~x, ~d ∈ R are design weights, and the performance
signals are defined by w := col(d/~d, v) and z := col(~xx, u).

We consider the target behavior where θ and ẋc may
oscillate around a fixed value at specified frequency ω. For
example, the cart may translate at a constant speed on average
while the pendulum oscillates. Such behavior is captured by
Λ containing an oscillatory mode and a rigid body mode:

Λ = diag(Λ1,Λ2), Λ1 :=

[
0 ω
−ω 0

]
, Λ2 :=

[
0 1
0 0

]
.

The physical configuration of the cart-pendulum system im-
poses dynamic constraints that shape possible motions, which
are exactly captured by the regulator equation (9). In particular,
all possible motions with the Λ modes are captured by
x = XeΛtρo for some X and ρo, where X satisfies (9) for
some U . It can readily be shown that the second entry of
U can be set to zero without reducing the variety of motion
patterns since the freedom can be absorbed into ρo. The set of
all solutions (X,U) for (9), with the second entry of U being
zero, is parametrized by

X =


co 0 0 0
0 coω 0 0

−coℓo 0 c1 c2
0 −coℓoω 0 c1

 , U =


cofo
0
0
0


T

,

where co, c1, and c2 are free parameters, and

ℓo := ℓ

(
1 +

1

ω2
· g
ℓ

)
, fo := (M +m)g +Mℓω2.

Thus, all possible motions are described by

θ(t) = aθ cos(ωt− ϕ),
xc(t) = −ℓoθ(t) + vct+ oc,
aθ := αco, vc := c1γ, oc := c1β + c2γ,

(52)

which are derived from x = XeΛtρo with an arbitrary vector
ρo expressed as ρo := col(α cosϕ, α sinϕ, β, γ). We see that
oscillations occur when co ̸= 0, where θ and xc must be 180o

out of phase with the amplitude ratio ℓo, and the cart translates
at a constant average velocity when c1 ̸= 0. In the special case
where co = c1 = c2 = 0, the pendulum should be stabilized
vertically at the initial cart position.

The target motions (52) parametrized by (co, c1, c2) can
be categorized into the six different patterns as delineated
in Table I. The six motion patterns are characterized by
zero/nonzero properties of the θ oscillation amplitude aθ, cart
average velocity vc, and cart offset oc, where oc can be fixed
to zero for any ρo only if vc is zero. Each of co, c1, and c2
can be restricted to 0 or 1 because patterns with any nonzero
values of ci can be captured by ci = 1 due to the freedom in
ρo. Moreover, the value of c2 does not affect the pattern and
can be set to zero whenever c1 ̸= 0 since the offset oc can
be arbitrarily set by β. Thus we only need to consider the six
cases of (co, c1, c2) in Table I.

B. Control Designs for Basic Patterns

We will first investigate the performance of the optimal
linear controller (48) with the linear system (51) for the
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TABLE I
MOTION PATTERN CATEGORIES

category co c1 c2 amp. aθ vel. vc offset oc
(i) 0 0 0 0 0 0
(ii) 0 0 1 0 0 γ
(iii) 0 1 0 0 γ β
(iv) 1 0 0 α 0 0
(v) 1 0 1 α 0 γ
(vi) 1 1 0 α γ β

six motion patterns in Table I. For this study, we used the
following parameter values:

M = 2 m = 1 ℓ = 4, g = 9.8,
ω = 2, ~x = 1, ~d = 200.

(53)

For each pattern, the optimal controller was designed and the
closed-loop system was simulated with impulse disturbance
d(t) = δ(t) while the sensor noise v and the initial plant and
controller states are all set to zero.

(i) 20.9 (ii) 15.2 (iii) 8.4

(iv) 9.0 (v) 5.2 (vi) 1.8

Fig. 3. Snap shots (5 frames/s) of the cart-pendulum system with the linear
plant (51) and the optimal controller (48) under the impulse disturbance
d(t) = δ(t) for the six patterns in Table I. The top circle and bottom square
represent the pendulum point mass and the cart, respectively. Travel is to
the right with the initial position indicated by the blue vertical bar. The red
vertical bar indicates the cart offset oc for the cases with c1 = 0. The blue
bar is invisible for (i) and (iv) since the red bar overlaps. The simulated time
is 0 ≤ t ≤ 11 when c1 = 0 and 0 ≤ t ≤ 8 otherwise. The numbers above
the snapshots indicate the optimal costs in the unit of 106.

The impulse responses of the cart-pendulum system are
depicted in terms of the snapshots in Fig. 3. In the steady
state, the pendulum converges to the vertical posture for the top
row, while it oscillates for the bottom row. The (average) cart
position returns to the initial position (left column), converges
to an offset position oc (middle column), or is free to travel at
a constant average speed vc (right column). The values of oc
and vc, as well as the oscillation amplitude when allowed, are
chosen by the optimal control to minimize the transient cost.
Consequently, the cost is lower from left to right as we allow
more freedom in the steady state pattern.

Numerical study (not shown) confirmed that different values
for ci in Table I do not affect the resulting trajectory as long as
they represent the same pattern. This is due to the freedom in
(Y, V ), which when optimized determines the target trajectory.
The implication is that for a given target pattern, there is a
unique optimal target trajectory. For example, the cases with
(co, c1, c2) = (1, 2, 3), (4, 5, 6), and (1, 1, 0) have different
(X,U) but the optimal (Y, V ) is adjusted to yield the same
optimal trajectory x = XeΛtρo uniquely determined by the
impulse direction and the specified motion pattern.

C. Trajectory Replanning by Feedback to Pattern Generator
The optimal control in (48) is autonomous, embedding the

pattern generator ξ̇ = Λξ within the feedback loop. This is in
contrast with the traditional output regulation architecture [6],
[42] where the reference generator sits outside the feedback
loop as an exosystem, providing a fixed reference command.
The sensory feedback to the pattern generator allows for real-
time modification of the reference trajectory ξ based on the
measured output y. This section illustrates this capability and
the unique attributes of our result in comparison with the
traditional output regulation for tracking.

We consider the optimal controller in (48) with the target
pattern specified by (co, c1, c2) = (1, 0, 1), allowing for steady
state oscillations around a fixed position. The parameter values
are chosen as in (53) except for ~x with a larger value ~x =
100 to make convergence faster. To illustrate the capability
for trajectory replanning, we hit the system with two impulse
disturbances, one at t = 0 and another at t = 11 s, as described
by d(t) = 0.6δ(t)+5δ(t− 11). The initial state is set to zero.
From Theorem 2, the first impulse will result in convergence
as in (11) with ρo := Y B1wo and wo := col(0.6, 0), and
the second impulse will lead to another trajectory of the same
pattern with different amplitude aθ and location oc, determined
from the impulse and state at t = 11 through ρo := Y B1wo+
Y (x(11)− x̂(11)) + ξ(11) and wo := col(5, 0).

For comparison, we consider the controller obtained by
setting (Y, V ) = (0, 0) in the optimal controller (48). In
this case the pattern generator receives no feedback from the
plant, and the controller is a classical regulator with the LQR
and the Kalman filter, tracking a fixed reference signal from
the exosystem (see Fig. 1). The regulator is evaluated by the
closed-loop simulation under the same conditions as those for
the optimal controller, except for the initial controller state
ξ(0). We choose to set ξ(0) = Y B1wo with wo := col(0.6, 0)
so that both controllers achieve the same trajectory after the
first impulse and both plants are in (almost) the same state at
the time of the second impulse.

The results are depicted in Figs. 4 and 5. For both con-
trollers, the cart-pendulum converges to the same target tra-
jectory after the first impulse, initially moving to the right
and oscillating around a fixed cart offset oc (red bar) in the
steady state. The second impulse substantially perturbs the
cart-pendulum to the right, and the classical regulator pushes
it back to the previous target trajectory. However, the optimal
controller finds a different target trajectory by detecting the
second disturbance through sensory feedback, and makes the
system oscillate around a new offset oc (purple bar).

We now set ~x = 3, which reduces the penalty on the state
variables when compared with the previous case ~x = 100.
Figure 4 (iii) shows that the cart-pendulum moves further than
(i) before settling down for the same magnitude of the distur-
bance since larger transient displacements are now allowed.
This example illustrates that the steady state trajectory could
be adjusted through the cost function if desired.

D. Nonlinear Augmentation of Pattern Generator
The optimal controller (48) can find a new trajectory (52)

with different oscillation amplitude aθ, phase ϕ, cart velocity
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(i) Autonomous control with optimal (Y, V ); ~x = 100

(ii) Classical regulation with (Y, V ) = (0, 0); ~x = 100

(iii) Autonomous control with optimal (Y, V ); ~x = 3

Fig. 4. Snap shots (5 frames/s) of the cart-pendulum system with the linear
plant (51). The controller is given by (48) for the target pattern (co, c1, c2) =
(1, 0, 1), where (Y, V ) is optimal for (i) and zero for (ii). Case (iii) is under
the same conditions as (i) except ~x = 3. The closed-loop system is simulated
for 0 ≤ t ≤ 25 with impulse disturbances applied twice at t = 0 and t = 11
as d(t) = 0.6δ(t) + 5δ(t− 11).

0 5 10 15 20 25

0
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]
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θ
[d

eg
]

Fig. 5. The time response of the linear closed-loop system simulated under
the same condition as in Fig. 4. The blue plots are for the optimal control, and
the red plots are for the output regulation controller with (Y, V ) = (0, 0).
The black plots indicate the target trajectory (11) of the optimal control in
response to the first impulse disturbance.

vc, and offset oc in response to a disturbance, as illustrated in
the previous section. In some applications, however, it may be
desired to fix some of these parameters, especially aθ and/or
vc. Therefore this section suggests some heuristics to achieve
convergence of these parameters to a priori specified values.

The idea is to augment the optimal, linear controller (48)
with nonlinear components. In particular, the pattern generator
dynamics Λ in the controller is replaced by the nonlinear term
O defined by

O = diag(O1,O2), O1 =

[
σ1 ω
−ω σ1

]
, O2 =

[
0 1
0 σ2

]
,

σ1 = µ1(a
2
o − ξ21 − ξ22), σ2 = µ2(vo − ξ4), (54)

where ξi is the ith entry of ξ ∈ R4, ao is the target
oscillation amplitude for col(ξ1, ξ2), vo is the target value of
the velocity variable ξ4, and parameters µ1 and µ2 weight the
effects of the nonlinear components and dictate the rates of
convergence (the larger, the faster). The resulting nonlinear
pattern generator ξ̇ = Oξ consists of the Andronov-Hopf
oscillator that has an orbitally stable limit cycle and achieves
(ξ1, ξ2) → (ao sin(ωt−φ), ao cos(ωt−φ)) for some constant
φ when µ1 > 0, and the modified double integrator that
achieves convergence (ξ3, ξ4) → (vot + β, vo) for some
constant β when µ2vo > 0. With the nonlinear augmentation
of the pattern generator, the closed-loop system is expected to
converge to the motion (52) as in the linear optimal control

(i) Autonomous control with linear pattern generator (optimal)

(ii) Autonomous control with nonlinear pattern generator

Fig. 6. Snap shots (5 frames/s) of the cart-pendulum system with the nonlinear
plant (50). The linear optimal controller (i) is designed for (co, c1, c2) =
(1, 1, 0) using (48). The nonlinear controller (ii) is obtained as a modification
of the optimal controller by replacing Λ in (48) with the nonlinear dynamics
of O as in (54) with µ1 = 100, µ2 = 0, ao = 0.132, and vo = 0. The
closed-loop system is simulated for 0 ≤ t ≤ 20 with impulse disturbances
applied twice at t = 0 and t = 7 as d(t) = 0.6δ(t)− 0.4δ(t− 7).
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Fig. 7. The time response of the nonlinear closed-loop system simulated under
the same condition as in Fig. 6. The green plots are for the linear optimal
controller (i), and the blue plots are for the modified controller with the
nonlinear pattern generator (ii). The black plots indicate the target trajectory
of the linear optimal control in response to the first impulse disturbance.

case, with the additional property that the amplitude and
velocity are fixed to aθ = coao and vc = c1vo.

We illustrate the effectiveness of the nonlinear augmentation
by design examples for the case (co, c1, c2) = (1, 1, 0). The
nonlinear dynamics in (50) are used for simulating the plant.
Two controllers are designed: one is the linear optimal control
in (48) and the other is its nonlinear augmentation as in (54).
The plant and design parameters are the same as those in
the previous section, i.e., (53) with modification ~x = 100.
The closed-loop system is simulated with the zero initial state
under two impulse disturbances in d with intensities +0.6 at
t = 0 and −0.4 at t = 7, where the positive/negative signs
indicate that the force is directed right/left. For the nonlinear
control with (54), the velocity regulation is inactive (µ2 = 0),
and the amplitude regulation is active (µ1 = 100), with the
parameter ao set so that the amplitudes of oscillations after
the first impulse match those that would result if the linear
optimal control were applied, i.e., ao =

√
ρ2o1 + ρ2o2 with

ρo := Y B1wo and wo = col(0.6, 0).
The results are shown in Figs. 6 and 7. While the linear

optimal controller is guaranteed to achieve convergence for
the linear plant, it fails for the nonlinear plant; the pendulum
falls toward the end of the simulation. With the nonlinear
augmentation, the controller achieves convergence as intended.
The oscillation amplitudes of xc and θ (blue) converge to
values close to those prescribed by ao (black), which is clearly
visible for θ. The average cart velocity ẋc converges to a
constant value that depends on the disturbance as seen in
the blue xc plot that has a constant average slope after each
impulse. It should be noted that the cart velocity is adjusted
in response to the second disturbance as intended, while the
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classical output regulation would have made the trajectory
follow the black plots in Fig. 7. We also note that the phase
of the oscillations (see θ plot) is not aligned with the black
reference trajectory but determined by the disturbance. One
may see the importance of this type of reference adaptation
in some applications, observing how we recover the walking
gait after tripping over a cat.

In traditional designs, a linear controller is guaranteed, by
the Hartman-Grobman theorem, to stabilize an equilibrium
point of a nonlinear system if it stabilizes the linearized
system. In contrast, the eigenstructure assignment developed
in this paper intentionally yields a controller that does not
stabilize the linearized plant but makes some closed-loop
eigenvalues coincide with those of Λ. As a result, the equi-
librium is not hyperbolic when Λ has eigenvalues on the
imaginary axis, and the solutions in the neighborhood of the
equilibrium can be qualitatively different between the linear
and nonlinear closed-loop systems. This is why the divergent
response in Fig. 7 for the linear control is not surprising.
On the other hand, the nonlinear augmentation of the pattern
generator was found effective for making the target behavior
structurally stable in this example, as long as the oscillation
amplitude of θ remains relatively small (roughly 20o).

VI. CONCLUSION

We have developed an optimal control theory for au-
tonomous pattern generation. The pattern describes persistent
steady-state signals that are constant, growing, and/or oscilla-
tory with fixed relative amplitudes, phases, and frequencies,
while the absolute magnitude and temporal timing of the
actual trajectory are part of the variables to be optimized. The
controller achieves convergence to a prescribed pattern while
minimizing the H2 performance measure, i.e., the L2 norm of
the transient portion of the impulse response. The result also
applies, with slight modifications, to multiobjective optimal
control problems with not only H2 but also other performance
measures, exploiting the change of variables introduced in
Theorem 1. Such extensions will allow for application to a
wider range of problems.

The H2 optimal controller, given in Theorem 2, is shown to
embed a pattern generator within the feedback loop as an addi-
tional component to the standard Kalman filter and the LQR,
possessing the same linear fractional structure as the Youla
parametrization. The feedback/feedforward gains to/from the
pattern generator are solutions to the regulator equation and
its dual, revealing a fundamental symmetry. The autonomous
control architecture, which allows for the pattern generator to
receive feedback from the plant, enables modification of the
target trajectory in response to disturbances. The separation
principle holds in the sense that the Kalman gain and LQR gain
are obtained independently, but does not hold in the sense that
the optimal output feedback is not the optimal state feedback
with the Kalman filter.

The stabilizability assumption on (A,B2) is crucial for our
development. If it is violated, singularity of I − XY makes
a fundamental change in the optimal control problem and the
main theorems become invalid. Such violation occurs in the

traditional (non-autonomous) output regulation problem where
the plant dynamics are augmented with an unstable exosystem.
For autonomous pattern generation, however, the stabilizability
assumption would be naturally satisfied in many applications.

APPENDIX A
PROOF OF LEMMA 1

The necessary and sufficient condition for A to be nonempty
essentially follows from Theorem 3 in [27] with a slight
modification to include the nonzero Dp term in (9). Fix
an admissible controller and let Xcℓ in (3) be partitioned
as col(X,Xκ). From Lemma 3 of [27] and its proof, an
observer can be added to the controller without affecting the
control input such that the new closed-loop system satisfies
(3) with Xcℓ = col(X,Xnew

κ ) where Xnew
κ := col(Xκ, X)

is full column rank. Then, from the same proof, there exists
a nonsingular transformation of the controller coordinates
such that the transformed augmented system satisfies (3) with
Xcℓ = col(X, I, 0). Based on Theorem 3 in [27], every
controller yielding Xcℓ of this structure is necessarily captured
by the formula in (10) for some Θ̊ stabilizing the augmented
plant (A,Bx

2, C2). Finally, the cost value has been preserved
during the process since neither a coordinate transformation
nor the addition of an observer not connected to the control
input changes the closed-loop dynamical mapping from w to
z. Finally, the convergence property in (11) follows directly
from the eigenstructure.

APPENDIX B
PROOF OF LEMMA 3

Suppose (A,B2) is stabilizable. Let Ψ be such that Â +
B̂2ΨĈ2 is Hurwitz and set Θ := col(Ψ,Γ) with Γ = 0. Then
the unique solution Ŷ to (17) in this case is given by Ŷ = 0
since Γ = 0. Hence det(I − X̂Ŷ ) ̸= 0 and we conclude
(Θ, Ŷ ) ∈ A3. Thus stabilizability of (A,B2) implies that A3

is nonempty.
To show the converse, suppose (A,B2) is not stabilizable.

Fix (Θ, Ŷ ) ∈ A2. There exists a pair of eigenvalue and left
eigenvector (λ, ℓ) such that

ℓ∗Â = λℓ∗, ℓ∗B̂2 = 0, ℓ ̸= 0, ℜ(λ) ≥ 0.

Multiplying ℓ∗ from left of the regulator equation (21),

λ(ℓ∗X̂) = (ℓ∗X̂)Λ.

Multiplying ℓ∗X̂ from left of the Sylvester equation (17) and
using the above equation,

ℓ∗(I − X̂Ŷ )(λI −A) = 0.

Since ℜ(λ) ≥ 0 and A is Hurwitz, λI − A is nonsingular.
Thus we have ℓ∗(I − X̂Ŷ ) = 0, which implies (Θ, Ŷ ) ̸∈ A3.
Therefore, A3 is empty.

Finally, we show that Ā2 = Ā3 when A3 is nonempty,
where Āi is the closure of Ai for i = 2, 3. For (Θ, Ŷ ) ∈ A2,
the Sylvester equation (17) uniquely determines Ŷ from Θ
since Λ satisfies Assumption 1. Hence, Ā2 ̸= Ā3 occurs only
when there is a pair (Θo, Ŷo) ∈ A2\A3 such that every small
perturbation of Θo to Θ and the corresponding Ŷ maintain
(Θ, Ŷ ) ∈ A2\A3. The previous paragraph has shown that such
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a pair (Θo, Ŷo) exists and in fact every (Θ, Ŷ ) ∈ A2 is such
a pair, provided (A,B2) is not stabilizable. Below, we show
that such a pair does not exist when (A,B2) is stabilizable.

Let A1 in (16) be decomposed as A1 = Fo ∪ F1 such that
det(I− X̂Ŷ ) is zero and nonzero for Fo and F1, respectively,
where Ŷ is uniquely determined by (17) for Θ ∈ A1. Suppose
Fo is nonempty and has an interior. We will show that det(I−
X̂Ŷ ) = 0 for all Θ ∈ A1, and thus F1 is empty. This allows
us to conclude that Fo has no interior when A3 is nonempty
and therefore Ā2 = Ā3.

Let the Sylvester equation (17) be written as

M(θ)y = v(θ),

where θ ∈ Ra and y ∈ Rb are vectors consisting of the entries
of Θ and Ŷ , respectively, and M(θ) ∈ Rb×b and v(θ) ∈ Rb

are affine functions of θ. Let Fv ⊂ Ra be the set of vectors
θ corresponding to matrices Θ ∈ A1. Then M(θ) is square
invertible for all θ ∈ Fv since the spectra of Λ and A are
disjoint. For each θ ∈ Fv, we can solve the above equation for
y, and then rearrange the entries of y to obtain Ŷ as follows:

y = M(θ)−1v(θ) ⇒ Ŷ = N(θ)/d(θ),

where d(θ) := det(M(θ)) and N(θ) is a matrix-valued
polynomial of θ. Let p(θ) be the multivariate polynomial of
θ ∈ Fv defined by

p(θ) := det(d(θ)I − X̂N(θ)) = det(d(θ)(I − X̂Ŷ )).

Now, suppose Fo is nonempty and has an interior. Then there
exist θo ∈ Fv and its neighborhood N(θo) ⊂ Ra such that
θo ∈ N(θo) ⊂ Fv and p(θ) = 0 for all θ ∈ N(θo). Since the
multivariate polynomial p(θ) vanishes on an open set, p(θ)
must be identically zero. Hence det(I − X̂Ŷ ) = 0 for all
Θ ∈ A1 and thus F1 is empty.

APPENDIX C
PROOF OF THEOREM 1

From Lemma 4, Problem 2 reduces to the optimization in
(35). In particular, there exists a controller κ̊ ∈ Ao such that
γ(κ̊) < γo if and only if there exist Φ̊ ∈ S and (Y, V ) such
that (25) and (36) hold, and the H2 norm squared of Fs(s) =
Ĉ(sI−Â)−1B̂+D̂ is less than γo, where Fs(s) is the transfer
function of the closed-loop system with the augmented plant
(37) and u = Φ̊y. By a standard linear system theory, ∥Fs∥22 <
γo holds if and only if there exist symmetric matrices P̂ and
f such that tr(f) < γo, D̂ = 0, and

P̂Â+ ÂTP̂+ ĈTĈ < 0, P̂ > 0, B̂TP̂B̂ < f,

which are equivalent, via the Schur complement, to[
P̂Â+ ÂTP̂ ĈT

Ĉ −I

]
< 0,

[
P̂ P̂B̂

B̂TP̂ f

]
> 0. (55)

Since the order of the controller Φ̊ can be chosen equal to the
plant order due to Lemma 4, one can choose the controller
state coordinates so that P̂ has the following special structure
[34], [35]:

P̂ =

[
P̂ R
R R

]
, Q := (P̂ −R)−1.

Consider bijective mapping Φ ↔ (M,G,H,L) specified by[
M G
H L

]
=

[
T TR T TP̂B2

0 I

] [
Aϕ Bϕ

Cϕ Dϕ

] [
−Q 0

C2T
−1Q I

]
+

[
T TP̂ (A−B2UY T−1)Q −T TP̂XV

−UY T−1Q 0

]
.

Using the regulator equation (9) and its dual (25), we have[
T 0
0 I

]T [
P̂Â P̂B̂

Ĉ D̂

] [
T 0
0 I

]
=

[
M G
H L

]
,

TTP̂T = P, T :=

[
Q T

−Q 0

]
.

The condition (45) now follows from the congruence trans-
formation of (55) using T. Thus, given a controller Φ̊ such
that ∥Fs∥2 < γo, there exist (P,Q, Y, V,M,G,H,L) and f
satisfying tr(f) < γo and (45). Conversely, if such parameters
exist, then the corresponding controller Φ̊ can be obtained
through the bijective mapping. In particular, the simple for-
mula for Φ̊ is obtained as such solution after a modification
such that a new feasible M is chosen as

M = −(AT +B2E)T−(C1T +D1E)T(C1Q+D1H), (56)

to make the (1,2) and (2,1) blocks of M+MT+HTH equal to
zero. Finally, the description of the controller κ̊ follows from
Lemma 4.

APPENDIX D
PROOF OF THEOREM 2

We will fix (Y, V ) and consider the minimization of γo over
parameters (P,Q,M,G,H,L) and f subject to tr(f) < γo,
(45), and (25). Let γ⋆ be the optimal value. We will first show
that ϱ(Y, V ) is a lower bound on γ⋆. We then show that the
lower bound can actually be achieved by the controller (48).

Let γo be an arbitrary number larger than γ⋆. Then Theo-
rem 1 implies that there exist (P,Q,M,G,H,L), and f such
that tr(f) < γo and (45) hold. Note that L = 0 implies
L = 0 since D1 and DT

2 both have full column rank. The
first condition in (45) is equivalent to

M+MT +HTH < 0. (57)

Partition the left-hand side into 2 × 2 blocks in accordance
with the definition of M. Then the (1,1) and (2,2) blocks are
negative definite, i.e.,

He(AQ+B2H) + CT
QCQ < 0,

He(PA+GC2) + Co
TCo < 0,

CQ := C1Q+D1H.
(58)

Note that the first condition in (58) can be expressed as

He
(
P̄(A+B2K)

)
+ (C1 +D1K)T(C1 +D1K) < 0,

P̄ := Q−1, K := HQ−1.

From Lemma 5 in Appendix F, we have P ≤ P̄.
Now, the second condition in (45) implies[

S SB1 + SFD2

(SB1 + SFD2)
T f−Bo

TPBo

]
> 0,
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where we used the Schur complement and P ≤ P̄, and

S := P − T TPT, F := S−1(G+ T TPXV ).

The above inequality, the second condition in (58), and
tr(f) < γo imply

tr(Bo
TPBo) + tr(B1 + FD2)

TS(B1 + FD2) < γo,
S(A+ FC2) + (A+ FC2)

TS +Ko
TKo < 0,

where the last term of the above Lyapunov inequality is found
by using the regulator equation (9), its dual (25), and the
first Riccati equation in (47) to eliminate V , Λ, and then
A, respectively. Note that S > 0 by definition since P > 0
and P̄ ≥ P, and the above Lyapunov inequality then implies
that A + FC2 is Hurwitz. Noting that the above inequalities
define an H2 norm bound on a linear system in terms of the
observability Gramian S, the condition implies existence of an
upper bound Q̄ > 0 on the controllability Gramian, satisfying

tr(Bo
TPBo) + tr(KoQ̄Ko

T) < γo,
He

(
(A+ FC2)Q̄

)
+ (B1 + FD2)(B1 + FD2)

T < 0.
(59)

By Lemma 5, the second inequality implies Q ≤ Q̄ for (any)
solution Q of the second Riccati equation in (47). Thus we
have ϱ(Y, V ) < γo. Since γo can be arbitrarily close to γ⋆,
we conclude that ϱ(Y, V ) is a lower bound on γ⋆.

The controller formula is derived as follows. When
Lemma 5 is applied to show P ≤ P̄ and Q ≤ Q̄ above, it
suggested the best choices of the parameters that give the lower
bounds: K = K for P̄ = P, and F = F for Q̄ = Q. Based on
these, we set the parameters in (46) as

K = K, G = SF − T TPXV,

Q−1 = P, R−1 = TS−1T T, P̂ = R+ P.

We then obtain
Dϕ = 0,
Cϕ = −UY T−1 −K,
Bϕ = TF +XV,
Aϕ = A+B2K+ (TF +XV )C2T

−1,

where we noted that J = 0. Substituting these into (40) to
find Θ̊, we have

Aθ = A+B2K+BθC2, Bθ = TF +XV,
Cθ1 = −K, Dθ1 = 0,
Cθ2 = Dθ2C2, Dθ2 = V − Y F,

where we chose Ỹ := Y to simplify the equations. An optimal
controller is then found from (10) as

q̇ = Aq +B2(Uξ − u) +Bθε,

ξ̇ = Λξ + (V − Y F)ε,
u = Uξ −Kq, ε := y − C2(Xξ − q).

Defining x̂ := Xξ − q, the controller is given by (48).
Finally, we need to verify that the controller is admissible

and attains the lower bound ϱ(Y, V ) on the optimal cost γ∗
since the above process found an optimizer on the boundary of
the open feasible set defined by (45). It can readily be verified
that the closed-loop system can be described as

η̇

ḣ
ė
z

 =


Λ 0 0 Y B1 + V D2

0 A+B2K −BθC2 −BθD2

0 0 A+ FC2 B1 + FD2

Z C1 +D1K Co 0



η
h
e
w

 ,

η := ξ + Y e, e := x− x̂, h := x̂−Xξ.

Thus the transfer function Fs(s) from w to zs := z − Zη is
stable, and its H2 norm is characterized by the controllability
Gramian diag(S,Q), where S is the solution to

(A+B2K)S + S(A+B2K)T +BθB
T
θ = 0,

and the H2 norm is given by

∥Fs∥22 = tr(C1 +D1K)S(C1 +D1K)T + tr(CoQCo
T).

Noting that (C1 + D1K, A + B2K) has the observability
Gramian P and using duality, the first term is equal to
tr(Fo

TPFo) and thus we have ∥Fs∥22 = ϱ(Y, V ) as claimed.
The dual formula for ϱ(Y, V ) can be derived similarly. Finally,
the description for the steady state trajectory of the impulse
response follows by noting from the closed-loop equation that
e and h converge to zero and η = eΛtρo.

APPENDIX E
PROOF OF COROLLARY 1

We follow the same process as in the proof of Theorem 2
up to (59). For the state feedback case, the infimum of Q̄

is given by Q̄ = 0, and the cost γo is bounded below by
tr(TB1)

TP(TB1), or the trace of

(Y −(XTPX)−1XTP)T(XTPX)(Y −(XTPX)−1XTP)+Px.

This lower bound can be approached by choosing

Y = (XTPX)−1XTP, F = −I/ε,

with small ε > 0. With a coordinate transformation, the
dynamics of controller (48) can be written as

η̇ = Λη + Y B2u− V x, η := Y x̂− ξ,
ė = (A+ F)e−B1w, e := x̂− x.

With F = F = −I/ε, the impulse response of the error e
converges to zero arbitrarily fast as ε → 0. In the limit, we
have x̂ = x and the optimal state feedback as stated in the
corollary.

APPENDIX F
TECHNICAL LEMMA

The following lemma shows that every solution of the
Lyapunov inequality for a state feedback problem is bounded
below by every solution of the corresponding Riccati equation.

Lemma 5: Suppose

P (A+BK) + (A+BK)TP + (C +DK)T(C +DK) ≤ 0,
PA+ATP− (PB + CTD)(PB + CTD)T + CTC = 0,
DTD = I, A+BK is Hurwitz.

Then we have P ≤ P and

P(A+BK) + (A+BK)TP+ (C +DK)T(C +DK) = 0,
K := −(BTP+DTC).

Proof. Let the left-hand side of the first inequality be denoted
by W . Then the following identity holds:

(P−P)(A+BK)+(A+BK)(P−P) = W−(K−K)T(K−K).

Then stability of A + BK and W ≤ 0 imply P ≥ P. It is
easy to verify that the Lyapunov equation for P is equivalent
to the Riccati equation.
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