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ABSTRACT

Motivation: Most approaches used to identify cancer driver genes

focus, true to their name, on entire genes and assume that a gene,

treated as one entity, has a specific role in cancer. This approach may

be correct to describe effects of gene loss or changes in gene expres-

sion; however, mutations may have different effects, including their

relevance to cancer, depending on which region of the gene they

affect. Except for rare and well-known exceptions, there are not

enough data for reliable statistics for individual positions, but an inter-

mediate level of analysis, between an individual position and the entire

gene, may give us better statistics than the former and better reso-

lution than the latter approach.

Results: We have developed e-Driver, a method that exploits the in-

ternal distribution of somatic missense mutations between the pro-

tein’s functional regions (domains or intrinsically disordered regions)

to find those that show a bias in their mutation rate as compared with

other regions of the same protein, providing evidence of positive

selection and suggesting that these proteins may be actual cancer

drivers. We have applied e-Driver to a large cancer genome dataset

from The Cancer Genome Atlas and compared its performance with

that of four other methods, showing that e-Driver identifies novel

candidate cancer drivers and, because of its increased resolution,

provides deeper insights into the potential mechanism of cancer

driver genes identified by other methods.

Availability and implementation: A Perl script with e-Driver and the

files to reproduce the results described here can be downloaded from

https://github.com/eduardporta/e-Driver.git

Contact: adam@godziklab.org or eppardo@sanfordburnham.org

Supplementary information: Supplementary data are available at

Bioinformatics online.

Received on April 4, 2014; revised on June 16, 2014; accepted on

July 17, 2014

1 INTRODUCTION

The landscape of cancer somatic mutations revealed by projects

such as The Cancer Genome Atlas (TCGA) (Chang et al., 2013)

or the International Cancer Genome Consortium (Hudson et al.,
2010) is overwhelmingly complex, as hundreds of thousands of

different mutations, ranging from large genomic rearrangements
to point missense mutations, have been identified in different

cancer samples (Ciriello et al., 2013, Kandoth et al., 2013).
Several approaches have been developed to identify which

genes are likely driving the carcinogenic process (driver genes).

Such methods rely on the hypothesis that driver genes should be

under positive selection in the cancer environment. Methods in

this category include those that try to identify genes with higher-

than-expected-by-chance mutation rates, such as MuSiC (Dees

et al., 2012), or those that tend to accumulate highly damaging

mutations, such as OncodriveFM (Gonzalez-Perez and Lopez-

Bigas, 2012). More recently, methods that focus on the internal

distribution of mutations along a protein have also been de-

veloped. For example, OncodriveCLUST (Tamborero et al.,

2013b) looks for regions of proteins with higher-than-expected

mutation rates, which makes it optimal for the identification of

gain-of-function sites that, while being key for the carcinogenic

process, would otherwise be missed. Another similar idea is

ActiveDriver (Reimand and Bader, 2013), which tries to identify

phosphorylation sites that are recurrently mutated in cancer.

One of the differences between the two methods is that

ActiveDriver tests the mutation frequencies of predefined regions

(a phosphorylation site and its neighboring amino acids),

whereas OncodriveCLUST first looks for potential seeds of

highly mutated clusters and then tries to extend them.
Here we present e-Driver, a novel method that identifies pro-

tein functional regions (PFRs) that show a bias in their mutation

rates. In this context, PFRs can be either domains or intrinsically

disordered regions (IDRs). Our method is based on the assump-

tion that different PFRs within the same protein mediate

different functions and, thus, might have distinct roles in carcino-

genesis. This becomes evident when describing proteins in terms

of functional networks. In such networks, nodes represent differ-

ent proteins, and edges between nodes represent functional

relationships between them, such as physical interactions or

post-translational modifications. Different edges leading to the

same node/protein are usually mediated by different PFRs within

that same protein, and mutations in the PFR mediating one edge

will have different consequences than mutations in another PFR

mediating a different edge. For example, if an enzyme contains a

catalytic domain and an IDR that is phosphorylated, it is likely

that the consequences of a missense mutation disrupting the cata-

lytic domain will be different from those of a missense mutation

affecting the phosphorylation site or a truncating mutation that

disrupts both PFRs at the same time. Our method exploits this

idea, which has been previously used to analyze mutations asso-

ciated with Mendelian disorders (Zhong et al., 2009, Wang et al.,

2012), by looking for PFRs that show a bias in their mutation

rate.
We have applied e-Driver to the cancer genomic dataset from

the pan-cancer project of TCGA. This dataset has also been

analyzed with four other methods (MuSiC, OncodriveFM,

OncodriveCLUST and ActiveDriver), allowing us to compare*To whom correspondence should be addressed.
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the results obtained with e-Driver with those obtained by meth-
ods relying on other approaches used to identify the signals of

positive selection (Tamborero et al., 2013a).

2 METHODS

2.1 Identification of the driver PFRs

e-Driver is based on the hypothesis that not all functional regions of a

given protein may be equally relevant for carcinogenesis. If this is the

case, it should be reflected in the distribution of missense mutations along

the protein, with regions under selection showing enrichment or depletion

of such mutations compared with regions with random (assumed to be

passenger) mutations.

To identify PFRs under selection pressure, e-Driver first retrieves all

missense mutations in a cancer cohort located in any given protein as well

as the mutation coordinates and maps them to the protein’s functional

regions. Then, for every PFR, we use a binomial test to check whether the

observed number of mutations in this protein region (MR in Figure 1b) is

biased. We assume that each mutation is an independent event, and that

all residues of the protein have the same probability of being mutated.

Then, given the total number of mutations in the protein (MT in

Figure 1b), and the lengths of the region and the protein, we can calculate

the probability of observing at least MR mutations in the region under

the null hypothesis that the mutations are distributed randomly across the

protein. Once the P-values of all the regions of all the mutated proteins in

the cohort are obtained, the Benjamini–Hochberg false discovery rate

algorithm is applied to correct for multiple testing. Those regions with

a Q-value50.05 are considered as candidate driver regions. The whole

process is explained in Figure 1 in the example of PIK3R1 and its func-

tional regions.

2.2 PFR annotations

We defined PFRs as sections of the protein coding for individual protein

domains and IDRs. We decided to include IDRs because they can also

contain important functional regions such as phosphorylation sites or

regions that regulate or mediate protein interactions (Dunker et al., 2005).

To identify protein domains, we retrieved, for each protein isoform

from ENSEMBL, annotated Pfam domains (Punta et al., 2012) as well as

putative novel protein domains located in regions with no previous

domain annotations, as predicted using the AIDA server (Xu et al.,

2014). We used Foldindex (Prilusky and Felder, 2005) to predict IDRs

for each protein, including in our analysis those regions with a predicted

unfolded score below –0.1.

Finally, we mapped the different missense somatic mutations of each

tumor to these PFRs, giving us a total of 66492 altered regions in 14421

genes based on data from 3205 tumor samples (see below). Among the

66 492 regions, we have 36626 Pfam domain instances, 4626 putative

domains predicted by the AIDA server and 25 240 IDRs. The features

can overlap, as the predictions were performed independently and there is

no reason why, for example, an IDR cannot overlap with (or even be

located within) a Pfam domain. For the sake of simplicity, we discuss

results obtained for only the longest isoform of each gene (e-Driver re-

sults for all the ENSEMBL isoforms can be found in the Supplementary

Table S2).

2.3 TCGA mutation dataset

We have downloaded the dataset that was used in the TCGA pan-cancer

driver analysis (syn1729383). To compare our results with the ones

obtained in the TCGA pan-cancer analysis, we applied the same filters

to the dataset, excluding 71 samples that were considered to be hypermu-

tators (Tamborero et al., 2013a). After filtering, the final dataset consists

of 3205 tumor samples with 287822 coding missense mutations.

2.4 Predicted driver genes by the other four methods

To assess the value of our method, we compared our results with those

obtained by four different methods used previously to predict high-

confidence gene drivers in the TCGA pan-cancer project: MuSiC,

OncodriveFM, OncoCLUST and ActiveDriver (Tamborero et al.,

2013a). We downloaded the results obtained in this analysis for three

of the four methods: OncodriveFM (syn1701498), OncodriveCLUST

(syn1701498) and MuSiC (syn1713813). As no ActiveDriver results for

the whole genome were available on the repository describing the pan-

cancer analysis, we used ActiveDriver results described in another paper

(Reimand et al., 2013) that, according to their authors, have been ob-

tained with similar TCGA mutation data (3185 cancer genomes,

syn2237931). Therefore, the results shown here for ActiveDriver are

slightly different than those described in the pan-cancer analysis.

2.5 Tissue-specific drivers

We classified the 3205 tumor genomes into their corresponding 11 tissues

of origin, obtaining 11 tissue-specific datasets that were then analyzed

individually with e-Driver. We then again corrected for multiple testing

by considering as positive only those PFRs with a Q-value50.05.

3 RESULTS

3.1 e-Driver identifies known cancer drivers

To assess the validity of our method, we reanalyzed the pan-
cancer dataset of TCGA. This dataset contains mutation data

for 3205 tumor samples that come from 11 different types of

tumors and contains 287822 missense mutations. The dataset
has been previously analyzed using four different state-of-the-

art methods to predict cancer drivers from mutation data

(MuSiC, OncodriveFM, OncoCLUST and ActiveDriver).
When applying our method to this dataset, we identified 74

protein regions in 51 genes, showing a bias in their mutation rate
when compared with the rest of the protein (Figure 2a,

Supplementary Table S1). Among these 51 genes, 23 are included

in the Cancer Gene Census (CGC), a curated list of 512 cancer
drivers (Futreal et al., 2004). This represents a strong enrichment

in CGC genes in our list of candidate drivers when compared

with random expectation (Figure 2b, odds ratio425,
P-value51e-16). As shown in Figure 2a, 31 of the 51 genes pre-

dicted by e-Driver (61%) are also identified by other methods.

The highest overlap of e-Driver predictions is with predictions

from OncodriveFM and MuSiC, with 21 of 51 genes (41%)
being common. Regarding genes included in the CGC, 22 of

the 23 genes identified by e-Driver (96%) that belong to this

list also have some other signal of positive selection, as they
are also predicted by other methods.

Interestingly, there is one gene in the CGC, CREBBP, that has
not been identified by any of the other four methods but was

picked up by e-Driver. The CREBBP protein does not show any

specific cluster of mutations nor is it recurrently mutated in
cancer, which could explain why it is not recognized as a poten-

tial cancer driver by the other methods. Nevertheless, its muta-

tion pattern shows a strong bias, as the acetyltransferase domain,
located between amino acids 1345 and 1639 (12% of the pro-

tein’s length), contains 20 of the 60, or 30%, of all the mutations

found in this gene (Q-value50.02).
There is one other acetyltransferase domain in the EP300 gene

that is also enriched in somatic mutations and identified by
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e-Driver. This gene is also included in the CGC and is also iden-

tified by MuSiC and OncodriveFM but not by OncodriveCLUST
or ActiveDriver. This observation suggests that, while EP300 is

frequently mutated in cancer, its mutations show no particular
clustering. However, by using e-Driver, we can identify the spe-

cific region of the protein that is enriched in mutations.

3.2 e-Driver finds potential novel drivers

We then reviewed the remaining 28 genes that are identified as

potential drivers by our method but are not included in the CGC.

Eight of them had also been identified by, at least, one other

method, supporting their potential roles as cancer drivers. For

example, our method, as well as OncodriveFM, identified

the MGA gene as a potential driver. This gene encodes a dual-

specificity transcription factor that regulates expression of

Myc/MAX target genes. It suppresses the transcriptional activa-

tion by Myc and inhibits Myc-dependent cell transformation.

The domain identified by e-Driver is the helix-loop-helix

domain between positions 2425 and 2474 that contains 8 of

the 46 mutations identified in this protein (odds ratio 13,

Fig. 1. e-Driver’s workflow shown in the example of the analysis of PIK3R1 mutation data from TCGA. (a) e-Driver first retrieves all missense

mutations in a protein. It then identifies its PFRs, such as Pfam domains or IDRs. For example, in the case of PIK3R1, the protein contains four

different Pfam domains (one SH3 domain, one RhoGAP domain and two SH2 domains) and two distinct IDRs. The predictions are independent and,

thus, can overlap, as in the case of the second IDR and the second SH2 domain. e-Driver iterates through every functional region, calculating the P-

values of the mutation distribution using a Fisher’s test that takes into account the mutation rates and lengths of both the region of interest and the

protein. (b) Example of the calculations for the IDRb in PIK3R1. MR is the number of mutations in the region being studied; MT is the total number of

mutations in the protein. Given that 29 of the 43 mutations happening in PIK3R1 are located in its second IDR, as the length of the region is of 227

aminoacids and the protein is 732 aminoacids long, we would expect only 13 mutations in this region. Thus, using the binomial test, the P-value for the

observed number of mutations is 2.1 e-6. (c) Each of the different PFRs in PIK3R1 performs different functions. For example, the first SH2 domain is

responsible for the interactions with GRB2 and PTPN6 (blue edges), whereas the second SH2 domain mediates the interaction with PDGFRB (green

edge) and the second IDR mediates the interaction with PIK3CA (red edge). (d) It is likely that missense mutations in the SH2b domain of PIK3R1 will

disrupt, among others, its interaction with PDGFRB without altering the rest of the network. Given that this region is not enriched in cancer somatic

mutations, the functions/interactions mediated by this domain are unlikely to be oncogenic. (e) On the other hand, IDRb is strongly enriched in somatic

mutations; thus, edges mediated by this region, such as the physical interaction with PIK3CA, are likely to be relevant to carcinogenesis. (f) The

mutations in PIK3R1 (the white helical protein) IDRb region (shown in red) cluster around the region that interacts with PIK3CA (shown in brown).

Representation based on PDB structure 2RD0
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Q-value50.001) and that mediates the binding of the protein to

E-boxes in the DNA. Additional evidence in favor of the car-

cinogenic role of MGA comes from a recent study (Lawrence

et al., 2014) using a larger genomic dataset with 4742 cancer

samples in which, thanks to an increase in sample size and stat-

istical power, MGA could be identified by MuSiC. As for the

other seven genes that were also predicted by other methods, five

of them were included in the list of 258 high-confidence drivers

described in the pan-cancer driver analysis: FRG1B, NBPF10,

DHX9, POTEF and RPSAP58. This result agrees with previous

observations that genes predicted by more than a single method

are likely to be true cancer drivers (Tamborero et al., 2013a) and

confirms the power of our method to identify genes relevant to

the disease.
Among the remaining 20 genes that are not part of the CGC

and that are not identified by any other method, we have found

several potential drivers. For example, we identified two mem-

bers of the neuroblastoma breakpoint family, NBPF12 and

NBPF20, as having regions with strong enrichment in mutations.

These two genes belong to the same family as NBPF10, one of

the genes included in the list of high-confidence drivers of the

pan-cancer analysis. Interestingly, the disordered regions identi-

fied by e-Driver from NBPF12 and NBPF20 have a 94% iden-

tity, suggesting that their potential driver role might be achieved

through similar mechanisms. Other interesting genes identified

uniquely by our method include POTEM, a protein that belongs

to the same family as the high-confidence driver POTEF. As in

NBPF proteins, the regions identified in POTEM and POTEF

are IDRs; however, in this case, they do not show any homology.

Another interesting fact about POTEF is that the region identi-

fied by e-Driver does not show an enrichment in cancer somatic

mutations but instead a depletion, suggesting that the conserva-

tion of this PFR is important for the survival of cancer cells and

for POTEF’s role as a driver.

3.3 Tissue-specific candidate PFR drivers

Cancer is a heterogeneous disease, and it is known that muta-

tions driving one type of cancer might be completely irrelevant

for another. Thus, although the pan-cancer dataset has more

statistical power because of its larger size, it is possible that

there are tissue-specific drivers that cannot be detected in the

pan-cancer dataset. To explore that possibility, we divided the

pan-cancer genomes into 11 tissue-specific smaller datasets and

analyzed each of them using e-Driver.
Although most PFRs have a stronger signal in the pan-cancer

dataset than in any tissue dataset (Figure 3a, black dots), others

have stronger tissue-specific signals (Figure 3a, gray dots). This is

the case, for example, in FLT3’s kinase domain, which is mostly

mutated in acute myeloid leukemia (17/23 mutations in this

domain happen in this type of cancer). Another example is

EGFR, which has two clearly different mutation patterns in glio-

blastoma and lung adenocarcinoma (Figure 3b). In glioblastoma,

it is Domain II of EGFR’s extracellular region that is mostly

affected by missense mutations (Domain IV seems to be also

strongly mutated, although, as it is not annotated in Pfam, it

has not been analyzed by e-Driver), and there are almost no

mutations in the kinase domain. On the other hand, in lung

adenocarcinoma, there are almost no mutations in the extracel-

lular region and most mutations are located in the kinase domain

of this protein.
There are 11 PFRs in 10 different proteins that can be identi-

fied in only the tissue-specific datasets (Pancan qval40.05,

Tissue qval50.05, Table 1). These tissue-specific candidate dri-

vers are strongly enriched in genes with known cancer roles, as 8

of 10 proteins are part of the CGC. Besides the identification of

EGFR’s kinase domain (Pf07714) in lung adenocarcinoma that

has been explained above, there are other interesting examples

in the list. For example, although most PIK3CA mutations are

located in the Pf00613 domain (including the well-studied

E545K) and happen in a variety of cancer types, the Pf02192

domain, also known as the ABD domain, is mostly mutated in

endometrial cancer.

4 DISCUSSION AND CONCLUSIONS

Here we evaluated the hypothesis that some cancer driver genes

might accumulate mutations in only those functional regions

(domains or disordered regions) that are relevant to the disease.

To test this idea, we have developed a novel approach, e-Driver,

and applied it to one of the largest available datasets of cancer

genomic data, the TCGA’s pan-cancer project. Our method

checks for each PFR whether it shows a bias in its mutation

rate when compared with the rest of the protein. As it uses mu-

tation data only for individual proteins, e-Driver, unlike other

methods that compare mutation rates of whole genes, does not

need to compensate for variations in mutation rates across the

entire genome (De and Michor, 2011). Another novelty of our

Fig. 2. e-Driver identifies known cancer driver genes. (a) Venn diagram

showing the overlap between the five different methods in their predic-

tions. (b) Venn diagram showing the overlap between the five different

methods of predicting genes included in the CGC
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method is that protein domains and IDRs are usually larger than

the clusters identified by other methods. This feature is import-

ant, as small clusters of mutations are usually located in onco-

genes rather than in tumor-suppressor genes. By using larger

functional regions, we can identify tumor suppressors whose con-

tribution to carcinogenesis depends solely on the mutation status

of specific regions.

The advantages of our method are exemplified in the identifi-

cation of MGA using the TCGA dataset. This gene was not

mutated in enough samples to be identified by methods that

rely on the mutation frequency of the whole gene (in a recent

study with more cancer samples, these methods were able to

identify MGA as a potential cancer driver). Because this gene

acts as a tumor suppressor, the range of positions that can be

mutated for it to drive the tumor’s growth is too large to be

identified by OncodriveCLUST. However, its mutations tend

to accumulate in its helix-loop-helix domain rather than in the

rest of the protein, allowing e-Driver to find it.
One drawback that comes from the use of predefined regions

is that if the gene has no such regions, or if the regions cover the

whole gene, the gene cannot be identified using our method. This

is the case, for example, in IDH1 and IDH2 (Yan et al., 2009).

These two known cancer driver genes encode single-domain

proteins. In this scenario, even though their only PFRs are

frequently mutated in cancer and show clusters of mutations,

e-Driver cannot identify them. However, such cases represent

510% of all the human proteins and53% of the proteins with

at least one mutation in TCGA (see Supplementary Table S3). It

is important to note that, just like most other methods that rely

on mutation frequencies to identify potential drivers, e-Driver

will also benefit from the increase in the number of sequenced

cancer genomes, as the statistical power will be larger, allowing it

to identify novel regions (Supplementary Figure S2).
Proteins enriched in mutations in an unannotated region (such

as EGFR’s extracellular Domain IV) present another scenario in

which e-Driver will not be able to identify that specific region. In

this case, however, as long as the protein contains an annotated

PFR, e-Driver should be able to find the protein, as it will pick

up the annotated PFR because of its lack of missense mutations.

Another interesting feature of e-Driver is that, as it detects which

PFRs are relevant for each type of cancer, it might also help in

defining strategies to design and administer drugs. For example,

it has been recently shown that the two different patterns of

mutations that we observed in EGFR for glioblastoma and

lung adenocarcinoma have therapeutic implications as to which

type of EGFR inhibitors work in each case, as they deregulate

EGFR’s activity through different mechanisms (Vivanco et al.,

2012). Other example are PIK3CA’s Pf02192 and Pf00613 do-

mains, which are also driving different subsets of cancer and that

Fig. 3. Tissue-specific candidate drivers identified by e-Driver. (a) Correlation plot showing the Q-values obtained for each region in the pan-cancer

dataset compared with the lowest Q-value obtained for that region in the 11 different tissues. Dots in gray represent regions with lower tissue-specific

than pan-cancer Q-values, whereas black dots have lower pan-cancer than tissue-specific Q-values. Dashed lines are located in the Q=0.05 threshold

that we established to consider a region as a potential driver. (b) Histograms showing the mutation distribution of EGFR in three different datasets: pan-

cancer (lower histogram), lung adenocarcinoma (middle) and glioblastoma (top). In the pan-cancer and glioblastoma datasets, only EGFR’s extracellular

Domain II (positions 185–338, between dashed lines) is enriched in mutations, whereas the kinase domain (positions 714–965, between dashed lines)

shows no bias in its mutation rate. However, in lung adenocarcinoma, it seems that only the kinase domain is relevant, as most mutations (19/21, 90%)

are located in this type of domain

Table 1. Tissue-specific drivers identified by e-Driver

Gene symbol PFR Start End Pancan

qval

Tissue

qval

Tissue

CTCF Pf00096 266 288 0.66 0.02 Brca

SPOP Pf00917 39 162 0.09 0.03 Ucec

PIK3CA Pf02192 32 108 1 1.8 e-5 Ucec

EGFR Pf07714 714 965 1 5.5 e-8 Luad

EGFR Pf00069 712 964 1 5.5 e-8 Luad

BAP1 Pf01088 4 214 0.6 0.004 Kirc

CTNNB1 Pf05804 334 484 0.12 8.0 e-4 Ucec

ANKRD36C IDR 543 632 0.37 0.003 Hnsc

ZNF479 Pf00096 437 459 0.1 6.5 e-5 Blca

FLNA Pf00630 1158 1244 1 0.009 Gbm

MTOR IDR 1442 1492 0.07 1.2 e-4 kirc
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determine the response to the IGF1R inhibitor AEW541 (Porta-

Pardo and Godzik, unpublished data).

Overall, we have shown that our approach can identify both

well-known oncogenes as well as novel candidate cancer drivers.

Moreover, because of direct connections between protein regions

and specific elements of the protein function, it can also provide

further hypotheses of the mechanisms of driver genes. Given the

complexity of the problem of identifying cancer drivers, it is

likely that the combination of multiple approaches looking for

distinct signals of positive selection is going to be needed to get to

the final answer. For example, neither e-Driver nor any of the

other methods discussed here work with data regarding somatic

copy number variations, a type of mutation that can drive several

subsets of cancer (Ciriello et al., 2013). Here we have demon-

strated that e-Driver can provide a novel insightful and comple-

mentary view of the problem, contributing to its solution.
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