
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Learning from Language

Permalink
https://escholarship.org/uc/item/4217k2jm

Author
Andreas, Jacob Daniel

Publication Date
2018

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4217k2jm
https://escholarship.org
http://www.cdlib.org/

Learning from Language

by

Jacob Daniel Andreas

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Prof. Dan Klein, Chair
Prof. Trevor Darrell

Prof. Thomas L Griffiths
Prof. Michael I Jordan

Fall 2018

Learning from Language

Copyright 2018
by

Jacob Daniel Andreas

1

Abstract

Learning from Language

by

Jacob Daniel Andreas

Doctor of Philosophy in Computer Science

University of California, Berkeley

Prof. Dan Klein, Chair

This dissertation explores the use of linguistic structure to inform the structure and param-
eterization of machine learning models for language processing and other applications. We
introduce models for several tasks—question answering, instruction following, image classifi-
cation, and programming by demonstration—all built around the common intuition that the
compositional structure of the required predictors is reflected in the compositional structure
of the language that describes them.

We begin by presenting a class of models called neural module networks (NMNs) and
their application to natural language question answering problems. NMNs are designed to
simultaneously exploit the representational capacity of deep networks and the compositional
linguistic structure of questions, in order to target question answering applications not well
supported by standard logical approaches. Our approach decomposes questions into their lin-
guistic substructures, and uses these structures to dynamically instantiate question-specific
networks built from an inventory of reusable modules. The resulting compound networks
are jointly trained. We evaluate our approach on datasets for question answering backed by
images and structured knowledge bases.

Next, we apply the same modeling principles to family of policy learning problems. We
describe a framework for multitask reinforcement learning guided by policy sketches. Sketches
annotate each task with a sequence of named subtasks, providing information about high-
level structural relationships among tasks, but not the detailed guidance required by previous
work on learning policy abstractions for reinforcement learning (e.g. intermediate rewards,
subtask completion signals, or intrinsic motivations). Our approach associates every subtask
with its own modular subpolicy, and jointly optimizes over full task-specific policies by
tying parameters across shared subpolicies. Experiments illustrate two main advantages
of this approach: first, it outperforms standard baselines that learn task-specific or shared
monolithic policies; second, it naturally induces a library of primitive behaviors that can be
recombined to rapidly acquire policies for new tasks.

The final two chapters explore ways of using information from language the context of
less explicitly structured models. First, we exhibit a class of problems in which the space of

2

natural language strings provides a parameter space that captures natural task structure. We
describe an approach that, in a pretraining phase, learns a language interpretation model that
transforms inputs (e.g. images) into outputs (e.g. labels) given natural language descriptions.
To learn a new concept (e.g. a classifier), we then propose to search directly in the space of
descriptions to minimize the interpreter’s loss on training examples. We then show that a
related technique can be used to generate explanations of model behaviors: using the core
insight that learned representations and natural language utterances carry the same meaning
when they induce the same distribution over observations, we are able to automatically
translate learned communication protocols into natural language.

i

To L.

ii

Contents

Contents ii

List of Figures iv

List of Tables v

1 Introduction 1

2 Module Networks: Language and Reasoning 5
2.1 Motivations . 6
2.2 Deep Networks as Functional Programs . 7
2.3 Related Work . 9
2.4 Model . 10
2.5 Experiments . 16
2.6 Discussion . 19

3 Policy Sketches: Language and Behavior 22
3.1 Related Work . 24
3.2 Learning Modular Policies from Sketches . 26
3.3 Experiments . 31
3.4 Discussion . 35

4 Latent Descriptions: Language and Learning 37
4.1 Background . 38
4.2 Learning with Language . 40
4.3 Model and Training Details . 41
4.4 Few-shot Classification . 42
4.5 Programming by Demonstration . 45
4.6 Policy Search . 48
4.7 Other Related Work . 52
4.8 Discussion . 53

5 Translating Neuralese: Language and Belief 54

iii

5.1 Related Work . 56
5.2 Problem Formulation . 57
5.3 What’s in a Translation? . 59
5.4 Translation Models . 61
5.5 Modeling details . 63
5.6 Belief and Behavior . 64
5.7 Evaluation . 66
5.8 Results . 69
5.9 Discussion . 71

6 Conclusion 73

A Policy Sketches 75

B Latent Descriptions 77
B.1 Examples: ShapeWorld . 77
B.2 Examples: Navigation . 78

C Translating Neuralese 79
C.1 Proof of Proposition 1 . 79

Bibliography 81

iv

List of Figures

2.1 Neural module network overview . 6
2.2 Simple neural module networks . 8
2.3 Generation of layout candidates . 13
2.4 Sample NMN outputs for the visual question answering task 17
2.5 Example NMN predictions on the GeoQA dataset 20

3.1 Learning from policy sketches . 22
3.2 Modular policy overview . 28
3.3 Examples from the crafting and cliff environments 32
3.4 Comparing modular learning from sketches with standard RL baselines 32
3.5 Training details in the crafting domain . 34

4.1 Example of L3 on a binary image classification task 38
4.2 Formulation of the L3 learning problem . 39
4.3 The few-shot image classification task . 42
4.4 Example predictions for image classification . 45
4.5 Example string editing task . 46
4.6 Example L3 predictions for string editing . 48
4.7 More example predictions for regular expressions. 49
4.8 Example treasure hunting task . 50
4.9 Treasure hunting evaluation . 52

5.1 Example interaction between a pair of agents in a deep communicating policy . 55
5.2 Overview of translation approach . 56
5.3 Schematic representation of communication games 58
5.4 Cell implementing a single step of agent communication 59
5.5 Simplified game representation used for analysis 64
5.6 Tasks used to evaluate the translation model . 67
5.7 Generated translations for color task . 70
5.8 Generated translations for driving task . 71

v

List of Tables

2.1 Module implementations . 12
2.2 Results on the VQA test server . 18
2.3 Results on the GeoQA dataset . 19

3.1 Accuracy and generalization of learned models in the crafting domain 36

4.1 Evaluation of L3 on image classification . 44
4.2 Evaluation of L3 on string editing . 47
4.3 Inference and representation experiments for string editing 47

5.1 Evaluation results for reference games . 69
5.2 Belief evaluation results for the driving game . 70
5.3 Behavior evaluation results for the driving game 71

vi

Acknowledgments

Thanks:

To the Berkeley natural language processing group—David Hall, for lots of early conversa-
tions about how to approach the Ph.D. effectively, and for being included in this classifica-
tion; Jonathan Kummerfeld and Greg Durrett, for companionship in foreign airports and my
real education in how to give a good talk; Taylor Berg-Kirkpatrick, for helping me out of a
tight spot in Culver City and teaching me most of what I know about structured prediction;
Daniel Fried and Mitchell Stern, for helping me forget everything I know about structured
prediction; Max Rabinovich, for solutions to a few key problems on and off the boulders;
and finally Nikita Kitaev and David Gaddy, for stimulating discussions in the last two years.

To my other collaborators—this is a dissertation about language processing, but the work
here has benefited to an unusual extent from close interaction with colleagues in computer
vision and robotics. I want to specifically thank Trevor Darrell, Sergey Levine, Anca Dra-
gan, and above all Marcus Rohrbach and Ronghang Hu. But more generally, this work
would not have been possible without the environment in Sutardja Dai Hall that grew into
the Berkeley AI Research Lab, and within which all these collaborations emerged effortlessly.

To the department staff—especially Xuan Quach, Shirley Salanio, and most especially Angie
Abbatecola, whose competence is matched only by patience.

To all my mentors outside of Berkeley—Kathy McKeown, for starting me down this path;
Owen Rambow and Nizar Habash, for teaching me how to think about structure in language;
Michael Collins and Steve Clark for teaching me how to think about meaning.

To my friends and family—my parents and sister, who I’ve been lucky to have so close for the
last five years; David, who has always been there to talk; Arvind, Will, Gili, Ben, Hannah,
Marc and Judy, for a little patch of Storey’s way here in California; Dylan, Robert, Eric,
Lisa, Sandy, Will, George and Moses, for the company. And of course to Leor, whose love,
care and support have made all the difference as I’ve reached the end of this process.

Finally, to Dan—in my early years, for serving as a sounding board and a repository of
knowledge about every question around language and probabilistic inference; for teaching
me to read a paper and present one. And later, for help with the bigger questions: how to
advise a student, design a lecture, and, at this time of change in the field, how to identify
the techniques and ideas that will matter in the long run.

vii

Anyone who understands me eventually recognizes [these
propositions] as nonsensical, when he has used them—as
steps—to climb beyond them. (He must, so to speak,
throw away the ladder after he has climbed up it.)

Ludwig Wittgenstein,
Tractatus Logico-Philosophicus

Those masterful images because complete
Grew in pure mind but out of what began?

[. . .] Now that my ladder’s gone
I must lie down where all the ladders start

W.B. Yeats,
“The Circus Animals’ Desertion”

1

Chapter 1

Introduction

The structure of language reflects the structure of the world: the named concepts and
relations with which we describe our environment provide a rich source of information about
the kinds of abstractions we use to interact with it [Gopnik and Meltzoff, 1987]. In many
machine learning problems, efficient automatic discovery of reusable discrete operators for
perception and reasoning remains a major challenge [Dietterich, 2000, Ferrari and Zisserman,
2008, Kulkarni et al., 2016]. This dissertation investigates ways in which language might
supply them. We are motivated by a variety of prediction problems: question answering, in
which we attempt to map from natural language strings and environment states to answers;
instruction following, in which language describes a goal or policy for an automated agent;
and more general learning problems like multitask classification and model explanation, which
may not involve text data as input or output, but in which side information from language
might still provide a useful guide to problem structure.

To begin, consider the two examples of multitask classification and question answering. A
classifier is a function from observations to labels. Model-theoretic approaches to semantics
represent the meaning of a question as a function from world states to answers (discussed in
more detail in Chapter 2). So we may treat both problems uniformly as involving a collection
of tasks i, each associated with:

• a specification si—in multitask classification, a collection of (observation, label) pairs;
in question answering, a natural language question

• a data distribution pi(X, Y)—in multitask classification, observations and labels; in
question answering, world states and answers to the question si in each such state

• a loss function `i

In each case our goal is to identify a mapping M : si 7→ fi from specifications to predictors
of Y given X that minimize expected loss:∑

i

Ei`i(M(si)(X), Y) =
∑
i

Ei`i(fi(X), Y) . (1.1)

CHAPTER 1. INTRODUCTION 2

That is: we can think of a question answering task not as a supervised learning problem
of mapping from questions and worlds to answers, but rather as a collection of indirectly
supervised classification problems. (Similarly, we can think of instruction following as a
collection of indirectly supervised policy-learning problems.) Whether si takes the form of
a training dataset or a natural language string, our hope in both settings is that shared
structure among specifications and their associated predictors makes it possible to identify a
good general-purpose inference procedure m. With this view in mind, we can more concisely
state the goals of this dissertation—we are interested in problems where, in Equation 1.1,

(1) Predictors are compositional : there is some generating set of primitive functions and
composition operations such that every fi can be constructed by composing a small
number of primitives.

(2) Predictors are language-like: when a specification si takes the form of a natural lan-
guage utterance, the structure of the associated predictor fi reflects the linguistic
structure of si.

As we will see, a variety of problems—not just in natural language processing but also
computer vision and policy learning—exhibit these properties.

Our central claim is that when properties (1) and (2) hold, it helps to model them
explicitly: the right primitive functions are those we can describe with words, and the right
compositional operators are the ones we use in formal representations of language. For
language understanding problems, model structure imitates linguistic structure. And for
downstream machine learning problems that do not themselves have anything to do with
language, side information from language can help us discover structure in learned models,
or supply structure at training time. We investigate this claim empirically—we present a
collection of compositional models that can flexibly incorporate linguistic structure during
training, evaluation, or both. Along the way, we aim at answers to a few broader questions:

What Can Language Tell Us About Model Design?

Questions about how to model the world—at what level of granularity? with what kind of
explicit treatment of objects, properties and events?—remain an active topic of research in
computer vision and robotics [Chang et al., 2016, Battaglia et al., 2016]. Though targeted
at very different applications, a (millennia-old! [Sharma, 2003]) tradition of research on
structured representations of language and linguistic meaning has encountered many of the
same questions: most basically, the question of how the surface form of language relates to
meaning. But also: with respect to what kind of world representation is linguistic mean-
ing defined? What structure do we need to assume in order to compactly and coherently
represent the data produced by language users?

A long line of work on semantic parsing, especially grounded in problems like question
answering and instruction following, represents a first step in this direction. But such ap-
proaches have typically bypassed questions of learning how to represent the world: instead,

CHAPTER 1. INTRODUCTION 3

they pre-commit to a hand-designed representation and build an analysis of language on top
of it [Wong and Mooney, 2006, Liang et al., 2011, Kwiatkowski et al., 2013]. This disserta-
tion aims to bridge the gap, and learn to improved models for the underlying perception and
control problems jointly with linguistic analysis. We investigate whether representational
theories from language might be useful in this broader learning context. Specifically,

• At a low level, can formal (compositional) representations of sentence meaning help us
learn reusable operators for perception and reasoning? Is this process helped by pa-
rameter tying with structure inherited from logical structure in language? (Chapter 2)

• Can these same kinds of structured parameter tying schemes help us as we move to
problems where we don’t really care about language processing, but just about success
at some downstream learning task (e.g. policy learning)? (Chapter 3 and Chapter 4)

• To the extent that current learning techniques are capable of solving some of the
problems we care about without side information from language, do they solve these
problems in the same way? That is, does the functional basis described at the beginning
of this section arise spontaneously from standard learning algorithms? How can we
identify this structure when it does occur? (Chapter 5)

What Can Model Design Tell Us About Language?

Improved models for language processing might also shed light on a few questions about
the acquisition and representation language itself. Considerable effort in computer science,
cognitive science and linguistics has been devoted to the symbol grounding problem—how
the words of a language acquire their meanings by grounding in the world [Harnad, 1990].
Several statistical models have been proposed with the specific goal of studying the symbol
grounding problem, using either standard machinery from formal semantics [Krishnamurthy
and Kollar, 2013] or other structured meaning representations [Tellex et al., 2011b].

But all existing approaches bottom out in simple functions (perhaps with a few free
parameters) of a highly structured world model that has been pre-analyzed into individuals,
their relationships and their properties. This is both too much structure, in the sense that at
supplies an unrealistic inductive bias to learners [Prather and Bacon, 1986], but also too little,
in the sense that decisions made a priori about how to represent the world are necessarily
lossy and not guaranteed to reflect future uses of language. Ultimately, the world to which
sentences refer is no more than the primitive elements of sensation and action. Then,

• What does a formal semantics look like for such a world? Does pushing some low-level
perceptual distinctions into the weights of a learned model (e.g. the distinction between
tall man and tall building) make it easier to design concise and broadly applicable
representations of sentence meaning? What sorts of linguistic phenomena should be
explicitly articulated in logical meaning representations, and what distinctions should
be left to learning? (Chapter 2)

CHAPTER 1. INTRODUCTION 4

Going even further, we’ll see in the final chapters of this dissertation that the denotational
perspective on the representation of meaning in language provides a useful tool even indepen-
dent of the logical meaning representations traditionally used to implement it—in particular,
we can do useful things with denotational representations of meaning by learning a mapping
directly from utterances to distributions over world states. In these cases:

• Can we specify a useful model-theoretic semantics without any logical forms at all?
What questions can we answer about language by going straight to “pragmatic” repre-
sentations of speaker meaning, without any explicit representation of sentence mean-
ing? (Chapter 5)

The models we present in this thesis are aimed foremost at concrete language processing
applications, and so the answers they provide to more general questions about language are
at best incomplete. Nevertheless we hope that some of the representational tools we present
here are useful beyond the immediate engineering problems.

5

Chapter 2

Module Networks: Language and
Reasoning

We begin with an investigation of the extent to which structured representations of language
can assist in the learning of reusable operators for perception and visual reasoning.1 We
focus in this chapter on question answering problems, which have long served as a test-
bed for reasoning challenges in natural language processing [Winograd, 1972] and artificial
intelligence more broadly. This chapter presents a compositional, attentional model for
answering questions about a variety of world representations, including images and structured
knowledge bases. The model translates from questions to dynamically assembled neural
networks, then applies these networks to world representations (images or knowledge bases)
to produce answers. We take advantage of two largely independent lines of work: on one
hand, an extensive literature on answering questions by mapping from strings to logical
representations of meaning; on the other, a series of recent successes in deep neural models for
image recognition and captioning. By constructing neural networks instead of logical forms,
our model leverages the best aspects of both linguistic compositionality and continuous
representations.

Our model has two components, trained jointly: first, a collection of neural “modules”
that can be freely composed (Figure 2.1a); second, a network layout predictor that assembles
modules into complete deep networks tailored to each question (Figure 2.1b). Training
data consists of (world, question, answer) triples: our approach requires no supervision of
network layouts. We achieve state-of-the-art performance on two markedly different question

1Material in this chapter is adapted from:

• Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural module networks. In
Proceedings of the Conference on Computer Vision and Pattern Recognition, 2016.

• Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Learning to Compose Neural
Networks for Question Answering. In Meeting of the North American Association for Computational
Linguistics, 2016.

CHAPTER 2. MODULE NETWORKS: LANGUAGE AND REASONING 6

What cities are in Georgia? Atlanta

and

lookup Georgia

find city

Georgia

Atlanta

Montgomery

Knowledge source

relate in

Network layout (Section 4.2)

find[city]

lookup[Georgia]

relate[in]

and

(b)

Module inventory (Section 4.1)

find

lookup

and

relate

(a) (c)

(d)

Figure 2.1: Model overview. A learned syntactic analysis (a) is used to assemble a collection
of neural modules (b) into a deep neural network (c), and applied to a world representation
(d) to produce an answer.

answering tasks: simple questions about natural images, and more compositional questions
about United States geography backed by a tabular, rather than visual, world representation.

2.1 Motivations

We begin with a few observations. First, some flexible and general-purpose class of func-
tion approximators would appear to be indispensable for visual question answering: one of
the major obstacles to integration of purely formal approaches to question answering with
more complex world representations like images has been the difficulty of hand-designing a
sufficiently expressive inventory of functional primitives [Malinowski et al., 2015]; in vision,
especially, recent successes suggest that any kind of question-specific model we construct
for visual processing should really be a question-specific neural network [Krizhevsky et al.,
2012]. State-of-the-art performance on the full range of computer vision tasks that are stud-
ied requires a variety of different deep network topologies—there is no single “best network”
for all tasks.

But second: though different networks are used for different purposes, it is commonplace
to initialize systems for many of vision tasks with a prefix of a network trained for classifica-
tion [Girshick et al., 2014]. This has been shown to substantially reduce training time and

CHAPTER 2. MODULE NETWORKS: LANGUAGE AND REASONING 7

improve accuracy. So while network structures are not universal (in the sense that the same
network is appropriate for all problems), they are at least empirically modular (in the sense
that intermediate representations for one task are useful for many others).

Can we generalize this idea in a way that is useful for question answering? Rather
than thinking of question answering as a problem of learning a single function to map from
questions and contexts to answers, it’s perhaps useful to think of it as a highly-multitask
learning setting, where each problem instance is associated with a novel task, and the identity
of that task is expressed only noisily in language. In particular, where a simple question like
is this a truck? requires us to retrieve only one piece of information from an image, more
complicated questions, like how many objects are to the left of the toaster? might require
multiple processing steps. The compositional nature of language means that the number of
such processing such steps is potentially unbounded. Moreover, multiple kinds of processing
might be required—repeated convolutions might identify a truck, but some kind of recurrent
architecture is likely necessary to count up to arbitrary numbers.

Thus our goal in this chapter is to specify a framework for modular, composable, jointly-
trained neural networks. In this framework, we first predict the structure of the computation
needed to answer each question individually, then realize this structure by constructing an
appropriately-shaped neural network from an inventory of reusable modules. These modules
are learned jointly, rather than trained in isolation, and specialization to individual tasks
(identifying properties, spatial relations, etc.) arises naturally from the training objective.

2.2 Deep Networks as Functional Programs

Consider the example shown in Figure 2.2. The question What color is the bird? might be
answered in two steps: first, “where is the bird?” (Figure 2.2a), second, “what color is that
part of the image?” (Figure 2.2c). This first step, a generic functional primitive or module
that we will call find, can be expressed as a fragment of a neural network that maps from
image features and a lexical item (here bird) to a distribution over pixels. This operation is
commonly referred to as the attention mechanism, and is a standard tool for manipulating
images [Xu et al., 2015] and text representations [Hermann et al., 2015].

Our first contribution is an extension and generalization of this mechanism to enable
fully-differentiable reasoning about more structured semantic representations. Figure 2.2b
shows how the same module can be used to focus on the entity Georgia in a non-visual
grounding domain; more generally, by representing every entity in the universe of discourse
as a feature vector, we can obtain a distribution over entities that corresponds roughly to a
logical set-valued denotation.

Having obtained such a distribution, existing neural approaches use it to immediately
compute a weighted average of image features and project back into a labeling decision—a
describe module (Figure 2.2c). But the logical perspective suggests a number of novel
modules that might operate on attentions: e.g. combining them (by analogy to conjunction
or disjunction) or inspecting them directly without a return to feature space (by analogy to

CHAPTER 2. MODULE NETWORKS: LANGUAGE AND REASONING 8

black	and	white

Georgia

Atlanta

Montgomery

Georgia

Atlanta

Montgomery

exists

true

find bird

describe color

find state(a) (b)

(c) (d)

Figure 2.2: Simple neural module networks, corresponding to the questions What color is
the bird? and Are there any states? (a) A neural find module for computing an attention
over pixels. (b) The same operation applied to a knowledge base. (c) Using an attention
produced by a lower module to identify the color of the region of the image attended to. (d)
Performing quantification by evaluating an attention directly.

quantification, Figure 2.2d). These modules are discussed in detail in Section 2.4. Unlike
their formal counterparts, they are differentiable end-to-end, facilitating their integration
into learned models. Building on previous work, we learn behavior for a collection of het-
erogeneous modules from (world, question, answer) triples.

Our second contribution is an approach for learning to assemble such modules composi-
tionally. Isolated modules are of limited use—to obtain expressive power comparable to either
formal approaches or monolithic deep networks, they must be composed into larger struc-
tures. Figure 2.2 shows simple examples of composed structures, but for realistic question-
answering tasks, even larger networks are required. Thus our goal is to automatically induce
variable-free, tree-structured computation descriptors. We can use a familiar functional no-
tation from formal semantics (e.g. Liang et al., 2011) to represent these computations.2 We
write the two examples in Figure 2.2 as

2But note that unlike formal semantics, the behavior of the primitive functions here is itself unknown.

CHAPTER 2. MODULE NETWORKS: LANGUAGE AND REASONING 9

(describe[color]

find[bird])

and

(exists

find[state])

respectively. These are network layouts : they specify a structure for arranging modules
(and their lexical parameters) into a complete network. While it might be possible to use
hand-written rules to deterministically transform dependency trees into layouts, we will
likely be restricted to producing simple structures like the above for non-synthetic data. For
full generality, we will need to solve harder problems, like transforming What cities are in
Georgia? (Figure 2.1) into

(and

find[city]

(relate[in]

lookup[Georgia]))

In this chapter we will present a model for learning to predict such structures jointly with
the parameters that determine their low-level behavior. We call this model a neural module
network.

2.3 Related Work

There is an extensive literature on database question answering, in which strings are mapped
to logical forms, then evaluated by a black-box execution model to produce answers. Su-
pervision may be provided either by annotated logical forms [Wong and Mooney, 2007,
Kwiatkowski et al., 2010, Andreas et al., 2013] or from (world, question, answer) triples
alone [Liang et al., 2011, Pasupat and Liang, 2015]. In general the set of primitive functions
from which these logical forms can be assembled is fixed, but one recent line of work focuses
on inducing new predicates functions automatically, either from perceptual features [Krish-
namurthy and Kollar, 2013] or the underlying schema [Kwiatkowski et al., 2013]. The model
we describe here has a unified framework for handling both the perceptual and schema cases,
and differs from existing work primarily in learning a differentiable execution model with
continuous evaluation results.

Neural models for question answering are also a subject of current interest. These include
approaches that model the task directly as a multiclass classification problem [Iyyer et al.,
2014], models that attempt to embed questions and answers in a shared vector space [Bor-
des et al., 2014] and attentional models that select words from documents sources [Hermann
et al., 2015]. Such approaches generally require that answers can be retrieved directly based

CHAPTER 2. MODULE NETWORKS: LANGUAGE AND REASONING 10

on surface linguistic features, without requiring intermediate computation. A more struc-
tured approach described by Yin et al. [2017] learns a query execution model for database
tables without any natural language component. Previous efforts toward unifying formal
logic and representation learning include those of Grefenstette [2013], Krishnamurthy and
Mitchell [2013], Lewis and Steedman [2013], and Beltagy et al. [2013].

The visually-grounded component of this work relies on recent advances in convolutional
networks for computer vision [LeCun et al., 1998, Krizhevsky et al., 2012, Simonyan and
Zisserman, 2014], and in particular the fact that late convolutional layers in networks trained
for image recognition contain rich features useful for other vision tasks while preserving
spatial information Donahue et al. [2014]. These features have been used for both image
captioning [Xu et al., 2015] and visual question answering [Yang et al., 2017].

Most previous approaches to visual question answering either apply a recurrent model to
deep representations of both the image and the question [Ren et al., 2015, Malinowski et al.,
2015], or use the question to compute an attention over the input image, and then answer
based on both the question and the image features attended to [Yang et al., 2017, Xu and
Saenko, 2016]. Other approaches include the simple classification model described by Zhou
et al. [2015] and the dynamic parameter prediction network described by Noh et al. [2016].
All of these models assume that a fixed computation can be performed on the image and
question to compute the answer, rather than adapting the structure of the computation to
the question.

Other approaches in this general family include the “universal parser” sketched by Bottou
[2014], the graph transformer networks of Bottou et al. [1997], the knowledge-based neural
networks of Towell and Shavlik [1994] and the recursive neural networks of Socher et al.
[2013], which use a fixed tree structure to perform further linguistic analysis without any
external world representation. We are unaware of previous work that simultaneously learns
both parameters for and structures of instance-specific networks.

2.4 Model

Recall that our goal is to map from questions and world representations to answers. This
process involves the following variables:

1. w a world representation

2. x a question

3. y an answer

4. z a network layout

5. θ a collection of model parameters

CHAPTER 2. MODULE NETWORKS: LANGUAGE AND REASONING 11

Our model is built around two distributions: a layout model p(z|x; θ`) which chooses a layout
for a sentence, and a execution model pz(y|w; θe) which applies the network specified by z to
w.

For ease of presentation, we introduce these models in reverse order. We first imagine
that z is always observed, and in Section 2.4 describe how to evaluate and learn modules
parameterized by θe within fixed structures. In Section 2.4, we move to the real scenario,
where z is unknown. We describe how to predict layouts from questions and learn θe and θ`
jointly without layout supervision.

Evaluating Modules

Given a layout z, we assemble the corresponding modules into a full neural network (Fig-
ure 2.1c), and apply it to the knowledge representation. Intermediate results flow between
modules until an answer is produced at the root. We denote the output of the network with
layout z on input world w as JzKw; when explicitly referencing the substructure of z, we can
alternatively write Jm(h1, h2)K for a top-level module m with submodule outputs h1 and h2.
We then define the execution model:

pz(y|w) = (JzKw)y (2.1)

(This assumes that the root module of z produces a distribution over labels y.) The set of
possible layouts z is restricted by module type constraints : some modules (like find above)
operate directly on the input representation, while others (like describe above) also depend
on input from specific earlier modules. The base types are considered are Attention (a
distribution over pixels or entities) and Labels (a distribution over answers).

Parameters are tied across multiple instances of the same module, so different instanti-
ated networks may share some parameters but not others. Modules have both parameter
arguments (shown in square brackets) and ordinary inputs (shown in parentheses). Param-
eter arguments, like the running bird example in Section 2.2, are provided by the layout,
and are used to specialize module behavior for particular lexical items. Ordinary inputs are
the result of computation lower in the network. In addition to parameter-specific weights,
modules have global weights shared across all instances of the module (but not shared with
other modules). We write A, a,B, b, . . . for global weights and ui, vi for weights associated
with the parameter argument i. ⊕ and � denote (possibly broadcast) elementwise addition
and multiplication respectively. The complete set of global weights and parameter-specific
weights constitutes θe. Every module has access to the world representation, represented as
a collection of vectors w1, w2, . . . (or W expressed as a matrix). The nonlinearity σ denotes
a rectified linear unit.

The modules used in this chapter are shown in Table 2.1, with names and type constraints
in the first row and a description of the module’s computation following.

Learning in this simplified setting is straightforward. Assuming the top-level module in
each layout is a describe or exists module, the fully- instantiated network corresponds to a

CHAPTER 2. MODULE NETWORKS: LANGUAGE AND REASONING 12

Lookup (→ Attention)
lookup[i] produces an attention focused entirely at the index f(i), where the relationship f
between words and positions in the input map is known ahead of time (e.g. string matches on
database fields).

Jlookup[i]K = ef(i) (2.2)

where ei is the basis vector that is 1 in the ith position and 0 elsewhere.

Find (→ Attention)
find[i] computes a distribution over indices by concatenating the parameter argument with
each position of the input feature map, and passing the concatenated vector through a MLP:

Jfind[i]K = softmax(a� σ(Bvi ⊕ CW ⊕ d)) (2.3)

Relate (Attention → Attention)
relate directs focus from one region of the input to another. It behaves much like the
find module, but also conditions its behavior on the current region of attention h. Let
w̄(h) =

∑
k hkw

k, where hk is the kth element of h. Then,

Jrelate[i](h)K = softmax(a � σ(Bvi ⊕ CW ⊕Dw̄(h)⊕ e)) (2.4)

And (Attention* → Attention)
and performs an operation analogous to set intersection for attentions. The analogy to prob-
abilistic logic suggests multiplying probabilities:

Jand(h1, h2, . . .)K = h1 � h2 � · · · (2.5)

Describe (Attention → Labels)
describe[i] computes a weighted average of w under the input attention. This average is
then used to predict an answer representation. With w̄ as above,

Jdescribe[i](h)K = softmax(Aσ(Bw̄(h) + vi)) (2.6)

Exists (Attention → Labels)
exists is the existential quantifier, and inspects the incoming attention directly to produce a
label, rather than an intermediate feature vector like describe:

Jexists](h)K = softmax
((

max
k

hk
)
a+ b

)
(2.7)

Table 2.1: Module implementations: parameterizations of the various primitive functional
types used to implement the models in this chapter.

CHAPTER 2. MODULE NETWORKS: LANGUAGE AND REASONING 13

What cities are in Georgia?

what

city

be

in

Georgia

find[city]

relate[in]

lookup[Georgia]

relate[in]

...

lookup[Georgia]find[city]

and

(a)

(b)

(c)

(d)

relate[in]

lookup[Georgia]

Figure 2.3: Generation of layout candidates. The input sentence (a) is represented as a
dependency parse (b). Fragments of this dependency parse are then associated with appro-
priate modules (c), and these fragments are assembled into full layouts (d).

distribution over labels conditioned on layouts. To train, we maximize
∑

(w,y,z) log pz(y|w; θe)
directly. This can be understood as a parameter-tying scheme, where the decisions about
which parameters to tie are governed by the observed layouts z.

Assembling Networks

Next we describe the layout model p(z|x; θ`). We first use a fixed syntactic parse to generate
a small set of candidate layouts, analogously to the way a semantic grammar generates
candidate semantic parses in previous work [Berant and Liang, 2014].

A semantic parse differs from a syntactic parse in two primary ways. First, lexical items
must be mapped onto a (possibly smaller) set of semantic primitives. Second, these semantic
primitives must be combined into a structure that closely, but not exactly, parallels the
structure provided by syntax. For example, state and province might need to be identified
with the same field in a database schema, while all states have a capital might need to be
identified with the correct (in situ) quantifier scope.

CHAPTER 2. MODULE NETWORKS: LANGUAGE AND REASONING 14

While we cannot avoid the structure selection problem, continuous representations sim-
plify the lexical selection problem. For modules that accept a vector parameter, we associate
these parameters with words rather than semantic tokens, and thus turn the combinatorial
optimization problem associated with lexicon induction into a continuous one. Now, in order
to learn that province and state have the same denotation, it is sufficient to learn that their
associated parameters are close in some embedding space—a task amenable to gradient de-
scent. (Note that this is easy only in an optimizability sense, and not an information-theoretic
one—we must still learn to associate each independent lexical item with the correct vector.)
The remaining combinatorial problem is to arrange the provided lexical items into the right
computational structure. In this respect, layout prediction is more like syntactic parsing than
ordinary semantic parsing, and we can rely on an off-the-shelf syntactic parser to get most
of the way there. In this work, syntactic structure is provided by the Stanford dependency
parser [De Marneffe and Manning, 2008].

The construction of layout candidates is depicted in Figure 2.3, and proceeds as follows:

1. Represent the input sentence as a dependency tree.

2. Collect all nouns, verbs, and prepositional phrases that are attached directly to a
wh-word or copula.

3. Associate each of these with a layout fragment: Ordinary nouns and verbs are mapped
to a single find module. Proper nouns to a single lookup module. Prepositional
phrases are mapped to a depth-2 fragment, with a relate module for the preposition
above a find module for the enclosed head noun.

4. Form subsets of this set of layout fragments. For each subset, construct a layout
candidate by joining all fragments with an and module, and inserting either a measure

or describe module at the top (each subset thus results in two parse candidates.)

All layouts resulting from this process feature a relatively flat tree structure with at
most one conjunction and one quantifier. This is a strong simplifying assumption, but
appears sufficient to cover most of the examples that appear in both of our tasks. As
our approach includes both categories, relations and simple quantification, the range of
phenomena considered is generally broader than previous perceptually-grounded QA work
[Krishnamurthy and Kollar, 2013, Matuszek et al., 2012].

Having generated a set of candidate parses, we need to score them. This is a ranking
problem; as in the rest of our approach, we solve it using standard neural machinery. In
particular, we produce an LSTM representation of the question, a feature-based represen-
tation of the query, and pass both representations through a multilayer perceptron (MLP).
The query feature vector includes indicators on the number of modules of each type present,
as well as their associated parameter arguments. While one can easily imagine a more
sophisticated parse-scoring model, this simple approach works well for our tasks.

Formally, for a question x, let hq(x) be an LSTM encoding of the question (i.e. the last
hidden layer of an LSTM applied word-by-word to the input question). Let {z1, z2, . . .} be

CHAPTER 2. MODULE NETWORKS: LANGUAGE AND REASONING 15

the proposed layouts for x, and let f(zi) be a feature vector representing the ith layout.
Then the score s(zi|x) for the layout zi is

s(zi|x) = a>σ(Bhq(x) + Cf(zi) + d) (2.8)

i.e. the output of an MLP with inputs hq(x) and f(zi), and parameters θ` = {a,B,C, d}.
Finally, we normalize these scores to obtain a distribution:

p(zi|x; θ`) = es(zi|x)
/ n∑

j=1

es(zj |x) (2.9)

Having defined a layout selection module p(z|x; θ`) and a network execution model
pz(y|w; θe), we are ready to define a model for predicting answers given only (world, ques-
tion) pairs. The key constraint is that we want to minimize evaluations of pz(y|w; θe) (which
involves expensive application of a deep network to a large input representation), but can
tractably evaluate p(z|x; θ`) for all z (which involves application of a shallow network to a
relatively small set of candidates). This is the opposite of the situation usually encountered
semantic parsing, where calls to the query execution model are fast but the set of candidate
parses is too large to score exhaustively.

In fact, the problem more closely resembles the scenario faced by agents in the rein-
forcement learning setting (where it is cheap to score actions, but potentially expensive to
execute them and obtain rewards). We adopt a common approach from that literature, and
express our model as a stochastic policy. Under this policy, we first sample a layout z from
a distribution p(z|x; θ`), and then apply z to the knowledge source and obtain a distribution
over answers p(y|z, w; θe).

After z is chosen, we can train the execution model directly by maximizing log p(y|z, w; θe)
with respect to θe as before (this is ordinary backpropagation). Because the hard selection of
z is non-differentiable, we optimize p(z|x; θ`) using a policy gradient method. The gradient
of the reward surface J with respect to the parameters of the policy is

∇J(θ`) = E[∇ log p(z|x; θ`) · r] (2.10)

(this is the reinforce rule [Williams, 1992]). Here the expectation is taken with respect
to rollouts of the policy, and r is the reward. Because our goal is to select the network
that makes the most accurate predictions, we take the reward to be identically the negative
log-probability from the execution phase, i.e.

E[(∇ log p(z|x; θ`)) · log p(y|z, w; θe)] (2.11)

Thus the update to the layout-scoring model at each timestep is simply the gradient of
the log-probability of the chosen layout, scaled by the accuracy of that layout’s predictions.
At training time, we approximate the expectation with a single rollout, so at each step we
update θ` in the direction (∇ log p(z|x; θ`)) · log p(y|z, w; θe) for a single z ∼ p(z|x; θ`). θe
and θ` are optimized using adadelta [Zeiler, 2012] with ρ = 0.95, ε = 1e−6 and gradient
clipping at a norm of 10.

CHAPTER 2. MODULE NETWORKS: LANGUAGE AND REASONING 16

A note on expressive power

While Section 2.3 and Section 2.2 motivated the use of structured, utterance-specific com-
putational structures by analogy to formal semantics, the final predictors we can implement
using the modules in Table 2.1 differ in a few significant ways from the kinds of formal
representations employed by linguists. The type we have called Attention corresponds to
a relaxed version of a model-theoretic space of individuals, and the type Labels to a more
general notion of truth values (e.g. Montague [1973]); the modules we have defined cover
most of the relevant direct transformations between them. But we have not defined any
higher-order types (e.g. of the form ((Attention → Labels) → Attention); this in turn limits
the set of phenomena we can actually model in our framework. With this restricted type
system, and slight generalization of the exists module, it is possible to represent logical
forms with at most one generalized quantifier.

While this is adequate for the datasets used for evaluation here, we know that nested
quantification is necessary when representing language more generally. The current literature
suggests two promising directions for getting around this limitation. The first is to construct
NMNs that function as energy-based models [LeCun et al., 2006], in which prediction involves
inference over network inputs with respect to a scalar score at the output. Such models have
been used in the NMN framework for resolving referring expressions [Hu et al., 2017], but not
more challenging quantified ones. An alternative possibility is to back away from the explicit
analogy between module outputs and a model-theoretic type system, and instead allow these
outputs to represent the abstract state of a more general unrolled inference process. This view
suggests connections to proof-theoretic, rather than model-theoretic accounts of semantics.
First steps in this direction are given by Rocktäschel and Riedel [2017], though again for a
restricted class of computations.

2.5 Experiments

The framework described in this chapter is general, and we are interested in how well it
performs on datasets of varying domain, size and linguistic complexity. To that end, we
evaluate our model on tasks at opposite extremes of both these criteria: a large visual
question answering dataset, and a small collection of more structured geography questions.

Questions About Images

Our first task is the Visual Question Answering challenge (VQA) [Antol et al., 2015]. The
VQA dataset consists of more than 200,000 images paired with human-annotated questions
and answers, as in Figure 2.4. We use the VQA 1.0 release, employing the development set for
model selection and hyperparameter tuning, and reporting final results from the evaluation
server on the test-standard set. For the experiments described in this section, the input
feature representations wi are computed by the the fifth convolutional layer of a 16-layer
VGGNet after pooling [Simonyan and Zisserman, 2014]. Input images are scaled to 448×448

CHAPTER 2. MODULE NETWORKS: LANGUAGE AND REASONING 17

What is in the sheep’s ear? What color is she
wearing?

What is the man
dragging?

(describe[what]

(and find[sheep]

find[ear]))

(describe[color]

find[wear])

(describe[what]

find[man])

tag white boat (board)

Figure 2.4: Sample outputs for the visual question answering task. The second row shows
the final attention provided as input to the top-level describe module. For the first two
examples, the model produces reasonable parses, attends to the correct region of the images
(the ear and the woman’s clothing), and generates the correct answer. In the third image,
the verb is discarded and a wrong answer is produced.

CHAPTER 2. MODULE NETWORKS: LANGUAGE AND REASONING 18

test-dev test-std

Yes/No Number Other All All

Zhou (2015) 76.6 35.0 42.6 55.7 55.9
Noh (2015) 80.7 37.2 41.7 57.2 57.4
Yang (2015) 79.3 36.6 46.1 58.7 58.9
NMN 81.2 38.0 44.0 58.6 58.7
D-NMN 81.1 38.6 45.5 59.4 59.4

Table 2.2: Results on the VQA test server. NMN is a baseline model that takes the largest
structure generated by the process depicted in Figure 2.3. D-NMN (“dynamic” NMN) uses
a learned structure selector as described above.

before computing their representations. We found that performance on this task was best
if the candidate layouts were relatively simple: only describe, and and find modules are
used, and layouts contain at most two conjuncts.

One weakness of this basic framework is a difficulty modeling prior knowledge about
answers (of the form most bears are brown). This kinds of linguistic “prior” is essential
for the VQA task, and easily incorporated. We simply introduce an extra hidden layer for
recombining the final module network output with the input sentence representation hq(x)
(see Equation 2.8), replacing Equation 2.1 with:

log pz(y|w, x) = (Ahq(x) +BJzKw)y (2.12)

(Now modules with output type Labels should be understood as producing an answer em-
bedding rather than a distribution over answers.) This allows the question to influence the
answer directly.

Results are shown in Table 2.2. The use of dynamic networks provides a small gain, most
noticeably on “other” questions. The proposed approach outperforms a highly effective
visual bag-of-words model [Zhou et al., 2015], a model with dynamic network parameter
prediction (but fixed network structure) [Noh et al., 2016], a more conventional attentional
model [Yang et al., 2017], and an ablation with fixed layouts rather than learned structure
prediction.

Some examples are shown in Figure 2.4. In general, the model learns to focus on the
correct region of the image, and tends to consider a broad window around the region. This
facilitates answering questions like Where is the cat?, which requires knowledge of the sur-
roundings as well as the object in question.

Questions About Geography

The next set of experiments we consider focuses on GeoQA, a geography question answering
task first introduced by Krishnamurthy and Kollar [2013]. This task was originally paired

CHAPTER 2. MODULE NETWORKS: LANGUAGE AND REASONING 19

Accuracy

Model GeoQA GeoQA+Q

LSP-F 48 –
LSP-W 51 –
NMN 51.7 35.7
D-NMN 54.3 42.9

Table 2.3: Results on the GeoQA dataset, and the GeoQA dataset with quantification.
Our approach outperforms both a purely logical model (LSP-F) and a model with learned
perceptual predicates (LSP-W) on the original dataset, and a fixed-structure NMN under
both evaluation conditions.

with a visual question answering task much simpler than the one just discussed, and is ap-
pealing for a number of reasons. In contrast to the VQA dataset, GeoQA is quite small,
containing only 263 examples. Two baselines are available: one using a classical semantic
parser backed by a database, and another which induces logical predicates using linear clas-
sifiers over both spatial and distributional features. This allows us to evaluate the quality
of our model relative to other perceptually grounded logical semantics, as well as strictly
logical approaches.

The GeoQA domain consists of a set of entities (e.g. states, cities, parks) which participate
in various relations (e.g. north-of, capital-of). Here we take the world representation to
consist of two pieces: a set of category features (used by the find module) and a different
set of relational features (used by the relate module). For our experiments, we use a subset
of the features originally used by Krishnamurthy et al. The original dataset includes no
quantifiers, and treats the questions What cities are in Texas? and Are there any cities in
Texas? identically. Because we are interested in testing the parser’s ability to predict a
variety of different structures, we introduce a new version of the dataset, GeoQA+Q, which
distinguishes these two cases, and expects a Boolean answer to questions of the second kind.

Results are shown in Table 2.3. As in the original work, we report the results of leave-
one-environment-out cross-validation on the set of 10 environments. Our learned structure
prediction model (D-NMN) outperforms both the logical (LSP-F) and perceptual models
(LSP-W) described by Krishnamurthy and Kollar [2013], as well as a fixed-structure neural
module net (NMN). This improvement is particularly notable on the dataset with quantifiers,
where dynamic structure prediction produces a 20% relative improvement over the fixed
baseline. A variety of predicted layouts are shown in Figure 2.5.

2.6 Discussion

This chapter has introduced a deep architecture, the neural module network, for answering
queries about both structured and unstructured sources of information. Given only (question,

CHAPTER 2. MODULE NETWORKS: LANGUAGE AND REASONING 20

Is Key Largo an island?

(exists (and lookup[key-largo] find[island]))

yes: correct

What national parks are in Florida?

(and find[park] (relate[in] lookup[florida]))

everglades: correct

What are some beaches in Florida?

(exists (and lookup[beach]

(relate[in] lookup[florida])))

yes (daytona-beach): wrong parse

What beach city is there in Florida?

(and lookup[beach] lookup[city]

(relate[in] lookup[florida]))

[none] (daytona-beach): wrong module behavior

Figure 2.5: Example layouts and answers selected by the model on the GeoQA dataset. For
incorrect predictions, the correct answer is shown in parentheses.

world, answer) triples as training data, the model learns to assemble neural networks on the
fly from an inventory of neural models, and simultaneously learns weights for these modules
so that they can be composed into novel structures. Our approach achieves strong results
on two tasks.

The approach presented in this chapter still requires significant structure to be provided
by the modeler, both in the form of an inventory of modules with an approriate space of
intermediate representations, and in the form of network layouts (here derived from a parser
but in principle supervisable directly instead). A fully general architecture for learning and
prediction with modular networks would incorporate both representation design and struc-
ture selection into the learning process, without the need for external supervision. Following
the publication of the work described here, several steps have been taken in this direction:

Learning intermediate representations The PG+EE model of Johnson et al. [2017b]
is an NMN with non-attentional modules, with the intermediate module outputs instead
predicted by a generic sequence of convolutions. This approach outperforms the attentional
parameterization given in Table 2.1 on a challenging synthetic dataset [Johnson et al., 2017a]
but has not been shown to scale to real-world image datasets.

CHAPTER 2. MODULE NETWORKS: LANGUAGE AND REASONING 21

Learning without structure supervision Attempts to learn a discrete layout construc-
tion policy with no supervision have met with limited success outside of toy domains [Hu
et al., 2017]. However, moving from a reinforcement leanring setting to one with a soft
structure selection policy using a differentiable stack [Grefenstette et al., 2015] gives im-
proved performance in both naturalistic and highly compositional domains [Hu et al., 2018],
but discovers network layouts that bear limited resemblance to linguistic representations of
meaning. An alternative approach, with a similar high-level control scheme but without
discrete reuse of a finite inventory of modules, is given by Hudson and Manning [2018].

To summarize: semantic annotations provide a useful framework from which to construct
network layouts; effective but non-semantic layouts can be learned from scratch. Generic
module parameterizations are effective in simple domains, but parameterizations guided by
type systems from semantics seem to be more generally useful. Techniques for learning
module nets without manual design of layouts or modules are beginning to be developed,
but more work is needed to make them competitive with techniques relying on stronger
supervision.

22

Chapter 3

Policy Sketches: Language and
Behavior

In the next chapter, we turn from the problem of learning composable perceptual operators
for reasoning to the problem of learning composable policies for interacting with the world.1

π1

π2

π3

π1

b1: get wood

τ1: make planks

b2: use workbench

Π1

b1: get wood

τ2: make sticks

b3: use toolshed

π1

π3

Π2

π1

π2

K1 K2

Figure 3.1: Learning from policy sketches. The figure shows simplified versions of two tasks
(make planks and make sticks, each associated with its own policy (Π1 and Π2 respectively).
These policies share an initial high-level action b1: both require the agent to get wood before
taking it to an appropriate crafting station. Even without prior information about how the
associated behavior π1 should be implemented, knowing that the agent should initially follow
the same subpolicy in both tasks is enough to learn a reusable representation of their shared
structure.

1Material in this chapter is adapted from:

• Jacob Andreas, Dan Klein and Sergey Levine. Modular multitask reinforcement with policy sketches.
In Proceedings of the International Conference on Machine Learning, 2016.

CHAPTER 3. POLICY SKETCHES: LANGUAGE AND BEHAVIOR 23

Here we describe a framework for learning composable deep subpolicies in a multitask set-
ting, guided only by abstract sketches of high-level behavior. General reinforcement learning
algorithms allow agents to solve tasks in complex environments. But tasks featuring ex-
tremely delayed rewards or other long-term structure are often difficult to solve with flat,
monolithic policies, and a long line of prior work has studied methods for learning hierarchi-
cal policy representations [Sutton et al., 1999, Dietterich, 2000, Konidaris and Barto, 2007,
Hauser et al., 2008]. While unsupervised discovery of these hierarchies is possible [Daniel
et al., 2012, Bacon and Precup, 2017], practical approaches often require detailed supervision
in the form of explicitly specified high-level actions, subgoals, or behavioral primitives [Pre-
cup, 2000]. These depend on state representations simple or structured enough that suitable
reward signals can be effectively engineered by hand.

But is such fine-grained supervision actually necessary to achieve the full benefits of
hierarchy? Specifically, is it necessary to explicitly ground high-level actions into the rep-
resentation of the environment? Or is it sufficient to simply inform the learner about the
abstract structure of policies, without ever specifying how high-level behaviors should make
use of primitive percepts or actions? To answer these questions, we explore a multitask
reinforcement learning setting where the learner is presented with policy sketches. Policy
sketches are short, ungrounded, symbolic representations of a task that describe its compo-
nent parts, as illustrated in Figure 3.1. While symbols might be shared across tasks (get
wood appears in sketches for both the make planks and make sticks tasks), the learner is
told nothing about what these symbols mean, in terms of either observations or intermediate
rewards.

We present an agent architecture that learns from policy sketches by associating each
high-level action with a parameterization of a low-level subpolicy, and jointly optimizes
over concatenated task-specific policies by tying parameters across shared subpolicies. We
find that this architecture can use the high-level guidance provided by sketches, without
any grounding or concrete definition, to dramatically accelerate learning of complex multi-
stage behaviors. Our experiments indicate that many of the benefits to learning that come
from highly detailed low-level supervision (e.g. from subgoal rewards) can also be obtained
from fairly coarse high-level supervision (i.e. from policy sketches). Crucially, sketches are
much easier to produce: they require no modifications to the environment dynamics or
reward function, and can be easily provided by non-experts. This makes it possible to
extend the benefits of hierarchical RL to challenging environments where it may not be
possible to specify by hand the details of relevant subtasks. We show that our approach
substantially outperforms purely unsupervised methods that do not provide the learner with
any task-specific guidance about how hierarchies should be deployed, and further that the
specific use of sketches to parameterize modular subpolicies makes better use of sketches
than conditioning on them directly.

The present work may be viewed as an extension of recent approaches for learning com-
positional deep architectures from structured program descriptors, like those described in the

CHAPTER 3. POLICY SKETCHES: LANGUAGE AND BEHAVIOR 24

previous chapter or by Reed and de Freitas [2015]. Here we focus on learning in interactive
environments. This extension presents a variety of technical challenges, requiring analogues
of these methods that can be trained from sparse, non-differentiable reward signals without
demonstrations of desired system behavior. Our contributions are: first, a general paradigm
for multitask, hierarchical, deep reinforcement learning guided by abstract sketches of task-
specific policies; and second, a concrete recipe for learning from these sketches, built on a
general family of modular deep policy representations and a multitask actor–critic training
objective.

The modular structure of our approach, which associates every high-level action symbol
with a discrete subpolicy, naturally induces a library of interpretable policy fragments that
are easily recombined. This makes it possible to evaluate our approach under a variety of
different data conditions: (1) learning the full collection of tasks jointly via reinforcement,
(2) in a zero-shot setting where a policy sketch is available for a held-out task, and (3) in a
adaptation setting, where sketches are hidden and the agent must learn to adapt a pretrained
policy to reuse high-level actions in a new task. In all cases, our approach substantially
outperforms previous approaches based on explicit decomposition of the Q function along
subtasks [Parr and Russell, 1998, Vogel and Jurafsky, 2010], unsupervised option discovery
[Bacon and Precup, 2017], and several standard policy gradient baselines.

We consider three families of tasks: a 2-D Minecraft-inspired crafting game (Figure 3.3a),
in which the agent must acquire particular resources by finding raw ingredients, combining
them together in the proper order, and in some cases building intermediate tools that enable
the agent to alter the environment itself; a 2-D maze navigation task that requires the
agent to collect keys and open doors, and a 3-D locomotion task (Figure 3.3b) in which a
quadrupedal robot must actuate its joints to traverse a narrow winding cliff. In all tasks, the
agent receives a reward only after the final goal is accomplished. For the most challenging
tasks, involving sequences of four or five high-level actions, a task-specific agent initially
following a random policy essentially never discovers the reward signal, so these tasks cannot
be solved without considering their hierarchical structure.

3.1 Related Work

The agent representation we describe in this chapter belongs to the broader family of hierar-
chical reinforcement learners. As detailed in Section 3.2, our approach may be viewed as an
instantiation of the options framework first described by Sutton et al. [1999]. A large body
of work describes techniques for learning options and related abstract actions, in both single-
and multitask settings. Most techniques for learning options rely on intermediate supervisory
signals, e.g. to encourage exploration [Kearns and Singh, 2002] or completion of pre-defined
subtasks [Kulkarni et al., 2016]. An alternative family of approaches employs post-hoc anal-
ysis of demonstrations or pretrained policies to extract reusable sub-components [Stolle and
Precup, 2002, Konidaris et al., 2011, Niekum et al., 2015]. Techniques for learning op-
tions with less guidance than the present work include those of Bacon and Precup [2017]

CHAPTER 3. POLICY SKETCHES: LANGUAGE AND BEHAVIOR 25

and Vezhnevets et al. [2016], and other general hierarchical policy learners include those of
Daniel et al. [2012], Bakker and Schmidhuber [2004] and Menache et al. [2002]. We will see
that the minimal supervision provided by policy sketches results in (sometimes dramatic)
improvements over fully unsupervised approaches, while being substantially less onerous
for humans to provide compared to the grounded supervision (such as explicit subgoals or
feature abstraction hierarchies) used in previous work.

Once a collection of high-level actions exists, agents are faced with the problem of learn-
ing meta-level (typically semi-Markov) policies that invoke appropriate high-level actions in
sequence [Precup, 2000]. The learning problem in this chapter is in some sense the direct dual
to the problem of learning these meta-level policies: there, the agent begins with an inven-
tory of complex primitives and must learn to model their behavior and select among them;
here we begin knowing the names of appropriate high-level actions but nothing about how
they are implemented, and must infer implementations (but not, initially, abstract plans)
from context. Our model can be combined with these approaches to support a “mixed” su-
pervision condition where sketches are available for some tasks but not others (Section 3.3).

Another closely related line of work is the Hierarchical Abstract Machines (HAM) frame-
work introduced by Parr and Russell [1998]. Like our approach, HAMs begin with a repre-
sentation of a high-level policy as an automaton (or a more general computer program; Andre
and Russell [2001]; Marthi et al. [2004]) and use reinforcement learning to fill in low-level
details. Because these approaches attempt to learn a single representation of the Q function
for all subtasks and contexts, they require strong formal assumptions about the form of the
reward function and state representation [Andre and Russell, 2002] that the present work
avoids by decoupling the policy representation from the value function. They perform less
effectively when applied to arbitrary state representations where these assumptions do not
hold (Section 3.3). We are additionally unaware of past work showing that HAM automata
can be automatically inferred for new tasks given a pre-trained model, while here we show
that it is easy to solve the corresponding problem for sketch followers (Section 3.3).

Our approach is also inspired by a number of recent efforts toward compositional reason-
ing and interaction with structured deep models. Such models have been previously used
for tasks involving question answering [Iyyer et al., 2014] and relational reasoning [Socher
et al., 2012], and more recently for multi-task, multi-robot transfer problems [Devin et al.,
2016]. In the present work—as in the approach described in the preceding chapter—task-
specific training signals are propagated through a collection of composed discrete structures
with tied weights. Here the composed structures specify time-varying policies rather than
feedforward computations, and their parameters must be learned via interaction rather than
direct supervision. Another closely related family of models includes neural programmers
[Neelakantan et al., 2016] and programmer–interpreters [Reed and de Freitas, 2015], which
generate discrete computational structures but require supervision in the form of output
actions or full execution traces.

It is important to note that in this chapter, unlike the other chapters in this disserta-
tion, our annotations are not written in “natural” language: policy sketches are built from
a considerably simpler vocabulary and syntax. We view the problem of learning from policy

CHAPTER 3. POLICY SKETCHES: LANGUAGE AND BEHAVIOR 26

sketches as complementary to the instruction following problem studied in the natural lan-
guage processing literature. Existing work on instruction following focuses on mapping from
natural language strings to symbolic action sequences that are then executed by a hard-coded
interpreter [Branavan et al., 2009, Chen and Mooney, 2011, Artzi and Zettlemoyer, 2013,
Tellex et al., 2011a]. Here, by contrast, we focus on learning to execute complex actions given
symbolic representations as a starting point. Instruction following models may be viewed
as joint policies over instructions and environment observations (so their behavior is not
defined in the absence of instructions), while the model described here naturally supports
adaptation to tasks where no sketches are available. First steps towards combining the two
lines of research—bootstrapping policy learning directly from natural language hints rather
than the semi-structured sketches used here—are discussed in Chapter 4.

3.2 Learning Modular Policies from Sketches

We consider a multitask reinforcement learning problem arising from a family of infinite-
horizon discounted Markov decision processes in a shared environment. This environment
is specified by a tuple (S,A, P, γ), with S a set of states, A a set of low-level actions,
P : S × A × S → R a transition probability distribution, and γ a discount factor. Each
task τ ∈ T is then specified by a pair (Rτ , ρτ), with Rτ : S → R a task-specific reward
function and ρτ : S → R an initial distribution over states. For a fixed sequence {(si, ai)}
of states and actions obtained from a rollout of a given policy, we will denote the empirical
return starting in state si as qi :=

∑∞
j=i+1 γ

j−i−1R(sj). In addition to the components of
a standard multitask RL problem, we assume that tasks are annotated with sketches Kτ ,
each consisting of a sequence (bτ1, bτ2, . . .) of high-level symbolic labels drawn from a fixed
vocabulary B.

Model

We exploit the structural information provided by sketches by constructing for each symbol
b a corresponding subpolicy πb. By sharing each subpolicy across all tasks annotated with
the corresponding symbol, our approach naturally learns the shared abstraction for the
corresponding subtask, without requiring any information about the grounding of that task
to be explicitly specified by annotation.

At each timestep, a subpolicy may select either a low-level action a ∈ A or a special
stop action. We denote the augmented state space A+ := A∪{stop}. At a high level, this
framework is agnostic to the implementation of subpolicies: any function that takes a rep-
resentation of the current state onto a distribution over A+ will do.2 These subpolicies may
be viewed as options of the kind described by Sutton et al. [1999], with the key distinction

2For ease of presentation, this section assumes that these subpolicy functions are independently parame-
terized. As described in Section 3.3, it is also possible to share parameters between subpolicies, and introduce
discrete subtask structure by way of an embedding of each symbol b.

CHAPTER 3. POLICY SKETCHES: LANGUAGE AND BEHAVIOR 27

Algorithm 1 train-step(Π, curriculum)

1: D ← ∅
2: while |D| < D do
3: // sample task τ from curriculum (Section 3.2)
4: τ ∼ curriculum(·)
5: // do rollout
6: d = {(si, ai, (bi = Kτ,i), qi, τ), . . .} ∼ Πτ

7: D ← D ∪ d
8: // update parameters
9: for b ∈ B, τ ∈ T do

10: d = {(si, ai, b′, qi, τ ′) ∈ D : b′ = b, τ ′ = τ}
11: // update subpolicy
12: θb ← θb + α

D

∑
d

(
∇ log πb(ai|si)

)(
qi − cτ (si)

)
13: // update critic
14: ητ ← ητ + β

D

∑
d

(
∇cτ (si)

)(
qi − cτ (si)

)
that they have no initiation semantics, but are instead invocable everywhere, and have no
explicit representation as a function from an initial state to a distribution over final states
(instead implicitly using the stop action to terminate).

Given a fixed sketch (b1, b2, . . .), a task-specific policy Πτ is formed by concatenating its
associated subpolicies in sequence. In particular, the high-level policy maintains a subpolicy
index i (initially 0), and executes actions from πbi until the stop symbol is emitted, at which
point control is passed to πbi+1

. We may thus think of Πτ as inducing a Markov chain over
the state space S × B, with transitions:

(s, bi)→ (s′, bi) with prob.
∑

a∈Aπbi(a|s) · P (s′|s, a)

→ (s, bi+1) with prob. πbi(stop|s)
Πτ is semi-Markov with respect to projection of the augmented state space S×B onto the un-
derlying state space S. We denote the complete family of task-specific policies Π :=

⋃
τ{Πτ},

and let each πb be an arbitrary function of the current environment state parameterized by
some weight vector θb. The learning problem is to optimize over all θb to maximize expected
discounted reward

J(Π) :=
∑
τ

J(Πτ) :=
∑
τ

Esi∼Πτ

[∑
i

γiRτ (si)
]

across all tasks τ ∈ T .

Policy Optimization

Here that optimization is accomplished via a simple decoupled actor–critic method. In a
standard policy gradient approach, with a single policy π with parameters θ, we compute

CHAPTER 3. POLICY SKETCHES: LANGUAGE AND BEHAVIOR 28

Algorithm 2 train-loop()

1: // initialize subpolicies randomly
2: Π = init()
3: `max ← 1
4: loop
5: rmin ← −∞
6: // initialize `max-step curriculum uniformly
7: T ′ = {τ ∈ T : |Kτ | ≤ `max}
8: curriculum(·) = Unif(T ′)
9: while rmin < rgood do

10: // update parameters (Algorithm 1)
11: train-step(Π, curriculum)
12: curriculum(τ) ∝ 1[τ ∈ T ′](1− Êrτ) ∀τ ∈ T
13: rmin ← minτ∈T ′ Êrτ
14: `max ← `max + 1

gradient steps of the form [Williams, 1992]:

∇θJ(π) =
∑
i

(
∇θ log π(ai|si)

)(
qi − c(si)

)
, (3.1)

s4 s5 s6 s7

a4 a5 a6 stopa1 a2 a3 stop

s1 s2 s3 s4

π1 π2

b2b1

Figure 3.2: Model overview. Each subpolicy π is uniquely associated with a symbol b
implemented as a neural network that maps from a state si to distributions over A+, and
chooses an action ai by sampling from this distribution. Whenever the stop action is
sampled, control advances to the next subpolicy in the sketch.

CHAPTER 3. POLICY SKETCHES: LANGUAGE AND BEHAVIOR 29

where the baseline or “critic” c can be chosen independently of the future without introducing
bias into the gradient. Recalling our previous definition of qi as the empirical return starting
from si, this form of the gradient corresponds to a generalized advantage estimator [Schulman
et al., 2016] with λ = 1. Here c achieves close to the optimal variance [Greensmith et al.,
2004] when it is set exactly equal to the state-value function Vπ(si) = Eπqi for the target
policy π starting in state si.

The situation becomes slightly more complicated when generalizing to modular policies
built by sequencing subpolicies. In this case, we will have one subpolicy per symbol but one
critic per task. This is because subpolicies πb might participate in a number of composed
policies Πτ , each associated with its own reward function Rτ . Thus individual subpolicies are
not uniquely identified with value functions, and the aforementioned subpolicy-specific state-
value estimator is no longer well-defined. We extend the actor–critic method to incorporate
the decoupling of policies from value functions by allowing the critic to vary per-sample
(that is, per-task-and-timestep) depending on the reward function with which the sample is
associated. Noting that

∇θbJ(Π) =
∑
t:b∈Kτ

∇θbJ(Πτ),

i.e. the sum of gradients of expected rewards across all tasks in which πb participates, we
have:

∇θJ(Π) =
∑
τ

∇θJ(Πτ) =
∑
τ

∑
i

(
∇θb log πb(aτi|sτi)

)(
qi − cτ (sτi)

)
, (3.2)

where each state-action pair (sτi, aτi) was selected by the subpolicy πb in the context of the
task τ .

Now minimization of the gradient variance requires that each cτ actually depend on
the task identity. (This follows immediately by applying the corresponding argument in
Greensmith et al. [2004] individually to each term in the sum over τ in Equation 3.2.)
Because the value function is itself unknown, an approximation must be estimated from
data. Here we allow these cτ to be implemented with an arbitrary function approximator
with parameters ητ . This is trained to minimize a squared error criterion, with gradients
given by

∇ητ

[
− 1

2

∑
i

(qi − cτ (si))2

]
=
∑
i

(
∇ητ cτ (si)

)(
qi − cτ (si)

)
. (3.3)

Alternative forms of the advantage estimator (e.g. the TD residual Rτ (si)+γVτ (si+1)−Vτ (si)
or any other member of the generalized advantage estimator family) can be easily substi-
tuted by simply maintaining one such estimator per task. Experiments (Section 3.3) show
that conditioning on both the state and the task identity results in noticeable performance
improvements, suggesting that the variance reduction provided by this objective is important
for efficient joint learning of modular policies.

CHAPTER 3. POLICY SKETCHES: LANGUAGE AND BEHAVIOR 30

The complete procedure for computing a single gradient step is given in Algorithm 1.
(The outer training loop over these steps, which is driven by a curriculum learning proce-
dure, is specified in Algorithm 2.) This is an on-policy algorithm. In each step, the agent
samples tasks from a task distribution provided by a curriculum (described in the following
subsection). The current family of policies Π is used to perform rollouts in each sampled
task, accumulating the resulting tuples of (states, low-level actions, high-level symbols, re-
wards, and task identities) into a dataset D. Once D reaches a maximum size D, it is used
to compute gradients w.r.t. both policy and critic parameters, and the parameter vectors
are updated accordingly. The step sizes α and β in Algorithm 1 can be chosen adaptively
using any first-order method.

Curriculum Learning

For complex tasks, like the one depicted in Figure 3.3b, it is difficult for the agent to discover
any states with positive reward until many subpolicy behaviors have already been learned.
It is thus a better use of the learner’s time to focus on “easy” tasks, where many rollouts will
result in high reward from which appropriate subpolicy behavior can be inferred. But there
is a fundamental tradeoff involved here: if the learner spends too much time on easy tasks
before being made aware of the existence of harder ones, it may overfit and learn subpolicies
that no longer generalize or exhibit the desired structural properties.

To avoid both of these problems, we use a curriculum learning scheme [Bengio et al.,
2009, Kumar et al., 2010] that allows the model to smoothly scale up from easy tasks to more
difficult ones while avoiding overfitting. Initially the model is presented with tasks associated
with short sketches. Once average reward on all these tasks reaches a certain threshold, the
length limit is incremented. We assume that rewards across tasks are normalized with
maximum achievable reward 0 < qi < 1. Let Êrτ denote the empirical estimate of the
expected reward for the current policy on task τ . Then at each timestep, tasks are sampled
in proportion to 1− Êrτ , which by assumption is positive.

Intuitively, the tasks that provide the strongest learning signal are those in which (1)
the agent does not on average achieve reward close to the upper bound, but (2) many
episodes result in high reward. The expected reward component of the curriculum addresses
condition (1) by ensuring that time is not spent on nearly solved tasks, while the length
bound component of the curriculum addresses condition (2) by ensuring that tasks are not
attempted until high-reward episodes are likely to be encountered. Experiments show that
both components of this curriculum learning scheme improve the rate at which the model
converges to a good policy (Section 3.3).

The complete curriculum-based training procedure is specified in Algorithm 2. Initially,
the maximum sketch length `max is set to 1, and the curriculum initialized to sample length-1
tasks uniformly. (Neither of the environments we consider in this chapter feature any length-
1 tasks; in this case, observe that Algorithm 2 will simply advance to length-2 tasks without
any parameter updates.) For each setting of `max, the algorithm uses the current collection
of task policies Π to compute and apply the gradient step described in Algorithm 1. The

CHAPTER 3. POLICY SKETCHES: LANGUAGE AND BEHAVIOR 31

rollouts obtained from the call to train-step can also be used to compute reward estimates
Êrτ ; these estimates determine a new task distribution for the curriculum. The inner loop
is repeated until the reward threshold rgood is exceeded, at which point `max is incremented
and the process repeated over a (now-expanded) collection of tasks.

3.3 Experiments

We evaluate the performance of our approach in three environments: a crafting environment,
a maze navigation environment, and a cliff traversal environment. These environments
involve various kinds of challenging low-level control: agents must learn to avoid obstacles,
interact with various kinds of objects, and relate fine-grained joint activation to high-level
locomotion goals. They also feature hierarchical structure: most rewards are provided only
after the agent has completed two to five high-level actions in the appropriate sequence,
without any intermediate goals to indicate progress towards completion.

Implementation

In all experiments in this chapter, we implement each subpolicy as a feedforward neural
network with ReLU nonlinearities and a hidden layer with 128 hidden units, and each critic
as a linear function of the current state. Each subpolicy network receives as input a set
of features describing the current state of the environment, and outputs a distribution over
actions. The agent acts at every timestep by sampling from this distribution. The gradient
steps given in lines 8 and 9 of Algorithm 1 are implemented using RMSProp [Tieleman,
2012] with a step size of 0.001 and gradient clipping to a unit norm. We take the batch
size D in Algorithm 1 to be 2000, and set γ = 0.9 in both environments. For curriculum
learning, the improvement threshold rgood is 0.8.

Environments

The crafting environment (Figure 3.3a) is inspired by the popular game Minecraft, but
is implemented in a discrete 2-D world. The agent may interact with objects in the world
by facing them and executing a special use action. Interacting with raw materials initially
scattered around the environment causes them to be added to an inventory. Interacting
with different crafting stations causes objects in the agent’s inventory to be combined or
transformed. Each task in this game corresponds to some crafted object the agent must
produce; the most complicated goals require the agent to also craft intermediate ingredients,
and in some cases build tools (like a pickaxe and a bridge) to reach ingredients located in
initially inaccessible regions of the environment.

The maze environment (not pictured) corresponds closely to the the “light world”
described by Konidaris and Barto [2007]. The agent is placed in a discrete world consisting
of a series of rooms, some of which are connected by doors. Some doors require that the

CHAPTER 3. POLICY SKETCHES: LANGUAGE AND BEHAVIOR 32

1

2

3
4

b1: get wood

τ: get gold

b2: get iron

b3: use workbench

b4: get gold

K b1: north

τ: go to goal

b2: east

b3: east
1 2

3

K

1

2 3

(a) (b)

Figure 3.3: Examples from the crafting and cliff environments. An additional maze envi-
ronment is also investigated. (a) In the crafting environment, an agent seeking to pick up
the gold nugget in the top corner must first collect wood (1) and iron (2), use a workbench
to turn them into a bridge (3), and use the bridge to cross the water (4). (b) In the cliff
environment, the agent must reach a goal position by traversing a winding sequence of tiles
without falling off. Control takes place at the level of individual joint angles; high-level
behaviors like “move north” must be learned.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Episode ×106

0.0

0.2

0.4

0.6

0.8

1.0

av
g.

re
w

ar
d

Q automaton

Joint

Indep

Modular
(ours)

Opt–Crit

Crafting environment

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Episode ×106

0.0

0.2

0.4

0.6

0.8

1.0

av
g.

re
w

ar
d

Q automaton

Modular
(ours)

Joint
Indep.

Opt–Crit

Maze environment

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Timestep ×108

−3.0
−2.5
−2.0
−1.5
−1.0
−0.5

0.0
0.5
1.0
1.5

lo
g(

av
g.

re
w

ar
d)

Modular

Joint
Opt–Crit

Cliff environment

(a) (b) (c)

Figure 3.4: Comparing modular learning from sketches with standard RL baselines. Modu-
lar is the approach described in this chapter, while Independent learns a separate policy for
each task, Joint learns a shared policy that conditions on the task identity, Q automaton
learns a single network to map from states and action symbols to Q values, and Opt–Crit
is an unsupervised option learner. Performance for the best iteration of the (off-policy) Q
automaton is plotted. Performance is shown in (a) the crafting environment, (b) the maze
environment, and (c) the cliff environment. The modular approach is eventually able to
achieve high reward on all tasks, while the baseline models perform considerably worse on
average.

CHAPTER 3. POLICY SKETCHES: LANGUAGE AND BEHAVIOR 33

agent first pick up a key to open them. For our experiments, each task corresponds to a goal
room (always at the same position relative to the agent’s starting position) that the agent
must reach by navigating through a sequence of intermediate rooms. The agent has one
sensor on each side of its body, which reports the distance to keys, closed doors, and open
doors in the corresponding direction. Sketches specify a particular sequence of directions for
the agent to traverse between rooms to reach the goal. The sketch always corresponds to a
viable traversal from the start to the goal position, but other (possibly shorter) traversals
may also exist.

The cliff environment (Figure 3.3b) is intended to demonstrate the applicability of our
approach to problems involving high-dimensional continuous control. In this environment, a
quadrupedal robot [Schulman et al., 2015] is placed on a variable-length winding path, and
must navigate to the end without falling off. This task is designed to provide a substantially
more challenging RL problem, due to the fact that the walker must learn the low-level
walking skill before it can make any progress, but has simpler hierarchical structure than
the crafting environment. The agent receives a small reward for making progress toward the
goal, and a large positive reward for reaching the goal square, with a negative reward for
falling off the path.

A listing of tasks and sketches is given in Appendix A.

Multitask Learning

In this chapter, our primary experimental question is whether the extra structure provided
by policy sketches alone is enough to enable fast learning of coupled policies across tasks.
We aim to explore the differences between the approach described in Section 3.2 and rele-
vant prior work that performs either unsupervised or weakly supervised multitask learning
of hierarchical policy structure. Specifically, we compare our modular to approach to:

1. Structured hierarchical reinforcement learners:

(a) the fully unsupervised option–critic algorithm of Bacon and Precup [2017]

(b) a Q automaton that attempts to explicitly represent the Q function for each
task / subtask combination (essentially a HAM [Andre and Russell, 2002] with a
deep state abstraction function)

2. Alternative ways of incorporating sketch data into standard policy gradient methods:

(c) learning an independent policy for each task

(d) learning a joint policy across all tasks, conditioning directly on both environment
features and a representation of the complete sketch

The joint and independent models performed best when trained with the same curriculum
described in Section 3.2, while the option–critic model performed best with a length–weighted
curriculum that has access to all tasks from the beginning of training.

CHAPTER 3. POLICY SKETCHES: LANGUAGE AND BEHAVIOR 34

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Episode ×106

0.0

0.2

0.4

0.6

0.8

1.0

av
g.

re
w

ar
d

{task, state}

{task}
{state}

{}

Critics

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Episode ×106

0.0

0.2

0.4

0.6

0.8

1.0

av
g.

re
w

ar
d

{len, wgt}
{len}
{wgt}

{}

Curricula

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Episode ×106

0.0

0.2

0.4

0.6

0.8

1.0

av
g.

re
w

ar
d

Performance by task

(a) (b) (c)

Figure 3.5: Training details in the crafting domain. (a) Critics: lines labeled “task” include
a baseline that varies with task identity, while lines labeled “state” include a baseline that
varies with state identity. Estimating a baseline that depends on both the representation of
the current state and the identity of the current task is better than either alone or a constant
baseline. (b) Curricula: lines labeled “len” use a curriculum with iteratively increasing
sketch lengths, while lines labeled “wgt” sample tasks in inverse proportion to their current
reward. Adjusting the sampling distribution based on both task length and performance
return improves convergence. (c) Individual task performance. Colors correspond to task
length. Sharp steps in the learning curve correspond to increases of `max in the curriculum.

Learning curves for baselines and the modular model are shown in Figure 3.4. It can
be seen that in all environments, our approach substantially outperforms the baselines: it
induces policies with substantially higher average reward and converges more quickly than
the policy gradient baselines. It can further be seen in Figure 3.4c that after policies have
been learned on simple tasks, the model is able to rapidly adapt to more complex ones,
even when the longer tasks involve high-level actions not required for any of the short tasks
(Appendix A).

Having demonstrated the overall effectiveness of our approach, our remaining experiments
explore (1) the importance of various components of the training procedure, and (2) the
learned models’ ability to generalize or adapt to held-out tasks. For compactness, we restrict
our consideration on the crafting domain, which features a larger and more diverse range of
tasks and high-level actions.

Ablations

In addition to the overall modular parameter-tying structure induced by our sketches, the
key components of our training procedure are the decoupled critic and the curriculum. Our
next experiments investigate the extent to which these are necessary for good performance.

To evaluate the the critic, we consider three ablations: (1) removing the dependence
of the model on the environment state, in which case the baseline is a single scalar per
task; (2) removing the dependence of the model on the task, in which case the baseline is

CHAPTER 3. POLICY SKETCHES: LANGUAGE AND BEHAVIOR 35

a conventional generalized advantage estimator; and (3) removing both, in which case the
baseline is a single scalar, as in a vanilla policy gradient approach. Results are shown in
Figure 3.5a. Introducing both state and task dependence into the baseline leads to faster
convergence of the model: the approach with a constant baseline achieves less than half the
overall performance of the full critic after 3 million episodes. Introducing task and state
dependence independently improve this performance; combining them gives the best result.

We also investigate two aspects of our curriculum learning scheme: starting with short
examples and moving to long ones, and sampling tasks in inverse proportion to their accumu-
lated reward. Experiments are shown in Figure 3.5b. Both components help; prioritization
by both length and weight gives the best results.

Zero-shot and Adaptation Learning

In our final experiments, we consider the model’s ability to generalize beyond the standard
training condition. We first consider two tests of generalization: a zero-shot setting, in
which the model is provided a sketch for the new task and must immediately achieve good
performance, and a adaptation setting, in which no sketch is provided and the model must
learn the form of a suitable sketch via interaction in the new task.

We hold out two length-four tasks from the full inventory used in Section 3.3, and train
on the remaining tasks. For zero-shot experiments, we simply form the concatenated policy
described by the sketches of the held-out tasks, and repeatedly execute this policy (without
learning) in order to obtain an estimate of its effectiveness. For adaptation experiments, we
consider ordinary RL over high-level actions B rather than low-level actions A, implementing
the high-level learner with the same agent architecture as described in Section 3.2. Note that
the Independent and Option–Critic models cannot be applied to the zero-shot evaluation,
while the Joint model cannot be applied to the adaptation baseline (because it depends
on pre-specified sketch features). Results are shown in Table 3.1. The held-out tasks are
sufficiently challenging that the baselines are unable to obtain more than negligible reward:
in particular, the joint model overfits to the training tasks and cannot generalize to new
sketches, while the independent model cannot discover enough of a reward signal to learn in
the adaptation setting. The modular model does comparatively well: individual subpolicies
succeed in novel zero-shot configurations (suggesting that they have in fact discovered the
behavior suggested by the semantics of the sketch) and provide a suitable basis for adaptive
discovery of new high-level policies.

3.4 Discussion

We have described an approach for multitask learning of deep multitask policies guided
by symbolic policy sketches. By associating each symbol appearing in a sketch with a
modular neural subpolicy, we have shown that it is possible to build agents that share
behavior across tasks in order to achieve success in tasks with sparse and delayed rewards.

CHAPTER 3. POLICY SKETCHES: LANGUAGE AND BEHAVIOR 36

Model Multitask 0-shot Adaptation

Joint .49 .01 –
Independent .44 – .01
Option–Critic .47 – .42
Modular (ours) .89 .77 .76

Table 3.1: Accuracy and generalization of learned models in the crafting domain. The table
shows the task completion rate for each approach after convergence under various training
conditions. Multitask is the multitask training condition described in Section 3.3, while
0-Shot and Adaptation are the generalization experiments described in Section 3.3. Our
modular approach consistently achieves the best performance.

This process induces an inventory of reusable and interpretable subpolicies which can be
employed for zero-shot generalization when further sketches are available, and hierarchical
reinforcement learning when they are not. Our work suggests that these sketches, which are
easy to produce and require no grounding in the environment, provide an effective scaffold
for learning hierarchical policies from minimal supervision.

37

Chapter 4

Latent Descriptions: Language and
Learning

The final set of experiments in Chapter 3 showed that, for a particular class of structured
policies, language-like annotations could be used in pretraining to support generalization to
new reward functions even in the absence of further instructions. This chapter investigates a
more general approach for using language to help learning even for tasks that do not directly
involve language data.1

Here we specifically propose to use language as a latent parameter space for few-shot
learning problems of all kinds, including classification, transduction and policy search. We
aim to show that this linguistic parameterization produces models that are both more accu-
rate and more interpretable than direct approaches to few-shot learning.

Like many recent frameworks for multitask- and meta-learning, our approach consists of
three phases: a pretraining phase, a concept-learning phase, and an evaluation phase. Here,
the product of pretraining is a language interpretation model that maps from descriptions
to predictors (e.g. image classifiers or reinforcement learners). Our thesis is that language
learning is a powerful, general-purpose kind of pretraining, even for tasks that do not directly
involve language.

New concepts are learned by searching directly in the space of natural language strings to
minimize the loss incurred by the language interpretation model (Figure 4.1). Especially on
tasks that require the learner to model high-level compositional structure shared by training
examples, natural language hypotheses serve a threefold purpose: they make it easier to
discover these compositional concepts, harder to overfit to few examples, and easier for
humans to understand inferred patterns.

Our approach can be implemented using a standard kit of model components, and is

1Material in this chapter is adapted from:

• Jacob Andreas and Dan Klein. Learning with latent language. In Proceedings of the Annual Meeting
of the North American Association for Computational Linguistics, 2018.

CHAPTER 4. LATENT DESCRIPTIONS: LANGUAGE AND LEARNING 38

0.0

0.9

0.8

truetruetrue

true

concept 
learning:

evaluation:

there is a
green square

a gray square is
above a square

a red cross is
below a square

0.2

a red cross is
below a square

Figure 4.1: Example of our approach on a binary image classification task. We assume
access to a pretrained language interpretation model that outputs the probability that an
image matches a given description. To learn a new visual concept, we search in the space of
natural language descriptions to maximize the interpretation model’s score (top). The chosen
description can be used with the interpretation model to classify new images (bottom).

simple and general. In a variety of settings, we find that the structure imposed by a natural-
language parameterization is helpful for efficient learning and exploration. The approach
outperforms both multitask- and meta-learning approaches that map directly from training
examples to outputs by way of a real-valued parameterization, as well as approaches that
make use of natural language annotations as an additional supervisory signal rather than
an explicit latent parameter. The natural language concept descriptions inferred by our
approach often agree with human annotations when they are correct, and provide an inter-
pretable debugging signal when incorrect. In short, by equipping models with the ability to
“think out loud” when learning, they become both more comprehensible and more accurate.

4.1 Background

Suppose we wish to solve an image classification problem like the one shown in Figure 4.2b–c,
mapping from images x to binary labels y. One straightforward way to do this is to solve a
learning problem of the following form:

arg min
η ∈H

∑
(x, y)

L(f(x; η), y) , (4.1)

where L is a loss function and f is a richly-parameterized class of models (e.g. convolutional
networks) indexed by η (e.g. weight matrices) that map from images to labels. Given a new
image x′, f(x′; η) can be used to predict its label.

CHAPTER 4. LATENT DESCRIPTIONS: LANGUAGE AND LEARNING 39

?.???

(a) language learning

a white cross is left
of a yellow shape

truetruetrue false

x(�i)

y(�i)

x(c)

y(c)

x(e)

y(e)

w(�i)

truetruetrue

(b) concept learning (c) evaluation

???

Figure 4.2: Formulation of the learning problem. Ultimately, we care about our model’s
ability to learn a concept from a small number of training examples (b) and successfully
generalize it to held-out data (c). In this chapter, concept learning is supported by a lan-
guage learning phase (a) that makes use of natural language annotations on other learning
problems. These annotations are not provided for the real target task in (b–c).

In the present work, we are particularly interested in few-shot learning problems where
the number of (x, y) pairs is small—on the order of five or ten examples. Under these
conditions, directly solving Equation 4.1 is a risky proposition—any model class powerful
enough to capture the true relation between inputs and outputs is also likely to overfit. For
few-shot learning to be successful, extra structure must be supplied to the learner. Existing
approaches obtain this structure by either carefully structuring the hypothesis space or
providing the learner with alternative training data. The approach we present in this chapter
combines elements of both, so we begin with a review of existing work.

(Inductive) program synthesis approaches (e.g. Gulwani, 2011) reduce the effective size
of the hypothesis class H by moving the optimization problem out of the continuous space of
weight vectors and into a discrete space of formal program descriptors (e.g. regular expres-
sions or Prolog queries). Domain-specific structure like version space algebras [Lau et al.,
2003] or type systems [Kitzelmann and Schmid, 2006] can be brought to bear on the search
problem, and the bias inherent in the syntax of the formal language provides a strong prior.
But while program synthesis techniques are powerful, they are also limited in their appli-
cation: a human designer must hand-engineer the computational primitives necessary to
compactly describe every learnable hypothesis. While reasonable for some applications (like
string editing), this is challenging or impossible for others (like computer vision).

An alternative class of multitask learning approaches [Caruana, 1998] import the relevant
structure from other learning problems rather than defining it manually (Figure 4.2a, top).
Since we may not know a priori what set of learning problems we ultimately wish to evaluate
on, it is useful to think of learning as taking places in three phases:

1. a pretraining (sometimes “meta-training”) phase that makes use of various different

datasets i with examples {(x(`i)
1 , y

(`i)
1), . . . , (x

(`i)
n , y

(`i)
n)} (Figure 4.2a)

CHAPTER 4. LATENT DESCRIPTIONS: LANGUAGE AND LEARNING 40

2. a concept-learning phase in which the pretrained model is adapted to fit data
{(x(c)

1 , y
(c)
1), . . . , (x

(c)
n , y

(c)
n)} for a specific new task (Figure 4.2b)

3. an evaluation phase in which the learned concept is applied to a new input x(e) to
predict y(e) (Figure 4.2c)

In these approaches, learning operates over two collections of parameters: shared parameters
η and task-specific parameters θ. In pretraining, multitask approaches find:

arg min
η ∈Ra, θ(`i) ∈Rb

∑
i, j

L
(
f(x

(`i)
j ; η, θ(`i)), y

(`i)
j

)
. (4.2)

At concept learning time, they solve for:

arg min
θ(c) ∈Rb

∑
j

L
(
f(x

(c)
j ; η, θ(c)), y

(c)
j

)
(4.3)

on the new dataset, then make predictions for new inputs using f(x(e); η, θ(c)).
Closely related meta-learning approaches (e.g. Schmidhuber, 1987; Santoro et al., 2016;

Vinyals et al., 2016) make use of the same data, but collapse the inner optimization over θ(c)

and prediction of y(e) into a single learned model.

4.2 Learning with Language

In this work, we are interested in developing a learning method that enjoys the benefits
of both approaches. In particular, we seek an intermediate language of task representa-
tions that, like in program synthesis, is both expressive and compact, but like in multitask
approaches is learnable directly from training data without domain engineering. We pro-
pose to use natural language as this intermediate representation. We call our approach
learning with latent language (L3).

Natural language shares many structural advantages with the formal languages used
in synthesis approaches: it is discrete, has a rich set of compositional operators, and comes
equipped with a natural description length prior. But it also has a considerably more flexible
semantics. And crucially, plentiful annotated data exists for learning this semantics: we may
not be able to hand-write a computer program to recognize a small dog, but we can learn
how to do it from image captions. More basically, the set of primitive operators available in
language provides a strong prior about the kinds of abstractions that are useful for natural
learning problems.

Concretely, we replace the pretraining phase above with a language-learning phase. We
assume that at language-learning time we have access to natural-language descriptions w(`i)

(Figure 4.2a, bottom). We use these w as parameters, in place of the task-specific parameters
θ—that is, we learn a language interpretation model f(x; η, w) that uses shared parameters η
to turn a description w into a function from inputs to outputs. For the example in Figure 4.2,

CHAPTER 4. LATENT DESCRIPTIONS: LANGUAGE AND LEARNING 41

f might be an image rating model [Socher et al., 2014] that outputs a scalar judgment y of
how well an image x matches a caption w.

Because these natural language parameters are observed at language-learning time, we
need only learn the real-valued shared parameters η used for their interpretation (e.g. the
weights of a neural network that implements the image rating model):

arg min
η ∈Ra

∑
i, j

L
(
f(x

(`i)
j ; η, w(`i)), y

(`i)
j

)
. (4.4)

At concept-learning time, conversely, we solve only the part of the optimization problem
over natural language strings:

arg min
w(c) ∈Σ∗

∑
j

L
(
f(x

(c)
j ; η, w(c)), y

(c)
j

)
. (4.5)

This last step presents something of a challenge. When solving the corresponding op-
timization problem, synthesis techniques can exploit the algebraic structure of the formal
language, while end-to-end learning approaches take advantage of differentiability. Here we
can’t do either—the language of strings is discrete, and any structure in the interpretation
function is wrapped up inside the black box of f . Inspired by related techniques aimed at
making synthesis more efficient [Devlin et al., 2017], we use learning to help us develop an
effective optimization procedure for natural language parameters.

In particular, we simply use the language-learning datasets, consisting of pairs (x
(`i)
j , y

(`i)
j)

and descriptions wi, to fit a reverse proposal model, estimating:

arg maxλ
∑

i log q(wi|x(`i)
1 , y

(`i)
1 , . . . , x

(`i)
n , y

(`i)
n ;λ)

where q provides a (suitably normalized) approximation to the distribution of descriptions
given task data. In the running example, this proposal distribution is essentially an image
captioning model [Donahue et al., 2015]. By sampling from q, we expect to obtain candidate
descriptions that are likely to obtain small loss. But our ultimate inference criterion is
still the true model f : at evaluation time we perform the minimization in Equation 4.5 by
drawing a fixed number of samples, selecting the hypothesis w(c) that obtains the lowest loss,
and using f(x(e); η, w(c)) to make predictions.

What we have described so far is a generic procedure for equipping collections of related
learning problems with a natural language hypothesis space. In Sections 4.4 and 4.5, we
describe how this procedure can be turned into a concrete algorithm for supervised classifi-
cation and sequence prediction. In Section 4.6, we describe how to extend these techniques
to reinforcement learning.

4.3 Model and Training Details

In all models, RNN encoders and decoders use gated recurrent units [Cho et al., 2014].

CHAPTER 4. LATENT DESCRIPTIONS: LANGUAGE AND LEARNING 42

true

a white shape is
left of a yellow

semicircle

true true

true true

Figure 4.3: The few-shot image classification task. Learners are shown four positive exam-
ples of a visual concept (left) and must determine whether a fifth image matches the pattern
(right). Natural language annotations are provided during language learning but must be
inferred for concept learning.

Few-shot classification Models are trained with the adam optimizer [Kingma and Ba,
2014] with a step size of 0.0001 and batch size of 100. The number of pretraining iterations
is tuned based on subsequent concept-learning performance on the development set. Neural
network hidden states, task parameters, and word vectors are all of size 512. 10 hypotheses
are sampled during for each evaluation task in the concept-learning phase.

Programming by demonstration Training as in the classification task, but with a step
size of 0.001. Hidden states are of size 512, task parameters of size 128 and word vectors of
size 32. 100 hypotheses are sampled for concept learning.

Policy search DAgger [Ross et al., 2011] is used for pre-training and vanilla policy gradient
[Williams, 1992] for concept learning. Both learning algorithms use adam with a step size of
0.001 and a batch size of 5000 samples. For imitation learning, rollouts are obtained from the
expert policy on a schedule with probability 0.95t (for t the current epoch). For reinforcement
learning, a discount of 0.9 is used. Because this dataset contains no development data,
pretraining is run until performance on the pretraining tasks reaches a plateau. Hidden
states and task embeddings are of size 64. 100 hypotheses are sampled for concept learning,
and 1000 episodes (divided evenly among samples) are used to estimate hypothesis quality
before fine-tuning.

4.4 Few-shot Classification

We begin by investigating whether natural language can be used to support high-dimensional
few-shot classification. Our focus is on visual reasoning tasks like the one shown in Figure 4.3.
In these problems, the learner is presented with four images, all positive examples of some

CHAPTER 4. LATENT DESCRIPTIONS: LANGUAGE AND LEARNING 43

visual concept like a blue shape near a yellow triangle, and must decide whether a fifth, held-
out image matches the same concept. These kinds of reasoning problems have been well-
studied in visual question answering settings [Johnson et al., 2017a, Suhr et al., 2017]. Our
version of the problem, where the input and output feature no text data, but an explanation
must be inferred, is similar to the visual reasoning problems proposed by Raven [1936] and
Bongard [1968].

To apply the recipe in Section 4.1, we need to specify an implementation of the interpre-
tation model f and the proposal model q. We begin by computing representations of input
images x. We start with a pre-trained 16-layer VGGNet [Simonyan and Zisserman, 2014].
Because spatial information is important for these tasks, we extract a feature representation
from the final convolutional layer of the network. This initial featurization is passed through
two fully-connected layers to form a final image representation, as follows:

x VGG-16 FC ReLU FC rep()x

We define interpretation and proposal models:2

f(x;w) = σ
(
rnn-encode(w)>rep(x)

)
q(w | {xj}) = rnn-decode

(
w | 1

n

∑
j
rep(xj)

)
The interpretation model f outputs the probability that x is assigned a positive class label,
and is trained to maximize log-likelihood. Because only positive examples are provided in
each language learning set, the proposal model q can be defined in terms of inputs alone.

Our evaluation aims to answer two questions. First, does the addition of language to the
learning process provide any benefit over ordinary multitask or meta-learning? Second, is
it specifically better to use language as a hypothesis space for concept learning rather than
just an additional signal for pretraining? We use several baselines to answer these questions:

1. Multitask : a multitask baseline in which the definition of f above is replaced by
σ(θ>i rep(x)) for task-specific parameters θi that are optimized during both pretraining
and concept-learning.

2. Meta: a meta-learning baseline in which f is defined by σ([1
n

∑
j rep(xj)]

>rep(x)).3

2Suppressing shared parameters η and λ for clarity.
3Many state-of-the-art approaches to meta-learning for classification (e.g. Snell et al., 2017) are not

well-defined for possibly-overlapping evaluation classes with only positive examples provided. Here we have
attempted to provide a robust implementation that is as close as possible to the other systems under evalu-
ation.

CHAPTER 4. LATENT DESCRIPTIONS: LANGUAGE AND LEARNING 44

3. Meta+Joint : as in Meta, but the pretraining objective includes an additional term for
predicting q (discarded for concept learning).

We report results on a dataset derived from the ShapeWorld corpus of Kuhnle and Copes-
take [2017]. In this dataset the held-out image matches the target concept 50% of the time.
In the validation and test folds, half of learning problems feature a concept that also ap-
pears in the language learning set (but with different exemplar images), while the other
half feature both new images and a new concept. Images contain two or three distractor
shapes unrelated to the objects that define the target concept. Captions in this dataset
were generated from DMRS representations using an HPS grammar [Copestake et al., 2016].
(This is the only fully-synthetic dataset used in our experiments.) Each scene features 4 or 5
non-overlapping entities. Descriptions refer to spatial relationships between pairs of entities
identified by shape, color, or both. There are 8 colors and 8 shapes. The total vocabulary
size is only 30 words, but the dataset contains 2643 distinct captions. Descriptions are on
average 12.0 words long. The dataset contains a total of 9000 pretraining tasks and 1000 of
each validation and test tasks.

Results are shown in Table 4.1. It can be seen that L3 provides consistent improvements
over the baselines, and that these improvements are present both when identifying new
instances of previously-learned concepts and when discovering new ones. Some example
model predictions are shown in Figure 4.4. The model often succeeds in making correct
predictions, even though its inferred descriptions rarely match the ground truth. Sometimes
this is because of inherent ambiguity in the description language (Figure 4.4a), and sometimes
because the model is able to rule out candidates on the basis of partial captions alone
(Figure 4.4b, where it is sufficient to recognize that the target concept involves a circle).
More examples are provided in Appendix B.

Model Val (old) Val (new) Val Test

Random 50 50 50 50
Multitask 64 49 57 59
Meta 63 62 62 64
Meta+Joint 63 69 66 64
L3 (ours) 70 72 71 70

L3 (oracle) 77 80 79 78

Table 4.1: Evaluation on image classification. Val (old) and Val (new) denote subsets of
the validation set that contain respectively previously-used and novel visual concepts. L3

consistently outperforms alternative learning methods based on multitask learning, meta-
learning, and meta-learning jointly trained to predict descriptions (Meta+Joint). The last
row shows results when the model is given a ground-truth concept description rather than
having to infer it from examples.

CHAPTER 4. LATENT DESCRIPTIONS: LANGUAGE AND LEARNING 45

4.5 Programming by Demonstration

Next we explore whether the same technique can be applied to tasks that involve more than
binary similarity judgments. We focus on structured prediction: specifically a family of
string processing tasks. In these tasks, the model is presented with examples of five strings
transformed according to some rule; it must then apply an appropriate transformation to a
sixth (Figure 4.5). Learning proceeds as in the previous section, with:

rep(x, y) = rnn-encode([x, y])

f(y | x;w) = rnn-decode
(
y | [rnn-encode(x), rnn-encode(w)]

)
q(w | {(xj, yj)}) = rnn-decode

(
w | 1

n

∑
j
rep(xj, yj)

)
Baselines are analogous to those for classification.

While string editing tasks of the kind shown in Figure 4.5 are popular in both the pro-
gramming by demonstration literature [Singh and Gulwani, 2012] and the semantic parsing
literature [Kushman and Barzilay, 2013], we are unaware of any datasets that support both
learning paradigms at the same time. We have thus created a new dataset of string editing
tasks by (1) sampling random regular transducers, (2) applying these transducers to collec-
tions of dictionary words, and (3) showing the collected examples to Mechanical Turk users

a blue cross is above
a pentagon

a cyan pentagon is to
the right of a
magenta shape

false

true

(a)

(b)

(c)

examples true description true label

pred. description pred. label

a square is above a
red cross

a red cross is below
a square

true

true

a circle is above a
yellow circle

a cyan circle is to
the left of a

rectangle

false

false

Figure 4.4: Example predictions for image classification. The model achieves high accuracy
even though predicted descriptions rarely match the ground truth. High-level structure like
the presence of certain shapes or spatial relations is consistently recovered.

CHAPTER 4. LATENT DESCRIPTIONS: LANGUAGE AND LEARNING 46

and asking them to provide a natural language explanation with their best guess about the
underlying rule. The dataset thus features both multi-example learning problems, as well as
structured and unstructured annotations for each target concept.

Each user was presented with the same task as the learner in this paper: they observed
five strings being transformed, and had to predict how to transform a sixth. Only after
they correctly generated the held-out word were they asked for a description of the rule.
Workers were additionally presented with hints like “look at the beginning of the word” or
“look at the vowels”. Descriptions are automatically preprocessed to strip punctuation and
ensure that every character literal appears as a single token. The regular expression data
has a vocabulary of 1015 rules and a total of 1986 distinct descriptions. Descriptions are on
average 12.3 words in length but as long as 46 words in some cases. There are 3000 tasks
for language learning and 500 tasks for each of validation and testing.

Due to its comparatively small size, a data augmentation scheme [Jia and Liang, 2016]
is employed. In particular, wherever a description contains a recognizable entity name (i.e.
a character literal), a description template is extracted. These templates are then randomly
swapped in at training time on other examples with the same high-level semantics. For
example, the description replace first b with e is abstracted to replace first CHAR1 with
CHAR2, and can subsequently be specialized to, e.g., replace first c with d. This templating is
easy to implement because we have access to ground-truth structured concept representations
at training time. If these were not available it would be straightforward to employ an
automatic template induction system [Kwiatkowski et al., 2011] instead.

Results are shown in Table 4.2. In these experiments, all models that use descriptions
have been trained on the natural language supplied by human annotators. While we did
find that the Meta+Joint model converges considerably faster than all the others, its final
performance is somewhat lower than the baseline Meta model. As before, L3 outperforms
alternative approaches for learning directly from examples with or without descriptions.

Because all of the transduction rules in this dataset were generated from known formal
descriptors, these tasks provide an opportunity to perform additional analysis comparing
natural language to more structured forms of annotation (since we have access to ground-
truth regular expressions) and more conventional synthesis-based methods (since we have

warding
curved
uranium
pedaled
drum

warying
curved
uranium
peyaled
drum

replace d before a
vowel with y

s/d([aeiou])/y\1/g

chided

chiyed

Figure 4.5: Example string editing task. Learners are presented with five examples of strings
transformed according to some rule (left), and must apply an appropriate transformation to
a sixth string (right). Language-learning annotations (center) may take the form of either
natural language or regular expressions.

CHAPTER 4. LATENT DESCRIPTIONS: LANGUAGE AND LEARNING 47

Model Val Test

Identity 18 18
Multitask 54 50
Meta 66 62
Meta+Joint 63 59
L3 80 76

Table 4.2: Results for string editing. The reported number is the percentage of cases in which
the predicted string exactly matches the reference. L3 is the best performing model; using
language data for joint training rather than as a hypothesis space provides little benefit.

access to a ground-truth regular expression execution engine). We additionally investigate
the effect of the number of samples drawn from the proposal model. These results are shown
in Table 4.3.

A few facts stand out. Under the ordinary evaluation condition (with no ground-truth
annotations provided), language-learning with natural language data is actually better than
language-learning with regular expressions. This might be because the extra diversity helps
the model determine the relevant axes of variation and avoid overfitting to individual strings.
Allowing the model to do its own inference is also better than providing ground-truth natural
language descriptions, suggesting that it is actually better at generalizing from the relevant
concepts than our human annotators (who occasionally write things like I have no idea for
the inferred rule). Unsurprisingly, with ground truth REs (which unlike the human data are
always correct) we can do better than any of the models that require inference. Coupling our
inference procedure with an oracle RE evaluator, we essentially recover the synthesis-based
approach of Devlin et al. [2017]. Our findings are consistent with theirs: when an exact
execution engine is available, there is no reason not to use it. But we can get almost 90% of
the way there with an execution model learned from scratch. Examples of model behavior

Annotations
Samples Oracle
1 100 Ann. Eval.

None (Meta) 66 – – –
Natural language 66 80 75 –
Regular expressions 60 76 88 90

Table 4.3: Inference and representation experiments for string editing. Italicized numbers
correspond to entries in Table 4.2. Allowing the model to use multiple samples rather than
the 1-best decoder output substantially improves performance. The full model does better
with inferred natural language descriptions than either regular expressions or ground-truth
natural language.

CHAPTER 4. LATENT DESCRIPTIONS: LANGUAGE AND LEARNING 48

change any n  
to a c

replace all n s
with c

loocies

loocies

replace consonant -
vowel pairings with n

replace pairs of
letters consisting of a
consonant followed by a

vowel with an n

ntnynd

ntnnd

(a)

(b)

(c)

examples true description true output

pred. description pred. output

emboldens
kisses
loneliness
vein
dogtrot

emboldecs
kisses
locelicess
veic
dogtrot

loonies

mapper
concluding
excuse
effete
contracting

npnr
nncnnng
exnn
efnn
nntncnng

betrayed

plummest
bereaving
eddied
struggles
evils

plummesti
bereavinti
eddieti
struggleti
evilti

change the last
letter of the word

into t i

replace the last letter
of the word with t i

mistrialti

mistrialti

mistrials

Figure 4.6: Example predictions for string editing.

are shown in Figure 4.6; more are in Figure 4.7.

4.6 Policy Search

The previous two sections examined supervised settings where the learning signal comes from
few examples but is readily accessible. In this section, we move to a set of reinforcement
learning problems, where the learning signal is instead sparse and time-consuming to obtain.
We evaluate on a collection of 2-D treasure hunting tasks. These tasks require the agent
to discover a rule that determines the location of buried treasure in a large collection of
environments of the kind shown in Figure 4.8. To recover the treasure, the agent must
navigate (while avoiding water) to its goal location, then perform a DIG action. At this
point the episode ends; if the treasure is located in the agent’s current position, it receives
a reward, otherwise it does not. In every task, the treasure has consistently been buried at
a fixed position relative to some landmark (in Figure 4.8 a heart). Both the offset and the
identity of the target landmark are unknown to the agent, and the location of the landmark
varies across maps. Indeed, there is nothing about the agent’s observations or action space
to suggest that landmarks and offsets are even the relevant axes of variation across tasks:
only the language reveals this structure.

The data used was obtained from Janner et al. [2017]. We created our own variant of
the dataset containing collections of related tasks. Beginning with the “local” tasks in the
dataset, we generated alternative goal positions at fixed offsets from landmarks as described
in the main section of this paper. Natural-language descriptions were selected for each task
collection from the human annotations provided with the dataset. The vocabulary size is
74 and the number of distinct hints 446. The original action space for the environment is

CHAPTER 4. LATENT DESCRIPTIONS: LANGUAGE AND LEARNING 49

Example in:
mediaeval
paneling
wafer
conventions
handsprings

Example out:
ilediaeval
ilaneling
ilafer
ilonventions
ilandsprings

Human description:
leading consonant si replaced with i l

Inferred description:
first consonant of a word is replaced with i l

Input:
chaser

True out:
ilhaser

Pred. out:
ilhaser

uptakes
pouching
embroidery
rebelliousness
stoplight

uptakes
punuching
embrunidery
rebelliunusness
stunplight

replace every o with u n

change all o to u n

regulation

regulatiunn

regulatinun

fluffiest
kidnappers
matting
griping
disagreements

fluffiest
kidnappers
eeatting
griping
disagreeeeents

the leter m is replaced by ee

change every m to ee

chartering

chartering

chartering

clandestine
limning
homes
lifeblood
inflates

clandqtine
limning
homq
lifqlood
inflatq

e

where e appears , replace it
and the following letter with q

gratuity

gratuity

gratuity

fruitlessly
sandier
washers
revelries
dewlaps

fruitlessly
sandier
washemu
revelrimu
dewlamu

if the word ends with an s , replace
the last two letters with m u

change last to m u if consonant

prompters

promptemu

promptemu

ladylike
flintlocks
student
surtaxes
bedecks

ladylike
flintlocknl
studennl
surtaxenl
bedecknl

ending consonant is replaced with n l

drop last two and add n l

initials

initialnl

initialnl

porringer
puddling
synagog
curtseying
monsieur

porringeer
puddlinge
synageoge
curtseyinge
monsieur

add e next to letter g

when a letter is preceded by a g ,
e is added after that letter

rag

rage

rage

trivializes
tried
tearfully
hospitalize
patronizing

trivializes
tried
gxarfully
gxspitalize
gxtronizing

replace the 1st 2 letters of the word with a g x
if the word begins with a consonant then a vowel

if the second letter is a vowel , replace the
first two letters with g x

landlords

gxndlords

gxndlords

microseconds
antiviral
flintlock
appreciable
stricter

microsecnyr
antiviral
flintloyr
appreciabyr
stricter

replace consonants with y r

the last two letters are replaced by y r

exertion

exertion

exertiyr

Figure 4.7: More example predictions for regular expressions.

CHAPTER 4. LATENT DESCRIPTIONS: LANGUAGE AND LEARNING 50

Figure 4.8: Example treasure hunting task: the agent is placed in a random environment
and must collect a reward that has been hidden at a consistent offset with respect to some
landmark. At language-learning time only, natural language instructions and expert policies
are provided. The agent must both learn primitive navigation skills, like avoiding water, as
well as the high-level structure of the reward functions for this domain.

also modified slightly: rather than simply reaching the goal cell (achieved with reasonably
high frequency by a policy that takes random moves), we require the agent to commit to
an individual goal cell and end the episode with the DIG action. A similar data augmen-
tation scheme to the regular expression data was employed, with templates constructed by
abstracting over landmark names.

The interaction between language and learning in these tasks is rather different from
the supervised settings. In the supervised case, language serves mostly as a guard against
overfitting, and can be generated conditioned on a set of pre-provided concept-learning ob-
servations. Here, agents are free to interact with the environment as much as they need, but
receive observations only during interaction. Thus our goal here will be to build agents that
can adapt quickly to new environments, rather than requiring them to immediately perform
well on held-out data.

Why should we expect L3 to help in this setting? In reinforcement learning, we typically
encourage our models to explore by injecting randomness into either the agent’s action space
or its underlying parameterization. But most random policies exhibit nonsensical behaviors;
as a result, it is inefficient both to sample in the space of network weights and to perform
policy optimization from a random starting point. Our hope is that when parameters are
chosen from within a structured family, a stochastic search in this structured space will only
ever consider behaviors corresponding to a reasonable final policy, and in this way discover
good behavior faster than ordinary RL.

Here the interpretation model f describes a policy that chooses actions conditioned on
the current environment state and a linguistic parameterization. As the agent initially
has no observations at all, we simply design the proposal model to generate unconditional

CHAPTER 4. LATENT DESCRIPTIONS: LANGUAGE AND LEARNING 51

samples from a prior over descriptions. Taking x to be an agent’s current observation of the
environment state, we define a state representation network and models:

x FC tanh FC rep()xtanh

f(a | x; w) ∝ rnn-encode(w)> Wa rep(x)

q(w) = rnn-decode(w)

This parameterization assumes a discrete action space, and assigns to each action a proba-
bility proportional to a bilinear function of the encoded description and world state. f is an
instruction following model of a kind well-studied in natural language processing [Branavan
et al., 2009]; the proposal model allows it to generate its own instructions without external
direction. To learn, we sample a fixed number of descriptions w from q. For each descrip-
tion, we sample multiple rollouts of the policy it induces to obtain an estimate of its average
reward. Finally, we take the highest-scoring description and fine-tune its induced policy.

At language-learning time, we assume access to both natural language descriptions of
these target locations provided by human annotators, as well as expert policies for navi-
gating to the location of the treasure. The multitask model we compare to replaces these
descriptions with trainable task embeddings.4 The learner is trained from task-specific expert
policies using DAgger [Ross et al., 2011] during the language-learning phase, and adapts to
individual environments using “vanilla” policy gradient [Williams, 1992] during the concept
learning phase.

The environment implementation and linguistic annotations are in this case adapted from
a natural language navigation dataset originally introduced by Janner et al. [2017]. In our
version of the problem (Figure 4.8), the agent begins each episode in a random position
on a randomly-chosen map and must attempt to obtain the treasure. Relational concepts
describing target locations are reused between language learning and concept-learning phases,
but the environments themselves are distinct. For language learning the agent has access to
250 tasks, and is evaluated on an additional 50.

Averaged learning curves for held-out tasks are shown in Figure 4.9. As expected, reward
for the L3 model remains low during the initial exploration period, but once a description is
chosen the score improves rapidly. Immediately L3 achieves better reward than the multitask
baseline, though it is not perfect; this suggests that the interpretation model is somewhat
overfit to the pretraining environments. After fine-tuning even better results are rapidly

4In RL, the contribution of L3 is orthogonal to that of meta-learning—one could use a technique like
RL2 [Duan et al., 2016] to generate candidate descriptions more efficiently, or maml [Finn et al., 2017] rather
than zero-shot reward as the training criterion for the interpretation model.

CHAPTER 4. LATENT DESCRIPTIONS: LANGUAGE AND LEARNING 52

20 40 60 80 100
Timestep (×1000)

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
ve

ra
ge

re
w

ar
d

L3

Multitask

Scratch

Figure 4.9: Treasure hunting reward obtained by each learning algorithm across multiple
evaluation environments, after language learning has already taken place (bands show 95%
confidence intervals for mean performance). Multitask learns an embedding for each task,
while Scratch trains on every task individually. L3 rapidly discovers high-scoring policies in
most environments. Dashed line indicates the end of the concept-learning phase; subsequent
performance comes from fine-tuning. The max reward for this task is 3.

obtained. Example rollouts are visualized in Appendix B. These results show that the
model has used the structure provided by language to learn a better representation space for
policies—one that facilitates sampling from a distribution over interesting and meaningful
behaviors.

4.7 Other Related Work

This is the first approach we are aware of to frame a general learning problem as optimiza-
tion over a space of natural language strings. However, many closely related ideas have
been explored in the literature. String-valued latent variables are widely used in language
processing tasks ranging from morphological analysis [Dreyer and Eisner, 2009] to sentence
compression [Miao and Blunsom, 2016]. Natural language annotations have been used in
conjunction with training examples to guide the discovery of logical descriptions of concepts
[Ling et al., 2017, Srivastava et al., 2017], and used as an auxiliary loss for training [Frome
et al., 2013], analogously to the Meta+Joint baseline. Structured language-like annotations
have been used to improve learning of generalizable structured policies as in the previous
chapter and Oh et al. [2017], Denil et al. [2017]. Finally, natural language instructions avail-
able at concept-learning time (rather than language-learning time) have been used to provide

CHAPTER 4. LATENT DESCRIPTIONS: LANGUAGE AND LEARNING 53

side information to reinforcement learners about high-level strategy [Branavan et al., 2011],
environment dynamics [Narasimhan et al., 2017] and exploration [Harrison et al., 2017].

4.8 Discussion

We have presented an approach for learning in a space parameterized by natural language.
Using simple models for representation and search in this space, we demonstrated that
our approach outperforms standard baselines on classification, structured prediction and
reinforcement learning tasks.

54

Chapter 5

Translating Neuralese: Language and
Belief

In the final chapter of this thesis, we turn from the problem of using linguistic structure
to build more accurate models toward the problem of using language to interpret existing
models.1 We will focus specifically on the problem of interpreting communication in learned
multiagent policies.

Several recent papers have described approaches for learning deep communicating policies
(DCPs): decentralized representations of behavior that enable multiple agents to commu-
nicate via a differentiable channel that can be formulated as a recurrent neural network.
DCPs have been shown to solve a variety of coordination problems, including reference games
[Lazaridou et al., 2016], logic puzzles [Foerster et al., 2016], and simple control [Sukhbaatar
et al., 2016]. Appealingly, the agents’ communication protocol can be learned via direct
backpropagation through the communication channel, avoiding many of the challenging in-
ference problems associated with learning in classical decentralized decision processes [Roth
et al., 2005].

But analysis of the strategies induced by DCPs has remained a challenge. As an example,
Figure 5.1 depicts a driving game in which two cars, which are unable to see each other, must
both cross an intersection without colliding. In order to ensure success, it is clear that the cars
must communicate with each other. But a number of successful communication strategies are
possible—for example, they might report their exact (x, y) coordinates at every timestep,
or they might simply announce whenever they are entering and leaving the intersection.
If these messages were communicated in natural language, it would be straightforward to
determine which strategy was being employed. However, DCP agents instead communicate
with an automatically induced protocol of unstructured, real-valued recurrent state vectors—

1Material in this chapter is adapted from:

• Jacob Andreas, Anca Dragan and Dan Klein. Translating neuralese. In Proceedings of the Annual
Meeting of the Association for Computational Linguistics, 2017.

CHAPTER 5. TRANSLATING NEURALESE: LANGUAGE AND BELIEF 55

z(1)
a z(2)

a

z
(1)
b z

(2)
b

Figure 5.1: Example interaction between a pair of agents in a deep communicating policy.
Both cars are attempting to cross the intersection, but cannot see each other. By exchanging
message vectors z(t), the agents are able to coordinate and avoid a collision. This chapter
presents an approach for understanding the contents of these message vectors by translating
them into natural language.

an artificial language we might call “neuralese,” which superficially bears little resemblance
to natural language, and thus frustrates attempts at direct interpretation.

We propose to understand neuralese messages by translating them. In this work, we
present a simple technique for inducing a dictionary that maps between neuralese message
vectors and short natural language strings, given only examples of DCP agents interacting
with other agents, and humans interacting with other humans. Natural language already
provides a rich set of tools for describing beliefs, observations, and plans—our thesis is that
these tools provide a useful complement to the visualization and ablation techniques used in
previous work on understanding complex models [Strobelt et al., 2016, Ribeiro et al., 2016].

While structurally quite similar to the task of machine translation between pairs of human
languages, interpretation of neuralese poses a number of novel challenges. First, there is no
natural source of parallel data: there are no bilingual “speakers” of both neuralese and
natural language. Second, there may not be a direct correspondence between the strategy
employed by humans and DCP agents: even if it were constrained to communicate using
natural language, an automated agent might choose to produce a different message from
humans in a given state. We tackle both of these challenges by appealing to the grounding of
messages in gameplay. Our approach is based on one of the core insights in natural language
semantics: messages (whether in neuralese or natural language) have similar meanings when
they induce similar beliefs about the state of the world.

Based on this intuition, we introduce a translation criterion that matches neuralese mes-
sages with natural language strings by minimizing statistical distance in a common repre-
sentation space of distributions over speaker states. We explore several related questions:

• What makes a good translation, and under what conditions is translation possible at
all? (Section 5.3)

CHAPTER 5. TRANSLATING NEURALESE: LANGUAGE AND BELIEF 56

large bird
black wings

black crown

agent translator

agent translator

small brown
light brown
dark brown

Figure 5.2: Overview of our approach—best-scoring translations generated for a reference
game involving images of birds. The speaking agent’s goal is to send a message that uniquely
identifies the bird on the left. From these translations it can be seen that the learned model
appears to discriminate based on coarse attributes like size and color.

• How can we build a model to translate between neuralese and natural language?
(Section 5.4)

• What kinds of theoretical guarantees can we provide about the behavior of agents
communicating via this translation model? (Section 5.6)

Our translation model and analysis are general, and in fact apply equally to human–computer
and human–human translation problems grounded in gameplay. In this chapter, we focus
our experiments specifically on the problem of interpreting communication in deep policies,
and apply our approach to the driving game in Figure 5.1 and two reference games of the
kind shown in Figure 5.2. We find that this approach outperforms a more conventional
machine translation criterion both when attempting to interoperate with neuralese speakers
and when predicting their state.

5.1 Related Work

A variety of approaches for learning deep policies with communication were proposed es-
sentially simultaneously in the past year. We have broadly labeled these as “deep commu-
nicating policies”; concrete examples include Lazaridou et al. [2016], Foerster et al. [2016],
and Sukhbaatar et al. [2016]. The policy representation we employ in this chapter is similar
to the latter two of these, although the general framework is agnostic to low-level modeling
details and could be straightforwardly applied to other architectures. Analysis of communi-
cation strategies in all these papers has been largely ad-hoc, obtained by clustering states
from which similar messages are emitted and attempting to manually assign semantics to

CHAPTER 5. TRANSLATING NEURALESE: LANGUAGE AND BELIEF 57

these clusters. The present work aims at developing tools for performing this analysis auto-
matically.

Most closely related to our approach is that of Lazaridou et al. [2017], who also develop
a model for assigning natural language interpretations to learned messages; however, this
approach relies on supervised cluster labels and is targeted specifically towards referring
expression games. Here we attempt to develop an approach that can handle more general
multiagent interactions.

The literature on learning decentralized multi-agent policies in general is considerably
larger [Bernstein et al., 2002, Dibangoye et al., 2016]. This includes work focused on com-
munication in multiagent settings [Roth et al., 2005] and even communication using natural
language messages [Vogel et al., 2013b]. All of these approaches employ structured commu-
nication schemes with manually engineered messaging protocols; these are, in some sense,
automatically interpretable, but at the cost of introducing considerable complexity into both
training and inference.

Our evaluation investigates communication strategies that arise in a number of different
games, including reference games and an extended-horizon driving game. Communication
strategies for reference games were previously explored by Vogel et al. [2013a], Andreas and
Klein [2016] and Kazemzadeh et al. [2014], and reference games specifically featuring end-
to-end communication protocols by Yu et al. [2017]. On the control side, a long line of work
considers nonverbal communication strategies in multiagent policies [Dragan and Srinivasa,
2013].

Another group of related approaches focuses on the development of more general machin-
ery for interpreting deep models in which messages have no explicit semantics. This includes
both visualization techniques [Zeiler and Fergus, 2014, Strobelt et al., 2016], and approaches
focused on generating explanations in the form of natural language [Hendricks et al., 2016,
Vedantam et al., 2017].

5.2 Problem Formulation

Games Consider a cooperative game with two players a and b of the form given in Fig-
ure 5.3. At every step t of this game, player a makes an observation x

(t)
a and receives a

message z
(t−1)
b from b. It then takes an action u

(t)
a and sends a message z

(t)
a to b. (The

process is symmetric for b.) The distributions p(ua|xa, zb) and p(za|xa) together define a
policy π which we assume is shared by both players, i.e. p(ua|xa, zb) = p(ub|xb, za) and

p(za|xa) = p(zb|xb). As in a standard Markov decision process, the actions (u
(t)
a , u

(t)
b) alter

the world state, generating new observations for both players and a reward shared by both.
The distributions p(z|x) and p(u|x, z) may also be viewed as defining a language: they

specify how a speaker will generate messages based on world states, and how a listener will
respond to these messages. Our goal in is to learn to translate between pairs of languages
generated by different policies. Specifically, we assume that we have access to two policies
for the same game: a “robot policy” πr and a “human policy” πh. We would like to use

CHAPTER 5. TRANSLATING NEURALESE: LANGUAGE AND BELIEF 58

a

b

x(1)
a

x
(1)
b x

(2)
b

u(1)
a u(2)

a

u
(2)
bu

(1)
b

z(1)
a z(2)

a

z
(1)
b

z
(2)
b

a

b

x(2)
a

0.3: stop
0.5: forward
0.1: left
0.1: right

observations actions messages

Figure 5.3: Schematic representation of communication games. At every timestep t, players
a and b make an observation x(t) and receive a message z(t−1), then produce an action u(t)

and a new message z(t).

the representation of πh, the behavior of which is transparent to human users, in order to
understand the behavior of πr (which is in general an uninterpretable learned model); we
will do this by inducing bilingual dictionaries that map message vectors zr of πr to natural
language strings zh of πh and vice-versa.

Learned agents πr Our goal is to present tools for interpretation of learned messages that
are agnostic to the details of the underlying algorithm for acquiring them. We use a generic
DCP model as a basis for the techniques developed in this chapter. Here each agent policy
is represented as a deep recurrent Q network [Hausknecht and Stone, 2015]. This network
is built from communicating cells of the kind depicted in Figure 5.4. At every timestep, this
agent receives three pieces of information: an observation of the current state of the world,
the agent’s memory vector from the previous timestep, and a message from the other player.
It then produces three outputs: a predicted Q value for every possible action, a new memory
vector for the next timestep, and a message to send to the other agent.

CHAPTER 5. TRANSLATING NEURALESE: LANGUAGE AND BELIEF 59

x(t)
a

z
(t�1)
b

h(t�1)
a h(t)

a

u(t)
a

z(t)
aMLP

GRU

Figure 5.4: Cell implementing a single step of agent communication (compare with
Sukhbaatar et al. [2016] and Foerster et al. [2016]). MLP denotes a multilayer perceptron;
GRU denotes a gated recurrent unit [Cho et al., 2014]. Dashed lines represent recurrent
connections.

Sukhbaatar et al. [2016] observe that models of this form may be viewed as specifying
a single RNN in which weight matrices have a particular block structure. Such models
may thus be trained using the standard recurrent Q-learning objective, with communication
protocol learned end-to-end.

Human agents πh The translation model we develop requires a representation of the
distribution over messages p(za|xa) employed by human speakers (without assuming that
humans and agents produce equivalent messages in equivalent contexts). We model the
human message generation process as categorical, and fit a simple multilayer perceptron
model to map from observations to words and phrases used during human gameplay.

5.3 What’s in a Translation?

What does it mean for a message zh to be a “translation” of a message zr? In standard
machine translation problems, the answer is that zh is likely to co-occur in parallel data with
zr; that is, p(zh|zr) is large. Here we have no parallel data: even if we could observe natural
language and neuralese messages produced by agents in the same state, we would have no
guarantee that these messages actually served the same function. Our answer must instead
appeal to the fact that both natural language and neuralese messages are grounded in a
common environment. For a given neuralese message zr, we will first compute a grounded
representation of that message’s meaning; to translate, we find a natural-language message
whose meaning is most similar. The key question is then what form this grounded meaning
representation should take. The existing literature suggests two broad approaches:

Semantic representation The meaning of a message za is given by its denotations: that
is, by the set of world states of which za may be felicitously predicated, given the existing

CHAPTER 5. TRANSLATING NEURALESE: LANGUAGE AND BELIEF 60

context available to a listener. In probabilistic terms, this says that the meaning of a message
za is represented by the distribution p(xa|za, xb) it induces over speaker states. Examples of
this approach include Guerin and Pitt [2001] and Pasupat and Liang [2016].

Pragmatic representation The meaning of a message za is given by the behavior it
induces in a listener. In probabilistic terms, this says that the meaning of a message za
is represented by the distribution p(ub|za, xb) it induces over actions given the listener’s
observation xb. Examples of this approach include Vogel et al. [2013a] and Gauthier and
Mordatch [2016].

These two approaches can give rise to rather different behaviors. Consider the following
example:

square hexagon circle

few many many

The top language (in blue) has a unique name for every kind of shape, while the bottom
language (in red) only distinguishes between shapes with few sides and shapes with many
sides. Now imagine a simple reference game with the following form: player a is covertly
assigned one of these three shapes as a reference target, and communicates that reference
to b; b must then pull a lever labeled large or small depending on the size of the target
shape. (The circle is small and the other shapes are large.) Blue language speakers can
achieve perfect success at this game, while red language speakers can succeed at best two
out of three times.

How should we translate the blue word hexagon into the red language? The semantic
approach suggests that we should translate hexagon as many : while many does not uniquely
identify the hexagon, it produces a distribution over shapes that is closest to the truth. The
pragmatic approach instead suggests that we should translate hexagon as few, as this is
the only message that guarantees that the listener will pull the correct lever large. So in
order to produce a correct listener action, the translator might have to “lie” and produce a
maximally inaccurate listener belief.

If we were exclusively concerned with building a translation layer that allowed humans
and DCP agents to interoperate as effectively as possible, it would be natural to adopt a
pragmatic representation strategy. But our goals here are broader: we also want to facilitate
understanding, and specifically to help users of learned systems form true beliefs about the
systems’ computational processes and representational abstractions. The example above

CHAPTER 5. TRANSLATING NEURALESE: LANGUAGE AND BELIEF 61

demonstrates that “pragmatically” optimizing directly for task performance can sometimes
lead to translations that produce inaccurate beliefs.

We instead build our approach around semantic representations of meaning. By preserv-
ing semantics, we allow listeners to reason accurately about the content and interpretation
of messages. We might worry that by adopting a semantics-first view, we have given up all
guarantees of effective interoperation between humans and agents using a translation layer.
Fortunately, this is not so: as we will see in Section 5.6, it is possible to show that play-
ers communicating via a semantic translator perform only boundedly worse (and sometimes
better!) than pairs of players with a common language.

5.4 Translation Models

In this section, we build on the intuition that messages should be translated via their seman-
tics to define a concrete translation model—a procedure for constructing a natural language
↔ neuralese dictionary given agent and human interactions.

We understand the meaning of a message za to be represented by the distribution
p(xa|za, xb) it induces over speaker states given listener context. We can formalize this
by defining the belief distribution β for a message z and context xb as:

β(za, xb) = p(xa|za, xb) =
p(za|xa)p(xa, xb)∑
x′a
p(za|x′a)p(x′a, xb)

.

Here we have modeled the listener as performing a single step of Bayesian inference, using
the listener state and the message generation model (by assumption shared between players)
to compute the posterior over speaker states. While in general neither humans nor DCP
agents compute explicit representations of this posterior, past work has found that both
humans and suitably-trained neural networks can be modeled as Bayesian reasoners [Frank
et al., 2009, Paige and Wood, 2016].

This provides a context-specific representation of belief, but for messages z and z′ to
have the same semantics, they must induce the same belief over all contexts in which they
occur. In our probabilistic formulation, this introduces an outer expectation over contexts,
providing a final measure q of the quality of a translation from z to z′:

q(z, z′) = E
[
DKL(β(z,Xb) || β(z′, Xb)) | z, z′

]
=
∑
xa,xb

p(xa, xb|z, z′)DKL(β(z, xb) || β(z′, xb))

∝ 1

p(z′)

∑
xa,xb

p(xa, xb) · p(z|xa) · p(z′|xa) · DKL(β(z, xb) || β(z′, xb)) ; (5.1)

CHAPTER 5. TRANSLATING NEURALESE: LANGUAGE AND BELIEF 62

Algorithm 3 Translating messages

given: a phrase inventory L
function translate(z)

return arg minz′∈L q̂(z, z
′)

function q̂(z, z′)
// sample contexts and distractors
xai, xbi ∼ p(Xa, Xb) for i = 1..n
x′ai ∼ p(Xa|xbi)
// compute context weights
w̃i ← p(z|xai) · p(z′|xai)
wi ← w̃i/

∑
j w̃j

// compute divergences

ki ←
∑

x∈{xai,x′ai}
p(x|z, xbi) log p(x|z,xbi)

p(x|z′,xbi)
return

∑
iwiki

recalling that in this setting

DKL(β || β′) =
∑
xa

p(xa|z, xb) log
p(xa|z, xb)
p(xa|z′, xb)

(5.2)

which is zero when the messages z and z′ give rise to identical belief distributions and
increases as they grow more dissimilar. To translate, we would like to compute tr(zr) =
arg minzh q(zr, zh) and tr(zh) = arg minzr q(zh, zr). Intuitively, Equation 5.1 says that we will
measure the quality of a proposed translation z 7→ z′ by asking the following question: in
contexts where z is likely to be used, how frequently does z′ induce the same belief about
speaker states as z?

While this translation criterion directly encodes the semantic notion of meaning described
in Section 5.3, it is doubly intractable: the KL divergence and outer expectation involve a
sum over all observations xa and xb respectively; these sums are not in general possible to
compute efficiently. To avoid this, we approximate Equation 5.1 by sampling. We draw a
collection of samples (xa, xb) from the prior over world states, and then generate for each
sample a sequence of distractors (x′a, xb) from p(x′a|xb) (we assume access to both of these
distributions from the problem representation). The KL term in Equation 5.1 is computed
over each true sample and its distractors, which are then normalized and averaged to compute
the final score.

Sampling accounts for the outer p(xa, xb) in Equation 5.1. One of the two remaining
quantities has the form p(xa|z, xb). In the case of neuralese, can be obtained via Bayes’ rule
from the agent policy πr. For natural language, we use transcripts of human interactions
to fit a model that maps from frequent utterances to a distribution over world states as
discussed in Section 5.2. The last quantity is a p(z′), the prior probability of the candidate

CHAPTER 5. TRANSLATING NEURALESE: LANGUAGE AND BELIEF 63

translation; this is approximated as uniform. The full translation procedure is given in
Algorithm 3.

5.5 Modeling details

Agents Agents have the form shown in Figure 5.4, where h is a hidden state, z is a message
from the other agent, u is a distribution over actions, and x is an observation of the world.
A single hidden layer with 256 units and a tanh nonlinearity is used for the MLP. The GRU
hidden state is also of size 256, and the message vector is of size 64.

Agents are trained via interaction with the world as in Hausknecht and Stone [2015]
using the adam optimizer [Kingma and Ba, 2014] and a discount factor of 0.9. The step
size was chosen as 0.003 for reference games and 0.0003 for the driving game. An ε-greedy
exploration strategy is employed, with the exploration parameter for timestep t given by:

ε = max

(1000− t)/1000

(5000− t)/50000

0

As in Foerster et al. [2016], we found it useful to add noise to the communication channel:
in this case, isotropic Gaussian noise with mean 0 and standard deviation 0.3. This also helps
smooth p(z|xa) when computing the translation criterion.

Representational models As discussed in Section 5.4, the translation criterion is com-
puted based on the quantity p(z|x). The policy representation above actually defines a distri-
bution p(z|x, h), additionally involving the agent’s hidden state h from a previous timestep.
While in principle it is possible to eliminate the dependence on h by introducing an additional
sampling step into Algorithm 3, we found that it simplified inference to simply learn an addi-
tional model of p(z|x) directly. For simplicity, we treat the term log(p(z′)/p(z)) as constant,
those these could be more accurately approximated with a learned density estimator.

This model is trained alongside the learned agent to imitate its decisions, but does not
get to observe the recurrent state, like so:

x(t)
a

z
(t�1)
b z(t)

a
MLP

Here the multilayer perceptron has a single hidden layer with tanh nonlinearities and size
128. It is also trained with adam and a step size of 0.0003.

We use exactly the same model and parameters to implement representations of p(z|x)
for human speakers, but in this case the vector z is taken to be a distribution over messages
in the natural language inventory, and the model is trained to maximize the likelihood of
labeled human traces.

CHAPTER 5. TRANSLATING NEURALESE: LANGUAGE AND BELIEF 64

a

b

xa z

xb

u

Figure 5.5: Simplified game representation used for analysis in Section 5.6. A speaker agent
sends a message to a listener agent, which takes a single action and receives a reward.

5.6 Belief and Behavior

The translation criterion in the previous section makes no reference to listener actions at all.
The shapes example in Section 5.3 shows that some model performance might be lost under
translation. It is thus reasonable to ask whether this translation model of Section 5.4 can
make any guarantees about the effect of translation on behavior. In this section we explore
the relationship between belief-preserving translations and the behaviors they produce, by
examining the effect of belief accuracy and strategy mismatch on the reward obtained by
cooperating agents.

To facilitate this analysis, we consider a simplified family of communication games with
the structure depicted in Figure 5.5. These games can be viewed as a subset of the family
depicted in Figure 5.3; and consist of two steps: a listener makes an observation xa and
sends a single message z to a speaker, which makes its own observation xb, takes a single
action u, and receives a reward. We emphasize that the results in this section concern the
theoretical properties of idealized games, and are presented to provide intuition about high-
level properties of our approach. Section 5.8 investigates empirical behavior of this approach
on real-world tasks where these ideal conditions do not hold.

Our first result is that translations that minimize semantic dissimilarity q cause the
listener to take near-optimal actions:2

2Proof is provided in Section C.1.

CHAPTER 5. TRANSLATING NEURALESE: LANGUAGE AND BELIEF 65

Proposition 1.
Semantic translations reward rational listeners. Define a rational listener as one that chooses
the best action in expectation over the speaker’s state:

U(z, xb) = arg max
u

∑
xa

p(xa|xb, z)r(xa, xb, u)

for a reward function r ∈ [0, 1] that depends only on the two observations and the action.3

Now let a be a speaker of a language r, b be a listener of the same language r, and b′

be a listener of a different language h. Suppose that we wish for a and b′ to interact
via the translator tr : zr 7→ zh (so that a produces a message zr, and b′ takes an action
U(zh = tr(zr), xb′)). If tr respects the semantics of zr, then the bilingual pair a and b′

achieves only boundedly worse reward than the monolingual pair a and b. Specifically, if
q(zr, zh) ≤ D, then

Er(Xa, Xb, U(tr(Z)) ≥ Er(Xa, Xb, U(Z))−
√

2D (5.3)

So as discussed in Section 5.3, even by committing to a semantic approach to meaning
representation, we have still succeeded in (approximately) capturing the nice properties of
the pragmatic approach.

Section 5.3 examined the consequences of a mismatch between the set of primitives avail-
able in two languages. In general we would like some measure of our approach’s robustness
to the lack of an exact correspondence between two languages. In the case of humans in
particular we expect that a variety of different strategies will be employed, many of which
will not correspond to the behavior of the learned agent. It is natural to want some assurance
that we can identify the DCP’s strategy as long as some human strategy mirrors it. Our
second observation is that it is possible to exactly recover a translation of a DCP strategy
from a mixture of humans playing different strategies:

Proposition 2.
Semantic translations find hidden correspondences. Consider a fixed agent policy πr and a
set of human policies {πh1, πh2, . . . } (recalling from Section 5.2 that each π is defined by
distributions p(z|xa) and p(u|z, xb)). Suppose further that the messages employed by these
human strategies are disjoint ; that is, if phi(z|xa) > 0, then phj(z|xa) = 0 for all j 6= i. Now
suppose that all q(zr, zh) = 0 for all messages in the support of some phi(z|xa) and > 0 for
all j 6= i. Then every message zr is translated into a message produced by πhi, and messages
from other strategies are ignored.

3This notion of rationality is a fairly weak one: it permits many suboptimal communication strategies,
and requires only that the listener do as well as possible given a fixed speaker—a first-order optimality
criterion likely to be satisfied by any richly-parameterized model trained via gradient descent.

CHAPTER 5. TRANSLATING NEURALESE: LANGUAGE AND BELIEF 66

This observation follows immediately from the definition of q(zr, zh), but demonstrates
one of the key distinctions between our approach and a conventional machine translation cri-
terion. Maximizing p(zh|zr) will produce the natural language message most often produced
in contexts where zr is observed, regardless of whether that message is useful or informative.
By contrast, minimizing q(zh, zr) will find the zh that corresponds most closely to zr even
when zh is rarely used.

The disjointness condition, while seemingly quite strong, in fact arises naturally in many
circumstances—for example, players in the driving game reporting their spatial locations in
absolute vs. relative coordinates, or speakers in a color reference game (Figure 5.6) discrim-
inating based on lightness vs. hue. It is also possible to relax the above condition to require
that strategies be only locally disjoint (i.e. with the disjointness condition holding for each
fixed xa), in which case overlapping human strategies are allowed, and the recovered robot
strategy is a context-weighted mixture of these.

5.7 Evaluation

Tasks

In the remainder of the paper, we evaluate the empirical behavior of our approach to trans-
lation. Our evaluation considers two kinds of tasks: reference games and navigation games.
In a reference game (e.g. Figure 5.6a), both players observe a pair of candidate referents. A
speaker is assigned a target referent; it must communicate this target to a listener, who then
performs a choice action corresponding to its belief about the true target. Here consider
two variants on the reference game: a simple color-naming task, and a more complex task
involving natural images of birds. For examples of human communication strategies for these
tasks, we obtain the XKCD color dataset [McMahan and Stone, 2015, Monroe et al., 2016]
and the Caltech–UCSD Birds dataset [Welinder et al., 2010] with accompanying natural
language descriptions [Reed et al., 2016]. In the color task, the input feature vector is simply
the LAB representation of each color, and the message inventory taken to be all unigrams
that appear at least five times. In the bird task, the model’s input feature representations
are a final 256-dimensional hidden feature vector from a compact bilinear pooling model
[Gao et al., 2016] pre-trained for classification. The message inventory consists of the 50
most frequent bigrams to appear in natural language descriptions; example human traces
are generated by for every frequent (bigram, image) pair in the dataset. We use standard
train / validation / test splits for both of these datasets.

The final task we consider is the driving task (Figure 5.6c) first discussed in the introduc-
tion. In this task, two cars, invisible to each other, must each navigate between randomly
assigned start and goal positions without colliding. This task takes a number of steps to
complete, and potentially involves a much broader range of communication strategies. To
obtain human annotations for this task, we recorded both actions and messages generated
by pairs of human Amazon Mechanical Turk workers playing the driving game with each

CHAPTER 5. TRANSLATING NEURALESE: LANGUAGE AND BELIEF 67

(a) (b)

(c)

Figure 5.6: Tasks used to evaluate the translation model. (a–b) Reference games: both
players observe a pair of reference candidates (colors or images); Player a is assigned a
target (marked with a star), which player b must guess based on a message from a. (c)
Driving game: each car attempts to navigate to its goal (marked with a star). The cars
cannot see each other, and must communicate to avoid a collision.

CHAPTER 5. TRANSLATING NEURALESE: LANGUAGE AND BELIEF 68

other. We collected close to 400 games, with a total of more than 2000 messages exchanged,
from which we held out 100 game traces as a test set. Driving data is collected from pairs of
human workers on Mechanical Turk. Workers received the following description of the task:

Your goal is to drive the red car onto the red square. Be careful! You’re driving
in a thick fog, and there is another car on the road that you cannot see. However,
you can talk to the other driver to make sure you both reach your destinations
safely.

Players were restricted to messages of 1–3 words, and required to send at least one message
per game. Each player was paid $0.25 per game. 382 games were collected with 5 different
road layouts, each represented as an 8x8 grid presented to players as in Figure 5.8. The
action space is discrete: players can move forward, back, turn left, turn right, or wait. These
were divided into a 282-game training set and 100-game test set. The message inventory
consists of all messages sent more than 3 times. Input features consists of indicators on the
agent’s current position and orientation, goal position, and map identity.

Metrics

A mechanism for understanding the behavior of a learned model should allow a human user
both to correctly infer its beliefs and to successfully interoperate with it; we accordingly
report results of both “belief” and “behavior” evaluations.

To support easy reproduction and comparison (and in keeping with standard practice in
machine translation), we focus on developing automatic measures of system performance.
We use the available training data to develop simulated models of human decisions; by first
showing that these models track well with human judgments, we can be confident that their
use in evaluations will correlate with human understanding. We employ the following two
metrics:

Belief evaluation This evaluation focuses on the denotational perspective in semantics
that motivated the initial development of our model. We have successfully understood the
semantics of a message zr if, after translating zr 7→ zh, a human listener can form a correct
belief about the state in which zr was produced. We construct a simple state-guessing game
where the listener is presented with a translated message and two state observations, and
must guess which state the speaker was in when the message was emitted.

When translating from natural language to neuralese, we use the learned agent model to
directly guess the hidden state. For neuralese to natural language we must first construct
a “model human listener” to map from strings back to state representations; we do this by
using the training data to fit a simple regression model that scores (state, sentence) pairs
using a bag-of-words sentence representation. We find that our “model human” matches
the judgments of real humans 83% of the time on the colors task, 77% of the time on the
birds task, and 77% of the time on the driving task. This gives us confidence that the model
human gives a reasonably accurate proxy for human interpretation.

CHAPTER 5. TRANSLATING NEURALESE: LANGUAGE AND BELIEF 69

as speaker
R H

as
li
st

en
er R 1.00

0.50 random
0.70 direct
0.73 belief (ours)

H*
0.50

0.830.72
0.86

as speaker
R H

as
li
st

en
er R 0.95

0.50 random
0.55 direct
0.60 belief (ours)

H*
0.50

0.770.57
0.75

(a) (b)

Table 5.1: Evaluation results for reference games. (a) The colors task. (b) The birds
task. Whether the model human is in a listener or speaker role, translation based on belief
matching outperforms both random and machine translation baselines.

Behavior evaluation This evaluation focuses on the cooperative aspects of interpretabil-
ity: we measure the extent to which learned models are able to interoperate with each other
by way of a translation layer. In the case of reference games, the goal of this semantic eval-
uation is identical to the goal of the game itself (to identify the hidden state of the speaker),
so we perform this additional pragmatic evaluation only for the driving game. We found that
the most reliable way to make use of human game traces was to construct a speaker-only
model human. The evaluation selects a full game trace from a human player, and replays
both the human’s actions and messages exactly (disregarding any incoming messages); the
evaluation measures the quality of the natural-language-to-neuralese translator, and the ex-
tent to which the learned agent model can accommodate a (real) human given translations
of the human’s messages.

Baselines We compare our approach to two baselines: a random baseline that chooses
a translation of each input uniformly from messages observed during training, and a direct
baseline that directly maximizes p(z′|z) (by analogy to a conventional machine translation
system). This is accomplished by sampling from a DCP speaker in training states labeled
with natural language strings.

5.8 Results

In all below, “R” indicates a DCP agent, “H” indicates a real human, and “H*” indicates a
model human player.

Reference games Results for the two reference games are shown in Table 5.1. The end-
to-end trained model achieves nearly perfect accuracy in both cases, while a model trained
to communicate in natural language achieves somewhat lower performance. Regardless of

CHAPTER 5. TRANSLATING NEURALESE: LANGUAGE AND BELIEF 70

magenta, hot, rose, violet, purple

magenta, hot, violet, rose, purple

olive, puke, pea, grey, brown

pinkish, grey, dull, pale, light

Figure 5.7: Best-scoring translations generated for color task.

as speaker
R H

as
li
st

en
er R 0.85

0.50 random
0.45 direct
0.61 belief (ours)

H*
0.5

0.770.45
0.57

Table 5.2: Belief evaluation results for the driving game. Driving states are challenging to
identify based on messages alone (as evidenced by the comparatively low scores obtained by
single-language pairs). Translation based on belief achieves the best overall performance in
both directions.

whether the speaker is a DCP and the listener a model human or vice-versa, translation
based on the belief-matching criterion in Section 5.4 achieves the best performance; indeed,
when translating neuralese color names to natural language, the listener is able to achieve
a slightly higher score than it is natively. This suggests that the automated agent has
discovered a more effective strategy than the one demonstrated by humans in the dataset,
and that the effectiveness of this strategy is preserved by translation. Example translations
from the reference games are depicted in Figure 5.2 and Figure 5.7.

Driving game Behavior evaluation of the driving game is shown in Table 5.3, and belief
evaluation is shown in Table 5.2. Translation of messages in the driving game is considerably
more challenging than in the reference games, and scores are uniformly lower; however, a
clear benefit from the belief-matching model is still visible. Belief matching leads to higher
scores on the belief evaluation in both directions, and allows agents to obtain a higher reward

CHAPTER 5. TRANSLATING NEURALESE: LANGUAGE AND BELIEF 71

R / R H / H R / H

1.93 / 0.71 — / 0.77
1.35 / 0.64 random
1.49 / 0.67 direct
1.54 / 0.67 belief (ours)

Table 5.3: Behavior evaluation results for the driving game. Scores are presented in the
form “reward / completion rate”. While less accurate than either humans or DCPs with
a shared language, the models that employ a translation layer obtain higher reward and a
greater overall success rate than baselines.

at goal

done

left to top

going in intersection

proceed

going

you first

following

going down

Figure 5.8: Best-scoring translations generated for driving task generated from the given
speaker state.

on average (though task completion rates remain roughly the same across all agents). Some
example translations of driving game messages are shown in Figure 5.8.

5.9 Discussion

We have investigated the problem of interpreting message vectors from deep networks by
translating them. After introducing a translation criterion based on matching listener be-
liefs about speaker states, we presented both theoretical and empirical evidence that this
criterion outperforms a conventional machine translation approach at recovering the content
of message vectors and facilitating collaboration between humans and learned agents.

While our evaluation has focused on understanding the behavior of deep communicating

CHAPTER 5. TRANSLATING NEURALESE: LANGUAGE AND BELIEF 72

policies, the framework proposed here could be much more generally applied. Any encoder–
decoder model [Sutskever et al., 2014] can be thought of as a kind of communication game
played between the encoder and the decoder, so we can analogously imagine computing
and translating “beliefs” induced by the encoding to explain what features of the input are
being transmitted. The current work has focused on learning a purely categorical model of
the translation process, supported by an unstructured inventory of translation candidates.
Related techniques can also be used to explore compositional structure in messages, as
discussed in subsequent work [Andreas and Klein, 2017].

More broadly, the work here shows that the denotational perspective from formal se-
mantics provides a framework for precisely framing the demands of interpretable machine
learning [Wilson et al., 2016, Doshi-Velez and Kim, 2017]. One major area of focus in in-
terpretability is the study of visual features learned for image classification tasks. In this
setting, one standard technique for generating visual explanations of an individual hidden
unit is to aggregate the training examples for which that unit is maximally activated [Zeiler
and Fergus, 2014]. The technique presented in this chapter may be viewed as extension of the
standard visual approach, in which the set of aggregated images is subsequently summarized
with a natural language string. Concurrent work [Bau et al., 2017] describes a similar idea
for the restricted task of generating categorical “explanations” of this kind; future applica-
tions of the translation technique in this chapter might focus on scaling to complex, novel
descriptions.

73

Chapter 6

Conclusion

This dissertation has presented a family of techniques for building models to solve language
processing tasks and other learning problems, using linguistic structure to inform model
structure. First, we presented a pair of modular deep architectures for question answering
and reinforcement learning, and an approach for simultaneously learning the parameters
of these modules and the larger structures into which they can be composed. Second, we
presented an approach for learning and interpreting representations in a space parameterized
by natural language. Using simple models for search in this space, we demonstrated that
our approach outperforms standard baselines both on various model interpretability tasks
and on downstream learning tasks like classification, structured prediction and reinforcement
learning tasks. We believe that these results suggest the following overall conclusions:

Continuous representations improve expressiveness and learnability in semantic parsers :
by replacing discrete predicates with differentiable neural network fragments, we bypass the
challenging combinatorial optimization problem associated with induction of a semantic lex-
icon. In structured world representations, neural predicate representations allow the model
to invent reusable attributes and relations not expressed in the schema. Perhaps more impor-
tantly, we can extend compositional question-answering machinery to complex, continuous
world representations like images.

Linguistic structure encourages compositional generalization: by replacing a fixed neural
architecture with an input-specific one, we can tailor the computation performed to each
problem instance, using deeper networks for more complex questions and concepts and rep-
resenting combinatorially many hypotheses with comparatively few parameters. In practice,
this results in considerable gains in speed and sample efficiency, even with little training data.
By forcing decisions to pass through a linguistic bottleneck in which the underlying com-
positional structure of concepts is explicitly expressed, efficient compositional generalization
becomes possible.

Language simplifies structured exploration. Natural language scaffolding provides dra-
matic advantages in problems like reinforcement learning that require exploration: models
with latent linguistic parameterizations can sample in this space, and limit exploration to a
class of behaviors that are likely a priori to be goal-directed and interpretable.

CHAPTER 6. CONCLUSION 74

And in general multitask settings, language can help learning—even in tasks for which
no language data is available at training or test time. While some of these advantages are
also provided by techniques built on top of formal languages, natural language is at once
more expressive and easier to obtain than formal supervision. We believe this work hints
at broader opportunities for using naturally-occurring language data to improve machine
learning for problems of all kinds.

75

Appendix A

Policy Sketches

The complete list of tasks, sketches, and symbols is given below. Tasks marked with an
asterisk∗ are held out for the generalization experiments described in Section 3.3, but in-
cluded in the multitask training experiments in Section 3.3.

Goal Sketch

Crafting environment

make plank get wood use toolshed

make stick get wood use workbench

make cloth get grass use factory

make rope get grass use toolshed

make bridge get iron get wood use factory

make bed∗ get wood use toolshed get grass use workbench

make axe∗ get wood use workbench get iron use toolshed

make shears get wood use workbench get iron use workbench

get gold get iron get wood use factory use bridge

get gem get wood use workbench get iron use toolshed use axe

Maze environment

room 1 left left

room 2 left down

room 3 right down

room 4 up left

room 5 up right

room 6 up right up

room 7 down right up

room 8 left left down

room 9 right down down

room 10 left up right

APPENDIX A. POLICY SKETCHES 76

Cliff environment
Goal Sketch

path 0 north

path 1 east

path 2 south

path 3 west

path 4 west south

path 5 west north north

path 6 north east north

path 7 west north

path 8 east south

path 9 north west west

path 10 east north east

path 11 south east

path 12 south west

path 13 south south

path 14 south south west

path 15 east south south

path 16 east east

path 17 east north

path 18 north east

path 19 west west

path 20 north north

path 21 north west

path 22 west west south

path 23 south east south

77

Appendix B

Latent Descriptions

B.1 Examples: ShapeWorld

Positive examples:

True description:
a red ellipse is to the right of an ellipse

Inferred description:
a red shape is to the right of a red semicircle

Input: True label:
true

Pred. label:
true

a shape is below a white ellipse

a white shape is to the left of a yellow ellipse

false

true

a magenta triangle is to the left of a magenta pentagon

a magenta triangle is to the left of a pentagon

true

true

a white ellipse is to the left of a green cross

a green cross is to the right of a white ellipse

true

true

APPENDIX B. LATENT DESCRIPTIONS 78

B.2 Examples: Navigation

White breadcrumbs show the path taken by the agent.

Human description:
move to the star

Inferred description:
reach the star cell

reach square one right of triangle

reach cell to the right of the triangle

reach cell on left of triangle

reach square left of triangle

reach spade

go to the spade

left of the circle

go to the cell to the left of the circle

79

Appendix C

Translating Neuralese

C.1 Proof of Proposition 1

We know that
U(z, xb) := arg max

u

∑
xa

p(xa|xb, z)r(xa, xb, z)

and that for all translations (z, z′ = t(r))

D ≥
∑
xb

p(xb|z, z′)DKL(β(z, xb) || β(z′, xb)) .

Applying Pinsker’s inequality:

≥ 2
∑
xb

p(xb|z, z′)δ(β(z, xb), β(z′, xb))
2

and Jensen’s inequality:

≥ 2

(∑
xb

p(xb|z, z′)δ(β(z, xb), β(z′, xb)))

)2

so √
D/2 ≥

∑
xb

p(xb|z, z′)δ(β(z, xb), β(z′, xb)) .

The next step relies on the following standard property of the total variation distance: for
distributions p and q and a function f bounded by [0, 1],

|Epf(x)− Eqf(x)| ≤ δ(p, q) . (*)

APPENDIX C. TRANSLATING NEURALESE 80

For convenience we will write

δ := δ(β(z, xb), β(z′, xb)) .

A listener using the speaker’s language expects a reward of∑
xb

p(xb)
∑
xa

p(xa|xb, z)r(xa, xb, U(z, xb))

≤
∑
xb

p(xb)

(∑
xa

p(xa|xb, z′)r(xa, xb, U(z, xb)) + δ

)

via (*). From the assumption of player rationality:

≤
∑
xb

p(xb)

(∑
xa

p(xa|xb, z′)r(xa, xb, U(z′, xb)) + δ

)

using (*) again:

≤
∑
xb

p(xb)

(∑
xa

p(xa|xb, z)r(xa, xb, U(z′, xb)) + 2δ

)
≤
∑
xa,xb

p(xa, xb|z)r(xa, xb, U(z′, xb)) +
√

2D .

So the true reward achieved by a z′-speaker receiving a translated code is only additively
worse than the native z-speaker reward:(∑

xa,xb

p(xa, xb|z)r(xa, xb, U(z, xb))

)
−
√

2D

81

Bibliography

David Andre and Stuart Russell. Programmable reinforcement learning agents. In Advances
in Neural Information Processing Systems, 2001.

David Andre and Stuart Russell. State abstraction for programmable reinforcement learning
agents. In Proceedings of the Meeting of the Association for the Advancement of Artificial
Intelligence, 2002.

Jacob Andreas and Dan Klein. Reasoning about pragmatics with neural listeners and speak-
ers. In Proceedings of the Conference on Empirical Methods in Natural Language Process-
ing, 2016.

Jacob Andreas and Dan Klein. Analogs of linguistic structure in deep representations. In
Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2017.

Jacob Andreas, Andreas Vlachos, and Stephen Clark. Semantic parsing as machine transla-
tion. In Proceedings of the Annual Meeting of the Association for Computational Linguis-
tics, Sofia, Bulgaria, 2013.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra,
C Lawrence Zitnick, and Devi Parikh. VQA: Visual question answering. In Proceedings
of the International Conference on Computer Vision, 2015.

Yoav Artzi and Luke Zettlemoyer. Weakly supervised learning of semantic parsers for map-
ping instructions to actions. Transactions of the Association for Computational Linguis-
tics, 2013.

Pierre-Luc Bacon and Doina Precup. The option-critic architecture. In Proceedings of the
Meeting of the Association for the Advancement of Artificial Intelligence, 2017.

Bram Bakker and Jürgen Schmidhuber. Hierarchical reinforcement learning based on subgoal
discovery and subpolicy specialization. In Proceedings of the Conference on Intelligent
Autonomous Systems, 2004.

Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende Rezende, and
Koray Kavukcuoglu. Interaction networks for learning about objects, relations and physics.
In Advances in Neural Information Processing Systems, 2016.

BIBLIOGRAPHY 82

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Network dis-
section: Quantifying interpretability of deep visual representations. In Proceedings of the
Conference on Computer Vision and Pattern Recognition, 2017.

Islam Beltagy, Cuong Chau, Gemma Boleda, Dan Garrette, Katrin Erk, and Raymond
Mooney. Montague meets Markov: Deep semantics with probabilistic logical form. Pro-
ceedings of the Joint Conference on Distributional and Logical Semantics, 2013.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learn-
ing. In Proceedings of the International Conference on Machine Learning, 2009.

Jonathan Berant and Percy Liang. Semantic parsing via paraphrasing. In Proceedings of the
Annual Meeting of the Association for Computational Linguistics, 2014.

Daniel S Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. The complexity
of decentralized control of Markov decision processes. Mathematics of Operations Research,
2002.

Mikhail Moiseevich Bongard. The recognition problem. Technical report, 1968.

Antoine Bordes, Sumit Chopra, and Jason Weston. Question answering with subgraph
embeddings. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing, 2014.

Léon Bottou. From machine learning to machine reasoning. Machine learning, 2014.

Léon Bottou, Yoshua Bengio, and Yann Le Cun. Global training of document processing
systems using graph transformer networks. In Proceedings of the Conference on Computer
Vision and Pattern Recognition, 1997.

S.R.K. Branavan, Harr Chen, Luke S. Zettlemoyer, and Regina Barzilay. Reinforcement
learning for mapping instructions to actions. In Proceedings of the Annual Meeting of
the Association for Computational Linguistics. Association for Computational Linguistics,
2009.

S.R.K. Branavan, David Silver, and Regina Barzilay. Learning to win by reading manuals in
a Monte-Carlo framework. In Proceedings of the Human Language Technology Conference
of the Association for Computational Linguistics, 2011.

Rich Caruana. Multitask learning. In Learning to learn. 1998.

Michael B Chang, Tomer Ullman, Antonio Torralba, and Joshua B Tenenbaum. A
compositional object-based approach to learning physical dynamics. arXiv preprint
arXiv:1612.00341, 2016.

BIBLIOGRAPHY 83

David L. Chen and Raymond J. Mooney. Learning to interpret natural language navigation
instructions from observations. In Proceedings of the Meeting of the Association for the
Advancement of Artificial Intelligence, 2011.

Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On the
properties of neural machine translation: Encoder-decoder approaches. In Proceedings of
the Workshop on Syntax, Semantics and Structure in Statistical Translation, 2014.

Ann A Copestake, Guy Emerson, Michael Wayne Goodman, Matic Horvat, Alexander
Kuhnle, and Ewa Muszynska. Resources for building applications with Dependency Min-
imal Recursion Semantics. In Proceedings of the Conference on Language Resources and
Computation, 2016.

Christian Daniel, Gerhard Neumann, and Jan Peters. Hierarchical relative entropy pol-
icy search. In Proceedings of the International Conference on Artificial Intelligence and
Statistics, 2012.

Marie-Catherine De Marneffe and Christopher D Manning. The Stanford typed depen-
dencies representation. In Proceedings of the International Conference on Computational
Linguistics, 2008.

Misha Denil, Sergio Gómez Colmenarejo, Serkan Cabi, David Saxton, and Nando de Freitas.
Programmable agents. arXiv preprint arXiv:1706.06383, 2017.

Coline Devin, Abhishek Gupta, Trevor Darrell, Pieter Abbeel, and Sergey Levine. Learning
modular neural network policies for multi-task and multi-robot transfer. In Proceedings
of the International Conference on Robotics and Automation, 2016.

Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman Mo-
hamed, and Pushmeet Kohli. RobustFill: Neural program learning under noisy I/O. In
Proceedings of the International Conference on Machine Learning, 2017.

Jilles Steeve Dibangoye, Christopher Amato, Olivier Buffet, and François Charpillet. Opti-
mally solving Dec-POMDPs as continuous-state MDPs. Journal of Artificial Intelligence
Research, 2016.

Thomas G Dietterich. Hierarchical reinforcement learning with the MAXQ value function
decomposition. Journal of Artificial Intelligence Research, 2000.

Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and
Trevor Darrell. Decaf: A deep convolutional activation feature for generic visual recogni-
tion. In Proceedings of the International Conference on Machine Learning, 2014.

Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini
Venugopalan, Kate Saenko, and Trevor Darrell. Long-term recurrent convolutional net-
works for visual recognition and description. In Proceedings of the Conference on Computer
Vision and Pattern Recognition, 2015.

BIBLIOGRAPHY 84

Finale Doshi-Velez and Been Kim. Towards a rigorous science of interpretable machine
learning. arXiv preprint arXiv:1702.08608, 2017.

Anca Dragan and Siddhartha Srinivasa. Generating legible motion. In Robotics: Science
and Systems, 2013.

Markus Dreyer and Jason Eisner. Graphical models over multiple strings. In Proceedings of
the Conference on Empirical Methods in Natural Language Processing, 2009.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel.
RL2: Fast reinforcement learning via slow reinforcement learning. arXiv preprint
arXiv:1611.02779, 2016.

Vittorio Ferrari and Andrew Zisserman. Learning visual attributes. In Advances in Neural
Information Processing Systems, 2008.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast
adaptation of deep networks. In Proceedings of the International Conference on Machine
Learning, 2017.

Jakob Foerster, Yannis M Assael, Nando de Freitas, and Shimon Whiteson. Learning to
communicate with deep multi-agent reinforcement learning. In Advances in Neural Infor-
mation Processing Systems, 2016.

Michael C Frank, Noah D Goodman, Peter Lai, and Joshua B Tenenbaum. Informative
communication in word production and word learning. In Proceedings of the Annual
Conference of the Cognitive Science Society, 2009.

Andrea Frome, Greg Corrado, Jonathon Shlens, Samy Bengio, Jeffrey Dean, Marc’Aurelio
Ranzato, and Tomas Mikolov. DeViSE: A deep visual-semantic embedding model. In
Advances in Neural Information Processing Systems, 2013.

Yang Gao, Oscar Beijbom, Ning Zhang, and Trevor Darrell. Compact bilinear pooling. In
Proceedings of the Conference on Computer Vision and Pattern Recognition, 2016.

Jon Gauthier and Igor Mordatch. A paradigm for situated and goal-driven language learning.
arXiv preprint arXiv:1610.03585, 2016.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies
for accurate object detection and semantic segmentation. In Proceedings of the Conference
on Computer Vision and Pattern Recognition, 2014.

Alison Gopnik and Andrew Meltzoff. The development of categorization in the second year
and its relation to other cognitive and linguistic developments. Child Development, 1987.

BIBLIOGRAPHY 85

Evan Greensmith, Peter L Bartlett, and Jonathan Baxter. Variance reduction techniques
for gradient estimates in reinforcement learning. Journal of Machine Learning Research,
2004.

Edward Grefenstette. Towards a formal distributional semantics: Simulating logical cal-
culi with tensors. In Proceedings of the Joint Conference on Lexical and Computational
Semantics, 2013.

Edward Grefenstette, Karl Moritz Hermann, Mustafa Suleyman, and Phil Blunsom. Learning
to transduce with unbounded memory. In Advances in Neural Information Processing
Systems, 2015.

Frank Guerin and Jeremy Pitt. Denotational semantics for agent communication language.
In Proceedings of the International Conference on Autonomous Agents, 2001.

Sumit Gulwani. Automating string processing in spreadsheets using input-output examples.
ACM SIGPLAN Notices, 2011.

Stevan Harnad. The symbol grounding problem. Physica D: Nonlinear Phenomena, 1990.

Brent Harrison, Upol Ehsan, and Mark Riedl. Guiding reinforcement learning exploration
using natural language. arXiv preprint arXiv:1707.08616, 2017.

Kris Hauser, Timothy Bretl, Kensuke Harada, and Jean-Claude Latombe. Using motion
primitives in probabilistic sample-based planning for humanoid robots. In Algorithmic
Foundation of Robotics. 2008.

Matthew Hausknecht and Peter Stone. Deep recurrent Q-learning for partially observable
MDPs. In Proceedings of the Meeting of the Association for the Advancement of Artificial
Intelligence, 2015.

Lisa Anne Hendricks, Zeynep Akata, Marcus Rohrbach, Jeff Donahue, Bernt Schiele, and
Trevor Darrell. Generating visual explanations. In Proceedings of the European Conference
on Computer Vision, 2016.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay,
Mustafa Suleyman, and Phil Blunsom. Teaching machines to read and comprehend. In
Advances in Neural Information Processing Systems, 2015.

Ronghang Hu, Marcus Rohrbach, Jacob Andreas, Trevor Darrell, and Kate Saenko. Mod-
eling relationships in referential expressions with compositional modular networks. In
Proceedings of the Conference on Computer Vision and Pattern Recognition, 2017.

Ronghang Hu, Jacob Andreas, Kate Saenko, and Trevor Darrell. Explainable neural com-
putation via stack neural module networks. In Proceedings of the European Conference on
Computer Vision, 2018.

BIBLIOGRAPHY 86

Drew A Hudson and Christopher D Manning. Compositional attention networks for machine
reasoning. Proceedings of the International Conference on Learning Representations, 2018.

Mohit Iyyer, Jordan Boyd-Graber, Leonardo Claudino, Richard Socher, and Hal Daumé III.
A neural network for factoid question answering over paragraphs. In Proceedings of the
Conference on Empirical Methods in Natural Language Processing, 2014.

Michael Janner, Karthik Narasimhan, and Regina Barzilay. Representation learning for
grounded spatial reasoning. Transactions of the Association for Computational Linguistics,
2017.

Robin Jia and Percy Liang. Data recombination for neural semantic parsing. In Proceedings
of the Annual Meeting of the Association for Computational Linguistics, 2016.

Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C Lawrence Zitnick,
and Ross Girshick. CLEVR: A diagnostic dataset for compositional language and elemen-
tary visual reasoning. Proceedings of the Conference on Computer Vision and Pattern
Recognition, 2017a.

Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Judy Hoffman, Li Fei-Fei,
C Lawrence Zitnick, and Ross Girshick. Inferring and executing programs for visual
reasoning. 2017b.

Sahar Kazemzadeh, Vicente Ordonez, Mark Matten, and Tamara L Berg. ReferItGame:
Referring to objects in photographs of natural scenes. In Proceedings of the Conference
on Empirical Methods in Natural Language Processing, 2014.

Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in polynomial time.
Machine Learning, 2002.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceed-
ings of the International Conference on Learning Representations, 2014.

Emanuel Kitzelmann and Ute Schmid. Inductive synthesis of functional programs: An
explanation based generalization approach. Journal of Machine Learning Research, 2006.

George Konidaris and Andrew G Barto. Building portable options: Skill transfer in re-
inforcement learning. In Proceedings of the International Joint Conference on Artificial
Intelligence, 2007.

George Konidaris, Scott Kuindersma, Roderic Grupen, and Andrew Barto. Robot learning
from demonstration by constructing skill trees. International Journal of Robotics Research,
2011.

Jayant Krishnamurthy and Thomas Kollar. Jointly learning to parse and perceive: Connect-
ing natural language to the physical world. Transactions of the Association for Computa-
tional Linguistics, 2013.

BIBLIOGRAPHY 87

Jayant Krishnamurthy and Tom Mitchell. Vector space semantic parsing: A framework for
compositional vector space models. In Proceedings of the Workshop on Continuous Vector
Space Models and their Compositionality, 2013.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems,
2012.

Alexander Kuhnle and Ann Copestake. ShapeWorld: A new test methodology for multimodal
language understanding. arXiv preprint arXiv:1704.04517, 2017.

Tejas D Kulkarni, Karthik R Narasimhan, Ardavan Saeedi, and Joshua B Tenenbaum. Hi-
erarchical deep reinforcement learning: Integrating temporal abstraction and intrinsic
motivation. In Advances in Neural Information Processing Systems, 2016.

M Pawan Kumar, Benjamin Packer, and Daphne Koller. Self-paced learning for latent
variable models. In Advances in Neural Information Processing Systems, 2010.

Nate Kushman and Regina Barzilay. Using semantic unification to generate regular expres-
sions from natural language. In Proceedings of the Annual Meeting of the North American
Chapter of the Association for Computational Linguistics, 2013.

Tom Kwiatkowski, Luke Zettlemoyer, Sharon Goldwater, and Mark Steedman. Inducing
probabilistic CCG grammars from logical form with higher-order unification. In Proceed-
ings of the Conference on Empirical Methods in Natural Language Processing, 2010.

Tom Kwiatkowski, Luke Zettlemoyer, Sharon Goldwater, and Mark Steedman. Lexical gener-
alization in CCG grammar induction for semantic parsing. In Proceedings of the Conference
on Empirical Methods in Natural Language Processing, 2011.

Tom Kwiatkowski, Eunsol Choi, Yoav Artzi, and Luke Zettlemoyer. Scaling semantic parsers
with on-the-fly ontology matching. In Proceedings of the Conference on Empirical Methods
in Natural Language Processing, 2013.

Tessa Lau, Steven A Wolfman, Pedro Domingos, and Daniel S Weld. Programming by
demonstration using version space algebra. Machine Learning, 2003.

Angeliki Lazaridou, Nghia The Pham, and Marco Baroni. Towards multi-agent
communication-based language learning. arXiv preprint arXiv:1605.07133, 2016.

Angeliki Lazaridou, Alexander Peysakhovich, and Marco Baroni. Multi-agent cooperation
and the emergence of (natural) language. In Proceedings of the International Conference
on Learning Representations, 2017.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

BIBLIOGRAPHY 88

Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, and F Huang. A tutorial on energy-
based learning. Predicting structured data, 2006.

Mike Lewis and Mark Steedman. Combining distributional and logical semantics. Transac-
tions of the Association for Computational Linguistics, 2013.

Percy Liang, Michael Jordan, and Dan Klein. Learning dependency-based compositional se-
mantics. In Proceedings of the Human Language Technology Conference of the Association
for Computational Linguistics, Portland, Oregon, 2011.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale
generation: Learning to solve and explain algebraic word problems. In Proceedings of the
Annual Meeting of the Association for Computational Linguistics, 2017.

Mateusz Malinowski, Marcus Rohrbach, and Mario Fritz. Ask your neurons: A neural-
based approach to answering questions about images. In Proceedings of the International
Conference on Computer Vision, 2015.

Bhaskara Marthi, David Lantham, Carlos Guestrin, and Stuart Russell. Concurrent hier-
archical reinforcement learning. In Proceedings of the Meeting of the Association for the
Advancement of Artificial Intelligence, 2004.

Cynthia Matuszek, Nicholas FitzGerald, Luke Zettlemoyer, Liefeng Bo, and Dieter Fox. A
joint model of language and perception for grounded attribute learning. In Proceedings of
the International Conference on Machine Learning, 2012.

Brian McMahan and Matthew Stone. A Bayesian model of grounded color semantics. Trans-
actions of the Association for Computational Linguistics, 2015.

Ishai Menache, Shie Mannor, and Nahum Shimkin. Q-cut: Dynamic discovery of sub-goals in
reinforcement learning. In Proceedings of the European Conference on Machine Learning,
2002.

Yishu Miao and Phil Blunsom. Language as a latent variable: Discrete generative models for
sentence compression. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing, 2016.

Will Monroe, Noah D Goodman, and Christopher Potts. Learning to generate compositional
color descriptions. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing, 2016.

Richard Montague. The proper treatment of quantification in ordinary english. In Approaches
to natural language. 1973.

Karthik Narasimhan, Regina Barzilay, and Tommi Jaakkola. Deep transfer in reinforcement
learning by language grounding. arXiv preprint arXiv:1708.00133, 2017.

BIBLIOGRAPHY 89

Arvind Neelakantan, Quoc V Le, and Ilya Sutskever. Neural programmer: Inducing la-
tent programs with gradient descent. In Proceedings of the International Conference on
Learning Representations, 2016.

Scott Niekum, Sarah Osentoski, George Konidaris, Sachin Chitta, Bhaskara Marthi, and An-
drew G Barto. Learning grounded finite-state representations from unstructured demon-
strations. International Journal of Robotics Research, 2015.

Hyeonwoo Noh, Paul Hongsuck Seo, and Bohyung Han. Image question answering using
convolutional neural network with dynamic parameter prediction. In Proceedings of the
Conference on Computer Vision and Pattern Recognition, 2016.

Junhyuk Oh, Satinder Singh, Honglak Lee, and Pushmeet Kohli. Zero-shot task general-
ization with multi-task deep reinforcement learning. In Proceedings of the International
Conference on Machine Learning, 2017.

Brooks Paige and Frank Wood. Inference networks for Sequential Monte Carlo in graphical
models. In Proceedings of the International Conference on Machine Learning, volume 48,
2016.

Ron Parr and Stuart Russell. Reinforcement learning with hierarchies of machines. In
Advances in Neural Information Processing Systems, 1998.

Panupong Pasupat and Percy Liang. Compositional semantic parsing on semi-structured
tables. In Proceedings of the Annual Meeting of the Association for Computational Lin-
guistics, 2015.

Panupong Pasupat and Percy Liang. Inferring logical forms from denotations. In Proceedings
of the Annual Meeting of the Association for Computational Linguistics, 2016.

PA Prather and Joshua Bacon. Developmental differences in part/whole identification. Child
development, 1986.

Doina Precup. Temporal abstraction in reinforcement learning. PhD thesis, University of
Massachusetts, Amherst, 2000.

John C Raven. Mental tests used in genetic studies: The performance of related individuals
on tests mainly educative and mainly reproductive. Unpublished master’s thesis, University
of London, 1936.

Scott Reed and Nando de Freitas. Neural programmer-interpreters. In Proceedings of the
International Conference on Learning Representations, 2015.

Scott Reed, Zeynep Akata, Honglak Lee, and Bernt Schiele. Learning deep representations
of fine-grained visual descriptions. In Proceedings of the Conference on Computer Vision
and Pattern Recognition, 2016.

BIBLIOGRAPHY 90

Mengye Ren, Ryan Kiros, and Richard S. Zemel. Image question answering: A visual seman-
tic embedding model and a new dataset. In Advances in Neural Information Processing
Systems, 2015.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Why should I trust you? explain-
ing the predictions of any classifier. In Proceedings of the International Conference on
Knowledge Discovery and Data Mining, 2016.

Tim Rocktäschel and Sebastian Riedel. End-to-end differentiable proving. In Advances in
Neural Information Processing Systems, 2017.

Stéphane Ross, Geoffrey J Gordon, and Drew Bagnell. A reduction of imitation learning
and structured prediction to no-regret online learning. In Proceedings of the International
Conference on Artificial Intelligence and Statistics, 2011.

Maayan Roth, Reid Simmons, and Manuela Veloso. Reasoning about joint beliefs for
execution-time communication decisions. In Proceedings of the International Joint Con-
ference on Autonomous Agents and Multiagent Systems, 2005.

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lil-
licrap. Meta-learning with memory-augmented neural networks. In Proceedings of the
International Conference on Machine Learning, 2016.

Jürgen Schmidhuber. Evolutionary principles in self-referential learning. Diplom Thesis,
Institut für Informatik, Technische Universität München, 1987.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. Trust
region policy optimization. In Proceedings of the International Conference on Machine
Learning, 2015.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. In Proceedings of
the International Conference on Learning Representations, 2016.

Rama Nath Sharma. The astadhyayi of Panini: English translation of adhyayas seven and
eight with Sanskrit text, transliteration, word-boundary, anuvrtti, vrtti, explanatory notes,
derivational history of examples, and indices. Munshirm Manoharlal Pub Pvt Limited,
2003.

K Simonyan and A Zisserman. Very deep convolutional networks for large-scale image recog-
nition. arXiv preprint arXiv:1409.1556, 2014.

Rishabh Singh and Sumit Gulwani. Learning semantic string transformations from examples.
In Proceedings of the International Conference on Very Large Databases, 2012.

BIBLIOGRAPHY 91

Jake Snell, Kevin Swersky, and Richard S Zemel. Prototypical networks for few-shot learning.
In Advances in Neural Information Processing Systems, 2017.

Richard Socher, Brody Huval, Christopher Manning, and Andrew Ng. Semantic compo-
sitionality through recursive matrix-vector spaces. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing, 2012.

Richard Socher, John Bauer, Christopher D. Manning, and Andrew Y. Ng. Parsing with
compositional vector grammars. In Proceedings of the Annual Meeting of the Association
for Computational Linguistics, 2013.

Richard Socher, Andrej Karpathy, Quoc V Le, Christopher D Manning, and Andrew Y
Ng. Grounded compositional semantics for finding and describing images with sentences.
Transactions of the Association for Computational Linguistics, 2014.

Shashank Srivastava, Igor Labutov, and Tom Mitchell. Joint concept learning and semantic
parsing from natural language explanations. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, 2017.

Martin Stolle and Doina Precup. Learning options in reinforcement learning. In Proceedings
of the International Symposium on Abstraction, Reformulation, and Approximation, 2002.

Hendrik Strobelt, Sebastian Gehrmann, Bernd Huber, Hanspeter Pfister, and Alexander M
Rush. Visual analysis of hidden state dynamics in recurrent neural networks. IEEE
Transactions on Visualization and Computer Graphics, 2016.

Alane Suhr, Mike Lewis, James Yeh, and Yoav Artzi. A corpus of natural language for visual
reasoning. In Proceedings of the Annual Meeting of the Association for Computational
Linguistics, 2017.

Sainbayar Sukhbaatar, Arthur Szlam, and Rob Fergus. Learning multiagent communication
with backpropagation. In Advances in Neural Information Processing Systems, 2016.

Ilya Sutskever, Oriol Vinyals, and Quoc Le. Sequence to sequence learning with neural
networks. In Advances in Neural Information Processing Systems, 2014.

Richard S Sutton, Doina Precup, and Satinder Singh. Between MDPs and semi-MDPs: A
framework for temporal abstraction in reinforcement learning. Artificial Intelligence, 1999.

Stefanie Tellex, Thomas Kollar, Steven Dickerson, Matthew R. Walter, Ashis Gopal Baner-
jee, Seth Teller, and Nicholas Roy. Understanding natural language commands for robotic
navigation and mobile manipulation. In In Proceedings of the National Conference on
Artificial Intelligence, 2011a.

Stefanie Tellex, Thomas Kollar, Steven Dickerson, Matthew R Walter, Ashis Gopal Baner-
jee, Seth Teller, and Nicholas Roy. Approaching the symbol grounding problem with
probabilistic graphical models. AI magazine, 2011b.

BIBLIOGRAPHY 92

Tijmen Tieleman. RMSProp (unpublished), 2012.

Geoffrey G Towell and Jude W Shavlik. Knowledge-based artificial neural networks. Artificial
Intelligence, 1994.

Ramakrishna Vedantam, Samy Bengio, Kevin Murphy, Devi Parikh, and Gal Chechik.
Context-aware captions from context-agnostic supervision. In Proceedings of the Con-
ference on Computer Vision and Pattern Recognition, 2017.

Alexander Vezhnevets, Volodymyr Mnih, John Agapiou, Simon Osindero, Alex Graves, Oriol
Vinyals, and Koray Kavukcuoglu. Strategic attentive writer for learning macro-actions.
In Advances in Neural Information Processing Systems, 2016.

Oriol Vinyals, Charles Blundell, Tim Lillicrap, Koray Kavukcuoglu, and Daan Wierstra.
Matching networks for one shot learning. In Advances in Neural Information Processing
Systems, 2016.

Adam Vogel and Dan Jurafsky. Learning to follow navigational directions. In Proceedings
of the Annual Meeting of the Association for Computational Linguistics. Association for
Computational Linguistics, 2010.

Adam Vogel, Max Bodoia, Christopher Potts, and Daniel Jurafsky. Emergence of Gricean
maxims from multi-agent decision theory. In Proceedings of the Human Language Tech-
nology Conference of the North American Chapter of the Association for Computational
Linguistics, 2013a.

Adam Vogel, Christopher Potts, and Dan Jurafsky. Implicatures and nested beliefs in ap-
proximate decentralized-pomdps. In Proceedings of the Annual Meeting of the Association
for Computational Linguistics, 2013b.

P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and P. Perona. Caltech-
UCSD Birds 200. Technical Report CNS-TR-2010-001, California Institute of Technology,
2010.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist rein-
forcement learning. Machine learning, 1992.

Andrew Gordon Wilson, Been Kim, and William Herlands. Proceedings of NIPS Workshop
on Interpretable Machine Learning for Complex Systems. 2016.

Terry Winograd. Understanding natural language. Cognitive psychology, 1972.

Yuk Wah Wong and Raymond Mooney. Learning for semantic parsing with statistical ma-
chine translation. In Proceedings of the Human Language Technology Conference of the
North American Chapter of the Association for Computational Linguistics, pages 439–446,
New York, New York, 2006.

BIBLIOGRAPHY 93

Yuk Wah Wong and Raymond J. Mooney. Learning synchronous grammars for semantic
parsing with lambda calculus. In Proceedings of the Annual Meeting of the Association
for Computational Linguistics, 2007.

Huijuan Xu and Kate Saenko. Ask, attend and answer: Exploring question-guided spatial
attention for visual question answering. In Proceedings of the European Conference on
Computer Vision, 2016.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Aaron Courville, Ruslan Salakhutdinov, Richard Zemel,
and Yoshua Bengio. Show, attend and tell: neural image caption generation with visual
attention. In Proceedings of the International Conference on Machine Learning, 2015.

Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng, and Alex Smola. Stacked attention
networks for image question answering. In Proceedings of the Conference on Computer
Vision and Pattern Recognition, 2017.

Pengcheng Yin, Zhengdong Lu, Hang Li, and Ben Kao. Neural enquirer: Learning to query
tables. In Proceedings of the International Joint Conference On Artificial Intelligence,
2017.

Licheng Yu, Hao Tan, Mohit Bansal, and Tamara L Berg. A joint speaker-listener-reinforcer
model for referring expressions. In Proceedings of the Conference on Computer Vision and
Pattern Recognition, 2017.

Matthew D Zeiler. ADADELTA: An adaptive learning rate method. arXiv preprint
arXiv:1212.5701, 2012.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks.
In Proceedings of the European Conference on Computer Vision, 2014.

Bolei Zhou, Yuandong Tian, Sainbayar Sukhbaatar, Arthur Szlam, and Rob Fergus. Simple
baseline for visual question answering. arXiv preprint arXiv:1512.02167, 2015.

	Contents
	List of Figures
	List of Tables
	Introduction
	Module Networks: Language and Reasoning
	Motivations
	Deep Networks as Functional Programs
	Related Work
	Model
	Experiments
	Discussion

	Policy Sketches: Language and Behavior
	Related Work
	Learning Modular Policies from Sketches
	Experiments
	Discussion

	Latent Descriptions: Language and Learning
	Background
	Learning with Language
	Model and Training Details
	Few-shot Classification
	Programming by Demonstration
	Policy Search
	Other Related Work
	Discussion

	Translating Neuralese: Language and Belief
	Related Work
	Problem Formulation
	What's in a Translation?
	Translation Models
	Modeling details
	Belief and Behavior
	Evaluation
	Results
	Discussion

	Conclusion
	Policy Sketches
	Latent Descriptions
	Examples: ShapeWorld
	Examples: Navigation

	Translating Neuralese
	Proof of Proposition 1

	Bibliography

