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Abstract

ESSAYS ON HOUSE ALLOCATION MECHANISMS

by

Priyanka Shende

Doctor of Philosophy in Economics

University of California, Berkeley

Associate Professor Haluk Ergin, Chair

This dissertation studies the problem of allocating heterogeneous indivisible goods to agents
without the use of monetary compensation when each agent receives at most one good.
The three central concerns in designing allocation mechanisms are incentives of the agents,
efficiency, and fairness. There are inherent trade-offs between competing notions of the three
desiderata in such assignment mechanisms. This dissertation further explores these tradeoffs
and constructs novel mechanisms for such settings.

Chapter 2 focuses on random assignment mechanisms for the canonical house allocation
problem. It shows that any strategy-proof and envy-free mechanism must sacrifice efficiency
in a very weak form captured by the notion of contention-free efficiency. The chapter also
characterizes a large family of strategy-proof and envy-free mechanisms called Rank Exchange
Mechanisms thereby showing the existence of mechanisms apart from the equal division
mechanism that satisfy these two properties.

Chapter 3 studies the allocation problem in the presence of arbitrary linear constraints when
agents exhibit indifferences in their preferences. It proposes the Constrained Serial Rule, a
mechanism that is a generalization of the well-known Probabilistic Serial mechanism, and
shows that this mechanism satisfies constrained ordinal efficiency and envy-freeness among
agents of the same type.

Chapter 4 introduces Generalized Hierarchical Exchange mechanisms and shows that they
satisfy strategy-proofness, Pareto efficiency, and admit many bossy mechanisms. Using this
generalization, the chapter proposes novel mechanisms called priority trading mechanisms.
Finally, it also provides a characterization of an important sub-class of Generalized Hierar-
chical Exchange mechanisms.
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Chapter 1

Introduction

The house allocation problem is a fundamental resource allocation problem that deals with
the assignment of indivisible objects to agents without the use of monetary transfers. Many
real-world applications such as placement of students to public schools (Abdulkadiroğlu and
Sönmez 2003), course allocation (Budish 2011), organ donation (Roth, Sönmez, and Ünver
2005), and on-campus housing allocation (Chen and Sönmez 2002) can be modeled as house
allocation problems since monetary transfers are often undesirable in these settings. Policy
makers or central planners (for instance, the campus housing office allocates dorms rooms
to students) often use centralized procedures, or what we will refer to as mechanisms, to
organize these markets and determine allocations. In many of these settings, agents report
a preference ranking over the set of alternatives and the mechanism outputs an assignment
of objects to agents. Incentive compatibility, market efficiency, and fairness are the three
primary concerns in the design of allocation mechanisms. Unfortunately, a growing body
of literature has shown that it is impossible to design mechanisms that satisfy all these
three desiderata simultaneously in a large number of practical settings. The focus of this
dissertation is to further explore the trade-offs between these properties. Specifically, this
dissertation consists of three chapters in which we design mechanisms that try to achieve
two of the three properties at a time.

In Chapter 2, we study random mechanisms in a canonical house allocation problem,
where there are as many objects as agents and agents have strict preferences over these
objects. Randomization is commonly used as a tool to achieve fairness in such discrete
settings. In the presence of randomization, a natural notion of fairness is envy-freeness, which
requires that every agent must prefer her allocation to anyone else’s allocation. Incentives
are measured through strategy-proofness; a mechanism is strategy-proof if truthful reporting
of preferences is a weakly dominant strategy for every agent. Focusing on strategy-proof and
envy-free mechanisms, we are motivated by the following question: Is there a strategy-
proof and envy-free random assignment mechanism more efficient than equal division? In
asnwering this question, we, first, further explore the incompatibility between efficiency,
fairness, and strategy-proofness within random assignment mechanisms. We define a new
notion of efficiency, called contention-free efficiency, that is weaker than ex-post efficiency
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and prove that any strategy-proof and envy-free mechanism must sacrifice efficiency even in
this very weak sense. Next, we introduce a new family of mechanisms called Rank Exchange
Mechanisms and show that they are strategy-proof and envy-free and stochastically dominate
equal division. Further, we show that rank exchange mechanisms characterize the set of
neutral, strategy-proof, and envy-free mechanisms that also satisfy a natural separability
axiom that may be of independent interest.

In Chapter 3, we consider a more general model of the problem from Chapter 2, where
agents are allowed to be indifferent between objects and we need to assign objects to agents
in the presence of arbitrary linear constraints. Our main contribution is the generalization of
the (Extended) Probabilistic Serial mechanism via a new mechanism called the Constrained
Serial Rule. This mechanism is computationally efficient and maintains desirable efficiency
and fairness properties namely constrained ordinal efficiency and envy-freeness among agents
of the same type. Our mechanism is based on a linear programming approach that accounts
for all constraints and provides a re-interpretation of the “bottleneck” set of agents that
form a crucial part of the Extended Probabilistic Serial mechanism.

In Chapter 4, we take a different approach and focus our attention to deterministic mech-
anisms for the house allocation problem. Despite a significant amount of research interest,
a complete characterization of strategy-proof and Pareto-efficient mechanisms remains un-
known. Indeed, the class of hierarchical exchange rules (Pápai 2000) and trading cycles
mechanisms (Pycia and Ünver 2017) that characterize all group-strategyproof and Pareto
efficient mechanisms admit only non-bossy mechanisms and thus are unable to capture all
strategy-proof and Pareto efficient mechanisms. Our main contribution in this chapter is
to explore the set of strategy-proof and Pareto efficient mechanisms beyond those that are
non-bossy as a stepping stone to a complete characterization. We present a new family
called Generalized Hierarchical Exchange Mechanisms that admit all hierarchical exchange
mechanisms as well as a number of novel bossy, strategy-proof and Pareto efficient mech-
anisms. We also characterize an important subset of this family through a notion of local
dictatorship.
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Chapter 2

Strategy-proof and Envy-free
Mechanisms for House Allocation

2.1 Introduction

In this chapter, we study the problem of allocating heterogeneous indivisible objects to
agents when there are as many objects as agents and agents have strict preferences over the
objects. Since objects are indivisible, any assignment of objects to agents is bound to be
perceived as unfair, ex-post. Randomization is, therefore, commonly used as a tool to restore
fairness from an ex-ante perspective. As agents report ordinal rankings of objects, using the
stochastic dominance relation allows for a way to extend agents’ preferences over sure objects
to lotteries of objects. Perhaps the most natural random allocation mechanism is the Random
Serial Dictatorship (RSD) mechanism, also known as Random Priority mechanism. In this
mechanism, agents are ordered uniformly at random, and each agent successively chooses
her favorite object from the set of available objects according to that order. RSD is known
to satisfy a number of attractive properties (Abdulkadiroğlu and Sönmez 1998; Bogomolnaia
and Moulin 2001). It is strategy-proof, meaning that for any agent, revealing true preferences
first-order stochastically dominates any other strategy. Or in other words, reporting true
preferences is always a dominant strategy for every agent for any utility representation
consistent with their preferences. It is also ex-post efficient, which implies that it always
induces efficient eventual outcomes. However, it satisfies fairness only in the weak sense of
equal treatment of equals (where agents with identical preferences face identical lotteries
over objects).

A stronger notion of fairness is envy-freeness. Introduced by Foley (1967), the classic def-
inition of envy-freeness requires that each agent should prefer her allocation to anyone else’s
allocation. This notion is often considered as the gold standard of fairness in many different
settings such as resource allocation (Foley 1967), cake-cutting (Robertson and Webb 1998),
and rent division (Edward Su 1999). In the context of random assignment mechanisms, Bo-

This work is joint with Manish Purohit.
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gomolnaia and Moulin (2001) formulate this property using the first-order stochastic domi-
nance relation. They proposed the Probablistic Serial (PS) mechanism that enjoys stronger
efficiency and fairness properties than RSD. The mechanism allocates objects through an
“eating” procedure as follows. All agents simultaneously start eating their most preferred
object at an uniform rate. After an object is fully consumed, the agents consuming this
object move on to eating their next best available object and this procedure continues until
all objects are consumed. The random allocation an agent receives corresponds to the shares
of the objects eaten by that agent. PS is ordinally efficient∗ and envy-free. However, this
mechanism is not strategy-proof.

Unfortunately, a growing body of work (Bogomolnaia and Moulin 2001; Nesterov 2017;
Zhou 1990; Martini 2016) has demonstrated the inherent incompatibility between efficiency,
fairness, and strategy-proofness. Bogomolnaia and Moulin (2001) proved that no mechanism
simultaneously satisfies strategy-proofness, ordinal efficiency and equal treatment of equals.
More recently, Nesterov (2017) showed the incompatibility between strategy-proofness, envy-
freeness and ex-post efficiency. Given these trade-offs, it is natural to consider mechanisms
that can be designed when one would like to have two of the three properties of efficiency,
fairness and strategy-proofness to be satisfied in their strongest notions, where the choice of
the properties depends on the application, while trying to improve on the third dimension.

Since the primary motivation for randomization in house allocation mechanisms is to
provide fairness guarantees, in this chapter, we focus our attention on strategy-proof random
allocation mechanisms that satisfy envy-freeness. Indeed, there has been a resurgence of
interest in fairness at the intersection of Economics and Computer Science in recent years.
See, for instance, the recent survey by Moulin (2019) and the EC workshop† on fair resource
allocation for an excellent overview. To the best of our knowledge, the equal division (ED)
mechanism that allocates each object equally among all agents is the only known mechanism
that is strategy-proof and envy-free. However, since this mechanism completely ignores
agents’ preferences, it is almost always inefficient. This raises the natural question: are
there other strategy-proof and envy-free mechanisms that are more efficient than the equal
division mechanism?

2.1.1 Our Contributions

We first show a strong impossibility result to demonstrate that strategy-proof and envy-free
mechanisms must sacrifice efficiency even in a very weak sense. In Section 2.3, we define a
notion of contention-free efficiency that is much weaker than ex-post efficiency and show that
no strategy-proof mechanism that satisfies envy-freeness can be contention-free efficient. Our
result thus strengthens and subsumes the hardness result by Bogomolnaia and Moulin (2001)

∗A mechanism is ordinally efficient if its outcome is not first-order stochastically dominated by any other
random assignment.

†Workshop on Fairness at ACM Conference on Economics and Computation, 2019: https://users.cs.
duke.edu/∼rupert/fair-division-ec19/index.html

https://users.cs.duke.edu/~rupert/fair-division-ec19/index.html
https://users.cs.duke.edu/~rupert/fair-division-ec19/index.html
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and Nesterov (2017) regarding the incompatibility of ex-post efficiency, strategy-proofness
and envy-freeness.

In Section 2.4, we introduce a family of mechanisms called Rank Exchange mechanisms
that are strategy-proof and envy-free and stochastically dominate equal division. We char-
acterize the Pareto frontier of such mechanisms in Section 2.4.2 and demonstrate that Rank
Exchange mechanisms are, in general, incomparable with both RSD and PS (with respect
to the stochastic dominance relation).

In Section 2.5, we introduce a new axiom called separability and show that all envy-
free and separable mechanisms can be represented via a decomposition into pairwise trans-
fers of fractional shares between agents. Further, we demonstrate that within this class
of mechanisms, called pairwise exchange mechanisms, strategy-proofness is equivalent to
envy-freeness. Therefore, we observe that all separable and envy-free mechanisms are also
strategy-proof. Finally, in our main characterization result, we show that Rank Exchange
mechanisms characterize the set of all neutral, separable, and envy-free mechanisms.

2.1.2 Other Related Work

This chapter adds to the broad literature on random assignment of indivisible objects that
was pioneered by Hylland and Zeckhauser (1979). They adapt the competitive equilibrium
from equal incomes (CEEI) solution to define a pseudo-market mechanism that elicits agents’
von Neumann-Morgenstern preferences over individual objects and gives a solution that is
efficient and fair with respect to the utility functions (i.e., ex-ante efficient and envy-free).
However, the mechanism is not strategy-proof. Zhou (1990), in fact, shows (proving a
conjecture by Gale (1987)) that there exists no strategy-proof mechanism that satisfies ex-
ante efficiency and equal treatment of equals.

When agents’ report only ordinal preferences over individual objects, the simplest and
the most widely known strategy-proof mechanism is serial dictatorship (SD) (Svensson 1994;
Satterthwaite and Sonnenschein 1981). Abdulkadiroğlu and Sönmez (1998) show that these
are the only Pareto efficient matching mechanisms. However, while these are very unfair,
using a random ordering of agents results in restoration of fairness in the sense of equal treat-
ment of equals. The resulting mechanism, RSD, was also analyzed by Abdulkadiroğlu and
Sönmez (1998) and shown to be equivalent to the core from random endowments mechanism,
where each agent is initially endowed with an object that is chosen uniformly at random and
the mechanism then uses Gale’s Top Trading Cycles (TTC) algorithm (Shapley and Scarf
1974) to arrive at a random assignment.

Several papers have focused on characterizing (families of) mechanisms that satisfy cer-
tain desirable properties. For deterministic mechanisms, Svensson (1999) proves that serial
dictatorships are the only group strategy-proof and neutral mechanisms. Pápai (2000) intro-
duces a class of mechanisms called hierarchical exchange mechanisms and proves that these
mechanisms characterize the class of group strategy-proof, Pareto efficient and reallocation-
proof mechanisms. More recently, Pycia and Ünver (2017) have shown that their trading-
cycles mechanisms characterize the full class of group strategy-proof and Pareto efficient
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mechanisms. Within random mechanisms, when there are three agents and three objects
Bogomolnaia and Moulin (2001) show that RSD is the unique mechanism that satisfies
strategy-proofness, ex-post efficiency and equal treatment of equals while PS is the unique
mechanism that satisfies ordinal efficiency, envy-freeness and weak strategy-proofness. Bo-
gomolnaia and Heo 2012; Heo 2014b; 2014a; Hashimoto et al. 2014; Heo and Yılmaz 2015
provide other axiomatic characterizations of PS. Kojima and Manea 2010 show that PS
becomes asymptotically strategy-proof. In large markets, Liu and Pycia (2016) show that
there is a unique mechanism that is ordinally efficient, envy-free and strategy-proof and all
uniform randomizations over known deterministic mechanisms such as serial dictatorships,
hierarchical exchange and trading-cycles mechanisms coincide with this unique mechanism.
Chambers 2004 introduces a notion of probabilistic consistency and shows that ED is the
only mechanism that satisfies probabilistic consistency and equal treatment of equals.

In other recent work, Budish et al. (2013) introduce constraints in the random assignment
problem and generalize known mechanisms and results to these settings. Bade (2016) and
Zhang (2019) show that there exists no group-strategyproof and ex-post efficient random
assignment mechanism that satisfies equal treatment of equals. Harless (2019) proposes a new
algorithm to construct ordinally efficient assignments. Kesten, Kurino, and Nesterov (2017)
construct new mechanisms that stochastically improve upon RSD. Basteck (2018) proposes
another novel envy-free (but not strategy-proof) solution to the random assignment problem,
which is based on Walrasian equilibria. In subsequent ongoing work, Basteck and Ehlers
(2021) independently obtain the incompatibility between strategy-proofness, envy-freeness
and contention-free efficiency (Theorem 1), and construct a strategy-proof and envy-free
mechanism called Random-Dictatorship-cum-Equal-Division.

2.2 Preliminaries

2.2.1 Model and Notation

Let N be the set of agents and O be the set of objects. Throughout this chapter, we assume
that the sets N and O are fixed and finite with |N | = |O| = n ≥ 3. Each agent i ∈ N has
a strict preference relation ≻i on O. The corresponding weak preference relation on O is
denoted by ⪰i. We denote the preference relation a1 ≻ a2 ≻ . . . ≻ an as ≻ = ⟨a1, a2, . . . , an⟩.
Let σ(≻, k) denote the kth most preferred object according to the preference relation ≻ and
rank(≻, a) to denote the rank of object a in ≻.

A set of individual preference relations of all agents constitutes a preference profile ≻ =
(≻i)i∈N . Let ≻−i = ≻ \ {≻i} denote the set of preferences of all agents other than agent
i. We will use ≻ = (≻i = ≻,≻j = ≻′,≻−{i,j}) to denote a preference profile when agent
i’s preference is ≻, agent j’s preference is ≻′ and all other agents’ preferences are given by
≻−{i,j}. Let R be the set of all individual preferences and Rn be the set of all possible
preference profiles.

A deterministic assignment is a bijection from N to O, where every agent receives one
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object and every object is assigned to exactly one agent. Let D be the set of all deterministic

assignments. A random assignment P =
[
Pi,a

]
i∈N,a∈O

is a doubly stochastic matrix of size

n×n, where each element Pi,a of the matrix P represents the probability with which agent i is
assigned object a‡. By the Birkhoff-von Neumann theorem (Birkhoff 1946; Neumann 1953),
any random assignment can be implemented as a lottery over deterministic assignments.
Let L(D) be a set of all possible random assignments. The ith row of the matrix P , Pi,
represents the allocation received by agent i in the random assignment. This allocation is
simply a probability distribution over the set of objects O.

In order to compare random assignments, we first extend agents’ preferences over the set
of objects to the set of random allocations. Agent i prefers a random allocation Pi to another
random allocation Qi (denoted as Pi ≥(≻i) Qi) if and only if Pi first-order stochastically
dominates Qi according to agent i’s preference ≻i. Formally, let U(≻, a) = {o ∈ O | o ⪰ a}
be the set of objects that are weakly preferred to object a according to the preference relation
≻. Then we have,

Pi ≥(≻i) Qi ⇐⇒
∑

o∈U(≻i,a)

Pi,o ≥
∑

o∈U(≻i,a)

Qi,o ∀a ∈ O

Under the expected utility framework, if Pi stochastically dominates Qi at ≻i, then for any
von Neumann-Morgenstern utility index consistent with ≻i, agent i prefers Pi to Qi. We say
that agent i strictly prefers Pi to Qi, denoted as Pi >

(≻i) Qi, if Pi ≥(≻i) Qi and Pi ̸= Qi.
A random assignment P weakly dominates another assignment Q at preference profile ≻

if every agent prefers the random allocation that she receives in P to her random allocation
in Q. That is, P weakly dominates Q at ≻ = (≻i)i∈N , if ∀i ∈ N , Pi ≥(≻i) Qi. Additionally,
P (strictly) dominates Q if there exists an i ∈ N such that Pi >

(≻i) Qi.
A (randomized) mechanism is a mapping, φ : Rn → L(D), that associates each prefer-

ence profile ≻ ∈ Rn with some random assignment P ∈ L(D). A mechanism φ (strictly)
dominates another mechanism φ′ if φ(≻) weakly dominates φ′(≻) at every profile ≻ ∈ Rn,
with strict dominance at at least one preference profile.

2.2.2 Properties of Mechanisms

We now define the different notions of efficiency, fairness, and incentive-compatibility that
we address in this chapter.

Efficiency. A mechanism φ is said to be ex-post efficient if for any preference profile≻, the
random assignment φ(≻) is a distribution over Pareto-optimal deterministic assignments.
An even stronger notion of efficiency was proposed by Bogomolnaia and Moulin (2001). A

‡For convenience in this chapter, we will often think of each object as an infinitely divisible good of one
unit that will be distributed among n agents. Allocating a fractional unit x of an object a to agent i is
interpreted as setting Pi,a = x.
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mechanism φ is said to be ordinally efficient if at every profile ≻, φ(≻) is not stochastically
dominated by another random assignment.

Incentives. A mechanism φ is said to be strategy-proof (SP) if reporting true preferences
is a dominant strategy for every agent. Formally, a mechanism φ is strategy-proof if for
every i ∈ N , for every ≻ ∈ Rn and ≻′

i ∈ R, φi(≻) ≥(≻i) φi(≻′
i,≻−i) .

As shown by Mennle and Seuken (2014a), 2014b, strategy-proofness is equivalent to the
following three axioms: swap-monotonicity, upper-invariance, and lower-invariance. We
define these axioms below. For any preference relation ≻i, we define the neighborhood of ≻i,
Γ(≻i), to be set of all preferences that can arise by swapping any two consecutively ranked
objects in the preference ≻i. For example, suppose O = {a, b, c, d} and ≻i := ⟨a, b, c, d⟩.
Then Γ(≻i) = {⟨b, a, c, d⟩, ⟨a, c, b, d⟩, ⟨a, b, d, c⟩}.

A mechanism φ is swap-monotonic, if for every agent i ∈ N , for every preference profile
≻ ∈ Rn and every ≻′

i ∈ Γ(≻i) with a ≻i b but b ≻′
i a for some a, b ∈ O, then either

φi(≻′
i,≻−i) = φi(≻) or φi,b(≻′

i,≻−i) > φi,b(≻). In other words, swap-monotonicity requires
the mechanism φ to either disregard agent i’s mis-report or to react to her mis-report by
allocating her a higher probability of the object that’s been brought up in the preference.

A mechanism is upper-invariant if no agent, by swapping some object a with a less
preferred b in her preference, can get more allocation for any of the objects that are strictly
preferred to object a. Formally, φ is upper-invariant if ∀ i ∈ N , ∀ ≻ ∈ Rn and ∀ ≻′

i ∈ Γ(≻i)
with a ≻i b but b ≻′

i a for some a, b ∈ O, we have ∀o ∈ U(≻i, a) \ {a}, φi,o(≻) = φi,o(≻′
i

,≻−i).
Similarly, a mechanism is lower-invariant if ∀ i ∈ N , ∀ ≻ ∈ Rn and ∀ ≻′

i ∈ Γ(≻i) with
a ≻i b but b ≻′

i a for some a, b ∈ O, we have ∀o /∈ U(≻i, b), φi,o(≻) = φi,o(≻′
i,≻−i).

Lemma 1 (Mennle and Seuken 2014a; 2014b). A mechanism φ is strategy proof if and only
if it is swap-monotonic, upper-invariant, and lower-invariant.

Fairness. Different notions of fairness have been considered in literature. Equal treatment
of equals is a weak fairness criterion that requires two agents with the same reported pref-
erences to get the same random allocations. On the other hand, envy-freeness is a well
established strong fairness criterion that requires that no agent envies the allocation of any
other agent. Formally a random assignment P is envy-free at preference profile≻ = (≻k)k∈N ,
if we have for all i, j ∈ N , Pi ≥(≻i) Pj. A mechanism φ is envy-free if it always produces
envy-free assignments. It can be readily seen that envy-freeness implies equal treatment of
equals under strict preferences.

Neutrality. In this chapter, we often restrict our attention to neutral mechanisms. Neu-
trality is a natural notion of symmetry that restricts the mechanism to treat all objects
identically, i.e., the mechanism is invariant to any renaming of objects.

Formally, π : O → O be a permutation, i.e. a bijection fromO to itself. For any preference
relation ≻= ⟨a1, a2, . . . , an⟩, let π(≻) = ⟨π(a1), π(a2), . . . , π(an)⟩ be obtained by applying the
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permutation to each object in order, and let π(≻) = (π(≻i))i∈N be the preference profile
obtained by relabeling all objects according to π. Then, a mechanism φ is neutral if for any
preference profile ≻ ∈ Rn and permutation π : O → O, and every agent i ∈ N and object
a ∈ O, we have φi,a(≻) = φi,π(a)(π(≻)).

2.3 An Impossibility Result

In this section, we present our first main result regarding the inherent trade-offs between the
competing notions of efficiency, fairness, and strategy-proofness. Our goal is to demonstrate
that any strategy-proof and envy-free mechanism must sacrifice efficiency in even the weakest
sense.

Before stating our theorem, we first introduce a very weak notion of efficiency, which
we call contention-free efficiency. Intuitively, this notion captures the desideratum that if
there is no competition for objects among the different agents, then an efficient mechanism
must allocate to each agent her most preferred object§. We capture this intuition formally
as follows.

Definition 1 (Contention-Free Profile). A preference profile ≻ is called a contention-free
preference profile if every agent prefers a distinct object as her top choice. Formally, a
preference profile ≻ ∈ Rn is contention-free if and only if ∀i ̸= j ∈ N , σ(≻i, 1) ̸= σ(≻j, 1).

Let C ⊂ Rn be the set of all contention-free preference profiles.

Definition 2 (Contention-Free Efficiency). A mechanism φ is defined to be contention-free
efficient if and only if for every contention-free preference profile it allocates to every agent,
her most preferred object fully. That is, φ is contention-free efficient ⇔ ∀ ≻ ∈ C and ∀i ∈
N,φi,σ(≻i,1)(≻) = 1.

Such a notion clearly imposes a very minimal efficiency requirement on a mechanism.
Indeed, it places no restrictions at all at any profile that is not contention-free. Further,
for any contention-free profile, the unique Pareto-optimal deterministic assignment is one
that allocates to every agent her most preferred object. So any ex-post efficient mechanism
must also be contention-free efficient, and indeed RSD and PS both satisfy this property.
We, however, show that it is impossible for any mechanism to satisfy strategy-proofness,
envy-freeness, and contention-free efficiency simultaneously.

Theorem 1. For any n ≥ 3, no strategy-proof and envy-free mechanism can be contention-
free efficient.

Proof. We first prove the theorem for the case when n = 3 and defer the extension for n > 3
to Appendix A.1.

§This property is analogous to the unanimity axiom defined in the social choice literature (Muller and
Satterthwaite 1977).
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Let N = {1, 2, 3} and O = {a, b, c} denote the set of agents and objects respectively.
Suppose for contradiction that there exists a mechanism φ that is strategy-proof, envy-free
and contention-free efficient. For ease of exposition, for any profile ≻(x), we adopt the
notation P (x) := φ(≻(x)). We will proceed by considering six preference profiles, which are
shown in Table 2.1. The corresponding random assignments given by the mechanism φ are
shown in Table 2.2.

1 a b c
2 b a c
3 c a b

(a) Profile A

1 a b c
2 a b c
3 c a b

(b) Profile B

1 a b c
2 a c b
3 c a b

(c) Profile C

1 b a c
2 a c b
3 c a b

(d) Profile D

1 a b c
2 a c b
3 a c b

(e) Profile E

1 b a c
2 a c b
3 a c b

(f) Profile F

Table 2.1: Six preference profiles to demonstrate incompatibility of strategy-proofness, envy-
freeness, and contention-free efficiency.

a b c

1 1 0 0
2 0 1 0
3 0 0 1

(a) Profile A

a b c

1 1/2 1/2 0
2 1/2 1/2 0
3 0 0 1

(b) Profile B

a b c

1 1/2 1− 2y 2y − 1/2
2 1/2 y 1/2− y
3 0 y 1− y

(c) Profile C

a b c

1 0 1 0
2 1 0 0
3 0 0 1

(d) Profile D

a b c

1 1/3 1/2 1/6
2 1/3 1/4 5/12
3 1/3 1/4 5/12

(e) Profile E

a b c

1 1 1/6
2 0
3 0

(f) Profile F

Table 2.2: Assignments for the six preference profiles in Table 2.1.

Profile A (≻(A)) : Consider, first, the preference profile in Table 2.1a, where agent 1 prefers

a ≻(A)
1 b ≻(A)

1 c, agent 2 prefers b ≻(A)
2 a ≻(A)

2 c while agent 3 prefers c ≻(A)
3 a ≻(A)

3 b.
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Since the mechanism φ is contention-free efficient, every agent must receive her top
choice with probability 1. That is, P

(A)
1,a = P

(A)
2,b = P

(A)
3,c = 1 as shown in Table 2.2a.

Profile B (≻(B)) : Next, suppose agents 1 and 3 report their respective preferences as in

profile A. But agent 2 swaps her first two choices and reports a ≻(B)
2 b ≻(B)

2 c. First,

since strategy-proofness implies lower-invariance, we have P
(B)
2,c = P

(A)
2,c = 0. Second,

envy-freeness implies equal treatment of equals. Since agents 1 and 2 have the same
preferences, both must receive the same random allocation of objects. So, P

(B)
1,c =

P
(B)
2,c = 0 and thus P

(B)
3,c = 1. This implies that P

(B)
1,a = P

(B)
2,a = 1

2
and P

(B)
1,b = P

(B)
2,b = 1

2
.

Profile C (≻(C)) : If instead agent 2 reports a ≻(C)
2 c ≻(C)

2 b while agents 1 and 3 report the
same preferences as in profile B, upper invariance implies that she should receive an
equal probability of being allocated her top object a. Therefore, P

(C)
2,a = P

(B)
2,a = 1

2
. For

agent 1 to not envy agent 2, we must have P
(C)
1,a = P

(C)
2,a = 1

2
. Consequently, P

(C)
3,a = 0.

To maintain envy-freeness between agents 2 and 3, we have P
(C)
2,a +P

(C)
2,c = P

(C)
3,a +P

(C)
3,c

and P
(C)
2,b = P

(C)
3,b . Let P

(C)
2,b = P

(C)
3,b = y. Note than y ∈ [0, 1

2
]. So we have, P

(C)
2,c = 1

2
− y

and P
(C)
3,c = 1− y.

Profile D (≻(D)) : Consider the contention-free profile where agents 2 and 3 do not change

their preferences from profile C but agent 1 reports b ≻(D)
1 a ≻(D)

1 c. By the assumption
that the mechanism is contention-free efficient, each agent receives their top choice with
probability 1. For the mechanism to be strategy-proof, agent 1 must receive the same
probability of receiving object c in profiles C and D. That is, P

(C)
1,c = P

(D)
1,c =⇒ 2y− 1

2
=

0 =⇒ y = 1
4
.

Thus the resulting assignment for profile C in mechanism φ is shown in Table 2.3.

1 a b c
2 a c b
3 c a b

a b c

1 1/2 1/2 0
2 1/2 1/4 1/4
3 0 1/4 3/4

Table 2.3: Profile C and its final assignment

Profile E (≻(E)) : Suppose, next, that agent 3 mimics agent 2 in profile C while agents
1 and 2 keep the same preferences as profile C. For all three agents to not envy one
another, the mechanism must allocate object a equally to all agents. That is, P

(E)
1,a =

P
(E)
2,a = P

(E)
3,a = 1

3
. By strategy-proofness, P

(E)
3,b = P

(C)
3,b = 1

4
. This implies that P

(E)
3,c =

5
12
. Since agent 2 and 3 have the same preferences, they must get the same allocation.

So P
(E)
2,b = 1

4
and P

(E)
2,c = 5

12
. The allocations for the two agents 2 and 3 completely

determine the allocation that agent 1 must receive.
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Profile F (≻(F )) : Finally, consider the profile in which agent 1 reports b ≻(F )
1 a ≻(F )

1 c
while agents 2 and 3 keep the same preferences as in profile E. Since the mechanism
is strategy-proof, for agent 3 to report her preferences truthfully in profiles F and D,
P

(F )
3,b = P

(D)
3,b = 0. For agents 2 and 3 to not envy each other, P

(F )
2,b = 0, which in

turn implies P
(F )
1,b = 1. However, since the mechanism is strategy-proof, agent 1 must

receive the same probability for object c in profiles E and F. That is, P
(F )
1,c = P

(E)
1,c = 1

6
,

which contradicts feasibility of the allocation.

When there are three agents and three objects, Bogomolnaia and Moulin (2001) mention
that strategy-proofness and envy-freeness are incompatible with ex-post efficiency. This was
proven formally for n ≥ 3 by Nesterov (2017). Since ex-post efficiency implies contention-free
efficiency, their results arise as an immediate corollary of Theorem 1.

Corollary 1 (Bogomolnaia and Moulin 2001; Nesterov 2017). For n ≥ 3, there does not
exist a mechanism that is strategy-proof, envy-free, and ex-post efficient.

Theorem 1 demonstrates that in our search for envy-free and strategy-proof mechanisms
we must necessarily deviate from (variants of) efficient mechanisms. For example, considering
that the RSD mechanism is strategy-proof and satisfies equal treatment of equals, one might
try to obtain a strategy-proof and envy-free mechanism by starting from RSD assignments
and then successively attempting to remove envy from each assignment. For instance, a
similar strategy has been exploited by Harless and Phan (2019) to show that a variant of the
RSD mechanism where randomizing only over the three adjacent agent positions (instead
of all orderings) helps recover ordinal efficiency without sacrificing strategy-proofness. But
such a strategy is unlikely to yield envy-free and strategy-proof mechanisms considering all
natural variants of known efficient mechanisms also maintain contention-free efficiency.

2.4 Rank Exchange Mechanisms

While both strategy-proofness and envy-freeness are highly desirable properties for any ran-
dom assignment mechanism, the only strategy-proof and envy-free mechanism known prior
to this work is the Equal Division (ED) mechanism that simply allocates all objects equally
to all agents and totally disregards the agents’ preferences. In some sense, the equal division
mechanism can be considered as the “most inefficient” strategy-proof and envy-free mech-
anism. In view of the strong impossibility result presented in Theorem 1, it is natural to
wonder whether there exist other strategy-proof and envy-free mechanisms that are more
efficient than equal division. In this section, we answer this question in the positive and
describe a large family of mechanisms that are strategy-proof, envy-free and stochastically
dominate the equal division mechanism.



CHAPTER 2. STRATEGY-PROOF AND ENVY-FREE MECHANISMS FOR HOUSE
ALLOCATION 13

2.4.1 Mechanism

Definition 3 (Rank Exchange Mechanism). A mechanism φ is said to be a Rank Exchange
mechanism if there exists a vector v = (v1, v2, . . . , vn) ∈ [0, 1

n(n−1)
]n, where ∀k ∈ {1, 2, . . . , n−

1}, vk ≥ vk+1 and vn = 0, such that, ∀ ≻ ∈ Rn,∀ i ∈ N, and ∀ a ∈ O

φi,a(≻) =
1

n
+

∑
j∈N\{i}

(
vrank(≻i,a) − vrank(≻j ,a)

)
For any such vector v, we will denote the corresponding Rank Exchange mechanism by φv.

A Rank Exchange mechanism can be equivalently described as follows. All agents are
initially endowed with the equal division random assignment. Every agent now splits her
endowment into (n−1) equal partial allocations, one part for each of the other n−1 agents.
Every pair of agents then mutually exchange fractional shares of some objects in a way that
is dictated by single vector v ∈ [0, 1

n(n−1)
]n. Formally, for any pair of agents i and j and

any object a, we interpret that (vrank(≻i,a) − vrank(≻j ,a)) amount of the object is transferred
from agent j to agent i. Note that this amount can be negative, which is interpreted as the
transfer occurs in the other direction. Through such a pairwise exchange, each pair of agents
swap fractional shares of all the objects: an agent always receives shares of objects that she
prefers more than the other agent and donates shares of objects that she prefers less. The
net probability shares transferred across all objects between any pair of agents is zero and
we maintain a feasible random assignment.

To understand the mechanism concretely, let us consider the following example. Let
N = {1, 2, 3} and O = {a, b, c}. Suppose the exchange vector is v = (1

6
, 1
6
, 0). Consider the

preference profile where ≻1 = ⟨b, c, a⟩, ≻2 = ⟨a, c, b⟩ and ≻3 = ⟨a, b, c⟩. Let us, first, look at
the transfers that agents 1 and 2 engage in. Since agent 1 ranks object a third and agent
2 ranks object a first in their respective preferences, agent 1 transfers v1 − v3 =

1
6
shares of

object a to agent 2. In return, agent 2 transfers v1 − v3 = 1
6
shares of object b to agent 1.

Agents 1 and 2 both rank object c as their second choice. Therefore, they do not exchange
any shares of object c with each other. Between the pair of agents 1 and agent 3, agent 1
transfers v1 − v3 =

1
6
shares of object a to agent 3 and receives v2 − v3 =

1
6
shares of object

c. Since v1 = v2, agents 1 and 3 do not transfer any shares of object b. Lastly, if we consider
the transfers between agents 2 and 3, since both rank a as their top choice, they do not
exchange any shares of object a. However, since the ranks of objects b and c are flipped in
their preferences, they trade v2 − v3 =

1
6
shares of both these objects. The assignment that

results from these simultaneous pairwise exchanges in shown in Table 2.4.
We now state our main result of this section on the fairness and incentives of these class of

mechanisms. In particular, we show that every Rank Exchange mechanism is strategy-proof
and envy-free. We cover the proof of this theorem in Appendix A.2.

Theorem 2. Every Rank Exchange mechanism φv is strategy-proof and envy-free.
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1 b c a
2 a c b
3 a b c

a b c

1 0 1/2 1/2
2 1/2 0 1/2
3 1/2 1/2 0

Table 2.4: Profile and assignment with exchange vector v = (1
6
, 1
6
, 0)

The argument in the proof relies on the constraints imposed on the vector v that defines
the mechanism. The non-increasing coordinates of v are sufficient to ensure that the total
allocation that an agent i receives for the top t objects in her preference is at least as much as
the total allocation that any other agent i′ receives for the same objects. The same condition
also guarantees that misreporting her preference would yield a weakly lower total allocation
for the top t objects in her true preference.

At this stage, we would like to contrast our Rank Exchange mechanisms from the Top-
Trading Cycles from Equal Division (TTCED) mechanism proposed by Kesten (2009). The
TTCED mechanism first starts by allocating an equal amount of each object to every agent.
Then, any pair of agents who have received each other’s top objects are allowed to exchange
their shares sequentially. Once an agent can no longer trade her top object, her allocation
of that object is finalized and the trading continues with the next object in the preference.
While superficially similar in the sense that both mechanisms start with equal division and
allow pairwise trading between agents, the TTCED and Rank Exchange mechanisms differ
in one key aspect - a Rank Exchange mechanism requires all the trades to occur in parallel
independently from each other, while the agent pairs trade sequentially in the TTCED
mechanism. Indeed, as shown by Kesten (2009), the TTCED mechanism is equivalent to the
the PS mechanism of Bogomolnaia and Moulin (2001) and hence is not strategy-proof. In
contrast, we demonstrate that Rank Exchange mechanisms are strategy-proof and envy-free.

2.4.2 Efficiency Discussion

We now discuss the efficiency considerations of our class of mechanisms. It can be readily seen
that if the first coordinate of the vector v is strictly greater than zero, then the corresponding
Rank Exchange mechanism strictly stochastically dominates ED. Since the coordinates of
v are sorted, at every preference profile the total allocation that any agent receives for her
top t objects is always weakly greater than t

n
. However, with v1 > 0, there exist preference

profiles where at least one agent is guaranteed to receive strictly more than 1
n
for her top

ranked object. For instance, consider the preference profile where agent i ranks object a as
her top choice while the other agents rank this object as their last choice. In this case, agent
i receives v1 − vn = v1 > 0 additional shares of object a from all the other agents leading to
an allocation of 1

n
+ (n− 1)v1 >

1
n
for her top choice. We state this proposition below.



CHAPTER 2. STRATEGY-PROOF AND ENVY-FREE MECHANISMS FOR HOUSE
ALLOCATION 15

Proposition 1. Consider a vector v ∈ [0, 1
n(n−1)

]n such that ∀k ∈ {1, 2, . . . , n−1}, vk ≥ vk+1

and vn = 0. If v1 > 0, then φv dominates ED.

From the impossibility result in Section 2.3, we know that, in any strategy-proof and
envy-free mechanism, agents cannot receive their top choice with probability one at all
contention-free preference profiles. In subsequent work, Basteck and Ehlers (2021) show
that, at all such profiles, agents cannot each receive more than 2

n
of their top ranked object.

Indeed, in any Rank Exchange mechanism, every agent receives at most 2
n
of her top choice at

all contention-free preference profiles. This follows since vi ≤ 1
n(n−1)

for any i ∈ {1, 2, . . . , n}.
In fact, consider the specific mechanism in this class with v1 =

1
n(n−1)

and vk = 0 for all

other k ∈ {2, 3, . . . , n}. This mechanism achieves the upper bound of 2
n
at all contention-free

profiles. To see this, fix any contention-free profile ≻ ∈ C, and any agent i ∈ N . Suppose
σ(≻i, 1) = a. Then, the probability that agent receives object a is given by,

φi,a(≻) =
1

n
+

∑
j∈N\{i}

(
vrank(≻i,a) − vrank(≻j ,a)

)
=

1

n
+

∑
j∈N\{i}

(
v1 − 0

)
=

1

n
+

∑
j∈N\{i}

1

n(n− 1)
=

2

n

The second equality follows since ≻ is a contention-free profile, which implies that if rank(≻i

, a) = 1, then rank(≻j, a) ̸= 1 for any j ̸= i.

Comparison with RSD and PS

In this section, we show that Rank Exchange mechanisms are not dominated by RSD and PS
and can in fact lead to incomparable assignments. In contrast, the “Random-Dictatorship-
cum-Equal-Division” mechanism proposed by Basteck and Ehlers (2021) is indeed dominated
by RSD.

As an example, consider the Rank Exchange mechanism with vector v = (1
6
, 1
6
, 0) and

the profile that we have considered before in Table 2.4. Table 2.5 shows the profile and
assignments obtained by both the Rank Exchange mechanism and RSD at this profile. It can
be readily seen that although agent 1 prefers her allocation in RSD, agent 3 strictly prefers
her allocation in the Rank Exchange mechanism. Therefore, neither the RSD assignment
nor the assignment in the Rank Exchange mechanism stochastically dominate the other at
this preference profile.

In a similar vein, Table 2.6 shows the assignments of the same Rank Exchange mechanism
and PS at a different profile. Here, we can see that agents 1 and 2 both strictly prefer their
allocations in the Rank Exchange mechanism over their allocations under PS whereas agent
3 prefers her allocation in PS.
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1 b c a
2 a c b
3 a b c

(a) Profile

a b c

1 0 1/2 1/2
2 1/2 0 1/2
3 1/2 1/2 0

(b) φ( 1
6 ,

1
6 , 0) assignment

a b c

1 0 5/6 1/6
2 1/2 0 1/2
3 1/2 1/6 1/3

(c) RSD assignment

Table 2.5: Comparison of RSD with Rank Exchange mechanism with vector v = (1
6
, 1
6
, 0)

1 a b c
2 a b c
3 b c a

(a) Profile

a b c

1 1/2 1/3 1/6
2 1/2 1/3 1/6
3 0 1/3 2/3

(b) φ( 1
6 ,

1
6 , 0) assignment

a b c

1 1/2 1/6 1/3
2 1/2 1/6 1/3
3 0 2/3 1/3

(c) PS assignment

Table 2.6: Comparison of PS with Rank Exchange mechanism with vector v = (1
6
, 1
6
, 0)

Efficient Frontier of Rank Exchange Mechanisms

In our last result of this section, we explore the Pareto efficient frontier of this class of
mechanisms. Specifically, we characterize the set of Rank Exchange mechanisms that are
not dominated by any other mechanism within this class.

Proposition 2. A Rank Exchange mechanism φv is not dominated by another Rank Ex-
change mechanism if and only if the vector v satisfies v1 =

1
n(n−1)

.

Proof. Proof can be found in Appendix A.2

2.5 Characterization

In this section, we show that Rank Exchange mechanisms characterize the set of all strategy-
proof, envy-free mechanisms that satisfy a certain separability axiom. As discussed earlier,
Rank Exchange mechanisms can be described as first starting from the equal division allo-
cation and then allowing each pair of agents to exchange their respective fractional shares of
objects. This view of decomposing the mechanism into multiple pairwise interactions leads
to a natural and appealing notion of separability in object allocations. Informally, we call
a mechanism φ separable if the difference in the allocation received by an agent i in two
preference profiles, where agent i’s preference is unchanged, can be attributed to each of
the other agents independently changing her preference. Formally, we define the following
property.
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Definition 4 (Separability). A mechanism φ is separable if for all ≻ = (≻k)k∈N ∈ Rn, for
every agent i ∈ N , for each ≻′

−i= (≻′
k)k∈N\{i} ∈ Rn−1, and for every object a ∈ O, we have

φi,a((≻i,≻′
−i))− φi,a(≻) =

∑
j∈N\{i}

[
φi,a((≻′

j,≻−j))− φi,a(≻)
]

Our main characterization result is presented below.

Theorem 3. A mechanism φ is neutral, envy-free, and separable if and only if it is a Rank
Exchange mechanism. Further, all envy-free and separable mechanisms are also strategy-
proof.

In the rest of this section, we focus on proving that Rank Exchange mechanisms are
the only ones that satisfy our criteria. The necessity direction of the proof is structured
as follows. In Section 2.5.1, we show that any envy-free and separable mechanism can
be represented using a decomposition into pairwise transfers of fractional shares between
agents. In Section 2.5.2, we show that envy-freeness and separability together also imply
strategy-proofness. Finally, in Section 2.5.3, we show that the introduction of neutrality and
strategy-proofness allows us to arrive at a representation as a Rank Exchange mechanism
completing the necessity direction of Theorem 3.

2.5.1 Pairwise Transfers

We first show that envy-freeness and separability imply that any random mechanism can
be alternatively represented as follows. The mechanism starts off by allocating all objects
equally among the agents and then shares are transferred from one agent to another, where
the amount transferred is dictated by a single function f . We will often refer to this function
as a transfer function following this intuition. The domain of function f is defined on
pairs of individual preferences and an object. We call such mechanisms pairwise exchange
mechanisms.

Definition 5. A mechanism φ is said to be a pairwise exchange mechanism if there exists
a function f : R×R×O → [− 1

n
, 1
n
] such that ∀ ≻ = (≻k)k∈N ∈ Rn, ∀i ∈ N, and ∀a ∈ O

φi,a(≻) =
1

n
+

∑
j∈N\{i}

f(≻i,≻j, a)

Given such a function f , we denote the corresponding mechanism by φf .

The key restriction that envy-freeness and separability impose is that the transfer function
f is only a function of the preferences of the two agents involved in the transfer and in
particular is independent of the agent identities and the preferences of the other agents. The
following key lemma allows us to focus on deriving a functional form for the function f in
subsequent steps. The proof for this lemma can be found in Appendix A.3.1.
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Lemma 2. If a mechanism φ is envy-free and separable, then it is a pairwise exchange
mechanism.

To ensure feasibility of the random assignment, the transfer function f must satisfy cer-
tain properties that we tabulate in the following lemma. These conditions capture some
natural notions and restrictions that one would expect in a bilateral exchange. For instance,
the no transfers between equals property states that if a pair of agents have identical prefer-
ences over objects, then they would never engage in an exchange of fractional shares for any
object. The second property, balanced transfers, ensures the total amount of probabilistic
shares that an agent transfers to another agent must equal the amount that she gets back
from that same agent.

Lemma 3. Consider a pairwise exchange mechanism φf and its corresponding function
f : R×R×O → [− 1

n
, 1
n
]. Then f satisfies the following properties -

1. No transfers between equals: ∀ ≻ ∈ R and ∀a ∈ O, f(≻,≻, a) = 0.

2. Balanced transfers: For any pair of preferences ≻,≻′ ∈ R,
∑

a∈O f(≻,≻′, a) = 0.

3. Anti-symmetry: For any pair of preferences ≻,≻′ ∈ R and ∀a ∈ O,
f(≻,≻′, a) = −f(≻′,≻, a).

4. Bounded range: For any pair of preferences ≻,≻′ ∈ R and ∀a ∈ O,
f(≻,≻′, a) ∈ [− 1

n(n−1)
, 1
n(n−1)

].

We often refer back to these properties to prove our primary characterization result. The
lemma follows directly from the definition of feasible mechanisms and we include the proof
in Appendix A.3.1 for completeness.

2.5.2 Fairness and Incentives

In the next step in the proof, we show that if a mechanism is envy-free and separable, then
it is also strategy-proof. This result arises as a corollary of a surprising observation that
within pairwise exchange mechanisms, incentive compatibility and fairness go hand in hand.
In particular, we demonstrate the equivalence of strategy-proofness and envy-freeness within
this class. To the best of our knowledge, this is the only family of random assignment mech-
anisms for finite markets where such an equivalence between the two normally competing
notions of fairness and strategy-proofness has been established¶.

Theorem 4. For any pairwise exchange mechanism φf , φf is strategy-proof if and only if
φf is envy-free.

¶Such an equivalence has been observed in large economies (for instance, see Jackson and Kremer (2007),
Che and Kojima (2010), Liu and Pycia (2016), Noda (2018), and Azevedo and Budish (2019)).
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Strategy-proofness and envy-freeness both necessitate that the transfer function satisfies
a natural, but informal, notion of monotonicity - that the transfer between two agents is
well-aligned with their corresponding preferences. We formalize this notion through a series
of lemmas.

In Lemma 11 we show that in a pairwise exchange mechanism that is strategy-proof,
the transfers of probabilistic shares received by an agent reporting ≻ from any other agent
stochastically dominate (with respect to ≻) the transfers that she receives when reporting
any other ≻′. Analogous to Lemma 1, in Lemma 12, we show that strategy-proofness
in pairwise exchange mechanisms is equivalent to analogous properties on the function f .
Finally, Lemmas 13 and 14 show that the transfer function for any envy-free mechanism
must be “selfish”. In other words, for any agent, the total amount of objects exchanged with
any other agent is compatible with the agent’s preferences. Lemma 13 shows that if two
agents have identical preferences for their top t objects, then they do not exchange any of
those t objects. Similarly, Lemma 14 shows that the total transfers received by any agent
from any other agent stochastically dominates zero transfers.

These four lemmas hint towards strategy-proofness and envy-freeness being dependent
on slightly different notions of “monotonicity” in the transfer functions. Surprisingly, we can
in fact show that the two concepts are much more closely tied together. Appendix A.3.2
provides details of the proof. The following corollary follows from Lemma 2 and Theorem 4.

Corollary 2. If a mechanism φ is envy-free and separable, then φ is strategy-proof.

2.5.3 Characterizing Neutral and Strategy-proof Pairwise
Exchange Mechanisms

Corollary 2 shows that we get strategy-proofness for free with envy-freeness and separability.
Therefore, in our last step to prove the necessity direction, we introduce strategy-proofness
and neutrality and use these properties to derive a functional form for the function f .

The following lemma shows that neutrality and strategy-proofness impose stronger re-
strictions on the function f . In particular, if an object is ranked at the same position in
two agents’ preferences, which may otherwise be different, then the amount of this object
transferred by both these agents to any other agent must be the same.

Lemma 4. If pairwise-exchange mechanism φf is neutral and strategy-proof, then for any
object a ∈ O, and preferences ≻,≻′,≻′′ ∈ R, we have

rank(≻′, a) = rank(≻′′, a) =⇒ f(≻,≻′, a) = f(≻,≻′′, a)

Lemma 4 is non-trivial to prove and forms the keystone to arrive at a representation for
the function f . We prove the result using induction on n. Surprisingly, proving the base
case also requires a subtle use of the properties of f from Lemmas 12 and 15. Appendix
A.3.3 provides the details.
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Lemma 4 already implies that the function f admits a simpler form, where the transfer
of any object a between two agents i and j only depends on the ranks of the object in their
corresponding preference orderings. This insight in conjunction with the balanced transfers
and the no transfers between equals property in Lemma 3 allow us to effectively define
the transfer function f in terms of a single vector v of dimension n, which we formalize in
Lemmas 17 and 18 in Appendix A.3.3. We are now formally ready to prove Theorem 3

Proof of Theorem 3. We cover the necessity and sufficiency directions below.
Necessity. Consider a mechanism φ which is neutral, envy-free, and separable. By Lemma

2, φ is a pairwise exchange mechanism. Let f be any corresponding function that represents
it. From Corollary 2, we know that, φ is also strategy-proof.

Lemmas 3, 4, 17, and 18 together imply the existence of a vector v ∈ Rn such that
f(≻,≻′, a) = vrank(≻,a) − vrank(≻′,a). The additional restrictions on the vector v stem from
property (4) in Lemma 3 and the strategy-proofness of the mechanism φ. If the vector v is
not sorted, it is easy to find a profile that violates the strategy-proofness of the mechanism.
The restriction of v ∈ [0, 1

n(n−1)
]n is needed to ensure that f(≻,≻′, a) ∈ [− 1

n(n−1)
, 1
n(n−1)

].
Sufficiency. Suppose φv is a Rank Exchange mechanism with the corresponding exchange

vector v. From Theorem 2, we know that φv is strategy-proof and envy-free. We now show
that φv satisfies the remaining two properties.

• Separability: To see separability, consider any agent i ∈ N , any two preference profiles
≻ = (≻k)k∈N ∈ Rn and ≻′ = (≻′

k)k∈N\{i} ∈ Rn−1. From the definition of a Rank
Exchange mechanism, we know that

∑
j∈N\{i}

[
φi,a((≻′

j,≻−j))− φi,a(≻)
]
=

∑
j∈N\{i}

[(
1

n
+

∑
k∈N\{i,j}

(
vrank(≻i,a) − vrank(≻k,a)

)

+
(
vrank(≻i,a) − vrank(≻′

j ,a)

))

−

(
1

n
+

∑
k∈N\{i}

(
vrank(≻i,a) − vrank(≻k,a)

))]

=
∑

j∈N\{i}

[
vrank(≻i,a) − vrank(≻′

j ,a)

]
−

∑
j∈N\{i}

[
vrank(≻i,a) − vrank(≻j ,a)

]
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=

(
1

n
+

∑
j∈N\{i}

[
vrank(≻i,a) − vrank(≻′

j ,a)

])

−

(
1

n
+

∑
j∈N\{i}

[
vrank(≻i,a) − vrank(≻j ,a)

])
= φi,a((≻i,≻′

−i))− φi,a(≻)

• Neutrality: This property directly follow from definition of φv since the vector v is
independent of the identity of the objects.

In Appendices A.4 and A.5, we discuss independence of axioms for the characterization
result. In Appendix A.4, we give an example of a mechanism which is neutral and envy-
free but violates separability to demonstrate that separability is independent of the other
properties. Similarly, Appendix A.5 provides a mechanism that is envy-free and separable,
but violates neutrality. Finally, to see that envy-freeness is independent of neutrality and
separability, consider any Rank Exchange mechanism φv, except that the coordinates of the
vector v are now sorted in an increasing order, with the first coordinate being the smallest.
The mechanism resulting from this shuffled vector still continues to be neutral and separable.
However, the mechanism is no longer envy-free.

2.6 Conclusion

In this work, we focused on strategy-proof and envy-free random assignment mechanisms
for the house allocation problem. We first defined a very weak notion of efficiency, called
contention-free efficiency, and showed that strategy-proofness and envy-freeness must sacri-
fice efficiency even in this weak sense.

We then designed a new family of mechanisms called Rank Exchange mechanisms that are
strategy-proof and envy-free and stochastically dominate the equal division mechanism. We
also provide an axiomatic characterization of this class and show that all neutral, strategy-
proof, envy-free, and separable mechanisms are Rank Exchange mechanisms.

Given the trade-offs between incentives, fairness and efficiency, characterizing the Pareto
efficient frontier within the class of strategy-proof and envy-free mechanisms is an important
question. Indeed, by imposing separability and thereby restricting the transfer of fractional
shares of objects to depend only on the preferences of the agents involved in the exchange,
the mechanisms we characterize do not allow us to reach this frontier. For instance, the
mechanism in Appendix A.4 is an example of a mechanism that is strategy-proof and envy-
free and stochastically dominates the closest Rank Exchange mechanism. We consider our
work as only the first step towards characterizing the Pareto efficient frontier of strategy-
proof and envy-free mechanisms. We expect studying more general transfer functions that
take into account preferences of other agents not involved in the exchange to yield insight
into more efficient strategy-proof and envy-free mechanisms.
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Chapter 3

Constrained Serial Rule on the Full
Preference Domain

3.1 Introduction

In this chapter, we focus on allocating a number of indivisible objects among a set of agents
in a fair and efficient manner. Classical models for object allocation without monetary
transfers such as the house allocation model (Hylland and Zeckhauser 1979) are now well
understood and mechanisms that guarantee any maximal subset of attainable properties
along the dimensions of fairness, efficiency, and incentive compatibility are well known.
However, many applications in practice impose additional constraints on the set of allowed
allocations and designing allocation mechanisms in such constrained settings remains an
ongoing challenge. In this work, we present a novel Constrained Serial Rule mechanism that
always obtains efficient and fair outcomes for object allocation under a large class of general
constraints.

In the context of house allocation, Bogomolnaia and Moulin (2001) introduced the notion
of ordinal efficiency. A random assignment is said to be ordinally efficient if there exists
no other assignment that stochastically dominates it. Indeed, they showed that the well-
studied Random Priority mechanism that orders agents in a uniformly random order and
then allocates each agent her most preferred object from the set of remaining objects is not
ordinally efficient and only satisfies a weaker notion of ex-post efficiency. The notion of envy-
freeness that requires each agent to prefer her own allocation to anyone else’s allocation is
often considered as the gold standard of fairness in many different settings such as resource
allocation (Foley 1967), cake-cutting (Robertson and Webb 1998), and rent division (Edward
Su 1999). In the context of random assignment mechanisms, this property is formulated using
the first-order stochastic dominance relation. In their seminal work, Bogomolnaia and Moulin
2001 introduced the Probabilistic Serial mechanism that always produces ordinally efficient
and envy-free outcomes. The probabilistic serial mechanism can be described as follows.
At time zero, each agent begins “eating” her most preferred object. An object becomes
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unavailable once the total time spend by agents eating it equals one. Once an object becomes
unavailable, all agents that were eating it, switch to eating their most preferred object among
the ones still available. Finally, the probability that an agent receives some object is the
time spent by that agent to eat the object.

Unfortunately, the probabilistic serial mechanism assumes that agents have strict pref-
erences over objects, which is a fairly restrictive assumption in practice. Indeed, as dis-
cussed by Katta and Sethuraman (2006) and Erdil and Ergin (2017), ties in preferences are
widespread in many practical applications. For example, agents may treat some objects as
identical. Even when objects are all distinct, evaluating and ranking all objects may be
computationally prohibitive, and agents may only reveal coarse rankings with indifferences.
In their influential paper, Katta and Sethuraman (2006) present the Extended Probabilistic
Serial mechanism that generalizes the probabilistic serial mechanism to the full preference
domain and retains the desirable properties of ordinal efficiency and envy-freeness.

Widespread applicability of these mechanisms is hindered by the fact that these mech-
anisms assume that every random assignment is feasible. In a large number of practical
applications, legal and policy requirements necessitate studying mechanisms where the set
of feasible assignments is constrained in some way. For example, in the course allocation
problem, there are often requirements on the minimum (and maximum) number of students
assigned to a course. Similarly, in school choice applications, it is required to find assign-
ments that maintain a minimum level of diversity (Ehlers et al. 2014). In resident matching,
it is often necessary for the allocation of doctors to hospitals to satisfy geographic con-
straints (Kamada and Kojima 2015). In the refugee resettlement problem, objects represent
settlement facilities and a feasible assignment must be such that the total demands of all
agents assigned to a facility must be met by the total supply of resources at that facility
(Delacrétaz, Kominers, and Teytelboym 2016). Similarly, in kidney matching applications
(Roth, Sönmez, and Ünver 2005), blood-type compatibility imposes constraints on feasible
matchings. In this chapter, we study the object allocation problem with arbitrary linear con-
straints on the set of feasible probabilistic assignments. Following the work of Balbuzanov
(2019), this formalization supports an arbitrary set of constraints on ex-post allocations.

3.1.1 Our Contributions

Our primary contribution is to generalize the probabilistic serial mechanism to the full
preference domain and support arbitrary linear constraints on the set of feasible random
assignments via a new mechanism called the Constrained Serial Rule. Our mechanism is
computationally efficient and only requires a running time that is polynomial in the number
of constraints, agents, and objects. For the classical unconstrained house allocation setup on
the full preference domain, our mechanism coincides with the extended probabilistic serial
mechanism of Katta and Sethuraman (2006). Various generalizations of the probabilistic
serial mechanism have been proposed for multi-unit demand (Kojima 2009), specific type of
constraints such as bi-hierarchical constraints (Budish et al. 2013), type-dependent distri-
butional constraints (Ashlagi, Saberi, and Shameli 2020), combinatorial demand (Nguyen,



CHAPTER 3. CONSTRAINED SERIAL RULE 24

Peivandi, and Vohra 2016), property rights with individual rationality (Yılmaz 2010), and
even arbitrary constraints on the ex-post allocations (Balbuzanov 2019). Our constrained se-
rial rule unifies this literature and provides a common generalization of all these mechanisms
and also provides an extension to the full preference domain.

We show that the constrained serial rule maintains the desirable efficiency and fairness
properties of the probabilistic serial mechanism even in our general constrained setting. In
particular, our mechanism is constrained ordinally efficient. While it is easy to observe
that arbitrary constraints rule out the existence of envy-free mechanisms, we show that the
constrained serial rule maintains a compelling notion of fairness. Intuitively, we say agents
i and j are of the same type if the constraint structure does not distinguish between the
two agents. We show that the constrained serial rule mechanism guarantees envy-freeness
among any pair of agents of the same type. However, our mechanism is not strategyproof
or even weak-strategyproof. This is unsurprising since even in the unconstrained setting,
weak-strategyproofness is incompatible with ordinal efficiency and envy-freeness on the full
preference domain (Katta and Sethuraman 2006).

3.1.2 Other Related Work

There is a growing body of literature on assignment and matching mechanisms subject to
constraints. Several studies have considered floor and ceiling constraints in the context of
controlled school choice, college admissions, and affirmative action (Kojima 2012; Kominers
and Sönmez 2013; Hafalir, Yenmez, and Yildirim 2013; Hamada, Iwama, and Miyazaki 2016;
Fragiadakis and Troyan 2017; Fleiner and Kamiyama 2016; Goto et al. 2015; Westkamp
2013; Ehlers et al. 2014; Echenique and Yenmez 2015; Biró et al. 2010; Ashlagi, Saberi, and
Shameli 2020). Echenique, Miralles, and Zhang 2019 consider arbitrary ex-post constraints
as in Balbuzanov 2019 and provide a pseudo-market equilibrium solution that is constrained
ex-ante efficient and fair. In independent and ongoing work, Aziz and Brandl (2020) also
generalize the probabilistic serial mechanism to allow for arbitrary constraints. However, by
restricting ourselves to linear constraints, we are able to provide stronger fairness guarantees.

Budish et al. (2013), Pycia and Ünver (2015), and Akbarpour and Nikzad (2014) have
studied the implementability of random matching mechanisms. Budish et al. (2013) identify
bi-hierarchical constraint structures as a necessary and sufficient condition for implementing
a random assignment using lottery of feasible assignments. They also provide a gener-
alization of the (extended) probabilistic serial mechanism in the case when there are no
floor constraints. Indeed, our mechanism is able to accommodate bi-hierarchical constraint
inequalities in the presence of non-zero floor constraints. Akbarpour and Nikzad (2014)
consider more general constraints beyond bi-hierarchical structures and show how feasible
random assignments can be implemented approximately. Pycia and Ünver (2015) provide
sufficient conditions on the properties of random mechanisms that continue to be satisfied on
the deterministic mechanisms when random mechanisms are decomposed as a lottery over
these deterministic mechanisms. While the focus of our chapter is not on implementability,
we provide a small discussion of this in Section 3.3.4.
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3.2 Model and Preliminaries

We consider a finite set N of agents and a finite set O of objects. Let n = |N | be the number
of distinct agents and ρ = |O| be the number of distinct objects. Every agent has a unit∗

demand and each object o ∈ O is supplied in qo ∈ N copies. When objects are scarce, we
can include the null object, ∅, in the set O, which is supplied in a quantity sufficient to meet
the demand of all agents. That is, q∅ ≥ |N |. We can, therefore, without loss of generality,
assume that

∑
o∈O qo ≥ n. Each agent i ∈ N has a preference relation ⪰i on the set of

objects in O. The preference ⪰i is assumed to be complete and transitive. In particular, we
allow agents to be indifferent between any pair of objects in O. Let E(⪰) be the number of
indifference classes within the preference ⪰. For any ℓ ≤ E(⪰i), let Ti(ℓ) be the set of objects
in the first ℓ indifference classes of the preference ⪰i. A set of individual preferences of all
agents constitutes a preference profile ⪰= (⪰i)i∈N . Let R denote the set of all complete and
transitive relations on O and Rn be the set of all possible preference profiles.

A random assignment of objects to agents is given by a vector x = (xi,o)i∈N,o∈O ∈ [0, 1]nρ

such that ∑
o∈O

xi,o = 1 ∀i ∈ N∑
i∈N

xi,o ≤ qo ∀o ∈ O

In assignment x, every agent i’s allocation is given by the sub-vector xi = (xi,o)o∈O, where
the quantity xi,o is interpreted to be the probability with which object o is assigned to agent
i. Let xi(S) =

∑
o∈S xi,o be agent i’s cumulative allocation for the set of objects in set S.

An assignment is deterministic whenever xi,o ∈ {0, 1}, i.e, every agent is assigned a single
object with probability 1. Let D denote the set of all deterministic assignments and ∆D
denote the set of all random assignments. A random assignment mechanism is a mapping,
φ : Rn → ∆D, that associates each preference profile ⪰∈ Rn with some random assignment
x ∈ ∆D.

We extend agents’ preferences from the set of objects to the set of random allocations
using the stochastic dominance relation. Given two random assignments x and y, allocation
xi stochastically dominates allocation yi with respect to ⪰i, denoted by xisd(⪰i)yi, if and
only if

∑
o′⪰io

xi,o′ ≥
∑

o′⪰io
yi,o′ for all o ∈ O. If the inequality is strict for some o ∈ O, then

xi strictly stochastically dominates yi, in which case we denote it by xisd(≻i)yi.
We now introduce a general class of constraints into our model. At any given preference

profile, we assume that the set of feasible random assignments can be described as a convex
polytope. Formally, at preference profile ⪰, the set of feasible random assignments ∆C(⪰)
is parameterized by a matrix A = [aci,o]1≤c≤m,{i,o}∈N×O ∈ Rm×nρ and a vector b = [bc]1≤c≤m ∈
Rm, where c is a generic constraint and m is the number of constraints, and is defined as:

∆C(⪰) = {x ∈ ∆D | Ax ≤ b}
∗Our results also generalize to the case when all agents demand d ≥ 1 objects.
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We assume that at each preference profile ⪰, the set of feasible random assignments
is non-empty. That is, ∆C(⪰) ̸= ∅. Such a formulation of the constraints enables us to
apply our model to many different specific applications that we describe in Section 3.4. Let
∆C = {∆C(⪰)}⪰∈Rn be the collection of constraint polytopes for all preference profiles.
Given a collection of constraints ∆C, a mechanism is feasible if at every preference profile
⪰, φ(⪰) ∈ ∆C(⪰).

We next define the normative properties of efficiency and fairness in the presence of
constraints.

Definition 6 (Constrained Ordinal Efficiency). A random assignment x is constrained or-
dinally efficient at a preference profile ⪰ and constraint set ∆C(⪰) if there does not exist
another random assignment x′ ∈ ∆C(⪰) such that x′

isd(⪰i)xi for all i ∈ N , with x′
isd(≻i)xi

for at least one i ∈ N . A mechanism φ is constrained ordinally efficient if for every prefer-
ence profile ⪰, φ(⪰) is constrained ordinally efficient.

The classic notion of fairness requires that no agent should envy the allocation received
by some other agent. When faced with arbitrary feasibility constraints, it is easy to see that
one cannot guarantee the existence of envy-free assignments. Therefore, we restrict ourselves
to fairness comparisons between agents that belong to the same type. For a given constraint
matrix A, we say agents i and j belong to the same type if for every object o, the variables
xi,o and xj,o have the same coefficients in every constraint in A.

Definition 7 (Agent Type). Let ∆C(⪰) = {x ∈ ∆D | Ax ≤ b} where A = [aci,o]1≤c≤m,{i,o}∈N×O

denote the constraint set a preference profile ⪰. Two agents i and j are said to be of the
same type at this profile, if for every constraint 1 ≤ c ≤ m, and for every object o ∈ O, we
have aci,o = acj,o.

Definition 8 (Envy-freeness among agents of the same type). A random assignment x is
envy-free among agents of the same type if for every pair of agents i, j ∈ N of the same type,
xisd(⪰i)xj. A mechanism φ is envy-free for agents of the same type if for every preference
profile ⪰, φ(⪰) is envy-free among agents of the same type.

3.3 The Constrained Serial Rule

We first give a brief intuitive description of the classical probabilistic serial mechanism (Bo-
gomolnaia and Moulin 2001) in the simple house allocation model†. The mechanism is best
described as a continuous time procedure for t ∈ [0, 1]: at each infinitesimal time interval
[t, t + dt), each agent i consumes dt amount of her most preferred object among the set of
objects currently available. When this procedure terminates, the probability that an agent
is assigned an object is given by the fraction of the object consumed by the agent.

†Agents have strict preferences over objects and there are no additional constraints on the assignment.
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While attempting to extend the probabilistic serial mechanism to our general model on
the full preference domain and with arbitrary constraints on the eventual random assignment,
one faces two key challenges. First, when agents have strict preferences, each agent at any
point in time has a unique most preferred object and hence the mechanism can simply
allocate that object to the agent. On the other hand, when agents are indifferent between
two or more objects, the mechanism can no longer uniquely identify an object to assign.
Katta and Sethuraman (2006) deal with this difficulty by constructing a flow graph where
every agent points to her set of most preferred objects and then using a parametric flow
formulation to find a set of bottleneck agents and objects. Intuitively, the set of bottleneck
agents are those that compete the most among themselves and the bottleneck objects are
those desired by bottleneck agents. Once the bottleneck agents have been identified, the
extended probabilistic serial mechanism allocates all bottleneck objects among these agents
uniformly. As in the classic probabilistic serial rule, the mechanism then proceeds by each
bottleneck agent simply pointing to her next most preferred object. A key observation is
that the (extended) probabilistic serial mechanism attempts to assign each agent her most
preferred object for as long as possible. In fact, as observed by Bogomolnaia (2015), one can
provide a welfarist interpretation of the probabilistic serial rule as follows: for any agent i, let
xi(ℓ) be the total probability share of objects that agent i receives for her top ℓ indifference
classes; then the probabilistic serial mechanism leximin maximizes the vector of all such
shares (xi(ℓ))i∈N,k≤E(⪰i). We crucially use this observation in our constrained serial rule
mechanism.

The second challenge arises due to the presence of arbitrary constraints on the space of
feasible random assignments. We observe that at any step of the mechanism, the (extended)
probabilistic serial mechanism always assigns each agent her most preferred object (at that
time). In the presence of constraints, however, it is essential to not allow agents to obtain
their most preferred object if such an allocation leads to infeasibility. More precisely, the
mechanism needs to look ahead in time as it builds up a partial allocation to ensure that there
is at least one way to extend the partial allocation to a feasible assignment. Our constrained
serial rule mechanism uses a linear program that explicitly accounts for all constraints and
at every step maintains a feasible solution.

We now describe the linear program that is used crucially by the mechanism. Let S ⊆ N
denote any subset of agents and let ℓi ∈ {1, 2, . . . , E(⪰i)} for each agent i ∈ N denote an
indifference threshold. Let F be a set of triples that denotes prior promised assignments.
Formally, a triple (i, ℓ, γ) ∈ F indicates that agent i must receive a total probability share of
at least γ from her top ℓ indifference classes. The linear program LP (S, F, (ℓi)i∈N) specified
in Figure 3.1 finds a random assignment x ∈ Rnρ

+ that satisfies all constraints specified by F
in addition to the imposed feasibility constraints and maximizes the total probability share
that each agent i ∈ S receives from her top ℓi indifference classes. The variables hi for
each i ∈ N represent the total probability share received by agent i for objects in her top
ℓi indifference classes. Constraints (3.1) and (3.2) enforce the requirement that the linear
program maximizes mini∈S hi. Constraints (3.3) and (3.4) enforce that the obtained random
assignment is feasible, and finally constraint (3.5) requires the assignment to be consistent
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LP (S, F, (ℓi)i∈S) = maximize
x,h,λ

λ

s.t. hi ≥ λ ∀i ∈ S (3.1)∑
o∈Ti(ℓi)

xi,o ≥ hi ∀i ∈ N (3.2)

Ax ≤ b (3.3)

x ∈ ∆D (3.4)∑
o∈Ti(ℓ)

xi,o ≥ γ ∀(i, ℓ, γ) ∈ F (3.5)

h, λ ≥ 0

Figure 3.1: Linear Program used by the Constrained Serial Rule

with the requirements specified by the triples in F .

3.3.1 Mechanism

We are now ready to describe the constrained serial rule mechanism formally. The mechanism
proceeds in multiple rounds. We initialize F 1 = ∅ and for each agent i ∈ N , we initialize
ℓ1i = 1. Intuitively, ℓti denotes the threshold indifference class for agent i in round t. In
other words, in round t, we consider the total probability share of objects in Ti(ℓ

t
i) assigned

to agent i. Let ht
i denote the total probability share of objects in the top ℓti indifference

classes assigned to agent i. We use the linear program described in Figure 3.1 to find a
feasible random assignment such that mini h

t
i is maximized. The mechanism then identifies

a set Bt of bottleneck agents. Intuitively, these are the set of agents who are responsible
for the LP objective in this round to be only λt. Since we are dealing with arbitrary linear
constraints, our definition of bottleneck agents needs to be more subtle than that of Katta
and Sethuraman (2006). We define Bt to be a minimal set of agents such that solving the
linear program while only attempting to maximize the utility of agents in that set also yields
the same objective value of λt. Our definition of bottleneck agents is central to the validity of
the mechanism as well as its efficiency and fairness properties. Finally, once the bottleneck
set of agents has been identified, we update F t to guarantee that in future rounds each agent
i ∈ Bt obtains at least the promised λt probability share from her top ℓti indifference classes
and then increment the threshold ℓti for all such agents. The mechanism then proceeds to
the next round and the process continues until every agent receives a total probability share
of 1. Algorithm 1 provides a complete formal description of the algorithm.

We provide a simple example run of Algorithm 1 on a constrained allocation problem to
illustrate our constrained serial rule.
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Algorithm 1: The Constrained Serial Rule

Initialize:
t← 1;
ℓti ← 1, ∀i ∈ N ;
F t ← ∅;
for t = 1, 2, . . . do

(xt,ht, λt)← LP (N,F t, (ℓti)i∈N);
if λt = 1 then

x← xt;
terminate;

else
Find a minimal set Bt such that LP (Bt, F t, (ℓti)i∈N) has objective value λt;
Update F t+1 = F t ∪ {(i, ℓti, λt) | i ∈ Bt};

Update ℓt+1
i =

{
ℓti + 1 ∀i ∈ Bt

ℓti otherwise

end

end

Example 1. Consider an allocation problem with three agents N = {1, 2, 3} and three objects
O = {a, b, c}. Our goal is to obtain an assignment that satisfies the usual bistochastic
constraints, i.e.

∑
o∈O xi,a = 1 ∀i ∈ N and

∑
i∈N xi,a = 1 ∀o ∈ O. In addition, there

are two additional constraints as follows: x1,a + x2,a ≤ 0.5 and x1,c + x2,c ≥ 0.5. The agents’
preferences are given as follows.

≻1: a b c

≻2: {a, b} c

≻3: c b a

We illustrate how our mechanism works through this example. In the first round, we
initialize ℓ11 = ℓ12 = ℓ13 = 1 and solve the linear program to find a feasible solution that
maximizes λ1 = min{x1,a, x2,a+x2,b, x3,c}. With the given constraints, one potential optimum
solution assigns x1,a = x2,b = x3,c = 0.5 to obtain λ1 = 0.5. We then proceed to find the set
of bottleneck agents. In this example, either of the singleton sets with agents 1 or 3 could
be the bottleneck set. This is because the constraint x1,a + x2,a ≤ 0.5 prevents agent 1 from
receiving a larger probability share of object a. Similarly, the constraint x1,c + x2,c ≥ 0.5
prevents agent 3 from receiving a larger probability share of object c. Suppose we select agent
1 to be the bottleneck agent. Then, we increment ℓ21 = 2 and maintain ℓ22 = ℓ23 = 1. We also
set F 2 = (1, 1, 0.5) to signify that agent 1 must continue to obtain 0.5 amount of her top
choice.

In the second round, we again solve the linear program to find a feasible solution that
now maximizes λ2 = min{x1,a + x1,b, x2,a + x2,b, x3,c}. As described earlier, agent 3 is unable
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to receive more than 0.5 amount of object c in any feasible solution and hence we obtain
λ2 = 0.5. In this case, agent 3 is the unique bottleneck agent and as earlier we increment her
indifference threshold and add the triple (3, 1, 0.5) to F 3. Similarly, in the third round, we
solve the linear program to find a feasible solution that maximizes λ3 = min{x1,a+x1,b, x2,a+
x2,b, x3,c + x3,b}. However, the constraints x1,a + x2,a ≤ 0.5 and x1,a + x2,a + x3,a = 1 together
imply that x3,a ≥ 0.5 and thus x3,c+x3,b ≤ 0.5. So yet again, we have λ3 = 0.5 and agent 3 is
the bottleneck agent and we increment her indifference threshold and add the triple (3, 2, 0.5)
to F 4.

In the fourth round, the linear program attempts to find a feasible solution that respects
all the constraints in F 4 and maximizes λ4 = min{x1,a+x1,b, x2,a+x2,b, x3,c+x3,b+x3,a}. In
this case, one potential optimum solution assigns x1,a = 0.5, x1,b = 0.25, x2,b = 0.75, x3,c =
0.5, x3,a = 0.25 to obtain λ4 = 0.75. Since the constraint x1,a+x2,a = 0.5 is already tight and
object b has been fully allocated, both agents 1 and 2 are in the bottleneck set in this round.
We increment the indifference threshold of both the agents to obtain ℓ51 = 3 and ℓ52 = 2 and
add the triples (1, 2, 0.75) and (2, 1, 0.75) to F 5.

Finally, in the fifth round, we again solve the linear program to find a feasible solution
that respects all the constraints in F 5 and maximizes λ5 = mini∈N{xi,a+xi,b+xi,c}. Since any
feasible solution satisfies xi,a+xi,b+xi,c = 1, we obtain λ5 = 1 and the mechanism terminates.
The outcome of the mechanism is any feasible solution that satisfies all constraints in F 5.
For this example, the unique such solution is given by the following random assignment.

a b c

1 0.5 0.25 0.25
2 0 0.75 0.25
3 0.5 0 0.5

3.3.2 Properties

We first show that the constrained serial rule presented in Algorithm 1 is well-defined and
always produces a feasible random assignment.

Proposition 3. Algorithm 1 terminates and always produces a feasible random assignment.

Proof. We first observe that in any step t, the LP always has a feasible solution. This is
because, for any t > 1, the solution (xt−1,ht−1, λt−1) from the previous iteration continues
to be a feasible solution; whereas for t = 1, the existence of a feasible solution is guaranteed
since the assignment constraints are assumed to be satisfiable.

In any step t, it is easy to see that the bottleneck set of agents Bt is guaranteed to exist by
observing that the set of all agents N satisfies the required constraint by definition. Further,
we observe that any agent i∗ ∈ N such that ℓti∗ = E(⪰i∗) does not appear in the bottleneck
set Bt. This is because, for any such agent i∗ ∈ N , the linear programs LP (Bt, F t, (ℓti)i∈N)
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and LP (Bt \ {i∗}, F t, (ℓti)i∈N) are actually identical and by definition Bt is the minimal set
that satisfies the condition. Thus in any step t, we increment the indifference threshold of
at least one agent. Finally, by definition of feasible assignment, when ℓti = E(⪰i), ∀i ∈ N ,
we may set ht

i =
∑

o∈O xt
i,o = 1 for all i ∈ N and hence obtain λt = 1 and the algorithm

terminates. Since any agent i ∈ N has E(⪰i) ≤ ρ, the mechanism terminates in at most nρ
rounds.

Finally, since the linear program in Figure 3.1 explicitly maintains the constraints Ax ≤ b
and x ∈ ∆D, the outcome is guaranteed to be feasible.

We then proceed to show two technical lemmas. The first lemma shows that even though
we allow arbitrary linear constraints on the random assignment, the projection of the feasibil-
ity polytope on the h and λ variables satisfies a desirable monotonicity property. Specifically,
the constraints on the h variables can be expressed as a set of linear upper-bound constraints
with only non-negative coefficients.

Lemma 5. Fix any step t of the algorithm. Let P be the polytope defined by the constraints
in LP (Bt, F t, (ℓti)i∈N) and let Q = {(h, λ) | ∃(x,h, λ) ∈ P} be its projection. Then there
exists a non-negative matrix Ã and a non-negative vector b̃ such that

Q =


hi ≥ λ, ∀i ∈ Bt

Ãh ≤ b̃

h, λ ≥ 0

Proof. By the Fourier-Motzkin theorem, we know that Q is also a polytope that can be
obtained from P using Fourier-Motzkin elimination. Since the only constraints involving λ
in P do not contain any x variables, those constraints remain unchanged in polytope Q. Let
Ã = [ãci ] and b̃ = [b̃c] denote the minimal linear constraints on the variables h obtained after
Fourier-Motzkin elimination. We now need to show that Ã and b̃ are non-negative.

We first observe that the polytope Q is downward closed on the h variables, i.e. for any
h′ ≤ h, if (h, λ) ∈ Q then there exists a λ′ ≤ λ such that (h′, λ′) ∈ Q. This is because, by
definition, if (h, λ) ∈ Q then there exists an x such that (x,h, λ) ∈ P . Further, observing
the polytope P (refer to Figure 3.1), it is clear that (x,h′, λ′) also belongs to P where
λ′ = mini∈Bt h′

i, and thus (h′, λ′) ∈ Q.
Now, suppose for contradiction that there exists a constraint c such that the entry ãcj < 0

for some j ∈ N . Since this constraint is not redundant, there exists a vector h̃ ∈ Rn
+ such

that the cth constraint is the only binding constraint, i.e.,
∑

i ã
c
i h̃i = b̃c and further h̃i > 0

for all i ∈ N . Define h′ ∈ Rn
+ as h′

i = h̃i, ∀i ∈ N \ {j} and h′
j = 0. By definition h′ < h̃,

and yet
∑

i ã
c
ih

′
i > b̃c and thus h′ /∈ Q which is a contradiction.

Finally if the matrix Ã is non-negative and the vector b̃ has a negative entry, then the
polytope Q must be empty. Since Q is guaranteed to be non-empty, we must have that b̃ is
non-negative.
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The following lemma demonstrates the importance of our definition of bottleneck agents.
Informally, it states that if Bt is the set of bottleneck agents at some step t of the algorithm,
then no agent in Bt can obtain a higher total allocation for her top ℓti indifference classes
without hurting some other agent in Bt. This lemma is crucial to proving the constrained
serial rule produces constrained ordinally efficient outcomes, and also to demonstrate its
fairness properties.

Lemma 6. Fix any step t of the algorithm and let (xt,ht, λt) denote an optimal solution to
LP (Bt, F t, (ℓti)i∈N). Then ∄ y = (yi,o)i∈N,o∈O ∈ Rnρ

+ such that
1. Ay ≤ b, y ∈ ∆D
2. yi(Ti(ℓ)) ≥ γ, ∀(i, ℓ, γ) ∈ F t

3. yi(Ti(ℓ
t
i)) ≥ λt, ∀i ∈ Bt with atleast one strict inequality.

Proof. Let P be the polytope defined by the constraints in LP (Bt, F t, (ℓti)i∈N). Let Q =
{(h, λ) | ∃(x,h, λ) ∈ P )} be the projection of P on the h and λ variables. By Lemma 5,
there exists a non-negative matrix Ã = [ãci ] and a non-negative vector b̃ such that

Q =


hi ≥ λ, ∀i ∈ Bt

Ãh ≤ b̃

h, λ ≥ 0

By definition, (xt,ht, λt) is an optimal solution to LP (Bt, F t, (ℓti)i∈N). Let h̃ be defined
as h̃i = λt for all i ∈ Bt and h̃i = 0 for all i /∈ Bt. We now have (xt, h̃, λt) is also an optimal
solution to LP (Bt, F t, (ℓti)i∈N). Thus, (h̃, λt) does not lie in the interior of the polytope Q.
Thus at least one of the constraints Ãh ≤ b̃ must be tight at this point, i.e., there exists a
constraint c such that

∑
i∈Bt ãci h̃i = b̃c. We now consider two cases.

Case 1 : ãci > 0 for all i ∈ Bt. Suppose for contradiction that there exists a y that satisfies
the premises of the lemma. For any agent i ∈ N , let h′

i = yi(Ti(ℓ
t
i)), so we have h′

i ≥ λt

for all i ∈ Bt with at least one strict inequality. Thus since (y,h′, λt) is a feasible solution
to LP (Bt, F t, (ℓti)i∈N), we have (y,h′, λt) ∈ P . By definition of Q, we have (h′, λt) ∈ Q.
However, we have ∑

i∈Bt

ãcih
′
i >

∑
i∈Bt

ãciλ
t =

∑
i∈Bt

aci h̃i = b̃c

which is a contradiction to the statement that (h′, λt) ∈ Q.
Case 2 : ãcj = 0 for some j ∈ Bt. Consider the set B′ = Bt \ {j}. We now have∑

i∈B′ ãci h̃i = b̃c. Let P ′ be the polytope defined by the constraints in LP (B′, F t, (ℓti)i∈N)
and Q′ be its projection. Since Bt is the minimal bottleneck set, there exists a (y′, h′, λ′) ∈ P ′

such that λ′ > λt and h′
i = λ′, ∀i ∈ B′. Hence, we have∑

i∈B′

ãcih
′
i >

∑
i∈B′

ãciλ
t =

∑
i∈B′

aci h̃i = b̃c

and thus (h′, λ′) /∈ Q′. But, this contradicts the fact that (y′, h′, λ′) ∈ P ′.
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We are now ready to prove that the constrained serial rule algorithm finds a constrained
ordinally efficient assignment.

Theorem 5. For any preference profile ⪰ and constraint set ∆C(⪰), the outcome of Algo-
rithm 1 is constrained ordinally efficient.

Proof. Let x be the solution of the algorithm for any preference profile ⪰ and constraint set
∆C(⪰). In order to prove that x is constrained ordinally efficient it suffices to show that if
there exists x′ ∈ ∆C(⪰) such that x′

isd(⪰i)xi for all i ∈ N , then x′
i(Ti(ℓ)) = xi(Ti(ℓ)), for

all i ∈ N , for all ℓ ∈ {1, 2, ..., E(⪰i)}. We prove this using contradiction.
For any round t, let (xt,ht, λt) denote the optimal solution to LP (Bt, F t, (ℓti)i∈N). For any

agent i in the bottleneck set Bt, the mechanism fixes the cumulative allocation received by
agent i for her top ℓti indifference classes. Hence we have xi(Ti(ℓ

t
i)) = xt

i(Ti(ℓ
t
i)) = λt. Towards

a contradiction, let t be the first step in the algorithm such that x′
j(Tj(ℓ

t
j)) ̸= xt

j(Tj(ℓ
t
j)) for

some agent j ∈ Bt. Since x′
isd(⪰i)xi for all i ∈ N , it must be that x′

j(Tj(ℓ
t
j)) > xj(Tj(ℓ

t
j)) =

xt
j(Tj(ℓ

t
j)) = λt. Also, we have x′

i(Ti(ℓ
t
i)) ≥ xi(Ti(ℓ

t
i)) = λt for all agents i ∈ Bt with i ̸= j.

Further, since x′ is a feasible random assignment, we have x′ ∈ ∆D and Ax′ ≤ b. Lastly,
since round t is the first time x′ differs from x, x′

i(Ti(ℓ)) = xi(Ti(ℓ)) ≥ γ, ∀(i, ℓ, γ) ∈ F t. This
is in direct contradiction to Lemma 6. Therefore, x is constrained ordinally efficient.

In the presence of arbitrary constraints, the existence of envy maybe inevitable between
any pair of agents if one agent is more constrained than the other. However, as the next
theorem shows we can guarantee envy-freeness among any pair of agents of identical type.

Theorem 6. At any preference profile ⪰, the constrained serial rule guarantees envy-freeness
among agents of the same type.

Proof. Let x denote the outcome of the algorithm. Consider any pair of agents i and j
that are of the same type. Suppose for contradiction that agent i envies j, i.e. there exists
an indifference class ℓ < E(⪰i) such that xi(Ti(ℓ)) < xj(Ti(ℓ)). Let t denote the step of
the algorithm when ℓti = ℓ and agent i is in the bottleneck set Bt. Let (xt,ht, λt) denote
the optimal solution to LP (Bt, F t, (ℓti)i∈N). Since agent i is in the bottleneck set Bt, the
mechanism fixes the cumulative allocation received by agent i for her top ℓ indifference
classes. Hence we have xi(Ti(ℓ)) = xt

i(Ti(ℓ)) = λt.
Let’s consider two cases:
Case 1: Suppose agent j ∈ Bt. We have xj(Tj(ℓ

t
j)) = xt

j(Tj(ℓ
t
j)) = λt. However, as

xj(Ti(ℓ)) > λt, there must exist some object o ∈ Ti(ℓ) \ Tj(ℓ
t
j) such that xj,o > 0.

Case 2: Suppose agent j /∈ Bt. By construction, for any triple (j, ℓ′, γ) ∈ F t, we have
ℓ′ ≤ ℓt−1

j and xj(Tj(ℓ
′)) = γ ≤ λt. Thus, there must exist some object o ∈ Ti(ℓ) \ Tj(ℓ

t−1
j )

such that xj,o > 0.
In either case, since xi(Ti(ℓ)) = λt < 1, there exists some object p /∈ Ti(ℓ) where xi,p > 0.

Let 0 < ε < min{xj,o, xi,p} be some fixed constant. We can now define a new outcome y as
follows. Let yi′,o′ = xi′,o′ for all objects o

′ ∈ O and agents i′ /∈ {i, j}. For agents i′ ∈ {i, j},
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let yi′,o′ = xi′,o′ for all objects o
′ /∈ {o, p}. Let yi,o = xi,o+ε, yi,p = xi,p−ε, and yj,o = xj,o−ε,

yj,p = xj,p+ ε. Since agents i and j are of the same type and we have yi,o′ +yj,o′ = xi,o′ +xj,o′

for all objects o′ ∈ O, we must have Ay = Ax ≤ b. Further, by construction we have
y ∈ ∆D, i.e. y is a feasible outcome. In addition, by our choice of objects o and p, we
have yk(Tk(ℓ)) ≥ xk(Tk(ℓ)) ≥ γ for all (k, ℓ, γ) ∈ F t and also yk(Tk(ℓ

t
k)) ≥ xk(Tk(ℓ

t
k)) for all

k ∈ Bt. However, since yi(Ti(ℓ
t
i)) > xi(Ti(ℓ

t
i)) ≥ λt, this contradicts Lemma 6.

3.3.3 Computational Complexity

As shown in Proposition 3, the mechanism terminates in at most nρ rounds where n and ρ
denote the number of distinct agents and objects respectively. In each round t, the algorithm
solves one instance of the linear program to compute the value of λt. Further, the algorithm
needs to find a set of bottleneck agents Bt. We now show that Bt can be found in polynomial
time by solving a sequence of at most n linear programs.

We recall that Bt is defined as any minimal set of agents such that the objective value of
LP (Bt, F t, (ℓti)i∈N) equals λ

t. Algorithm 2 provides a simple iterative procedure to find such
a minimal set. We first initialize Bt to be the set of all agents. In each step, the algorithm
considers removing an agent i from Bt. If removing such an agent allows the linear program
to obtain a higher objective value, then clearly agent i must belong to the bottleneck set.
On the other hand, if the linear program obtains an objective value of only λt, then agent i
can be safely removed from consideration since by definition Bt \ {i} is a smaller candidate
set.

Algorithm 2: Procedure to find the bottleneck set

Input: F t, (ℓti)i∈N , λ
t as defined in Algorithm 1

Result: Bt: Set of bottleneck agents
Bt ← N ;
for i = 1, 2, . . . , n do

λ← objective value of LP (Bt \ {i}, F t, (ℓti)i∈N);
if λ == λt then

Bt ← Bt \ {i}
end

end
Return Bt

Algorithm 2 terminates in at most n iterations and thus in total each round of the
constrained serial rule requires solving at most (n + 1) linear programs. Algorithm 1 can
thus be executed in time that is polynomial in the size of the constraints, number of agents
and objects.
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3.3.4 Implementability

Randomization in object allocation mechanisms is often used as a tool to incorporate fairness
from an ex-ante perspective. The outcome of the random assignment mechanism is treated
as a probability distribution over deterministic outcomes and an outcome drawn from this
distribution is what gets implemented in practice. By the Birkhoff-von Neumann theorem,
it is well known that every bistochastic random assignment can be implemented efficiently
as a lottery over feasible deterministic assignments, i.e., a deterministic assignment where
every agent is assigned one object and each object is assigned to one agent. However, in
the presence of arbitrary constraints on the random assignment, such a decomposition into
a lottery over deterministic assignments that satisfy those constraints may not exist. The
following example illustrates such a situation.

Example 2. Consider a simple example with one agent, N = {1}, and three objects O =
{a, b, c}. In the presence of constraints x1,a + x1,b ≤ 2/3, x1,b + x1,c ≤ 2/3, and x1,a + x1,c ≤
2/3, a potential feasible solution to the random assignment problem is to set x1,a = x1,b =
x1,c = 1/3. However, it can be readily seen that there exists no deterministic assignment X
that satisfies all three constraints and still obtains X1,a +X1,b +X1,c = 1.

In many practical applications of constrained object allocation, one can show that any
random assignment satisfying these constraints can be represented as a lottery over deter-
ministic assignments that are approximately feasible. For example, for the combinatorial
assignment problem with limited complementarities, Nguyen, Peivandi, and Vohra (2016)
show that one can always decompose a feasible random assignment into a lottery over de-
terministic assignments where the capacity of each object is violated by at most additive
k where k denotes the size of the largest bundle. We discuss such implementation details
where applicable in the specific applications in Section 3.4.

On the other hand, our model of imposing constraints on the random assignment solution
generalizes the approach of imposing constraints on the ex-post deterministic outcomes. As
shown by Balbuzanov (2019), any set of arbitary constraints on the ex-post outcomes can be
represented by a set of linear inequalities on the random assignment. While such a reduction
always exists, we note that it may not be computationally efficient.

3.4 Applications

In this section, we discuss how the constrained serial rule can be applied for several concrete
applications of constrained object allocation.

3.4.1 Unconstrained Object Allocation

We can apply our model to the unconstrained object assignment problem by simply setting
∆C(⪰) = ∆D for all ⪰∈ Rn. In this case, the random assignment output by the constrained
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serial rule coincides with that given by the extended probabilistic serial algorithm of Katta
and Sethuraman (2006).

We first briefly discuss the extended probabilistic serial algorithm. At every round t,
the extended probabilistic serial algorithm constructs a flow network where agents point to
their most preferred objects among the set of objects available at that round. Using the
parametric max-flow algorithm, the algorithm then identifies a bottleneck set of agents X
to be those that satisfy:

X = argmin
Y⊆N

|Γ(Y )|
|Y |

where Γ(Y ) denotes the set of objects that are most preferred by atleast one agent in Y . We
note that this set of agents X is precisely the most constrained set in this round, i.e., an agent
i ∈ X can get exactly |Γ(X)|

|X| (and not more) total probability share from her preferred objects.
In the constrained serial rule algorithm, since there are not other constraints restricting the
random assignments, this same set X of agents will be chosen as the bottleneck set Bt.

3.4.2 Bi-hierarchical Constraints

Budish et al. (2013) considers the object allocation problem with general quota constraints
and identified a large class of constraints called ‘bi-hierarchical constraints’ that are univer-
sally implementable, i.e., any random assignment satisfying these constraints can be imple-
mented as a lottery over deterministic assignments that satisfy the same constraints.

A constraint in their setup is of the form q
S
≤
∑

(i,o)∈S xi,o ≤ qS, where S ⊆ N × O is
a set of agent-object pairs, x is a deterministic assignment, and q

S
, qS are both integers. A

constraint structure H = (S, qS) comprises of collection of such constraints. An additional
requirement on H is that it must include all singleton sets. A constraint structure H is a
hierarchy if for every S, S ′ ∈ H, either S ⊆ S ′ or S ′ ⊆ S or S ∩ S ′ = ∅. Finally, H is a
bi-hierarchy if there exist hierarchies H1,H2 such that H = H1 ∪ H2 and H1 ∩ H2 = ∅.
Budish et al. (2013) proposed the Generalized Probabilistic Serial mechanism for object
allocation with bi-hierarchical quota constraints. However, their mechanism only works for
upper-bound quotas and assumes that all lower bounds q

S
= 0.

In contrast, we can directly use the inequalities in the constraint structure H in our
constrained serial rule algorithm (even in the presence of indifferences in the preference
relations) by defining:

∆C(⪰) = {x ∈ ∆D | q
S
≤
∑

(i,o)∈S

xi,o ≤ qS for all (S, qS) ∈ H} for all ⪰∈ Rn

Thus our algorithm generalizes the approach of Budish et al. even for lower bound quota
constraints. The key technical innovation that allows us to do so lies in the fact that our
algorithm looks ahead in time to ensure that the partial solution obtained at any time leads
to a feasible random assignment.
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3.4.3 Type-Dependent Distributional Constraints

Ashlagi, Saberi, and Shameli (2020) study type dependent distributional constraints that do
not conform to a bi-hierarchical structure. In this setup, every agent i ∈ N is associated
with a type ti ∈ T where T denotes a finite set of types. Let R ⊆ T denote an arbitrary
set of agent types and let o ∈ O denote an arbitrary object. A single constraint is of the
form q

R,o
≤
∑

i∈N |ti∈R xi,o ≤ qR,o, i.e., the mechanism imposes floor and ceiling quotas on

the total allocation of all agents belonging to a specific set of agent types at a given object.
As earlier, it can be readily seen that such distributional constraints can be easily repre-

sented in our framework. Since the constraints do not conform to a bi-hierarchical structure,
the outcome of our mechanism cannot always be implemented as a lottery over feasible de-
terministic assignments. However, as shown by Ashlagi, Saberi, and Shameli (2020), any
random assignment satisfying these constraints can be decomposed into a distribution over
almost feasible deterministic outcomes where every floor and ceiling constraint is violated
by at most |T |.

3.4.4 Explicit Ex-post Constraints

Balbuzanov (2019) considers the problem of random object assignment when we are given an
explicit list of ex-post feasible allocations and the random assignment must be implemented
as a lottery over these allocations. For a preference profile ⪰, let C(⪰) be the set of all
permissible deterministic assignments and ∆C(⪰) be the convex hull of the set C. He shows
that for every C(⪰), there exists a minimal set of constraints parameterized by the matrix
A, with aci,o ≥ 0 for all (i, o) ∈ N×O and constraint c, and the vector b ≥ 0 such that ∆C(⪰
) = {x ∈ ∆D | Ax ≤ b}. He generalizes the probabilistic serial mechanism to incorporate
these inequalities for the case when agents have strict preferences. The constrained serial
rule algorithm generalizes his mechanism to the full preference domain.

3.4.5 Combinatorial Assignment

Another class of problems where our mechanism can be applied to is the problem of allocating
bundles of indivisible objects to agents when preferences exhibit complementarities (Budish
2011; Budish and Cantillon 2012; Nguyen, Peivandi, and Vohra 2016). Formally, let G be
an underlying set of objects, where each object g ∈ G is supplied in qg copies. A bundle

of objects can be represented by a vector in N|G|
+ , where the tth co-ordinate of this vector

corresponds to the number of copies of the object t and N+ = N ∪ {0}. Let O = {o ∈ N|G|
+ |∑

g∈G og ≤ k} now be the set of all bundles of size at most k. We assume that each bundle is
available in a single copy. Each agent i ∈ N is interested in consuming one bundle from the
set O and has a complete and transitive preference ⪰i on the set O. A common application
that fits in this class of problems is the course allocation problem. Every student is to be
assigned a schedule of at most k courses, where each course g has a finite number of seats
qg.
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The set of feasible random allocations can be described by the following set of constraints
that enforce that the total amount allocated of any object g ∈ G is at most its supply qg.
At every preference profile ⪰, we have:

∆C(⪰) = ∆C = {x ∈ ∆D |
∑
i∈N

∑
o∈O

og · xi,o ≤ qg, ∀g ∈ G}

From Definition 7, it is easy to see that all agents under these feasibility constraints are
of the same type. Therefore, the constrained serial rule guarantees constrained ordinally
efficient and envy-free outcomes. Further, as discussed by Nguyen, Peivandi, and Vohra
(2016), any outcome of the mechanism can be implemented as a lottery over deterministic
assignments that violate the supply constraints by at most k − 1.
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Chapter 4

Generalized Hierarchical Exchange
Mechanisms

4.1 Introduction

In this chapter, we consider the same problem setting as in Chapter 2 and look at the canon-
ical house allocation problem. We, however, now focus on deterministic mechanisms and
study the incentive and efficiency considerations of such mechanisms. A complete charac-
terization of the class of strategy-proof and Pareto efficient mechanisms is as yet unknown.
Pápai (2000) proposed the class of hierarchical exchange rules which included existing mech-
anisms – the serial dictatorship mechanism (Svensson 1994; 1999) and the top trading cycles
(TTC) mechanism attributed to Gale by Shapley and Scarf (1974) as special cases. A hier-
archical exchange mechanism can be thought of as imitating a market through an iterative
procedure in which individuals exchange objects from hierarchically determined endowment
sets that closely resembles the TTC mechanism developed in the context of the housing
market∗. She showed that hierarchical exchange mechanisms are strategy-proof, non-bossy,
and Pareto-efficient. Recently, Pycia and Ünver (2017) provided a complete characterization
of strategy-proof, non-bossy and Pareto efficient mechanisms. They showed that this class
can be implemented as trading cycles mechanisms.

Non-bossiness, a criterion introduced by Satterthwaite and Sonnenschein (1981), speci-
fies that an agent cannot change the allocation of other agents without changing her own
allocation†. Indeed if a mechanism is bossy, it may provide agents with incentives to
bribe. Strategy-proofness and non-bossiness were also shown to be equivalent to group-
strategyproofness, a property that states that no coalition of agents can jointly misreport
their preferences such that all of them weakly benefit while at least one agent in the group
strictly benefits. Yet there are some applications where non-bossiness is at odds with individ-

∗The housing market problem is a variant of the house allocation problem where each agent owns an
object.

†See Thomson (2016) for a discussion.
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ual incentives and efficiency. For example, in the housing market problem, when agents’ pref-
erences may exhibit indifferences, there exists no mechanism that is strategy-proof, Pareto ef-
ficient, individually rational, and non-bossy‡ (Bogomolnaia, Deb, and Ehlers 2005; Jaramillo
and Manjunath 2012). Therefore, bossiness may confer some degree of flexibility in designing
desirable mechanisms.

4.1.1 Our Contributions

Our main contribution in this chapter is to explore the set of strategy-proof, Pareto efficient
mechanisms beyond those that are non-bossy as a stepping stone to a complete characteriza-
tion. We generalize the hierarchical exchange mechanisms to construct a large class of mech-
anisms that admit many strategy-proof, Pareto efficient and bossy mechanisms. Through
this generalization, we also encounter many examples of novel mechanisms.

Pycia and Ünver (2017) redefined Pápai (2000)’s hierarchical exchange mechanisms as
TTC mechanisms implemented with a structure of ownership rights. We follow their refor-
mulation and generalize this structure in two ways. First, we introduce flexibility by allowing
ownerships of un-assigned objects to depend on not only the assignments of agents but also
the prevailing preferences of these agents. Second, we equip the mechanism with resolution
rules that determine which agents should be assigned objects in a particular round of the
mechanism. We formulate consistency conditions on the ownership structure and resolution
rules to ensure that the resulting mechanism is strategy-proof.

An important sub-class within this family are mechanisms equipped with identity res-
olution rules. We introduce a concept of local dictatorship and show that this sub-class
characterizes precisely those mechanisms that are strategy-proof, Pareto efficient, and lo-
cally dictatorial.

4.1.2 Related Work

Our work builds on a rich literature on the housing market problem introduced by Shapley
and Scarf (1974) and the housing allocation problem formalized by Hylland and Zeckhauser
(1979). A fundamental class of mechanisms for these problems, serial dictatorships, were
analyzed by Svensson (1994) and Svensson (1999). Svensson (1999) characterize serial dic-
tatorships as the set of all strategy-proof, non-bossy, and neutral mechanisms. Roth (1982)
show that David Gale’s TTC mechanism (reported by Shapley and Scarf 1974) is strategy-
proof. Ma (1994) characterize TTC mechanism as the unique strategy-proof and Pareto
efficient mechanism that satisfies individual rationality. Abdulkadiroğlu and Sönmez (1999)
construct a larger class of strategy-proof, non-bossy, and Pareto efficient mechanisms. Ab-
dulkadiroğlu and Sönmez (2003) extend the TTC mechanism to priority-based allocation
problems. TTC mechanisms have been also been analyzed by Morrill (2013), 2015a. While

‡Alcalde-Unzu and Molis (2011) and Jaramillo and Manjunath (2012) generalize the TTC algorithm to
accommodate indfferences and show that the mechanisms are strategy-proof, Pareto efficiency, and individ-
ually rational.
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all of these mechanisms are non-bossy, several other papers Ergin (2000), Ehlers, Klaus, and
Pápai (2002), Ehlers and Klaus (2007), and Kesten et al. (2012) study mechanisms without
the non-bossiness property. However, in Ehlers, Klaus, and Pápai (2002) and Ehlers and
Klaus (2007), non-bossiness is implied by other assumptions. Morrill (2015b) construct a
strategy-proof and bossy variation of the TTC mechanism.

4.2 Model

Let I = {i1, i2, . . . , in} be the set of agents and let O = {o1, o2, . . . , ok} be the set of objects.
We will often refer to the objects as houses. The sets of agents and objects are assumed
to be fixed and finite. Every agent demands at most one object. Each agent i ∈ I has a
strict preference relation ≻i over O. We denote the preference relation o1 ≻i o2 ≻i . . . ≻i on
as ≻i = ⟨o1, o2, . . . , on⟩. Let ⪰i be the weak preference relation associated with ≻i. Let
Pi denote the set of all strict preference relations of agent i. A set of individual preference
relations of all agents constitutes a preference profile ≻ = (≻i)i∈I . Let P be the set of all
preferences profiles. Let PS be the set of all preference profiles of agents in S ⊆ I. For any
fixed profile ≻, the preferences of a group of agents G ⊂ I is denoted by ≻G. Similarly,
the preferences of agents who are not in G are denoted by ≻−G. Thus, ≻ = (≻G,≻−G).
Throughout the chapter, we assume that there are at least as many objects as agents§.

A house allocation problem is defined by the triple (I, O,P). A submatching σ matches
a subset of agents Iσ ⊂ I to a subset of objects Oσ ⊂ O, i.e., it is a one-to-one function
σ : Iσ → Oσ. For any i ∈ Iσ, σ(i) is the object that agent i is matched with. Similarly,
for any o ∈ Oσ, σ

−1(o) is the agent that object o is matched to. Let ∅ denote the empty
submatching in which no agent is matched. Let S be the set of all submatchings. For any
submatching σ ∈ S, Īσ := I \ Iσ and Ōσ := O \ Oσ are the set of agents and objects not
matched by σ. A matching is a submatching σ where Iσ = I holds. LetM ⊂ S be the set
of all matchings. For convenience, we often refer to a submatching σ ∈ S with the set of
agent - object pairs {(i, o) : σ(i) = o}. A mechanism is a mapping φ : P →M that selects a
matching σ ∈M for every ≻ ∈ P . Let φ(≻)(i) denote the assignment that agent i receives
under the mechanism φ at the preference profile ≻.

A matching σ is Pareto efficient at ≻, if there exists no other matching that makes all
agents weakly better off and at least one agent strictly better off. Formally, a matching
σ ∈ M is Pareto efficient at ≻ if there does not exist another µ ∈ M such that ∀i ∈
I, µ(i) ⪰i σ(i), and for some i ∈ I, µ(i) ≻i σ(i). A mechanism φ is Pareto efficient if
∀ ≻ ∈ P , φ(≻) is Pareto efficient. A mechanism φ is strategy-proof if for all i ∈ I, for every
≻ ∈ P , and for every ≻′ ∈ Pi, φ(≻)(i) ⪰i φ(≻′,≻−i)(i). That is, truth-telling is a weakly
dominant strategy for every agent. A mechanism is bossy if there exist ≻ ∈ P , i, j ∈ I,

§When there are fewer objects than agents, we can assume that O contains a null object, ∅, which has
unlimited copies, and matching with ∅ represents being unmatched. Each agent i ∈ I has a strict preference
relation ≻i over O ∪ {∅} such that she always prefers any object in O to being unmatched. That is, for all
i ∈ G and o ∈ O, o ≻i {∅}.



CHAPTER 4. GENERALIZED HIERARCHICAL EXCHANGE MECHANISMS 42

and ≻ ∈ Pi such that φ(≻)(i) = φ(≻′,≻−i)(i) and φ(≻)(j) ̸= φ(≻′,≻−i)(j). A mechanism
is non-bossy if it not bossy. That is, a mechanism is non-bossy if an agent can change the
matching of other agents without affecting her own assignment.

4.3 Preliminaries

4.3.1 Hierarchical Exchange Mechanisms

The hierarchical exchange mechanisms proposed by Pápai (2000) built upon Gale’s TTC
algorithm (Shapley and Scarf 1974) by allowing agents to own multiple objects and by
defining inheritance rules. As agents with ownership rights get matched with objects in the
TTC algorithm and leave the market, the ownership rights to the remaining objects are
passed on to the other agents according to the inheritance rule. These inheritance rules were
reformulated by Pycia and Ünver (2017) as a collection of ownership mappings. We describe
the idea behind the hierarchical exchange mechanisms following the formulation presented
by Pycia and Ünver (2017).

Formally, a hierarchical exchange mechanism is described through a collection of map-
pings {cσ : Ōσ → Īσ}σ∈S . Once a submatching σ is fixed, cσ(o) specifies the unmatched agent
in Īσ that gains ownership rights to the unmatched object o ∈ Ōσ. We have the following
consistency restrictions on the collection of mappings: For all σ ⊆ σ′ ∈ S, for any i ∈ Īσ′ ,
and for any o ∈ Ōσ′ , if cσ(o) = i, then cσ′(o) = i¶. That is, if an agent owns an object at a
certain submatching, then that agent continues to own that object at a larger submatching,
as long as both the agent and that object are unmatched.

With these ownership structures defined, the mechanism uses the TTC algorithm to find
the allocation. The TTC algorithm is an iterative procedure that allocates objects to agents
in a sequence of rounds. At the beginning of each round, each unmatched object is owned
by some unmatched agent. The ownership mapping for the submatching that was fixed at
the end of the previous round is used to determine who owns every unmatched object. Each
remaining agent now points to her most preferred object among the remaining objects, and
each unmatched object points to the agent who owns it. This gives rise to a directed graph
where at least one cycle exists. The algorithm clears each cycle by assigning every agent in
the cycle the object that she was pointing to. At the end of the round, the algorithm creates
a larger submatching that consists of the submatching that was fixed at the beginning of
the round and the matches determined by clearing the cycles. When all agents are matched,
the algorithm terminates. Since each round matches at least one agent to an object, the
algorithm terminates in finite number of rounds.

Pápai (2000) showed that all hierarchical exchange mechanisms are strategy-proof, non-
bossy and Pareto efficient.

¶The subset relationship over submatchings is defined in the natural way; σ ⊆ σ′ ⇔ Iσ ⊆ Iσ′ and further
∀i ∈ Iσ, σ(i) = σ′(i).
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4.3.2 Motivating Examples

We now present two examples that are strategy-proof, Pareto efficient, and bossy. Through
these examples, we introduce ways to generalize the hierarchical exchange mechanisms to
incorporate bossy mechanisms.

In the first example, we consider a simple generalization of sequential dictatorships.
Sequential dictatorships are a special class of hierarchical exchange mechanisms (Pápai 2000;
Pycia and Ünver 2016). These mechanisms work similar to serial dictatorships in that the
choice of the first dictator is fixed. However, the choice of other dictators that follow can
depend on the assignments of the previous dictators.

Example 1. Suppose there are three agents and three objects. Let I = {i1, i2, i3} and let
O = {o1, o2, o3}. Let agent i1 be the first dictator. If agent i1’s preference is o1 ≻i1 o2 ≻i1 o3,
then the second dictator to follow is agent i2. But if her preference is o1 ≻i1 o3 ≻i1 o2, then
agent i3 is the next dictator. For all of agent i1’s other preferences, the second dictator to
follow is agent i2.

It is easy to see that this mechanism is strategy-proof and Pareto-efficient. However, this
mechanism is bossy. Consider the preference profile where ≻i1 = ≻i2 = ≻i3 = ⟨o1, o2, o3⟩.
In this case, agent i1 gets her most preferred object, o1. Since agent i2 comes second in the
dictatorship sequence, she gets object o2 while agent i3 gets object o3. However, if agent i1
were to change her preference to ≻′

i1
= ⟨o1, o3, o2⟩, she will continue to get object o1. But,

agent i3 now gets object o2 instead of agent i2. Thus, agent i1 is bossy.
Notice that in any hierarchical exchange mechanism, the ownership rights of unassigned

objects are defined at every submatching. At the submatching (i1, o1), the ownership of
other objects o2 and o3 are not allowed to differ based on the prevailing preference of the
matched agent i1. Indeed, by allowing the ownership at the submatching (i1, o1) to depend
on the preference of agent i1, we can continue to get a strategy-proof and Pareto efficient
mechanism.

Recall that in every round of its iterative procedure, the TTC algorithm clears all cycles
that are formed‖. Intuitively, this means that once an agent obtains ownership rights of
some object at a submatching, she retains these rights until the end of the mechanism. In
our second example, we relax this requirement and give a mechanism that is bossy, and yet
remains strategy-proof and Pareto efficient.

Example 2. Consider three agents and three objects. Let I = {i1, i2, i3} and let O =
{o1, o2, o3}. Suppose we have an initial ownership of object oℓ to agent iℓ for ℓ = 1, 2, 3. At
the submatching (i1, o1), agent i3 owns objects o2 and o3. At the submatchings (i2, o2) and
(i3, o3), we maintain the consistency restriction as in a hierarchical exchange mechanism,

‖Even if only one cycle is resolved per round of the algorithm, the consistency restriction on the ownership
structure ensures that the cycles that were not resolved in the previous rounds continue to form in every
subsequent round until they are resolved.
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where every unmatched agent iℓ continues to own the unmatched object oℓ that they pre-
viously owned. In addition, let us suppose that there is a priority ordering over the agents
such that i1 > i2 > i3. Given this structure∗∗, we run the TTC algorithm with one key
modification. In every round, as before, objects point to their owners. However, each agent,
according to the priority ordering defined, points to their most favorite object one at a time.
So with the priority ordering i1 > i2 > i3, first, agent i1 points to her top choice, then i2
points to her top choice and finally agent i3. At the first occurrence of a cycle, the other
remaining agent(s) in the priority ordering are not allowed to point to any object. The
unique cycle in the resulting graph is cleared and the round ends.

This mechanism is strategy-proof and Pareto efficient. Pareto efficiency holds since we
continue to use the TTC algorithm and resolve cycles in which agents get their top choice.
To see strategy-proofness, observe that we maintain the consistency restriction on the own-
erships for agents i1 and i3. Thus, the set of objects that each of these agents could get either
by submitting their true preferences or by changing their preferences, for a fixed profile of
other agents’ preferences, weakly increases with each round. To see that agent i2 cannot
do better by mis-reporting her preference, notice that in any profile where agent i1 prefers
object o1 as her top choice, the cycle where i1 points to o1 and o1 points to i1 is the only
cycle resolved in the first round. Thereafter, agent i3 owns both objects o2 and o3. So agent
i2 always gets the object that agent i3 does not prefer. In all other preference profiles, the
consistency restriction continues to hold for the ownership rights of agent i2. Thus, agent i2
cannot do better by mis-reporting her preferences.

The mechanism is different from any hierarchical exchange mechanism in that the cycle
where i2 points to o2 and o2 points to i2 is never resolved whenever agent i1 is involved in a
cycle. This relaxation of the requirement of clearing all cycles allows us to introduce bossiness
into the mechanism. Consider the preference profile where ≻i1= ⟨o2, o1, o3⟩, ≻i2= ⟨o2, o1, o3⟩
and ≻i3= ⟨o2, o1, o3⟩. In this case, the mechanism allocates o1 to agent i1, o2 to agent i2,
and o3 to agent i3. However, when agent i1 changes her preference to ≻′

i1
= ⟨o1, o2, o3⟩, she

is bossy towards agents i2 and i3. After agent i1 gets object o1, she transfers the ownership
rights for object o2 to i3. This leads to the assignment where agent i2 gets object o3 and
agent i3 gets object o2.

4.4 Generalized Hierarchical Exchange Mechanisms

The examples described in the previous section suggest two ways in which we can generalize
the hierarchical exchange mechanisms to accommodate bossy, strategy-proof, and Pareto
efficient mechanisms. In this section, we formally introduce a large class of mechanisms
called Generalized Hierarchical Exchange Mechanisms that incorporate both these features
and prove that these mechanisms are strategy-proof and Pareto efficient.

∗∗The ownerships at other submatchings are irrelevant, since either, those submatchings never arise given
the initial ownership, or there is only one unmatched agent and one unmatched object remaining.
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Notation. Before we proceed, let us define some extended notation. For any submatching
σ ∈ S and any ≻ ∈ P , let ≻σ := ≻Iσ denote the preferences of the agents matched in σ
and let Pσ be the set of all preference profiles of agents in Iσ. From here on, we will use
term “submatching” to refer to either a σ ∈ S or a pair (σ,≻σ) ∈ S × Pσ. The use of the
specific term will be clear from context. For any pair of submatchings (σ,≻σ), (σ

′, ≻̃σ′), we
say that (σ,≻σ) ⊆ (σ′, ≻̃σ′) ⇐⇒ σ ⊆ σ′ and ∀i ∈ Iσ, we have ≻i = ≻̃i. For any σ ∈ S,
let Ωσ = {ω | ω : Ōσ → Īσ} be the set of all functions that map the unmatched objects in
Ōσ to unmatched agents in Īσ and Hσ = {h | h : Īσ → Ōσ} be the set of all functions from
unmatched agents in Īσ to unmatched objects in Ōσ.

At a submatching (σ,≻σ) ∈ S × Pσ, for any ω ∈ Ωσ and h ∈ Hσ, let Gσ(ω, h) be a
directed graph with vertex set Īσ ∪ Ōσ, where every agent i ∈ Īσ points to h(i) and every
object o ∈ Ōσ points to ω(o). Let C(G) be the set of all cycles in graph G. For any cycle C,
let I(C) be the set of agents in the cycle and let O(C) be the set of objects in the cycle. For
any submatching (σ,≻σ) and any ω ∈ Ωσ and h ∈ Hσ and cycle C ∈ C(Gσ(ω, h)), resolving
or clearing the cycle C means that every agent i ∈ I(C) is matched with the object h(i). We
overload notation and let σ ∪C denote the submatching obtained by resolving cycle C. For
a given submatching (σ,≻σ) ∈ S ×Pσ and ω ∈ Ωσ, let Cω =

⋃
h∈Hσ

C(Gσ(ω, h) be the set of
cycles that can form in all of the graphs, where unmatched objects at σ point to unmatched
agents according to the function ω. Finally, let 2Cωdis be the set of all subsets of cycles such
that the cycles within each subset are disjoint.

Mechanism Description. A generalized hierarchical exchange mechanism utilizes the
TTC algorithm, where agents and objects are matched in trading cycles over a sequence of
rounds. We, however, equip the algorithm with some flexibility. Instead of clearing all cycles
that are formed in a given round, the set of cycles that are resolved are dictated by a cycle
resolution rule.

Definition 9. For a given submatching (σ,≻σ) ∈ S × Pσ and ω ∈ Ωσ, a resolution rule
is a choice correspondence f(σ,≻σ ,ω) : 2Cωdis \ {∅} ⇒ Cω such that for all A ∈ 2Cωdis \ {∅},
f(σ,≻σ ,ω)(A) ⊆ A and f(σ,≻σ ,ω)(A) ̸= {∅}. For brevity, we drop ω from the subscript when it
is clear from context and let f(σ,≻σ) = f(σ,≻σ ,ω(σ,≻σ)).

The assignment produced by the algorithm also depends on the structure of ownership
rights. We now allow the ownership rights to depend on the submatching as well as the
prevailing preferences of the agents in the submatching. That is, the ownership rights are
defined for every pair (σ,≻σ).

Definition 10. A structure of ownership-resolution rights is a collection of mappings
{(ω(σ,≻σ), f(σ,≻σ))|ω(σ,≻σ) ∈ Ωσ and f(σ,≻σ) is a resolution rule}(σ,≻σ)∈S×Pσ

††.

Intuitively, the ownership-resolution rights structure specifies the ownership rights for
each unmatched object at every submatching and further specifies a resolution rule at that

††We only need to define this structure for all σ ∈ S \M.
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submatching to decide which of the cycles formed at that submatching need to be cleared‡‡.

For any ownership rights ω(σ,≻σ), we think of sets in 2
Cω(σ,≻σ)

dis \{∅} as a menu of sets of cycles
that could potentially form when the agents point to their top choice among the remaining
object and the ownership rights are defined by the function ω(σ,≻σ). Then a particular

set A ∈ 2
Cω(σ,≻σ)

dis \ {∅} is interpreted as a set of available cycles that form in a particular
preference profile, and the of these cycles the algorithm chooses to clear the cycles dictated
by the resolution rule f(A).

TTC Algorithm. Fix a preference profile ≻ ∈ P . The TTC algorithm induced by a
structure of ownership-resolution rights {(ω(σ,≻σ), f(σ,≻σ))}(σ,≻σ)∈S×Pσ proceeds as follows:

Initialization: We start with σ0 = ∅. The algorithm recursively constructs submatchings
σk in rounds k = 1, 2, . . ..
Round k: Each remaining object in Ōσk−1 points to its owner defined in ω(σk−1,≻

σk−1 ) and

each remaining agent in Īσk−1 points to her top choice object among the remaining objects in
Ōσk−1. In the directed graph that is obtained, there exists at least one cycle. Let Ck be the
set of cycles formed. We clear all cycles in f(σk−1,≻k−1

σ )(Ck) by assigning each agent in the

cycle the object she is pointing to. Let σk = σk−1 ∪ f(σk−1,≻k−1
σ )(Ck) be formed by the union

of σk−1 and the set of newly determined matches. If σk matches all the agents, i.e., if it is a
matching, then the algorithm terminates and σk is the outcome of the algorithm. Otherwise,
we continue to round k + 1.

Since the number of agents and objects are finite, every agent points to a unique object
and every object points to a unique owner in a round, there always exists at least one cycle
in the directed graph constructed in any round. Moreover, the cycles formed will always
be disjoint. Because we always resolve at least one cycle in every round, the algorithm will
terminate in a finite number of rounds. Observe that in every round, matched agents always
leave the market with their most preferred object among the set of all remaining objects and
thus the resulting assignment is always Pareto efficient. Therefore, given any structure of
ownership-resolution rights, a mechanism that uses the TTC algorithm described above is
Pareto efficient.

To ensure that such a mechanism is strategy-proof, we need to impose additional con-
straints on the structure of the ownership-resolution rights. There are three primary reasons
that ensure that a hierarchical exchange mechanism is strategy-proof. First, when an agent
is part of a cycle that gets resolved in any round, she gets her top choice among all the
objects that remain. Second, an object that is “available” to an agent in some round, mean-
ing that the agent can leave the market with that object in that round by forming a cycle,
continues to be “available” in subsequent rounds as long as that agent is unmatched. Lastly,
an agent can only affect the ownership rights of the unmatched objects after she leaves the

‡‡Recall that in a hierarchical exchange mechanism Pápai (2000), all cycles that are formed at a sub-
matching must eventually be resolved. But we relax this requirement here.
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market with her most preferred object under her reported preference. These three points
ensure that, for a fixed preference profile of the other agents, an agent cannot alter the set
of “available” objects to by mis-reporting her preferences.

Before we translate these ideas into constraints, let us introduce some additional termi-
nology. Fix a structure of ownership-resolution rights {(ω(σ,≻σ), f(σ,≻σ))}(σ,≻σ)∈S×Pσ .

Definition 11 (1-Step Reachability). For any pair of submatchings (σ,≻σ), (σ
′, ≻̃σ′), we

say that (σ′, ≻̃σ′) is 1-step reachable from (σ,≻σ) if (σ,≻σ) ⊆ (σ′, ≻̃σ′) and there exists a
h ∈ Hσ such that σ′ = σ ∪ C(G(ω(σ,≻σ), h)), f(σ,≻σ)(C(G(ω(σ,≻σ), h))) = C(G(ω(σ,≻σ), h)), and
∀i ∈ Iσ′ \ Iσ, ≻̃i ranks h(i) higher than all objects in Ōσ.

If a submatching (σ′, ≻̃σ′) is 1-step reachable from (σ,≻σ), we denote the corresponding
set of cycles by C(σ,≻σ)→(σ′,≻̃σ′ ).

Note that since the ownership function ω(σ,≻σ) determines the edges that point from
objects in Ōσ to agents Īσ, there is be a unique set of cycles C(G(ω(σ,≻σ), h)) that will lead
to 1-step reachability between (σ′, ≻̃σ′) and (σ,≻σ).

Definition 12 (Reachability). We say that (σ′, ≻̃σ′) is reachable from (σ,≻σ) if either

(σ′, ≻̃σ′) = (σ,≻σ) or if there exists as sequence of submatchings (σ(1),≻(1)

σ(1)), (σ
(2),≻(2)

σ(2)

), . . . , (σ(k),≻(k)

σ(k)), where (σ,≻σ) = (σ(1),≻(1)

σ(1)) and (σ′, ≻̃σ′) = (σ(k),≻(k)

σ(k)), such that

(σ(ℓ+1),≻(ℓ+1)

σ(ℓ+1)) is 1-step reachable from (σ(ℓ),≻(ℓ)

σ(ℓ)).

LetR∅ be the set of all submatchings in S that are reachable from the empty submatching
∅. We now impose the following consistency requirements on the structure of ownership-
resolution rights.

Consistency requirements:

1. Consider submatchings (σ,≻σ), (σ
′, ≻̃σ′) ∈ R∅ such that (σ′, ≻̃σ′) is 1-step reach-

able from (σ,≻σ) and let D ∈ 2Cω(σ,≻σ) be any set of cycles such that f(σ,≻σ)(D) =
C(σ,≻σ)→(σ′,≻̃σ′ ).

Let C ∈ Cω(σ,≻σ)
be such that C is disjoint from any cycle in D and C ∈ f(σ,≻σ)(C ∪D).

Then for any object o ∈ O(C) and agent i = ω(σ,≻σ)(o), the following holds: At
all submatchings (σ̃,≻∗

σ̃) that are reachable from (σ′, ≻̃σ′) such that I(C) ⊆ Īσ̃ and
O(C) ⊆ Ōσ̃ , we have ω(σ̃,≻∗

σ̃)
(o) = i.

2. For any set of cycles A ∈ 2
Cω(σ,≻σ)

dis \ {∅} and any C ∈ Cω(σ,≻σ)
such that C is disjoint

from every cycle in A, either f(σ,≻σ)(A ∪ C) = f(σ,≻σ)(A) or C ∈ f(σ,≻σ)(A ∪ C).

By resolving cycles, the TTC algorithm ensures that when an agent leaves the market
she always get matched to her best choice among all the remaining objects. The consistency
property (1) postulates that in a particular round of the TTC algorithm, if an agent can
match to some object and leave the market by changing her preference, then that object
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must remain available to the agent in subsequent rounds as long as the agent is unmatched.
In other words, if an agent can form a cycle in some round and that cycle will be chosen
by the resolution rule in that round, then the ownerships within that cycle must persist in
subsequent rounds. The consistency requirement (2) places restrictions on the resolution
rule. It states that an agent can only influence the ownership-resolution rights structure
in subsequent rounds of the algorithm if that agent can match to an object and leave the
market in this round.

We are now ready to define a Generalized Hierarchical Exchange Mechanism.

Definition 13. A mechanism is a Generalized Hierarchical Exchange Mechanism if its out-
comes are determined by running the TTC algorithm with a structure of ownership-resolution
rights that satisfy consistency requirements (1) and (2).

We now present two lemmas that are useful in proving the strategy-proofness of our class
of mechanisms. The following lemma states that for a fixed preference profile of agents,
the submatchings that are formed in any two consecutive rounds of the TTC algorithm
satisfy our notion of 1-step reachability. As a consequence, larger submatchings formed in
the subsequent rounds of the algorithm are reachable from the smaller submatchings formed
in the previous rounds.

Lemma 7. Fix a preference profile ≻. For any two consecutive rounds k and k + 1 of the
TTC algorithm, (σk+1,≻σk+1) is 1-step reachable from (σk,≻σk).

Proof. Let Ck+1 = {C1, C2, . . . , Cm} be the set of cycles formed in round k+1 of the algorithm
and suppose the algorithm resolves cycles C̃k+1 := f(σk,≻

σk )(Ck+1) ⊆ Ck+1 in round k+1. By

definition, we have that σk+1 = σk ∪ C̃k+1.
Without loss of generality, let C̃k+1 = {C1, C2, . . . , Cn} for some n ≤ m. We first prove

the following claim.

Claim 1. f(σk,≻
σk )(C̃k+1) = C̃k+1

Proof. We use the consistency requirement (2) to prove this claim. If n = m, then C̃k+1 =
Ck+1 =⇒ f(σk,≻k

σ)
(C̃k+1) = C̃k+1.

Suppose n < m. Since Cn+1 /∈ f(σk,≻
σk )(Ck+1), by the consistency requirement (2), we

know that f(σk,≻k
σ)
(Ck+1 \ {Cn+1}) = f(σk,≻k

σ)
(Ck+1) = C̃k+1. Similarly, since Cn+2, . . . , Cm /∈

fσk,≻
σk
(Ck+1), we can iteratively remove all these cycles to show fσk,≻

σk
(C̃k+1) = fσk,≻

σk
(Ck+1\

{Cn+1, . . . , Cm}) = fσk,≻
σk
(C̃k+1) = C̃k+1.

We can define a function h : Īσk → Ōσk where every agent in I(C̃k+1) continues to point to
the object that she was pointing to in round k+1 of the algorithm while all the other agents in
Īσk \I(C̃k+1) point to some object in O(C̃k+1). In this case, the set of cycles C(G(ω(σk,≻k

σ)
, h))

that form are exactly equal to C̃k+1. Since σk+1 = σk ∪ C̃k+1, I(C̃k+1) = Iσk+1 \ Iσk . So,
∀i ∈ I(C̃k+1), h(i) continues to point to i’s top choice among all remaining objects in Ōσk .
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Additionally we also know that, (σk,≻k
σ) ⊆ (σk+1,≻k+1

σ ). Hence, the claim follows.

The next lemma is key in proving strategy-proofness. It states that as long as an agent is
unmatched, she cannot influence the ownerships of the objects by choosing which preferences
to report. For any ≻ ∈ P , let TTCk(≻) be the submatching that the algorithm constructs
in round k under the preference profile ≻.

Lemma 8. Suppose an agent i ∈ I is unmatched at end of some round k of the TTC
algorithm under preference profiles ≻ = (≻i,≻−i) and ≻′ = (≻′

i,≻−i). Then TTCk(≻) =
TTCk(≻′).

Proof. We can prove this lemma by induction on the round k. Let Ck, C ′k be the set of cycles
that are formed in round k of the algorithm under ≻ and ≻′ respectively.

Base Step: At the beginning of the TTC algorithm, since we have TTC0(≻) = TTC0(≻′

) = ∅, the same initial ownerships are used under both the preference profiles. Since agent i
is unmatched at the end of round 1, we have the following three cases:

1. Agent i does not form a cycle in round 1 under both ≻ and ≻′.

In this case, C1 = C ′1 =⇒ f∅(C1) = f∅(C ′1). Thus, TTC1(≻) = TTC0(≻) ∪ f∅(C1) =
TTC0(≻′) ∪ f∅(C ′1) = TTC1(≻′).

2. Agent i forms a cycle in round 1 under ≻ but does not form a cycle under ≻′.

Let C be the cycle that agent i forms under ≻. We have C1 = C ∪ C ′1 since the cycles
that form under ≻′ continue to form under ≻. By the consistency requirement (2),
since agent 1 is unmatched, C /∈ f∅(C1) =⇒ f∅(C ′1) = f∅(C ∪ C ′1) = f∅(C1). Thus,
TTC1(≻) = TTC1(≻′).

3. Agent i forms a cycle in round 1 under both ≻ and ≻′.

Let C,C ′ be the cycle that agent i forms under ≻ and ≻′ respectively. We have C1 \C =
C ′1 \ C ′. Again by consistency requirement (2), since C /∈ f∅(C1) and C ′ /∈ f∅(C ′1) =⇒
f∅(C1) = f∅(C1 \ C) = f∅(C ′1 \ C ′) = f∅(C ′1). Therefore, TTC1(≻) = TTC1(≻′).

Induction Step: Suppose the lemma is true for round k − 1. We need to prove that the
lemma is true for round k. At the end of round r − 1, we have TTCk−1(≻) = TTCk−1(≻′

) = σk−1. Since the same agents are matched at the end of round r − 1 under both profiles
and agent 1 is not matched, the same submatching (σk−1,≻σk−1) forms under the profiles ≻
and ≻′. Hence the ownership rights function ω(σk−1,≻

σk−1 ) and resolution rule f(σk−1,≻
σk−1 )

that are used in round k are the same under ≻ and ≻′. We can use the same three cases as
in the base step and show that TTCk(≻) = TTCk(≻′).
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We now present our main result of this section.

Theorem 7. Every Generalized Hierarchical Exchange Mechanism is strategy-proof and
Pareto efficient.

Proof. Consider a Generalized Hierarchical Exchange Mechanism φ with a structure of own-
ership - resolution rights {(ω(σ,≻σ), f(σ,≻σ))}(σ,≻σ)∈S×Pσ . We first show that φ is Pareto ef-
ficient. We can use a recursive argument to prove Pareto efficiency. In the first round of
the TTC algorithm, all agents that leave the market are matched with their most preferred
object. In any round t > 1, any agent i matched in that round leaves the market with her
most preferred object among all the remaining objects. The only way to assign an object
that she strictly prefers to her current assignment is to match her with an object that has
already been matched to some agent j in a prior round t′ < t and would thus make agent j
worse off.

To show strategy-proofness, fix an agent i ∈ I. Consider a preference profile ≻ = (≻i

,≻−i) ∈ P . We need to show that i cannot benefit by submitting preference ≻′
i ̸= ≻i while

others continue to report ≻−i. Let ≻′ = (≻′
i,≻−i).

Suppose agent i is matched in rounds t and t′ of the TTC algorithm when she reports ≻i

and ≻′
i respectively. By Lemma 8, at the end of the round just before round min{t, t′}, we

obtain the same submatching. Let that submatching be (σmin{t,t′}−1,≻σmin{t,t′}−1). Therefore,
the same set of objects and agents remain in the market and the ownership rights and the
resolution rule are the same under ≻ and ≻′. We consider two cases:

1. t′ < t:

In this case min{t, t′} = t′. Let φ(≻′)(i) = o. Since agent i is matched in round t′

under profile ≻′, let C ′ := (i1 → o1 → i2 . . .→ on → i) where i1 = i and o1 = o be the
cycle formed at time t′ that contains agent i. Since agent i is not matched in round
t′ when she reports her true preference ≻i, there exist other cycles that are formed in
round t′ of the algorithm when agent i reports ≻′

i. Let Ct′ be the set of other cycles
that are formed in round t′ of the algorithm under ≻′.

Note that, these cycles continue to form in round t′ of the algorithm when agent i
reports ≻i. Let (σt′ ,≻σt′ ) be the submatching that is formed at the end of round t′

when agent i reports her true preference ≻i. Since agent i is not matched in round t′,
either agent i does not form a cycle in that round or she forms some cycle that is not
resolved. In any case, we have σt′ = σt′−1 ∪ f(σt′−1,≻

σt′−1 )
(Ct′).

By Lemma 7, (σt′ ,≻σt′ ) and all submatchings formed by the algorithm until round t−1
under profile≻ are reachable from (σt′ ,≻σt′ ). Further since C ′ ∈ f(σt′−1,≻

σt′−1 )
(C ′∪Ct′),

by the consistency requirement (1), at the submatching (σt′ ,≻σt′ ) we have that ∀j =
1 . . . n−1, ω(σt′ ,≻

σt′ )
(oj) = ij+1 and ω(σt′ ,≻

σt′ )
(on) = i1 = i. Also note that ∀j = 2 . . . n,

agent ij has oj as her most preferred remaining object. Thus, in the directed graph
constructed by the TTC algorithm in round t′ + 1, the unique path originating from
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object o = o1 must include agent i. Consequently objects {o1, . . . , on} and agents
{i2, . . . , in} cannot get matched in round t′+1 unless agent i is also matched. A similar
argument shows that objects {o1, . . . , on} and agents {i2, . . . , in} remain unmatched
until the beginning of round t. Since agent i leaves the market with her top choice
among all remaining objects in round t, we have φ(≻)(i) ⪰i o.

2. t ≤ t′:

In round t, submitting her true preference ≻i gives agent i her top choice among all
the remaining objects. Therefore, she cannot be better off by reporting ≻′

i.

Thus, the mechanism is strategy-proof.

4.5 Examples

In Section 4.5.1, we first present some examples of cycle resolution rules that satisfy the
consistency requirement (2). Later, in Section 4.5.2, we show how these resolution rules
along with appropriate ownership rights structure can be used to describe the hierarchical
exchange mechanisms (Pápai 2000; Pycia and Ünver 2017), generalizations of sequential
dictatorships, as well as a novel class of strategy-proof and Pareto efficient mechanisms
called “Priority Trading Mechanisms”.

4.5.1 Resolution Rules

Recall from Definition 9, that a resolution rule for a set of cycles C is simply a choice
correspondence f : 2C \{∅}⇒ C such that for all A ∈ 2C \{∅}, f(A) ⊆ A and f(A) ̸= ∅. The
consistency requirement (2) states that ∀A ∈ 2C \ {∅} and C ∈ C, either f(A∪{C}) = f(A)
or C ∈ f(A ∪ {C}). In what follows, we give two examples of resolution rules that satisfy
this property.

Example 1 (Identity). For all A ∈ 2C\{∅}, f(A) = A. That is, all cycles that are formed
in any round of the algorithm are always resolved. In this case, the consistency requirement
(2) is trivially satisfied.

Example 2 (Rational Choice Functions). It is well-known in the choice theory litera-
ture that Sen’s α and Sen’s β are necessary and sufficient conditions for rationalizability of
choice functions Sen’s α, also known as, Independence of Irrelevant Alternatives, states that
for any A,B ∈ 2C \ {∅}, if X ∈ A ⊆ B and X ∈ f(B), then X ∈ f(A). Sen’s β condition
states that if X, Y ∈ f(A), A ⊆ B, and Y ∈ f(B), then x ∈ f(A). Interestingly, in the
following proposition we show that if a resolution rule satisfies these two properties then the
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resolution rule satisfies our consistency requirement (2). In other words, if there is a com-
plete preference relation ≽≽≽ on the set of cycles such that f(A) = {X ∈ A | X ≽≽≽ Y ∀Y ∈ A},
then the induced resolution rule satisfies consistency requirement (2).

Proposition 4. For any submatching (σ,≻σ) ∈ S×Pσ, if the resolution rule f(σ,≻σ) satisfies
Sen’s α and Sen’s β, then f(σ,≻σ) satisfies consistency property (2).

Proof. Suppose C /∈ f(A ∪ {C}). We want to show that f(A ∪ {C}) = f(A).
Consider X ∈ f(A∪{C}). We know that X ∈ A. By Sen’s α, we have X ∈ A ⊆ A∪{C}

and X ∈ f(A∪ {C}) =⇒ X ∈ f(A). This implies that f(A∪ {C}) ⊆ f(A). If |f(A)| = 1,
then f(A ∪ {C}) = f(A) since f(A ∪ {C}) ⊆ f(A) and |f(A ∪ {C})| ≠ 0.

Suppose |f(A)| > 1. Let X ∈ A be such that X ∈ f(A ∪ {C}) ⊆ f(A). Consider
any other Y ∈ f(A). By Sen’s β, we must have Y ∈ f(A ∪ {C}) and thus we have
f(A) ⊆ f(A ∪ {C}) and the proposition follows.

4.5.2 Example Mechanisms

We now present examples of three classes of mechanisms that are captured by Generalized
Hierarchical Exchange Mechanisms.

Hierarchical Exchange Mechanisms. It can be readily seen that any Hierarchical Ex-
change Mechanism can be expressed as a Generalized Hierarchical Exchange mechanism.
Indeed, in this case, the resolution rule at all submatchings is simply the identity function as
all cycles that are formed in a round get cleared. Further, in a hierarchical exchange mecha-
nism, at any submatching σ, if an agent i owns object o, then that agent continues to own o
in all submatchings σ′ ⊇ σ. Let {cσ}σ∈S denote the ownership rights that define a particular
hierarchical exchange mechanism. Then it can be verified easily that the ownership rights
structure defined by ∀σ ∈ S,∀ ≻σ∈ Pσ, ω(σ,≻σ) := cσ satisfies the consistency requirement
(1).

Generalized Sequential Dictatorships. Following Example 1 from Section 4.3, we can
generalize sequential dictatorships to incorporate a large class of bossy, strategy-proof, and
Pareto efficient mechanisms. In a generalized sequential dictatorship, we first choose an
initial dictator i ∈ I who chooses her top choice from all the objects. Then, depending on
her assignment and reported preference ≻i, the second dictator j ̸= i ∈ I is chosen. The
choice of the third dictator k ∈ I \ {i, j} depends on the assignment of agents i and j and
their reported preferences ≻i and ≻j. This process continues until all agents are matched to
an object.

Any generalized sequential dictatorship can be cast as a Generalized Hierarchical Ex-
change Mechanism in the following way: ∀(σ,≻σ) ∈ S × Pσ, ∀o, o′ ∈ Ōσ, ω(σ,≻σ)(o) =
ω(σ,≻σ)(o

′). That is, at any submatching, a particular unmatched agent (the dictator) owns
all unmatched objects. With this structure of ownerships, at any submatching (σ,≻σ),
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2
Cω(σ,≻σ)

dis only includes singleton subsets of cycles. Therefore, the consistency requirements
(1) and (2) are trivially satisfied.

Priority Trading Mechanisms. We extend Example 2 from Section 4.3 to define a new
class of mechanisms called Priority Trading Mechanisms. A Priority Trading Mechanism
is defined by (π, {ω(σ,≻σ)}(σ,≻σ∈S×Pσ)), where π is a strict priority ordering over the agents,
with π(i) = 1 if agent i has the highest priority and π(i) = n if agent has the lowest priority.
At every submatching (σ,≻σ), we define an ownership function ω(σ,≻σ) of unmatched houses
to agents. The mechanism uses a modified TTC algotithm and proceeds as follows: At every
round, unmatched objects point to their owners specified by the ownership function. Each
agent, following the priority order, points to her most favorite object, one agent at a time.
At the first occurrence of a cycle, no other agent remaining according to the priority order
is allowed to point to any objects. The cycle is resolved and the round ends. At the next
round, given the new submatching, the ownership structure is determined and the round
proceeds as before. The consistency requirement for ownerships across rounds is defined for
for any pair of (σ,≻σ) ⊆ (σ′, ≻̃′

σ) as follows: Let agent j be the last agent in π such that
j ∈ σ′. For all i ∈ Īσ′ such that π(i) ≤ π(j), we have if i owns an object in (σ,≻σ) then i
owns that object in (σ′, ≻̃′

σ).
A Priority Trading Mechanism with structure (π, {ω(σ,≻σ)}(σ,≻σ∈S×Pσ)) can be expressed

as a Generalized Hierarchical Exchange Mechanism. At every submatching (σ,≻σ), we
can define the same ownership function as in the priority trading mechanism. Since the
agents point to their most preferred object one at a time according to the priority order, the
resolution rule now depends this priority order π as follows: Given a set of disjoint cycles C,
for any A ∈ 2C \{∅}, f(A) := argminC∈Amaxi∈I(C) π(i)). Note that the same resolution rule
is utilized at all submatchings. To see that the rule satisfies consistency requirement (2),
observe that the resolution rule always selects a single cycle from a set of cycles. Thus, Sen’s
β is trivially satisfied. Additionally, we can always verify that f satisfies Sen’s α. Note that
in a priority trading mechanism, the ownerships of the agents, who get a chance to point to
their top choice in any round, persist in subsequent rounds and thus it can be verified that
consistency requirement (1) is also satisfied.

4.6 Characterization

In this section, we characterize Generalized Hierarchical Exchange Mechanisms with identity
resolution rules. Indeed, as shown in Section 4.5, many known mechanisms such as Papai’s hi-
erarchical exchange mechanisms, serial dictatorships, Gale’s TTC mechanisms belong to this
sub-class of mechanisms. Recall that identity resolution rules for a Generalized Hierarchical
Mechanism are those resolution rules that satisfy: for all submatchings (σ,≻σ) ∈ S ×P , for
all A ∈ 2

Cω(σ,≻σ)

dis \ {∅}, f(σ,≻σ)(A) = A.
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We now define a new notion of local dictatorship to help us with the characterization.
Given a mechanism φ, we say that agent j envies agent i at ≻ ∈ P if φ(≻)(i) ≻j φ(≻)(j).
In other words, an agent j envies another agent i at preference profile ≻ if she prefers i’s
assignment to her own assignment. We say that agent j affects agent i at ≻ ∈ P , if there
exists some ≻′

j ∈ Pj such that φ(≻)(i) ̸= φ(≻′
j,≻−j)(i).

Definition 14 (locally dictatorial). A mechanism φ is locally dictatorial if for all ≻ ∈ P,
for any agent i ∈ N , if there exists another agent j ∈ N such that j envies i at ≻, then j
does not affect i at ≻.

Intuitively, a locally dictatorial mechanism is one in which at every profile≻ ∈ P , there is
a priority ordering over agents such that every agent receives their most preferred remaining
object in this priority order. In addition, this priority ordering forms a “dictatorship” in the
sense that if some agent j envies an agent i that arrives earlier in the priority ordering, then
j cannot affect the allocation received by agent i. We remark that Pápai (2000) shows that
all strategy-proof, Pareto efficient, reallocation-proof and non-bossy mechanisms are locally
dictatorial. Since she showed that all mechanisms with these properties are hierarchical
exchange mechanisms, the following lemma is a strict generalization of Lemma 7 from Pápai
(2000).

Lemma 9. Every Generalized Hierarchical Exchange Mechanism with identity resolution
rules is locally dictatorial.

Proof. Consider a Generalized Hierarchical Exchange Mechanism φ := φω,f with structure of
ownership-resolution rights {(ω(σ,≻σ), f(σ,≻σ))}(σ,≻σ)∈S×Pσ , where at each submatching (σ,≻σ

), f(σ,≻σ) is a identity resolution rule.
Consider a preference profile ≻ ∈ P where there exist i, j ∈ I such that j envies i.

Suppose i is matched in round t of the TTC algorithm and φ(≻)(i) = o. Since j envies i
it must be that j is matched in round t′ > t. Consider any preference ≻′

j of agent j. Let
≻′ = (≻′

j,≻−j). We need to show that φ(≻′)(i) = o.
If in the profile ≻′, agent j is matched in round t′′ ≥ t, then by Lemma 8, we know that

the same submatchings form under ≻ and ≻′ in round t of the TTC algorithm. Therefore,
φ(≻′)(i) = φ(≻)(i) = o and agent j does not affect agent i.

On the other hand, suppose that in profile ≻′, agent j is matched in round t′′ < t.
Let (σr,≻σr) and (σ′

r,≻′
σ′
r
) be the submatchings that are formed in round r of the TTC

algorithm for profiles ≻ and ≻′ respectively. Let Gr and G′
r denote the directed graphs

formed in round r by the TTC algorithm for preferences ≻ and ≻′ respectively and recall
that the submatchings (σr,≻σr) and (σ′

r,≻′
σ′
r
) are obtained by resolving the cycles formed

in graphs Gr and G′
r respectively. Finally, for any agent k, let out(Gr, k) denote the set of all

nodes u in graph Gr such that there is a directed path from k to u in the graph (we define
k ∈ out(Gr, k)). We observe that, by construction, the set of nodes in out(Gr, k) always
form a single directed path that terminates in a cycle in Gr.
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We first observe that consistency requirement 1 and the identity resolution rules imply
that for any pair of nodes u, v ∈ Gr+1 such that edge u→ v exists in graph Gr, we also have
that u → v exists in graph Gr+1 (and similarly for G′

r and G′
r+1). To see this, note that

the consistency rule implies that for any object a that is unmatched at round r + 1, if a is
owned by agent k at round r, then a must continue to be owned by agent k at round r + 1.
Also agents always point to their most preferred object and the set of remaining objects only
decreases between rounds. We now show the following claim.

Claim 2. In any round r of the TTC algorithm such that t′′ ≤ r ≤ t, we have the following:

1. Submatching (σ′
r−1,≻′

σ′
r−1

) is reachable from (σr−1,≻σr−1).

2. For any agent k ∈ Īσr−1, either out(Gr, k) = out(G′
r, k) or j ∈ out(Gr, k).

Proof. We prove this claim by induction on round r.
Base Step: Round r = t′′.
Since agent j is matched in round t′′ of the algorithm under ≻′, we know by Lemma 8

that the same submatchings are formed at the beginning of round t′′ under ≻ and ≻′. That
is, (σt′′−1,≻σt′′−1

) = (σ′
t′′−1,≻σ′

t′′−1
) and hence the first part of the claim is trivially true.

Since only agent j changes her preference between ≻ and ≻′, the graphs Gt′′ and G′
t′′ are

identical with the exception of the edge leaving from agent j. Thus we have the second part
of the claim.

Induction Step: Round r + 1.
Suppose the claim is true for round r < t. We need to show that the claim continues

to hold true for round r + 1. Let Cr and C ′r denote the set of cycles in graphs Gr and G′
r

respectively. We note that since agent j is not matched in round r under the profile ≻, we
know that j is not a part of any cycle in Cr. Thus, by the induction hypothesis, any cycle
C ∈ Cr is also formed in the graph G′

r, and thus we have (σr,≻σr) ⊆ (σ′
r,≻′

σ′
r
) and the first

part of the claim follows.
Consider any node u in graph Gr that is not a part of any cycle in Cr. We observe that

consistency requirement 1 implies that any such node u continues to have the same out-
neighbor in graph Gr+1 unless its out-neighbor is part of a cycle in Cr (and similarly for G′

r

and G′
r+1). Consequently we have that for any node k ∈ Īσr , out(Gr, k) \ Cr ⊆ out(Gr+1, k).

Hence for any node k ∈ Īσr , j ∈ out(Gr, k) implies that j ∈ out(Gr, k) \ Cr (since j is not
part of any cycle in Cr) which in turn implies that j ∈ out(Gr+1, k).

Consider any node k ∈ Īσr such that j /∈ out(Gr, k). Since out(Gr, k) always forms a
directed path that ends in some cycle, let u→ v denote the edge on this path such that v is
in the cycle but u is not. Suppose that the out-neighbor of u in graph Gr+1 is some vertex
w. We have the following two cases. (i) If j ∈ out(Gr, w), then j ∈ out(Gr+1, k) and we
are done. (ii) If j /∈ out(Gr, w), then since (σ′

r,≻′
σ′
r
) is reachable from (σr,≻σr), we know

that the edge u→ w exists in both Gr+1 and G′
r+1. Further by the induction hypothesis, we

have out(Gr, w) = out(G′
r, w). If w ∈ out(Gr, k), then we have out(Gr+1, k) = out(G′

r+1, k)
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as desired. Otherwise, out(Gr, w) must again end in some cycle. In that case, repeating the
same argument again, we obtain the desired claim.

Note that since j envies i and is matched in round t′ > t, we have that j /∈ out(Gr, i)
in any round r ≤ t. Therefore, by Claim 2, out(Gr, i) = out(G′

r, i) for any round r ≤ t.
In particular, out(Gt, i) = out(G′

t, i) and therefore φ(≻)(i) = φ(≻′)(i). That is, j does not
affect i.

We now present our main characterization result of this section.

Theorem 8. A mechanism is strategy-proof, Pareto efficient, and locally dictatorial if and
only if it is a Generalized Hierarchical Exchange Mechanism with identity resolution rules.

Proof. We first prove the sufficiency direction of the theorem.
Sufficiency. Consider a Generalized Hierarchical Exchange Mechanism φω,f with iden-

tity resolution rules. From Theorem 7, we know that φω,f is strategy-proof and Pareto
efficient. In addition, Lemma 9 shows that φω,f is locally dictatorial.

Necessity. Let φ be a strategy-proof, Pareto efficient, and locally dictatorial mecha-
nism. We will show that φ is a Generalized Hierarchical Exchange Mechanism with identity
resolution rules in three steps.

Step 1: Construction of {(ω(σ,≻σ), f(σ,≻σ))}(σ,≻σ)∈S×Pσ

For any agent i, let Po
i ⊆ Pi be the set of preference relations where object o is agent i’s

most preferred object. For any submatching (σ,≻σ) and any object o ∈ Ōσ, let Po
σ̄ = {≻

:= (≻i)i∈Īσ | ≻i ∈ Po
i } be the set of all preference profiles of unmatched agents such that all

agents have object o as most preferred. We define the ownership function ω(σ,≻σ) : Ōσ → Īσ
as follows: For any o ∈ Ōσ, let ω(σ,≻σ)(o) = i if for all ≻σ̄ ∈ Po

σ̄, we have φ(≻σ,≻σ̄)(i) = o.
Otherwise, let ω(σ,≻σ)(o) = k where k is an arbitrary agent in Īσ. For any (σ,≻σ) ∈ S ×Pσ,
let f(σ,≻σ) be the identity resolution rule.

Step 2: Generalized Hierarchical Exchange Mechanism with {(ω(σ,≻σ), f(σ,≻σ))}(σ,≻σ)∈S×Pσ

equals φ
Let φ(ω,f) be the Generalized Hierarchical Exchange Mechanism with the structure of

ownership-resolution rights {(ω(σ,≻σ), f(σ,≻σ))}(σ,≻σ)∈S×Pσ defined in Step 1. In this step, we
will show that for all ≻ ∈ P , φ(≻) = φ(ω,f)(≻).

Fix a preference profile ≻ ∈ P . Let T be the last round when the TTC algorithm
described in Section 4.4 terminates. In mechanism φ(ω,f), the TTC algorithm starts with
σ0 = ∅ and iteratively constructs submatchings σt in rounds t = 1, 2, . . . , T . Using induction,
we will show that for all rounds t ≤ T , for all i ∈ Iσt , φ(≻)(i) = φ(ω,f)(≻)(i). Further, at
the end of any round t < T , the ownership function ω(σt,≻σt ) is well-defined in the sense that
it never assigns any object o ∈ Ōσt to an arbitrary agent (called k in Step 1).
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Base Step: Round 0.
The statement is vacuously true since we start with σ0 = ∅ which implies that Iσ0 = ∅.

We know that Īσ0 = I and Ōσ0 = O. Consider any o ∈ O. Let ≻ ∈ Po
σ̄0 be an arbitrary

profile where all agents have o as their most preferred object. By Pareto efficiency, there must
exist an agent i ∈ I such that φ(≻)(i) = o. We now argue that ∀ ≻′ ∈ Po

σ̄0 , φ(≻′)(i) = o.
Let ≻′∈ Po

σ̄0 be an arbitrary profile. Indeed, by strategyproofness, for the profile (≻′
i

,≻−i) ∈ Po
σ̄0 , we must have φ(≻′

i,≻−i)(i) = o. Consider any agent j ̸= i. Since j envies i
at ≻ and φ is locally dictatorial, agent j cannot affect the assignment for agent i, and thus
φ(≻′

i,≻′
j,≻I\{i,j})(i) = o. Continuing this way and changing the preferences of each agent

j ̸= i one by one, we obtain φ(≻′)(i) = o as desired.
Induction Step: Round t+ 1.
Fix t < T . Suppose that for all i ∈ Iσt , φ(≻)(i) = φ(ω,f)(≻)(i) and that at the end of

round t, the ownership function at submatching (σt,≻σt) is well-defined.
Let Pσ̄ be the set of all preferences profiles for agents in Īσ. First, we prove the following

claim.

Claim 3. For all i ∈ Īσt, for all o ∈ Ōσt such that ω(σt,≻σt )(o) = i, for all ≻′ ∈ Pσ̄t,
φ(≻σt ,≻′)(i) ⪰′

i o.

Proof. Fix i ∈ Īσt , o ∈ Ōσt such that ω(σt,≻σt )(o) = i. By the induction hypothesis, we
know that the construction of ω(σt,≻σt ) is well-defined. Thus for any ≻̄ ∈ Po

σ̄t , we have
φ(≻σ, ≻̄)(i) = o. Consider any agent j ∈ Īσt \ {i}. Since j envies i at (≻σ, ≻̄), j cannot
affect i and hence we have φ(≻σ,≻′

j, ≻̄−j)(i) = o. Again, continuing this way and changing
the preferences of each agent j ̸= i one by one and finally changing the preference of agent
i, we obtain the claim.

Since we have assumed that for all i ∈ Iσt , φ(≻)(i) = φ(ω,f)(≻)(i), it is enough to show
that for all i ∈ Iσt+1 \ Iσt , φ(≻)(i) = φ(ω,f)(≻)(i). With the ownership function ω(σt,≻σt ), let
Ct+1 be the set of cycles formed in round t + 1 of the TTC. By construction, f(σt,≻σt ) is an
identity resolution rule. Therefore, f(σt,≻σt )(Ct+1) = Ct+1. Thus, I(Ct+1) = Iσt+1 \ Iσt .

Suppose there exists C ∈ Ct+1 such that |I(C)| = 1. Let I(C) = i and O(C) = o. We
know that φ(ω,f)(≻)(i) = o. Since ω(σt,≻σt )(o) = i, o is agent i’s most preferred object among
the the set of objects in Ōσt in ≻i, and σt matches all objects in O \ Ōσt , by Claim 3, we
must have φ(≻)(i) = o = φ(ω,f)(≻)(i).

Suppose C ∈ Ct+1 is such that |I(C)| > 1. Let C := (i1 → o1 → i2 . . . → on → in+1)
where in+1 = i1 be the cycle formed. We know that o1 is i1(= in+1)’s most preferred object in
≻i1 , o2 is i2’s most preferred object in ≻i2 , and so on. We also know that φ(ω,f)(≻)(i1) = o1.
We now argue that φ(≻)(i1) = o1. Since i1 is an arbitrary agent in the cycle C, this is
sufficient to show the induction step.

Let ≻′
i1
rank o1 first and on second. For any k = 2, . . . , n, let ≻′

ik
rank ok first, and ok−1

second. Suppose φ(≻)(i1) ̸= o1. Then by strategyproofness, φ(≻′
i1
,≻−i1)(i1) ̸= o1. Since

ω(σt,≻σt )(on) = in+1 = i1, by Claim 3, φ(≻′
i1
,≻−i1)(i1) = on. Here, in envies in+1 = i1.

Since φ is locally dictatorial, φ(≻′
in+1

,≻′
n,≻I\{in,in+1})(in+1) = on. By Claim 3, φ(≻′

in+1
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,≻′
n,≻I\{in,in+1})(in) = on−1. Here, in−1 envies in. Therefore, by a similar argument, we

have φ(≻′
in+1

,≻′
n,≻′

n−1,≻I\{in−1,in,in+1})(in−1) = on−2. We can iteratively apply the same
argument to get φ(≻′

I(C),≻I\I(C))(i2) = o1. Once again, by repeatedly applying Claim 3, we

obtain φ(≻′
I(C),≻I\I(C))(i1) = on and for all k ∈ {2, . . . , n}, φ(≻′

I(C),≻I\I(C))(ik) = ok−1.
However, this violates Pareto efficiency.

Step 3: Generalized Hierarchical Exchange Mechanism with {(ω(σ,≻σ), f(σ,≻σ))}(σ,≻σ)∈S×Pσ

satisfies consistency requirements
We first show that our constructed structure of ownership-resolution rights in Step 1

satisfy consistency requirement 1. Let R∅ be the set of all reachable submatchings from the
empty submatching. From the definition of 1-step reachability, it is easy to see that for any
submatching (σ,≻σ) ∈ R∅, there exists a preference profile ≻ such that (σ,≻σ) is obtained
in some round t of the TTC algorithm. Also, by the induction step in Step 2, we know that
the ownership functions at all submatchings in R∅ are well-defined.

Consider any two submatchings in (σ,≻σ), (σ
′,≻σ′) ∈ R∅ such that (σ′,≻σ′) is reachable

from (σ,≻σ). For any i ∈ Īσ and any o ∈ Ōσ such that ω(σ,≻σ)(o) = i, from Step 2 we
know that agent i is allocated object o in any profile where i has o as most-preferred, i.e.,
for any ≻i ∈ Po

i and any preferences of the other unmatched agents ≻σ̄\{i}∈ PĪσ\{i}, we
have φ(≻σ,≻i,≻σ̄\{i})(i) = o. In particular, consider a preference profile where agents in Iσ′

report preferences ≻σ′ . Thus, for any preference profile ≻′ ∈ Po
σ̄′ , we have φ(≻σ′ ,≻′)(i) = o;

and thus by definition we have ω(σ′,≻σ′ )(o) = i.
Since we have ω(σ′,≻σ′ )(o) = ω(σ,≻σ)(o) for all objects o ∈ Ōσ′ , the consistency property 1

(that only requires such a condition for some objects) is satisfied.



59

Bibliography
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Appendix A

Chapter 2: Supplementary Material

A.1 Proof from Section 2.3

Theorem 1. For any n ≥ 3, no strategy-proof and envy-free mechanism can be contention-
free efficient.

Proof. We show the impossibility result from the case when n > 3.
Let N = {1, 2, 3, . . . n} and O = {a1, a2, a3, . . . an} denote the set of agents and objects

respectively. Let us again suppose for contradiction that there exists a mechanism φ that is
strategy-proof, envy-free and contention-free efficient. We consider a family of preference pro-
files Fn, where agents 1, 2 and 3 prefer objects a1, a2 and a3, in any order, to ⟨a4, a5, . . . an⟩,
while every agent i > 3 has the preference relation ≻i= ⟨ai, . . . an, a1, a2, . . . , ai−1⟩. Table
A.1 illustrates this family of profiles. The ⋆ in the table refers to any ordering of objects
a1, a2, and a3.

1 a4 a5 . . . . . . . . . an
2 ⋆ a4 a5 . . . . . . . . . an
3 a4 a5 . . . . . . . . . an
4 a4 a5 a6 . . . . . . . . . a1 a2 a3
5 a5 a6 a7 . . . . . . . . . a2 a3 a4
...

...
...

...
...

...
...

...
...

...
n an a1 a2 . . . . . . . . . an−3 an−2 an−1

Table A.1: Family of preference profiles Fn

We first prove the following lemma to show that if the mechanism φ satisfies all the three
premises of the theorem, then in every preference profile in Fn agents 1, 2, and 3 are assigned
a zero probability of receiving any object from {a4, a5, . . . , an}.
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Lemma 10. If mechanism φ is strategy-proof, envy-free and contention-free efficient, then
for every ≻ ∈ Fn, for i ∈ {1, 2, 3} and for j ∈ {4, . . . n}, φi,aj(≻) = 0 .

Proof. Consider any profile ≻ = (≻1,≻2,≻3,≻N\{1,2,3}) ∈ Fn. Consider also a preference

profile ≻(0) = (≻(0)
1 ,≻(0)

2 ,≻(0)
3 ,≻N\{1,2,3}) ∈ Fn where agents 1, 2, and 3 prefer a1, a2, and

a3 as their top choice respectively. Notice that ≻(0) is a contention-free preference profile.
For convenience, we adopt the notation that P (x) := φ(≻(x)) for any profile ≻(x). Since

φ is contention-free efficient, P
(0)
1,a1

= P
(0)
2,a2

= P
(0)
3,a3

= 1, which implies that P
(0)
i,aj

= 0 for
i ∈ {1, 2, 3} and j ∈ {4, 5, . . . n}.

We now consider a sequence of preference profiles {≻(1),≻(2),≻(3) =≻} where agents 1, 2,
and 3 successively report their preference as in ≻. That is, ≻(1) = (≻1,≻(0)

2 ,≻(0)
3 ,≻N\{1,2,3}),

≻(2) = (≻1,≻2,≻(0)
3 ,≻N\{1,2,3}), ≻(3) = ≻ = (≻1,≻2,≻3,≻N\{1,2,3}). Observe that between

≻(0) and ≻(1), only agent 1’s preferences differ. But in both cases, agent 1 prefers objects
{a1, a2, a3} over all the other objects. Since φ is strategy-proof, it must be that

P
(1)
1,a1

+ P
(1)
1,a2

+ P
(1)
1,a3

= P
(0)
1,a1

+ P
(0)
1,a2

+ P
(0)
1,a3

= 1

=⇒ P
(1)
1,aj

= 0 for j ∈ {4, 5, . . . n}

Now, since φ is also envy-free, for agents 1, 2, and 3 to not envy each other, we must have,

P
(1)
2,a1

+ P
(1)
2,a2

+ P
(1)
2,a3

= P
(1)
3,a1

+ P
(1)
3,a2

+ P
(1)
3,a3

= P
(1)
1,a1

+ P
(1)
1,a2

+ P
(1)
1,a3

= 1

=⇒ P
(1)
2,aj

= P
(1)
3,aj

= 0 for j ∈ {4, 5, . . . n}

We can apply the same arguments as we move from ≻(1) to ≻(2) where only agent 2 changes
her report and from ≻(2) to ≻(3) where only agent 3 reports different preferences.

Lemma 10 implies that the assignment problem for n > 3 can be reduced to a problem
on the first three agents. Since φ satisfies the premises of the theorem, we can define a
new mechanism φ′ for n = 3 by restricting to the domain of Fn. Formally, let ≻′ = (≻′

1

,≻′
2,≻′

3) ∈ R3 be a preference profile for the first three agents in the reduced problem and
let ≻ = (≻1,≻2,≻3,≻N\{1,2,3}) ∈ Fn be a preference profile for n agents such that each
agent i ∈ {1, 2, 3} has the preference relation with objects a1, a2, and a3 preferred according
to ≻′

i followed by ⟨a4, a5, . . . an⟩. In the random assignment P = φ(≻), Lemma 10 implies
that Pi,aj = 0 for i ∈ {1, 2, 3} and j ∈ {4, 5, . . . n}. Therefore, we can define P ′ = φ(≻′)
as P ′ = [Pi]i∈{1,2,3}, which is a valid random assignment. However, since φ is contention-
free, envy-free, and strategy-proof, φ′ also satisfies all the three properties and thus we have
arrived at a contradiction. This completes the proof of Theorem 1.

A.2 Proofs from Section 2.4

Theorem 2. Every Rank Exchange mechanism φv is strategy-proof and envy-free.



APPENDIX A. CHAPTER 2: SUPPLEMENTARY MATERIAL 67

Proof. Consider any vector v ∈ [0, 1
n(n−1)

]n with vk ≥ vk+1 ∀k ∈ {1, 2, . . . , n− 1} and vn = 0
and let φv be the corresponding Rank Exchange mechanism.

Feasibility. We first demonstrate that φv is a feasible random assignment mechanism.
By definition, at any profile ≻ ∈ Rn, we have

φv
i,a(≻) =

1

n
+
∑
j ̸=i

(vrank(≻i,a) − vrank(≻j ,a))

Since for any ranks ℓ and k, we have vℓ − vk ∈ [ −1
n(n−1)

, 1
n(n−1)

], we have that φv
i,a ∈ [0, 1] as

desired. The total allocation over all objects for any agent i is given by

∑
a∈O

φv
i,a(≻) =

∑
a∈O

(
1

n
+
∑
j ̸=i

(vrank(≻i,a) − vrank(≻j ,a))

)
= 1 +

∑
j ̸=i

(
∑
a∈O

vrank(≻i,a) −
∑
a∈O

vrank(≻j ,a)) = 1

Similarly, the total allocation of an object a ∈ O over all agents is

∑
i∈N

φv
i,a(≻) =

∑
i∈N

(
1

n
+
∑
j ̸=i

(vrank(≻i,a) − vrank(≻j ,a))

)

= 1 +
∑
i∈N

(
(n− 1) · vrank(≻i,a) −

∑
j ̸=i

vrank(≻j ,a)

)
= 1 + (n− 1) ·

∑
i∈N

vrank(≻i,a) −
∑
i∈N

∑
j ̸=i

vrank(≻j ,a)

= 1 + (n− 1) ·
∑
i∈N

vrank(≻i,a) − (n− 1) ·
∑
i∈N

vrank(≻i,a) = 1

Thus, the assignment obtained is doubly stochastic and hence the mechanism is feasible.
Envy-freeness. Consider any two agents i, i′ ∈ N and any preference profile ≻. Without

loss of generality, let ≻i = ⟨a1, . . . , an⟩. For any t ∈ {1, 2, . . . , n}, let us consider the total
allocation obtained by agents i and i′ for the top t objects in agent i’s preference. We have
the following.∑

k≤t

φv
i,ak

(≻) =
t

n
+

∑
j∈N\{i}

∑
k≤t

(vk − vrank(≻j ,ak))

=
t

n
+

∑
j∈N\{i,i′}

∑
k≤t

(vk − vrank(≻j ,ak)) +
∑
k≤t

(vk − vrank(≻i′ ,ak)
)
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However, for any agent i′,
∑

k≤t vk ≥
∑

k≤t vrank(≻i′ ,ak)
since the vector v is sorted, and hence

we have

≥ t

n
+

∑
j∈N\{i,i′}

∑
k≤t

(vrank(≻i′ ,ak)
− vrank(≻j ,ak)) +

∑
k≤t

(vrank(≻i′ ,ak)
− vk)

=
∑
k≤t

φv
i′,ak

(≻)

and hence the mechanism φv is envy-free.
Strategy-proofness. Consider a profile ≻ = (≻i,≻−i) and another profile ≻′ = (≻′

i,≻−i)
where agent i misreports her preference. Without loss of generality, let ≻i = ⟨a1, . . . , an⟩.
For any t ∈ {1, 2, . . . , n}, we have the following.∑

k≤t

φv
i,ak

(≻) =
t

n
+

∑
j∈N\{i}

∑
k≤t

(vk − vrank(≻j ,ak))

Again, since the vector v is sorted, we have
∑

k≤t vk ≥
∑

k≤t vrank(≻′
i,ak)

for any ≻′
i, and hence

we have

≥ t

n
+

∑
j∈N\{i}

∑
k≤t

(vrank(≻′
i,ak)
− vrank(≻j ,ak)) =

∑
k≤t

φv
i,ak

(≻′)

and thus truth-telling is a dominant strategy for any agent i and the mechanism is strategy-
proof.

Proposition 2. A Rank Exchange mechanism φv is not dominated by another Rank Ex-
change mechanism if and only if the vector v satisfies v1 =

1
n(n−1)

.

Proof. We first show that the condition v1 =
1

n(n−1)
is sufficient to guarantee that φv is not

stochastically dominated by another Rank Exchange mechanism. Suppose for contradiction
that there exists a vector u ∈ [0, 1

n(n−1)
]n such that the mechanism φu dominates φv. Since

φu strictly dominates φv at some preference profile, it must be that u ̸= v.
We first claim that any such vector u must satisfy that ∀k ∈ {1, 2, . . . , n}, uk ≤ vk.

Indeed, since u1 ≤
1

n(n− 1)
= v1, the claim is trivially true for k = 1. For any k > 1,

consider a profile≻ where the agent 1 has the preference ≻1 = ⟨a1, a2, . . . , an⟩, while all other
agents have object a1 in the kth position in their preference, i.e. ∀j ̸= i, rank(≻j, a1) = k.
We have,

φu
1,a1

(≻) =
1

n
+
∑
j ̸=i

(u1 − uk) =
1

n
+ (n− 1)(u1 − uk)

≤ 1

n
+ (n− 1)(v1 − uk) =

1

n
+ (n− 1)(v1 − vk + vk − uk)

= φv
1,a1

(≻) + (n− 1)(vk − uk)
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However, our assumption that φu dominates φv implies that φu
1,a1

(≻) ≥ φv
1,a1

(≻), and hence
we must have

vk ≥ uk, ∀k ∈ {1, 2, . . . , n} (A.1)

On the other hand, we can also similarly show that ∀k ∈ {1, 2, . . . , n}, uk ≥ vk. Since
vn = 0, this is trivially true for k = n. For any k < n, consider a profile ≻ where agent
1 has the preference ≻1 = ⟨a1, a2, . . . , an⟩, while all other agents have object an in the kth
position in their preference, i.e. ∀j ̸= i, rank(≻j, an) = k.

We have,

φu
1,an(≻) =

1

n
+
∑
j ̸=i

(un − uk) =
1

n
+ (n− 1)(un − uk)

≥ 1

n
+ (n− 1)(vn − uk) =

1

n
+ (n− 1)(vn − vk + vk − uk)

= φv
1,an(≻) + (n− 1)(vk − uk)

But our assumption that φu dominates φv implies that φu
1,an(≻) ≤ φv

1,an(≻), and hence we
have

vk ≤ uk, ∀k ∈ {1, 2, . . . , n} (A.2)

Inequalities (A.1) and (A.2) together imply that ∀k ∈ {1, 2, . . . , n}, uk = vk which is a
contradiction since we u ̸= v.

We next prove that the condition v1 =
1

n(n−1)
is necessary for φv to not be stochastically

dominated. We prove the contrapositive of the statement. Suppose v1 < 1
n(n−1)

. Let u ∈

[0,
1

n(n− 1)
]n be such that u1 = 1

n(n−1)
and for k ∈ {2, 3, . . . , n}, uk = vk. Consider any

agent i and any profile ≻ ∈ Rn. Without loss of generality, let ≻i = ⟨a1, . . . , an⟩. For any
t ∈ {1, 2, . . . , n}, let us consider the total allocation obtained by agent i for her top t objects
under φu and φv.∑

ℓ≤t

φv
i,aℓ

(≻) =
t

n
+

∑
j∈N\{i}

∑
ℓ≤t

(vℓ − vrank(≻j ,aℓ))

Notice that if for an agent j and some ℓ ≤ t, rank(≻j, aℓ) = 1 , then
∑

ℓ≤t(vℓ−vrank(≻j ,aℓ)) =∑
ℓ≤t(uℓ− urank(≻j ,aℓ)). On the other hand, if for any agent j and all ℓ ≤ t, rank(≻j, aℓ) ̸= 1

, then
∑

ℓ≤t(vℓ − (vrank(≻j ,aℓ)) <
∑

ℓ≤t(uℓ − urank(≻j ,aℓ)). Therefore, we have∑
ℓ≤t

φv
i,aℓ

(≻) ≤ t

n
+

∑
j∈N\{i}

∑
m≤t

(um − urank(≻j ,am)) =
∑
ℓ≤t

φu
i,aℓ

(≻)

Further, the above inequality is strict at any profile ≻ where there exists an agent j with
σ(≻j, 1) ̸= σ(≻i, 1) and t = 1. Therefore, φu dominates φv.
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A.3 Proofs from Section 2.5

A.3.1 Proofs from Section 2.5.1

Lemma 2. If a mechanism φ is envy-free and separable, then it is a pairwise exchange
mechanism.

Proof. Suppose φ is envy-free and separable.
Let ≻ and ≻′ be two arbitrary preference relations. Let ≻S denote a preference profile

where agents in the set S ⊆ N have preference ≻′ and the remaining agents in N \ S have
preference ≻. We first show the following technical claim.

Claim 4. ∀i, j ∈ N and ∀a ∈ O, φi,a(≻{i}) = φj,a(≻{j}).

Proof. For convenience, ∀i ∈ N and ∀a ∈ O, let xi,a := φi,a(≻{i}). Then feasibility of the
random assignment and envy-freeness imply that

∀i ∈ N,∀j ∈ N \ {i}, and ∀a ∈ O, φj,a(≻{i}) =
1− xi,a

n− 1
(A.3)

Consider any two agents i, j ∈ N , and some k ∈ N \ {i, j}, and a ∈ O. By separability,
we know that,

φk,a(≻{i,j})− φk,a(≻∅) = φk,a(≻{i})− φk,a(≻∅) + φk,a(≻{j})− φk,a(≻∅)

Therefore,

φk,a(≻{i,j}) + φk,a(≻∅) = φk,a(≻{i}) + φk,a(≻{j})

Since φ is envy-free, φk,a(≻∅) =
1
n
. Thus substituting Eq (A.3), we have,

φk,a(≻{i,j}) =
1− xi,a

n− 1
+

1− xj,a

n− 1
− 1

n

=
n+ 1

n(n− 1)
− 1

n− 1
(xi,a + xj,a)

By envy-freeness, we have,

φi,a(≻{i,j}) = φj,a(≻{i,j}) =
1

2

[
1− (n− 2)φk,a(≻{i,j})

]
=

1

2
− (n− 2)(n+ 1)

2n(n− 1)
+

n− 2

2(n− 1)
(xi,a + xj,a)

=
1

n(n− 1)
+

n− 2

2(n− 1)
(xi,a + xj,a) (A.4)
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Finally, consider any i ∈ N . Since φ is separable,

φi,a(≻N)− φi,a(≻{i}) =
∑

j∈N\{i}

[
φi,a(≻{i,j})− φi,a(≻{i})

]
Substituting Eq (A.4), we get,

1

n
− xi,a =

∑
j∈N\{i}

[ 1

n(n− 1)
+

n− 2

2(n− 1)
(xi,a + xj,a)− xi,a

]
Simplifying, we get that

xi,a =

∑
j∈N xj,a

n

Since the above equality holds true for every i ∈ N and a ∈ O, it follows that for any i, j ∈ N
and a ∈ O, xi,a = xj,a.

For any ≻,≻′ ∈ R and ∀a ∈ O, define the function f as f(≻,≻′, a) := φk,a(≻{i})− 1
n
for

any i ∈ N and any k ∈ N \{i}. By the claim above and due to envy-freeness, the function f
is well-defined since the choice of i and k does not matter. Additionally, since φ is envy-free,
we also have 0 ≤ φk,a(≻{i}) ≤ 1

n−1
=⇒ − 1

n
≤ f(≻,≻′, a) ≤ 1

n
.

Consider any profile ≻ = (≻k)k∈N , any agent i, and any object a. Let ≻id = (≻i,≻i

, . . . ,≻i) be the preference profile where all agents report the same preference as agent i in
≻. Due to envy-freeness, we know that φi,a(≻id) = 1

n
. By separability we have,

φi,a(≻)− φi,a(≻id) =
∑

j∈N\{i}

[
φi,a(≻j,≻id

−j)− φi,a(≻id)
]
=

∑
j∈N\{i}

[
φi,a(≻j,≻id

−j)−
1

n

]
=

∑
j∈N\{i}

f(≻i,≻j, a)

which follows from our construction of the function f . Therefore we have our desired repre-
sentation,

φi,a(≻) =
1

n
+

∑
j∈N\{i}

f(≻i,≻j, a)

Lemma 3. Consider a pairwise exchange mechanism φf and its corresponding function
f : R×R×O → [− 1

n
, 1
n
]. Then f satisfies the following properties -

1. No transfers between equals: ∀ ≻ ∈ R and ∀a ∈ O, f(≻,≻, a) = 0.

2. Balanced transfers: For any pair of preferences ≻,≻′ ∈ R,
∑

a∈O f(≻,≻′, a) = 0.
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3. Anti-symmetry: For any pair of preferences ≻,≻′ ∈ R and ∀a ∈ O,
f(≻,≻′, a) = −f(≻′,≻, a).

4. Bounded range: For any pair of preferences ≻,≻′ ∈ R and ∀a ∈ O,
f(≻,≻′, a) ∈ [− 1

n(n−1)
, 1
n(n−1)

].

Proof. We prove that the if the pairwise exchange mechanism φf induced by the transfer
function is feasible, then f must satisfy the following properties.

1 No transfers between equals: ∀ ≻ ∈ R and ∀a ∈ O, f(≻,≻, a) = 0.

Suppose for contradiction that there exists ≻ ∈ R and a ∈ O such that f(≻,≻, a) ̸= 0.
Consider a preference profile ≻ = (≻i)i∈N such that for all i ∈ N , ≻i = ≻. However,
by definition

∑
i∈N

φf
i,a(≻) =

∑
i∈N

1

n
+
∑
i∈N

∑
j ̸=i

f(≻i,≻j, a)

= 1 + n · (n− 1) · f(≻,≻, a)
̸= 1

This contradicts with the feasibility of the random assignment φf (≻).

2 Balanced transfers: For any pair of preferences ≻,≻′ ∈ R,
∑

a∈O f(≻,≻′, a) = 0.

We prove this by contradiction. Suppose that there exist a pair of preferences≻,≻′ ∈ R
such that

∑
a∈O f(≻,≻′, a) ̸= 0. Consider a preference profile ≻ = (≻i,≻−i) such that

for some i ∈ N , ≻i = ≻ and for any j ̸= i, ≻j = ≻′. The total allocation for agent i
is given by

∑
a∈O

φf
i,a(≻) =

∑
a∈O

1

n
+
∑
a∈O

∑
j ̸=i

f(≻i,≻j, a)

= 1 +
∑
a∈O

∑
j ̸=i

f(≻,≻′, a)

= 1 + (n− 1) ·
∑
a∈O

f(≻,≻′, a)

̸= 1

which contradicts feasibility of φf (≻).

3 Anti-symmetry: For any pair of preferences ≻,≻′ ∈ R and ∀a ∈ O, f(≻,≻′, a) = −f(≻′

,≻, a).
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We again proceed by contradiction. Suppose ≻,≻′ ∈ R and a ∈ O are such that
f(≻,≻′, a) ̸= −f(≻′,≻, a). Let us again consider the preference profile ≻ = (≻k,≻−k)
such that for some k ∈ N , ≻k = ≻ and for any j ̸= k, ≻j = ≻′ . If we sum the
probability of being assigned object a over all agents∑

i∈N

φf
i,a(≻) =

∑
i∈N

1

n
+
∑
i∈N

∑
j ̸=i

f(≻i,≻j, a)

= 1 +
∑
j ̸=k

f(≻k,≻j, a) +
∑
i ̸=k

∑
j ̸=i

f(≻i,≻j, a)

= 1 +
∑
j ̸=k

f(≻,≻′, a) +
∑
i ̸=k

∑
j∈N\{i,k}

f(≻i,≻j, a) +
∑
i ̸=k

f(≻i,≻k, a)

= 1 +
∑
j ̸=k

f(≻,≻′, a) +
∑
i ̸=k

∑
j∈N\{i,k}

f(≻′,≻′, a) +
∑
i ̸=k

f(≻′,≻, a)

Since f satisfies the property that there are no transfers between identical preferences
(Property (1))∑

i∈N

φf
i,a(≻) = 1 +

∑
j ̸=k

f(≻,≻′, a) +
∑
i ̸=k

f(≻′,≻, a)

̸= 1

which leads to a contradiction

4 Bounded range: For any ≻,≻′ ∈ R and ∀a ∈ O, f(≻,≻′, a) ∈ [− 1
n(n−1)

, 1
n(n−1)

] .

Consider a preference profile ≻ = (≻i,≻−i) such that for some i ∈ N , ≻i = ≻ and for
all j ̸= i, ≻j = ≻′. Since φf

i,a(≻) ≥ 0, we have

1

n
+
∑
j ̸=i

f(≻i,≻j, a) ≥ 0

1

n
+ (n− 1)f(≻,≻′, a) ≥ 0 =⇒ f(≻,≻′, a) ≥ −1

n(n− 1)

Exchanging the roles of ≻ and ≻′, we similarly obtain f(≻′,≻, a) ≥ −1
n(n−1)

. Thus,

by the anti-symmetry property defined above, we have f(≻,≻′, a) = −f(≻′,≻, a) ≤
1

n(n−1)
.

A.3.2 Proofs from Section 2.5.2

To prove that that strategy-proofness is equivalent to envy-freeness for any pairwise exchange
mechanism φf , we need the following four lemmas.
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Lemma 11. Suppose ≻ = ⟨a1, a2, . . . , an⟩. If φf is strategy-proof, then ∀ ≻′,≻′′ ∈ R and
∀t ∈ {1, 2, . . . , n},

∑t
k=1 f(≻,≻′′, ak) ≥

∑t
k=1 f(≻′,≻′′, ak).

Proof. We prove the contrapositive. Suppose there exists≻′,≻′′ ∈ R and some t ∈ {1, 2, . . . , n},
such that

∑t
k=1 f(≻,≻′′, ak) <

∑t
k=1 f(≻′,≻′′, ak). Consider a profile ≻ such that for some

i ∈ N , ≻i = ≻ and for all j ̸= i, ≻j = ≻′′ . Let ≻′ be a preference profile where agent i lies
and reports ≻′

i = ≻′ while all other agents continue to report ≻′′ as in ≻.
We have that,

t∑
k=1

φf
i,ak

(≻) =
t

n
+
∑
j ̸=i

t∑
k=1

f(≻i,≻j, ak) =
t

n
+
∑
j ̸=i

t∑
k=1

f(≻,≻′′, ak)

=
t

n
+ (n− 1) ·

t∑
k=1

f(≻,≻′′, ak)

<
t

n
+ (n− 1) ·

t∑
k=1

f(≻′,≻′′, ak) =
t

n
+
∑
j ̸=i

t∑
k=1

f(≻′
i,≻j, ak)

=
t∑

k=1

φf
i,ak

(≻′)

Thus φf is not strategy-proof.

Lemma 12. A mechanism φf is strategy-proof if and only if the function f satisfies the
following two properties -

1. Sender-invariance: If ≻′ = ⟨a1, a2, . . . , an⟩ and ≻′′ is such that ∀k ≤ t, σ(≻′′, k) =
σ(≻′, k) = ak , then ∀ ≻ ∈ R, f(≻,≻′, at) = f(≻,≻′′, at). Similarly, if ∀k ≥ t,
σ(≻′′, k) = σ(≻′, k) = ak , then f(≻,≻′, at) = f(≻,≻′′, at).

2. Swap-monotonicity: For all ≻,≻′ ∈ R and ≻′′ ∈ Γ(≻′) with a ≻′ b but b ≻′′ a for
some a, b ∈ O, we have f(≻′,≻, a) ≥ f(≻′′,≻, a).

Proof. That swap-monotonicity and sender-invariance of the function f implies strategy-
proofness of φf follows from Lemma 1 and definitions.

For the necessity part of the lemma, we first show that strategy-proofness implies sender-
invariance. Let ≻′ = ⟨a1, a2, . . . , an⟩, ≻′′ be such that ∀k ≤ t , σ(≻′, k) = σ(≻′′, k). Consider
any ≻ ∈ R. At a preference profile ≻, where for some agent i ∈ N , ≻i = ≻′ and for all
other agents j ∈ N \ {i}, ≻j = ≻, and a mis-report ≻′

i = ≻′′ for agent i, strategy-proofness
implies that agent i must receive the same allocation for her top (t− 1) objects as well her
top t objects under ≻i and ≻′

i since ∀k ≤ t, σ(≻′, k) = σ(≻′′, k). Let P≻ := φf (≻) and
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P (≻′
i,≻−i) := φf (≻′

i,≻−i). We have,

t−1∑
k=1

P≻
i,ak

=
t−1∑
k=1

P
(≻′

i,≻−i)
i,ak

=⇒ t− 1

n
+ (n− 1)

t−1∑
k=1

f(≻′,≻, ak) =
t− 1

n
+ (n− 1)

t−1∑
k=1

f(≻′′,≻, ak) (A.5)

and
t∑

k=1

P≻
i,ak

=
t∑

k=1

P
(≻′

i,≻−i)
i,ak

=⇒ t

n
+ (n− 1)

t∑
k=1

f(≻′,≻, ak) =
t

n
+ (n− 1)

t∑
k=1

f(≻′′,≻, ak) (A.6)

Equations (A.5) and (A.6) together imply that f(≻′,≻, at) = f(≻′′,≻, at). Since f satisfies
anti-symmetry, we have our desired result that f(≻,≻′, at) = f(≻,≻′′, at). The proof for the
case ∀k ≥ t follows similarly.

Next, if the transfer function f is not swap-monotonic, then there exists ≻′ ∈ R, which
we can without loss of generality assume to be ≻′ = ⟨a1, a2, . . . , an⟩, ≻′′ ∈ Γ(≻′) such that
at ≻′ at+1 but at+1 ≻′′ at for some t ∈ {1, 2, . . . , n} and ≻ ∈ R such that f(≻′,≻, at) < f(≻′′

,≻, at). At the preference profile ≻, where for some agent i ∈ N , ≻i = ≻′ and for all other
agents j ∈ N \ {i}, ≻j = ≻ , if agent i chooses to deviate and report ≻′

i = ≻′′, we have

P≻
i,at

=
1

n
+ (n− 1)f(≻′,≻, at) <

1

n
+ (n− 1)f(≻′′,≻, at) = P

(≻′
i,≻−i)

i,at

which implies that the mechanism φf is not swap-monotonic and hence is not strategy-
proof.

Lemma 13. Let ≻ = ⟨a1, a2, . . . , an⟩ be an arbitrary preference relation, and ≻′ be such that
∀k ≤ t, σ(≻′, k) = σ(≻, k) = ak. If φ

f is envy-free, then f(≻,≻′, at) = 0. Similarly, if ≻′ is
such that ∀k ≥ t, σ(≻′, k) = σ(≻, k) = ak , then f(≻,≻′, at) = 0.

Proof. Let ≻ = ⟨a1, a2, . . . , an⟩ and ≻′ be such that ∀k ≤ t, σ(≻, k) = σ(≻′, k). Consider a
preference profile ≻ where for some agent i ∈ N , ≻i = ≻ and for all other agents j ∈ N \{i},
≻j = ≻′. For agent i to not envy any other agent j ∈ N \ {i}, they must get the same
allocation for agent i’s top t− 1 and top t objects, since ∀k ≤ t, σ(≻i, k) = σ(≻j, k). That
is,

t−1∑
k=1

φf
i,ak

(≻) =
t−1∑
k=1

φf
j,ak

(≻) where j ∈ N \ {i}

=⇒ t− 1

n
+ (n− 1)

t−1∑
k=1

f(≻,≻′, ak) =
t− 1

n
+

t−1∑
k=1

f(≻′,≻, ak) + (n− 2)
t−1∑
k=1

f(≻′,≻′, ak)
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By the no transfer among equals property from Lemma 3, f(≻′,≻′, o) = 0 for all o ∈ O,
which in conjunction with the anti-symmetry property of f implies that

t−1∑
k=1

f(≻,≻′, ak) = 0

Similarly we get,

t∑
k=1

f(≻,≻′, ak) = 0 =⇒ f(≻,≻′, at) = 0

The argument for the second part of the lemma is symmetric to the one made above.

Lemma 14. Let ≻ = ⟨a1, a2, . . . , an⟩ be an arbitrary preference relation. If φf is envy-free,
then for all ≻′ ∈ R, for all t ∈ {1, 2, . . . , n},

∑t
k=1 f(≻,≻′, at) ≥ 0.

Proof. Consider a preference profile ≻ such that for some agent i ∈ N , ≻i = ≻ and for all
agents j ∈ N \ {i}, ≻j = ≻′. By envy-freeness, the allocation that agent i receives for her
top t objects is at least as much as the allocation any other agent j receives. That is,

t∑
k=1

φf
i,ak

(≻) ≥
t∑

k=1

φf
j,ak

(≻)

=⇒ t

n
+ (n− 1) ·

t∑
k=1

f(≻,≻′, ak) ≥
t

n
+

t∑
k=1

f(≻′,≻, ak) + (n− 2) ·
t∑

k=1

f(≻′,≻′, ak)

=⇒
t∑

k=1

f(≻,≻′, ak) ≥ 0

where the last inequality follows from the no transfer and anti-symmetry properties.

We are now ready to prove Theorem 4.

Theorem 4. For any pairwise exchange mechanism φf , φf is strategy-proof if and only if
φf is envy-free.

Proof. We first show that if a pairwise exchange mechanism φf is strategy-proof, then it is
envy-free. Suppose, for contradiction, that φf is strategy-proof but not envy-free. Therefore,
there exists some ≻ ∈ R, some agent i ∈ N , another agent i′ ∈ N \ {i}, and some t ∈
{1, 2, . . . , n} such that the total allocation that agent i gets for her top t objects is strictly
smaller than what agent i′ receives. Without loss of generality, let ≻i = ⟨a1, a2, . . . , an⟩.
Since agent i envies i′ we have,

t∑
k=1

φf
i′,ak

(≻) >
t∑

k=1

φf
i,ak

(≻)
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However, since φf is strategy-proof, at preference profile ≻, agent i does not gain if she
chooses to deviate and report her preference as ≻′

i = ≻i′ . Let ≻′ = (≻′
i = ≻i′ ,≻−i) be

the resulting preference profile, when agent i mis-reports her preference. Then we have∑t
k=1 φ

f
i,ak

(≻) ≥
∑t

k=1 φ
f
i,ak

(≻′). Substituting back into the above inequality, we have

t∑
k=1

φf
i′,ak

(≻) >
t∑

k=1

φf
i,ak

(≻′)

Substituting the allocations by their transfer function representation, we get

t∑
k=1

f(≻i′ ,≻i, ak) +
∑

j∈N\{i,i′}

t∑
k=1

f(≻i′ ,≻j, ak) >
t∑

k=1

f(≻′
i,≻i′ , ak) +

∑
j∈N\{i,i′}

t∑
k=1

f(≻′
i,≻j, ak)

=
t∑

k=1

f(≻i′ ,≻i′ , ak) +
∑

j∈N\{i,i′}

t∑
k=1

f(≻i′ ,≻j, ak)

By the no transfers between equals property in Lemma 3, we have that f(≻i′ ,≻i′ , ak) = 0,∀k,
and hence we obtain

t∑
k=1

f(≻i′ ,≻i, ak) > 0 =
t∑

k=1

f(≻i,≻i, ak)

But this contradicts Lemma 11 when we set ≻ = ≻i,≻′ = ≻i′ , and ≻′′ = ≻i, and hence if
φf is strategy-proof then it must also be envy-free.

We now prove that envy-freeness implies sender-invariance and swap-monotonicity, and
consequently implies strategy-proofness. We prove by contradiction. Suppose that φf is
envy-free, but the transfer function f is not sender-invariant. Then, there exists ≻′,≻′′ ∈ R
such that either ∀k ≤ t, σ(≻′, k) = σ(≻′′, k) or ∀k ≥ t, σ(≻′, k) = σ(≻′′, k) and a preference
≻∈ R such that f(≻,≻′, σ(≻′, t)) ̸= f(≻,≻′′, σ(≻′′, t)). Suppose ≻′ is such that ∀k ≤ t ,
σ(≻′, k) = σ(≻′′, k) (the argument for the other case is symmetric). Let ≻′ = ⟨a1, a2, . . . , an⟩.
Let t be the smallest such index at which f(≻,≻′, at) ̸= f(≻,≻′′, at). Therefore, we have for
all k < t, f(≻,≻′, ak) = f(≻,≻′′, ak). Now, consider a preference profile ≻, where for some
agent i ∈ N , ≻i = ≻′, for another agent i′ ∈ N \ {i}, ≻i′ = ≻′′ , and for all other agents
j ∈ N \ {i, i′}, ≻j = ≻. The total allocation that agent i gets for her top t objects is given
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by,

t∑
k=1

φf
i,ak

(≻) =
t

n
+

t∑
k=1

f(≻′,≻′′, ak) + (n− 2)
t∑

k=1

f(≻′,≻, ak)

=
t

n
+ (n− 2)

t∑
k=1

f(≻′,≻, ak)

̸= t

n
+ (n− 2)

t∑
k=1

f(≻′′,≻, ak)

=
t

n
+

t∑
k=1

f(≻′′,≻′, ak) + (n− 2)
t∑

k=1

f(≻′′,≻, ak)

=
t∑

k=1

φf
i′,ak

(≻)

The second and fourth equality above follow from Lemma 13. Therefore, we find that one
of agent i or i′ would envy the other, a contradiction.

Next, suppose that φf is envy-free, but the transfer function f is not swap-monotonic.
Then, there exists ≻′ ∈ R, which we without loss assume to be ≻′ = ⟨a1, a2, . . . , an⟩, ≻′′ ∈
Γ(≻′) with at ≻′ at+1 but at+1 ≻′′ at for some t ∈ {1, 2, . . . , n}, and ≻ ∈ R such that f(≻′,≻
, at) < f(≻′′,≻, at). By sender-invariance, we have

∑t−1
k=1 f(≻′,≻, ak) =

∑t−1
k=1 f(≻′′,≻, ak)

and
∑n

k=t+2 f(≻′,≻, ak) =
∑n

k=t+2 f(≻′′,≻, ak). Since the transfers are balanced (Property
(2) of Lemma 3), it must be that f(≻′,≻, at+1) > f(≻′′,≻, at+1).

Without loss, let rank(≻, at) < rank(≻, at+1), i.e. at ≻ at+1 (for the other case, we
can just interchange the roles of ≻′ and ≻′′). We can now construct a preference ≻̃ ∈ R
such that rank(≻̃, at+1) = n and for all s ∈ {1, 2, . . . , rank(≻, at)}, σ(≻̃, s) = σ(≻, s). Using
sender-invariance we have, f(≻′, ≻̃, at) = f(≻′,≻, at) < f(≻′′,≻, at) = f(≻′′, ≻̃, at). The
same property also implies that

∑t−1
k=1 f(≻′, ≻̃, ak) =

∑t−1
k=1 f(≻′′, ≻̃, ak) and

∑n
k=t+2 f(≻′

, ≻̃, ak) =
∑n

k=t+2 f(≻′′, ≻̃, ak), which in conjunction with the balancedness of f (Property
(2) of Lemma 3) results in f(≻′, ≻̃, at+1) > f(≻′′, ≻̃, at+1).

Finally, let us construct a preference ≻̂ ∈ R such that rank(≻̂, at+1) = n and for
all s ∈ {1, 2, . . . , t}, σ(≻̂, s) = σ(≻′, s) = as. For such a preference, sender invariance
implies that f(≻′, ≻̂, at+1) = f(≻′, ≻̃, at+1) > f(≻′′, ≻̃, at+1) = f(≻′′, ≻̂, at+1). We again
have that

∑t−1
k=1 f(≻′, ≻̂, ak) =

∑t−1
k=1 f(≻′′, ≻̂, ak) and

∑n
k=t+2 f(≻′, ≻̂, ak) =

∑n
k=t+2 f(≻′′

, ≻̂, ak). Therefore, f(≻′, ≻̂, at) < f(≻′′, ≻̂, at). But, f(≻′, ≻̂, at) = 0 from Lemma 13, which
implies that f(≻′′, ≻̂, at) > 0. Consequently, f(≻̂,≻′′, at) < 0. But Lemma 13 implies
that f(≻̂,≻′′, ak) = 0 for all k ≤ (t − 1). Therefore, we get

∑t
k=1 f(≻̂,≻′′, ak) < 0, which

contradicts Lemma 14.
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A.3.3 Proofs from Section 2.5.3

To prove Lemma 4, we need the following two lemmas in addition to Lemma 12. The fol-
lowing simple lemma shows that the transfer functions for a neutral and strategy-proof pair-
wise exchange mechanisms satisfy two additional properties, namely neutrality and receiver-
invariance, that will be useful in arriving at characterization for this class of mechanisms.
The proof follows directly from the definitions of the mechanism and the corresponding prop-
erties. Intuitively, if either of these two properties is not satisfied by the transfer function,
then we can construct corresponding preference profiles that demonstrate that the mecha-
nism cannot be strategy-proof.

Lemma 15. If the mechanism φf is strategy-proof and neutral, then the function f satisfies
the following properties -

1. Neutrality: The function f : R×R×O → [− 1
n
, 1
n
] is neutral, i.e.

f(≻,≻′, ai) = f(π(≻), π(≻′), π(ai)) for any permutation π : O → O.

2. Receiver-invariance: If ≻ = ⟨a1, a2, . . . , an⟩ and ≻′ and ≻′′ are such that rank(≻′

, ak) = rank(≻′′, ak) ∀k ≤ t, then f(≻,≻′, at) = f(≻,≻′′, at). Similarly, if rank(≻′

, ak) = rank(≻′′, ak) ∀k ≥ t, then f(≻,≻′, at) = f(≻,≻′′, at).

Proof. From the definition of pairwise exchange mechanisms, it follows that mechanism φf

is neutral if and only if the function f is neutral, i.e., it satisfies property (1).
We now proceed to show that the receiver-invariance property (2) is necessary. Suppose

for contradiction that we have ≻ = ⟨a1, a2, . . . , an⟩ and ≻′ and ≻′′ such that ∀k ≤ t, rank(≻′

, ak) = rank(≻′′, ak), but f(≻,≻′, at) ̸= f(≻,≻′′, at). Without loss of generality, let f(≻,≻′

, at) < f(≻,≻′′, at). Fix an agent i ∈ N . Now consider a preference profile ≻ = (≻i,≻−i)
where for some agent i ∈ N , ≻i = ≻ and ∀j ̸= i, ≻j = ≻′. Let π : O → O be a permutation
such that π(≻′′) =≻′. Observe that since rank(≻′, ak) = rank(≻′′, ak) ∀k ≤ t, we have
∀k ≤ t, π(ak) = ak. Let ≻′

i = π(≻i) be the preference that results from re-labeling objects
in ≻i using π. Note that in both ≻i and ≻′

i, we will have ∀k ≤ t, σ(≻i, k) = σ(≻′
i, k).

Since f satisfies neutrality, f(≻i,≻′′, at) = f(π(≻i), π(≻′′), π(at)) = f(≻′
i,≻′, at), which

in conjunction with our assumption f(≻,≻′′, at) > f(≻,≻′, at) = f(≻i,≻′, at) implies that
f(≻′

i,≻′, at) > f(≻i,≻′, at). Now, starting from ≻, suppose agent i chooses to instead report
her preference as ≻′

i. Let ≻′ = (≻′
i,≻−i) be the resulting profile. Since the mechanism is

strategy-proof,
∑t−1

k=1 φ
f
i,ak

(≻) =
∑t−1

k=1 φ
f
i,ak

(≻′). The probability that agent i is assigned
the object at when she reports her true preferences is

φf
i,at

(≻) =
1

n
+
∑
j ̸=i

f(≻i,≻j, at) =
1

n
+ (n− 1) · f(≻i,≻′, at)
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The second equality above comes from the construction of our profile, where ≻j = ≻′ ∀j ̸= i.
If agent i reports ≻′

i we have

φf
i,at

(≻′) =
1

n
+
∑
j ̸=i

f(≻′
i,≻j, at)

=
1

n
+ (n− 1) · f(≻′

i,≻′, at)

>
1

n
+ (n− 1) · f(≻i,≻′, at)

= φf
i,at

(≻)

which leads to a contradiction. The proof for the second part of the receiver-invariance
property follows symmetrically.

Lemma 16. If a transfer function f : R × R × O → [− 1
n
, 1
n
] satisfies the properties of

neutrality, sender invariance, and receiver invariance, as well as the following:∑
a∈O

f(≻,≻′, a) = c for any pair of preferences ≻,≻′∈ R, where c ∈ R is some constant.

then for any object a ∈ O, and preferences ≻,≻′,≻′′∈ R, we have

rank(≻′, a) = rank(≻′′, a) =⇒ f(≻,≻′, a) = f(≻,≻′′, a)

Proof. We prove this claim by induction on n.
Base Step. For the base case, let n = 3 and O = {a1, a2, a3}. Since f is neutral, we

will let ≻ = ⟨a1, a2, a3⟩. There are six preferences in R. We list these preferences and the
transfer functions for ≻ with each of them in Table A.2.

By the receiver invariance property, we know that for object a1 and ∀ ≻′,≻′′ ∈ R

rank(≻′, a1) = rank(≻′′, a1) =⇒ f(≻,≻′, a1) = f(≻,≻′′, a1)

Let xi = f(≻,≻′, a1) be the transfers when rank(≻′, a1) = i. By the same property, we also
have that for object a3 and ∀ ≻′,≻′′ ∈ R

rank(≻′, a3) = rank(≻′′, a3) =⇒ f(≻,≻′, a3) = f(≻,≻′′, a3)

Let yi = f(≻,≻′, a3) be the transfers when rank(≻′, a3) = i.
By the sender invariance property for object a2, if rank(≻′, a2) = rank(≻′′, a2) = 1 or

rank(≻′, a2) = rank(≻′′, a2) = 3, then f(≻,≻′, a2) = f(≻,≻′′, a2). Let wi = f(≻,≻′, a2)
when rank(≻′, a2) = i for i ∈ {1, 3}. It remains to be shown that the claim is true when
rank(≻′, a2) = rank(≻′′, a2) = 2.
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Since ∀ ≻′∈ R,
∑

a∈O f(≻,≻′, a) = c, we have∑
a∈O

f(≻, ⟨a1, a3, a2⟩, a) +
∑
a∈O

f(≻, ⟨a2, a1, a3⟩, a) =
∑
a∈O

f(≻, ⟨a2, a3, a1⟩, a) +
∑
a∈O

f(≻, ⟨a3, a1, a2⟩, a)

x1 + w3 + y2 + x2 + w1 + y3 = x3 + w1 + y2 + x2 + w3 + y1

x1 + y3 = x3 + y1

This implies that when rank(≻′, a2) = rank(≻′′, a2) = 2, f(≻,≻′, a2) = f(≻,≻′′, a2) as
desired.

⟨a1, a2, a3⟩ ⟨a1, a3, a2⟩ ⟨a2, a1, a3⟩ ⟨a2, a3, a1⟩ ⟨a3, a1, a2⟩ ⟨a3, a2, a1⟩
a1 x1 x1 x2 x3 x2 x3

a2 w3 w1 w1 w3

a3 y3 y2 y3 y2 y1 y1

Table A.2: Transfer function f for n = 3

Induction Step. For the induction step, suppose the claim is true for n−1 ≥ 3. We need
to show that the claim continues to hold for n. LetO = {a1, a2, . . . an}. For ease of exposition,
let for any k ∈ N, [k] := {1, 2, . . . , k}. Without loss of generality, let ≻ = ⟨a1, a2, . . . an⟩.
For any p, q ∈ [n], we define Rp,q = {≻′∈ R | rank(≻′, a1) = p and rank(≻′, an) = q} to be
the set of all preferences where the ranks of object a1 and an are p and q respectively. Let
Rp,∗ =

⋃
q∈[n]Rp,q and R∗,q =

⋃
p∈[n]Rp,q.

Claim 5. For all 1 ≤ p ≤ n, ∀ ≻′,≻′′ ∈ Rp,∗, and ∀a ∈ O,

rank(≻′, a) = rank(≻′′, a) =⇒ f(≻,≻′, a) = f(≻,≻′′, a)

Proof. By the definition ofRp,∗, we have for any two preferences≻′,≻′′∈ Rp,∗, rank(≻′, a1) =
rank(≻′′, a1) = p. Thus, by receiver invariance, we must have f(≻,≻′, a1) = f(≻,≻′′, a1).

Let O(n−1) = {a2, . . . , an} denote the set of n − 1 objects apart from a1, and let R(n−1)

denote the set of all strict preferences over On−1. We can now define an auxiliary function
f ′ : R(n−1) ×R(n−1) ×O(n−1) → [− 1

n−1
, 1
n−1

] as follows

f ′(≻,≻′, a) = f(≻̃, ≻̃′
, a) ∀ ≻,≻′ ∈ R(n−1),∀a ∈ O(n−1)

where ≻̃ is obtained by appending a1 to the beginning of preference relation ≻, and ≻̃′

is obtained by inserting a1 at the pth position in ≻′. Now, by receiver-invariance and
neutrality, f(≻̃, ≻̃′

, a1) is equal for any such preferences, and hence we maintain for all
≻,≻′ ∈ R[n−1],

∑
a∈O[n−1] f ′(≻,≻′, a) = c − f(≻̃, ≻̃′

, a1) = c′. Further if ≻ = ⟨a2, . . . , an⟩,
and ≻′ and ≻′′ satisfy that for all 2 ≤ k ≤ t, rank(≻′, ak) = rank(≻′′, ak), then we have
f ′(≻,≻′, at) = f(≻̃, ≻̃′

, at) = f(≻̃, ≻̃′′
, at) = f ′(≻,≻′′, at) where the second equality follows
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from the receiver invariance of function f . Thus, the constructed function f ′ also satisfies
receiver invariance. We can similarly verify that the function f ′ also satisfies neutrality and
sender invariance. Hence we can use the induction hypothesis to complete the proof of the
claim.

We can use a symmetric argument on object an to prove the next claim.

Claim 6. For all 1 ≤ q ≤ n, ∀ ≻′,≻′′ ∈ R∗,q, and ∀a ∈ O,

rank(≻′, a) = rank(≻′′, a) =⇒ f(≻,≻′, a) = f(≻,≻′′, a)

In order to complete the proof of the lemma, we now need to argue that the claim is true
for any ≻′∈ Rp,q and ≻′′∈ Rs,t where p ̸= s and q ̸= t.

Claim 7. For all ≻′ ∈ Rp,q,≻′′ ∈ Rs,t such that p ̸= s and q ̸= t, and ∀a ∈ O,

rank(≻′, a) = rank(≻′′, a) =⇒ f(≻,≻′, a) = f(≻,≻′′, a)

Proof. Fix p ̸= s and q ̸= t, ≻′ ∈ Rp,q,≻′′ ∈ Rs,t, and some object a ∈ O such that
rank(≻′, a) = rank(≻′′, a). Note that a ̸= an and a ̸= a1 by definition of the sets Rp,q and
Rs,t. We consider two cases on the object a.

Case 1: a ̸= an−1

Let ≻̃′ ∈ R∗,q and ≻̃′′ ∈ R∗,t be arbitrary preferences such that

1. rank(≻̃′
, a) = rank(≻′, a) = rank(≻̃′′

, a) = rank(≻′′, a)

2. rank(≻̃′
, an) = q and rank(≻̃′′

, an) = t

3. ∀i /∈ {n− 1, n}, rank(≻̃′
, ai) = rank(≻̃′′

, ai)

Note that since a ̸= an−1, we are guaranteed to be able to find such preferences, by setting
rank(≻̃′

, an−1) = rank(≻′′, an) = t and rank(≻̃′′
, an−1) = rank(≻′, an) = q. Now, by Claim

6, we must have f(≻,≻′, a) = f(≻, ≻̃′
, a) and f(≻,≻′′, a) = f(≻, ≻̃′′

, a). But since f satisfies
the receiver invariance property, we must have f(≻, ≻̃′

, a) = f(≻, ≻̃′′
, a) =⇒ f(≻,≻′, a) =

f(≻,≻′′, a) as desired.

Case 2: a = an−1

Just as in the case above, our goal is to construct preferences ≻̃′
and ≻̃′′

such that
f(≻,≻′, a) = f(≻, ≻̃′

, a) and f(≻,≻′′, a) = f(≻, ≻̃′′
, a), and then argue that these two

transfers must be equal by properties of ≻̃′
and ≻̃′′

.
Let ≻̃′ ∈ Rp,∗ and ≻̃′′ ∈ Rs,∗ be arbitrary preferences such that

1. rank(≻′, a) = rank(≻̃′
, a) = rank(≻′′, a) = rank(≻̃′′

, a)

2. rank(≻̃′
, a1) = p and rank(≻̃′′

, a1) = s

3. ∀i /∈ {1, 2}, rank(≻̃′
, ai) = rank(≻̃′′

, ai)
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Again, we are guaranteed to find such preferences. Since n ≥ 4, we have an−1 ̸= a2 and thus
we can set rank(≻̃′

, a2) = rank(≻′′, a1) = s and rank(≻̃′′
, a2) = rank(≻′, a1) = p. Now,

by Claim 5, f(≻,≻′, a) = f(≻, ≻̃′
, a) and f(≻,≻′′, a) = f(≻, ≻̃′′

, a). Since f satisfies the
receiver invariance property, we must have f(≻, ≻̃′

, a) = f(≻, ≻̃′′
, a) =⇒ f(≻,≻′, a) = f(≻

,≻′′, a) as desired. This concludes the proof of the claim.

Lemma 16 follows as a direct consequence of Claims 5, 6 and 7.

Lemma 4. If pairwise-exchange mechanism φf is neutral and strategy-proof, then for any
object a ∈ O, and preferences ≻,≻′,≻′′ ∈ R, we have

rank(≻′, a) = rank(≻′′, a) =⇒ f(≻,≻′, a) = f(≻,≻′′, a)

Proof. The lemma is an immediate consequence of Lemma 3 and Lemma 16.

For the remainder of this section, recall that for any k ∈ N, [k] := {1, 2, . . . , k}. To prove
Theorem 3, we additionally require the following two lemmas.

Lemma 17. For any function f : R×R× O → [− 1
n
, 1
n
], if f is neutral and ∀ a ∈ O, and

∀ ≻,≻′,≻′′ ∈ R,

rank(≻′, a) = rank(≻′′, a) =⇒ f(≻,≻′, a) = f(≻,≻′′, a)

then there exists a function g : [n]× [n]→ [− 1
n
, 1
n
] such that for all ≻,≻′ ∈ R and ∀a ∈ O,

we have f(≻,≻′, a) = g(rank(≻, a), rank(≻′, a))

Proof. Let ≻∗ be an arbitrary preference relation and let ≻∗ = ⟨a1, a2, . . . , an⟩ without loss
of generality. We define a function g : [n]× [n]→ [− 1

n
, 1
n
] as follows.

g(r, s) = f(≻∗, ≻̂, ar) where ≻̂ is an arbitrary preference such that rank(≻̂, ar) = s.

Note that this function is well defined since we have f(≻∗, ≻̂, ar) = f(≻∗, ≻̂′
, ar) for any

other preference relation ≻̂′
that has rank(≻̂′

, ar) = s. Now consider any two preferences ≻
and ≻′ and an object a ∈ O. Suppose rank(≻, a) = ℓ. Let π : O → O be a permutation such
that ≻∗= π(≻), and define ≻̃ = π(≻′). By definition, we have rank(≻̃, aℓ) = rank(≻′, a).
Since the function f is neutral, we must have

f(≻,≻′, a) = f(≻∗, ≻̃, aℓ) = g(ℓ, rank(≻̃, aℓ)) = g(rank(≻, a), rank(≻′, a))

Lemma 18. Any function g : [n]×[n]→ R satisfies g(i, i) = 0, ∀i ∈ [n] and
∑n

i=1 g(i, π(i)) =
0 for all permutations π : [n]→ [n] if and only if there exists a vector v = (v1, v2, . . . , vn) ∈ Rn

with vn = 0 such that g(i, j) = vi − vj.
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Proof. Let us prove the easy direction first. Suppose ∃ v ∈ Rn s.t. g(i, j) = vi − vj. First,
for any i ∈ [n], g(i, i) = vi − vi = 0. Second, for any permutation π,

n∑
i=1

g(i, π(i)) =
n∑

i=1

(
vi − vπ(i)

)
=

n∑
i=1

vi −
n∑

i=1

vπ(i) = 0

since π is a permutation and hence a bijection on [n].
For the other direction of the claim, we define the vector v ∈ Rn as,

vi = g(i, n) ∀i ∈ [n]

Let π be any permutation and let π′ be such that it is identical to π except for a swap
on one pair of indices. That is, π, π′ are such that for all i ∈ [n] \ {m, k}, π(i) = π′(i)
and for some m, k ∈ [n] π(m) = π′(k) and π(k) = π′(m). Since the function g satisfies∑n

i=1 g(i, π(i)) = 0 for all permutations π, we have:

n∑
i=1

g(i, π(i)) =
n∑

i=1

g(i, π′(i))

i.e.
∑

i∈[n]\{m,k}

g(i, π(i)) + g(m,π(m)) + g(k, π(k)) =
∑

i∈[n]\{m,k}

g(i, π′(i)) + g(m,π′(m)) + g(k, π′(k))

i.e. g(m,π(m)) + g(k, π(k)) = g(m,π(k)) + g(k, π(m))

Thus for any m, k ∈ [n], if we consider a particular permutation π such that π(m) = k
and π(k) = n, the above equality reduces to

g(m, k) + g(k, n) = g(m,n) + g(k, k)

But since g(k, k) = 0, this yields

g(m, k) = g(m,n)− g(k, n) = vm − vk

as desired.

A.4 Neutral and Envy-free Mechanism that is not

Separable

Below we give an example of a mechanism for n = 3 agents and n = 3 objects that is neutral
and envy-free but violates separability. First, note that up to relabeling the objects and /
or the agents, there are exactly ten different preference profiles. These profiles and their
corresponding assignments are shown in Table A.3 and A.4 respectively.

It is easy to verify that this mechanism satisfies neutrality and envy-freeness. However, it
violates separability. The mechanism fails to satisfy separability at exactly those contention-
free preference profiles where it differs from the Rank Exchange mechanism with vector
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1 a b c
2 a b c
3 a b c

(a) Profile A

1 a c b
2 a b c
3 a b c

(b) Profile B

1 b a c
2 a b c
3 a b c

(c) Profile C

1 b c a
2 a b c
3 a b c

(d) Profile D

1 c a b
2 a b c
3 a b c

(e) Profile E

1 c b a
2 a b c
3 a b c

(f) Profile F

1 b a c
2 a c b
3 a b c

(g) Profile G

1 b c a
2 a c b
3 a b c

(h) Profile H

1 c a b
2 b a c
3 a b c

(i) Profile I

1 c a b
2 b c a
3 a b c

(j) Profile J

Table A.3: Ten preference profiles

a b c

1 1
3

1
3

1
3

2 1
3

1
3

1
3

3 1
3

1
3

1
3

(a) Profile A

a b c

1 1
3

0 2
3

2 1
3

1
2

1
6

3 1
3

1
2

1
6

(b) Profile B

a b c

1 1
3

1
3

1
3

2 1
3

1
3

1
3

3 1
3

1
3

1
3

(c) Profile C

a b c

1 0 1
3

2
3

2 1
2

1
3

1
6

3 1
2

1
3

1
6

(d) Profile D

a b c

1 1
3

0 2
3

2 1
3

1
2

1
6

3 1
3

1
2

1
6

(e) Profile E

a b c

1 0 1
3

2
3

2 1
2

1
3

1
6

3 1
2

1
3

1
6

(f) Profile F

a b c

1 1
3

1
2

1
6

2 1
3

0 2
3

3 1
3

1
2

1
6

(g) Profile G

a b c

1 0 1
2

1
2

2 1
2

0 1
2

3 1
2

1
2

0

(h) Profile H

a b c

1 1
3

0 2
3

2 0 5
6

1
6

3 2
3

1
6

1
6

(i) Profile I

a b c

1 1
6

0 5
6

2 0 5
6

1
6

3 5
6

1
6

0

(j) Profile J

Table A.4: Assignments at the ten preference profiles in Table A.3

v = (1
6
, 1
6
, 0). To see this, let us look at the amount of object b that agent 2 gets at Profile

I. In what follows, for any profile ≻(x), let P (x) := φ(≻(x)).

We know that P
(I)
2,b = 5

6
. Let ≻K = (⟨b, a, c⟩, ⟨b, a, c⟩, ⟨b, a, c⟩). By neutrality, P

(K)
2,b =

P
(A)
2,a = 1

3
. Consider ≻L = (⟨c, a, b⟩, ⟨b, a, c⟩, ⟨b, a, c⟩) and ≻M = (⟨b, a, c⟩, ⟨b, a, c⟩, ⟨a, b, c⟩).

After working through appropriate agent and object rotations, we have, P
(L)
2,b = P

(F )
2,a = 1

2
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and P
(M)
2,b = P

(C)
2,a = 1

3
. However,

(P
(L)
2,b − P

(K)
2,b ) + (P

(M)
2,b − P

(K)
2,b ) = (

1

2
− 1

3
) + (

1

3
− 1

3
) =

1

6
̸= 1

2
= (

5

6
− 1

3
) = P

(I)
2,b − P

(K)
2,b

leading to a violation of separability.
It can be readily seen that this mechanism cannot be represented as a Rank Exchange

mechanism. At eight out of the ten preference profiles, the mechanism outputs the same
assignments as those in a Rank Exchange mechanism with vector v = (1

6
, 1
6
, 0). However, the

mechanism provides different assignments at the contention-free preference profiles (Profiles
I and J).

A.5 Envy-free and Separable Mechanism that is not

Neutral

We present an example of a mechanism for n = 3 agents and n = 3 objects that is envy-
free and separable but violates neutrality. From Lemma 2, we know that an envy-free and
separable mechanism can be represented as a pairwise exchange mechanism. Table A.5
defines a transfer function f : R×R×O → [−1

6
, 1
6
].

It is easy to verify that this function f represents a valid pairwise exchange mecha-
nism φf and is separable. It satisfies all the properties in Lemma 3. Further, one can
also verify that f satisfies sender-invariance and swap-monotonicity. These two proper-
ties are sufficient to show that φf is strategy-proof (Lemma 12). Consequently φf is
also envy-free (Theorem 4). However, φf violates neutrality. This is easy to see since
f(⟨a, b, c⟩, ⟨c, b, a⟩, b) ̸= f(⟨a, c, b⟩, ⟨b, c, a⟩, c). Thus, function f violates neutrality (Lemma
15). Note that this mechanism cannot be represented as a Rank Exchange mechanism since
all Rank Exchange mechanisms are neutral by definition.



APPENDIX A. CHAPTER 2: SUPPLEMENTARY MATERIAL 87

≻′

f(≻,≻′, o) ⟨a, b, c⟩ ⟨a, c, b⟩ ⟨b, a, c⟩ ⟨b, c, a⟩ ⟨c, a, b⟩ ⟨c, b, a⟩

≻ a b c a b c a b c a b c a b c a b c

⟨a, b, c⟩ 0 0 0 0 1
12

−1
12

1
12

−1
12

0 1
12

−1
12

0 0 1
12

−1
12

1
12

0 −1
12

⟨a, c, b⟩ 0 −1
12

1
12

0 0 0 1
12

−1
6

1
12

1
12

−1
6

1
12

0 0 0 1
12

−1
12

0

⟨b, a, c⟩ −1
12

1
12

0 −1
12

1
6

−1
12

0 0 0 0 0 0 −1
12

1
6

−1
12

0 1
12

−1
12

⟨b, c, a⟩ −1
12

1
12

0 −1
12

1
6

−1
12

0 0 0 0 0 0 −1
12

1
6

−1
12

0 1
12

−1
12

⟨c, a, b⟩ 0 −1
12

1
12

0 0 0 1
12

−1
6

1
12

1
12

−1
6

1
12

0 0 0 1
12

−1
12

0

⟨c, b, a⟩ −1
12

0 1
12

−1
12

1
12

0 0 −1
12

1
12

0 −1
12

1
12

−1
12

1
12

0 0 0 0

Table A.5: Transfer function f(≻,≻′, o)
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