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Abstract

For independently and identically distributed (i.i.d.) univariate observations a new estimation
method, the maximum spacing (MSP) method, was defined in Ranneby (Scand. J. Statist. 11 (1984)
93) and independently by Cheng and Amin (J. Roy. Statist. Soc. B 45 (1983) 394). The idea be-
hind the method, as described by Ranneby (Scand. J. Statist. 11 (1984) 93), is to approximate the
Kullback–Leibler information so each contribution is bounded from above. In the present paper the
MSP-method is extended tomultivariate observations. Since we do not have any natural order relation
in Rd whend >1 the approach has to be modified. Essentially, there are two different approaches,
the geometric or probabilistic counterpart to the univariate case. If we to each observation attach its
Dirichlet cell, the geometrical correspondence is obtained. The probabilistic counterpart would be
to use the nearest neighbor balls. This, as the random variable, giving the probability for the nearest
neighbor ball, is distributed as the minimum of(n − 1) i.i.d. uniformly distributed variables on the
interval (0, 1), regardless of the dimensiond. Both approaches are discussed in the present paper.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

For independently and identically distributed (i.i.d.) univariate observations, a new esti-
mation method called the “Maximum Spacings (MSP)” method, was developed in
Ranneby (1984)and independently byChengandAmin (1983).The ideabehind themethod,
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as described byRanneby (1984), is to approximate the Kullback–Leibler information so
each contribution is bounded from above. The estimation method obtained from this ap-
proximation is called the maximum spacing method and it works also in situations when
the ML-method breaks down. The method is also discussed inTitterington (1985), where
he states that “in principle, of course, it would be possible to treat multivariate data by
grouping: although definition of the multinomial cells would be more awkward.”
In the present paper, our goal is to extend the MSP-method to multivariate observations.

Since we do not have any natural order relation inRd whend >1, we have to modify the
approach. Essentially, there are two different approaches to choose between, namely the
geometric and the probabilistic counterparts to the univariate spacings. Let�1, �2, . . . , �n
be a sequence of independent and identically distributedd-dimensional random vectors
with true distributionP0 and define the nearest neighbor distance to the point�i , namely

Rn(i)= min
j �=i |�i − �j |

and let

B(x, r)= {y : |x − y|�r}
denote the ball of radiusr with center atx.
The Dirichlet cellsVn(�i ) attached to each observation�i may be interpreted as the

geometrical correspondence. The Dirichlet cellVn(�i ) surrounding�i consists of all points
x ∈ Rd which are closer to�i than to any other observation, and the Dirichlet cells split
Rd into n identically distributed random sets. The main advantage with this approach is
that the probabilities for the Dirichlet cells always add up to one. The Dirichlet cells are
cumbersome to handle, both from a practical and theoretical point of view. The probabilistic
counterpart to univariate spacings would be to use the nearest neighbor balls, as the random
variableP0(B(�i , Rn(i))) is distributedas theminimumof(n−1) i.i.d. uniformlydistributed
variables on the interval (0, 1), regardless of the dimensiond. The latter approach is our
main focus in this paper, but the geometric approach is also discussed. Goodness of fit tests
based on nearest neighbor balls have been considered earlier byBickel and Breiman (1983)
as well asJammalamadaka and Zhou (1993)but our goal here is estimation and not testing
hypotheses.

2. Definitions

In this section the definitions of the two different extensions of the MSP-method to the
multivariate case will be given.

2.1. MSP based on NN-balls

Let �1, �2, . . . , �n be i.i.d. random vectors with an absolutely continuous distribution
P0 with density functiong(x) and suppose that we assign a model with density functions
{f (x, �), � ∈ �}, where� ⊂ Rq . Define,

zi(n, �)= nP �(B(�i , Rn(i))),
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z̄(n, �)= 1

n

n∑
i=1

zi(n, �),

I (A)= indicator function of the setA.

A natural generalization of the univariate definition of the spacing function is to define it
in the multivariate case as

1

n

n∑
i=1

logzi(n, �).

However, there are serious shortcomings of this approach, mainly that under some proba-
bility measures the sum of the probabilities of the nearest neighbor balls may be too large
(as for instance whenP� has the same location asP0 but much smaller variance). As a
consequence there is no guarantee that the estimator will be consistent.
To overcome this problem, we will normalize the probabilities for the nearest neighbor

balls when the sum of their probabilities exceeds one.When the sum is less than one we let
the remaining probability enter the spacing function in the sameway as the probabilities for
the nearest neighbor balls. This leads us to the following definition of the spacing function
Sn(�)

Sn(�)=1

n

∑
log(zi(n, �))+

(
1

n
log(1− z̄(n, �))

)
I (z̄(n, �)�1)

− I (z̄(n, �)>1) log z̄(n, �).

Remark 1. This means that when the sum of the probabilities exceeds one the spacing
function is defined as

Sn(�)= 1

n

∑
i

log

[
nP �(B(�i , Rn(i)))∑
jP�(B(�j , Rn(j)))

]
.

Definition. The parameter value which maximizesSn(�) is called the maximum spacing
estimate (MSP-estimate) of�.

Remark 2. If sup Sn(�) is not attained for any� belonging to the admissible set�, we
define the MSP-estimatê�n as any point belonging to the set� and satisfying

Sn(�̂n)�
logcn
n

+ sup
�∈�

Sn(�).

In this expression 0<cn <1 andcn → 1 asn → ∞.
For mixtures of continuous distributions it happens that the likelihood function tends to

infinity for certain parameter combinations and then the ML-method breaks down.

Example 1. Let �1, �2, . . . be i.i.d. observations from a mixture of two bivariate normal
distributions. The density functionf (x, y, �) is given by

f (x, y, �)= ph(x, y,�1,�2,�1,�2,�1)+ (1− p)h(x, y,�3,�4,�3,�4,�2)
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whereh is the density function for a bivariate normal distribution with parameters indicated
by the notation. Say that we have observations(x1, y1), (x2, y2), . . . , (xn, yn). If we put
�1 = x1,�2 = y1 and let�1 (or�2) go to zero, then the likelihood function tends to infinity.
Consequently, the ML-method is not suitable. The maximum spacing estimate obtained by
maximizingSn(�), defined above will be consistent.

Remark 3. It may be argued that if the�i ’s are bounded away from zero by some small
number the ML method performs well. Theoretically that is true but quite frequently the
numerical maximization breaks down, as a consequence of the unboundedness of the like-
lihood function when the�i ’s are not bounded away from zero.

2.2. MSP based on Dirichlet tesselation

Before we give an alternative definition of the spacing function, consider the following
definitions.
Given an open set� ⊂ Rd , the set{Vi}ni=1 is called atesselationof � if Vi ∩ Vj = ∅ for

i �= j and
⋃n
i=1V̄i = �̄. Let | · | denote the Euclidean norm onRd . Given a set of points

{�i}ni=1 belonging to�̄, the Dirichlet cellV (�i ) corresponding to the point�i is defined by

V (�i )= {y ∈ � : |y − �i |� |y − �j |, for j = 1, . . . , n, j �= i}.
The probabilities of the Dirichlet cells, of course, always add up to the probability of�.

Now we consider the following alternative definition of the spacing function based on
the Dirichlet tesselation. Let

vi(n, �)= nP �(V (�i )).

The spacing functionS∗
n(�) is defined as follows:

S∗
n(�)=

1

n

∑
log(vi(n, �)).

The MSP-estimate of� is now defined as the maximizer ofS∗
n(�).

This approach has been used inRanneby (1996)and it is also discussed inJimenez and
Yukich (2002).

3. Consistency of MSP based on NN-balls

Before the main results will be stated some results of independent interest will be given.

3.1. Preliminaries

Let�1, �2, . . . , �n bea sequenceof independentd-dimensional randomvectors.Then, for
eachfixedi, wecanmake the transformationP0(B(�i , |�i−�j |)), j �= i. The(n−1) random
variables are not only uniformly distributed, but they are also mutually independent. As the
following proposition shows, it is also possible to let the random vectors�1, �2, . . . , �n
have different distributions.
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Proposition 1. Let �1, �2, . . . , �n be independent random variables with the respective
distributionsPj (·), j=1,2, . . . , nwhichareabsolutely continuousw.r.t. Lebesguemeasure.
Then for each fixed i it holds that the random variablesPj (B(�i , |�i − �j |)), j �= i, j =
1,2, . . . , n have the same distribution as the joint distribution of(n− 1) independent and
uniformly distributed(on the interval(0,1)) random variables.

Proof.

Pr(Pj (B(�i , |�i − �j |))> �j , j �= i)

=
∫
Pr(Pj (B(�i , |�i − �j |))> �j , j �= i|�i = x)dPi(x).

Given that�i = x, the random variablesPj (B(x, |x − �j |)) will be independent. Thus
we obtain

Pr(Pj (B(�i , |�i − �j |))> �j , j �= i)

=
∫ ∏
j �=i
P r(Pj (B(x, |x − �j |))> �j )dPi(x)

=
∫ ∏
j �=i
P r(|�j − x|>r(j, x, �j ))dPi(x), (1)

wherer(j, x, �j ) is chosen so thatPj (|�j − x|�r(j, x, �j ))= �j .
Such numbers always exist becausePj (|�j − x|�	) is a continuous function of	. The

definition ofr(j, x, �j ) implies that

Pr(|�j − x|>r(j, x, �j ))= 1− �j .

By inserting the right side of this expression into (1) we get

Pr(Pj (B(�i , |�i − �j |))> �j , j �= i)=
∏
j �=i
(1− �j ),

which is what was to be proved.�

Because of Proposition 1 the moments ofn minj �=iPj (B(�i , |�i − �j |)) are easily cal-
culated, see e.g.Reiss (1989, p. 45), giving us the following corollary.

Corollary 1. Under the assumptions in Proposition1 it holds that

E

[
nmin
j �=i Pj (B(�i , |�i − �j |))

]
→ 1,

Var

[
nmin
j �=i Pj (B(�i , |�i − �j |))

]
→ 1,

E

[
(nmin

j �=i Pj (B(�i , |�i − �j |)))3
]

→ 6.
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As a direct consequence of results inPyke (1965)orRényi (1953)we have the following
lemma.

Lemma 1. Under the assumptions in Proposition1 it holds that the random variable
minj �=iPj (B(�i , |�i−�j |)) has the same distribution asY1/

∑n
j=1Yj ,whereY1, Y2, . . . , Yn

are i.i.d. random variables with an exponential distribution with mean1. Furthermore, n
minj �=iPj (B(�i , |�i − �j |)) converges in distribution to an exponential distribution with
mean1.

Lemma 2. Under the assumptions of Proposition1 it holds that

E

[
lognmin

j �=i Pj (B(�i , |�i − �j |))
]

→ −
,

where
 is Euler’s constant and equals0.57· · ·,

Var

[
lognmin

j �=i Pj (B(�i , |�i − �j |))
]

→ �2

6
− 1

and

E

[∣∣∣∣lognmin
j �=i Pj (B(�i , |�i − �j |))

∣∣∣∣
3
]

→
∫

| logx|3e−x dx <∞.

Proof. It follows from Lemma 1 thatn minj �=iPj (B(�i , |�i − �j |)) will have the same
distribution asY1/Ȳ , where Ȳ → 1 almost surely. Thus we will be done if we can
show that the sequence| log Ȳ |3 is uniformly integrable. Jensen’s inequality gives that
log Ȳ� 1

n

∑n
i=1 logYi . Since we also have loḡY� Ȳ , we get

| log Ȳ |�
∣∣∣∣∣1n

n∑
i=1

logYi

∣∣∣∣∣ + |Ȳ |.

This result shows us that| log Ȳ |3 is uniformly integrable. SincēY → 1 a.s. we get that

E
[
lognY 1

/∑
Yj

]
→ E(logY1)= −
,

Var
[
lognY 1

/∑
Yj

]
→ Var(logY1)= �2

6
− 1,

and

E

[∣∣∣∣lognY 1

/∑
Yj

∣∣∣3] → E(| logY1|3)<∞. �

The calculations ofE(logY1) and Var(logY1) may be found for example inDarling
(1953).
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In the following we will assume that the random vectors�1, �2, . . . , �n have the same
distributionP0 with density functiong(x). In the rest of the paper, we use the following
notation (see also Section 4 ofJammalamadaka and Janson (1986)):

‖B(x, r)‖ = volume of the ballB(x, r)= cdrd,
wherecd = �d/2/�(d/2+ 1).

Proposition 2. Let �1, �2, . . . , �n be i.i.d. random vectors with an absolutely continuous
distributionP0 with density functiong(x). Then(�i , 
i (n)), where


i (n)= n‖B(�i , Rn(i))‖ = ncdRdn(i),
converges in distribution to(X, Y ) where X has density functiong(x) and Y givenX = x
has an exponential distribution with parameterg(x).

Proof. As the volume of the ballB(x, r) exceedsy/n if and only if none of the variables
�j , j �= i, j�n falls in the ballB(x, V −1(y/n)). (HereV −1(y/n)denotes the radius giving

the volumey/n, i.e.r = (y/n)1/dc−1/d
d ). Thus

Pr(n‖B(�i , Rn(i)‖>y|�i = x)= (1− P0(�1 ∈ B(x, V −1(y/n))))n−1.

As

P0(�1 ∈ B(x, V −1(y/n))

y/n
→ g(x),

(seeMattila, 1995, p. 36), it follows that

(1− P0(�1 ∈ B(x, V −1(y/n))))n−1 → e−yg(x). �

Next we prove that(�i , 
i (n)) and(�j , 
j (n)) are asymptotically independent.

Proposition 3. When n tends to infinity it holds that

Pr(
i (n)> yi, 
j (n)> yj |�i = xi, �j = xj ) → e−yig(xi )e−yj g(xj )

Proof. Since the random variables(�i , 
i (n)), i = 1,2, . . . , n are exchangeable it is suffi-
cient to prove the proposition fori = 1 andj = 2. Instead of proving the convergence for

1(n) and
2(n) we shall prove it for̃
1(n) and
̃2(n), where


̃k(n)= min
j�3

ncd |�k − �j |d for k = 1,2.

By symmetry
̃k(n) and
k(n) differs only on a set having probability 1/(n− 1). Thus


̃k(n)− 
k(n)
p−→0, k = 1,2
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which implies that (
1(n), 
2(n)) and (̃
1(n), 
̃2(n)) have the same limit distribution. By
conditioning on�1 = x1 and�2 = x2 we get

Pr(
̃1(n)> y1, 
̃2(n)> y2|�1 = x1, �2 = x2)
= Pr(E(x1, n)> y1, E(x2, n)> y2),

where

E(xi, n)= n‖B(xi,min
j�3

|xi − �j |)‖, i = 1,2.

The event{E(xi, n)> yi} occurs if all�j , j�3 falls outside the ballB(xi, V −1(yi/n))=
B(xi).
Thus

Pr(
̃1(n)> y1, 
̃2(n)> y2|�1 = x1, �2 = x2)= (1− Pr(B(x1) ∪ B(x2)))n−2.

But, asx1 �= x2, B(x1) andB(x2) are disjoint ifn is sufficiently large so

lim
n→∞(1− Pr(B(x1) ∪ B(x2)))n−2 = e−yig(xi )e−yj g(xj ). �

As the set{�1 = �2} has probability zero this gives us the asymptotic independence of
(�i , 
i (n)) and(�j , 
j (n)).

Proposition 4. Let the distributionP0 of the sequence�1, �2, . . . , �n of independent ran-
dom vectors be absolutely continuous w.r.t. Lebesgue measure. Then it holds that

1

n

n∑
i=1

lognP 0(B(�i , Rn(i)))
p−→ −


as n tends to infinity.

Proof. Define

Ei(n)= nP 0(B(�i , Rn(i)).

The exchangeability of(�i , 
i (n)) gives

E

[
1

n

n∑
i=1

logEi(n)

]
= E(logE1(n)),

and

Var

[
1

n

n∑
i=1

logEi(n)

]

= Var(logE1(n))

n
+ 2

n2 − n
n2

Cov(logE1(n), logE2(n)).
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Since, see Lemma 2

E(logE1(n)) → −


and

Var(logE1(n)) → �2

6
− 1<∞,

an application of Chebychev’s inequality will give the desired result if we can show that
Cov(logE1(n), logE2(n)) → 0 asn → ∞. SinceE1(n) andE2(n) are asymptotically
independent we will be through if we show that the sequence{logE1(n) logE2(n)}∞n=1 is
uniformly integrable. We have

E2| logE1(n) logE2(n)|1.5�E| logE1(n)|3E| logE2(n)|3.
The right-hand side of this expression converges to(

∫ | logx|3e−x dx)2, which is finite,
giving us

sup
n
E| logE1(n) logE2(n)|1+0.5<∞.

Consequently, the sequence{logE1(n) logE2(n)}∞n=1 has to be uniformly integrable, which
completes the proof.�

Proposition 5. Let the distributionP0 of the sequence�1, �2, . . . , �n of independent ran-
dom vectors be absolutely continuous w.r.t. Lebesque measure. Then it holds that

1

n

n∑
i=1

nP 0(B(�i , Rn(i)))
p−→1

as n tends to infinity.

Proof. Follows in a similar way from Corollary 1 and Proposition 3.�

3.2. Consistency

To prove the consistency of the MSP-estimate, we need some kind of continuity and
identifiability condition. If we allow the distributions for parameter values close to each
other to be too different, we cannot expect our estimation procedure to produce consistent
estimators. This is clearly demonstrated by an example inBasu (1955). Our continuity
condition is inspired by the Arzela–Ascoli theorem.
Define

z(n, �, x, y)= nB(x, rn) wherern = (c−1
d y/n)

1/d ,

P (x, y)=the distribution function of(X, Y )

with density functionp(x, y)defined by

p(x, y)= g2(x)exp(−yg(x)), y >0.
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Condition C1. Let (X, Y ) have the distributionP(x, y). For each�>0 and
>0 there
exists an integerm, setsKj ⊂ Rd+1, j = 1,2, . . . , m, a partition of� into disjoint sets
�1,�2, . . . ,�m and parameter values�j ∈ �j , j = 1,2, . . . , m, such that for eachj =
1,2, . . . , m,

(i) the boundary�Kj of the setKj has Lebesgue measure zero,
(ii) P((X, Y ) ∈ Kj)>1− 
,
(iii) sup�∈�j

|z(n, �, x, y)− z(n,�j , x, y)|< � for all (x, y) ∈ Kj and for alln�N(�, 
).

Remark 4. All or some of the setsK1,K2, . . . , Km may be equal.

The mixture distribution in Example 1 satisfies Condition C1. The technique used in
Ranneby (1984)to verify Condition C1 is also applicable in the multivariate situations. It
follows that the continuity condition C1 usually is satisfied.
The identifiability condition we are going to use is called, according to the terminology in

Rao (1973), a strong identifiability condition.However,whenweak identifiability conditions
are used, these conditions are usually used in combination with other conditions implying
that a strong identifiability condition is satisfied.
Let T (M, �) denote the expected value of max(−M, logYf �(X)), where(X, Y ) has the

distributionP(x, y).

Condition C2. For each�>0 there exists a constantM1 =M1(�) such that

sup
�∈Bc(�o,�)

T (M1, �)<T (�
o)= E(logYg(X)).

Remark 5. Using the results in Corollary 2.5 inRanneby (1984)it is easily seen that
the identifiability condition C2 is satisfied if the density functionsf�(x) are continuous
functions of� for almost allx and the weak identifiability condition are satisfied.

Theorem 1. Let�1, �2, . . . , �n be a sequence of i.i.d. random vectors inR
d with distribu-

tion P� and density functionf�(x), where� belongs to an admissible set�. Suppose that
ConditionsC1 andC2 are satisfied. Then the MSP-estimatê�n converges in probability to
the true parameter value�o.

Before we prove the theorem we establish two lemmas and introduce some notations.
Let

tM(x)= max(−M, logx),
hM,N(x)= min(N, tM(x)),

aN(x)= max(0, logx −N),

Hn(M,N, �)= 1

n

n∑
i=1

hM,N(zi(n, �)),
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T (M, �)=
∫
tM(yf �(x))dP(x, y),

H(M,N, �)=
∫
hM,N(yf �(x))dP(x, y),

A(N, �)=
∫
aN(yf �(x))dP(x, y).

Lemma 3. Hn(M,N, �) converges in probability toH(M,N, �).Further if Condition C1
is satisfied then the convergence is uniform in�.

Proof. We begin with the pointwise convergence ofHn(M,N, �). The random variables
zi(n, �) are exchangeable. Thus

E(Hn(M,N, �))= E(hM,N(zi(n, �)))
and

Var(Hn(M,N, �))= 1

n2
Var(hM,N(z1(n, �)))

+ n2 − n
n2

Cov(hM,N(z1(n, �)), hM,N(z2(n, �))).

Next we show the convergence of

E[hM,N(z1(n, �))] =
∫
hM,N(z(n, �, x, y))dPn(x, y),

wherePn denotes the distribution of(�i , 
i (n)).
As hM,N is a bounded continuous function and since

z(n, �, x, y) → yf �(x), n → ∞
and

Pn(x, y) → P(x, y), n → ∞
it follows from Lebesgue Dominated Convergence Theorem that

E(hM,N(zi(n, �))) →
∫
hM,N(yf �(x))dP(x, y)=H(M,N, �).

As (�1, 
1(n)) and(�2, 
2(n)) are asymptotically independent, see Proposition 3, it fol-
lows that

E(hM,N(z1(n, �))hM,N(z2(n, �))) → H(M,N, �)2

so that

Cov(hM,N(z1(n, �)), hM,N(z2(n, �))) → 0 asn → ∞.
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Thus

E(Hn(M,N, �)) → H(M,N, �),

and

Var(Hn(M,N, �)) → 0

implying thatHn(M,N, �) converges in probability toH(M,N, �) asn → ∞.
Now we continue with the uniform convergence ofHn(M,N, �).
Choose the setsKj in Condition C1 such thatP(Kj )>1− �

16max(M,N) . Furthermore,
choose�1,�2, . . . ,�m and�1,�2, . . . ,�m such that

sup
�∈�j

|z(n, �, x, y)− z(n,�j , x, y)|<
�e−M

8
,

for all (x, y) ∈ Kj , j = 1,2, . . . , m. Write for � ∈ �j ,

H(M,N, �)= lim
n→∞

∫
Kj

hM,N(z(n, �, x, y))dP(x, y)

+ lim
n→∞

∫
Kcj

hM,N(z(n, �, x, y))dP(x, y).

Let � ∈ �j . We have, forn sufficiently large,

|hM,N(z(n, �, x, y))− hM,N(z(n,�j , x, y))|�
{

�/8 onKj ,
2max(M,N) onKcj .

(2)

Thus

sup
�∈�j

|H(M,N, �)−H(M,N,�j )|<
�
8

+ �
8

= �
4
. (3)

We have

|Hn(M,N, �)−Hn(M,N,�j )|
<

1

n

∑
|hM,N(zi(n, �))− hM,N(zi(n,�j )|I (�i , 
i (n) ∈ Kj)

+ 1

n

∑
|hM,N(zi(n, �))− hM,N(zi(n,�j )|I (�i , 
i (n) ∈ Kcj ).

Since the boundary�Kj hasP -measure zero we get

1

n

∑
I ((�i , 
i (n)) ∈ Kcj )→pP ((X, Y ) ∈ Kcj )<

�
16max(M,N)

and then it follows from (2) that

P
(
|Hn(M,N, �)−Hn(M,N,�j )|<

�
4

)
→ 1 asn → ∞. (4)
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Combining (3) and (4) we get that

Hn(M,N, �)
p−→H(M,N, �)

uniformly in �. �

Lemma 4. Define

z̃i (n, �)=
{
zi(n, �) if z̄(n, �)�1,
zi(n, �)/z̄(n, �) if z̄(n, �)>1.

Then the random function

An(N, �)= 1

n

n∑
i=1

max(0, log z̃i (n, �)−N)

converges to zero for all elementary events, uniformly in n and� asN → ∞.

Proof. Obviously,
∑
z̃i (n, �)�n. The rest of the proof is only a slight modification of

Lemma 2 inRanneby and Ekström (1997). �

Proof of Theorem 1. Recall the definition ofSn(�) as

Sn(�)=1

n

∑
logzi(n, �)

+ 1

n
log(1− z̄(n, �))I (z̄(n, �)�1)− log z̄(n, �)I (z̄(n, �)>1).

We have

Sn(�)�
1

n

∑
logzi(n, �)− log z̄(n, �)I (z̄(n, �)>1)

� 1

n

∑
hM,N(z̃i(n, �))+ 1

n

∑
max(0, log z̃i (n, �)−N).

Obviously,
∑
z̃i (n, �)�n, so Lemma 4 gives that

An(N, �)
p−→0,

uniformly in � andn. As z̃i (n, �)�zi(n, �) andhM,N(x) is a non-decreasing function we
get that

Sn(�)�Hn(M,N, �)+ An(N, �).

Lemma 3 gives thatHn(M,N, �)
p−→H(M,N, �), uniformly in� asn → ∞. Note that

H(M,N, �)+ A(N, �)= T (M, �)
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and let�̂n denote the MSP-estimate. ForN large the following holds with probability going
to one asn tends to infinity:

Sn(�̂n)�
1

n

∑
hM,N(zi(n, �̂n)+ �

4

�H(M,N, �̂n)+ �
2

�H(M,N, �̂n)+ A(N, �̂n)+ �
2

= T (M, �̂n)+ �
2
.

As Sn(�
o)

p−→ −
 we get

T (M, �̂n)+ �
2
>Sn(�̂n)>Sn(�

o)>T (�o)− �
2
,

which implies that

T (M, �̂n)>T (�
o)− �.

Now the identifiability condition C2 gives

|�̂n − �o|< �

which completes the proof.�

4. Simulation results

Here we present the results of the simulation study we conducted in order to confirm
and support our hypothesis about the consistency and asymptotic normality of the MSP-
estimates for multivariate observations. It was also of interest to compare the estimation
based on Dirichlet tesselation with that based on nearest-neighbor balls. In all the figures
and tables, MSPE stands for MSP-estimate.

4.1. Gaussian density

We simulated bivariate Gaussian random variables with the following mean vector and
covariance matrix:

� =
(

�1
�2

)
=

(
0
0

)
, � =

(
�2
1 �

� �2
2

)
=

(
1 0.5
0.5 1

)
.

Then we constructed two spacing functions—one based on nearest neighbor balls and one
based on Dirichlet cells. These functions were subsequently maximized by random search
algorithm. As the starting point in the parameter space, to speed up the convergence, the
true value of the parameter vector was chosen. We have also experimented with different
starting points, and always the outcomes (e.g. themaximizers) were identical. Each spacing
function was maximized twice—first based on 50, then on 200 observations, and both
experiments were repeated 500 times. The mean and the covariance matrix of the outcomes
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Table 1
The covariance matrix(×n) of the MSPE of the parameters of Gaussian distribution

n Nearest neighbor circles Dirichlet cells

�1 �2 �1 �2 � �1 �2 �1 �2 �

50 �1 1.20 0.66 −0.07 −0.02 −0.09 1.04 0.56 −0.08 −0.02 −0.07
�2 0.66 1.31 0.05 0.07 0.06 0.56 1.07 0.02 0.01 0.04
�1 −0.07 0.05 0.88 0.26 0.82 −0.08 0.02 0.56 0.17 0.54
�2 −0.02 0.07 0.26 0.79 0.74 −0.02 0.01 0.17 0.54 0.59
� −0.09 0.06 0.82 0.74 1.88 −0.07 0.04 0.54 0.59 1.51

�1 1.29 0.65 −0.06 −0.05 −0.13 1.10 0.55 −0.07 −0.04 −0.06
200 �2 0.65 1.35 −0.05 0.03 −0.08 0.55 1.05 −0.03 0.03 0.00

�1 −0.06 −0.05 0.79 0.33 0.80 −0.07 −0.03 0.53 0.18 0.55
�2 −0.05 0.03 0.33 0.90 0.89 −0.04 0.03 0.18 0.53 0.57
� −0.13 −0.08 0.80 0.89 2.05 −0.06 0.00 0.55 0.57 1.36
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Table 2
The bias of the MSPE of the parameters of Gaussian distribution

�1 �2 �1 �2 �

NN circles(n= 50) −0.0060 0.0107 0.0025 0.0140 0.0307
Dirichlet cells(n= 50) −0.0091 0.0064 0.0518 0.0598 0.0116
NN circles(n= 200) −0.0010 −0.0003 0.0032 0.0019 0.0101
Dirichlet cells(n= 200) −0.0041 −0.0004 0.0244 0.0221 0.0034

-3 -2 -1 0 1 2 3

NN MSPE (50 observations)

-3 -2 -1 0 1 2 3

NN MSPE (200 observations)

-2

0

2

4

-2

0

2

4

-3 -2 -1 0 1 2 3

Dirichlet MSPE (50 observations)

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

Dirichlet MSPE (200 observations)

-2

0

2

Fig. 1. Quantile–quantile plots of the MSPE for�2 (Gaussian density).

were calculated and averaged over 500 repetitions (seeTables 1and2). The estimated
covariance matrix was compared to the Cramér–Rao bound

I−1 =




1 0.5 0 0 0
0.5 1 0 0 0
0 0 0.5 0.125 0.5
0 0 0.125 0.5 0.5
0 0 0.5 0.5 1.25


 .

The results confirm the consistency of the MSP-estimates. Besides, we note that the
MSP-estimate based on Dirichlet cells is much closer to being efficient than the estimate
based on the nearest neighbor balls.Fig. 1 displays the normal quantile–quantile plots of
the estimates of one of the parameters. We note that the plots support the conjecture of
asymptotic normality of the MSP-estimates.
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Table 3
The covariance matrix(×n) of the MSPE of the parameters of Gaussian mixture

n Nearest neighbor circles Dirichlet cells

�1 �2 �1 �2 � �1 �2 �1 �2 �

50 �1 2.61 1.11 0.39 0.04 0.49 1.96 0.86 0.25 −0.09 0.24
�2 1.11 1.72 0.16 0.12 0.25 0.86 1.59 0.16 0.16 0.32
�1 0.39 0.16 1.02 0.22 1.02 0.25 0.16 1.04 0.27 0.95
�2 0.04 0.12 0.22 1.14 1.04 −0.09 0.16 0.27 1.10 0.89
� 0.49 0.25 1.02 1.04 2.53 0.24 0.32 0.95 0.89 2.43

�1 2.50 1.16 0.41 0.06 0.51 1.61 0.88 0.20 0.03 0.25
200 �2 1.16 1.99 0.14 0.10 0.22 0.88 1.69 0.06 0.11 0.13

�1 0.41 0.14 1.12 0.26 0.84 0.20 0.06 0.91 0.19 0.82
�2 0.06 0.10 0.26 1.12 0.87 0.03 0.11 0.19 0.87 0.80
� 0.51 0.22 0.84 0.87 2.71 0.25 0.13 0.82 0.80 2.10
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Table 4
The bias of the MSPE of the parameters of Gaussian mixture

�1 �2 �1 �2 �

NN circles(n= 50) 0.0060 −0.0044 −0.0313 −0.0287 0.0057
Dirichlet cells(n= 50) −0.0051 −0.0416 0.0198 0.0391 0.0125
NN circles(n= 200) 0.0021 −0.0009 0.0191 0.0302 0.0025
Dirichlet cells(n= 200) −0.0055 −0.0017 0.0179 0.0124 0.0096

4.2. Mixture of two Gaussian densities

The second simulationwas performed for themixture of two bivariateGaussian densities.
This is a well-known example, where the ML-method breaks down. Particularly, if we set
the mean of the first (say) component of the mixture equal to one of the observations, e.g.
�1=x1,�2=y1 then the ML-function will tend to infinity as�1 goes to zero.We simulated
the bivariate observations with the following density:

g(x, y, �)= 0.8× f1(x, y,�1,�2,�1,�2,�1)+ 0.2× f2(x, y,�3,�4,�3,�4,�2),

where�1 = �2 = 0,�1 = �2 = 1,�1 = 0.5,�3 = �4 = 2,�3 = �4 = 2 and�2 = 0. Only
the parameters off1 were considered unknown. We constructed the spacing functions for
50 and 200 observations. Each experiment was again repeated 500 times as in the previous
example. The results can be seen inTables 3and4. The estimated covariance matrix was
again compared to the Cramér–Rao bound

I−1 =



1.53 0.78 0.19 0.10 0.26
0.78 1.53 0.10 0.19 0.26
0.19 0.10 0.87 0.23 0.87
0.10 0.19 0.23 0.87 0.87
0.26 0.26 0.87 0.87 2.15


 .

Although, as we have noted, this case is more complicated than the previous one, the results
of thesimulationarevery satisfactory.Apparently, theMSP-estimatebasedonDirichlet cells
seems consistent, with variance, approaching, and sometimes surpassing, the Cramér–Rao
bound. It is also asymptotically normal, similarly to the Gaussian case (Fig.2).

5. Discussion

In the present paper we have proved consistency formultivariateMSP-estimates based on
NN-balls. Using results fromJimenez andYukich (2002)it is possible to prove consistency
also for the version based on Dirichlet cells. For the univariate version of the MSP-method
the estimators are normally distributed and asymptotically efficient. Results from our simu-
lation study indicate that the estimators based on both versions are asymptotically normally
distributed but that the variances for the NN-version are much larger than the Cramér–Rao
bound. For both versions proofs of asymptotic normality are still missing. However, results
in a recent paper by Baryshnikov and Yukich may be used to prove asymptotic normality
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Fig. 2. Quantile–quantile plots of the MSPE for�1 (Gaussian mixture).

for the NN-version. As mentioned inRanneby (1984), for univariate MSP-estimates it is
possible to check the validity of the model at the same time as the estimation problem is
solved, see alsoCheng and Stephens (1989)andCheng and Traylor (1995). The results
fromBaryshnikov andYukich (2003)can be used to give confidence limits forSn(�0). Thus
for multivariate MSP-estimates based on NN-balls it is possible to check the validity of the
model.Another advantage with the NN-version is that it is much easier to handle, especially
in higher dimensions. The drawback is of course the lack of efficiency. In situations where
the maximum likelihood method fails that is usually because of global reasons. Locally the
method may still give satisfactory results. To be specific for mixture distributions it should
be possible to use the ML method if the starting values for the maximization are in the
neighborhood of the true values. Thus in these situations it should be possible to use the
MSP-method based on NN-balls to get consistent estimators which can be used as starting
values for the ML estimation.

Acknowledgements

This researchwas conducted using the resources of High PerformanceComputingCenter
North (HPC2N) in Sweden. The authors would like to thank Prof.Yuri Belyaev and Dr. Jun
Yu for valuable comments and discussion.

References

Baryshnikov,Y., Yukich, J.E., 2003. Generalized spacing statistics and Gaussian fields. Technical Report, Lehigh
University, USA.



446 B. Ranneby et al. / Journal of Statistical Planning and Inference 129 (2005) 427–446

Basu, D., 1955. An inconsistency of the method of maximum likelihood. Ann. Math. Statist. 26, 144–145.
Bickel, P.J., Breiman, L., 1983. Sum of functions of nearest neighbor distances, moment bounds, limit theorems,

and a goodness of fit test. Ann. Probab. 11, 185–214.
Cheng, R.C.H., Amin, N.A.K., 1983. Estimating parameters in continuous univariate distributions with a shifted

origin. J. Roy. Statist. Soc. B 45, 394–403.
Cheng, R.C.H., Stephens, M.A., 1989. A goodness-of-fit test using Moran’s statistic with estimated parameters.

Biometrika 76, 385–392.
Cheng, R.C.H., Traylor, L., 1995. Non-regular maximum likelihood problems (with discussions). J. Roy. Statist.

Soc. B 57, 3–44.
Darling, D.A., 1953. On a class of problems related to the random division of an interval. Ann. Math. Statist. 24,

239–253.
Jammalamadaka, S.R., Janson, S., 1986. Limit theorems for a triangular scheme of U-statistics with applications

to inter-point distances. Ann. Probab. 14, 1347–1358.
Jammalamadaka, S.R., Zhou, S., 1993. Goodness of fit in multidimensions based on nearest neighbor distances.

J. Nonparametric Statist. 2, 271–284.
Jimenez, R., Yukich, J.E., 2002. Asymptotics for statistical distances based on Voronoi tesselation. J. Theoret.

Probab. 15, 503–541.
Mattila, P., 1995. Geometry of Sets and Measures in Euclidean Spaces, Fractals and Rectifiability, Cambridge

University Press, Cambridge, UK.
Pyke, R., 1965. Spacings (with discussion). J. Roy. Statist. Soc. B 27, 395–449.
Ranneby, B., 1984. The maximum spacing method. An estimation method related to the maximum likelihood

method. Scand. J. Statist. 11, 93–112.
Ranneby, B., 1996. Spatial and temporal models in contextual classification. In: Todd Mowrer, H., Czaplewski,

R.L., Hamre, R.H. (Eds.), Spatial Accuracy Assessment in Natural Resources and Environmental Sciences:
Second International Symposium. Fort Collins, Colorado, pp. 451–458.

Ranneby, B., Ekström, M., 1997. Maximum spacing estimates based on different metrics. Research Report No. 5,
Department of Mathematical Statistics, Ume˚a University.

Rao, C.R., 1973. Linear Statistical Inference and its Applications, 2nd Edition. Wiley, NewYork.
Reiss, R.D., 1989. Approximate Distributions of Order Statistics, with Applications to Nonparametric Statistics,

Springer, NewYork.
Rényi, A., 1953. On the theory of order statistics. Acta Math. Acad. Sci. Hungar. 4, 191–231.
Titterington, D.M., 1985. Comment on estimating parameters in continuous univariate distribution. J. Roy. Statist.

Soc. B 47, 115–116.


	The maximum spacing estimation for multivariate observations
	Introduction
	Definitions
	MSP based on NN-balls
	MSP based on Dirichlet tesselation

	Consistency of MSP based on NN-balls
	Preliminaries
	Consistency

	Simulation results
	Gaussian density
	Mixture of two Gaussian densities

	Discussion
	Acknowledgements
	References




