
UC Irvine
ICS Technical Reports

Title
SafeTSA : a type safe and referentially secure mobile-code representation based on static
single assignment form

Permalink
https://escholarship.org/uc/item/4205t40v

Authors
Amme, Wolfram
Dalton, Niall
Franz, Michael
et al.

Publication Date
2000

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4205t40v
https://escholarship.org/uc/item/4205t40v#author
https://escholarship.org
http://www.cdlib.org/

Notice: This
may be protected
by Copyright Law
(Title 17 U.S.C.)

SafeTSA: A Type Safe and Referentially Secure
Mobile-Code Representation

Based on Static Single Assignment Form

Wolfram Amme Niall Dalton Michael Franz Jeffery van Ronne

Technical Report 00-43
Department of Information and Computer Science

University of California, Irvine, CA 92697-3425

November 2000

Wolfram Amme Niall Dalton Michael Franz
wolfram@ics.uci.edu ndalton@ics.uci.edu franz@uci.edu

Jeffery von Ronne
jronne@ics.uci.edu

Department of Information and Computer Science
University of California
Irvine, CA 92697-3425

ABSTRACT
We introduce SafeTSA, a type-safe mobile code representa­
tion based on static single assignment form. We are devel­
oping SafeTSA as an alternative to the Java Virtual Ma­
chine, over which it has several advantages: (1) SafeTSA is
better suited as input to optimizing dynamic code genera­
tors and allows CSE to be performed at the code producer's
site. (2) SafeTSA provides incorruptible referential integrity
and uses "type separation" to achieve intrinsic type safety.
These properties reduce the code verification effort at the
code consumer's site considerably. (3) SafeTSA can trans­
port the results of type and bounds-check elimination in a
tamper-proof manner. Despite these advantages, SafeTSA
is more compact than JVM-code. ·

1. INTRODUCTION
The Java Virtual Machine's byte-code format (JVM-code)
has become the de facto standard for transporting mobile
code across the Internet. However, it is generally aclmowl­
edged that JVM-code is far from being an ideal mobile code
representation-a considerable amount of preprocessing is
required to convert JVM-code into a representation more
amenable to an optimizing compiler, and in a dynamic com­
pilation context this preprocessing takes place while the user
is waiting. Further, due to the need to verify the code's
safety upon arrival at the target machine, and also due to
the specific semantics of JVM's particular security scheme,
many possible optimizations cannot be performed in the
source-to-JVM-code compiler, but can only be done at the
eventual target machine--or at least they would be very
cumbersome to perform at the code producer's site.

For example, information about the redundancy of a type
check may often be present in the front-end (because the
compiler can prove that the value in question is of the cor­
rect type on every path leading to the check), but this fact
cannot be communicated safely in the JVM-code stream and
hence needs to be re-discovered in the just-in-time compiler.
By "communicated safely", we mean in such a way that a
malicious third party cannot construct a mobile program

that falsely claims that such a check is redundant. Or talc:e
common subexpression elimination: a compiler generating
JVM could in principle perform CSE and store the resulting
expressions in additional, compiler-created local variables,
but this approach is clumsy at best.

The approach taken with SafeTSA 1 is radically different
from JVM's stack-based virtual machine. The SafeTSA rep­
resentation is a genuine static single assignment variant in
that it differentiates not between variables of the origi­
nal program, but only between unique values of these vari­
ables. SafeTSA contains no assignments or register moves,
but encodes the equivalent information in phi-instructions
that model dataflow. Unlike straightforward SSA represen­
tations, however, SafeTSA provides intrinsic and tamper­
proof referential integrity as a well-formedness property of
the encoding itself.

Another key idea of SafeTSA is "type separation": values
of different types are kept separate in such a manner that
even a hand-crafted malicious program cannot undermine
type safety and concomitant memory integrity. Interestingly
enough, type separation also enables the elimination of type
and range checks on the code producer's side in a manner
that cannot be falsified.

Finally, SafeTSA programs are transmitted after common
subexpression elimination, which removes redundancies and
thereby often leads to smaller and more efficient programs
than their JVM counterparts.

The following sections introduce various aspects of the SafeTSA
encoding, discuss the current status of our implementation,
present preliminary results, and give some references to re­
lated work.

2. REFERENTIAL INTEGRITY
A program in SSA form contains no assignments or register
moves; instead, each instruction operand refers directly to
the definition or to a "phi" function which models the merg-

1 Safe TS A stands for Safe Typed Single Assignment Form

i = i+l;
j=j+l;
if (i<=j)

i = i+l;
else

i=i-1;
j =j+i;

6
7
8
9

add (i) 1
add (j) I
cmp (6) (7)

gt (8)

12-=11- phi (10) (11)
13 add (7) (12)

Figure 1: Program in SSA Form

ing of multiple values based on the control flow. However,
straightforward SSA is unsuitable for application domains
that require verification of referential integrity in a context
of possibly malicious code suppliers. This is because SSA
contains an unusually large amount of references needing
to be verified, far more than the original source program,
making the verification process very expensive.

As an example, consider the program in Figure 1. The left
side shows a source program fragment and the right side
a sketch of how this might look translated into SSA form.
Each line in the SSA representation corresponds to an in­
struction that produces a value. The individual instructions
(and thereby implicitly the values they generate) are labeled
by integer numbers assigned C0nsecutively; in this illustra­
tion, an arrow to the left of each instruction points to a label
that designates the specific target register implicitly speci­
fied by each instruction. References to previously computed
values in other instructions are denoted by enclosing the la­
bel of the previous value in parentheses - in our depiction,
we have used (i) and (j) as placeholders for the instructions
that compute the initial values of i and j. Since there are
no uses of uninitialized variables in Java, such instructions
must always exist-in most cases, these would correspond
to values propagated from the constant pool.

The problem with this representation lies in verifying the
correctness of all the references. For example, value (10)
must not be referenced anywhere following the phi-function
in {12), and may only be used as the first parameter but not
as the second parameter of this phi-function. A malicious
code supplier might want to provide us with an illegal pro­
gram in which instruction (13) references instruction (10)
while the program takes the path through (11)-this would
undermine referential integrity and must be prevented.

The solution is based on the insight that in SSA, an instruc­
tion may only reference values that dominate it, i.e., that lie
on the path leading from the entry point to the referencing
instruction. This leads to a representation in which refer­
ences to prior instructions are· represented by a pair (l-r),
in which l denotes a basic block expressed in the number of
levels that it is removed from the current basic block in the

A-6
A-7
A-8

~ A-9

<6'©1w
B-0

D-0
D-1

phi (0-0) (0-0)
add (1-7) (0-0)

Figure 2: Reference-Safe Program in SSA Form

dominator tree hierarchy, and in which r denotes a relative
instruction number in that basic block. For phi-instructions,
an I-index of 0 denotes the appropriate preceding block along
the control flow graph (with the nth argument of the phi
function corresponding to the nth incoming branch), and
higher numbers refer to that block's dominators. The cor­
responding transformation of the program from Figure 1 is
given in Figure 2.

The resulting representation using such (l-r) value-references
provides referential integrity intrinsically without requiring
any additional verification besides the trivial one of ensur­
ing that each relative instruction number r doesn't exceed
the permissible maximum. The latter fact can actually be
exploited when encoding the (l-r) pair space-efficiently.

3. TYPE SEPARATION
The second major idea of our representation is type sep­
aration. While the "implied machine model" of ordinary
SSA is one with an unlimited number of registers (=val­
ues), Safe TS A uses a model in which there is a separate
register plane for every type (disregarding, for a moment,
the added complication of using a two-part (l-r) naming for
the individual registers, and also temporarily disregarding
type polymorphism in the Java language-both of these are
supported by our format, as explained below). The register
planes are created implicitly, taking into account the pre­
defined types, imported types, and local types occurring in
the mobile program (Figure 3).

Type safety is achieved by turning the selection of the ap­
propriate register plane into an implied part of the operation
rather than making it explicit (and thereby corruptible). In
SafeTSA, every instruction automatically selects the
appropriate plane for the source and destination reg­
isters; the operands of the instruction merely specify the
particular register numbers on the thereby selected planes.
Moreover, the destination register on the appropriate des­
tination register plane is also chosen implicitly-on each
plane, registers are simply filled in ascending order.

For example, the operation integer-addition talces two regis­
ter numbers as its parameters, src1 and src2. It will implic­
itly fetch its two source operands from register integer-src1,

int float boolean

0 10 2.0 false

1 3 true
Type Table

0 integer
Constant Pool 1 float

2 boolean

2 ;pes imported types

0
1 local types ! register types

numbers

Figure 3: Implied Machine Model of SafeTSA

int-B-0

int-A-0
int-A-1
bool-A-0
(void)

D-int-0
D-int-1

intadd (i) (const-1)
int add G) (const-1)
int cmp (0-6) (0-7)
bool bgt (0-0)

int phi (0-0) (0-0)
int add (1-7) (0-0)

Figure 4: Typed Referentially Secure SSA

integer-src2, and deposit its result in the next available inte­
ger register (i.e., the register on the integer plane, having an
I-index of zero and an r-index that is 1 greater than the last
integer result produced in this basic block). There is no way
a malicious adversary can change integer addition to operate
on operands other than integers, or generate a result other
than an integer, or even cause "holes" in the value number­
ing scheme for any basic block. To give a second example,
the operation integer-compare tal<:es its two source operands
from the integer register plane and will deposit its result in
the next available register on the Boolean register plane.

SafeTSA combines this type separation with the concept of
referential integrity discussed in the previous section. Hence,
beyond having a separate register plane for every type, we
additionally have one such complete two-dimensional regis­
ter set for every basic block. The results of applying both
type separation and reference safe numbering to the program
fragment of Figure 1 are shown in Figure 4.

4. CONSTRUCTIONOFMEMORYSAFETY
For every reference type ref, our "machine model" provides a
matching type safe-ref that implies that the corresponding
value has been null-checked. Similarly, for every array arr

we provide a matching type safe-index-arr whose instances
may assume only values that are index values within legal
range2

•

Null-checking then becomes an operation that tal<:es an ex­
plicit ref source type and an explicit register number on
the corresponding register plane. If the check succeeds, the
ref value is copied to an implicitly given register (the next
available) on the plane of the corresponding safe-ref type,
otherwise an exception will be generated. Similarly, the
index-check operation will take an array and the number
of an integer register, check that the integer value is within
bounds, and if the check succeeds, copy the integer value to
the appropriate safe-index register plane.

The beauty of this approach is that it enables the transport
of null-checked and index-checked values across phi-joins.
Phi-functions are strictly type-separated: all operands of
a phi-function, as well as its result, always reside on the
same register plane. Whenever it is necessary to combine
a ref-type and the corresponding safe-ref type in a single
phi-operation, the safe-ref type needs to be downcast to the
corresponding unsafe ref type first. The downcast operation
is a modeling function of SafeTSA and will not result in any
actual code on the eventual target machine.

Null-checking and index-checking can be generalized to in­
clude all type-cast operations: an upcast operation involves
a dynamic check and will cause an exception if it fails. In
the case of success, it will copy the value being cast to the
next available free register on the plane of the target type
(only the dynamic check will result in actual code at the
target machine, but not the copy operation). The down­
cast operation never fails and will never result in any actual
target code.

All memory operations in SafeTSA require that the storage
designator is already in the safe state; i.e., these operations
will tal<:e operands only from the register plane of a safe-ref
or safe-index type, but not from the corresponding unsafe
types. There are four different primitives for memory access:

getfield ref-type object field

setfield ref-type object field value

getelt array-type object index

setelt array-type object index value

where ref-type denotes a reference type in the type table, ob­
ject designates a register number on the plane of the corre­
sponding safe-ref type, field is a symbolic reference to a data
member of ref-type, and value designates a register number
on the plane corresponding to the type of field. Sim­
ilarly, for array references, object designates a register on
the plane of the array type that contains the array's base
address and index designates a register on the array's safe­
index plane that contains the index.
2 Because of the need to support dynamically-sized arrays,
safe-index types are actually bound to array values rather
than to their static types. A more detailed discussion of this
issue can be found in Appendix A.

The setfield and setelt operations are the only ones that may
modify memory, and they do this in accordance with the
type declarations in the type table. This is the key to type
safety: most of the entries in this type table are not actually
taken from the mobile program itself and hence cannot be
corrupted by a malicious code provider. While the pertinent
information may be included in a mobile code distribution
unit to ensure safe linking, those parts of the type table
that refer to primitive types of the underlying language or
to types imported from the host environment's libraries are
always generated implicitly and are thereby tamper-proof.

This suffices in guaranteeing memory-safety of the host in
the presence of malicious mol;>ile code. In particular, in
the case of Java programs, SafeTSA is able to provide the
identical safety semantics as if Java source code were being
transported to the target machine and compiled and linlced
locally.

5. PRIMITIVE OPERATIONS
The preceding discussion mentioned built-in operations such
as integer-add and integer-compare, bringing up the ques­
tion of which primitives are actually built into our machine
model. In fact, primitive operations in SafeTSA are subor­
dinate to types and there are only two generic instructions:

primitive base-type operation operandl operand2 .. .

xprimitive base-type operation operandl operand2 .. .

where base-type is a symbolic reference into the type table,
operation is a symbolic reference to an operation defined
on this type, and operandi . . . operandN designate regis­
ter numbers on the respective planes corresponding to the
parameter types of the operation. In each case, the result
is deposited into the next available register on the plane
corresponding to the result type of the operation.

The only difference between primitive and xprimitive con­
cerns exceptions. Operations that may potentially cause an
exception (such as integer divide) must be referenced using
the xprimitive instruction. Each occurrence of an xprimi­
tive instruction in a basic block automatically leads to an
additional incoming branch to the phi-functions in the ap­
propriate exception-handling join-blocks.

Note that it is entirely up to the type system of the language
being transported by SafeTSA to specify what operations
on which types may actually cause exceptions. For exam­
ple, the type Java.lang.primitive-integer provides add, sub­
tract, and multiply among its primitives and divide among
its xprimitives, but another language that is less lenient
about arithmetic overflow conditions might define all four
operations add,subtract, multiply, and divide only as xprim­
itives for its particular integer type.

There are no primitive operations for accessing constants
and parameters. Instead, these are implicitly "pre-loaded"
into registers of the appropriate types in the initial basic
block of each procedure. Note that this "pre-loading" is yet
another example of an operation that merely occurs on the
SafeTSA level and that doesn't correspond to any actual
code being generated on the target machine.

6. METHOD INVOCATION
Just as a set of operations is associated with each primitive
type, a table of methods can be associated with a reference
type. This table is a built from local method definitions and
from a list of imported methods. Two primitives provide
method invocation with and without dynamic dispatch:

xcall base-type receiver method operandl operand2 ...

xdispatch base-type receiver method operandl operand2

where base-type identifies the static type of the receiver ob­
ject, receiver designates the register number of the actual
receiver object on the corresponding plane, method is a sym­
bolic reference to the method being invoked, and operandi
. .. operandN designate register numbers on the respective
planes corresponding to the parameter types of the method.
The result will be deposited into the next available register
on the plane corresponding to the result type of the method.

The symbolic method may reference any method which can
be invoked on the static type denoted by base-type. For xcall,
this determines the actual code that will be executed, but
for xdispatch, it only determines a slot in the static type's
dispatch table that will be polymorphically associated with
a method by the dynamic type of the instance referenced by
receiver. For Java programs, the code producer is required to
resolve overloaded methods and insert explicit downcast op­
erations for any operands whose static type does not match
the type of a method's corresponding formal parameter.

7. IMPLEMENTATION STATUS
We have been building a system consisting of a compiler that
takes Java source files and translates them to the SafeTSA
representation, and a dynamic class loader that takes SafeTSA
code distribution units and executes them using on-the-fly
code generation.

Currently our compiler can process programs written in the
Java language and produce SafeTSA intermediate code. Work
is progressing on JIT compilers targeting the SP ARC and
Intel platforms, and we are confident that our approach will
yield a competitive runtime system. Our front-end is based
on the Pizza[25] compiler.

The front-end of the compiler takes as input either Java
classes or packages in source form and for each class in the
input, produces a file containing a compressed version of the
SafeTSA representation of that class. The transformation
of a Java class to its Safe TS A representation is performed
in three main steps. After successful syntactic and semantic
analysis, the program is transformed into a Unified Abstract
Syntax Tree (UAST). Next, an SSA generator transforms
the U AST into a Safe TS A graph, which is finally encoded
into a binary stream and written to a file.

The motivation for the use of an U AST is the future exten­
sibility of the system to handle input languages other than
Java. In the current implementation, the UAST combines
the structural elements of Java, Fortran95, and Ada95 in a
single data structure. Therefore, it will be easy to support

the compilation of Fortran95 and Ada95 programs in the
future. The principles behind .the UAST structure can be
seen as a generalization of the Abstract Syntax Tree used in
Crelier's OP2[10] compiler. The essential idea in this type
of Abstract Syntax Tree is to integrate the dominator and
control fl.ow information in the same structure. The use of
a binary tree simplifies code generation and optimization.

Many algorithms exist for the transformation of a high level
program into its corresponding SSA form and for the de­
termination of the dominator relation[ll, 12, 28, 21]. Our
compiler tal<.:es the method of Brandis and Mossenbock [7],
which constructs the SSA form and the dominator relation
of the program in a

single pass from the source code, and adapts this method to
work on the UAST. Furthermore, we improved the handling
of return continue and break instructions to avoid inserting
phi node~ where there are fewer than two infeasible paths.
To eliminate superfluous phi instructions, we perform dead
code elimination based on the calculation of live variables as
suggested by Briggs et al. [8] leading to a reduction of 313
on average in the number of phi instructions.

In our implementation, transformation from the U AST into
SafeTSA form is liml.ted to expressions and assignments.
This leads to the partitioning of the SafeTSA graph into a
Control Structure Tree, i.e. the·structural part of the UAST,
and the SafeTSA part3

• From the Control Structure Tree a
coherent control flow graph and dominator tree can be de­
rived efficiently, facilitating high quality code generation by
providing high level program and blocks of SafeTSA code.
This, for example, eases the determination of induction vari­
ables for use in software pipelining [30].

To enforce correct semantics of Java threads, only local vari­
ables can be considered as values, in contrast to global vari­
ables which must be accessed via getfield or setfield instruc­
tions as the contents of such variables may be changed at
any time. A problematic feature of translating Java to SSA
form is the encoding of the try-catch-finally-construct[14].
In our approach, at any point where an exception may oc­
cur we split basic blocks into linl<.:ed subblocks where each
of the subblocks has only a single entry and exit point. This
is similar to the approach tal<.:en in Swift[27] except that due
to our high level control structure we do not need to insert
extra control fl.ow edges.

SafeTSA has been designed so that it can be externalized as
a sequence of symbols, where each symbol is chosen from a
finite set of symbols determined only by the previous sym­
bols. For the Control Structure Tree (CST) each symbol
represents a production in its grammar. After the entire
CST has been encoded, the SafeTSA blocks are processed
in a fixed order corresponding to a pre-order traversal of
their dominator tree (which can be derived from the Con­
trol Structure Tree). The sequence of symbols within each
instruction is the same as has been presented in this pa­
per. The types for phi instructions are transmitted along
with the rest of the instructions, but the operands for the

3 Java has short-circuit operators that alter control-flow.
These are handled by translation into if-else statements and
allowing these if-else statements in all expression contexts.

phi instructions are postponed until after all of the other
instructions which may refer to phi instructions, have been
encoded. Si~ce each of these symbols is chosen from a finite
set, any dictionary encoding scheme can be used to con­
vert the symbol sequence into a binary stream. Our present
prototype uses a simple prefix encoding, which is s~milar. to
what would result from using Huffman[l 7] encoding with
fixed equal probabilities for all symbols.

8. PRELIMINARY RESULTS
SafeTSA provides a safe mecha.nlsm for the transportation of
optimized code. We talrn advantage of this fact to perform
optimizations that will reduce the size and eventually the
execution time of the transmitted code. As a proof of con­
cept, we currently implement constant propagat~o~, c~m­
mon subexpression elimination and dead code elimmat1on
at a local level.

Unfortunately, in general, some data dependencies are hid­
den within the SSA form of a program due to memory ac­
cesses, i.e. field and array operations. For example, a store
operation may write into a field that will later be read by
a load operation. Although the SSA form will not express
the data dependence between these operations explicitly, the
original semantics must be enforced by an op~imizing co~­
piler. To guarantee that all data dependencies .are mam­
tained during the optimization phase, the compiler has to
trace the memory accesses of the program.

There are many ways in which to solve this problem, we use
the approach of introducing a special variable M em which
describes the state of the memory. During the optimization
phase, a store to memory will produce a new value for Mem,
reflecting the fact that the memory has been updated .. A~­
ditionally, load operations talrn an extra parameter w~ch is
the current value of the Mem variable. As the current imple­
mentation does not include inter-procedural optimizations,
global updating of the memory will be approximated by hav­
ing each function call return an updated value of t~e Iy1 em
variable. Furthermore, if the current value of Mem is differ­
ent on two incoming edges of a block, then a phi node must
be inserted in the join block to merge the values into a new
current value for M em. This artificial mechanism expresses
all data dependencies, formerly implicit in the SSA form, in
an approximated, conservative, manner. This mechanism is
used solely during the optimization phase and is not part of
the transmitted code. However, it may be efficiently recon­
structed on the target machine if so desired.

In our measurements we compare the size and number of in­
structions for programs compiled to Java byte-code, SafeTSA,
and optimized SafeTSA. As benchmarks, we use programs
from the Sun Java Development Kit. These include classes
from the Java compiler, javac, the Java interpreter, java,
as well as some classes from the Math and Linpack pack­
ages. The latter classes are used to demonstrate reductions
of array checking instructions. Where we compare to Java,
we refer to byte-code produced using version 1.2.2 of Sun
javac using options to generate no debug information (javac
-g:none).

Figure 5 shows the sizes and numbers of instructions in
SafeTSA files as compared to Java class files-in most cases

Class Name Java File Size Number of Instructions
Java Bytecode SafeTSA Bytecode Safe TS A Safe TS A

optimized
sun.tools.javac
BatchEnvironment 18399 14605 2516 1640 1462
BatchParser 4939 3832 394 286 276
Compiler Member 1192 401 50 29 28
Error Message 305 90 14 3 3
Main 11363 11265 1734 1410 1281
SourceMember 13809 11888 1735 1333 1169
sun. tools.java
Ambiguous Class 422 147 18 5 5
AmbiguousMember 751 217 46 13 12
ArrayType 837 260 35 15 15
Binary Attribute 1716 944 121 77 64
Binary Class 8156 6008 873 617 527
BinaryCode 2292 1536 133 77 62
Parser 23945 23678 2578 1732 1614
Scanner 10540 11695 4240 2912 2779
sun.math
BigDecimal 6140 5309 935 702 612
Biglnteger 19309 20009 5638 3463 3080
Bit Sieve 1557 1155 277 153 140
MutableBiglnteger 9667 10757 3415 2223 1925
SignedMutableBiglnteger 896 427 116 53 52
Lin pack
Lin pack l 3336 3512] 1097 638 524

Figure 5: SafeTSA class files compared to Java class files.

Class Name [Phi Instructions Null-Checks Array-Checks
[Before After .6. 3 [Before After .6.3 [Before After .6.%

sun.tools.javac
BatchEnvironment 131 75 -43 425 206 -51 11 9 18
BatchParser 19 16 -16 53 46 -13 N/A N/A N/A
Main 330 301 -9 246 155 -37 53 49 8
Source Class 356 200 -44 926 605 -35 N/A N/A N/A
SourceMember 221 123 -44 327 261 -20 12 12 N/A r-sun. tools.java
Binary Attribute 12 7 -42 19 12 -37 N/A NlA N/A
Binary Class 56 35 -37 131 62 -52 2 2 N/A
BinaryCode 6 3 -50 15 4 -73 1 1 N/A
Scanner 58 47 -19 101 58 -42 8 8 N/A
Parser 351 263 -25 196 151 -23 11 11 N/A
sun.math
BigDecimal 54 35 -35 119 73 -39 26 16 38
Biglnteger 382 296 -23 451 257 -43 188 169 10
BitSieve 18 15 -17 15 11 -26 3 3 N/A
MutableBiglnteger 205 169 -18 400 172 -52 136 132 3
Lin pack
Linpack 138 88 -36 70 43 -39 67 54 19

Figure 6: Number of Phi-, Null-Check and Array-Check instructions before and after optimization.

SafeTSA has less than 403 of the number of instructions
that Java byte-code requires. The above-mentioned opti­
mizations can reduce significantly the number of instruc­
tions in SafeTSA form, by more than 103 in most cases,
and up to 193 for some programs. Constant propagation

leads to an improvement of only 13 or 23 in the program
size. Dead code elimination generally is most effective in
reducing the number of phi instructions - between 33 and
73 of the number of instructions at most. The majority
of the instruction count reduction is due to common subex-

pression elimination. In our measurements the reduction
due to this was between 5 % and 14 % . The size of the
Safe TS A files is usually smaller than the respective Java
byte-code files and scmetimes substantially so. We know of
two reasons contributing to the failure of file sizes to show
as much of an improvement as instruction count: a substan­
tial amount of each file consists of symbolic linking inf or­
mation and constants, and many SafeTSA instructions have
multiple operands where the corresponding byte-code would
utilize seperate stack manipulation instructions.

Figure 6 gives more detail on the practical influence of op­
timizations performed prior to transmission of the code. It
contains information on the reduction of phi instructions,
null-checks, and array checks. These are of particular inter­
est as they lead to less information that needs be transmitted
as well as eventually to faster execution. As can be seen, the
number of phi instructions was reduced by more than 30%
in most cases. Surprisingly, we can eliminate and safely
transport a program with, in most cases, 30% fewer null­
checks, and in some cases up to 70% reduction is achieved.
Perhaps even more surprisingly, our optimizations are based
only on knowledge of safe values and common subexpression
elimination and not on any context sensitive analysis. Most
of our benchmarks do not include a lot of array manipula­
tion. However, for those that do, we see a reduction of up
to 38% in the number of array check instructions. Note that
all of our SafeTSA sizes contain explicit null-checks, type­
checks, and index checks, while these need not be trans­
ported in Java byte-code, but also cannot be removed as a
consequence.

Although these are encouraging results, we can identify much
scope for improvement. A dramatic improvement would be
the integration of alias information. into the memory han­
dling. This can be done, for example, with a simple form
of field analysis as described in [16], partitioning M em by
field name. An alternative is the integration of more precise
alias analysis techniques, e.g. [13, 5], which will lead to a
typed partition of the memory. Naturally, the use of inter­
procedural analyses would lead to even better results. Note
that all of these alias analyses could be performed safely due
to our construction of memory safety.

9. RELATED WORK
Because of the simplicity of code generation, 0-address ar­
chitectures have been a popular intermediate target archi­
tecture in compiler design. A well lmown example of such
a stack-based intermediate language is pCode [24], used for
code generation in the earlier Pascal compilers. pCode has
recently received renewed attention because of its influence
on the Java Virtual Machine.

Java's platform independent byte-code format is either inter­
preted by a virtual machine (resulting in unacceptable per­
formance) or compiled by a just-in-time compiler at the tar­
get site. Unfortunately, such just-in-time compilation must
occur in real time, while an interactive user is waiting. The
JVM's particular design leads to quite expensive verification
and initial byte-code analysis phases, often leaving insuffi­
cient time to perform good code generation, or forcing the
use of optimization algorithms that favor speed over the best
achievable code quality; for example, the use of linear scan

register allocation instead of graph coloring [26].

The difficulty of processing Java byte-code partly results
from the underlying stack model, as well as the fact that
many byte-code operations intrinsically include sub-operations,
e.g. iaload includes the address computation, array checks
and the actual load of the array element. The stack-based
model which limits the access to the top element of the
stack, prevents the reuse of operands and code reordering
[18]. In our SafeTSA approach we have split these com­
posed byte-code operations into elementary units, which­
after performing some standard optimizations-leads to a
significant reduction in code size and eventually in execution
time. Further, SafeTSA's is more appropriate for structural
optimizations at the consumer side.

A further significant performance problem with the Java vir­
tual machine is the time consuming verification phase. In
particular, checking that all operand accesses to the stack
are valid - which requires a data flow analysis - decreases
the runtime of applications significantly. In SafeTSA this
verification phase is done by checking if a value has already
been defined, which can be implemented using simple coun­
ters holding the numbers of defined values for each type in
each basic block.

There are many JIT compilers for Java: as an example we
examine the IBM JIT compiler for Java[29]. The IBM com­
piler has to partition the byte-code into basic blocks and
derive the control flow graph of the program before it can
be executed. It then analyses and optimizes the program. It
performs, among other optimizations, constant propagation,
dead code elimination, and common subexpression elimina­
tion. In contrast to our approach, these are performed at
runtime rather than at compile time and prior to the ship­
ping of the code. In addition, the compiler specifically avoids
the use of more powerful SSA-based optimizations because
the construction of the SSA form would be too expensive at
runtime.

In the last few years, several native code optimizing Java
compilers that use an intermediate representation based on
SSA form have been developed. Each of them requires either
Java source code or Java byte-code as input and produces
native machine code as output. However, there is no com­
piler that conserves the information of the SSA based inter­
mediate representation in any kind of class file that could
support a dynamic code generation process. Below we will
discuss in more detail two optimizing compilers of particular
interest.

The Swift compiler [27] has been designed and implemented
at the Western Research Laboratory of Compaq Computer
Corporation. Swift translates Java byte-code to optimized
machine code for the Alpha architecture and uses SSA form
for its intermediate representation. The intermediate lan­
guage used by the compiler is relatively simple, but allows
for straightforward implementation of all standard scalar op­
timizations and other advanced optimization techniques, i.e.
method resolution and inlining, interprocedural alias anal­
ysis, elimination of run time checks, object inlining, stack
allocation of objects, and synchronization removal. Each
value in the SSA graph also has a program type. Com-

parable with our approach, the type system of Swift can
represent all of the types present in Java program. In con­
trast to our approach the Swift intermediate representation
contains no structural information, i.e. the control structure
tree of our SafeTSA graphs. Also, compared to the instruc­
tion set of our SafeTSA, the instructions used by Swift are
very specialized and adapted to its target architecture.

Marmot [14] is a research compiler from Microsoft that trans­
forms Java byte-code into native machine code. The organi­
zation of the compiler can be divided into three parts: con­
version of Java class files to a typed high level intermediate
representation based on SSA form, high level optimization,
and code generation. Type information in the high level rep­
resentation of the Marmot compiler (there is also a low-level
IR) is derived by type elaboration. This process produces a
strongly-typed intermediate representation in which all vari­
ables are typed, all coercion and conversions are explicit, and
all overloading of operators is resolved. Marmot doesn't sup­
port Java's essential facility of dynamic class loading.

The HotSpot Server compiler [1] developed at Sun uses an
SSA-based internal representation similar to the one de­
scribed in Click's dissertation [9). Unlike Marmot, which
uses separate exception edges superimposed on the CFG,
Hot Spot Server turns Java exceptions are into explicit con­
trol flow in its IR. HotSpot Server uses a full flow pass to
discover types from the JVM byte-code. Compare this to
our approach where types are contained explicitly and no
type inference is ever required.

Jalapeno [6, 3, 4) is an extensive Java virtual machine/dynamic
compilation system from IBM research that is itself written
in Java and indeed even uses its own services. Jalapeno is
another compiler that uses SSA internally, although unlike
Marmot and HotSpot Server, it is not entirely based on SSA
but uses SSA only for flow sensitive optimizations. J alapeno
uses three different levels of IR, a high-level form that is es­
sentially equivalent to byte-code, an intermediate-level form
that exposes the underlying object model, and a low-level
form that is very close to the target machine.

The intermediate representation for Microsoft's recently an­
nounced ".NET" platform is a further improvement of the
stack based virtual machine. It has a provision for includ­
ing a second description based on SSA form. This approach
assumes an external authentication-based security mecha­
nism because it is not safe: First, there is no guarantee that
the program represented as a virtual-machine program cor­
responds to the one represented in SSA form-the two rep­
resentations are completely independent of each other and
it appears that the loader on the target platform may elect
to use either format if both are present. Second, the SSA
part of the representation has no provisions for safety and
is apparently never verified.

The Architecture Neutral Distribution Format (ANDF[2]),
originally developed by the Defence Research Agency in the
UK (DRA) is also a tree based representation, the TDF in­
termediate language. TDF is a tree structured language,
defined as a multi-sorted abstract algebra, which preserves
more program structure information that other languages.
However, it has a wealrnr type system than typical high level

languages. It was originally designed for the compilation of
sequential languages such as C and Lisp. Indeed the over­
all level of the language is similar to C but also includes
support for other features such as for garbage collection.
Programs represented in ANDF are compiled to native code
at installation time. As such, ANDF was designed solely as
a distribution format rather than a mobile code format.

Slim Binaries, an intermediate representation developed by
Franz and Kistler[15, 20) are also based on a tree structured
language. In contrast to ANDF, Slim Binaries were designed
with mobile code applications in mind and to be suitable
for dynamic code generation on target machines. Slim Bi­
naries have been shown to be much smaller than ANDF and
JVM Byte-code files - an important feature for mobile code
applications. Slim Binaries have been used successfully in
studying continuous program optimization[l9).

Proof carrying code[23) is a new subject of research aimed
at the safe execution of untrusted, possibly mobile, code.
There is a burden of proof on the code to be executed, to
obey the target site's security policy. Typically this is in
the form of an attached proof. Upon validation of the proof
at the target site, the code is assumed safe to run and no
dynamic checks need be performed. Proof carrying code
provides memory and type safety similar to SafeTSA, how­
ever, we do not need to generate, transport and verify proofs.
SafeTSA is safe by construction, and cannot be manipulated
to give unsafe programs.

TAL (Typed Assembly Language) [22) uses an approach to
type safety that is semantically equivalent to our concept
of type separation. TAL annotates assembly language or
object code with type information, memory management
primitives, and a sound set of typing rules. The type an­
notations can be checked before assembly or execution of
the code to verify its memory, control flow and type safety.
A particular aim of the TAL project is the compilation of
type-safe functional languages based on the polymorphically
typed second order lambda calculus-known as System F­
to a typed target language via a sequence of type-preserving
transformations. This aids in verifying correct compilation,
as well as verifying that compiled code is well-behaved. Un­
like TAL, SafeTSA provides cross-platform portability, since
it defers code generation to the target machine, while still
allowing rapid verification and code generation. Due to
their high-level representation and suitability for compres­
sion, SafeTSA programs are likely to be more compact than
TAL's assembly or object code with annotations.

10. CONCLUSION AND OUTLOOK
The Java Virtual Machine's instruction format is not very
capable in transporting the results of program analyses and
optimizations. As a consequence, when Java byte-code is
transmitted to another site, each recipient must repeat most
of the analyses and optimizations that could have been per­
formed just once at the origin. The main reason why Java
byte-code has these deficiencies is to allow verification by
the recipient.

We have designed an alternative mobile-code representation
that overcomes these limitations of the JVM byte-code lan­
guage. Our representation, SafeTSA, can provide the iden-

tical security guarantees as the Java Virtual Machine, but
it can express most of them statically as a well-formedness
property of the encoding itself. SafeTSA thereby obliviates
the need for an expensive dataflow analysis at the code re­
cipient's site.

Further, SafeTSA preserves control and dataflow informa­
tion as well as full typing information for each intermediate
result. It is based on Static Single Assignment form, a repre­
sentation that is also used internally by several state-of-the­
art research compilers for Java. As a consequence, Safe TS A
it is far easier to parse into a form useful for code optimiza­
tion than JVM-code. Also, SafeTSA removes the need to
perform CSE and type/range check elimination at the code
receiver's side, genuinely enabling shifting this worldoad to
the code's producer without jeopardizing safety. Surpris­
ingly, despite its advantages, SafeTSA is no more volumi­
nous than JVM code.

It is probably only a matter of time until the Java Virtual
Machine will be displaced by alternative mobile-code trans­
portation formats that better support optimization at the
code receiver's site. Programmers will still be writing mo­
bile programs using the Java source language (and alterna­
tive languages such as C#), but rather than compiling them
into JVM-code, they will be using these better alternatives.
The authors believe to have identified such an alternative in
SafeTSA.

11. ACKNOWLEDGEMENTS
The authors would like to thank Peter Housel for his helpful
comments on this papP-r and Michael Phillipsen for providing
the source code of the Pizza compiler. Parts of this effort
are sponsored by the Defense Advanced Research Projects
Agency (DARPA) and Air Force Research Laboratory, Air
Force Materiel Command, USAF, under agreement number
F30602-99-l-0536.

This paper is dedicated to the memory of Bratan Kostov,
whose name would have been among the authors.

12. REFERENCES
[1] Sun Hotspot compiler for Java.

http://java.sun.com/products /hotspot/.

[2] Architecture Neutral Distribution Format (XANDF)
Specification. Open Group Specification P527, January
1996.

[3] B. Alpern, C.R. Attanasio, et al. The Jalapeno virtual
machine. IBM System Journal, 39(1), February 2000.

[4] B. Alpern, A. Cocchi, D. Lieber, M. Mergen, and
V. Sarkar. Jalapeno - a compiler-supported java
virtual machine for servers. Workshop on Compiler
Support for Software System {WCSSS 99), May 1999.

[5] W. Amme and E. Zehendner. Data dependence
analysis in programs with pointers. Parallel
Computing, 24(3-4):505-525, May 1998.

[6] M. Arnold, S. Fink, et al. Adaptive optimization in
the Jalapeno JVM. ACM OOPLSA 2000.

[7] M. M. Brandis and H. Mossenbock. Single-pass
generation of static single-assignment form for
structured languages. ACM Trans. Prog. Lang. and
Sys., 16(6):1684-1698, Nov. 1994.

[8] P. Briggs, K. D. Cooper, T. J. Harvey, and L. T.
Simpson. Practical improvements to the construction
and destruction of static single assignment form.
Software Practice and Experience, 28(8):859-881, July
1998.

[9] C. Click. Combining Analyses, Combining
Optimizations. Phd Dissertation, Rice University,
Houston, Texas.

[10] R. Crelier. OP2: A Portable Oberon Compiler.
Technical Report 1990TR-125, Swiss Federal Institute
of Technology, Zurich, Feb., 1990.

[11] R. Cytron, J. Ferrante, B. K. Rosen, M. K. Wegman,
and F. K. Zadeck. An efficient method of computing
static single assignment form. In POPL '89.

[12] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman,
and F. K. Zadeck. Efficiently computing static single
assignment form and the control dependence graph.
ACM Trans. Prog. Lang. and Sys., 13(4):451-490,
Oct. 1990.

[13] A. Diwan, K. S. McKinley, and J. E. B. Moss.
Type-based alias analysis. ACM SIGPLAN Notices,
33(5):106-117, May 1998.

[14] R. Fitzgerald, T. B. Knoblock, et al. Marmot: An
optimizing compiler for Java. Microsoft Technical
Report 3, March 2000.

[15] M. Franz and T. Kistler. Slim Binaries.
Communications of the ACM, 40(12):87-94, Dec.
1997.

[16] S. Ghemawat, K. H. Randall, and D. J. Scales. Field
analysis: Getting useful and low-cost interprocedural
information. In PLDI 'OO.

[17] D. A. Huffman. A method for the construction of
minimum redundancy codes. In Proceedings of the
IRE, 40, pages 1098-1101, 1951.

[18] J. Hummel, A. Azevedo, D. Kolson, and A. Nicolau.
Annotating the Java bytecodes in support of
optimization. Concurrency: Practice and Experience,
9(11):1003-1016, Nov. 1997. Special Issue: Java for
computational science and engineering - simulation
and modeling II.

[19] T. Kistler. Continuous Program Optimization. Phd
Dissertation, University of California, Irvine, 1999.

[20] T. Kistler and M. Franz. A Tree-Based alternative to
Java byte-codes. International Journal of Parallel
Programming, 27(1):21-34, Feb. 1999.

[21] T. Lengauer and R. E. Tarjan. A fast algorithm for
finding dominators in a flowgraph. ACM Trans. Prog.
Lang. and Sys., 1(1):121-141, July 1979.

[22] G. Morrisett, D. Walker, K. Crary, and N. Glew. From
System F to Typed Assembly Language. ACM Trans.
Prog. Lang. and Sys., 23(3):528-569, May 1999.

[23] G. C. Necula. Proof-Carrying Code. In POPL '91,
Paris, France, Jan. 1997.

[24] K. V. Nori, U. Ammann, et al. Pascal-P
implementation notes. In D. W. Barron, editor, Pascal
- The Language and its Implementation, pages
125-170. John Wiley and Sons, Ltd., 1981.

[25] M. Odersky and P. Wadler. Pizza into Java:
Translating theory into practice. In Conference Record
of POPL '91, pages 146-159, Paris, France, 15-17
Jan. 1997.

[26] M. Poletto and V. Sarkar. Linear scan register
allocation. ACM Trans. Prog. Lang. and Sys.,
21(5):895-913, September 1999.

[27] D. J. Scales, K. H. Randall, S. Ghemawat, and
J. Dean. The Swift Java Compiler: Design and
Implementation. WRL Re~earch Report 2000/2,
Compaq Research, April 2000.

[28] V. C. Sreedhar and G. R. Gao. A linear time
algorithm for placing [phi]-nodes. In ACM, editor,
Conference record of POPL '95, pages 62-73, New
York, NY 10036, USA, 1995. ACM Press.

[29] T. Suganuma, T. Ogasawara, et al. Overview of the
IBM Java just-in-time compiler. IBM Systems
Journal, 39(1).

[30] J. Wang, C. Eisenbeis, M. Jourdan, and B. Su.
Decomposed software pipelining: A new perspective
and a new approach. International Journal of Parallel
Programming, 22(3):351-373, June 1994.

APPENDIX
A. JAVA ARRAY REFERENCES
In Java, the size of an array may often not be lmown stati­
cally, but once that an array object has been created, its size
remains constant. As a consequence, an index that is safe
to use with a given array reference will remain safe through­
out the lifetime of that SSA array reference (which is not
necessarily the same as the lifetime of the underlying array
variable).

SafeTSA approaches type safety in a conservative manner:
for each array-ref value, we create a safe-index type that
signifies a "value that can safely be used as an index for this
array-ref value".

As a further consequence of the approach used with SafeTSA,
a safe-index value can only pass though phi nodes that are
dominated by the corresponding safe-ref value for the un­
derlying array (the safe-type must cease to exist when the
value ceases to exist). This results in the need to give types
a limited scope based on the dominator relationship, just
like SSA values, which however doesn't present any major
implementation challenges.

B .. A MORE DETAILED EXAMPLE
f=x*2.0;
i=i*3;
if(i>IO)

i++;
else if (i J=O)

f=f/i;
else

break;
f=i+f;

B

(11): mul x 2,0
A (12):muli3

E

(13): le (12), 10
(14): cbra (13) C else B

(20): F ((15),(12))
(2l):F((ll),(19))
(22): 2float (20)
(23): add (22), (21)

Figure 7: Program Fragment in SSA Form

A-0 _ ___,r---mul x 2.0
A-1 muli3
A-2 le (0-1), 10
A-3 cbra (0-2) C else B

B-u...--t--

Figure 8: Referentially Secure SSA Form

int-B-0

float-A-0
int-A-1
boolean-A-2
(void)

F

Figure 9: Type-Separated Referentially Secure SSA
Form

