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Abstract. Surface ozone (O3) pollution levels are strongly correlated with daytime surface temperatures, especially in highly 

polluted regions. This correlation is nonlinear and occurs through a variety of temperature dependent mechanisms related to 

O3 precursor emissions, lifetimes, and reaction rates, making the reproduction of temperature sensitivities – and the 

projection of associated human health risks – a complex problem. Here we explore the summertime O3-temperature 10 

relationship in the United States and Europe using the chemical transport model GEOS-Chem. We remove the temperature 

dependence of several mechanisms most frequently cited as causes of the O3-temperature “climate penalty”, including: PAN 

decomposition, soil NOx emissions, biogenic VOC emissions, and dry deposition. We quantify the contribution of each 

mechanism to the overall correlation between O3 and temperature both individually and collectively. Through this analysis 

we find that the thermal decomposition of PAN can explain, on average, 20% of the overall O3-temperature correlation in the 15 

United States. The effect is weaker in Europe, explaining 9% of the overall O3-temperature relationship. The temperature 

dependence of biogenic emissions contributes 3% and 9% of the total O3-temperature correlation in the United States and 

Europe on average, while temperature dependent deposition (6% and 1%) and soil NOx emissions (10% and 7%) also 

contribute. Even considered collectively these mechanisms explain less than 46% of the modeled O3-temperature correlation 

in the United States and 36% in Europe. We use commonality analysis to demonstrate that covariance with other 20 

meteorological phenomena such as stagnancy and humidity can explain the bulk of the remainder of the O3-temperature 

correlation. Thus, we demonstrate that the statistical correlation between O3 and temperature alone may greatly overestimate 

the direct impacts of temperature on O3, with implications for the interpretation of policy-relevant metrics such as “climate 

penalty”. 

1 Introduction 25 

Tropospheric ozone (O3)  negatively influences human health, agricultural crop yields, and ecosystem integrity (Monks et 

al., 2015; World Health Organization, 2006; Tai et al., 2014; Fuhrer et al., 2016). As a secondary pollutant, O3 is not directly 

emitted from natural or anthropogenic sources, but rather forms as a result of photochemistry in the presence of precursors 

including nitrogen oxides (NOx), carbon monoxide (CO), and volatile organic compounds (VOCs). While the chemical 
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processes leading to the formation of tropospheric O3 are well understood, the sensitivity of O3 production to changes in 

ambient conditions and precursor concentrations are complex and nonlinear. Local NOx and VOC emissions are two of the 

most important contributors to daytime tropospheric O3 production, but the ratio between the two can be as important as the 

overall emission magnitudes themselves (Sillman, 1999). NOx/VOC emission ratios of roughly 1:8 produce the highest O3 

production rates in simplified box models (Sillman and He, 2002). Therefore, increases in precursor emissions might 5 

increase, maintain, or even reduce O3 concentrations, depending on the initial NOx/VOC ratio. 

Further contributing to this complexity, O3 formation and transport are highly sensitive to local meteorological conditions 

(Elminir, 2005). Precursor emissions and concentrations themselves can depend on the weather, for example in the case of 

temperature-dependent emission of biogenic VOCs from vegetation (Guenther et al., 1995). As a product of photochemical 

reactions, tropospheric O3 formation also requires sunlight, and can be sensitive to atmospheric stability, transport, and 10 

mixing conditions. Hot, sunny, stagnant conditions are often associated with the greatest risk of extreme O3 events, as these 

days typically provide the ideal combination of precursor concentrations, photochemical reactions, and stable conditions for 

the pollutant to form and persist over an extended period of time (Jacob et al., 1993; Lin et al., 2001). 

Because of this sensitivity to climate, increases in continental surface O3 have been identified as a possible negative side 

effect of a warming climate, a relationship commonly referred to as the “ozone climate penalty”. First coined in 2008 by Wu 15 

et al., the climate penalty quantifies the additional ozone present in a warmer environment, as well as the additional 

anthropogenic emissions reductions necessary to compensate for this enhanced O3 production. Given a 2-5 ppbv increase in 

O3 expected with 2050 climate projections, Wu et al. concluded that an additional 10% reduction in NOx emissions would be 

necessary to mitigate these climate-driven ozone increases, above and beyond the ongoing reduction in NOx emissions 

observed across much of the industrialized northern mid-latitudes. This climate penalty is highly region-specific, depending 20 

on both current local conditions as well as the nature of future changes. In related work, Bloomer et al., 2009 defined the 

slope of the observed daily O3/temperature correlation as the “climate penalty factor”, and found a decreasing trend in this 

factor over time as a result of NOx emission reduction efforts. 

While not synonymous, the long-term climate penalty defined by Wu et al. and the daily climate penalty factor calculated by 

Bloomer et al. can be understood to be driven by a similar set of temperature-dependent mechanisms. Previous work has 25 

examined this temperature-O3 relationship and identified several mechanisms most likely to be responsible, in particular 

temperature-dependent biogenic VOC emissions and PAN dissociation rates (Jacob et al., 1993; Sillman and Samson, 1995; 

Jacob and Winner, 2009). Additionally, the temperature dependence of natural soil NOx emissions (Yienger and Levy, 1995) 

and O3 dry deposition (Wesely, 1989) have been recognized in previous studies, and could contribute to the overall O3-

temperature correlation. Each of these four mechanisms are included in typical chemical transport models (CTMs) used to 30 

study atmospheric chemistry, making these models useful tools for estimating the relative contributions of each mechanism 

to the overall O3-temperature relationship. 
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2 Model Description 

To investigate the relative importance of each temperature-dependent mechanism in governing the overall O3-temperature 

relationship we explore multiple regional sensitivity cases with the chemical transport model GEOS-Chem v9-02 

(www.geos-chem.org ). GEOS-Chem is driven by assimilated meteorology from the NASA Global Modeling and 

Assimilation Office (GMAO); here we use the GEOS-5 product for 2010-2011. Our simulations over North America and 5 

Europe are performed at the native grid horizontal resolution of 0.5°x0.667° with 47 vertical levels. Boundary conditions are 

provided from a global GEOS-Chem simulation at 2°x2.5° horizontal resolution. 

The default tropospheric chemical mechanism in GEOS-Chem v9-02 includes a description of NOx-hydrocarbon-O3-aerosol 

chemistry with over 120 species which participate in over 400 kinetic and photolytic reactions (Mao et al., 2013). To better 

capture the temperature dependence of O3 formation as a result of biogenic emissions, we add monoterpene chemistry to the 10 

standard GEOS-Chem v9-02 gas-phase mechanism following Fisher et al. (2016), as in Porter et al. (2017). We use the 

EPA’s NEI2005 emissions inventory for anthropogenic emissions over the United States after scaling them up to match 

NEI2011 national totals for the years 2010 and 2011, then reducing NOx emissions following the recommendations of Travis 

et al. (2016). European anthropogenic emissions are taken from EMEP inventories (Auvray and Bey, 2005). To represent 

global biomass burning we use the GFED3 inventory (Mu et al., 2011). NOx emissions from lightning are treated using a 15 

modified parameterization first developed by Price and Rind (1992) and further constrained by satellite data (Murray et al., 

2012). Soil NOx emissions and biogenic hydrocarbon emissions are calculated online following the Hudman et al. (2012) 

and MEGAN2.1 (Guenther et al., 2012) schemes. Dry deposition is modeled using the Wesely “resistor in series” approach 

(1989). Wet removal includes contributions from scavenging in convective updrafts, in-cloud rainout and below-cloud 

washout and is described by Amos et al. (2012). 20 

GEOS-Chem has been shown to reproduce key spatiotemporal features of surface and column ozone observations, though 

biases and uncertainties are also known (Zhang et al., 2011; Hu et al., 2017). In particular, uncertainties in anthropogenic 

emission inventories (Travis et al., 2016), various drivers of biogenic emissions (Arneth et al., 2011; Vinken et al., 2014), 

and lightning NOx (Murray, 2016) have been found to play important roles the variability of tropospheric ozone and its 

precursors. Uncertainties in spatial inputs, including the datasets used to drive biogenic emissions such as plant functional 25 

type and leaf area index distributions, can also influence the resulting biogenic emissions and ozone impacts, and changes or 

updates to these inputs would influence the magnitude and distribution of the resulting temperature sensitivities (Guenther et 

al., 2006; Arneth et al., 2011). Ongoing advances in the development of chemical mechanisms relevant to ozone formation 

and loss (Mao et al., 2013; Sherwen et al., 2016) have also underscored the importance of chemistry. While a full analysis of 

the sensitivity of the O3/T relationship to each of these factors is beyond the scope of this work, uncertainties in these and 30 

other modeled parameters and inputs can all influence both overall ozone production as well as the temperature sensitivities 

examined here. 
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2.1 Ozone-Temperature Mechanisms in the GEOS-Chem Model 

The temperature dependence of biogenic VOC emissions (especially those of isoprene) has been frequently cited as an 

important mechanism contributing to the observed O3-temperature correlation (Wu et al., 2008; Jacob and Winner, 2009; 

Doherty et al., 2013; Rasmussen et al., 2013), but the magnitude of this biogenic contribution to O3-temperature sensitivity 

remains uncertain. Additional VOC emissions on hot days would be expected to increase O3 production in areas high in NOx, 5 

but other areas – especially those with a particularly low NOx/VOC ratio – might show constant or even reduced O3 levels 

due to ozone quenching (Loreto and Velikova, 2001), leading to an inverse relationship. Biogenic emissions also do not 

necessarily vary linearly with temperature. Isoprene emissions, for example, are observed to plateau and eventually shut 

down completely at very high temperatures (Harley et al., 1999). Representative isoprene and monoterpene emissions 

response curves are shown in the upper left of Figure 1, based on the GEOS-Chem implementation of MEGAN2.1. In the 10 

United States, isoprene and monoterpene emissions are highest in the southeast region, where high temperatures and foliage 

density provide ideal conditions in summer months (Figure 2, a and b). Europe is characterized by much lower emissions of 

isoprene overall, though monoterpene emitters are relatively common across the region (Figure 2, a and b). 

While NOx levels in the lower troposphere are dominated by anthropogenic sources throughout the year, natural processes 

can also play an important role (Zhang et al., 2003). Of the commonly recognized biogenic sources of NOx, emissions of NO 15 

as a result of microbial activity in the soil has the clearest and most widely observed temperature relationship (Williams et 

al., 1992). Building upon the work of Hudman et al. (2012) and others, GEOS-Chem includes an exponential temperature-

dependent factor for soil NOx emissions, with plateaus at 30C  (Figure 1, upper right), along with additional factors to 

account for vegetation type, soil moisture, fertilizer treatment, and canopy losses. This scheme has been shown to produce 

NO2 levels in broad agreement with satellite observations in terms of spatial and temporal variability, though a systematic 20 

underprediction in model results suggests that modeled soil emissions may need to be further increased overall (Vinken et 

al., 2014). Modeled summer NOx emissions vary greatly by location, peaking in the American Midwest and southern 

European countries, respectively (Figure 2c). 

As a so-called NOx reservoir species, PAN (CH3COO2NO2) serves as an important means of nitrogen transport and is one of 

the primary chemical links between O3 and daytime temperature. A product of reactions between non-methane VOCs and 25 

NOx, PAN has an atmospheric lifetime that is typically longer than its ozone-producing precursors. However, due to the 

temperature dependence of its primary sink – thermal decomposition – this lifetime varies significantly based on 

meteorological conditions, with warmer temperatures favoring PAN decomposition and thus local NOx production (Figure 1, 

bottom left and Fischer et al., 2014). This temperature-sensitivity has been identified as a dominant reason for the O3-

temperature relationship in past measurement and modeling studies (Beine et al., 1997; Dawson et al., 2007; Jacob and 30 

Winner, 2009). PAN concentrations tend to correlate with NOx emissions, and therefore modeled concentrations peak in the 

eastern United States as well as central Europe (Figure 2d), where anthropogenic emissions are highest. 
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Depositional loss to vegetation and other surfaces is a key sink of O3 and other pollutants. Traditional models of dry 

deposition processes use a “resistor-in-series” approach, in which barriers to O3 deposition through various pathways are 

parameterized and represented as an electrical circuit (Wesely, 1989). This model has had some success in reproducing 

observed patterns O3 deposition velocities, though large uncertainties remain due to the scarcity of long-term measurements 

(Silva and Heald, 2018). In the Wesely resistance scheme, surface temperature influences deposition rates in two ways: 5 

through a stomatal resistance term that is very high at two extremes (typically freezing temperatures and around 40 ºC) and 

reaches a minimum at some ideal temperature (Figure 1, bottom right), and an exponentially decreasing nonstomatal term 

designed to reduce deposition over frozen (or nearly frozen) surfaces. In typical summer environments across the United 

States and Europe, only the stomatal term is relevant in practice, linking extremely high temperatures with increased 

stomatal resistance, thereby increasing local O3 levels on very hot days. While observations of O3 dry deposition velocities 10 

relative to meteorological drivers show mixed results (Clifton et al., 2017), in principle large-scale increases in stomatal 

resistance as a result of changes in temperature could lead to increases in O3 concentrations. Summer O3 deposition 

velocities across the United States and Europe as simulated by GEOS-Chem tend to range from 0.2 to 0.5 cm/s, depending 

on local surface type and climatology (Figure 2e). 

3 Methodology 15 

To represent our control case we use a 2-year base scenario (BASE) for 2010-2011 in which temperature-dependent 

processes within GEOS-Chem are unchanged. We then sequentially remove the temperature dependence from the four key 

O3/T mechanisms discussed in Section 2.1 to explore the impact that each has on the overall O3/T relationship over a 3-

month summer time period (JJA), with an additional month for spinup (Table 1). Finally, we run nested regional simulations 

for each year over the United States and Europe, again discarding the first month of each run to focus on the three summer 20 

months (JJA). To isolate the impact of temperature dependence on biogenic emissions (BIO case), dry deposition (DEP 

case), and soil NOx emissions (SOIL case), we generate a set of hourly temperatures representing the mean summer (JJA) 

value at each nested grid cell. To do so, we generate mean hourly temperatures for each modeled grid cell by averaging each 

hour (0 through 23) across the 3 modeled months. This averaged diurnal cycle is then substituted into each examined 

mechanism in turn, resulting in a repeating temperature profile being applied to calculations related to the modified 25 

mechanism. Through this procedure, diurnal patterns are preserved while day-to-day temperature variability for that 

mechanism is removed, preventing it from directly influencing the overall daily O3-temperature correlation. In the PAN case, 

the default GEOS-Chem chemical mechanism is modified to remove temperature dependence from PAN dissociation by 

assuming a local constant temperature of 15º C everywhere for that particular reaction. 

To confirm that our four chosen mechanisms (biogenic VOC emissions, soil NOx emissions, PAN dissociation, and dry 30 

deposition) are in fact collectively responsible for most of the direct connection between temperature and O3 within GEOS-

Chem we perform an additional set of sensitivity tests over each of our regional domains. In one modified case we uniformly 
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increase all temperatures by 1º C, resulting in widespread increases in average surface O3 levels (Figure 3a). In a second 

modified case we again increase temperature by 1 ºC, but decouple temperature from the four chosen mechanisms using 

original mean hourly temperatures as described above. In the decoupled case, surface O3 shows negligible differences in 

mean surface O3 (Figure 3, b and c), indicating that the four decoupled mechanisms dominate the directly modeled O3/T 

relationship, with the residual O3 changes likely resulting from temperature-dependent chemical kinetics for species other 5 

than PAN. 

For observational comparison, we use data from the EPA’s Air Quality System (AQS) network of monitoring sites (US 

Environmental Protection Agency), as well as the AirBase air quality database maintained by the European Environment 

Agency (EEA). 

4 Results and Discussion 10 

The simulated O3-temperature relationship in GEOS-Chem for the two modeled summers, as represented by the slope of a 

gridded O3/T ordinary least squares (OLS) regression, is fairly consistent with AQS and AirBase observations, lending 

confidence to the use of modeled sensitivity comparisons to examine the significance of underlying mechanisms (Figure 4a). 

In both the United States and Europe, spatial patterns and overall mean values of the O3/T correlation are fairly well 

represented, though the full range of sensitivities is not reproduced in the model output (root mean squared error of 0.84 and 15 

0.79, mean bias of 0.02 ppbv O3 ºC-1 and -0.13 ppbv O3 ºC-1 for the United States and Europe respectively). In spite of the 

relatively strong agreement between modeled and observed O3/T correlations, we highlight a number of shortcomings in the 

modeled representation of this relationship which may explain the remaining discrepancies between the model and 

observations. For one, the anthropogenic emission inventories used in GEOS-Chem are independent of daily temperatures, 

while in reality there are connections between meteorological variability and emissions from human activities such as 20 

transportation and energy production. In addition, the grid cell size in GEOS-Chem is incapable of capturing the full 

diversity of subgrid meteorological phenomena, many of which may be important at the surface station level. Local 

temperature and O3 fluctuations may vary significantly from those of the gridded average. These issues, among others, may 

contribute to some of the differences seen in the comparison between observed and modeled sensitivities. In particular, the 

magnitude of both high and low extremes tends to be underestimated in gridded output from GEOS-Chem, resulting in a 25 

tighter distribution of modeled output and skewed slope of modeled vs. observed values, especially in Europe (Figure 4c). 

However, in spite of the notable differences between modeled and observed O3/T relationships at the tails of the 

distributions, a relatively small overall bias is apparent across station types in both urban and remote regions (Figure 4b). 

Here, the more remote stations associated with the National Park Service (NPS) are separated from the rest of the AQS 

dataset for comparison over the United States, while AirBase stations in Europe are split by station area category 30 

(Urban/Suburban and Rural). In each category, nearest-neighbor grid cells effectively capture the center of the observed 

distribution, even though extremes are not fully represented, particularly at rural European stations. 
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Given that the mean values and spatial distribution of regional O3/T sensitivities are generally consistent with observations, 

we analyze the mechanisms contributing to modeled sensitivities by decoupling them from temperature variability 

individually and simultaneously. Removing temperature dependence from the four chosen mechanisms has noticeable 

impacts on correlations between temperature and O3 in the simulated cases, with regional differences apparent in each case. 

For each of the 4 cases examined, the strength of the O3-temperature dependence (measured via the coefficient of 5 

determination R2) was examined through linear regression and compared to that seen in the BASE case. When subtracted 

from the BASE values, the resulting difference in R2 can be understood as the contribution of that particular mechanism to 

the overall modeled sensitivity (Figure 5). 

Temperature-dependent biogenic VOC emissions have a positive impact on O3-temperature correlation through most of the 

United States, especially around urban centers, but have a negative impact across much of the southeast. This is consistent 10 

with expectations based on NOx/VOC ratios (Figure 2f), in which NOx-rich regions experience a boost in O3 production 

when rising temperatures lead to additional VOC emissions. Much of the southeast region of the United States, however, is 

already saturated in VOCs (primarily isoprene), and thus additional emissions on hot days reduce O3 production efficiency, 

or even act as an O3 sink. The heavily forested northern regions of Europe are likewise less influenced (or even negatively 

influenced) by the temperature dependence of biogenic emissions, while the high NOx regions of central and southern 15 

Europe show strong positive contributions. Changes in R2 reach up to 0.14 and 0.21 in the United States and Europe 

respectively, representing on average 3% and 9% of the overall regional O3/T correlation (Figure 5). 

The impact of temperature-dependence in dry deposition is distributed roughly congruent with LAI coverage across the 

United States, contributing up to 0.14 to the O3/T R2 but only 0.02 on average. Little effect is seen in the heavily forested 

regions of Northern California and the Pacific Northwest, but since deposition is a removal effect and O3 levels are relatively 20 

low in those regions to begin with, changes in deposition rates could be expected to have minimal impact on the overall O3-

temperature relationship there. Relative contributions of deposition on a local basis, however, can represent over one quarter 

of the overall O3/T correlation in some US locations. The overall impact of temperature-dependent dry deposition is even 

less pronounced in Europe, reaching up to 0.08, but averaging less than 0.01 across the region. 

Temperature-dependent soil NOx emissions contribute around 0.04 to the coefficient of determination in both regions, 25 

representing 10% of the total R2 value in the United States and 7% in Europe. Notably, the impact of temperature-

dependence in soil emissions does not match up directly with the overall magnitude of those emissions themselves (Figure 

2c), indicating that this fluctuation represents a relatively minor and diffuse effect. Areas characterized by lower NOx/VOC 

ratios due in part to low NOx emissions (Figure 2f) are also more likely to exhibit stronger sensitivity to temperature-driven 

soil NOx variability. 30 

The temperature dependence of PAN decomposition is a strong contributor to the O3-temperature relationship in both the 

United States and Europe, particularly in the American Midwest, where the positive impact of this mechanism reaches 0.32. 

Impacts are also visible across most of the eastern United States, as well as California’s Southern and Central Valley regions, 

and the O3/T R2 increases by 0.07 on average in the US (almost 20% of the total mean). PAN temperature sensitivity is also a 
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strong contributor to the O3/T relationship in Europe by up to 0.14 (9% of total mean R2). Of the examined model 

mechanisms in the United States, PAN lifetime is the strongest overall contributor to the correlation between O3 and 

temperature, though it places a close second to biogenic emissions in Europe. 

While each modeled mechanism contributes to the overall O3/T relationship in the United States and Europe, none of them 

come close to completely explaining the BASE case correlation between O3 and T. Even when all temperature-dependent 5 

mechanisms are removed from the model (the ALL case), most regions still show O3-temperature sensitivities of 50% or 

more of their original BASE values as measured by R2. While there are uncertainties associated with comparing statistical 

sensitivities across these simulated cases, it seems clear that the O3-temperature relationship cannot be fully (or even mostly) 

explained by these 4 mechanisms within GEOS-Chem (Figure 5). 

Beyond the directly temperature-dependent emission and loss mechanisms examined within GEOS-Chem, many other 10 

meteorological effects can influence surface O3 levels, and correlations between these phenomena and temperature could 

show up as part of the observed O3-temperature correlation. For example, strong winds can act as a removal mechanism for 

locally produced O3. If strong winds are also correlated to cooler temperatures, this would show up as a positive correlation 

between O3 and temperature, despite the lack of any explicit temperature-dependent mechanism. While decoupling other 

meteorological processes from temperature in the manner demonstrated above can be highly problematic, even within a 15 

model, statistical methodologies such as commonality analysis allow for some degree of attribution of observed predictive 

power between temperature and the other meteorological drivers (Seibold and McPhee, 1979). Derived from the analysis of 

linear regression output, commonality analysis involves the calculation of R2 values for all possible permutations of predictor 

variables included in the analysis. These R2 values are then compared, allowing for the calculation of explained variability 

that is uniquely provided by one variable or another, along with explained variability that is shared between two or more of 20 

the covariates. For the purposes of this study, “unique” refers to that portion of a variables correlation with the response 

variable (ozone) that is not shared with any other predictor, while “shared” refers to the portion of the correlation that could 

be attributed to multiple predictors. A more detailed explanation of the equations involved, as well as examples of their 

application, can be found in Seibold and McPhee, 1979. 

To quantify the contributions of meteorological variables to the modeled O3-temperature correlation, we apply commonality 25 

analysis to all gridded output. Through this methodology we are able to decompose all gridded surface O3-temperature R2 

values into unique and shared contributions among each of the 5 variables examined, which are summarized in Table 2: 

maximum daily temperature (T), humidity (HUM, represented by dew point temperature), mean wind speed (WSPD), wind 

direction (WDIR), change in mean surface pressure (∆P), and planetary boundary layer height (PBL). The unique 

correlations for each of these variables are shown in Figure 6, along with the portion of their correlation shared with any 30 

other variables (in the case of T) or shared with daily maximum temperature (in the case of the other 5 meteorological 

variables). 

Each “unique” component represents the portion of explained variability that could be explained solely by one 

meteorological variable among the 6, meaning that the R2 value would be expected to drop by that amount if the predictor 
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were removed from the linear fitting equation. “Shared” components can be understood as overlap between predictor 

variable contributions, meaning that the actual mechanism responsible for the correlation might reasonably be attributed to 

any of the involved predictors. While this methodology is imperfect, especially given the assumption that not all relevant 

meteorological processes are represented by these 6 predictors, it does provide additional insight on how and where the O3-

temperature correlation might be at least partially explained by correlation with other meteorological phenomena.  5 

As shown, temperature has the strongest and most widespread unique correlation with O3 variability of any of the 6 

meteorological variables included in both the United States and Europe. However, even this strong unique contribution is 

significantly less than the magnitude of the shared component, meaning that collectively the remaining 5 predictors could 

potentially explain the majority of the predictive power that temperature offers alone. The overall predictive power for each 

meteorological variable, along with the respective shared and unique components, can be further visualized through their 10 

mean values across all grid cells. Figure 7 shows region-averaged attribution of shared and unique correlation through 

stacked columns: each individual column height shows the total correlation (in the form of R2) between ozone and a single 

meteorological variable, while individually shaded sections differentiate unique and shared components. In each 

meteorological column that particular variable’s unique contribution is at the bottom, and shared contributions are grouped 

where possible into clusters of two or three total variables for clarity. To best represent the unique contribution of 15 

temperature, commonality analysis presented here is performed on the ALL case, with all four chosen temperature dependent 

mechanisms decoupled. The difference in total correlation between ALL and BASE cases (which are driven by identical 

meteorology) is then added into the unique temperature contribution, as this gap can be fully attributed to temperature 

dependence. Therefore, performing commonality analysis on the BASE case alone would underpredict the unique 

temperature contribution, since some percentage of variability driven specifically by temperature-dependent mechanisms 20 

could also correlate with other meteorological variables. Combining commonality analysis along with the results of the 

BASE-ALL comparison makes full use of the attribution information contained in each, since any lost correlation with 

temperature dependent mechanisms turned off can be attributed directly to temperature alone, better constraining the 

commonality analysis itself. Through this analysis it is apparent that over half of the O3-temperature relationship in the 

United States and Europe (shown by the left-most bar in each panel) can be explained through correlation with one or more 25 

meteorological covariates, especially wind direction, humidity, and planetary boundary layer height. Europe shows an even 

stronger overall correlation between temperature and O3, and much of that increase appears to be related to a stronger 

influence from wind and humidity. 

We note that these unique and shared designations are heavily dependent on predictor variable choice and would certainly 

vary when calculated using a different set of meteorological predictor variables. Uniqueness in these figures should, 30 

therefore, be taken as an upper limit estimate, as the inclusion of additional meteorological covariates could demonstrate 

commonality with temperature where this six-variable set does not. Furthermore, commonality shared between 

meteorological variables does not imply causation by any one of the members – it only indicates shared statistical predictive 

power and the possibility of alternative O3-producing mechanisms. However, there are a number of possible mechanisms 
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that could explain some of the predictive power demonstrated by non-temperature variables. Wind speed and direction have 

perhaps the most straightforward meteorological relationship to O3, and they represent transport of the pollutant either to or 

away from its source location. Wind speed is generally inversely correlated to high temperatures, and stable conditions are 

also favorable for the build-up and retention of high O3 concentrations. Depending on local topography and pressure 

patterns, wind direction can also correlate strongly with changes in temperature, shifting the final destination of polluted air 5 

masses from one location to another. Previous work described a relatively small role for these advective mechanisms 

(Camalier et al., 2007), but the results here suggest that, after temperature-specific mechanisms have been accounted for, 

wind speed and direction together account for a larger fraction of explained O3 variance than previously suggested. Humidity 

can influence O3 formation in a number of ways, both directly and indirectly. Water vapor itself participates in competing 

O3-related effects: water molecules act as O3 sinks by reacting with O(1D) atoms to produce OH, preventing the excited 10 

oxygen from re-generating O3. However, in polluted conditions the OH can then act as an O3 precursor itself, potentially 

increasing production through reactions with CO and VOCs. These competing effects may explain the relatively weak 

unique contribution of humidity on average, though the high shared fraction (especially in Europe) suggests that other 

indirect impacts may be involved, such as correlation with cloud cover or fog. Mixing depth has shown mixed results as a 

predictor for ozone in past studies as well (Jacob and Winner, 2009), as the impact of PBL variability depends strongly on 15 

location and local conditions. Areas with low surface O3 can show positive correlations with mixing layer height due to the 

entrainment of higher concentrations from aloft, while polluted regimes can show strongly negative correlations due to the 

higher concentrations of trapped precursors on low PBL days. 

Although the specific mechanisms through which the non-temperature meteorological variables are not identified through 

this statistical methodology, it is apparent that the majority of modeled O3-temperature correlation left unexplained with the 20 

decoupling of temperature dependent mechanisms (T/O3 R2 in the ALL case, Figure 5) can itself be explained in principle 

through covariance with other meteorological variables, indicating that this covariance could explain the residual correlation 

left over when temperature dependent mechanisms are turned off within GEOS-Chem. While the difference in O3/T 

correlation between the BASE and ALL cases show that these temperature dependent mechanisms do indeed strongly 

influence the O3-temperature correlation across a large portion of the northern United States and southern Europe (Figure 8, 25 

top), the remaining correlation makes up the larger overall fraction. Shared explanatory power, as indicated by the shared 

contribution of temperature in the ALL case (Figure 8, middle), indicates that covariance with one or more additional 

meteorological variables could explain most of the remaining O3/T correlation (Figure 8, bottom). In this panel, red areas of 

each column represent the fraction of BASE O3/T correlation that is lost through the decoupling of temperature-dependent 

mechanisms, blue areas show the shared fraction of remaining temperature dependence in the ALL case, and the gray region 30 

represents remaining O3 variability that is uniquely explained by temperature but unaffected by the 4 described mechanisms. 

This remaining correlation could be the result of imperfectly chosen meteorological variables, residual temperature 

dependence within the model from chemistry or other mechanisms, or other fluctuations in emissions or other inputs that 

happen to covary with temperature. 
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While day-to-day O3-temperature variability is a useful and commonly examined metric for estimating future changes in air 

quality under a warming climate, it presents challenges with respect to the extrapolation of daily variability into long-term 

trends. For example, areas that exhibit little day-to-day variability in summer temperature over the study period may appear 

to be insensitive to climate change, even though the low O3-temperature correlation is simply a result of short-term 

climatological stability. The temperature perturbation cases described previously and shown in Figure 3a provide some 5 

additional information on how the daily sensitivities examined here compare to larger, long term shifts. Figure 9 shows the 

distribution of O3/T sensitivities (top panels), both as a whole (black fill) and considering only the 4 key mechanisms 

previously examined (blue fill). These distributions can then be compared to the distribution of O3 changes apparent with a 

simple temperature perturbation (bottom panels), which intrinsically includes no other meteorological covariance. While the 

day-to-day correlation between O3 and temperature from all modeled drivers (Figure 9, top, black fill) predicts increases in 10 

O3 of around 1.4 ppb for a 1 ºC increase in temperature, roughly half of that is attributable to the examined mechanisms 

alone.  This portion attributed to mechanisms alone is consistent with the mean change in O3 observed from a 1 ºC increase 

in temperature (0.58 ppb in the US and 0.47 ppb in Europe). Together, the consistency of these two outcomes indicates that 

projections of O3 concentrations under future climate scenarios will be dependent on an accurate representation of 

temperature dependent meteorology and dynamics, and that models relying on temperature dependent emissions and 15 

chemical mechanisms alone may underpredict the strength of O3/T sensitivities by over 60%. 

Model behavior can be further analyzed through comparison to surface station observations, which reveals a significant 

difference (P < 0.001) in model skill (as measured by modeled vs. observed daily mean O3) when grouping stations by 

overall O3/T correlation as well as by the relative importance of modeled mechanisms (Figure 10). Matching observations 

from the EPA’s AQS network in the United States and the EEA’s AirBase dataset for Europe with nearest neighbor grid 20 

cells from GEOS-Chem output shows that model skill tends to be higher in regions characterized with above-average O3-

temperature correlation (BASE case O3-temperature R2 > 0.42). While this does not imply that temperature dependent 

processes are all modeled correctly, it does at least suggest that temperature-based drivers tend to be better captured by the 

model than other influences on O3 variability. However, splitting observed stations based on the relative importance of 

internally modeled mechanisms shows that more work may need to be done on these implementations. Grid cells in which 25 

the modeled O3-temperature relationship was dominated by temperature dependent mechanisms (greater than 50% of the O3-

temperature correlation lost when temperature dependence was removed in the ALL case) showed much less overall 

predictive power when compared to the corresponding surface observations (Figure 10, bottom). 

5 Conclusions 

A changing climate implies changes in the physical and chemical regimes governing the emission, formation, and transport 30 

of pollutants such as tropospheric O3. Previous work has identified increasing temperatures in particular as a driver of 

elevated surface O3 concentrations, mitigating the effectiveness of ongoing emissions reductions in the United States and 
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Europe. This means that, under a warming climate, polluted regions would need to cut emissions even further to achieve the 

same improvement in air quality, adding economic and human health costs to the bottom line of climate change adaptation. 

Understanding the mechanisms driving the observed relationship between O3 and temperature is important for guiding 

improvements in model performance, as well as for better understanding the effects of future changes. 

We show here that while temperature-dependent mechanisms such as biogenic emissions and PAN dissociation are often 5 

cited as key contributors to the observed O3-temperature relationship, model simulations maintain strong O3-temperature 

correlations even when these mechanisms are completely decoupled from temperature variability. Analysis of other 

meteorological variables suggests that meteorological covariance with temperature may explain a large proportion of O3-

temperature correlation – over 40% in the United States and nearly 60% in Europe. The relative importance of covarying 

atmospheric dynamics indicates that simulations investigating temperature perturbations alone will underestimate overall O3 10 

impacts by a factor of 2 or more, unless temperature-driven changes in other meteorological patterns are also included and 

accurately represented. Furthermore, comparison with station observations shows that modeled daily O3 values are less 

skillful in areas where the O3-temperature correlation is dominated by modeled temperature-dependent mechanisms rather 

than meteorology, indicating that improved representation of these mechanisms in particular may improve overall model 

skill with respect to O3 modeling and forecasting. 15 

These results highlight the complexity of pollution projections under changing emissions and climatological conditions, as 

well as with the attribution of those changes to any individual driver or metric. While surface temperatures can be easily 

linked to O3 variability statistically, it is apparent that the robustness of this relationship depends on how consistently 

coupled those temperature changes continue to be, not only with temperature-dependent physical and chemical drivers of O3 

formation, but also with the covarying meteorological patterns that appear to be just as influential. These relationships are 20 

further confounded by ongoing changes in anthropogenic emissions, making it especially important to understand the ways 

in which policy-driven emissions reductions may improve – or fail to improve – air quality within a changing climate. 

Ongoing investigations into the importance of these mechanisms, emissions, and atmospheric dynamics will guide future 

model development, improving forecast skill and better informing policy decision-making. 
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Table 1: Summary of GEOS-Chem cases 

Case Modifications from default GEOS-Chem 

BASE Reduced United States NOx, added monoterpene chemistry 

BIO BASE, plus normalized temperature for biogenic VOC emissions 

SOIL BASE, plus normalized temperature for soil NOx emissions 

DEP BASE, plus normalized temperature for dry deposition 

PAN BASE, plus removed temperature dependence for PAN thermal decomposition 

ALL BASE, plus all changes from BIO, SOIL, DEP, and PAN cases 
 

 
Table 2: Meteorological variables examined 5 

Variable Description 

T Maximum daily temperature 

HUM Mean daily vapor pressure (humidity) 

WDIR Normalized U and V wind vectors 

WSPD Mean daily wind speed 

∆P Change in daily mean surface pressure 

PBL Maximum daily planetary boundary layer height 
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Figure 1: Representative temperature-dependent mechanism responses within GEOS-Chem for biogenic emissions (top 
left), soil NOx emissions (top right), PAN lifetime (bottom left), and stomatal resistance (bottom right). 
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Figure 2: Summer mean values (JJA 2010-2011) for modeled 
isoprene and monoterpene emissions (a and b), soil NOx 
emissions (c), surface PAN mixing ratios (d), O3 deposition 
velocity (e), and NOx/VOC sensitivity as represented by the 
surface H2O2/HNO3 ratio (f). 
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Figure 3: Increase in O3 with a 1 ºC increase in temperature in 
the BASE case (top) and with fixed temperature mechanisms 
in the ALL case (middle). Distribution of changes for each 
shown in boxplots (bottom). 
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Figure 4: Regression slopes of summer (JJA) daily maximum 8-hour average O3 vs. daily maximum temperature for 
GEOS-Chem and station observations in the United States and Europe. Station data points are overlaid on gridded 
model output in panel a. Distributions for observed (black) and modeled (red) O3/T slopes are shown in panel b, 
further separated by station category: US stations are separated between the more remote NPS stations and the 
remaining stations of the AQS network, while Europe stations are split by AirBase area category into 
Urban/Suburban and Rural station types. Scatterplots in panel c show modeled values vs. observed, with green 
points used to mark NPS stations in the US and Rural area stations in Europe. The remaining AQS stations, as well 
as those AirBase stations categorized as Urban or Suburban, are shown as black points. 
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Figure 5: Impact of temperature dependence of biogenic emissions, 
O3 dry deposition, soil NOx emissions, PAN lifetime, and all 
mechanisms at once. Plotted values show the difference between O3-
temperature correlation in the BASE case and that of the modified 
case in which dependence on daily temperature variability is 
removed. 
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Figure 6: Unique and shared O3 correlation among meteorological variables in the BASE case. Unique 
contributions represent predictive power provided by one meteorological covariate alone, while shared 
correlation could be attributed to one or more other covariates. 
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Figure 7: Unique and shared contributions to O3 correlation for each of 6 different meteorological variables in the BASE 
case. Column heights represent overall predictive power for each variable, while individual colors indicate predictive 
power unique to that variable (bottom color in each column) or shared by one or more other meteorological variables.  
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Figure 8: Total contribution of modeled mechanisms to 
the O3-temperature correlation in GEOS-Chem (top), 
possible contribution of the other included 
meteorological variables (middle), and mean value for 
each category by region as a fraction of the total O3-
temperature correlation (bottom). 
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Figure 9: Distribution of O3/T sensitivities as measured by the slope of OLS regression (above) and mean surface O3 differences 5 
from a flat 1 ºC temperature perturbation (below). Regression values are shown for all modeled drivers (BASE case, black), and 
the portion of those slopes attributable to temperature-dependent mechanisms (BASE-ALL, blue). 
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 5 

Figure 10: Differences in model skill compared to 
surface station observations as a function of overall 
O3-temperature correlation (top) and the relative 
importance of modeled temperature dependent 
mechanisms (bottom). 




