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Abstract

For independently and identically distributed (i.i.d.) univariate observations a new estimation
method, the maximum spacing (MSP) method, was defined in Ranneby (Scand. J. Statist. 11 (1984)
93) and independently by Cheng and Amin (J. Roy. Statist. Soc. B 45 (1983) 394). The idea be-
hind the method, as described by Ranneby (Scand. J. Statist. 11 (1984) 93), is to approximate the
Kullback—Leibler information so each contribution is bounded from above. In the present paper the
MSP-method is extended to multivariate observations. Since we do not have any natural order relation
in 2¢ whend > 1 the approach has to be modified. Essentially, there are two different approaches,
the geometric or probabilistic counterpart to the univariate case. If we to each observation attach its
Dirichlet cell, the geometrical correspondence is obtained. The probabilistic counterpart would be
to use the nearest neighbor balls. This, as the random variable, giving the probability for the nearest
neighbor ball, is distributed as the minimum@f— 1) i.i.d. uniformly distributed variables on the
interval (0, 1), regardless of the dimensi®nBoth approaches are discussed in the present paper.
© 2004 Elsevier B.V. All rights reserved.

Keywords:Estimation; Spacings; Consistency; Multivariate observations

1. Introduction

For independently and identically distributed (i.i.d.) univariate observations, a new esti-
mation method called the “Maximum Spacings (MSP)” method, was developed in
Ranneby (1984and independently b8heng and Amin (1983 he idea behind the method,
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as described biranneby (1984)is to approximate the Kullback—Leibler information so
each contribution is bounded from above. The estimation method obtained from this ap-
proximation is called the maximum spacing method and it works also in situations when
the ML-method breaks down. The method is also discusséitarington (1985)where

he states that “in principle, of course, it would be possible to treat multivariate data by
grouping: although definition of the multinomial cells would be more awkward.”

In the present paper, our goal is to extend the MSP-method to multivariate observations.
Since we do not have any natural order relatios#thwhend > 1, we have to modify the
approach. Essentially, there are two different approaches to choose between, namely the
geometric and the probabilistic counterparts to the univariate spacingg; L&t ..., &,
be a sequence of independent and identically distribdtéddmensional random vectors
with true distributionPg and define the nearest neighbor distance to the g@pimamely

R, (i) = rjn;él;] |éz - £]|
and let
B(x,r)={y:|x —yl<r}

denote the ball of radiuswith center at.

The Dirichlet cellsV, (¢;) attached to each observatign may be interpreted as the
geometrical correspondence. The Dirichlet 6&l(&;) surroundingZ; consists of all points
x € #% which are closer td; than to any other observation, and the Dirichlet cells split
#“ into n identically distributed random sets. The main advantage with this approach is
that the probabilities for the Dirichlet cells always add up to one. The Dirichlet cells are
cumbersome to handle, both from a practical and theoretical point of view. The probabilistic
counterpart to univariate spacings would be to use the nearest neighbor balls, as the random
variablePy(B(&;, R, (i))) isdistributed as the minimum ¢i—1) i.i.d. uniformly distributed
variables on the interval (0, 1), regardless of the dimengiofhe latter approach is our
main focus in this paper, but the geometric approach is also discussed. Goodness of fit tests
based on nearest neighbor balls have been considered eafiEmkeyand Breiman (1983)
as well aslammalamadaka and Zhou (1988} our goal here is estimation and not testing
hypotheses.

2. Definitions

In this section the definitions of the two different extensions of the MSP-method to the
multivariate case will be given.

2.1. MSP based on NN-balls

Let &4, &y, ..., &, be ii.d. random vectors with an absolutely continuous distribution
Py with density functiong (x) and suppose that we assign a model with density functions
{f(x,0),0 € O}, where® C R4. Define,

Zi(n7 6) = nPO(B(éH Rﬂ(l)))v
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_ 1¢

I (A) = indicator function of the se#.

A natural generalization of the univariate definition of the spacing function is to define it
in the multivariate case as

n
1 Z logz;(n, 0).
=
However, there are serious shortcomings of this approach, mainly that under some proba-
bility measures the sum of the probabilities of the nearest neighbor balls may be too large
(as for instance whe®y has the same location d@% but much smaller variance). As a
consequence there is no guarantee that the estimator will be consistent.

To overcome this problem, we will normalize the probabilities for the nearest neighbor
balls when the sum of their probabilities exceeds one. When the sum is less than one we let
the remaining probability enter the spacing function in the same way as the probabilities for
the nearest neighbor balls. This leads us to the following definition of the spacing function
S (0)

Sn(9)=} Z log(zi(n, 0)) + <} log(1 — z(n, 9))) 1(z(n,0)< 1)
n n
—1(Z(n, 0) > 1) logz(n, 0).

Remark 1. This means that when the sum of the probabilities exceeds one the spacing
function is defined as

1 nPo(B(. Ru(i))
S0 ==Y = |
O=3 Z * [Z;PO(B(@, an))}

Definition. The parameter value which maximiz&g(0) is called the maximum spacing
estimate (MSP-estimate) 6f

Remark 2. If sup S,,(0) is not attained for any belonging to the admissible sé&, we
define the MSP-estimats, as any point belonging to the s@tand satisfying

logc,

Sy (0,) > + supS, (0.

0cO®

In this expression & ¢, <1 andc, — 1 asn — oo.
For mixtures of continuous distributions it happens that the likelihood function tends to
infinity for certain parameter combinations and then the ML-method breaks down.

Example 1. Let &4, &5, ... be i.i.d. observations from a mixture of two bivariate normal
distributions. The density functiofi(x, v, 0) is given by

f(x’ Y, 9) = ph(-xv Y, Uq, Up, 01, 02, pl) + (1_ p)h(xv Y, U3, Uy, 03, 04, pz)
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wheren is the density function for a bivariate normal distribution with parameters indicated
by the notation. Say that we have observations yi1), (x2, y2), ..., (x4, yn). If we put

Uy = x1, o = y1 and leta (or o2) go to zero, then the likelihood function tends to infinity.
Consequently, the ML-method is not suitable. The maximum spacing estimate obtained by
maximizing S, (0), defined above will be consistent.

Remark 3. It may be argued that if the;’s are bounded away from zero by some small
number the ML method performs well. Theoretically that is true but quite frequently the
numerical maximization breaks down, as a consequence of the unboundedness of the like-
lihood function when the;’s are not bounded away from zero.

2.2. MSP based on Dirichlet tesselation

Before we give an alternative definition of the spacing function, consider the following
definitions.

Given an open s&® C R?, the sefV;}?_, is called aesselatiorof Qif V; N'V; = for
i # ] andU?le,- = Q. Let| - | denote the Euclidean norm 6tf. Given a set of points
{&:}7_, belonging taQ, the Dirichlet cellV (¢;) corresponding to the poitdt is defined by

VE)={eQ:ly-&I<ly=¢l forj=1....n,j#i}

The probabilities of the Dirichlet cells, of course, always add up to the probabili® of
Now we consider the following alternative definition of the spacing function based on
the Dirichlet tesselation. Let

vi(n, 0) =nPy(V(E)).
The spacing functios} (0) is defined as follows:
1
== I i(n, 0)).
$3(0) == log(i(n, 0)

The MSP-estimate df is now defined as the maximizer §f (0).
This approach has been usedRanneby (1996and it is also discussed imenez and
Yukich (2002)

3. Consistency of MSP based on NN-balls
Before the main results will be stated some results of independent interest will be given.
3.1. Preliminaries

Letéq, &y, ..., &, beasequence ofindependérdimensional random vectors. Then, for
eachfixed, we can make the transformati®n(B(¢;, [¢;—¢;)), j # i. The(n—1) random
variables are not only uniformly distributed, but they are also mutually independent. As the
following proposition shows, it is also possible to let the random vedfgrs,, ..., ¢,
have different distributions.
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Proposition 1. Let &4, &5, ..., &, be independent random variables with the respective
distributionsP; (-), j=1, 2, ..., nwhich are absolutely continuous w.r.t. Lebesgue measure
Then for each fixed i it holds that the random variabRgB(¢;, [ — &), j # i, ) =
1,2,..., n have the same distribution as the joint distribution@f 1) independent and
uniformly distributedon the interval0,1)) random variables

Proof.
Pr(P;(B(&;, & — ¢jD) >0, j #1)
=/Pr(Pj(B(5i, I&i = &) >ay, j #ilE = x)dPi(x).

Given that¢; = x, the random variable8; (B(x, [x — ¢;[)) will be independent. Thus
we obtain

Pr(Pj(B(S;, 1S — &) > aj, j #0)

Z/HPF(P]'(B(X, |x —5j|))>06j)dPi(x)
J#

Z/I_[Praé,- — x| > r(j.x, ) dPi(x), @
J#i

wherer(j, x, o) is chosen so thak; (|¢; — x| <r(j, x, &;)) = o;.
Such numbers always exist becawy€|<; — x| < ) is a continuous function gf. The
definition ofr(j, x, «;) implies that
Pr(I¢; —x|>r(j,x,0;)=1—ua;.
By inserting the right side of this expression into (1) we get

Pr(Pj(B(;, & — &) >0y, j #1) = 1_[(1— o),
J#
which is what was to be proved.(]

Because of Proposition 1 the moments:ahin;; P; (B(E;, [&; — &) are easily cal-
culated, see e.dreiss (1989, p. 45piving us the following corollary.

Corollary 1. Under the assumptions in Propositidrit holds that

E |:n r]n;é? Pi(B(;. IS — 6j|))i| -1
var [n m?ién Pi(B(;, I — §/|)):| — 1,
J#l ’

E |:(n rjﬂ;é? Pi(B(&;, 1< — €j|)))3j| — 6.
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As a direct consequence of result$iyke (1965pr Rényi (1953)we have the following
lemma.

Lemma 1. Under the assumptions in Propositidnit holds that the random variable
min;.; P; (B(&;, |¢; — ;1)) has the same distribution HS/Z'}:le ,whereYy, Y», ..., Y,

are i.i.d. random variables with an exponential distribution with mé&aRurthermore n
min;.; P; (B(&;, |¢; — ¢;1)) converges in distribution to an exponential distribution with
meanl.

Lemma 2. Under the assumptions of Proposititrit holds that
E ['ogn min P; (B(&. |¢ — ém)} = -7,

wherey is Euler’s constant and equals57- - -,

2
Var |:|09” m;nPj(B(éi, I&i — 6j|))i| SN
J#i

6
3
E|: :|—>/||ng|3e_de<oo.

Proof. It follows from Lemma 1 that min;; P;(B(¢;, |&; — ¢;1)) will have the same
distribution asY1/Y, whereY — 1 almost surely. Thus we will be done if we can
show that the sequendédog Y |2 is uniformly integrable. Jensen’s inequality gives that
logY >1%" ,logY;. Since we also have ldg< ¥, we get

l n
= "logy;
n

i=1

and

logn rjﬂ;lé? Pi(B(&;, 1S — ;)

llogY|< + 7).

This result shows us thatog ¥ |3 is uniformly integrable. Sinc& — 1 a.s. we get that

E[lognys /3 7;] - Edogyy) = -,

Var[lognYl /Z Yj] — Var(log Y1) = ng -1,

d
The calculations of£ (log Y1) and Varlog Y1) may be found for example iDarling
(1953)

and

IognYl/Z Yjﬂ — E(llogY1]®) <oco. O
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In the following we will assume that the random vectdisés, . . ., &, have the same
distribution Py with density functiong(x). In the rest of the paper, we use the following
notation (see also Section 4 édmmalamadaka and Janson (1986)

| B(x, r)|| = volume of the balB(x, r) = c4r?,
wherecy = n%/2/I'(d /2 + 1).

Proposition 2. Let¢q, &y, ..., &, be i.i.d. random vectors with an absolutely continuous
distribution Py with density functiorg (x). Then(¢;, 1; (n)), where

n;(n) =n| B, Ry())|| = ncaREG),

converges in distribution tX, Y) where X has density functigq(x) and Y givenX = x
has an exponential distribution with parametg(x).

Proof. As the volume of the balB(x, r) exceeds/n if and only if none of the variables
&, j #1i, j<nfallsintheballB(x, V=1(y/n)). (HereV ~1(y/n) denotes the radius giving

the volumey/n, i.e.r = (y/n)l/dc;l/d). Thus
Pr(nlB(&, Ry()|| > yI& =x) = (1 — Po(¢1 € B(x, V1 (y/m))" L.
As

Po(éy € B(x, V7i(y/n)) N
y/n

g(x),
(seeMattila, 1995 p. 36), it follows that
(L= Po(éy € BOe, V7 iy/m))" = e O
Next we prove that¢;, n;(n)) and(¢;, n;j(n)) are asymptotically independent.
Proposition 3. When n tends to infinity it holds that
Pr(n;(n) > yi. 11 () > yj1& = xi, & = xj) — e Vst
Proof. Since the random variabl€§;, »;(n)),i =1, 2, ..., n are exchangeable it is suffi-
cient to prove the proposition fér= 1 andj = 2. Instead of proving the convergence for
n1(n) andn,(n) we shall prove it foriy; (n) andij,(n), where
e (n) = ggncdmk — &4 fork=1,2.
By symmetryij, (n) ands, (n) differs only on a set having probability = — 1). Thus

M) — ) 20, k=12
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which implies that §,(n), n,(n)) and ¢(n), i2(n)) have the same limit distribution. By
conditioning oné; = x; andé, = x2 we get

Pr(ijy(n) > y1, i1p(n) > y2|&1 = x1, & = x2)
= Pr(E(x1,n) > y1, E(x2,n) > y2),

where
E(x;,n) =n|IB(xi,;n>ig|xi =&l i=12
The even{E(x;, n) > y;} occursifall¢;, j >3 falls outside the balB (x;, V= 1l(yi/n)=

B(x,-).
Thus

Pr(fiy(n) > y1,71p(n) > y2|é1 = x1, &, = x2) = (1 — Pr(B(x1) U B(x2)))" 2.
But, asx; # x2, B(x1) andB(xy) are disjoint ifn is sufficiently large so
lim (1 — Pr(B(x1) U B(xp)))" 2 =g Yisteg v
n—oo
As the set{&; = &5} has probability zero this gives us the asymptotic independence of
(&, m;i(n)) and(&;, n;(n)).
Proposition 4. Let the distributionPy of the sequencé,, &,, ..., &, of independent ran-
dom vectors be absolutely continuous w.r.t. Lebesgue medshea it holds that
1o P
= _l0gnPo(B(;. Ra()) =~
i=1
as n tends to infinity
Proof. Define
Ei(n) =nPo(B(¢;, Ry(1)).

The exchangeability ofé;, #;(n)) gives

E [% ; log E; (n)} = E(log E1(n)).

and

1 n
Var |:; Z log E; (n)j|

i=1

2 _
_ Var(log E1(n)) Lo — " Cov(log E1(n), log E2(n)).

n
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Since, see Lemma 2
E(logE1(n)) — —y

and

2
Var(log E1(n)) — % —1<oo,

an application of Chebychev’s inequality will give the desired result if we can show that
Cov(log E1(n), log E2(n)) — 0 asn — oo. SinceE1(n) and E2(n) are asymptotically
independent we will be through if we show that the sequéteE; () log E2(n)}5° 4 is
uniformly integrable. We have
E?|log E1(n) log E2(n)|*® < E|log E1(n) °E| log Eo(n) .
The right-hand side of this expression converge(sftplogx|3e—x dx)?, which is finite,
giving us

SUpE|log E1(n) log E2(n)|*0® < co.

Consequently, the sequeriteg E1(n) log E2(n)};° ; hasto be uniformly integrable, which
completes the proof. [

Proposition 5. Let the distributionPy of the sequencé,, &,, ..., &, of independent ran-
dom vectors be absolutely continuous w.r.t. Lebesque med$enr it holds that

1 n
=D nPo(B(E, Ry() > 1
i=1

as n tends to infinity
Proof. Follows in a similar way from Corollary 1 and Proposition 3.
3.2. Consistency

To prove the consistency of the MSP-estimate, we need some kind of continuity and
identifiability condition. If we allow the distributions for parameter values close to each
other to be too different, we cannot expect our estimation procedure to produce consistent
estimators. This is clearly demonstrated by an examplBasu (1955) Our continuity
condition is inspired by the Arzela—Ascoli theorem.

Define

z(n,0,x,y)=nB(x,r,) wherer, = (cd_ly/n)l/d,

P (x, y)=the distribution function ofX, Y)
with density functiorp(x, y) defined by

px,y) = g2(x) exp(—yg(x)), y > 0.
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Condition C1. Let (X, Y) have the distributiorP (x, y). For eache > 0 andn > 0 there

exists an integem, setsk; C RI*Y j =1,2 ..., m, a partition of® into disjoint sets
01,0, ..., 0, and parameter valugs; € 0, j = 1,2, ..., m, such that for each =
1,2,....m,

(i) the boundanyK ; of the setk; has Lebesgue measure zero,
(i) P(X,Y)eKj)>1—n,
(iii) SUp9€@j|Z(H, 0,x,y) —z(n, z//j, x,y)| <eforall (x,y) € K; and for alln > N (e, n).

Remark 4. All or some of the setX1, K>, ..., K,, may be equal.

The mixture distribution in Example 1 satisfies Condition C1. The technique used in
Ranneby (1984}o verify Condition C1 is also applicable in the multivariate situations. It
follows that the continuity condition C1 usually is satisfied.

The identifiability condition we are going to use is called, according to the terminology in
Rao (1973)a strong identifiability condition. However, when weak identifiability conditions
are used, these conditions are usually used in combination with other conditions implying
that a strong identifiability condition is satisfied.

Let T (M, ) denote the expected value of njaxd/, log Y f o (X)), where(X, Y) has the
distribution P (x, y).

Condition C2. For eachd > 0 there exists a constamf; = M1(d) such that

sup T(My,0)<T(0°) = E(logYg(X)).
0DeBc(0°,9)

Remark 5. Using the results in Corollary 2.5 iRanneby (1984}t is easily seen that
the identifiability condition C2 is satisfied if the density functiofigx) are continuous
functions of6) for almost allx and the weak identifiability condition are satisfied.

Theorem 1. Letéy, &, ..., &, be a sequence of i.i.d. random vectorsifi with distribu-
tion Py and density functiorfy(x), whered belongs to an admissible sét Suppose that

ConditionsC1 andC2 are satisfiedThen the MSP-estimatg converges in probability to
the true parameter valu€’.

Before we prove the theorem we establish two lemmas and introduce some notations.
Let

ty (x) = max(—M, logx),
hy,n(x) =min(N, 1y (x)),
ay(x) =maxO, logx — N),

1 n
Ha(M, N, 0)= =3 " hog v (@i (n, 0)),
i=1
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1010 = [ 300 8P ).
HOLN.0) = [ haan 000 dP . )

A(N, 9)=/aN(yfo(x))dP(x,y)-

Lemma 3. H,(M, N, 0) converges in probability té7 (M, N, 0). Further if Condition
is satisfied then the convergence is uniforn.in

Proof. We begin with the pointwise convergencef(M, N, ). The random variables
zi(n, 0) are exchangeable. Thus

E(H,(M, N, 0)) = E(hy,n(zi(n, 0)))
and

1
Var(H,(M, N, 9))=;Var(hM,N(11(n, 0)))
2

+ 2 Covlrn (za(n, 0)), hagn (z2(n, 0))).

n2

Next we show the convergence of

Elh (101, 0))] = / Ty z(n, 0, x, y)) APy (x. y),

whereP, denotes the distribution at;, 1; (n)).
As hy v is a bounded continuous function and since

z(n, 0,x,y) > yfp(x), n— oo
and
Py(x,y) = P(x,y), n— o0

it follows from Lebesgue Dominated Convergence Theorem that

E(hmN(zi(n, 0)) — /hM,N(yfe(X))dP(x, y)=HM,N,0).

As (&1, n1(n)) and(&,, n1,(n)) are asymptotically independent, see Proposition 3, it fol-
lows that

E(hp .y (z1(n, 0)har n (z2(n, 0))) — H(M, N, 0)?
so that

Cov(hy N (z1(n, 0)), hy n(z2(n, 0)) — 0 awm — oo.
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Thus
E(H,(M,N,0) — H(M,N,0),
and

Var(H,(M, N, 0)) — 0

implying thatH, (M, N, 0) converges in probability té7 (M, N, 0) asn — oo.
Now we continue with the uniform convergencemf(M, N, 0).

Choose the setk; in Condition C1 such thaP(K;) > 1 —

chooseP1, Oy, ..., O, andyr{, Yo, ..., ¥, such that

—M
ce
Sup |Z(na O,X, )’) _Z(ns wls X, )’)| < T’
96@/

forall (x,y) e K;, j=1,2,...,m. Write for0 € 0,

HM, N, )= lim [ hag v (2(n, 0, x, ) dP(x, y)
n—oo K/

e
16 maxM,N)

n nmf har v (2@, 0, x, y) AP (x, ).

J

Let0 € ©;. We have, fom sufficiently large,

N R, 0, %, ) — By (2, 1, x, )| < {8/8

Thus

Sup |[H(M,N.0)— HM, N, )| < = + = =~
B ) - ) ) i <z == -
no T R

We have
|HI1(M7N79) - HI’I(M7 N’ lpj)|

. Furthermore,

onKj,

1
<=2 VN G, 0) = b n @i Y )G ) € K )

1
= D v i, ) = g i, YU (G, () € K.

Since the boundargk ; hasP-measure zero we get

1 :
- D I m(n) € K=, PUX, ¥) € K§) <

and then it follows from (2) that

&
16 maxM, N)

P (lHn(M,N,H) — Hy(M, N )| < 2) 1 asn— oo.

2maxM,N) on K; @

®)

“4)
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Combining (3) and (4) we get that
H,(M, N, 0) -2 H(M, N, 0)
uniformly in0. O
Lemma 4. Define

- _ Jzi(n.0) if z2(n, 0)<1,
%, 0) = {zi(n, 0)/z(n,0) if Z(n,0)> 1.

Then the random function

Au(N, 0) = % > max(0, logzi (n. 0) — N)
i=1

converges to zero for all elementary eventsiformly in n andd asN — oo.

Proof. Obviously, Y  Z;(n, 0) <n. The rest of the proof is only a slight modification of
Lemma 2 inRanneby and Ekstrom (1997)0J

Proof of Theorem 1. Recall the definition of,, (0) as

1
Su(0)==3 logzi(n, 0)
1
+ log(1—z(n, 0)I(z(n, )<1) —logz(n, 0)1(z(n, 0) > 1).
We have
1
Sp(0)< =) "logz;i(n, 0) —logz(n, )1 (z(n, 0) > 1)
n
1 5 1 3
<= NG, 0) + ~ ) maxO, logZi(n, 0) — N).
Obviously,> " z; (n, 0) <n, so Lemma 4 gives that
An(N,0) 250,

uniformly in 0 andn. As Z; (n, 0) <z;(n, 0) andhy y(x) is a non-decreasing function we
get that

Sp(0)<Hy(M, N, 0)+ A,(N, 0).

Lemma 3 gives thatl,,(M, N, 0) N H(M, N, 0), uniformly in 0 asn — oo. Note that

H(M,N,0)+ A(N,0)=T(M,0)
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and Iet@n denote the MSP-estimate. Rrlarge the following holds with probability going
to one as: tends to infinity:
Su) <=3 has w (ei 0, ) +
niVn)s M,sznvn+4
~ &
gH(M’N76n)+§

~ A & ~ &

As S, (0°) 2> —y we get
T D) + 5> $u0) > $,0) > T(0) = 2,
which implies that

T(M,0,)>T(®°) —e.
Now the identifiability condition C2 gives
10, — 0° <&

which completes the proof.[]

4. Simulation results

Here we present the results of the simulation study we conducted in order to confirm
and support our hypothesis about the consistency and asymptotic normality of the MSP-
estimates for multivariate observations. It was also of interest to compare the estimation
based on Dirichlet tesselation with that based on nearest-neighbor balls. In all the figures
and tables, MSPE stands for MSP-estimate.

4.1. Gaussian density

We simulated bivariate Gaussian random variables with the following mean vector and
covariance matrix:

= (=) r=(F %)= %)

Then we constructed two spacing functions—one based on nearest neighbor balls and one
based on Dirichlet cells. These functions were subsequently maximized by random search
algorithm. As the starting point in the parameter space, to speed up the convergence, the
true value of the parameter vector was chosen. We have also experimented with different
starting points, and always the outcomes (e.g. the maximizers) were identical. Each spacing
function was maximized twice—first based on 50, then on 200 observations, and both
experiments were repeated 500 times. The mean and the covariance matrix of the outcomes



Table 1

The covariance matrigxn) of the MSPE of the parameters of Gaussian distribution

n

Nearest neighbor circles

Dirichlet cells

0.04

Hy M2 o1 02 p 1 H2 o1 02 p
50 Uy 1.20 0.66 —0.07 —0.02 —0.09 1.04 0.56 —0.08 —0.02 —0.07
Uo 0.66 131 0.05 0.07 0.06 0.56 1.07 0.02 0.01
o1 —0.07 0.05 0.88 0.26 0.82 —0.08 0.02 0.56 0.17 0.54
02 —0.02 0.07 0.26 0.79 0.74 —0.02 0.01 0.17 0.54 0.59
p —0.09 0.06 0.82 0.74 1.88 —0.07 0.04 0.54 0.59 151
Uy 1.29 0.65 —0.06 —0.05 —0.13 1.10 0.55 —0.07 —0.04 —0.06
200 Uo 0.65 1.35 —0.05 0.03 —0.08 0.55 1.05 —0.03 0.03 0.00
o1 —0.06 —0.05 0.79 0.33 0.80 —0.07 —0.03 0.53 0.18 0.55
02 —0.05 0.03 0.33 0.90 0.89 —0.04 0.03 0.18 0.53 0.57
p —0.13 —0.08 0.80 0.89 2.05 —0.06 0.00 0.55 0.57 1.36
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Table 2

The bias of the MSPE of the parameters of Gaussian distribution

H 2 01 02 P
NN circles(n = 50) —0.0060 0.0107 0.0025 0.0140 0.0307
Dirichlet cells(n = 50) —0.0091 0.0064 0.0518 0.0598 0.0116
NN circles(n = 200 —0.0010 —0.0003 0.0032 0.0019 0.0101
Dirichlet cells(n = 200) —0.0041 —0.0004 0.0244 0.0221 0.0034

NN MSPE (50 observations)

NN MSPE (200 observations)

[ I T T N )

Fig. 1. Quantile—quantile plots of the MSPE foy (Gaussian density).

were calculated and averaged over 500 repetitions Tabtes land 2). The estimated
covariance matrix was compared to the Cramér—Rao bound

1 05 O 0 0

05 1 0 0 0

I™'=] 0 0 05 0125 Q5
0 0 0125 05 05
0 0 05 05 125

The results confirm the consistency of the MSP-estimates. Besides, we note that the
MSP-estimate based on Dirichlet cells is much closer to being efficient than the estimate

based on the nearest neighbor bdfig. 1 displays the normal quantile—quantile plots of

the estimates of one of the parameters. We note that the plots support the conjecture of

asymptotic normality of the MSP-estimates.



Table 3

The covariance matrigxn) of the MSPE of the parameters of Gaussian mixture

n

Nearest neighbor circles

Dirichlet cells

M H2 o1 02 p My H2 o1 02 p
50 1y 2.61 111 0.39 0.04 0.49 1.96 0.86 0.25 —0.09 0.24
o 111 1.72 0.16 0.12 0.25 0.86 1.59 0.16 0.16 0.32
o1 0.39 0.16 1.02 0.22 1.02 0.25 0.16 1.04 0.27 0.95
02 0.04 0.12 0.22 1.14 1.04 —0.09 0.16 0.27 1.10 0.89
p 0.49 0.25 1.02 1.04 2.53 0.24 0.32 0.95 0.89 2.43
1 2.50 1.16 0.41 0.06 0.51 161 0.88 0.20 0.03 0.25
200 Ho 1.16 1.99 0.14 0.10 0.22 0.88 1.69 0.06 0.11 0.13
o1 0.41 0.14 112 0.26 0.84 0.20 0.06 0.91 0.19 0.82
02 0.06 0.10 0.26 1.12 0.87 0.03 0.11 0.19 0.87 0.80
p 0.51 0.22 0.84 0.87 2.71 0.25 0.13 0.82 0.80 2.10

evy  9vb—Lzv (S00Z) 62T 99ualaju| pue Buiuue|d [edNSIeIS JO [eunor / e 19 Agauuey g
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Table 4
The bias of the MSPE of the parameters of Gaussian mixture

M1 H2 01 a2 P
NN circles(n = 50) 0.0060 —0.0044 —0.0313 —0.0287 0.0057
Dirichlet cells(n = 50) —0.0051 —0.0416 0.0198 0.0391 0.0125
NN circles(n = 200 0.0021 —0.0009 0.0191 0.0302 0.0025
Dirichlet cells(n = 200) —0.0055 —0.0017 0.0179 0.0124 0.0096

4.2. Mixture of two Gaussian densities

The second simulation was performed for the mixture of two bivariate Gaussian densities.
This is a well-known example, where the ML-method breaks down. Particularly, if we set
the mean of the first (say) component of the mixture equal to one of the observations, e.g.
Uy =x1, ity = y1 then the ML-function will tend to infinity as; goes to zero. We simulated
the bivariate observations with the following density:

g(x,y,0)=08x f1(x,y, ug, tp, 01, 02, p1) + 0.2 x fa(x, y, Uz, Uy, 03, 04, P3),

whereu; =, =0,01=02=1,p1 =0.5, u3 = iy = 2, 63 = 64 = 2 andp, = 0. Only

the parameters of; were considered unknown. We constructed the spacing functions for

50 and 200 observations. Each experiment was again repeated 500 times as in the previous
example. The results can be seefables 3and4. The estimated covariance matrix was
again compared to the Cramér—Rao bound

153 078 019 010 026
0.78 153 010 019 026
I71=]019 010 087 023 087
0.10 019 023 087 087
026 026 087 087 215

Although, as we have noted, this case is more complicated than the previous one, the results
ofthe simulation are very satisfactory. Apparently, the MSP-estimate based on Dirichlet cells
seems consistent, with variance, approaching, and sometimes surpassing, the Cramér—Rao
bound. Itis also asymptotically normal, similarly to the Gaussian caseZJig.

5. Discussion

Inthe present paper we have proved consistency for multivariate MSP-estimates based on
NN-balls. Using results fronlimenez and Yukich (2002)is possible to prove consistency
also for the version based on Dirichlet cells. For the univariate version of the MSP-method
the estimators are normally distributed and asymptotically efficient. Results from our simu-
lation study indicate that the estimators based on both versions are asymptotically normally
distributed but that the variances for the NN-version are much larger than the Cramér—Rao
bound. For both versions proofs of asymptotic normality are still missing. However, results
in a recent paper by Baryshnikov and Yukich may be used to prove asymptotic normality
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NN MSPE (50 observations)

NN MSPE (200 observations)

0.5

0.0

-0.5

0.6

0.4

0.2

-0.2

-0.6

O

-2 -1 0 1 2 3

Dirichlet MSPE (50 observations)

-3 -2 -1 0 1 2 3

Dirichlet MSPE (200 observations)

0.8

o

O

0.2

@0

0.4 0.1

0.0
0.0

0.4 0.2
o o O

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

Fig. 2. Quantile—quantile plots of the MSPE foy (Gaussian mixture).

for the NN-version. As mentioned iRanneby (1984)for univariate MSP-estimates it is
possible to check the validity of the model at the same time as the estimation problem is
solved, see als€heng and Stephens (1988)d Cheng and Traylor (1995 he results

from Baryshnikov and Yukich (2002jan be used to give confidence limits £(6p). Thus

for multivariate MSP-estimates based on NN-balls it is possible to check the validity of the
model. Another advantage with the NN-version is that it is much easier to handle, especially
in higher dimensions. The drawback is of course the lack of efficiency. In situations where
the maximum likelihood method fails that is usually because of global reasons. Locally the
method may still give satisfactory results. To be specific for mixture distributions it should
be possible to use the ML method if the starting values for the maximization are in the
neighborhood of the true values. Thus in these situations it should be possible to use the
MSP-method based on NN-balls to get consistent estimators which can be used as starting
values for the ML estimation.
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