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Effects of (-)-Epicatechin on Memory and Anxiety in High Fat Diet (HFD)-induced Obese Mice

ABSTRACT

Obesity is characterized by a condition of low-grade chronic inflammation and is associated with
increased occurrence of cognitive and mood disorders. While consumption of high-fat diets (HFD) and
associated obesity could have a detrimental impact on the brain structure and function, consumption of
select dietary bioactives may help prevent these harmful effects. The overall aim of this thesis was to
investigate the neuroprotective potential of the dietary flavan-3-ol (-)-epicatechin (EC) in the context of

HFD and associated obesity.

Our first study investigated the capacity of dietary EC to mitigate hippocampal inflammation and
impaired cognition in HFD-fed obese mice. Healthy 6 weeks old male C57BL/6J mice were fed for 13 weeks
either a control diet (10% total calories from fat), a high fat diet (60% total calories from fat), or the control
and high fat diets supplemented with 20 mg EC/kg body weight. Between week 10 and 12 of the dietary
intervention, object recognition memory and spatial memory were evaluated. Gene expressions related
to inflammation, oxidative stress, and neurotrophic factor were analyzed in the hippocampus. Impaired
recognition memory was observed in HFD-fed mice, which was prevented by EC supplementation. Neither
HFD consumption nor EC supplementation affected mouse spatial memory. After 13 weeks of the dietary
intervention, HFD-fed mice developed obesity, endotoxemia, and showed increased parameters of
hippocampal inflammation. While not affecting body weight gain, EC supplementation prevented all the
HFD-induced changes. Taken together, EC supplementation prevented short-term recognition memory in
HFD-induced obese mice, which could be in part due to the capacity of EC to mitigate HFD-induced

metabolic endotoxemia, inflammation and oxidative stress in the hippocampus.

To further understand the capacity of EC to mitigate obesity-induced changes in cognition and

mood, we conducted a longer dietary intervention study (24 weeks) with a HFD that is more comparable



to the amount of fat consumed by humans. Healthy 8-week old male C57BL/6J mice were maintained on
either a control diet (10% total calories from fat) or a HFD (45% total calories from fat), and were
supplemented with EC at 2 or 20 mg/kg body weight. Between week 20 and 22, anxiety-related behavior,
recognition memory, and spatial memory were measured. Underlying mechanisms were assessed by
measuring the expression of selected genes in the hippocampus and by 16S rRNA sequencing and
metabolomic analysis of the gut microbiota. After 24 weeks of HFD feeding, mice developed obesity,
which was not affected by EC supplementation. HFD-associated increase in anxiety-related behavior was
mitigated by EC in a dose-response manner and was accompanied by increased hippocampal brain-
derived neurotrophic factor (BDNF), as well as partial or full restoration of glucocorticoid receptor,
mineralocorticoid receptor and 11B-HSD1 expression. Higher EC supplementation (20 mg/kg body weight)
also restored aberrant Lactobacillus and Enterobacter abundance altered by the HFD and/or the
associated obesity. Together, EC mitigated HFD-induced anxiety-related behavior partly by modulating

BDNF- and glucocorticoids-mediated signaling and mitigating HFD-associated dysbiosis.

Next we conducted an untargeted hippocampal transcriptomic analysis that included mRNAs,
miRNAs, and long non-coding RNAs to further understand the underlying neuroprotective mechanisms of
EC against HFD-induced obesity. EC reversed the gene expression profile induced by the HFD,
counteracting the effects of the HFD. Genes involved in neurofunction-related pathways including
Alzheimer’s disease and neurodegeneration and cellular pathways such as insulin signaling pathway were
dysregulated by the HFD, and EC counteracted the dysregulation. Functionality analysis revealed that the
differentially expressed genes upon EC supplementation regulate processes involved in neurofunction,
inflammation, endothelial function, and cell-cell adhesion. Taken together, the effect of EC to mitigate
anxiety-related behavior in the HFD-induced obese mice can be, in part, explained by its capacity to exert
complex genomic modifications in the hippocampus, counteracting changes driven by the consumption

of the HFD and subsequent obesity.



In summary, this thesis contributes to the explanation of mechanisms related to the
neuroprotective potential of EC in context of HFD and associated obesity. Our results suggest that EC could
mitigate HFD-induced alterations in memory and anxiety, in part, by ameliorating neuroinflammation,
modulating BDNF-and glucocorticoids-regulated signaling, mitigating dysbiosis, and counteracting the

effects of HFD on the hippocampus at a multi-genomic level.

Vi



Chapter 1

Literature Review



1. Introduction

Obesity is a global phenomenon with its prevalence growing at an alarming rate [1]. Since 1975,
the worldwide prevalence of obesity has nearly tripled [1]. Obesity is a major public health concern as it
substantially increases the risk of developing metabolic diseases (type 2 diabetes, insulin resistance, and
non-alcoholic fatty liver diseases), cardiovascular diseases (CVD) (hypertension, stroke, and myocardial
infarction), and some types of cancer (colon, kidney, pancreas, uterus, and esophagus) [2]. Moreover,
obesity and poor-quality diets have been associated with increased occurrence of cognitive and mood
dysfunctions such as dementia and Alzheimer’s diseases (AD) [3-7]. Chronic high fat diet (HFD)
consumption and associated obesity can induce low-grade systemic inflammation and metabolic
disorders such as insulin resistance and dyslipidemia [8-11]. Obesity is also associated with metabolic
endotoxemia, which triggers pro-inflammatory immune responses [12, 13]. Obesity-induced systemic
inflammation, metabolic disorders, and metabolic endotoxemia are characterized by elevated
concentrations of circulating pro-inflammatory molecules (i.e., cytokines, chemokines,
lipopolysaccharides (LPS), free fatty acids (FFA) etc.) which all can in part contribute to the development
of obesity-associated alterations in cognition and mood [14-18]. While obesity-derived neurological
complications have been shown to affect different brain regions, the hippocampus — a region critical for
learning and memory [19] and the regulation of mood and emotion [20, 21] —is particularly vulnerable to
HFD-/obesity-induced changes [22-26]. Indeed, obesity is associated with a decrease in hippocampal
volume [27-29] and impairment in hippocampus-dependent function as the inflammatory mediators can
be transported across the blood brain barrier (BBB) and/or compromise its barrier function and

subsequently infiltrate into different brain regions [26, 30].

While obesity can lead to negative health implications including cognitive and mood dysfunctions,
dietary changes towards a higher intake of fruits and vegetables, and their derived products could mitigate

these harmful effects [31]. Flavanols are a subgroup of polyphenols, which are naturally occurring



secondary metabolites found abundantly in fruits, vegetables, and cereals. They have been extensively
studied because of their putative benefits on human health [32-34]. (-)-Epicatechin (EC) is one of the most
widely consumed flavanols by humans which mainly derives from cocoa and tea products, and fruits such
as grapes, berries, and apples [34, 35]. Epidemiological and dietary intervention studies suggest that EC-
rich cocoa flavanols can improve cognitive function primarily by increasing cerebral blood flow [36-39].
While evidence supports a relationship between obesity and brain dysfunction; and points to a
neuroprotective potential for EC, the capacity of EC to exert neuroprotective actions in the context of
diet-induced obesity has not yet been investigated. Moreover, although several studies have reported
that EC exerts anti-inflammatory actions in various tissues/organs [40-44], its capacity to mitigate obesity-
induced neuroinflammation and the associated alterations in cognition and mood has not yet been

explored.

This dissertation project assessed the neuroprotective potential of EC, particularly its capacity to
mitigate obesity-induced neuroinflammation in the hippocampus and the associated alterations in
cognition and mood using preclinical models of obesity. This section will highlight some of the key health
benefits of EC — its role in promoting vascular, gastrointestinal (GI) and metabolic health, and anti-
inflammatory action — and discuss how these effects could be translated into the neuroprotective
potential of EC in the context of HFD consumption and subsequent obesity. Although the mechanisms
affecting the central nervous system (CNS) are mostly likely to be multifactorial, some of the potential
mechanisms underlying the neurological alterations caused by consumption of HFD and/or obesity will be

outlined, with a particular focus on the effects on the hippocampus.

2. (-)-Epicatechin: structure, bioavailability, and metabolism
Flavonoids are a large family of polyphenolic compounds. The general structure (C6—C3—-C6) has

two aromatic rings (A and B rings) connected by a three-carbon bridge, which gives rise to an oxygenated



heterocycle in between (C ring) [45]. The basic flavonoid structure can be substituted with different

chemical groups, such as hydroxy, glycosidic, and methyl groups. These chemical arrangements define the

different subgroups of flavonoids [45, 46] (Figure 1).
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Figure 1. Chemical structures of the flavonoid subgroups. Adapted from [46].

EC is a monomer that belongs to the flavan-3-ols subgroups. It has hydroxyl residues at C5 and C7

(ring A), C3 (ring C), and C3’ and C4’ (ring B). Flavan-3-ols have two chiral centers at C2 and C3 (ring C) and

thus produce four stereoisomers: (+)-catechin, (-)-catechin, (-)-epicatechin, and (+)-epicatechin (Figure 2).

Among them, (+)-catechin (trans) and (-)-epicatechin (cis), are commonly found in nature [45].
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Figure 2. Flavan-3-ol stereoisomers:
(+)-catechin, (-)-catechin, (-)-epicatechin, and

(+)-epicatechin. Adapted from [47].

(-)-catechin (+)-epicatechin

The stereochemical characteristics of the flavan-3-ol monomers could also influence their
bioavailability. EC reaches the highest postprandial level in the circulation when equimolar amounts of
the flavan-3-ol monomers are ingested by human subjects [45, 48]. The high bioavailability of EC is also
evidenced by urinary and feces recovery data, analyzed after ingestion of 300 mCi (207 mmol) of
radiolabeled, stereochemically pure [2-1*C]EC by human subjects (equivalent to the ingestion of 60 mg of
EC) which indicate that approximately 95% of ingested EC is absorbed and excreted within 72 h, with the
majority being excreted within 24 h [49]. Moreover, EC is extensively metabolized and conjugated upon
ingestion. EC is glucuronidated, methylated, and sulfated in the small intestine and can be further
conjugated in the liver [45, 46]. Further metabolism of unconjugated and conjugated EC can occur in the
colon by the gut microflora [50, 51]. In fact, more than 20 *C-EC-derived metabolites were detected in
urine and plasma which are classified as structurally related EC metabolites (SREM), 5-carbon side chain
ring fission metabolites (5C-RFM), and 3- and 1-carbon-side chain ring fission metabolites (3/1C-RFM) [49].
The mean plasma concentration of SREMs peaks about 1 h after the ingestion which represents EC
absorption in the small intestine (Table 1 and Figure 3). On the other hand, the mean plasma
concentration of 5C-ring fission metabolites (5C-RFMs) reaches its peak after about 6 h post consumption,

which derives from the microbiota-derived catabolism of EC in the large intestine (Table 1 and Figure 3).



The absorption in the small intestine corresponds to approximately 20% of EC intake whereas the

majority, approximately 70%, of EC absorption occurs in the colon [49].

(—)-Epicatechin-3'-O-glucuronide 359423 0.8+0.1 16244332 20+£1.1
(—)-Epicatechin-7-O-glucuronide’ 2247 0.840.1 45+ 14 1.740.3
(—)-Epicatechin-3'-sulfate 191417 1.14+0.1 633+135 2.04+0.3
(—)-Epicatechin-5-sulfate 3244 0.8+0.1 92425 1.9+0.3
(—)-Epicatechin-7-sulfate 1943 1.1+0.2 43+16 22404
3'-O-Methyl-(—)-epicatechin-4’-sulfate 53413 0.940.1 203 +69 2340.6
3'-0-Methyl-(—)-epicatechin-5-sulfate 240+24 0.9+0.1 915+178 1.6+0.1
3’-O-Methyl-(—)-epicatechin-7-sulfate 159420 1.1+0.1 1026 + 260 24+02
4'-0-Methyl-(—)-epicatechin-5-sulfate 53414 0.9+0.1 128445 1.4+03
4/-O-Methyl-(—)-epicatechin-7-sulfate 3345 14402 166 + 54 2.6+0.5
3'-0-Methyl-(—)-epicatechin-5-O-glucuronide’ 2345 0.8+0.2 25+10 1.340.2
3'-0-Methyl-(—)-epicatechin-7-O-glucuronide’ 39+5 0.9+0.1 77 +31 1.3+0.3
Sum of SREMs 1223+ 104 1.010.1 4943 +471 1.9+0.1
5-(4’-Hydroxyphenyl)-~-valerolactone-3’-sulfate 272456 64+1.0 7595 +2684 63+1.7
5-(3/-Hydroxyphenyl)-~-valerolactone-4’-O-glucuronide 5249 6.1+0.8 13294396 44+13
5-(4'-Hydroxyphenyl)-+-valerolactone-3'-O-glucuronide 125430 6.8+0.8 1908 +787 3.1£06
5-(Phenyl)-~-valerolactone-O-sulfate-O-glucuronide (2) 39+9 55+1.1 1017 +481 6.4+22
5-(Hydroxyphenyl)-~-hydroxyvaleric acid-sulfate (2) 56+9 5.940.6 14924475 7.6+3.5
5-(3/-Hydroxyphenyl)-~-hydroxyvaleric acid-4'-O-glucuronide 54114 49+13 8354355 6.5+0.8
Sum of 5C-RFMs 5884102 5.8+0.4 1435242264 57407

Table 1. Human [2-14C](-)-epicatechin metabolites present in plasma and their pharmacokinetic

profiles. Adapted from [49].
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Figure 3. Concentration and pharmacokinetic profiles of [2-14C](-)-epicatechin metabolites as a

function of time. Adapted from [49].



The high urinary and fecal recovery rates indicate that most of the metabolites are accumulated
in the circulation with very low tissue accumulation upon acute EC consumption [49, 52]. EC metabolites
reach high-nanomolar to low-micromolar concentration in the blood, and lower concentrations are
expected to be found in tissues/organs with an exception of the Gl tract where high-micromolar
concentration of EC and EC metabolites can have direct contact with upon EC consumption [46]. In the
brain, some EC metabolites have been detected at measurable amounts, indicating that peripheral EC
metabolites could cross the BBB and may directly modulate cell signaling events inside the brain [53, 54].
Supplementation with a monomeric mixture of (+)-catechin and EC (17 mg/kg body weight) for 10 days
resulted in accumulation of free EC and ~400 nM of glucuronidated EC metabolites in rat brain [54].
Moreover, the EC colonic metabolite 5-(hydroxyphenyl)-y-valerolactone-sulfate was detected in the brain
of rats after either intraperitoneal (IP) injection of the metabolite (2 mg/kg body weight) or upon grape
consumption (100 mg/ kg body weight). 5-(hydroxyphenyl)-y-valerolactone-sulfate was also detected in
the brain of pigs following a cocoa powder consumption (410 mg flavan-3-ol) [53]. However, the primary
route of EC metabolites crossing the BBB and their subsequent metabolism in the brain is not yet fully

understood [55].

3. Brain health benefits of (-)-epicatechin in context of HFD and/or associated obesity

3.1. Regulation of vascular function

Obesity is a known independent risk factor for the development of CVD [56, 57]. Evidence support
that obesity is associated with endothelial dysfunction, which is a key early event in the pathogenesis of
atherosclerosis [58]. Endothelial dysfunction is characterized by decreased bioavailability of vasodilators,
particularly nitric oxide (NO), which inhibits key events in the pathogenesis of atherosclerosis such as

adhesion and aggregation of platelets and leukocytes [59]. While compelling evidence suggest that



obesity is associated with endothelial dysfunction and the development of CVD [56, 57, 60, 61],
consumption of flavanol rich foods can be beneficial on vascular functions. Recently, a large clinical trial
(COcoa Supplement and Multivitamin Outcomes Study (COSMOS)), reported that daily supplementation
of a cocoa flavanol (500 mg flavanols including 80 mg of EC) significantly reduces CVD-related death by
27% during a median follow-up of 3.6 years [33]. Another clinical trial reported that consumption of an
EC-rich cocoa product elicited NO dependent vasodilation whereas consumption of flavanol-poor cocoa
did not induce the same response [62]. Consistently, ingestion of a flavanol-rich cocoa drink increased
flow-mediated vasodilation (FMD) and circulating NO species, and improved microvascular function in
human subjects [63]. Similar effects were emulated in the same individuals who ingested pure EC (1 or 2
mg/kg body weight) [63], suggesting that the beneficial vascular effects of flavanol-rich cocoa products

are largely attributed to the presence of EC.

The capacity of EC to promote vascular health can also benefit the brain function as the brain is a
highly vascular organ [64]. Epidemiological and dietary intervention studies suggest that EC-rich cocoa
flavanols exert positive effects on cerebral blood flow and improve cognitive functions, implicating that
the observed peripheral vascular effects are also present in the cerebral vascular system [36-39, 65]. For
instance, in healthy adults (50-75 years), consumption of EC-rich cocoa flavanols (770 mg flavanols
including 135 mg EC) for 12 weeks improved hippocampal-dependent learning suggesting that EC
consumption may be associated with increased memory function in age-associated cognitive decline [36].
Consistently, intake of acute high-flavanol cocoa (681.4 mg flavanols including 150 mg EC) improved
efficiency in blood oxygenation during hypercapnia in frontal cortical areas of young healthy subjects
(mean age of 23.9 years) which was associated with higher performance during cognitive challenges [37].
In a genetic rat model of hypertension and ADHD, daily intake of pure EC for 2 weeks (100 mg/kg body
weight) mitigated the development of hypertension and locomotor hyperactivity [66]. EC (1 mg/kg body

weight) upregulated neurogenesis markers by increasing capillary density and nitrate/nitrite production



via endothelial NO synthase (eNOS) activation in mouse frontal cortex in parallel with an improvement in

spatial working memory [67].

The EC-mediated improvements in vascular function can be explained by its capacity to increase
eNOS expression [68], induce eNOS activation [69, 70], and inhibit enzymatic activity of arginase which
competes with NOS for the same substrate, L-arginine [71]. Additionally, EC can promote vasodilation by
reducing plasma endothelin-1 (ET-1), a potent vasoconstrictor that stimulates superoxide production and
vasoconstriction via activation of NADPH oxidases (NOX) [72, 73]. EC can also inhibit NOX
expression/activity and subsequently limits production of superoxide and increases NO bioavailability [74-

76].

3.2. Promotion of gastrointestinal health

The Gl tract provides one of the largest barriers in the body that plays a pivotal role in health and
disease [13]. The intestinal barrier has a semipermeable structure that selectively allows entry of fluids,
ions, and nutrients while restricts the passage of pathogenic molecules and bacteria [77]. Disturbances in
Gl barrier function increase paracellular translocation of pathogenic molecules such as bacterial LPS from
the lumen to the circulation [13]. LPS is a major components of the outer membrane in gram-negative
bacteria that initiates a strong innate immune response [78]. Toll-like receptor 4 (TLR4) is a pattern
recognition receptor (PRR) that recognizes LPS, and its activation initiates downstream signaling cascades
that lead to production of pro-inflammatory cytokines — such as tumor necrosis factor alpha (TNFa),

interleukin (IL)-1B, and IL-6 [78, 79] — and systemic inflammation [80].

Obesity has been associated with alterations in the intestinal barrier function [81-84] and
metabolic endotoxemia [12, 85], which is characterized by low-grade elevation in plasma LPS [80].

Considering that high-micromolar concentration of EC and EC metabolites can reach the lumen of the Gl



tract [46], consumption of EC can participate in maintaining Gl tract homeostasis. In fact, EC
supplementation (2-20 mg/kg body weight) mitigated intestinal permeabilization and endotoxemia in
HFD-fed obese mice [42]. These effects were attributed to the capacity of EC to mitigate HFD-induced
alterations of the tight junction (TJ), a complex transmembrane protein structure that seals spaces
between intestinal epithelial cells and regulates the permeability of the intestinal barrier [42]. EC
preserves TJ structure and function in part by downregulating NOXs and the redox-sensitive activation of
extracellular signal-regulated protein kinases (ERK) 1/2 and nuclear factor kappa B (NF-kB) [42, 86, 87]
and by increasing plasma glucagon-like peptide 2 (GLP-2) [42], a gut hormone involved in the preservation
of Gl mucosal trophism and function [88]. Although HFD- and obesity-induced alterations of the gut
microbiota has been associated with an increase in intestinal permeability [85, 89], current evidence
suggests that the EC-mediated barrier protection is not primarily due to the modulation of HFD-induced
dysbiosis [42], and therefore further studies are warranted to confirm the role of EC in HFD-induced

alternations of the gut microbiota.

The capacity of EC to preserve intestinal integrity and limit the entry of LPS is also relevant for the
brain since LPS is a neurotoxic molecule that can induce inflammation and alterations of brain function
[16, 90, 91]. LPS induces microglial activation via the TLR4-dependent pathway leading to the production
and release of pro-inflammatory cytokines in the brain [16]. Cytokines can trigger the activation of brain-
resident glial cells, microglia and astrocytes, and produce more pro-inflammatory cytokines, exacerbating
brain inflammation [91]. Additionally, LPS can compromise the function of the BBB [92, 93], which tightly
regulates the exchange of molecules between the peripheral blood and the CNS [94]. In a LPS-induced
mouse model of sepsis, EC (50 mg/kg by gavage) decreased microglia activation and levels of pro-
inflammatory cytokines in the hippocampus [95]. Similarly, EC (0.01-0.3 umol/L) significantly decreased

the release of TNFa in LPS/interferon-gamma (IFN-y)-challenged glial cells [96].
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Taken together, the capacity of EC to protect the intestinal barrier and mitigate metabolic
endotoxemia could be beneficial to the brain structure and function in the context of obesity and other
conditions that affect Gl barrier function, since this action can limit the concentration of LPS reaching the
brain. Interestingly, similar TJ structures to those found in the Gl tract are also found in the cerebral
endothelial cells of the BBB [97], which are also vulnerable to HFD [25, 98]. Although the physiological
concentration of EC and EC metabolites reaching the BBB might be lower compared to the concentration
reaching the intestinal barrier, EC may potentially have a direct protective effect on BBB TJ structure and

function, similar those observed in the intestinal barrier [42].

3.3. Anti-inflammatory action

Obesity is characterized by excess adipose tissue and chronic low-grade systemic inflammation,
including elevated circulating levels of pro-inflammatory molecules [99]. As discussed in section 3.2., LPS
is one of the contributing factors of HFD- and/or obesity-associated systemic inflammation. Obesity-
induced systemic inflammation is also thought to derive from white adipose tissue (WAT), especially from
the visceral adipose tissue. The visceral depot harbors numerous immune cells, and their composition
drastically change during the development of obesity [100]. HFD- and/or obesity induce a shift in WAT
adipokine production profile — from producing adiponectin to leptin and monocyte chemoattractant
protein-1 (MCP-1) — and an increase in the number of immune cells in the adipose tissue, including
macrophages, neutrophils, and natural killer (NK) cells. The immune cells produce pro-inflammatory
molecules, recruiting more pro-inflammatory cells into the visceral adipose tissue and amplifying the

immune response [101].

On the other hand, EC can exert anti-inflammatory actions in the immunologically active adipose

tissues [40, 41, 102]. For instance, EC mitigated HFD-induced recruitment of macrophages to the visceral

11



adipose tissue and decreased the elevated expression of TNFa and MCP-1 [40]. In differentiated 3T3-L1
adipocytes exposed to palmitate, EC and EC metabolites decreased the secretion of IL-6, TNFa, and MCP-
1, and increased the secretion of adiponectin [40]. Additionally, EC decreased blood levels of FFA as its
anti-inflammatory action reduced WAT lipolysis and the release of FFA into the circulation [103]. EC can
also exert similar anti-inflammatory actions in different tissues/organs such as the liver [41] and ileum
[42]. These effects can be in part explained by the capacity of EC to decrease elevated concentrations of
LPS, pro-inflammatory cytokines, and FFA, and thus mitigating HFD-mediated upregulation of NOXs,

protein oxidation, endoplasmic reticulum (ER) stress, and activation of NF-kB signaling pathway [41, 104].

The brain is also vulnerable to the altered levels of such circulating inflammatory mediators [15,
18]. For instance, circulating pro-inflammatory cytokines can elicit immune responses in the brain as
select cytokines can be transported across the BBB into the brain via distinctive unidirectional saturable
transport systems and/or via compromised BBB [18, 30]. By decreasing release of the inflammatory
mediators and limiting their infiltration into the brain, EC could potentially exert neuroprotective effects
and mitigate HFD-induced alteration in cognition and mood. Although the anti-inflammatory capacity of
EC supplementation in the brain in context of obesity remains to be investigated, its anti-inflammatory
potential has been previously described in the brain of doxorubicin-treated rats [105], aged mice [106],

LPS-induced mouse model of sepsis [95], and LPS/IFN-y-challenged glial cells [96].

3.4. Regulation of metabolic health

Obesity is associated to an increased risk of developing metabolic diseases such as insulin
resistance and type 2 diabetes [8, 9], dyslipidemia [10, 11], and non-alcoholic fatty liver disease [107].
Substantial increases in adipose depots, especially of visceral tissues, promote low-grade inflammation

that underlies metabolic dysfunction. The increased levels of FFA, LPS, and pro-inflammatory chemokines
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and cytokines in obese state are involved in the development of insulin resistance [8, 108] as they can
activate c-Jun N-terminal kinase (JNK), inhibitor of NF-kB (IkB) kinase (IKK), and select protein kinase C
(PKC) isoforms, which phosphorylate the insulin receptor substrate 1 (IRS1) peptide in serine residues,
inactivating downstream events in the insulin signaling cascade [108]. Moreover, activation of NF-kB
upregulates protein-tyrosine phosphatase 1B (PTP1B), which dephosphorylates the insulin receptor (IR)

and subsequently desensitizes the insulin signaling pathway [109].

Obesity and insulin resistance also contribute to alterations in lipid metabolism that can ultimately
result in the development of fatty liver disease and CVD [108, 110, 111]. Pro-inflammatory molecules such
as LPS, TNFa, and IL-6 stimulate adipose tissue lipolysis and lead to an increase in circulating level of FFA,
a substrate for hepatic triglyceride (TG) synthesis [112]. In addition, insulin resistance blunts the lipogenic
action of insulin in the adipose tissue and further induces release of FFAs into the circulation, exacerbating
the dysregulation of lipid homeostasis [112]. Subsequently, these events increase TG synthesis and
availability in the liver which stimulate overproduction of TG-enriched very low density lipoprotein (VLDL)

particles, which contributes to an elevation in blood TG levels and hepatic lipid accumulation [112, 113].

A growing body of evidence supports protective effects of EC and EC-rich foods against alteration
in lipid profiles and insulin resistance [114, 115]. For instance, a randomized, double-blind, placebo-
controlled, crossover trial reported that a daily supplementation of 100 mg of pure EC for 4 weeks
improved insulin sensitivity in pre-hypertensive subjects [116]. In a similar experimental design, EC
supplementation improved the TG/HDL-C ratio, an indicator for insulin resistance and cardiometabolic
risk, in hypertriglyceridemic subjects [117]. A cross-over study also reported the capacity of pure EC
(1 mg/kg body weight) to decrease postprandial plasma TG and glucose levels in healthy subjects [118].
Interestingly, the observed beneficial effects of EC were more pronounced in overweight subjects [118].
On the contrary, a relatively lower EC amount and shorter intervention duration (25 mg/day for 2 weeks)

did not have any influence upon the metabolic parameters in overweight and obese subjects [119].
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The beneficial effects of EC on metabolic parameters were also demonstrated in a number of
preclinical models of obesity in which EC supplementations mitigate HFD-mediated increase in plasma TG,
FFA, and glucose [42, 103, 120-122]. These effects are in part attributed to the capacity of EC to
downregulate select inhibitory molecules in the insulin pathway — including JNK, IKK, PKC, and PTP1B --
and mitigate HFD-induced impairment of IR and IRS1 activating and inhibitory phosphorylation in the liver
and adipose tissue [103]. EC also restores HFD-/palmitate-induced decrease in secretion of adiponectin
[40, 121], which regulates glucose and lipid metabolism [123]. The improvement in insulin sensitivity can
also be attributed to the action of EC to protect pancreatic B-cells [124, 125] and stimulate insulin

secretion [126].

The capacity of EC to promote metabolic health may be relevant for neuroprotective effect as
metabolic diseases have been related to the development of cognitive and mood disorders [14, 17]. For
example, oxidized low-density lipoprotein (oxLDL) induced neurotoxicity in striatal neurons while EC and
3-0-methyl-EC inhibited oxLDL-induced neuronal cell death in part by inhibiting JNK and caspase-3
activation [127]. In elderly adults with mild cognitive impairment, consumption of a high-flavanols (993
mg flavanols including 185 mg EC) and an intermediate-flavanols cocoa drink (520 mg flavanols including
95 mg EC) for 8 weeks improved cognitive function [128]. Interestingly, this improvement was associated
with an improved insulin sensitivity [128], further supporting the potential role of EC in mitigating obesity-

associated cognitive and mood disorders by attenuating metabolic dysfunction.

3.5. Neuroprotective action

A number of randomized control trials reported beneficial effects on human cognition upon EC
administration as part of cocoa flavanols [39]. However, there is no study yet conducted to investigate

the neuroprotective effect of pure EC in humans. Most of the clinical trials attribute the improvement in
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cognitive function to the capacity of cocoa flavanols to improve cerebrovascular function [39]. In vivo and
in vitro studies investigating the effects of pure EC on cognition and mood suggest additional mechanisms
that may explain the neuroprotective effects of EC. These mechanisms include the capacity of EC to
modulate gene expression, protein synthesis, and cell signaling events relevant to synaptic plasticity [129,
130], neurotrophic factor and monoaminergic system [131, 132], neurodegeneration, and
neuroinflammation [54, 67, 95, 106, 133, 134]. For instance, daily dietary supplementation of 2.5 mg EC
for 6 weeks enhanced the retention of spatial memory, hippocampal angiogenesis, and neuronal spine
density in mice [129]. These effects were accompanied by increased expression of genes associated with
learning, synaptic plasticity, and angiogenesis and decreased expression of genes related to learning
deficits and neurodegeneration in the hippocampus [129]. In agreement with these finding, EC (100-300
nmol/L) activated cAMP-response element binding protein (CREB), a regulator of neuronal viability and
synaptic plasticity, and subsequently increased CREB-mediated gene expression in cortical neurons [130].
EC also mitigated the decrease in synaptic proteins, neuronal loss, and neuroinflammation in the

hippocampus of LPS-treated mice, improving recognition memory and spatial learning and memory [95].

Moreover, interventions with EC have been shown to ameliorate the pathogenesis of AD in
rodents. Addition of EC to drinking water (approximately 15-20 mg of daily EC ingestion) for 3 weeks
inhibited amyloid precursor protein (APP) processing [135] and reduced hyperphosphorylation of tau in
mouse brain [133], mitigating the amyloid beta (AB) burden and AD progression. Daily ingestion of 40 mg
EC/kg body weight for 9 months decreased AP accumulation in the brain and serum, and reduced
circulating level of TNFa [136]; while daily intake of 50 mg EC/kg body weight for 4 months alleviated
deficits in spatial learning and memory and upregulated brain-derived neurotrophic factor (BDNF) level in

the hippocampus of APP/PS1 transgenic mice [132].

EC appears to play a role in not only preserving memory and learning but also improving mood.

EC (1 mg/kg body weight) oral gavage twice daily for 5 weeks induced resilience to stress-associated
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depression in mice [137]. Four weeks of daily EC oral gavage (1 mg/kg body weight) improved object
recognition memory as well as anxiety in aged mice [106]. The improvements in cognition and mood were
in parallel with the decreases in systemic inflammation, neuroinflammation, and hyperphosphorylation
of tau in the hippocampus [106]. Consistently, daily consumption of EC (4 mg in water) for 14 weeks
reduced anxiety in mice, which is explained by the capacity of EC to upregulate tyrosine hydroxylase and

BDNF and downregulate monoamine oxidase-A levels in the hippocampus [131].

The neuroprotective effects of EC can also be in part explained by its capacity to induce global
genomic modifications [138, 139]. SREMs and gut microbiome-derived EC metabolites simultaneously
modulated the expression of protein-coding genes (MRNA) and non-coding genes, including microRNAs
(miRNA) and long non-coding RNAs (IncRNA) involved in cell adhesion and endothelial permeability in
human brain vascular endothelial cells (HBMEC) [138, 139]. EC metabolites counteracted lipid stress- [138]
and TNFa-induced [139] alterations of gene expression profiles in an in vitro model of the BBB, suggesting

a role for EC in protecting the BBB barrier function via multi-genomic regulations.

3.6. Mechanisms responsible for the neuroprotective effects of EC

Although the exact mechanisms responsible for the neuroprotective effects of EC have not yet
been fully elucidated, both direct and indirect effects of EC on the brain have been suggested. If the
peripheral EC metabolites can cross the BBB, they could directly modulate cell signaling events inside of
the brain. Indeed, some EC metabolites have been detected in the brain at measurable
amounts supporting their direct actions in the CNS [53, 54]. The indirect neuroprotective mechanisms of
EC could include its capacity to 1- improve cerebral blood flow, 2- reduce systemic inflammation and
infiltration of pro-inflammatory molecules (i.e. cytokines, chemokines, LPS, FFA) into the CNS, 3- preserve

the integrity of the BBB, 4- regulate levels and/or the activity of receptors at the BBB and brain structures
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(i.e. EC mitigates overexpression of TLR4 receptor in the kidneys [44] and proanthocyanidins, oligomer of
monomeric flavan-3-ols, block the binding of LPS to TLR4 in human embryonic kidney cells (HEK 293) [140]

and 5-induce multi-genomic modifications.

4. High fat diet and obesity: cognition and mood

4.1. Inflammation

Growing evidence support that HFD and/or associated obesity contribute to the development of
neuroinflammation, which may underlie obesity-associated cognitive and mood dysfunction [141].
Studies with animal models provide evidence that the hypothalamus, a structure critical for regulating
food intake and energy expenditure, is the first brain region affected by HFD consumption [142, 143]. The
hypothalamus senses circulating nutrients and hormones important for energy homeostasis via the
median eminence, an interface between the neural and peripheral endocrine systems that lacks the BBB
[144, 145], which in part explains the early vulnerability of this structure HFD. Indeed, after only 1 to 3
days of consuming a HFD, hypothalamic neuroinflammation is already observed along with activation of
microglia and astrocytes in both rats and mice without any substantial weight gain [143]. Hypothalamic
inflammation was transient upon acute HFD consumption; however, upon chronic consumption and body
weight gain, inflammation and reactive gliosis were permanent [143]. In agreement with these findings in

the animal model, hypothalamic gliosis was evident in obese human subjects [143].

Chronic HFD consumption and the development of obesity can induce neuroinflammation and
affect the structure and functions of other brain regions [141]. The hippocampus is particularly vulnerable
to HFD-/obesity-induced alterations [22-26]. As discussed in the previous sections, obesity chronically
alters the levels of numerous mediators (i.e. cytokines, chemokines, LPS, FFA, leptin, adiponectin, etc.)

which can contribute to the development of neuroinflammation [14-18]. Long-term consumption of a HFD
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(60% kcal from fat) induced insulin resistance and increases blood TNFa, alongside hippocampal
inflammation and diminished spatial learning and memory in mice [22]. Similarly, HFD consumption (60%
kcal from fat) induced hyperglycemia and increased levels of pro-inflammatory cytokines, IL-6, IL-13, and
TNFa, in the hippocampus of obese rats which was accompanied by anxiety- and depression-related
behaviors [23]. HFD-induced obesity also upregulated TLR4 and downstream signaling molecules
(myeloid differentiation primary response protein 88 (MyD88), transforming growth factor-p activated
kinase 1 (TAK1) and IkB) in rat hippocampus, in parallel with hippocampal neuroinflammation and

impairment in working memory [146].

Obesity-induced systemic inflammation and metabolic dysfunctions can also compromise
hippocampal function as inflammatory mediators can be transported across the BBB and/or compromise
its barrier function and subsequently infiltrate into the brain [30, 146]. The BBB in the hippocampus was
shown to be compromised in rats chronically challenged with a HFD (40% kcal from fat), which was
associated with an impairment in a hippocampus-dependent cognitive function [26]. In addition, the
chronic low-grade inflammatory state contributes to the development of metabolic disorders, which can
also contribute to the neuroinflammatory status and alterations in cognition and mood. Indeed, insulin
resistance is associated with the development of cognitive impairment, neurodegeneration [147-149],
and mood disorders [150-152]. Finally, hypertriglyceridemia also represents one of the potential

mechanisms by which obesity can induce cognitive impairment [153, 154].

4.2. Glucocorticoids signaling

The hypothalamic—pituitary—adrenal (HPA) axis is a key neuroendocrine system that is critical
during the stress response [155]. The HPA axis activity is regulated by the secretion of

adrenocorticotrophic hormone-releasing factor (CRF) and vasopressin (AVP) from the hypothalamus,
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which in turn stimulate the secretion of adrenocorticotrophic hormone (ACTH) from the pituitary gland.
ACTH then signals the adrenal cortex to release the glucocorticoids (cortisol in humans, corticosterone in
rodents) [155]. Two glucocorticoids receptors mediate the majority of the effects of cortisol and
corticosterone in the brain to support adaptation to stress: high-affinity mineralocorticoid receptors (MR)
and lower-affinity glucocorticoid receptors (GR) [156]. Both receptors are present in multiple target
tissues including the hippocampus, which plays a significant role in negative feedback inhibition of the
HPA axis [157]. Dysregulation of the feedback inhibition and subsequent hypersecretion of glucocorticoids

are linked to impaired cognitive function and alterations in mood [158, 159].

It has been suggested that obesity is associated with hyperactivity of the HPA axis [28, 160, 161],
suggesting that the dysregulation of the axis may be involved in obesity-associated functional and
structural alterations of the brain. For instance, obese individuals with type 2 diabetes showed impaired
HPA axis feedback control in parallel with verbal memory deficits and reduction in hippocampal and
prefrontal volumes [28]. Additional studies report a link between HFD/obesity and elevated levels of
glucocorticoids [162-165], which is associated with decreased hippocampal neurogenesis [166],
impairment in cognitive function [167], and alteration in mood [168]. In addition, altered levels of GR and
MR has been observed upon HFD consumption. In female rats, HFD consumption (60% kcal from fat) for
10 weeks induced anxiety-like behavior, which was associated with decreased MR and GR expression in
the hippocampus [169]. Although the mechanisms that lead to the downregulation of the receptors in
obesity are not fully understood, it is possible that it may be associated with increased secretion of
glucocorticoids [170, 171]. In fact, administration of corticosterone significantly decreased both GR and
MR in multiple brain areas of rats including the hippocampus [170, 171], which may represent a
mechanism to compensate for glucocorticoid overexposure [172]. Prolonged downregulation of GR could
be detrimental to the brain as deletion or deficit of GR in the multiple brain regions including the

hippocampus was shown to be associated with impaired negative feedback regulation of the HPA axis and
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increased anxiety- and depression-related behavior [173, 174]. Moreover, inhibition or genetic disruption

of MR decreased adult rat hippocampal cell proliferation [175] and mouse neurogenesis [176].

The HFD-/obesity-associated alteration in the brain function could be, in part, explained by the
capacity of glucocorticoids to potentiate inflammatory responses in the hippocampus [161, 177, 178]. For
example, a short-term HFD (60% kcal from fat) consumption elevated hippocampal corticosterone and
upregulated the expression of neuroinflammatory priming signals [161]. A low-dose LPS immune
challenge potentiated neuroinflammatory responses in the hippocampus of the rats and induced a
memory decline [161]. Blocking the corticosterone action with mifepristone, a glucocorticoid receptor
antagonist, prevented the priming, pro-inflammatory response to the LPS, and memory impairment,
implying that these events are mediated by glucocorticoids signaling [161]. Consistently,
hippocampal neuroinflammation manifested in obese and diabetic db/db mice was prevented by a
pharmacological inhibition of corticosterone synthesis, which in turn mitigated microglial reactivity and

accumulation of pro-inflammatory cytokines [162].

4.3. Brain-derived neurotrophic factor (BDNF)

The hippocampus has a critical role in learning and memory consolidation [19], as well as in
regulation of mood and emotion [20, 21]. BDNF is abundantly expressed in the hippocampus and plays a
pivotal role in the development, survival, and differentiation of many types of neurons [179]. BDNF
expression is regulated by multiple signaling pathways, including CREB signaling, which regulates the
expression of genes that promote synaptic and neural plasticity [180]. Activated CREB promotes the
expression of BDNF, which can in turn leads to the activation of CREB through tropomyosin receptor
kinase B receptors (TrkB) [180]. BDNF also plays a critical role in hippocampus-dependent learning and

mood regulation as it promotes neurogenesis and facilitates long-term potentiation in the hippocampus

20



[20, 181, 182]. Indeed, a decrease in the hippocampal BDNF expression is associated with aging,

neurodegeneration, and psychiatric disease [182-184].

HFD consumption and obesity have been associated with downregulation of BDNF in the
hippocampus, which may induce impairment in learning and memory [185-188], as well as alterations in
mood [189, 190] by interfering with hippocampal function. For instance, rats fed with a high-fat/high-
glucose diet for 8 months exhibited impaired learning and long-term potentiation, and reduction in
dendritic spine density with a significant decrease in hippocampal BDNF levels compared to the controls
[185]. Similarly, two months on a diet rich in saturated fat and refined sugar reduced hippocampal BDNF
levels and spatial learning performance. These alterations occurred along with a decrease in levels of
hippocampal genes and protein important for neurotransmitter release (synapsin I), neuronal viability and
synaptic plasticity (CREB), and axonal growth and neurotransmitter release (growth-associated protein 43
(GAP-43)) [188]. In humans, patients with rare genetic disorders that cause BDNF haploinsufficiency or
mutations inactivating the BDNF receptor exhibit severe early-onset of obesity, hyperphagia, intellectual

disabilities, and hyperactivity [191].

Although the mechanism underlying HFD-/obesity-induced decrease in the hippocampal BDNF is
not fully understood, evidence suggests that inflammation can partially explain the reduction in BDNF and
associated alterations in cognition and mood [187, 192]. For instance, serum concentrations of BDNF
decreases in patients undergoing IFN-a therapy [193]. Low BDNF and high pro-inflammatory cytokine
levels are independently associated with the development of depressive symptoms in the patients [193].
Long-term activation of microglia induced by LPS in rats results in impairment in learning and memory
along with increase in IL-1B and TNFa level and decrease in expression of BDNF and its receptor, TrkB in
the hippocampus [194]. An in vitro study also showed that IL-1B inhibits the neuroprotective effects of
BDNF by altering PI3-K/Akt and MAPK/ERK signaling pathways and decreasing the activity of the CREB

transcription factor in neuronal cells [195].

21



4.4. Gut microbiota

The Gl tract harbors a complex and dynamic population of microorganisms, collectively termed
the gut microbiota, which have significant influence on the host during homeostasis and disease states
[196, 197]. A mounting body of evidence suggests that the gut microbiota mediates the host’s physiology
including immune [198, 199], metabolic [200, 201], and neural [202, 203] function. Numerous factors
contribute to shifts in gut microbiota composition such as diet, exercise, antibiotics, infection, and disease
[204]. Studies suggest that alterations in gut microbiota diversity and composition are associated with
metabolic abnormalities including obesity and insulin resistance [205-208]. For instance, colonization of
germ-free wild-type mice with a gut microbiota from obese (ob/ob) mice [205] and humans [209] resulted

in a significant increase in adiposity than colonization with a microbiota from lean subjects.

The role of the gut microbiota is also implicated in obesity-associated cognitive dysfunctions [27,
210, 211]. The gut microbiota and host nervous system communicates bidirectionally via neural, hormonal
and immunological routes, and dysfunction of this brain-gut axis can lead to neuropathological
consequences [206]. A recent study reported that a specific gut microbiome profile is linked to several
memory domains and to the volume of hippocampus and prefrontal regions differentially in human
subjects with and without obesity [27]. Mice receiving microbiota transplantation from obese subjects
exhibited memory impairments similar to the impairment manifested in obese subjects [27]. Additionally,
HFD-fed (60% kcal from fat) obese mice developed anxiety- and depression-like behaviors as well as
central insulin resistance and neuroinflammation [210]. These HFD-induced alterations were transferable
to germ-free mice by fecal transplantation and reversible with treatment with antibiotics [210], suggesting

a consequential role of obese microbiome in the CNS.

The gut microbiome can exert neural effects via several mechanisms [202]. Some gut microbes

and their metabolites may target the brain through neuroendocrine mechanisms [206]. For example,
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some gut bacteria produce neuroactive metabolites, such as serotonin and y-aminobutyric acid (GABA),
which plays significant role in mood regulation, cognitive functions, and appetite control [212]. Indeed,
the HFD consumption significantly altered the levels of select metabolites (tryptophan, GABA, amino
acids, and multiple acylcarnitines) as well as of BDNF in the brain and the plasma of the obese mice [210].
The intestinal microbiome can also act on the brain directly as some metabolites derived from gut
microbes or neurotransmitters have the potential to stimulate the vagus nerve, which connects the
enteric nervous system to the CNS, and subsequently influence brain function [202, 213]. Further research
identifying the role of gut microbiota in the brain function in context of obesity and microbiota-targeted

interventions for HFD- and obesity-associated alterations in the brain function is warranted.

5. Summary of current knowledge

Obesity is associated with increased occurrence of cognitive and mood disorders. While HFD and
subsequent obesity can have detrimental impact on the brain [3-7, 15, 141], dietary bioactives may
mitigate some of these harmful effects. EC is one of the most widely consumed flavanols by humans, and
its beneficial effects in mitigating comorbidities of obesity have been reported [104]. The underlying
mechanisms of the beneficial effects of EC in obesity are explained in part by its capacity to mitigate
inflammation, oxidative and ER stress. EC also has a neuroprotective potential; EC-rich cocoa flavanols
have shown to improve cognitive function by increasing cerebrovascular function. Additionally, EC may
exert neuroprotective effects by mitigating endotoxemia and systemic inflammation and attenuating

metabolic disorders in obesity.

Although there are studies implicating relationship between obesity and cognitive impairment [3-
7,15, 141]; and indicating beneficial neuroprotective effects of EC [39, 54, 67, 95, 106, 129-137], the anti-

inflammatory capacity of EC in the brain in obesity remains to be explored. Therefore, investigating the
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capacity of EC to mitigate HFD- and/or obesity-associated neuroinflammation and alteration in cognition
and mood; and understanding the underlying neuroprotective mechanisms will be of utmost relevant as

EC has potential to intervene the neuropathological consequences of obesity.

This dissertation project investigated the neuroprotective potential of EC, particularly its capacity
to mitigate HFD-/obesity-associated alterations in cognition and mood using preclinical models of obesity.
The specific objectives are to investigate 1- the effects of EC on memory and learning and its capacity to
mitigate neuroinflammation in the hippocampus of HFD-fed obese mice, 2- long-term effects (24 weeks)
of EC on HFD-induced alteration in memory and mood and gut-microbiota in obese mice, and 3- the
underlying mechanisms of EC actions at the hippocampus using a multi-genomic and bioinformatic
approach. This research work will contribute to the explanation of mechanisms related to the

neuroprotective potential of EC in context of HFD and associated obesity.
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Obesity is characterized by a condition of low-level chronic inflammation that can lead to altered cogni-
tion and behavior. The flavanol (-)-epicatechin (EC) has been shown to have anti-inflammatory actions in
mouse models of diet-induced obesity. This study investigated the capacity of dietary EC to mitigate hip-
pocampal inflammation and impaired memory in high fat diet (HFD)-fed mice. Healthy 6 weeks old male
C57BL/6J mice (10 mice per group) were fed for 13 weeks either: a control diet (10% total calories from
fat), a high fat diet (60% total calories from fat), or the control and high fat diets supplemented with
20 mg EC per kg body weight. Short-term object recognition memory was evaluated by the novel object
recognition (NOR) task and spatial memory by the object location memory (OLM) task and the Morris
water maze (MWM). After 13 weeks on the dietary treatments, HFD-fed mice developed obesity, which
was not affected by EC supplementation. HFD consumption caused metabolic endotoxemia, and
increases in parameters of hippocampal inflammation, i.e. mMRNA levels of TLR4, Iba-1, and NOX4. All
these changes were mitigated by EC supplementation. EC supplementation also significantly improved
recognition memory in HFD-fed mice while neither HFD consumption nor EC supplementation affected
mouse spatial memory. Overall, EC supplementation prevented short-term recognition memory impair-
ment in HFD-induced obese mice, which could be in part due to the capacity of EC to mitigate metabolic
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Introduction

Obesity has become a worldwide epidemic, and its incidence
is rising at an alarming rate. Chronic low-grade inflammation
is an important characteristic of obesity. This chronic inflam-
matory condition contributes to the development of obesity-
associated comorbidities, including cardiovascular disease,
type 2 diabetes, insulin resistance, and cancer, resulting in
serious health burdens and incalculable social and medical
costs.””® Moreover, in humans and rodents, obesity has been
associated with increased occurrence of disorders in the
central nervous system (CNS), such as mild cognitive impair-
ment, dementia, and Alzheimer’s disease.®™" Altered structure
and function of the hippocampus, a region of the brain critical
for learning and memory, is observed in obese humans and
rodents."*™*® For instance, a higher body mass index (BMI) was
linked to hippocampal atrophy in males and females (60-64
years age), with those with higher BMI experiencing greater
hippocampal atrophy upon an 8 years follow up.**
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endotoxemia and associated hippocampal inflammation and oxidative stress.

Obesity and consumption of high fat/high sugar diets are
contributing factors for metabolic endotoxemia, which is
defined as 0.5- to 2-fold increase in circulating bacterial lipo-
polysaccharides (LPS) in the circulation.'”*® Endotoxemia is a
potent trigger of inflammation that can affect both the periph-
ery and the CNS. LPS can induce neuroinflammation by com-
promising the function of the blood-brain barrier, a barrier
that tightly regulates exchanges of molecules between the peri-
pheral blood and the CNS.'>*° In obesity, chronic inflam-
mation and increased circulating levels of metabolites and
proinflammatory molecules (e.g. fatty acids, glucose, cytokines
and LPS) can affect the functioning of the barrier.">*'>* In
fact, the blood-brain barrier at the hippocampus is disrupted
in mice chronically fed a high fat diet (HFD), which is pro-
posed to cause neuroinflammation and impaired memory.*>*

While consumption of HFD and obesity can have a detri-
mental impact on the brain, dietary components may be able
to mitigate these harmful effects. Epidemiological evidence
suggests that consumption of cocoa flavanols can improve cog-
nitive function including hippocampal-dependent memory in
humans.?*"%’ (=)-Epicatechin (EC) is one of the most abundant
flavanols found in cocoa products and one of the most widely
consumed flavanols by humans.*® EC consumption mainly
derives from tea and cocoa products, and fruits such as
grapes, berries, and apples. In humans, the effect of pure EC
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on cognition has not yet been investigated. In mice, EC
improved cerebrovascular function, hippocampal angio-
genesis, neuronal spine density, and spatial memory.>® Thus,
EC emerges as a dietary bioactive that may have beneficial
effects on behavior and cognition.

Although there are studies implicating a relationship
between obesity and cognitive impairment; and indicating
beneficial neuroprotective effects of EC, there are no previous
studies investigating the neuroprotective actions of EC in both
obese humans and animal models of obesity. In humans,
improvements in cognition in an elderly population was attrib-
uted in part to an improvement in insulin sensitivity.>* We pre-
viously showed that dietary EC supplementation mitigates
obesity- and high fructose/high fat diet-induced inflammation
and insulin resistance in mice.?*> However, the anti-inflam-
matory capacity of EC in mitigating obesity-induced neuroin-
flammation in the hippocampus and in improving obesity-
associated cognitive changes have not yet been characterized.
This paper investigated if dietary supplementation with EC
can mitigate hippocampal neuroinflammation and improve
behavior in mice fed a HFD. EC supplementation prevented
HFD-induced metabolic endotoxemia and increases in para-
meters of inflammation and oxidative stress, improving mouse
performance on the novel object recognition task.

Materials and methods
Animals and animal care

All procedures were in agreement with standards for the care
of laboratory animals as outlined in the NIH Guide for the
Care and Use of Laboratory Animals. All procedures were admi-
nistered under the auspices of the Animal Resource Services of
the University of California, Davis. Experimental protocols
were approved before implementation by the University of
California, Davis Animal Use and Care Administrative Advisory
Committee.

Healthy male C57BL/6] mice (20-25 g) (10 mice per group)
were fed for 13 weeks either: (A) a diet containing approxi-
mately 10% total calories from fat (C) (TD.06416, Envigo,
Indianapolis, IN), (B) a diet containing approximately 60%
total calories from fat (lard) (HF) (TD.06414, Envigo,
Indianapolis, IN), (C) the control diet supplemented with
20 mg EC per kg body weight (CE), and (D) the HFD sup-
plemented with 20 mg EC per kg body weight (HFE). The com-
position of the control and the high fat diets is listed in ESI
Table 1.1 The EC-containing diet was prepared every two weeks
to account for changes in body weight and food intake, and to
prevent potential EC degradation. All diets were stored at
—20 °C until use. The amount of EC supplemented has been
found to improve insulin resistance in rats fed high fructose
levels®* and in mice fed a HFD.*' In comparison to EC intake
in human populations,®*® the amount of EC supplementation
is relatively high. However, it can be reached by supplemen-
tation or consumption of select EC-rich fruits/vegetables and
derivatives.*®
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Body weight and food intake were measured weekly
throughout the study as previously described.®" After 13 weeks
on the dietary treatments, and after 4 h fasting, mice were
euthanized by cervical dislocation. Blood was collected from
the submandibular vein into tubes containing EDTA, and
plasma collected after centrifugation at 3000g for 10 min at
room temperature. Tissues were dissected and flash frozen in
liquid nitrogen and then stored at —80 °C for further analysis.

Determination of plasma metabolic parameters

Plasma LPS levels were determined using a kit from Abbexa
(Abbexa, Cambridge, UK) and following the manufacturer’s
protocol. Triglyceride concentrations were determined using
kits purchased from Wiener Lab Group (Rosario, Argentina)
and glucose concentrations using a kit from Sigma-Aldrich Co
(St Louis, MO), following the manufacturer’s protocols.

RNA isolation and real-time PCR (RT-PCR)

For quantitative RT-PCR studies, RNA was extracted from cells
using TRIzol reagent (Invitrogen, Carlsbad, CA). cDNA was
generated using high-capacity ¢cDNA Reverse Transcriptase
(Applied Biosystems, Grand Island, NY). Expressions of p-actin,
BDNF (brain-derived neurotrophic factor), Iba-1 (ionized
calcium binding adaptor molecule 1), iNOS (inducible nitric
oxide synthase), NOX (NADPH oxidase) 2 and 4, TLR4 (toll-like
receptor 4), and TNFa (tumor necrosis factor alpha) were
assessed by quantitative real-time PCR (iCycler, Bio-Rad,
Hercules, CA) with the primers listed in Table 1.

Cognitive function test

Behavioral tests were performed between week 10 and 12 of
the dietary intervention. After being exposed to the diets for 10
weeks, each animal was habituated in a white, square arena
(40 x 40 cm) where the animal was naive to, for 15 minutes
each day for two consecutive days. Next day, short-term object
recognition memory was evaluated using the novel object reco-
gnition (NOR) task. On the following day, short-term spatial
memory was evaluated with the object location memory (OLM)
task. At week 11, animals started training for the Morris water
maze (MWM) to be evaluated for spatial learning and reference
memory. Animals were acclimated to a behavioral testing room
separate from the housing room at least 1 hour prior to all
handlings and behavioral tests. All objects and arena were
cleaned with 70% ethanol after each trial. The pool used for
the MWM was emptied and cleaned daily.

Novel object recognition (NOR) and object location memory
(OLM) tasks

For both tasks, each animal was allowed to explore two identi-
cal unfamiliar objects (A4, A’) in the square arena described
above for 5 minutes (sample phase). After being placed in the
home cage for 1 hour (retention phase), mice were reintro-
duced to the arena for 5 minutes (test phase). For NOR task,
one of the objects was changed to a novel object during the
test phase (4, B). For OLM task, location of one of the objects
was changed to a novel location (4, B) and each arena had
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Table 1 Primers used in the study

Gene Forward primer (5’ — 3') Reverse primer (5' — 3)

-Actin TCATGAAGTGTGACGTGGACATCCGC CCTAGAAGCATTTGCGGTGCACGATG
p
BDNF ATGGGACTCTGGAGAGCCTGAA CGCCAGCCAATTCTCTTTTTGC
Iba-1 GTCCTTGAAGCGAATGCTGG CATTCTCAAGATGGCAGATC
iNOS CGAAACGCTTCACTTCCAA TGAGCCTATATTGCTGTGGCT
NOX2 AACTGTATGCTGATCCTGCTGC GTTCTCATTGTCACCGATGTCAG
NOX4 TGAGGAGTCACTGAACTATGAAGTTAATC TGACTGAGGTACAGCTGGATGTTCACA
TLR4 GGAAGTTCACATAGCTGAATGAC CAAGGCATGTCCAGAAATGAGA
TNFa CCCCTCAGCAAACCACCAAGT CTTGGGCAGATTGACCTCAGC

spatial cues made with construction papers mounted on the
north and west side of walls. The time that each animal spent
directly sniffing or whisking towards the familiar and the novel
objects or locations was analyzed by blinded investigators. A
preference index, a ratio of the amount of time spent exploring
one of the identical object (4') in the sample phase or the
novel object/location (B) in the test phase over the total
amount of time spent exploring both objects was used to
determine preference for novelty (A’/(A + A") x 100% or B/(A + B)
x 100% respectively).’’® A preference index above 50% indi-
cates preference for novel object or location, below 50% for
familiar object or location, and 50% null preference. Animals
that did not spend more than 10 seconds total exploring both
objects during the sample and the testing phases were
excluded from analysis.

Morris water maze (MWM)

Spatial learning and reference memory were assessed in a cir-
cular pool of 120 cm diameter containing water to a depth of
40 cm. The water temperature was controlled at 23 + 1 °C.
After every training and trial, each animal was gently scooped
out of the pool, placed in a heated holding cage, and returned
to the home cage. The pool was virtually divided into four
quadrants: northeast (NE), northwest (NW), southeast (SE),
and southwest (SW).

(1) Handling (MWM day 0): mice were introduced to water
for the first time. Each animal was allowed to swim in a clear
plastic cage (23.5 x 14 x 13 cm) containing water to a depth of
0.5 cm for 20 seconds. Afterwards, the animal was transferred
to a cage filled with a depth of 1 cm water for 20 seconds and
then to a cage filled with a depth of 2 cm water for 20 seconds.

(2) Pre-training (MWM day 1): mice were introduced to the
pool (diameter 120 cm) described above and a plexiglass plat-
form (10 cm top diameter). Each animal was placed on the
platform, which was located in the center of the pool and 1 cm
above the surface of the water, for 15 seconds. Afterwards, the
animal was allowed to swim freely for 30 seconds. Then, the
animal was guided to climb on the platform and to stay there
for 30 seconds.

(3) Visible platform task (MWM day 2-3): non-spatial train-
ing was conducted to ensure that non-cognitive effects were
not interfering with upcoming water maze performance. White
curtains were hung around the pool to obscure any spatial
cues in the room. Both locations of starting point of mice and
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platform were moved to new locations in each trial. The plat-
form was 1 cm above the surface of the water and mounted
with a flag that reached a height of 13 cm. Each animal was
gently placed into the pool and allowed to swim freely for 60
seconds. Once the animal located the platform, the animal
was allowed to stay on there for 20 seconds. If the animal
failed to locate the platform within 60 seconds, experimenters
gently scooped the animals with a net and placed the animal
on the platform for 20 seconds. Visible platform task was con-
ducted 5 times daily with a 1 hour intertrial interval.

(4) Hidden platform task (MWM days 4-7): large and high-
contrast geometrical patterns made with construction papers
were mounted on the walls of the testing room and the pool to
serve as distant spatial landmarks. The platform was hidden
from the mice; it was submerged 1 cm below the surface of the
water, which was rendered opaque with non-toxic, white, pow-
dered tempera paint. Starting point was moved to a new
location for each trial while the location of the platform stayed
in the center of the southwest (SW) quadrant throughout all
trials. Hidden platform task was conducted 5 times daily with
a 1 hour intertrial interval. Learning curves of the animals
were analyzed by measuring time spent to reach the platform
(escape latency) using EthoVision XT 13 (Noldus, Wageningen,
The Netherlands).

(5) Probe trial (MWM day 8): the testing environment for probe
trial was the same as the hidden platform task except there was no
platform placed in the pool. For this one-time trial, each animal
was allowed to swim freely for 60 seconds. Spatial memory was
analyzed by measuring the time spent by the animals in the target
quadrant (SW) using EthoVision XT 13.

Statistical analysis

Statistical analysis was performed using GraphPad Prism 7.04
(GraphPad Software, Inc., San Diego, CA). Pearson correlation
analyses were conducted to assess relationships between
plasma endotoxin concentration and a-TLR4 mRNA and
b-TNFa mRNA levels, and between TLR4 mRNA and TNFa
mRNA levels. Tests for interaction were performed by two-way
analysis of variance (ANOVA) and post-tested using Fisher’s
Least Significant Difference (LSD) to examine differences
between group means. Within group performance of NOR and
OLM was evaluated with two-tailed paired t-test. Differences
were considered statistically significant at p < 0.05. Data are
shown as mean + SEM.
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Results
Animal outcome

Daily food intake in the groups fed the HFD was significantly
lower than in those fed the control diets (Fig. 1A) while the
calorie intake was similar among groups (Fig. 1C). Compared
to the control diet, consumption of the HFD caused a higher
increase in body weight gain, which became significant after
only one week on the diet (Fig. 1B). After 13 weeks on the
HFD, the average body weight of the HF group was 24% higher
than that of the control group. This was accompanied by a 2.3-
and 2.6-fold increase in the visceral fat pad weight in mice fed
the HFD or the HFD supplemented with EC, respectively
(Fig. 1C). Supplementation with EC did not affect body weight
gain neither in mice fed the control diet nor the HFD.
Hippocampal tissue weights were similar among groups. Ratio
of hippocampus weight to body weight was similar for
the HF and HFE groups (0.50 + 0.05 mg and 0.50 + 0.03 mg
respectively).

EC supplementation attenuates parameters of
neuroinflammation in the hippocampus from HFD-fed mice

To evaluate neuroinflammation, we measured the mRNA levels
of TLR4, Iba-1, and TNFa in the hippocampus by RT-PCR
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(Fig. 2A). Consumption of the HFD did not affect hippocampal
TNFa mRNA content. On the other hand, Iba-1 mRNA levels
were 16% higher in HF mice than in controls, and EC sup-
plementation prevented these increases. A significant inter-
action between EC supplementation and diet on TLR4 mRNA
levels was observed (interaction from two-way ANOVA: p <
0.04). TLR4 mRNA levels were 52% higher in HF mice than in
controls, and EC supplementation also fully prevented these
increases.

We also measured enzymes involved in inflammation and
reactive nitrogen/oxygen species (nitric oxide, superoxide
anion, H,0,) production, i.e. NOX2, NOX4, and iNOS (Fig. 2B).
NOX2 and iNOS mRNA levels were similar among groups,
while 44% higher NOX4 mRNA levels were observed in the HF
group compared to controls, which was prevented by EC
supplementation.

EC supplementation prevents HFD-induced metabolic
endotoxemia

Consumption of the HFD caused metabolic endotoxemia in
mice. LPS concentration in plasma was 32% higher in HF than
in control mice, and EC supplementation prevented this
increase (Fig. 3A). There was a strong positive correlation (r:
0.57, p = 0.001) between plasma endotoxin concentration and
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TLR4 mRNA levels in the hippocampus (Fig. 3B). Although
hippocampal TNFx mRNA levels were similar among groups, a
significant correlation was observed between TNFa mRNA
levels and (i) plasma endotoxin (r: 0.41, p = 0.03) (Fig. 3C) and
(ii) TLR4 (r: 0.58, p = 0.0004) (Fig. 3D) mRNA levels.

EC supplementation improves novel object recognition
memory in HFD-fed mice while did not affect spatial memory
and learning

The NOR task was conducted to assess the short-term reco-
gnition memory of mice. During the sample phase, all groups
spent a comparable amount of time exploring each of the two
identical objects (Fig. 4A). Comparing within group preference
index of the sample and test phase, all groups significantly
preferred the novel object (ESI Fig. 1At). During the test

This journal is © The Royal Society of Chemistry 2020

phase, a significant interaction between EC supplementation
and diet on NOR performance was observed (interaction from
two-way ANOVA: p < 0.03). EC supplemented HF group (HFE)
exhibited greater novel object preference compared to the HF
group as measured by the preference index (Fig. 4A). This
demonstrates the greater ability of the EC supplemented group
in recognizing the novel object from the familiar object.

EC supplementation did not affect spatial memory and
learning. OLM task was conducted to assess short-term spatial
memory of mice. All groups performed similarly in both
sample and test phases as measured by the preference index
(Fig. 4B). Interestingly, no significant within group changes in
the preference index were observed in all C, CE, HF, HFE
groups, indicating that there was no overall novel location pre-
ference (ESI Fig. 1Bt). Spatial learning was also evaluated with
Morris water maze with the hidden platform task. Comparing
the first (MWM day 4) and the last day (MWM day 7) of the
hidden platform task, all groups found the hidden platform
more quickly (Fig. 5A). On the last day of the hidden platform
task, all groups had similar escape latencies exhibiting com-
parable spatial learning (Fig. 5A). Similarly, all groups spent a
comparable amount of time in the target southwest quadrant
zone during the probe trial, indicating no differences in
spatial reference memory among groups (Fig. 5B).

EC supplementation increases the expression of BDNF

We next measured mRNA levels of BDNF, a promoter of neuro-
nal differentiation and survival and important mediator of
synaptic plasticity,® in the hippocampus. Consumption of the
HFD did not affect hippocampal BDNF mRNA content.
However, BDNF mRNA levels were 90 and 76% higher in the
CE and HFE groups compared to the control group (Fig. 5C).

Discussion

This work showed that supplementation with EC improves
parameters of neuroinflammation and impaired behavior in
HFD-induced obese mice. Thus, consumption of the HFD
caused metabolic endotoxemia and upregulation of hippocam-
pal neuroinflammatory markers, i.e. TLR4, Iba-1, and NOX4,
in association with impaired recognition memory. EC sup-
plementation prevented all these changes, supporting a poten-
tial benefit of an EC-rich diet on obesity-induced inflam-
mation and altered behavior.

The HFD induced significant increase in body weight and
fat pads weight in mice after 13 weeks which was not pre-
vented by EC supplementation. The increase in adiposity in
the HF and HFE groups despite of the similar caloric intake
among all four groups could be explained by the fact that
different macronutrients exert differential effects on the
thermic effects of food.*® Fat is less thermogenic than carbo-
hydrates and proteins and thus can prompt greater positive
energy balance in the body compared to carbohydrates and
proteins when consumed over time.*'™*
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EC supplementation prevented the metabolic endotoxemia
associated with HFD consumption. This finding is in agree-
ment with a similar observation in mice fed the HFD for 15
weeks,*® in which the metabolic endotoxemia was associated
with an increase in intestinal permeability. EC protects the
intestinal barrier from permeabilization by inhibiting HFD-
associated down regulation of tight junction proteins and by
modulating signaling pathways that promote tight junction
opening. In this regard, EC prevents both TNFa and bile acid-
induced Caco-2 monolayer permeabilization by inhibiting NF-
¥B and ERK1/2.>3%%%7 On the other hand, other mechanisms
could be involved in HFD-induced metabolic endotoxemia. In
this regard, LPS is also transported through intestinal epi-
thelial cells and into the lymph, upon incorporation and
secretion into chylomicrons.48 Once in the circulation, endo-
toxins can reach different organs and initiate pro-inflamma-
tory responses. Endotoxins bind to the TLR4 to initiate a
cascade of events that leads to the activation of, among other
signals, transcription factors NF-kB and AP-1 that increase the
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expression of proinflammatory molecules.”’ The increased
expression of TLR4 in the hippocampus of HFD-mice suggests
the activation of this pathway. This is paralleled by a pro-
inflammatory condition as evidenced by an increased
expression of Iba-1, a protein participating in microglia endo-
cytosis, and a trend for higher TNFa expression. This is further
supported by positive correlations among plasma endotoxin
levels, TLR4 and TNFa expression. Overall, the capacity of EC
to prevent metabolic endotoxemia and suppress TLR4 and Iba-
1 upregulation supports a link between metabolic endotoxe-
mia and neuroinflammation. It also underscores the health
relevance of the actions of EC at the gastrointestinal tract,
where it prevents endotoxin transport into the circulation.*?
While EC-mediated decrease in metabolic endotoxemia can
be a relevant mechanism in EC’s capacity to mitigate high fat
diet-induced neuroinflammation, other potential contributing
mechanism is a direct action of EC and/or EC metabolites at
the level of the brain. In humans, 95% of EC is absorbed
either as EC, structurally related EC metabolites (SREM) (glu-
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curonyl, methyl and/or sulphated EC derivatives) or as smaller
metabolites generated after EC metabolism by the micro-
biota.>® SREM, mainly catechin and EC glucuronidated deriva-
tives, were measured in the brain of Tg2576 AD transgenic
mice consuming a flavan-3-ol-rich grape powder.’’ When a
synthetic SREM (3-O-Me-EC-5-O-B-glucuronide) was added to
brain slices from Tg2576 AD mice, it improved basal synaptic
transmission and long-term potentiation.>* In mice fed EC for
13 days, both EC and 3’-O-methyl-(—) EC were detected in per-
fused brains.*” This was associated to an improvement in the
retention of spatial memory that was attributed to increased
angiogenesis.’> Recently, the main EC microbiota-derived
metabolite 5-(hydroxyphenyl)-y-valerolactone-sulfate was found
in mouse brain after 5-(hydroxyphenyl)-y-valerolactone i.p.
injection, and in rat and pig brain upon consumption of EC-
rich foods.*® Overall, although evidence is limited, EC and
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SREM can reach the brain where they could have direct protec-
tive effects against neuroinflammation.

NADPH oxidase is one of the key producers of cell reactive
oxygen species, in particular of superoxide anion and H,0,.
Although adequate amounts of select oxidants are critical for
normal brain function such as hippocampal long-term poten-
tiation,>* excessive generation of oxidants can result in oxi-
dative stress.>® Oxidative damage to cellular components may
play a role in the development of cognitive impairment associ-
ated with CNS disorders.>®*"® For instance, postmortem brain
tissue analysis of Alzheimer’s disease patients showed an upre-
gulation of the NOX cytosolic subunits p67phox, p47phox, and
p40phox and an increase in NOX enzymatic activity.’® In our
study, EC mitigated HFD-induced increased expression of
NOX4 in the hippocampus while neither HFD nor EC sup-
plementation affected iNOS and NOX2 mRNA levels.
Consumption of a HFD increases the expression of Iba-1 and
NOX subunits and the activity of NOX in mouse brain com-
pared to their age-matched controls.’® Also, a HFD induces
protein oxidation in the hippocampus of aged mice and
impairs their cognitive performance in a T-maze.’® The
observed capacity of EC to regulate hippocampal regulation of
NOX4 expression is in agreement with its capacity to modulate
the expression and activity of several NOX isoforms and miti-
gate oxidative stress.®® Collectively, current evidence suggests a
relationship between oxidative stress and neuroinflammatory
status in obesity that can be mitigated by consumption of EC.

Growing evidence indicates that diet-induced obesity con-
tributes to neuroinflammation, as well as to cognitive dysfunc-
tion in rodent models.'*'®?*%17%3 Both NOR and OLM tasks
are based on rodents’ innate tendency to explore a novel stimu-
lus. The increased time spent exploring the replaced or relo-
cated object during the test phase suggests their ability to
remember what type of object they were previously exposed to
or where the object was previously located during the sample
phase. All C, CE, HF, HFE groups had no significant novel
location preference shown in OLM task, while novel object pre-
ference was observed in NOR task in all groups. It is possible
that the spatial cues chosen for OLM were not recognizable or
distinguishable by mice to spatially differentiate the two iden-
tical objects or the animals were simply not interested in the
chosen objects.>®** It is also plausible that they needed a
shorter retention phase or longer time to explore the objects in
the arena.®® In the current study, consumption of the HFD did
not cause large effects on learning and memory. In terms of
HFD-mediated cognitive impairment, it is possible that in our
study the HFD did not induce cognitive impairment due to its
duration. Indeed, it is suggested that specific effects of a HFD
on cognition are dependent on the duration of dietary
exposure.* For instance, while 5 weeks on a HFD (60% kcal
from fat) did not impair object recognition memory in mice,*
21 weeks on a HFD (40% kcal from fat) impaired recognition
memory.®* In terms of the MWM, we observed that HFD-fed
mice performed similarly to the control group in both the
hidden platform task and the probe trial. It has been reported
that mice fed a HFD (60% kcal from fat) display impaired
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spatial memory compared to mice fed control diets, but the
duration of the HFD was longer than in our study. For
instance, impaired spatial memory was observed in mice after
consumption of HFD for 19 weeks,°® 20 weeks,”® and
5 months.®® Therefore, future studies with longer durations of
HFD consumption are warranted to investigate the effects
of EC on HFD-induced impaired learning and memory in
mice.

EC supplementation significantly improved recognition
memory in HFD-fed mice. Several studies have characterized
the effects of EC-rich cocoa on cognition in humans.***” In
elderly individuals with mild cognitive impairment, consump-
tion of cocoa flavanols improved cognitive functions.>**” So
far, most of the effects of EC on cognition have been attributed
to improvements in blood flow.®® However, EC and/or its
metabolites could also act through the mitigation of HFD/
obesity-induced neuroinflammation and through the observed
increase in hippocampal BDNF. BDNF is a member of the neu-
rotrophin family of growth factors crucial for the differen-
tiation and survival of neurons. BDNF plays a critical role in
the induction of hippocampal long-term potentiation, a form
of synaptic plasticity considered to underlie learning and
memory.>® BDNF deletion within dorsal hippocampus of
mouse impairs learning and memory in novel object reco-
gnition task and Morris water maze.®® In humans, it has been
proposed that circulating BDNF may be used as a biomarker
for select psychiatric disorders.”® Circulating and brain BDNF
levels are found to be increased upon flavanol supplemen-
tation in rodents and humans. An effect of EC on BDNF
metabolism is supported by findings in humans consuming
EC-rich cocoa.”" High serum levels of BDNF were found in a
population of males and females (62-75 years of age) consum-
ing 494 mg flavanols per d for 12 weeks. The increase in
serum BDNF was correlated with an improvement in global
cognitive performance. Adult male mice fed a control diet and
administered with 4 mg EC day " for 14 weeks show a decrease
in anxiety assessed in open field and elevated plus maze tests,
and an increase in BDNF hippocampal levels.”> Although we
also observed an increase in hippocampal BDNF mRNA levels
in the EC supplemented groups, we did not observe significant
changes in the open field behavior among groups (data not
shown). On the other hand, the 7-times lower EC intake in our
experimental model compared to this previous study,”* can
explain the differential response. Overall, given the relevant
role of BDNF in neurogenesis and in supporting brain physi-
ology, future studies investigating the mechanisms of brain
BDNF increase by EC will be of outmost relevance. It is impor-
tant to mention that other flavonoids can have neuroprotective
actions. However, rather than on obesity-associated altered be-
havior, most studies were focused on ageing-related cognitive
dysfunction.”® In this regard, high consumption of green tea,
which contains catechin, epicatechin (EC), epicatechin-3-
gallate (ECG), epigallocatechin (EGC), and epigallocatechin-3-
gallate (EGCG), was associated with a lower prevalence of cog-
nitive impairment in Japanese subjects aged >70 years, as
assessed by Mini-Mental State Examination.”*”*
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In summary, EC supplementation improved recognition
memory and mitigated neuroinflammation in a model of diet
(HFD)-induced obesity in mice. Among the underlying mecha-
nisms, we provide evidence that EC can in part act by promot-
ing BDNF upregulation and by preventing obesity-induced
metabolic endotoxemia and the associated activation of pro-
inflammatory responses and oxidative stress in the hippo-
campus. Further studies, particularly in obese humans, will be
essential to support the concept that consumption of EC-rich
foods could contribute to improve behavior and cognition in
obesity.
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Abstract

Mounting evidence demonstrates that consumption of high fat diet (HFD) and subsequent
development of obesity leads to alterations in cognition and mood. While obesity can affect brain
function, consumption of select dietary bioactives may help prevent obesity-related cognitive decline.
This study investigated the capacity of the dietary flavonoid (-)-epicatechin (EC) to mitigate HFD-induced
obesity-associated alterations in memory and mood. Healthy 8-week old male C57BL/6J mice were
maintained on either a control diet (10 kCal% from fat) or a HFD (45 kCal% from fat) and were
supplemented with EC at 2 or 20 mg/kg body weight (B.W.) for a 24 week period. Between week 20 and
22, anxiety-related behavior, recognition memory, and spatial memory were measured. Underlying
mechanisms were assessed by measuring the expression of selected genes in the hippocampus and by
16S rRNA sequencing and metabolomic analysis of the gut microbiota. 24 weeks of HFD feeding resulted
in obesity, which was not affected by EC supplementation. HFD-associated increase in anxiety-related
behavior was mitigated by EC in a dose-response manner and was accompanied by increased
hippocampal brain-derived neurotrophic factor, as well as partial or full restoration of glucocorticoid
receptor, mineralocorticoid receptor and 11B-HSD1 expression. Higher EC dosage (20 mg/kg B.W.) also
restored aberrant Lactobacillus and Enterobacter abundance altered by HFD and/or the associated
obesity. Together, these results demonstrate how EC mitigates anxiety-related behaviors, revealing a
connection between BDNF- and glucocorticoids-mediated signaling. Our findings link changes in the

hippocampus and the gut microbiota in a context of HFD-induced obesity and anxiety.

Keywords: obesity, hippocampus, anxiety, memory, epicatechin, high fat diet

Abbreviations:

BDNF, brain-derived neurotrophic factor; CNS, central nervous system; EC, (-)-epicatechin; HFD, high fat

diet; B.W., body weight; GR, glucocorticoid receptor; MR, mineralocorticoid receptor; 11p-HSD1, 11B-
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hydroxysteroid dehydrogenase type I; HPA, hypothalamic-pituitary-adrenal; OFT, open field test;

NOR, novel object recognition; MWM, Morris water maze; OLM, object location memory.

1. Introduction

Obesity has reached epidemic proportions and is regarded as a major public health concern.
Obesity deleteriously affects health, increasing the risk of many chronic diseases ultimately decreasing
quality of life and life expectancy [1, 2]. Among them, obesity has been linked to impairments in the
central nervous system (CNS) contributing to the development of neurological diseases and mood
disorders such and dementia, anxiety, and depression [3-9]. Indeed, obese individuals have a 55% higher
risk of developing depression over their lifetime [10]. Similarly, animal models have also demonstrated
that chronic consumption of high fat diets (HFD) and subsequent obesity leads to alterations in mood,
anxiety, and depressive-like behavior [11-13].

Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis has been reported in both obesity
and emotional disorders. Glucocorticoids modulate HPA activity, targeting glucocorticoid receptors in
limbic forebrain circuits to mediate psychological and behavioral stress [14]. In mice, chronic HFD induces
anxiety-associated behaviors, accompanied by stress-induced activation of the HPA axis [15, 16]. Excess
glucocorticoids impair adult neurogenesis, resulting in hippocampal atrophy, which in turn increases
anxiety-like behaviors [17, 18]. The hippocampus has a well-defined central role in memory consolidation,
but it is also involved in the regulation of mood and emotion [19, 20], which can be influenced by obesity
and HFD [21-25].

Changes in the gut microbiota and associated variations in derived metabolites are being
intensively studied for their participation in the gut-brain crosstalk. The capacity of polyphenols to
modulate the gut microbiota is also proposed as a mechanism involved in the capacity of select

polyphenols to mitigate mood disorders [26]. It is currently proposed that select gut bacteria could be
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associated with improvements in moods, including depression and anxiety [27]. Indeed, diet-induced
obese mice exhibited altered insulin and inflammatory signaling in the brain and anxiety-associated
behaviors, which were improved by antibiotic treatments [11].

Plant bioactives such as flavonoids have consistently been shown to improve a range of behaviors
in rodents and humans [28-30]. (-)-Epicatechin (EC) is a flavan-3-ol abundant in several fruits and
vegetables, e.g. grapes, apples, berries, cocoa, tea, which is reported to beneficially influence cognition
and mood. The benefits of EC upon the CNS are purportedly mediated through their capacity to modulate
vascular function (increase angiogenesis/cerebral blood flow) [31, 32], modulate cell signaling (increase
brain-derived neurotrophic factor (BDNF)) [29] and mitigate neuroinflammation [33].

We previously observed that EC (20 mg/g B.W.) supplementation of mice fed a high fat diet (HFD)
(60 kCal% from fat) for 13 weeks improved recognition memory [33]. This effect was associated with
increased BDNF levels in the hippocampus and the prevention of HFD-induced endotoxemia and
neuroinflammation. However, in this model, HFD-fed mice did not show other major behavioral changes
[33] and EC did not improve HFD-induced dysbiosis [34]. To further understand the potential capacity of
EC to mitigate obesity-induced changes in mood and behavior, the current study used a mouse model of
obesity with a longer (24 weeks) exposure to a HFD with a level (45 kCal% from fat) more relevant to
human consumption. EC was supplemented at two levels, one that can be extrapolated to average human
dietary consumption (2 mg EC/kg B.W.) [35], and a higher amount (20 mg EC/kg B.W.) that could be
reached in humans by supplementation [36]. Thus, the current study investigated the link between
changes in the hippocampus and gut microbiota in a context of HFD-induced obesity and anxiety, and the
role of EC mitigating the adverse effects associated with HFD-induced obesity in the CNS and shifts in the
gut microbiota. Characterization of the microbiota and microbiome allowed investigation of the relevance
of the gut-brain axis crosstalk in the beneficial effects of EC on HFD/obesity-induced alterations in

behavior.
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2. Materials and methods
2.1 Animals and animal care

All procedures were in agreement with standards for the care of laboratory animals as outlined
in the NIH Guide for the Care and Use of Laboratory Animals. All procedures were administered under the
auspices of the Animal Resource Services of the University of California, Davis. Experimental protocols
were approved before implementation by the University of California, Davis Animal Use and Care
Administrative Advisory Committee.

Healthy 8 weeks old male C57BL/6J mice (20-22 g) (2-3 mice housed together, 10 mice per group)
were fed for 24 weeks either: A - a control diet containing approximately 10% total calories from fat (C)
(TD.06416, Envigo, Indianapolis, IN), B - a high fat diet containing approximately 45% total calories from
fat (lard) (HF) (TD.06415, Envigo, Indianapolis, IN), the control diet supplemented with C - 2 mg EC (CE2)
or D - 20 mg EC (CE20) per kg B.W., or the HFD supplemented with E - 2 mg EC (HFE2) or F - 20 mg EC
(HFE20) per kg B.W.. The composition of the control and the high fat diet is listed in Supplementary Table
S1. The EC-containing diet was prepared every two weeks to account for changes in body weight and food
intake, and to prevent potential EC degradation. All diets were stored at -20°C until use.

Body weight and food intake were measured weekly throughout the study as previously described
[37]. At 12 weeks, blood was collected from the submandibular vein to assess midpoint metabolic
parameters. Body composition was measured at weeks 12 and 24 by EchoMRI (Echo Medical Systems,
Houston, TX). After 24 weeks on the dietary treatments, and after 4 h fasting, mice were euthanized by
cervical dislocation. Blood was collected from the submandibular vein into tubes containing EDTA, and
plasma collected after centrifugation at 3,000 x g for 10 min at room temperature. Brains were extracted
from the skulls, and the hippocampus isolated. Visceral, epididymal, retroperitoneal, subcutaneous, and
brown fat pads were excised. The collected subcutaneous fat depot consisted of the posterior

(dorsolumbar, ingunal and gluteal) and the anterior (cervical and axillar) subcutaneous fat. The visceral
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fat isolated was the mesenteric adipose tissue. Tissues were dissected and flash frozen in liquid nitrogen

and then stored at -80°C for further analysis.

2.2 Determination of plasma metabolic parameters

Plasma triglyceride and cholesterol concentrations were determined using kits purchased from
Wiener Lab Group (Rosario, Argentina), glucose concentrations using a kit from Sigma-Aldrich Co (St.
Louis, MO), and insulin concentration using a kit purchased from Crystal Chem Inc. (Downers Grove, IL),
following the manufacturer’s protocols. The homeostasis model for insulin resistance (HOMA-IR) was
calculated as (fasting blood glucose (mmol/L) x fasting plasma insulin (uU/ml) / 22.5) to assess insulin

resistance.

2.3 RNA isolation and quantitative PCR (q-PCR)

For quantitative PCR studies, RNA was extracted from cells using TRIzol reagent (Invitrogen,
Carlsbad, CA). cDNA was generated using high-capacity cDNA Reverse Transcriptase (Applied Biosystems,
Grand Island, NY). Expressions of 8-actin, Bdnf (brain-derived neurotrophic factor), GR (glucocorticoid
receptor; Nr3cl), MR (mineralocorticoid receptor; Nr3c2), and 116-Hsdl (11B-hydroxysteroid
dehydrogenase type |) were assessed by quantitative real-time PCR (iCycler, Bio-Rad, Hercules, CA) with
the primers listed in Table 1.

Table 1. Primers used in the study.

Gene Forward Primer (5'— 3’) Reverse Primer (5'— 3’)

B-actin TCATGAAGTGTGACGTGGACATCCGC CCTAGAAGCATTTGCGGTGCACGATG
Bdnf ATGGGACTCTGGAGAGCCTGAA CGCCAGCCAATTCTCTTTTTGC

Nr3c1 (GR) TGGAGAGGACAACCTGACTTCC ACGGAGGAGAACTCACATCTGG
Nr3c2 (MR) TGTGTGGAGATGAGGC GGACAGTTCTTTCTCCGAAT
116-Hsd1 GGGATAATTAACGCCCAAGC TCAGGCAGGACTGTTCTAAG
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2.4 Animal Behavioral Test

Behavioral tests were performed between week 20 and 22 of the dietary intervention. Animals
were acclimated to a behavioral testing room separate from the housing room at least 1 hour prior to all
handlings and behavioral tests.

Open field test (OFT). After being exposed to the diets for 20 weeks, each animal was habituated
in a white, square arena (40 x 40 cm) where the animal was naive to. To evaluate anxiety-related behavior
of mice, the amount of time traveled in the center zone and total distance traveled was measured during
the first 5 minutes using EthoVision XT 13 (Noldus, Wageningen, The Netherlands). After each trial, the
arena was cleaned with 70% ethanol.

Novel object recognition (NOR) and object location memory (OLM) tasks. The day after the OFT,
short-term object recognition memory was evaluated using the NOR task. On the following day, short-
term spatial memory was evaluated with the OLM task. For both tasks, each animal was allowed to explore
two identical unfamiliar objects (A, A’) in the square arena described above for 5 minutes (sample phase).
After being placed in the home cage for 1 hour (retention phase), mice were reintroduced to the arena
for 5 minutes (test phase). For the NOR task, one of the objects was changed to a novel object during the
test phase (A, B). For the OLM task, location of one of the objects was changed to a novel location (A, B)
and each arena had spatial cues made with construction papers mounted on the north and west side of
walls. The time that each animal spent directly sniffing or whisking towards the familiar and the novel
objects or locations was analyzed by blinded investigators. A preference index, a ratio of the amount of
time spent exploring one of the identical object (A’) in the sample phase or the novel object/location (B)
in the test phase over the total amount of time spent exploring both objects was used to determine
preference for novelty (A'/(A + A’) x 100% or B/(A + B) x 100% respectively) [38, 39]. A preference index
above 50% indicates preference for novel object or location, below 50% for familiar object or location,

and 50% null preference. Animals that did not spend more than 10 seconds total exploring both objects
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during the testing phase were excluded from analysis. After each trial, all objects and the arena were
cleaned with 70% ethanol.

Morris water maze (MWM). At week 21, animals started training for the MWM to be evaluated
for spatial learning and reference memory. Spatial learning and reference memory were assessed in a
circular pool of 120 cm diameter containing water to a depth of 40 cm. The water temperature was
controlled at 23+1°C. After every training and trial, each animal was gently scooped out of the pool, placed
in a heated holding cage, and returned to the home cage. The pool was virtually divided into four
guadrants: northeast (NE), northwest (NW), southeast (SE), and southwest (SW).
(1) Handling (MWM day 0): mice were introduced to water for the first time. Each animal was allowed to
swim in a clear plastic cage (23.5 x 14 x 13 cm) containing water to a depth of 0.5 cm for 20 seconds.
Afterwards, the animal was transferred to a cage filled with a depth of 1 cm water for 20 seconds and
then to a cage filled with a depth of 2 cm water for 20 seconds.
(2) Pre-training (MWM day 1): mice were introduced to the pool described above and a plexiglass platform
(10 cm top diameter). Each animal was placed on the platform, which was in the center of the pool and 1
cm above the surface of the water, for 15 seconds. Afterwards, the animal was allowed to swim freely for
30 seconds. Then, the animal was guided to climb on the platform and to stay there for 30 seconds.
(3) Visible platform task (MWM day 2-3): non-spatial training was conducted to ensure that non-cognitive
effects were not interfering with upcoming water maze performance. White curtains were hung around
the pool to obscure any spatial cues in the room. Both locations of starting point of mice and platform
were moved to new locations in each trial. The platform was 1 cm above the surface of the water and
mounted with a flag that reached a height of 13 cm. Each animal was gently placed into the pool and
allowed to swim freely for 60 seconds. Once the animal located the platform, the animal was allowed to

stay on there for 20 seconds. If the animal failed to locate the platform within 60 seconds, experimenters

58



gently scooped the animals with a net and placed the animal on the platform for 20 seconds. Visible
platform task was conducted 4 times daily with a 1-hour intertrial interval.

(4) Hidden platform task (MWM days 4-8): large and high-contrast geometrical patterns made with
construction papers were mounted on the walls of the testing room to serve as distant spatial landmarks.
The platform was hidden from the mice; it was submerged 1 cm below the surface of the water, which
was rendered opaque with non-toxic, white, powdered tempera paint. Starting point was moved to a new
location for each trial while the location of the platform stayed in the center of the southwest (SW)
guadrant throughout all trials. Hidden platform task was conducted 4 times daily with a 1-hour intertrial
interval. Learning curves of the animals were analyzed by measuring time spent to reach the platform
(escape latency) using EthoVision XT 13 (Noldus, Wageningen, The Netherlands).

(5) Probe trial (MWM day 9): the testing environment for probe trial was the same as the hidden platform
task except there was no platform placed in the pool. For this one-time trial, each animal was allowed to
swim freely for 60 seconds. Spatial memory was analyzed by measuring the time spent by the animals in

the target quadrant (SW) using EthoVision XT 13.

2.5 Genomic DNA extraction and 16S rRNA amplicon sequencing

Genomic DNA was extracted from all samples using a commercially available kit (Maxwell® RSC
PureFood GMO and Authentication Kit, Cat. #A51600). Around 50 mg of fecal pellet was used, following
manufacturer's instructions, with an additional bead beating step using the FastPrep (MP Biomedicals,
USA), protocol previously described by [40]. DNA concentrations of each sample were evaluated using
Qubit® dsDNA High Sensitivity Assay Kit (Cat. Q32851) with Qubit® 2.0 Fluorometer, following
manufacturer’s instructions.

Quality assessment was performed by agarose gel electrophoresis to detect DNA integrity, purity,

fragment size and concentration. The 16S rRNA amplicon sequencing of the V3-V4 hypervariable region
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was performed with an Illlumina NovaSeq 6000 PE250. Sequences analysis were performed by Uparse
software (Uparse v7.0.1001) [41] using all the effective tags. Sequences with >97% similarity were
assigned to the same OTUs. Representative sequence for each OTU was screened for further annotation.
For each representative sequence, Mothur software was performed against the SSUrRNA database of
SILVA Database [42]. OTUs abundance information were normalized using a standard of sequence number

corresponding to the sample with the least sequences.

2.6 'H NMR Metabolomic analysis

Metabolites were analyzed and quantified by 'H NMR analysis. The preparation method was
similar to that previously described [43]. Briefly, 500 pl NMR buffer [0.25g Na;HPO,, 1.44 g NaH,PO,, and
17 mg trimethylsilylpropanoic acid [sodium 3-(trimethysilyl)-propionate-d4] in 100 ml deuterated water
(Goss Scientifics, Crewe, United Kingdom] were added to 40-60 mg of defrosted fecal materials and
thoroughly mixed with a pellet pestle attached to a cordless motor grinder, followed by centrifugation
(18,000 x g for 1 min). Additional NMR buffer was added to each sample, to reach a final dilution factor of
16. After vortexing, 550 pl were transferred into a 5-mm NMR tube for spectral acquisition. High
resolution [*H] NMR spectra were recorded on a 600-MHz Bruker Avance spectrometer fitted with a 5-
mm TCI proton-optimized triple resonance NMR inverse cryoprobe and a 24-slot autosampler (Bruker,
Coventry, England). Sample temperature was controlled at 300 K. Each spectrum consisted of 64 scans
with a spectral width of 20.8 ppm (acquisition time 2.62 s). The noesyprld presaturation sequence was
used to suppress the residual water signal with low power selective irradiation at the water frequency
during the recycle delay (D1 = 4 s) and mixing time (D8 = 0.01 s). Spectra were transformed with a 0.3-Hz
line broadening and zero filling, manually phased, baseline corrected, and referenced by setting the
trimethylsilylpropanoic acid methyl signal to 0 ppm. Metabolites were identified and quantified using the

software Chenomx (V 8.6).
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2.7 Statistical analysis

Statistical analysis was performed using GraphPad Prism 7.04 (GraphPad Software, Inc., San
Diego, CA). Pearson correlation analyses were conducted to assess relationships between time spent in
the center zone (%) and BDNF mRNA levels. Body weight, metabolic parameters, behaviors, and
hippocampal mRNA levels were analyzed by one-way analysis of variance (ANOVA) and Fisher’s Least
Significant Difference (LSD) post hoc analysis. Differences were considered statistically significant at p <
0.05. Data are shown as mean + SEM.

Alpha-diversity and beta diversity were assessed using Shannon H diversity index and weighted
UniFrac distances analyses respectively. Statistical significance was determined by Kruskal-Wallis or
Permutational Multivariate Analysis of Variance (PERMANOVA). Comparisons at the Phylum and Genus
level were made using classical univariate analysis using Kruskal-Wallis combined with a false discovery
rate (FDR) approach used to correct for multiple testing. Correlation analysis between metabolomics data
and microbiome data was conducted using M2IA [44]. Missing values were filtered if present in more than
80% of samples or the relative standard deviation was smaller than 30% [45]. Remaining missing data
values were handled using random forest. Data was normalized using total sum scaling. Correlation
analysis between bacterial genus and metabolite profile across the different treatment groups was made
using Spearman's rank-order correlation analysis [46].

Statistical analysis of metabolomics data was carried out using Metaboanalyst 5.0 [47]. Data was
normalized by median, scaled by Pareto scaling and log-transformed. Univariate Analysis was carried out
by one way ANOVA, followed by Tukey HSD. Dendrogram and heatmaps were created with Pearson

correlation and Ward hierarchical clustering.
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3. Results
3.1 Body weight and metabolic parameters

Average daily food intake was 13% lower in the HFD-fed groups (3.22 g/day/mouse) compared to
the control groups (3.72 g/day/mouse) (p < 0.01; Table 2), however, caloric intake remained similar across
all groups (Figure 1A). A significant increase in body weight emerged between the HFD-fed mice and the
controls after one week of intervention (p < 0.001; Figure 1B). Body composition analysis highlighted a
significantly greater percent body fat mass in the HFD-fed mice when compared to the control mice after
both 12 and 24 weeks (p < 0.0001; Figure 1C). Addition of EC had no influence upon control nor HFD
associated body weight gain and percent body fat throughout the experimentation. Consistent with the
findings, an increased fat pad weight (except epididymal fat) was observed in the HFD-fed and the EC
supplemented HFD-fed mice (Table 2). Total brain and hippocampal weight remained unchanged across

all groups.

Table 2. Body and tissue weights after 24 weeks on the diets.

Parameter c CE2 CE 20 HF HFE 2 HFE 20
Food intake (g/d) 3.670.10° 3,65+ 0.05° 3.83+0.15° 3.28+0.05" 3.25+0.06" 3.13+0.09"
Body weight (g) 409+1.0° 39.3+1.0° 409+1.1° 50.51+0.6 52.34+0.6 51.17+0.7°
Fat Mass (%) 30.5+1.2° 304 1.0° 31.1+1.0° 39.4+1.0° 41.4+09° 415+0.7°
Brain (mg) 433+7 44415 43814 44314 4435 44516
Hippocampus (mg) 30.3+4.1 28216 30.0+15 30.6+1.3 31.0+3.1 275422
Visceral Fat (g) 0.68+0.11° 0.54+0.07° 0.64+0.05° 1.15  0.04° 1.25 £ 0.04° 1.30£0.05"
Epididymal Fat (g) 1.81+0.08" 1.45+0.17 1.76 £ 0.07° 1.38+0.07" 1.29+0.04° 1.50 £ 0.08"
Retroperitoneal Fat (g) 0.78 +0.08" 0.66 +0.08" 0.73+0.06" 1.61+0.08" 1.71+0.09° 1.57 £ 0.09"
Subcutaneous fat (g) 29402° 25403 26+0.1° 48+03° 51£02° 52£03°
Brown Fat (g) 0.27 £0.03° 0.21+0.03° 0.25+0.02° 0.35+0.03" 0.44 +0.02° 0.42+0.03%

Results are shown as means * SEM and are the average of 8-10 animals/group. Values having different

superscripts are significantly different (p < 0.05, one-way ANOVA with Fisher’s LSD).
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Figure 1. Effects of supplementation with EC on body weight gain and body fat mass. A- Calorie intake,
B- body weight gain, and C- % fat mass. Mice were fed a control diet (empty circles), the control diet
supplemented with 2 mg EC/kg (light blue circles) or 20 mg EC/kg (dark blue circles) B.W., a HFD (empty
triangles), or the HFD supplemented with 2 mg EC/kg (pink triangles) or 20 mg EC/kg B.W. (red triangles).
Body weight was measured weekly, and body composition was measured at weeks 12 and 24. Results are
shown as mean £ SEM of 9-10 animals/group. *Differences between the HF and control body weight gain

and % body fat values are significant (p < 0.05, one-way ANOVA with Fisher’s LSD).



Following the 24-week dietary intervention, analysis of 4h fasted plasma samples revealed
significantly elevated plasma glucose, insulin and HOMA-IR (17%, 166% and 3-fold respectively) in
response to the HFD when compared to the control (Table 3). EC Supplementation resulted in a full or
partial amelioration of HFD-induced increase in plasma glucose and insulin, with HOMA-IR reduced 42%
and 20% by supplementation with EC 2 and 20 mg/kg B.W., respectively. Despite this, EC had no significant

impact upon the HFD-induced increase in plasma triglyceride and cholesterol levels after 24 weeks.

Table 3. Blood parameters after 12 and 24 weeks on the diets.

Parameter C CE2 CE 20 HF HFE 2 HFE 20
Week 12
b b
Glucose (mg/dL) 187.9+13.2°  173.9:182° 138.7£6.5 20531 13.4° 205.0%8.4 198.9£13.9°
. b b
Insulin (ng/mL) 1.64+0.21° 1.40 £0.10° 1.66 £0.35° 413:1.03" 4312077 2.67 £0.56
b d bd
HOMA-IR 19.29£2.71° 1536 £1.78° 1430+2.18  4553+13.12° 5562£12.200 35.11%6.49
b b
Total Cholesterol (mg/dL) 190.6 £6.4° 183.4£55 181.8+6.4 241.6+11.1 237.1£12.2 194.8 £10.0°
Triglyceride (mg/dL) 83.52+7.31 71.14 £5.57 80.55 £ 3.45 74.91 £ 6.62 79.45 £ 6.10 70.82 £ 5.86
Week 24
b b b
Glucose (mg/dL) 178.1£6.4 186.3£11.5° 182.8+5.4° 208.1£6.1° 173.2£6.6° 200.6+6.8
. b
Insulin (ng/mL) 2.02£0.24° 1.76 £0.26° 1.70£0.22° 5.38 £ 0.47 3.72£0.21° 4.4410.44
b
HOMA-IR 2238+2.84  2048+3.51 19.16£238  69.30£6.95 40.02+3.07  54.86+5.61
b b b
Total Cholesterol (mg/dL) 215.7%6.9° 221+872° 209.316.5 319.5+12.6 301.1+12.5 309.1+13.2
Triglyceride (mg/dL) 70.54 £ 4.34 71.77 £3.87 72.08 £ 2.80 79.24 £ 4.34 75.16 £ 5.07 70.12 £3.31

Results are shown as means * SEM and are the average of 8-10 animals/group. Values having different

superscripts are significantly different (p < 0.05, one-way ANOVA with Fisher’s LSD).

3.2 EC supplementation mitigates anxiety-related behavior in mice in a dose-dependent manner
The OFT was conducted to evaluate anxiety-related behaviors. The test utilizes rodents’ naturally
evolved behavioral preference to avoid brightly lit open areas and instead remain in close proximity to a

darker less exposed protective wall [48]. Consumption of the HFD significantly decreased the percentage
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time spent in the center zone compared to control (F(s, s3) = 2.49, p < 0.05; Figure 2A and 2B). A statistically

significant difference in center exploration time was not found between HF and HFE2 groups; however,

EC supplemented HFD groups increased the time in the center zone in a dose-dependent trend (HF vs

HFE2: p = 0.31; HF vs HFE20: p = 0.023; Figure 2B). The total distance traveled in the open field was

significantly lower in the HF group compared to the controls (Fs,s4 = 6.11, p < 0.001; Figure 2C); however,

locomotor activity does not seem to confound emotional measure in the current study as EC

supplementations in both control and HFD-fed groups had no influence upon total distance traveled

throughout the 5 min time frame of the experiment while the addition of EC, particularly the high dose

(20 mg/kg B. W.), increased center exploration time.
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Figure 2. EC supplementation mitigates anxiety-
related behavior in mice in a dose-dependent manner.
A- Representative tracks of C, CE2, CE20, HF, HFE2, and
HFE20 mice in the open field arena over 5 min. B- EC
supplemented mice exhibit reduced anxiety-like
behavior, spending significantly more time in the center
zone of the open field apparatus. C- Total distance
traveled during the first 5 min in the arena. Results are
shown as mean = SEM of 9-10 animals/group. Values
having different superscripts are significantly different

(p < 0.05, one-way ANOVA with Fisher’s LSD).
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3.3 EC supplementation does not affect recognition, spatial, and reference memory and spatial learning

The NOR task was conducted to assess the short-term recognition memory of mice. During the
sample phase, all groups spent a comparable amount of time exploring each of the two identical objects
(F(s, 46) = 1.10, p = 0.38; Figure 3A). During the test phase (F(s,46) = 1.56, p = 0.19), group means revealed
that control group exhibited greater novel object preference compared to the control supplemented with
the higher dose of EC (CE20) as measured by the preference index (p < 0.05). This could potentially indicate
detrimental rather than protective effects of the higher dose of EC on the control group on recognition
memory, decreasing the ability in recognizing the novel object from the familiar object.

The OLM task was conducted to assess short-term spatial memory of mice. All groups performed
similarly in both sample (F(s, 32) = 0.47, p = 0.80) and test (F(s, 32) = 0.95, p = 0.46) phases as measured by
the preference index, indicating that EC did not affect the short-term spatial memory (Figure 3B). Spatial
learning and reference memory was also evaluated in the MWM with the hidden platform task and the
probe trial. Comparing the first (MWM day 4) and the last day (MWM day 8) of the hidden platform task,
all groups found the hidden platform more quickly (Figure 3C). On the last day of the hidden platform
task, all groups had similar escape latencies exhibiting comparable spatial learning (Fs, sy = 1.11, p = 0.37).
During the probe trial, group means revealed that the control group spent significantly more time in the
target quadrant zone compared to the HF group (p < 0.05; Figure 3D). All the other groups spent a
comparable amount of time in the target zone, indicating no differences in reference memory among the

groups.
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Figure 3. Effects of EC supplementation on short-term recognition, spatial, and reference memory and
spatial learning. For both NOR and OLM tasks, animals explored two identical unfamiliar objects for 5
minutes (sample phase). After being placed in the home cage for 1 hour (retention phase), they were
reintroduced to the arena for 5 minutes (test phase). A- Control group supplemented with the highest
dose of EC (CE20) exhibited decreased novel object preference compared to the C group as measured by
the preference index. All the other groups performed similarly in both sample and test phases as
measured by the preference index. B- All groups performed similarly in both sample and test phases as
measured by the preference index. Dashed lines delineate 50% null preference. Results are shown as
mean + SEM of 4-10 animals/group. C- Learning curves of mice in the hidden platform task and D- time
spent in the target quadrant during the probe trial. Results are shown as mean + SEM of 10 animals/group.
Values having different superscripts are significantly different (p < 0.05, one-way ANOVA with Fisher’s

LSD).
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3.4 EC supplementation increases the expression of BDNF

We next measured mRNA levels of BDNF, a promoter of neuronal differentiation and survival and

important mediator of synaptic plasticity in the hippocampus [49]. As previously observed [33],

consumption of the HFD did not affect hippocampal BDNF mRNA content. However, BDNF mRNA levels

were 32% higher in the HFE20 group compared to the HF group (p < 0.05; Figure 4A). There was a positive

correlation between BDNF mRNA levels in the hippocampus and the percentage time spent in the center

zone of the open field (r: 0.36, p < 0.05; Figure 4B).
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Figure 4. Effects of EC supplementation on the anxiety-related behavior and its correlation with BDNF

levels. A- BDNF mRNA levels in the hippocampus were determined by g-PCR and the relative gene

expression was normalized to (-actin as housekeeping gene. Determinations were done after 24 weeks

on the respective diets. Results are shown as mean + SEM of 6-9 animals/group. Data were normalized to

control values. Values having different superscripts are significantly different (p < 0.05, one-way ANOVA

with Fisher’s LSD). B- Correlations between the time spent in the center zone (%) and BDNF mRNA levels.

The solid line represents the regression line and the gray area delineates the 95% confidence band.
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3.5 EC supplementation increases the expression of the hippocampal glucocorticoid and mineralocorticoid
receptors and decreases the expression of 116-HSD1 in the HFD-fed animals

We next measured the hippocampal mRNA levels of receptors that mediate glucocorticoids action
in the brain (GR and MR) and of the enzyme that catalyzes the regeneration of active glucocorticoids (11p-
HSD1). Compared to the control group, mRNA levels of GR were 19% lower (p < 0.05) and of MR were
28% lower (p < 0.05) in the HFD-fed mice, and both doses of EC partially or fully prevented the decrease
(Figure 5A and 5B). Interestingly, the high dose of EC (20 mg/kg B.W.) significantly decreased GR mRNA
levels when fed to control mice (22% decrease; p < 0.05) while the same dose of EC significantly increased
the mRNA levels when fed to HFD mice (55% increase; p < 0. 001). 113-HSD1 mRNA levels were 33% higher
in the HF mice compared to the control (p < 0.05), and this increase was mitigated by EC with a dose-
dependent trend (Figure 5C). No significant correlations between center exploration time in the open field

and mRNA levels of GR, MR, and 11B-HSD1 were observed (data not shown).
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3.6 EC supplementation affects microbiota structure and metabolism

The overall composition of the gut bacterial community in the different diet groups was assessed
by 16S r RNA sequencing to investigate the degree of bacterial taxonomic similarity groups and
treatments. Alpha diversity measured by the Shannon index was significantly increased following the HFD
(p< 0.04; Figure 6A) indicating a greater richness and evenness within samples. EC supplementation
further increased Shannon alpha diversity index with only the higher dose (EC 20 mg/kg B.W.) reaching
significance (p< 0.05). Bacterial communities were then clustered using a principal coordinates analysis
(PCoA) of weighted Unifrac distances which distinguished microbial communities based on their diet. The
statistical significance of the clustering pattern was further evaluated using a permutational ANOVA
(PERMANOQVA). As depicted in Figure 6B, there was a clear separation of the diet groups along the axis 1
of the PcoA (58.6%) indicating a strong effect of the HF feeding diets versus the control diets (p<0.001).
EC addition only seemed to have a small effect on the overall microbial communities. Comparison of
relative abundance at the Phylum level identified several changes. HFD significantly reduced
Verrucomicrobia, Bacteroidetes, Epsilonbacteraeota and Tenericutes while marginally increasing the
abundance of Deinococcus Thermus (p=0.06) (Figure 6C and Supplementary Table S2). At the genera
level, the HFD led to the modulation of 67 taxa including a significant increase of Romboustsia, Solibacilus,
Sporosarcina and a decrease of Akkermansia, Dubosiella and Planococcus (Figure 6D and Supplementary
Table S3). Supplementation with EC (2 and 20 mg/kg B.W.) to both control- and HFD-fed mice affected
the microbiota composition (Supplementary Figure S1). In particular, EC 20 mg/kg B.W. significantly
increased the abundance of Firmicutes, Acidobacteria, Bacteroidetes and Nitrospirae and decreased the
abundance of Actinobacteria in the HF group (Figure 6E and Supplementary Table S4). At the genera level,
EC significantly modulated up to 139 taxa of which Lechevalieria, Nitrospira, Opitutus, Sphingomonas and

Lactobacillus were significantly increased (Figure 6F and Supplementary Table S5).
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In addition to the microbial analysis, tH-NMR metabolomic profiling was conducted on the same
fecal samples to gain insights into the metabolomic environment. Consistent with the microbiota,
Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) of the metabolome showed
clear separations of control versus HFD-fed mice (Figure 7A). This was further supported by hierarchical
clustering using Spearman and Ward which resulted in the formation of 2 robust clusters representing
each dietary intervention (Figure 7B). The HFD significantly increased the concentration of amino acids
(histidine, ornithine, tryptophan, 5-aminopentanoate, 2-oxoisocaproate), organic acids (3-
phenylpropionate, 4-hydroxybenzoate, nicotinate, tartrate, 3-methyl-2-oxovalerate, 4-
hydroxyphenyllactate) along with methylamines (dimethylamine and trimethylamine), methanol,
lactaldehyde and acetate (Figure 7B and Supplementary Table S6). Presence of these metabolites was
negatively correlated with the abundance of Verrucomicrobia and positively correlated with Deinococcus-
Thermus abundance (Figure 7C and Supplementary Table S8).

Supplementation with EC 20 mg/kg B.W. to HFD-fed mice had a profound impact on the
metabolomic profile. In particular organic acids (3-(3-hydroxyphenyl)propanoate and 4-
hydroxyphenylacetate), nucleotides (2’-deoxyguanosine, 2’-deoxyinosine, 2’-deoxyuridine, uridine) along
with the fatty acid isobutyrate were significantly increased in the EC group. Alanine, valerate, cytosine and
citrate were decreased in this diet group (Figure 7B and Supplementary Table S7). Correlation analysis
between the microbiome and metabolome indicated that nucleotides and organic acids increases were
strongly correlated to increased abundances of Nitrospirae, Firmicutes, Acidobactaeia, Elusimicorbia,
Latescibacteria, Entotheonellaeota and Rokubacteria and a decrease in Actinobacteria (Figure 7D and
Supplementary Table S9). Further analysis revealed that the fecal content of cytosine, a metabolite
strongly associated with the reported microbiome shift, was significantly and negatively correlated with

center exploration time in the OFT (r: -0.4652, p = 0.0096).
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Figure 6. Effect of EC supplementation on microbiota diversity. A- a diversity as assessed by Shannon
index showed a higher diversity in HF and HF treated with EC 20 mg/kg B.W.. B- B diversity, assessed using
weighted Unifrac distance and PERMANOVA analyses showed a robust separation of control versus high-
fat dietary groups. EC addition to either dietary treatment had subtle effect on the microbiota diversity.
C, D- Classical univariate analysis highlighted key differences at the phylum (C) and genera levels (D) in
control and high fat fed groups. E, F- Classical univariate analysis highlighted key differences at the phylum

(E) and genera levels (F) in high fat and high fat supplemented with EC 20 mg/kg B.W. fed groups.
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Figure 7. Effect of EC supplementation on the fecal metabolome. A- Orthogonal Projections to Latent
Structures Discriminant Analysis (OPLS-DA) score plot of all metabolite features showed a clear separation
of the fecal metabolites in the different treatment groups. B- Clustering result shown as heatmap
(distance measure using Spearman, and clustering algorithm using Ward). C- Interactions between the
metabolome and microbiome (Phylum) of control and high fat diet groups were made using Spearman
correlation analysis, and highlighted key changes in organic acids, nucleotides and amino acids. D-
Interactions between the metabolome and microbiome (Phylum) of high fat and high fat supplemented
with EC 20 mg/kg B.W. groups were made using Spearman correlation analysis, and highlighted key

changes in organic acids, nucleotides and carbohydrates.
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4. Discussion

EC has been shown to influence cognition and behavior in both humans and rodents. Among the
described mechanisms, increased brain BDNF concentration has been consistently described [29, 33]
along with the promotion of vasodilation [31, 50-52], mitigation of neuroinflammation [33] and activation
of ERK1/2/CREB [53]. The present study supports a potential role for EC in the mitigation of anxiety-related
behaviors, which is in part mediated through BDNF, GR, and MR upregulation and 11B-HSD1
downregulation in the hippocampus and mitigation of HFD-mediated dysbiosis.

The HFD induced significant increase in body weight and percent body fat in mice after 24 weeks
which was not prevented by EC supplementation. The increase in adiposity in the HFD-fed animals was
reflected by a higher weight of fat pads, except the epididymal fat. Consistent with our finding, previous
studies have shown that obese mice fed a HFD for 20 weeks have a reduced epididymal fat mass
compared to controls [54, 55]. This decrease in mass was attributed to increased deaths of adipocytes
and associated immune cell infiltration and activity. Thus, the rate of adipocyte death caused by chronic
HFD consumption would exceed the rate of tissue repair resulting in net loss of epididymal fat pads.

Obesity is associated with increased risk of neuropsychiatric conditions, including cognitive
impairment and mood disorders [56, 57]. This is also apparent in preclinical models of obesity in which
HFD diet-induced obesity results in deterioration of learning and memory [22, 58], as well as anxiety and
depression [11, 12]. Like obesity, type 2 diabetes (a prevalent comorbidity of obesity), results in an
increased risk of neuropsychiatric disorders [59, 60]. This is consistent with the present evidence, in which
HFD-induced obese and insulin resistant mice spent less time in the center of the OF maze (increased
anxiety) and less time in the target quadrant of the MWM (impaired spatial memory). Although not
significant, there was an additional drop in object location performance (spatial memory) in response to
HFD, while NOR (recognition memory) remained unaffected. This may suggest that spatial memory

performance, and therefore specific brain regions such as hippocampus are particularly sensitive to diet-
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induced metabolic changes. Surprisingly, supplementation with EC had no beneficial impact upon learning
and memory and did not mitigate HFD-induced spatial memory deficits. In fact, control animals receiving
EC supplementation displayed even poorer performance on the NOR task, particularly at 20 mg EC/kg
B.W.. Interestingly this decline was absent in HFD animals suggesting that high doses of EC are better
tolerated by mice in combination with a high fat meal. Despite this, EC ameliorated the HFD-induced
increase in anxiety in a dose-dependent manner with the high EC dose (20 mg/kg B.W.) restoring center
exploration time (anxiety measure) back to control levels. This suggests that the mechanisms leading to
learning and memory impairment are uncoupled from those associated with anxiety. The lack of spatial
memory improvement following EC supplementation may potentially relate to EC’s inability to mitigate
the HFD-induced insulin resistance. As such, the contrasting improvement in anxiety observed with 20
mg EC/kg B.W., must therefore relate to an alternative mechanism.

Gut microbial composition has been suggested as a potential contributor to the neurobehavioral
abnormalities associated with HFD consumption. Changes in gut microbiota and derived metabolites are
being intensively studied for their participation in the gut-brain crosstalk that could lead to the
improvements of behavior, including depression and anxiety [27]. In this regard, the capacity of
polyphenols to modulate the microbiota is proposed as a mechanism in which polyphenols may mitigate
mood disorders [26]. In the present study, the HFD surprisingly increased species richness as assessed via
Shannon a-diversity when compared to the control diet. Although not expected, this phenomenon has
been described by others and has recently been reported to arise from the higher fiber content (cellulose)
present in HFD [61]. This additionally explains some of the unexpected increases of bacterial phyla and
genera considered to be beneficial. Despite this, evidence of HFD-induced dysbiosis was also apparent
with several genera including Akkermansia, Lactobacillus and Lachnochlostridium, that were altered by
the HFD. In agreement with our findings, which show a decrease in Akkermansia abundance in the HFD-

fed mice, previous studies have shown that the colonization of Akkermansia muciniphila in the gut has
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protective effect in diet-induced obesity [62, 63]. Similarly, Akkermansia has been identified as a key
player in the metabolic disorders and can influence glucose metabolism. Indeed, an inverse association
between Akkermansia and insulin resistance is well established [64]. EC did not increase/restore
Akkermansia which may account for EC’s inability to improve HFD-induced insulin resistance and
subsequent cognitive decline. In contrast to Akkermansia, Lactobacillus and Enterobacter were restored
through EC supplementation. Enterobacter, which is linked to HFD-induced obesity and hepatic damage
[65], was reduced by EC supplementation. Enterobacter has been linked to bipolar disorders and
depression [66, 67] in which higher abundance leads to greater risk. Furthermore, Lactobacillus has been
consistently recognized for its role in HFD-induced anxiety [68], with ingestion of Lactobacillus strains
linked to gamma-aminobutyric acid (GABA) and acetylcholine production [69]. In our experiments, HFD-
mediated Lactobacillus decrease was mitigated by EC (20 mg/kg B.W.). Thus, modulation of microbial
species, such as Enterobacter and Lactobacillus may in part explain EC-mediated improvement of HFD-
mediated anxiety-related behavior.

Supplementation with EC 20 mg/kg B.W. to HFD-fed mice also had a profound impact on the
metabolomic profile. Cytosine, a metabolite associated with the reported microbiome shift, was
significantly decreased in the HFE20 group compared to the HF group. Further analysis revealed that
cytosine levels correlated with the anxiety-associated behavior observed in the OFT. In agreement with
this finding, changes in cytosine levels were observed in a mouse model of anxiety, which were proposed
to reflect changes in oxidative stress-related pathways and mitochondrial function [70]. In addition, oral
administration of an EC-rich grape seed polyphenol extract (GSPE) significantly increased the brain
content of the gut derived 3-(3’-hydroxyphenyl) propionic acid (3-HPP). Accumulation of this metabolite
was also observed to interfere with the assembly of B-amyloid (AB) peptides into neurotoxic AP

aggregates [71]. Our finding of increased fecal 3-HPP concentration in HFE20 compared to HF mice, may
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in part contribute to the capacity of EC to modulate anxiety. While these changes in cytosine and 3-HPP
are interesting, related evidence is limited, and further research is needed to confirm such connections.
Obesity is associated with altered BDNF expression, which has been proposed to be in part
mediated by dysbiosis [72]. Dysregulation of BDNF has been linked to anxiety disorders [73, 74], and
circulating BDNF indeed represents a potential biomarker for several psychiatric disorders [75].
Consumption of flavanols increase circulating and hippocampal BDNF levels in humans and animal
models. High serum levels of BDNF were found in a group of subjects aged between 62 and 75 years
consuming a high-flavanol cocoa drink daily for 12 weeks [76]. EC supplementation mitigated anxiety-
related behavior which was associated with increased hippocampal BDNF levels in adult male mice [29].
Consistent with our previous finding [33], EC significantly increased BDNF mRNA levels in the hippocampus
of both control and HFD-fed animals. Although HFD-induced alterations of BDNF levels were not observed,
hippocampal BNDF levels were positively correlated with center exploration time in the OFT, which
suggests that EC may in part mitigate HFD-induced anxiety by promoting BDNF upregulation.
Dysregulation of neural glucocorticoid signaling has been also suggested to be a potential
mediator of the adverse neurological consequences of obesity and associated pathologies [77-79].
Glucocorticoids exert multiple effects within the CNS via MR and GR, which are located in different brain
regions, including the hippocampus [80]. The present study found that consumption of the HFD decreased
hippocampal mRNA levels of MR and GR while EC reversed the decreases. Consistent with these findings,
high hippocampal MR expressions have been linked to low-anxiety phenotype [81]. Conversely, inhibition
of MR is linked to anxiety-like behavior, which is accompanied by decreased adult hippocampal cell
proliferation [82]. The currently observed anxiety-related behavior observed in HFD-fed mice could also
be explained by decreased hippocampal cell proliferation. Indeed, consumption of a HFD reduced cell
proliferation in the hippocampus of preclinical models of obesity [83]. On the other hand, EC

supplementation upregulate proteins involved in neurogenesis, i.e. NeuN, DCX, NGF, and MAP2 [84].
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Current evidence on the role of the hippocampal GR on anxiety-related behavior is conflicting. The present
study showed that EC consumption increased mRNA levels of GR in the hippocampus. In agreement with
our finding, upregulation of GR expression has been correlated with decreased anxiety-related behavior
[85], and increased resistance to stress and inflammation [86, 87]. On the other hand, transgenic mice
with disrupted brain GR expression showed anxiety-related behaviors [88]. These conflicting results
suggest that either too little or too much GR activity or expression could be detrimental to mood
regulation [89]. Interestingly, supplementation with 20 mg EC/kg B.W. to mice fed the control diet showed
significantly decreased mRNA levels of GR while did not show mood alterations. As shown by the NOR
data, it is possible that long-term consumption of the higher dose of EC tested may be toxic to mice fed
the control diet, while the same dosage is well tolerated by HFD-fed animals. As the relationship between
levels of GR and cognition/mood regulation is not clear, further research on the potential neurotoxicity of
high EC doses is warranted.

Concentrations of glucocorticoids are also determined by intracellular 11B-Hydroxysteroid
dehydrogenases, which regenerate active glucocorticoids from inert 11-keto forms [90]. The type 1
isozyme, 11B-HSD1, is widely expressed throughout the adult CNS, and its increase in the hippocampus
has been associated with cognitive decline [91]. Thus, inhibition of 11B-HSD1 has been proposed to
provide neuroprotective effects. Indeed, carbenoxolone, an effective inhibitor of 11B-HSDs, improved
cognitive function in healthy elderly men and T2D patients [79]. Although not significant, a trend for
reduced anxiety score with carbenoxolone treatment was reported. The present study showed that EC
consumption significantly mitigated HFD-induced increase in 11B-HSD1 levels in the hippocampus. The
potential mechanism of EC in decreasing the levels of 11B-HSD1, and its role in mood regulation in obesity
is an interesting prospective to further investigate as inhibition of 11B-HSD1 hold therapeutic potential

for obesity, T2D, and neuropsychiatric decline [77-79].
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It is suggested that EC can exert neuroprotective effects both directly, inside of the brain [92, 93],
and indirectly, by improving cerebral blood flow [31, 32] and/or affecting select receptors present at the
blood-brain barrier (BBB) [33, 93, 94]. Ingested EC is highly bioavailable and extensively metabolized into
a wide range of metabolites [95], and some metabolites were shown to cross the BBB and detected in the
brain [92, 93, 96]. However, the primary route by which EC metabolites cross the BBB and their further
metabolism in the brain is not yet completely understood [97]. EC can also have indirect neuroprotective
actions. For instance, EC mitigated neuroinflammation and improved recognition memory in mice in part
by reducing metabolic endotoxemia and preventing the hippocampal upregulation of TLR4, an innate
immune receptor for endotoxin [33]. As suggested by other authors, it is also possible that EC may act via
a specific receptor expressed in the brain, similar to the one described in arterial endothelial cell
membrane [93, 94]. Further studies investigating both direct and indirect effects of EC are needed to fully
understand the mechanisms underlying the neuroprotective benefits of EC.

In summary, EC supplementation mitigated anxiety-related behavior in a model of diet (HFD)-
induced obesity in mice, which can be in part mediated through the modulation of BDNF- and
glucocorticoids-mediated signaling. The reported findings on BDNF and glucocorticoid signaling are
entirely based on gene expression analyses. Thus, further studies should evaluate the protein and
activation levels of these pathways. Additionally, EC modulated select microbial species, i.e. Enterobacter
and Lactobacillus, altered by the consumption of the HFD and/or the associated obesity. This mechanism
may also be involved in EC-mediated improvement of anxiety-related behavior in HFD-fed obese mice.
Clinical studies will be essential to support the concept that consumption of EC-rich foods could contribute
to mood improvement in obesity. Moreover, as the safety of long-term supplementation with high EC

doses and its effects on the CNS is not clear, further research on EC potential neurotoxicity is warranted.

80



Conflicts of interest

There are no conflicts to declare.

References

[1] Collaboration NCDRF, Di Cesare M, Bentham J, Stevens GA, Zhou B, Danaei G, et al. Trends in adult
body-mass index in 200 countries from 1975 to 2014. A pooled analysis of 1698 population-based
measurement studies with 192 million participants. 2016;387:1377-96.

[2] Collaborators GBDO, Afshin A, Forouzanfar MH, Reitsma MB, Sur P, Estep K, et al. Health Effects of
Overweight and Obesity in 195 Countries over 25 Years. N Engl ) Med. 2017;377:13-27.

[3] Hassing LB, Dahl AK, Pedersen NL, Johansson B. Overweight in midlife is related to lower cognitive
function 30 years later: a prospective study with longitudinal assessments. Dement Geriatr Cogn Disord.
2010;29:543-52.

[4] Pedditzi E, Peters R, Beckett N. The risk of overweight/obesity in mid-life and late life for the
development of dementia: a systematic review and meta-analysis of longitudinal studies. Age Ageing.
2016;45:14-21.

[5] Whitmer RA, Gustafson DR, Barrett-Connor E, Haan MN, Gunderson EP, Yaffe K. Central obesity and
increased risk of dementia more than three decades later. Neurology. 2008;71:1057-64.

[6] Elias MF, Elias PK, Sullivan LM, Wolf PA, D'Agostino RB. Obesity, diabetes and cognitive deficit: The
Framingham Heart Study. Neurobiol Aging. 2005;26 Suppl 1:11-6.

[7] Cournot M, Marquie JC, Ansiau D, Martinaud C, Fonds H, Ferrieres J, et al. Relation between body mass
index and cognitive function in healthy middle-aged men and women. Neurology. 2006;67:1208-14.

[8] Sabia S, Kivimaki M, Shipley MJ, Marmot MG, Singh-Manoux A. Body mass index over the adult life
course and cognition in late midlife: the Whitehall Il Cohort Study. Am J Clin Nutr. 2009;89:601-7.

[9] Gariepy G, Nitka D, Schmitz N. The association between obesity and anxiety disorders in the population:
a systematic review and meta-analysis. International Journal of Obesity. 2010;34:407-19.

[10] Luppino FS, de Wit LM, Bouvy PF, Stijnen T, Cuijpers P, Penninx BWJH, et al. Overweight, Obesity, and
Depression: A Systematic Review and Meta-analysis of Longitudinal Studies. Arch Gen Psychiatry.
2010;67:220-9.

[11] Soto M, Herzog C, Pacheco JA, Fujisaka S, Bullock K, Clish CB, et al. Gut microbiota modulate
neurobehavior through changes in brain insulin sensitivity and metabolism. Molecular Psychiatry.
2018;23:2287-301.

[12] Dutheil S, Ota KT, Wohleb ES, Rasmussen K, Duman RS. High-Fat Diet Induced Anxiety and Anhedonia:
Impact on Brain Homeostasis and Inflammation. Neuropsychopharmacology. 2016;41:1874-87.

[13] Sivanathan S, Thavartnam K, Arif S, Elegino T, McGowan PO. Chronic high fat feeding increases
anxiety-like behaviour and reduces transcript abundance of glucocorticoid signalling genes in the
hippocampus of female rats. Behavioural Brain Research. 2015;286:265-70.

[14] Boyle MP, Kolber BJ, Vogt SK, Wozniak DF, Muglia LJ. Forebrain glucocorticoid receptors modulate
anxiety-associated locomotor activation and adrenal responsiveness. J Neurosci. 2006;26:1971-8.

[15] Sharma S, Fulton S. Diet-induced obesity promotes depressive-like behaviour that is associated with
neural adaptations in brain reward circuitry. International Journal of Obesity. 2013;37:382-9.

[16] Sharma S, Fernandes MF, Fulton S. Adaptations in brain reward circuitry underlie palatable food
cravings and anxiety induced by high-fat diet withdrawal. International Journal of Obesity. 2013;37:1183-
91.

81



[17] Goebel M, Fleming SM, Million M, Stengel A, Taché Y, Wang L. Mice overexpressing corticotropin-
releasing factor show brain atrophy and motor dysfunctions. Neurosci Lett. 2010;473:11-5.

[18] Schoenfeld TJ, Gould E. Stress, stress hormones, and adult neurogenesis. Exp Neurol. 2012;233:12-
21.

[19] Revest JM, Dupret D, Koehl M, Funk-Reiter C, Grosjean N, Piazza PV, et al. Adult hippocampal
neurogenesis is involved in anxiety-related behaviors. Molecular Psychiatry. 2009;14:959-67.

[20] Zhu Y, Gao H, Tong L, Li Z, Wang L, Zhang C, et al. Emotion Regulation of Hippocampus Using Real-
Time fMRI Neurofeedback in Healthy Human. Front Hum Neurosci. 2019;13:242-.

[21] Yau PL, Castro MG, Tagani A, Tsui WH, Convit A. Obesity and metabolic syndrome and functional and
structural brain impairments in adolescence. Pediatrics. 2012;130:e856-64.

[22] Jeon BT, Jeong EA, Shin HJ, Lee Y, Lee DH, Kim HJ, et al. Resveratrol attenuates obesity-associated
peripheral and central inflammation and improves memory deficit in mice fed a high-fat diet. Diabetes.
2012;61:1444-54.

[23] Cherbuin N, Sargent-Cox K, Fraser M, Sachdev P, Anstey KJ. Being overweight is associated with
hippocampal atrophy: the PATH Through Life Study. Int J Obes (Lond). 2015;39:1509-14.

[24] Moreno-Navarrete JM, Blasco G, Puig J, Biarnes C, Rivero M, Gich J, et al. Neuroinflammation in
obesity: circulating lipopolysaccharide-binding protein associates with brain structure and cognitive
performance. Int J Obes (Lond). 2017;41:1627-35.

[25] Miller AA, Spencer SJ. Obesity and neuroinflammation: a pathway to cognitive impairment. Brain
Behav Immun. 2014;42:10-21.

[26] Westfall S, Pasinetti GM. The Gut Microbiota Links Dietary Polyphenols With Management of
Psychiatric Mood Disorders. Frontiers in Neuroscience. 2019;13.

[27] Yong SJ, Tong T, Chew J, Lim WL. Antidepressive Mechanisms of Probiotics and Their Therapeutic
Potential. Frontiers in Neuroscience. 2020;13.

[28] Brickman AM, Khan UA, Provenzano FA, Yeung LK, Suzuki W, Schroeter H, et al. Enhancing dentate
gyrus function with dietary flavanols improves cognition in older adults. Nat Neurosci. 2014;17:1798-803.
[29] Stringer TP, Guerrieri D, Vivar C, van Praag H. Plant-derived flavanol (-)epicatechin mitigates anxiety
in association with elevated hippocampal monoamine and BDNF levels, but does not influence pattern
separation in mice. Transl Psychiatry. 2015;5:e493.

[30] Spencer JPE. The impact of fruit flavonoids on memory and cognition. British Journal of Nutrition.
2010;104:540-57.

[31] Haskell-Ramsay CF, Schmitt J, Actis-Goretta L. The Impact of Epicatechin on Human Cognition: The
Role of Cerebral Blood Flow. Nutrients. 2018;10.

[32] Gratton G, Weaver SR, Burley CV, Low KA, Maclin EL, Johns PW, et al. Dietary flavanols improve
cerebral cortical oxygenation and cognition in healthy adults. Sci Rep. 2020;10:19409.

[33] Kang J, Wang Z, Oteiza PI. (-)-Epicatechin mitigates high fat diet-induced neuroinflammation and
altered behavior in mice. Food Funct. 2020;11:5065-76.

[34] Cremonini E, Wang Z, Bettaieb A, Adamo AM, Daveri E, Mills DA, et al. (-)-Epicatechin protects the
intestinal barrier from high fat diet-induced permeabilization: Implications for steatosis and insulin
resistance. Redox biology. 2018;14:588-99.

[35] Vogiatzoglou A, Mulligan AA, Lentjes MA, Luben RN, Spencer JP, Schroeter H, et al. Flavonoid intake
in European adults (18 to 64 years). PLoS One. 2015;10:e0128132.

[36] Harnly JM, Doherty RF, Beecher GR, Holden JM, Haytowitz DB, Bhagwat S, et al. Flavonoid content of
U.S. fruits, vegetables, and nuts. J Agric Food Chem. 2006;54:9966-77.

[37] Cremonini E, Bettaieb A, Haj FG, Fraga CG, Oteiza PI. (-)-Epicatechin improves insulin sensitivity in
high fat diet-fed mice. Arch Biochem Biophys. 2016;599:13-21.

[38] Antunes M, Biala G. The novel object recognition memory: neurobiology, test procedure, and its
modifications. Cogn Process. 2012;13:93-110.

82



[39] Wang D, Noda Y, Zhou Y, Mouri A, Mizoguchi H, Nitta A, et al. The Allosteric Potentiation of Nicotinic
Acetylcholine Receptors by Galantamine Ameliorates the Cognitive Dysfunction in Beta Amyloid25-35
l.c.v.-Injected Mice: Involvement of Dopaminergic Systems. Neuropsychopharmacology. 2007;32:1261-
71.

[40] Kellingray L, Tapp HS, Saha S, Doleman JF, Narbad A, Mithen RF. Consumption of a diet rich in Brassica
vegetables is associated with a reduced abundance of sulphate-reducing bacteria: A randomised
crossover study. Molecular Nutrition & Food Research. 2017;61:1600992.

[41] Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA
sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261-7.

[42] Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene
database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590-6.
[43] Tran TTT, Corsini S, Kellingray L, Hegarty C, Le Gall G, Narbad A, et al. APOE genotype influences the
gut microbiome structure and function in humans and mice: relevance for Alzheimer's disease
pathophysiology. Faseb j. 2019;33:8221-31.

[44] Ni Y, Yu G, Chen H, Deng Y, Wells PM, Steves CJ, et al. M2IA: a web server for microbiome and
metabolome integrative analysis. Bioinformatics. 2020;36:3493-8.

[45] Dhariwal A, Chong J, Habib S, King IL, Agellon LB, Xia J. MicrobiomeAnalyst: a web-based tool for
comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res.
2017;45:W180-ws8.

[46] You Y, Liang D, Wei R, Li M, Li Y, Wang J, et al. Evaluation of metabolite-microbe correlation detection
methods. Anal Biochem. 2019;567:106-11.

[47] Pang Z, Chong J, Zhou G, de Lima Morais DA, Chang L, Barrette M, et al. MetaboAnalyst 5.0: narrowing
the gap between raw spectra and functional insights. Nucleic Acids Research. 2021;49:W388-W96.

[48] Prut L, Belzung C. The open field as a paradigm to measure the effects of drugs on anxiety-like
behaviors: a review. European Journal of Pharmacology. 2003;463:3-33.

[49] Miranda M, Morici JF, Zanoni MB, Bekinschtein P. Brain-Derived Neurotrophic Factor: A Key Molecule
for Memory in the Healthy and the Pathological Brain. Frontiers in Cellular Neuroscience. 2019;13:363.
[50] Keen CL, Holt RR, Oteiza PI, Fraga CG, Schmitz HH. Cocoa antioxidants and cardiovascular health. The
American Journal of Clinical Nutrition. 2005;81:298S5-303S.

[51] Galleano M, Bernatova |, Puzserova A, Balis P, Sestakova N, Pechanova O, et al. (-)-Epicatechin reduces
blood pressure and improves vasorelaxation in spontaneously hypertensive rats by NO-mediated
mechanism. [IUBMB life. 2013;65:710-5.

[52] Ottaviani JI, Heiss C, Spencer JPE, Kelm M, Schroeter H. Recommending flavanols and procyanidins
for cardiovascular health: Revisited. Mol Aspects Med. 2018;61:63-75.

[53] Schroeter H, Bahia P, Spencer JP, Sheppard O, Rattray M, Cadenas E, et al. (-)Epicatechin stimulates
ERK-dependent cyclic AMP response element activity and up-regulates GIuR2 in cortical neurons. Journal
of neurochemistry. 2007;101:1596-606.

[54] Altintas MM, Rossetti MA, Nayer B, Puig A, Zagallo P, Ortega LM, et al. Apoptosis, mastocytosis, and
diminished adipocytokine gene expression accompany reduced epididymal fat mass in long-standing diet-
induced obese mice. Lipids in Health and Disease. 2011;10:198.

[55] Strissel KJ, Stancheva Z, Miyoshi H, Perfield JW, Il, DeFuria J, Jick Z, et al. Adipocyte Death, Adipose
Tissue Remodeling, and Obesity Complications. Diabetes. 2007;56:2910-8.

[56] Simon GE, Von Korff M, Saunders K, Miglioretti DL, Crane PK, van Belle G, et al. Association between
obesity and psychiatric disorders in the US adult population. Arch Gen Psychiatry. 2006;63:824-30.

[57] Sanderlin AH, Todem D, Bozoki AC. Obesity and Co-morbid Conditions Are Associated with Specific
Neuropsychiatric Symptoms in Mild Cognitive Impairment. Front Aging Neurosci. 2017;9:164-.

[58] Pistell PJ, Morrison CD, Gupta S, Knight AG, Keller JN, Ingram DK, et al. Cognitive impairment following
high fat diet consumption is associated with brain inflammation. J Neuroimmunol. 2010;219:25-32.

83



[59] Kaidanovich-Beilin O, Cha DS, Mcintyre RS. Crosstalk between metabolic and neuropsychiatric
disorders. F1000 Biology Reports. 2012;4.

[60] Martins LB, Monteze NM, Calarge C, Ferreira AVM, Teixeira AL. Pathways linking obesity to
neuropsychiatric disorders. Nutrition. 2019;66:16-21.

[61] Wang B, Kong Q, Li X, Zhao J, Zhang H, Chen W, et al. A High-Fat Diet Increases Gut Microbiota
Biodiversity and Energy Expenditure Due to Nutrient Difference. Nutrients. 2020;12.

[62] Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, et al. Cross-talk between
Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proceedings of the
National Academy of Sciences. 2013;110:9066-71.

[63] Greer RL, Dong X, Moraes ACF, Zielke RA, Fernandes GR, Peremyslova E, et al. Akkermansia
muciniphila mediates negative effects of IFNy on glucose metabolism. Nature Communications. 2016;7.
[64] Macchione IG, Lopetuso LR, laniro G, Napoli M, Gibiino G, Rizzatti G, et al. Akkermansia muciniphila:
key player in metabolic and gastrointestinal disorders. Eur Rev Med Pharmacol Sci. 2019;23:8075-83.
[65] Peterson JM, Keskitalo A, Munukka E, Toivonen R, Hollmén M, Kainulainen H, et al. Enterobacter
cloacae administration induces hepatic damage and subcutaneous fat accumulation in high-fat diet fed
mice. Plos One. 2018;13.

[66] Lu Q, Lai J, Lu H, Ng C, Huang T, Zhang H, et al. Gut Microbiota in Bipolar Depression and Its
Relationship to Brain Function: An Advanced Exploration. Frontiers in Psychiatry. 2019;10.

[67] Xu C, Jia Q, Zhang L, Wang Z, Zhu S, Wang X, et al. Multiomics Study of Gut Bacteria and Host
Metabolism in Irritable Bowel Syndrome and Depression Patients. Frontiers in Cellular and Infection
Microbiology. 2020;10.

[68] Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, et al. Ingestion of Lactobacillus
strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve.
Proceedings of the National Academy of Sciences. 2011;108:16050-5.

[69] Sarkar A, Lehto SM, Harty S, Dinan TG, Cryan JF, Burnet PWJ. Psychobiotics and the Manipulation of
Bacteria—Gut—Brain Signals. Trends in Neurosciences. 2016;39:763-81.

[70] Filiou MD, Asara JM, Nussbaumer M, Teplytska L, Landgraf R, Turck CW. Behavioral extremes of trait
anxiety in mice are characterized by distinct metabolic profiles. J Psychiatr Res. 2014;58:115-22.

[71] Wang D, Ho L, Faith J, Ono K, Janle EM, Lachcik PJ, et al. Role of intestinal microbiota in the generation
of polyphenol-derived phenolic acid mediated attenuation of Alzheimer's disease B-amyloid
oligomerization. Molecular nutrition & food research. 2015;59:1025-40.

[72] Jang HM, Han SK, Kim JK, Oh SJ, Jang HB, Kim DH. Lactobacillus sakei Alleviates High-Fat-Diet-Induced
Obesity and Anxiety in Mice by Inducing AMPK Activation and SIRT1 Expression and Inhibiting Gut
Microbiota-Mediated NF-kB Activation. Molecular Nutrition & Food Research. 2019;63.

[73] Martinowich K, Maniji H, Lu B. New insights into BDNF function in depression and anxiety. Nature
Neuroscience. 2007;10:1089-93.

[74] Janke KL, Cominski TP, Kuzhikandathil EV, Servatius RJ, Pang KCH. Investigating the Role of
Hippocampal BDNF in Anxiety Vulnerability Using Classical Eyeblink Conditioning. Frontiers in psychiatry.
2015;6:106-.

[75] Cattaneo A, Cattane N, Begni V, Pariante CM, Riva MA. The human BDNF gene: peripheral gene
expression and protein levels as biomarkers for psychiatric disorders. Translational Psychiatry.
2016;6:€958-€.

[76] Neshatdoust S, Saunders C, Castle SM, Vauzour D, Williams C, Butler L, et al. High-flavonoid intake
induces cognitive improvements linked to changes in serum brain-derived neurotrophic factor: Two
randomised, controlled trials. Nutr Healthy Aging. 2016;4:81-93.

[77] Seckl JR, Walker BR. Minireview: 11B-Hydroxysteroid Dehydrogenase Type 1— A Tissue-Specific
Amplifier of Glucocorticoid Action*. Endocrinology. 2001;142:1371-6.

84



[78] Andrews RC, Rooyackers O, Walker BR. Effects of the 11B-Hydroxysteroid Dehydrogenase Inhibitor
Carbenoxolone on Insulin Sensitivity in Men with Type 2 Diabetes. The Journal of Clinical Endocrinology &
Metabolism. 2003;88:285-91.

[79] Sandeep TC, Yau JLW, MacLullich AMJ, Noble J, Deary IJ, Walker BR, et al. 11B-Hydroxysteroid
dehydrogenase inhibition improves cognitive function in healthy elderly men and type 2 diabetics.
Proceedings of the National Academy of Sciences of the United States of America. 2004;101:6734.

[80] Rogalska J. Chapter 20 - Mineralocorticoid and Glucocorticoid Receptors in Hippocampus: Their
Impact on Neurons Survival and Behavioral Impairment After Neonatal Brain Injury. In: Litwack G, editor.
Vitamins & Hormones: Academic Press; 2010. p. 391-419.

[81] Herrero Al, Sandi C, Venero C. Individual differences in anxiety trait are related to spatial learning
abilities and hippocampal expression of mineralocorticoid receptors. Neurobiology of Learning and
Memory. 2006;86:150-9.

[82] Chen J, Wang Z-z, Zhang S, Chu S-f, Mou Z, Chen N-h. The effects of glucocorticoids on depressive and
anxiety-like behaviors, mineralocorticoid receptor-dependent cell proliferation regulates anxiety-like
behaviors. Behavioural Brain Research. 2019;362:288-98.

[83] Hwang IK, Kim IY, Kim DW, Yoo K-Y, Kim YN, Yi SS, et al. Strain-specific differences in cell proliferation
and differentiation in the dentate gyrus of C57BL/6N and C3H/HeN mice fed a high fat diet. Brain Research.
2008;1241:1-6.

[84] Navarrete-Yafez V, Garate-Carrillo A, Ayala M, Rodriguez-Castafieda A, Mendoza-Lorenzo P, Ceballos
G, et al. Stimulatory effects of (-)-epicatechin and its enantiomer (+)-epicatechin on mouse frontal cortex
neurogenesis markers and short-term memory: proof of concept. Food & Function. 2021;12:3504-15.
[85] Pan-Vazquez A, Rye N, Ameri M, McSparron B, Smallwood G, Bickerdyke J, et al. Impact of voluntary
exercise and housing conditions on hippocampal glucocorticoid receptor, miR-124 and anxiety. Molecular
Brain. 2015;8:40.

[86] Reichardt Holger M, Umland T, Bauer A, Kretz O, Schiitz G. Mice with an Increased Glucocorticoid
Receptor Gene Dosage Show Enhanced Resistance to Stress and Endotoxic Shock. Molecular and Cellular
Biology. 2000;20:9009-17.

[87] Meaney MJ, Diorio J, Francis D, Widdowson J, LaPlante P, Caldji C, et al. Early Environmental
Regulation of Forebrain Glucocorticoid Receptor Gene Expression: Implications for Adrenocortical
Responses to Stress; pp. 49—60. Developmental Neuroscience. 1996;18:49-60.

[88] Tronche F, Kellendonk C, Kretz O, Gass P, Anlag K, Orban PC, et al. Disruption of the glucocorticoid
receptor gene in the nervous system results in reduced anxiety. Nature Genetics. 1999;23:99-103.

[89] Kolber BJ, Wieczorek L, Muglia LJ. Hypothalamic-pituitary-adrenal axis dysregulation and behavioral
analysis of mouse mutants with altered glucocorticoid or mineralocorticoid receptor function. Stress.
2008;11:321-38.

[90] Chapman K, Holmes M, Seckl J. 11B-Hydroxysteroid Dehydrogenases: Intracellular Gate-Keepers of
Tissue Glucocorticoid Action. Physiological Reviews. 2013;93:1139-206.

[91] Holmes MC, Carter RN, Noble J, Chitnis S, Dutia A, Paterson JM, et al. 11B-Hydroxysteroid
Dehydrogenase Type 1 Expression Is Increased in the Aged Mouse Hippocampus and Parietal Cortex and
Causes Memory Impairments. The Journal of Neuroscience. 2010;30:6916.

[92] Wang J, Ferruzzi MG, Ho L, Blount J, Janle EM, Gong B, et al. Brain-targeted proanthocyanidin
metabolites for Alzheimer's disease treatment. J Neurosci. 2012;32:5144-50.

[93] van Praag H, Lucero MJ, Yeo GW, Stecker K, Heivand N, Zhao C, et al. Plant-derived flavanol
(-)epicatechin enhances angiogenesis and retention of spatial memory in mice. J Neurosci. 2007;27:5869-
78.

[94] Moreno-Ulloa A, Romero-Perez D, Villarreal F, Ceballos G, Ramirez-Sanchez I. Cell membrane
mediated (-)-epicatechin effects on upstream endothelial cell signaling: evidence for a surface receptor.
Bioorg Med Chem Lett. 2014;24:2749-52.

85



[95] Ottaviani JI, Borges G, Momma TY, Spencer JP, Keen CL, Crozier A, et al. The metabolome of [2-
(14)CI(-)-epicatechin in humans: implications for the assessment of efficacy, safety, and mechanisms of
action of polyphenolic bioactives. Sci Rep. 2016;6:29034.

[96] Angelino D, Carregosa D, Domenech-Coca C, Savi M, Figueira |, Brindani N, et al. 5-(Hydroxyphenyl)-
v-Valerolactone-Sulfate, a Key Microbial Metabolite of Flavan-3-ols, Is Able to Reach the Brain: Evidence
from Different in Silico, In Vitro and In Vivo Experimental Models. Nutrients. 2019;11:2678.

[97] Figueira |, Garcia G, Pimpdo RC, Terrasso AP, Costa |, Almeida AF, et al. Polyphenols journey through
blood-brain barrier towards neuronal protection. Scientific Reports. 2017;7:11456.

86



Supplementary materials

Supplementary Figure S1. Relative abundance at the Phylum level using weighted Unifrac distances of all

the treatment groups
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Supplementary Table S1. Composition of control and high fat diet. The original recipe is from Envigo

(Envigo, Indianapolis, IN). The product codes are TD.06415 (high fat diet) and TD.06416 (control diet). The

original

documents containing nutrient

information and

ingredients are found

in Envigo

(www.envigo.com). All ingredients are purchased from Dyets, Inc. (Dyets, Inc., Bethlehem, PA).

High Fat Diet Control Diet
(4.6kcal/g) (3.7kcal/g)

Nutrient Information % kcal from % kcal from
Protein 19.0 20.1
Carbohydrate 36.2 69.8
Fat 44.8 10.2
Ingredient g/kg g/kg
Casein 245.0 210.0
L-Cystine 3.5 3.0
Corn Starch 85.0 280.0
Dextrose 115.0 50.0
Sucrose 200.0 325.0
Lard 195.0 20.0
Soybean QOil 30.0 20.0
Cellulose 58.0 37.15
Mineral Mix 43.0 35.0
Calcium Phosphate, dibasic 34 2.0
Vitamin Mix 19.0 15.0
Choline Bitartrate 3.0 2.75
Yellow Food Color 0.1
Pink Food Color 0.1
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Supplementary Table S8. Spearman correlation analysis between the microbiome (Phylum) and

metabolomics data for the high fat diet versus control (only Spearman R values >0.5 or <-0.5 are reported)

Phylum
Verrucomicrobia
Verrucomicrobia
Verrucomicrobia
Verrucomicrobia
Verrucomicrobia
Verrucomicrobia
Verrucomicrobia
Verrucomicrobia
Verrucomicrobia
Verrucomicrobia
Verrucomicrobia
Bacteroidetes
Bacteroidetes
Bacteroidetes
Bacteroidetes
Bacteroidetes
Tenericutes
Tenericutes
Tenericutes
Tenericutes
Tenericutes
Epsilonbacteraeota
Epsilonbacteraeota
Epsilonbacteraeota
Epsilonbacteraeota
Epsilonbacteraeota
Chlamydiae
Chlamydiae
Deinococcus-Thermus
Deinococcus-Thermus
Deinococcus-Thermus
Deinococcus-Thermus
Deinococcus-Thermus
Deinococcus-Thermus
Deinococcus-Thermus
Deinococcus-Thermus
Deinococcus-Thermus
Deinococcus-Thermus
Nanoarchaeaeota
Nanoarchaeaeota
Latescibacteria
Latescibacteria
Hydrogenedentes
Nitrospirae
Nitrospirae
Euryarchaeota
Euryarchaeota
Euryarchaeota
Fibrobacteres
Fibrobacteres

Metabolite
3-Phenylpropionate
Cytosine

Uracil

Uridine
Dimethylamine

3-(3-Hydroxyphenyl)propanoate

Hypoxanthine
4-Hydroxybenzoate
Alanine

Tryptophan
Tartrate
3-Phenylpropionate
Cytosine

Uracil
4-Hydroxybenzoate
4-Hydroxyphenyllactate
Cytosine

Uracil
Hypoxanthine
4-Hydroxybenzoate
4-Hydroxyphenyllactate
Cytosine

Uracil
Hypoxanthine
4-Hydroxybenzoate
5-Aminopentanoate
Cytosine

Uracil
3-Phenylpropionate
Uracil

Uridine
Dimethylamine

3-(3-Hydroxyphenyl)propanoate

Hypoxanthine
5-Aminopentanoate
Lactadehyde
3-Methyl-2-oxovalerate
2-Oxoisocaproate
Cytosine

Uracil

Cytosine

Uracil
4-Hydroxyphenyllactate
Cytosine
4-Hydroxyphenyllactate
Cytosine

Uracil

2-Oxoisocaproate
Cytosine

Uracil

SpearmanR

=022

[=0m%26
0.6847 ]

Pvalue
2.80E-05
5.40E-03
1.70E-03
3.00E-04
6.90E-04
1.10E-03
4.70E-03

0.017
1.30E-03
8.80E-03

0.014

0.018
1.60E-03
4.00E-03

0.029
6.00E-03
5.20E-03
5.00E-04

0.012

0.03

0.018
2.40E-03
1.60E-03

0.02
0.033
0.03
2.00E-03
5.40E-03

0.022

0.027
4.50E-03
3.60E-04

0.018

0.031

0.017

0.022
9.10E-03
2.80E-03
3.30E-03

0.013

0.022

0.022

0.017

0.021
4.50E-03

0.011

0.03

0.034

0.028

0.022

106



Supplementary Table S9. Spearman correlation analysis between the microbiome (Phylum) and
metabolomics data for the high fat diet versus high fat + EC 20mg/Kg body weight (only Spearman R values

>0.5 or <-0.5 are reported)

Phylum Metabolite SpearmanR  Pvalue
Nitrospirae 3-(3-Hydroxyphenyl)propanoate 0.7’:} 1.10E-04
Nitrospirae Cytosine [0l 95 1.40E-03
Nitrospirae 2'-Deoxyguanosine O.E 0.026
Nitrospirae 2'-Deoxyinosine 0.9237] 0.026
Nitrospirae 2'-Deoxyuridine O.E 0.026
Nitrospirae Ribose 0.923°] 0.026
Nitrospirae Uridine 0.523°1 0.026
Thaumarchaeota 3-(3-Hydroxyphenyl)propanoate 0.51 1 3.40E-03
Thaumarchaeota Cytosine m13 0.03
Thaumarchaeota Citrate [Ol28 5.20E-03
Acidobacteria 3-(3-Hydroxyphenyl)propanoate O.SIiﬁtl 1.70E-03
Acidobacteria Cytosine [0l 9s 1.40E-03
Acidobacteria Citrate |147 3.70E-03
Acidobacteria 2'-Deoxyguanosine 0.945 ] 0.029
Acidobacteria 2'-Deoxyinosine O.E 0.029
Acidobacteria 2'-Deoxyuridine 0.915] 0.029
Acidobacteria Ribose 08151  0.029
Acidobacteria Uridine 0.945] 0.029
Entotheonellaeota 3-(3-Hydroxyphenyl)propanoate OAE 8.30E-03
Entotheonellaeota Cytosine [om®ss 0.011
Entotheonellaeota Citrate Ij31 5.00E-03
Entotheonellaeota 2'-Deoxyguanosine 0.921] 0.027
Entotheonellaeota 2'-Deoxyinosine OAE 0.027
Entotheonellaeota 2"-Deoxyuridine 0.921°] 0.027
Entotheonellaeota Ribose Oﬁﬂ:’ 0.027
Entotheonellaeota Uridine 0.921°] 0.027
Elusimicrobia 3-(3-Hydroxyphenyl)propanoate O.m 7.30E-04
Elusimicrobia Cytosine [ 42 4.20E-04
Firmicutes 3-(3-Hydroxyphenyl)propanoate O.E 3.90E-06
Firmicutes Cytosine [omg42 0.02
Firmicutes 2'-Deoxyguanosine O.E 0.029
Firmicutes 2'-Deoxyinosine 0.915 ] 0.029
Firmicutes 2"-Deoxyuridine O.E 0.029
Firmicutes Ribose 0.995 ] 0.029
Firmicutes Uridine 04151  0.029
GAL15 3-(3-Hydroxyphenyl)propanoate 0.946 0.019
GAL15 Citrate [omss1 0.011
Gemmatimonadetes 3-(3-Hydroxyphenyl)propanoate 0.56 1 0.016
Gemmatimonadetes Cytosine I:‘72 2.30E-03
Gemmatimonadetes Citrate [o®14 6.70E-03
Actinobacteria 3-(3-Hydroxyphenyl)propanoate ms 1.40E-06
Actinobacteria Cytosine 0.944 | 0.02
Actinobacteria 2'-Deoxyguanosine [:*1 7.20E-03
Actinobacteria 2'-Deoxyinosine [=oks1 7.20E-03
Actinobacteria 2'-Deoxyuridine [__—*1 7.20E-03
Actinobacteria Ribose [ok1 7.20E-03
Actinobacteria Uridine [_—_‘1 7.20E-03
Deinococcus-Thermus 3-(3-Hydroxyphenyl)propanoate [omga2 0.02
Deinococcus-Thermus Cytosine o.ia__l 0.021
Euryarchaeota 3-(3-Hydroxyphenyl)propanoate 0.22° 1 5.80E-03
Euryarchaeota Cytosine mM 8.00E-03
Euryarchaeota 2'-Deoxyguanosine 0.995 ] 9.10E-03
Euryarchaeota 2'-Deoxyinosine O.E 9.10E-03
Euryarchaeota 2'-Deoxyuridine 0.995] 9.10€-03
Euryarchaeota Ribose O.E 9.10E-03
Euryarchaeota Uridine 0.995 1 9.10E-03
Rokubacteria 3-(3-Hydroxyphenyl)propanoate O.SﬁE 7.50E-03
Rokubacteria Cytosine [O®62 0.015
Rokubacteria Citrate |131 0.023
Bacteroidetes Cytosine Coms1 0.011
Latescibacteria 3-(3-Hydroxyphenyl)propanoate O.E 5.60E-03
Latescibacteria Cytosine o®77 0.012
Latescibacteria 2'-Deoxyguanosine O.E 0.011
Latescibacteria 2'-Deoxyinosine 0.583 7] 0.011
Latescibacteria 2'-Deoxyuridine O.E 0.011
Latescibacteria Ribose 0.9837] 0.011
Latescibacteria Uridine 058371 0011
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Chapter 4

(-)-Epicatechin exerts positive effects on anxiety in high fat diet-induced obese mice through multi-

genomic modifications in the hippocampus
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Abstract

Obesity is associated with increased occurrence of cognitive and mood disorders. While
consumption of high-fat diets (HFD) and associated obesity could have a detrimental impact on the brain,
dietary bioactives may mitigate these harmful effects. We previously observed that (-)-epicatechin (EC)
can mitigate HFD-induced anxiety-associated behaviors in mice. The aim of our study is to investigate the
molecular mechanisms of EC actions in the hippocampus which underlies its anti-anxiety effects in HFD-
fed mice using a multi-genomic approach. Healthy eight-weeks old male C57BL/6J mice were fed for 24
weeks either: A) a control diet containing 10% total calories from fat; B) a HFD containing 45% total
calories from fat; or C) the HFD supplemented with 20 mg EC/kg body weight. Hippocampi were isolated
for genomic analysis using Affymetrix arrays, followed by in-depth bioinformatic analyses. Genomic
analysis demonstrated that EC induced significant changes in mouse hippocampal global gene expression.
We observed changes in the expression of 1001 protein-coding genes, 241 miRNAs, and 167 long non-
coding RNAs. Opposite gene expression profiles were observed when the gene expression profile obtained
upon EC supplementation was compared to the profile obtained after consumption of the HFD.
Functionality analysis revealed that the differentially expressed genes regulate processes involved in
neurofunction, inflammation, endothelial function, cell-cell adhesion, and cell signaling. In summary, the
capacity of EC to mitigate anxiety-related behaviors in HFD-induced obese mice can be in part explained
by its capacity to exert complex genomic modifications in the hippocampus, counteracting changes driven

by consumption of the HFD and/or associated obesity.
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1. Introduction

More than 2.1 billion adults are estimated to be overweight or obese worldwide, of which 640
million are obese [1]. It is predicted that in the US nearly 1 in 2 adults will be obese and 1 in 4 adults will
be severely obese by 2030 [2]. Obesity is a serious public health concern given that it raises risks for several
diseases including type 2 diabetes, cardiovascular diseases, nonalcoholic fatty liver disease, and certain
types of cancer. Obesity is also a risk factor for the development of metabolic and vascular disorders,
which have emerged as risk factors to mood and cognitive disorders [3-5]. HFD and/or associated obesity
induce chronic low-grade inflammation and the circulating pro-inflammatory molecules can cross the
blood-brain-barrier (BBB), eliciting neuroinflammation [3, 6]. Systemic inflammation can also disrupt the
BBB, leading to infiltration of inflammatory molecules into the central nervous system and subsequently

neuroinflammation, which can contribute to alterations in cognition and mood [5, 7].

While HFD and obesity can have detrimental effects on the brain, consumption of select
flavonoids have neuroprotective effects [4, 8, 9]. (-)-Epicatechin (EC) is one of the most widely consumed
flavan-3-ols, being abundantly found in cocoa, berries, apples, and tea [10]. A considerable body of
evidence supports the beneficial effects of dietary EC at the nervous system, which includes its capacity
to improve cognition and mood [9, 11-14]. For example, in healthy adults (50-75 years), EC improves
hippocampal-dependent learning suggesting that EC consumption may be associated with increased

memory function in age-related cognitive decline [15].

We recently observed that HFD-fed obese mice show significantly increased anxiety-related
behaviors which were mitigated by EC consumption (under revision). The capacity of EC to improve
anxiety was in part explained by its capacity to modulate BDNF- and glucocorticoids (GC)-regulated
signaling and to mitigate HFD-induced dysbiosis. However, a full understanding of EC actions at the

hippocampus is missing. Previous evidence showed that EC protects brain vascular endothelial cell
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integrity and reduces the risk of neurodegenerative conditions by exerting multi-genomic actions,
modulating the expression of protein-coding genes as well as non-coding genes, particularly microRNA
(miRNA) and long non-coding RNA (IncRNA) [16, 17].

The use of cutting edge untargeted genomic methodologies represents a significant breakthrough
in nutrigenomics, as these methods enable detailed insights into the involved molecular mechanisms.
Moreover, the implementation of multi-omics approaches allows integration of different levels of
regulation of cellular functions and to obtain a comprehensive understanding of the molecular
mechanisms of action of polyphenols. miRNAs are small noncoding RNA molecules, in average 22
nucleotides long, that act as post-transcriptional regulators of gene expression, in most cases by
degradation or inhibition of translation of their target mRNAs. miRNAs regulate a wide spectrum of
biological processes and are therefore involved in the physiopathology of diseases, including age-related
and neurodegenerative diseases [18]. LncRNAs are single strand RNAs with over 200 nucleotides in length.
Although they do not directly encode proteins, LncRNAs are involved in the regulation of cellular functions
through various mechanisms, such as regulation of gene expression by sequestering miRNAs and
subsequently reducing the number of miRNAs available for their target mRNA [19]. LncRNAs play an
important role in the pathophysiology of diseases, such as cardiovascular [20], cardiometabolic [21], and
neurodegenerative diseases [22]. The expressions of IncRNAs can be affected by diet. For example, in mice
fed a HFD, changes in the expression of 52 IncRNAs are proposed to play a significant role in diabetes
mellitus [23]. Recent studies also showed that polyphenols can affect the expressions of non-coding genes
[16, 17, 24]. Taken together, integrated multi-genomic analysis coupled with bioinformatics represent an
insightful approach to obtain detailed information about underlying molecular mechanisms of action of
dietary components.

In the present work, we investigated the molecular mechanisms underlying the neuroprotective

effects of EC against HFD- and obesity-induced anxiety behaviors in mice. For this purpose, we evaluated
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EC-mediated multi-genomic modifications, including changes in the expression of protein-coding and non-
coding genes in the hippocampus. We characterized affected molecular pathways and key regulators to

better understand the neuroprotective actions of EC.

2. Material and methods
2.1. Animals and animal care

All procedures were in agreement with standards for the care of laboratory animals as outlined
in the NIH Guide for the Care and Use of Laboratory Animals. All procedures were administered under the
auspices of the Animal Resource Services of the University of California, Davis. Experimental protocols
were approved before implementation by the University of California, Davis Animal Use and Care
Administrative Advisory Committee. Healthy 8 weeks old male C57BL/6J mice (20-22 g) were fed for 24
weeks either: a diet containing 10% total calories from fat (C group) (TD.06416, Envigo, Indianapolis, IN),
a diet containing 45% total calories from lard fat (HF group) (TD.06415, Envigo, Indianapolis, IN), and the
HFD supplemented with 20 mg EC/kg body weight (HFE group). The EC-containing diet was prepared every
two weeks to account for changes in body weight and food intake, and to prevent potential EC
degradation. All diets were stored at —20 °C until use. Body weight and food intake were measured weekly
throughout the study. After 24 weeks on the dietary treatments, and after 4 h fasting, mice were
euthanized by cervical dislocation. Blood was collected from the submandibular vein into tubes containing
EDTA, and plasma collected after centrifugation at 3,000 x g for 10 min at room temperature. Hippocampi

were dissected and flash frozen in liquid nitrogen and then stored at —80 °C for further analysis.

2.2. RNA extraction from the hippocampus
Total RNA was extracted from the right hippocampus from three animals per experimental group

(C, HF, HFE) using the miRNeasy Mini Kit (Qiagen, Hilden, Germany), and small residual amounts of DNA
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were removed using an on-column RNase-Free DNase Set (Qiagen, Hilden, Germany) according to the
manufacturer’s instructions. The quality and quantity of the extracted RNA was assessed by NanoDrop
One (Thermo Scientific, Waltham, MA), and integrity by 2100 Agilent Bioanalyzer (Agilent Technologies,
Santa Clara, CA). Quality and integrity assessments showed that A260/A280 ratios were 2 or higher and

the RNA integrity number (RIN) was 8 or higher for all samples.

2.3. Microarray hybridization and transcriptome analysis

Clariom D mouse assays (Affymetrix, Santa Clara, CA) were used for transcriptomics analysis. Total
RNA (200 ng per sample) for 9 RNA samples (3 samples per group) was used to prepare cRNA (15 ug) and
then sscDNA (5.5 ug) using GeneChip WT PLUS Reagent Kit (Thermo Scientific, Waltham, MA). Purified
sscDNA (5.5 ug) was fragmented by uracil-DNA glycosylase (UDG) and apurinic/apyrimidinic endonuclease
1 (APE 1) at the unnatural dUTP residues and labeled by terminal deoxynucleotidyl transferase (TdT) using
the DNA Labeling Reagent that is covalently linked to biotin. Fragmented and labeled sscDNA samples
were submitted to the UC Davis Comprehensive Cancer Center's Genomics Shared Resource (GSR) core
for hybridization, washing, staining, and scanning using the GeneChip Hybridization, Wash, and Stain Kit
(Thermo Scientific, Waltham, MA) following the manufacturer’s instruction. Hybridization of fragmented
and labeled sscDNA samples was done using GeneChip Hybridization oven, and the arrays were washed
then stained using GeneChip Fluidics Station. The arrays were scanned using GeneChipTM Scanner 3000
7G (Thermo Fisher Scientific, Santa Clara, CA). Quality control of the microarrays was performed using the

Affymetrix Transcriptome Analysis Console (TAC) 4.0.2. (Thermo Fisher Scientific, Santa Clara, CA).

2.4. Bioinformatic analysis

2.4.1. Comparisons of gene expression profiles
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The TAC software was used to determine differential gene expression of HF vs. C and HFE vs. HF
groups using the SST-RMA normalization method and to create volcano plots. All genes from microarray
with p < 0.05 and +1.1-fold change was considered as differentially expressed. Partial Least-Squares
Discriminant Analysis (PLS-DA) plot was built using MetaboAnalyst (https://www.metaboanalyst.ca; [25]),
and heatmap using Hmisc package in R (https://www.r-project.org/). Gene types of the differentially
expressed genes (mMmRNA, miRNA, and IncRNA) were identified using ShinyGO v0.66

(http://bioinformatics.sdstate.edu/go; [26]). Steps of bioinformatic analyses are presented in Figure 1.

Isolation of hippocampus
(n=3/group)

Total RNA isolation

Microarray analysis

Statistical analysis of
microarray data

Identification of Identification of Identification of
differentially differentially differentially
expressed mRNA expressed miRNA expressed IncRNA
. Correlation between
l changes in the
expression of genes
| Functional analysis | Identification of Identification of ""d_c”a”;_;_s i’!'_
(pathways) target gene: target genes genomic modifications
getgenes L associated with mood
l l disorder

Bioinformatic identification
of transcription factors

l

Docking analysis between Functional analysis
metabolites and transcription (pathways)
factors/cell signaling proteins

—\

Integration network between
mMRNA/mIRNA/IncRNA/target
genes/transcription factors

!

Comparison of identified pathways /
differentially expressed genes in the
hippocampus of the HFD and EC fed animals

Network of miRNAs
and target genes

Network of IncRNAs
and target genes

Functional analysis
(pathways)

Figure 1. A flow-chart describing the steps implemented in the genomic and bioinformatic analysis. The
hippocampus (n = 3/group) was isolated from control, HFD, and HFE groups for microarray analysis. For
the differentially expressed mRNAs, functional pathways analysis was conducted followed by
identification of transcription factors and docking analysis. Next, target genes of the differentially

expressed miRNAs and IncRNAs were identified. Subsequently, network and functional analysis were
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performed with the identified targets. Integrating them together, network analysis of mRNA, miRNA,
IncRNA, target genes, and transcription factors was conducted. Differentially expressed genes and
pathways in the hippocampus of the HFD-fed and EC supplemented animals were also compared. Lastly,
the identified genomic profile upon EC supplementation was compared with genomic signatures

identified in patients with generalized anxiety disorder.

2.4.2. Database-predicted miRNA and IncRNA targets
Validated target genes of the identified miRNAs were searched with miRWalk

(http://mirwalk.umm.uni-heidelberg.de/; [27]). Network-based visualization of miRNA-gene target

enrichment was performed with MIENTURNET (http://userver.bio.uniromal.it/apps/mienturnet/; [28]).

Target genes of the IncRNAs were identified using LncRRIsearch that enables retrieval of IncRNA-gene

target interactions (http://rtools.cbrc.jp/LncRRIsearch/; [29]).

2.4.3. Pathway enrichment analysis

The pathways involving differentially expressed genes and targets of significantly regulated
miRNAs and IncRNAs from HF vs. C and HFE vs. HF comparisons were obtained using Genetrail2. Over-
representation analysis was used to obtain the pathways from Kyoto Encyclopedia of Genes and Genomes
(KEGG), Biocarta, and WikiPathways databases. Additionally, top 30 pathways identified by KEGG
database search were added to the list of pathway enrichment analysis. Histograms were generated using

Microsoft Excel and Venn diagrams by Venny 2.1.0 (https://bioinfogp.cnb.csic.es/tools/venny/).

Interaction networks were constructed with Cytoscape software, version 3.7.2. (https://cytoscape.org;

(30]).

2.4.4. Transcription factor analysis
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Potential transcription factors which activity could be modulated by polyphenols were identified
with bioinformatic tool Enrichr (https://amp.pharm.mssm.edu/Enrichr/) [31, 32]. TRRUST [33] and

TRANSFAC [34] databases were used to search for the potential transcription factors.

2.4.5. Docking analysis
Potential binding interactions between identified transcription factors, their regulatory cell
signaling proteins, and major circulatory EC metabolites were examined by molecular docking using the

SwissDock docking analysis tool (http://www.swissdock.ch/docking). Protein 3D structures were obtained

from UniProt Data Bank (https://www.uniprot.org) and chemical structures of metabolites from PubChem

database (https://pubchem.ncbi.nlm.nih.gov).

2.4.6. Associated and correlated diseases

The association of identified differentially expressed genes with human diseases was analyzed
using the Comparative Toxicogenomics Database (https:// ctdbase.org/) [35]. To explore correlations
between the identified genes in the study and genes associated with mood disorder, we first searched the
GEO (https://www. ncbi.nlm.nih.gov/gds) for suitable dataset of gene expression profiles in human with
mood disorder. The available raw datasets were further analyzed with GEO2R. Pearson’s correlation
coefficients between gene expression profiles in patients with anxiety disorder and genes which

expression had been identified as modulated by EC was calculated using R (https://www.r-project.org/).

3. Results

3.1. HFD modulates the expression of protein-coding and non-coding genes in the hippocampus.

To assess the molecular mechanisms involved in HFD-induced behavioral changes (under

revision), the effects of the HFD on the global expression of genes in the hippocampus was evaluated
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comparing data from the HF and the C groups. Gene expression analysis showed that the HFD caused
significant changes in global hippocampal gene expression. There were 10,778 probes identified as
differentially expressed. Volcano plot of the significantly up- or down-regulated genes in the hippocampus
of HFD-fed mice showed the upregulation of 3295 probes and downregulation of 7483 probes compared
to C mice (Supplemental Figure 1A). Among them, 6510 genes were identified and classified by ShinyGO
v0.66, 47% corresponded to protein-coding genes (3030 mRNAs), 10% to miRNAs (629 miRNAs), and 5%

to IncRNAs (353 IncRNAs) (Supplemental Figure 1B).

Gene expression analysis demonstrated that consumption of the HFD induced significant changes
in the expression of 3030 hippocampal protein-coding genes. The fold-change values of protein-coding
genes varied from -3.26 to 1.97 with an average fold-change of -1.29 for the downregulated genes and
1.24 for the upregulated genes. To understand the biological functions of identified genes, the
differentially expressed mRNAs were used to perform enrichment analysis and obtain pathways related
to the protein-coding genes. The analysis showed that they are involved in different biological processes
such as neurofunction-related pathways, which include pathways involved in Alzheimer’s disease,
dopaminergic synapse, GABAergic synapse, glutamatergic synapse, and neurodegeneration. Genes
identified in these pathways include Atf4, Calm4, Calm5, Drd1, Gnb2, Gng7, Nosl, and Th. The
bioinformatic analysis also revealed that the differentially expressed protein-coding genes can impact
inflammation-related pathways (chemokine signaling pathway, cytokine-cytokine receptor interaction,
Jak-STAT signaling pathway, NF-kB signaling pathway, TNFa signaling pathway, Toll-like receptor signaling
pathway), cell-cell adhesion (adherens junction, focal adhesion, gap junction, PI3K-Akt signaling pathway,
tight junction), cell signaling pathways (insulin signaling pathway, MAPK signaling pathway, mTOR
signaling pathway, PPAR signaling pathway), metabolic pathways (N-glycan biosynthesis, nuclear

receptors involved in lipid metabolism and toxicity, TCA cycle), and other cellular processes (apoptosis,
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endocytosis, oxidative phosphorylation, regulation of autophagy, ubiquitin mediated proteolysis)
(Supplemental Figure 1C).

The expression of 629 miRNAs was also modulated upon consumption of the HFD. The fold-
change values of miRNA non-coding genes varied from -2.27 to 2.61 with an average fold-change of -1.38
for the downregulated genes and 1.32 for the upregulated genes. The next step of our analysis was to
identify target genes of observed differentially expressed miRNAs. MIENTURNET and miRWalk identified
1745 target genes of 68 differentially expressed miRNAs. Networks between differentially expressed
miRNAs and their target genes shows a complex interconnectivity (Supplemental Figure 1D). Next, we
performed enrichment analysis and obtained pathways in which identified targets of differentially
expressed miRNAs are involved in. Pathway enrichment analysis showed that several functional pathways
are modulated by the miRNAs target genes, being the most over-represented pathways those involved in
axon guidance, neuroactive ligand-receptor interaction, neurodegeneration, chemokine signaling,
cytokine-cytokine receptor interaction, focal adhesion, PI3K-Akt signaling, apelin signaling, foxO signaling,
mitogen-activated protein kinases (MAPK) signaling, apoptosis, cellular senescence, endocytosis, and non-
odorant GPCRs (Supplemental Figure 1E). Genes identified to be involved in these pathways include Akt1,
blc2, Ccr9, Cx3crl, Gabrb2, Gsk-36, Il1r1, 1118r1, L1cam, Mapk11, Nr3cl, Plc81, Sod2, and Stat1.

In addition, consumption of the HFD induced changes in expression of 353 IncRNAs. The fold-
change values of IncRNA non-coding genes varied from -1.74 to 1.63 with an average fold-change of -1.26
for the downregulated genes and 1.25 for the upregulated genes. Subsequently, using the differentially
expressed IncRNAs identified in the microarray study, we retrieved 2588 target genes of the IncRNAs from
LncRRIsearch database. Pathway enrichment analysis of the target genes showed that they can also
regulate pathways involved in various biological processes. The most over-represented pathways include
neuroactive ligand-receptor interaction, neurodegeneration, cytokine-cytokine receptor interaction,

calcium signaling, focal adhesion, PI3K-Akt signaling, regulation of actin cytoskeleton, cAMP signaling,
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MAPK signaling, endocytosis, and non-odorant GPCRs (Supplemental Figure 1F). Key genes identified in
these pathways include C5arl, Calm1, Camk2a, Ccr5, ccr9, Cxcrll, Egfr, Gabra2, Gsk-386, Igfr1, Mapk10,
Mclr, Nos1, and Xcrl.

There were 43 common genes among the differentially expressed mRNAs, target genes of the
differentially expressed miRNAs, and target genes of differentially expressed IncRNAs (Figure 2A). The
common genes identified include Statl, Crp, Tyw3, Gmeb1, Hist4dh4, Ceacam20, Ceacaml1, Nav2, Ntrk3,
Ncan, Ccr9, Neurod2, Cd300a, Atf7, Rab11b, Semaé6a, and Tcf7/2. Comparison of pathways identified for
differentially expressed mRNAs, miRNAs target genes, and IncRNA target genes identified 54 common
pathways. These pathways are related to neurofunction (Alzheimer’s disease, axon guidance, cholinergic
synapse, dopaminergic synapse, glutamatergic synapse, pathways of neurodegeneration), inflammation
(chemokine signaling pathway, cytokine-cytokine receptor interaction, Jak-STAT signaling pathway, TNFa
signaling pathway, Toll-like signaling pathway), cell-cell adhesion (adherens junction, focal adhesion, PI3K-
Akt signaling pathway, Rap1 signaling pathway, Ras signaling pathway, regulation of actin cytoskeleton),
cell signaling (insulin signaling pathway, MAPK signaling pathway, mTOR signaling pathway, Wnt signaling
pathway), metabolism (purine metabolism, sphingolipid metabolism), and other cellular processes

(apoptosis, endocytosis, non-odorant GPCRs, spliceosome, type |l diabetes mellitus) (Figure 2B).
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Figure 2. Functional pathway analysis of differentially expressed genes in the hippocampus of HFD-fed
mice compared to control diet-fed mice. A) Venn diagram showing 43 common genes among the
differentially expressed mRNAs, target genes of the differentially expressed miRNAs, and target genes of
differentially expressed IncRNAs identified from comparing HFD-fed mice to control diet-fed mice. B)
Comparison of pathways obtained from differentially expressed mRNAs (blue), miRNAs target genes
(yellow), and IncRNA target genes (green) identified 54 common pathways. These pathways indicate that
the identified genes are involved in various processes related to neurofunction, inflammation, cell-cell
adhesion, cell signaling, metabolism, and other cellular processes. The most enriched top 30 pathways
were identified using KEGG (*). Additional KEGG (**), Biocarta (***), and WikiPathway (****) pathways

were identified using the Genetrial2 online database.

3.2. EC modulates the expression of protein-coding and non-coding genes in the hippocampus of HFD-
fed mice.

A comparison of gene expression profiles in the hippocampus of mice fed the control diet, HFD,
and HFD supplemented with 20 mg EC/kg body weight, showed a distinct separation among the three
groups, as evaluated by PLS-DA (Figure 3A). Gene expression analysis also showed that EC
supplementation caused significant changes in hippocampal gene expression in mice fed the HFD (HFE vs.
HF groups). There were 5085 probes identified as differentially expressed, and of these, 3927 probes were
identified as upregulated and 1158 as downregulated (Figure 3B). Among them, 2635 genes were
identified and classified by ShinyGO v0.66, 38% corresponded to protein-coding genes (1001 mRNAs), 9%

to miRNAs (241 miRNAs), and 6% to IncRNAs (167 IncRNAs) (Figure 3C).
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Figure 3. Global genomic modifications induced by EC supplementation in the hippocampus of HFD-fed
mice. A) 3D Partial least squares discriminant analysis (PLS-DA) plot of the genomic profiles obtained in
samples from 3 experimental groups, control, HFD, and HFD supplemented with (20 mg EC/kg body
weight), showing a distinct group separation. B) Volcano plot representing the distribution of differentially
expressed genes, mapping the up- (red) and down-regulated (green) genes in the hippocampus of EC
supplemented HFD-fed mice when compared to the genes obtained from the hippocampus of HFD-fed
mice. C) Pie chart showing the distribution of different types of RNAs that are identified as differentially

expressed in EC supplemented mice compared to the non-supplemented mice.
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3.2.1 EC modulates the expression of protein-coding genes in the hippocampus of HFD-fed mice.

Gene expression analysis showed that EC supplementation caused significant changes in
expressions of 1001 hippocampal protein-coding genes. The fold-change values of protein-coding genes
varied from -1.57 to 18.27 with an average fold-change of -1.23 for the downregulated genes and 1.33 for
the upregulated genes. Functionality analysis revealed that the differentially expressed mRNAs mainly
regulate processes involved in neurofunction (alcoholism, Alzheimer’s disease, amyotrophic lateral
sclerosis, neuroactive ligand-receptor interaction, neurodegeneration), inflammation (chemokine
signaling pathway, complement and coagulation cascade, cytokine-cytokine receptor interaction, NOD-
like receptor signaling pathway), cell-cell adhesion (focal adhesion-PI3K-Akt-mTOR signaling pathway), cell
signaling (foxO signaling pathway), and other cellular processes (non-odorant GPCRs, phagosome) (Figure
4). Genes involved in the pathways include Calmb5, Ccl2, Ccr4, Drd1, Gabrrl, Gngt2, Irs1, Kras, Slc2a4,

Statl, and Psma2.
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Figure 4. Histogram of pathway subsets identified from differentially expressed protein-coding genes
in the hippocampus of HFD-fed mice supplemented with EC. Pathways were identified using differentially
expressed genes in the hippocampus from the EC supplemented mice compared to the hippocampus from
HFD-fed mice. Functional pathway analysis revealed that the differentially expressed mRNAs mainly
regulate processes involved in neurofunction, inflammation, cell-cell adhesion, cell signaling, and other
cellular processes. The most enriched top 30 pathways were identified using KEGG (*). Additional KEGG
(**), Biocarta (***), and WikiPathway (****) pathways were identified using the Genetrial2 online

database.
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3.2.2 EC modulates the expression of miRNAs in the hippocampus of HFD-fed mice.

Modulation of hippocampal miRNA expression was also identified upon EC supplementation. A
total of 241 miRNA were differentially expressed with a fold-change range of -1.49 to 2.41 and an average
fold-change of -1.25 for the downregulated genes and 1.38 for the upregulated genes. Next, MIENTURNET
and miRWalk database analysis identified a total of 1177 target genes of differentially expressed 30
miRNAs. Networks between differentially expressed miRNAs and their target genes forms a complex
interconnectivity (Figure 5A). Pathway enrichment analysis of the identified target genes of differentially
expressed miRNAs shows that the target genes are involved in the regulation of various processes
including  Alzheimer’s disease, axon guidance, neuroactive ligand-receptor interaction,
neurodegeneration, chemokine signaling, interleukin-3 signaling, natural killer cell mediated cytotoxicity,
T cell receptor signaling pathway, calcium signaling, focal adhesion, PI3K-Akt signaling, Rap1 signaling, Ras
signaling, foxO signaling, MAPK signaling, Wnt signaling, cellular senescence, endocytosis, and non-
odorant GPCRs (Figure 5B). Modulated target genes include Blc2, Ccr9, Cd4, Cnr1,Cx3crl, Gabra2, Gsk-36,

113, Insr, L1cam, Mapk1, Mapk11, Mylk, Nr3c1, PIc81, Racl, Stat1, and Tacrl.
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Figure 5. Modulation of hippocampal miRNA expression in the hippocampus of HFD-fed mice upon EC
supplementation. A) Network presentation of differentially expressed miRNAs (blue circles) and their
potential target genes (yellow circles). B) Histogram of pathway subsets identified with miRNA target
genes. The target genes are involved in the regulation of various processes such as Alzheimer’s disease,
axon guidance, neuroactive ligand-receptor interaction, neurodegeneration, chemokine signaling,
interleukin-3 signaling, natural killer cell mediated cytotoxicity, T cell receptor signaling pathway, calcium
signaling, focal adhesion, PI3K-Akt signaling, Rap1 signaling, Ras signaling, foxO signaling, MAPK signaling,
Whnt signaling, cellular senescence, endocytosis, and non-odorant GPCRs. The most enriched top 30
pathways were identified using KEGG (*). Additional KEGG (**), Biocarta (***), and WikiPathway (****)

pathways were identified using the Genetrial2 online database.

3.2.3 EC modulates expression of long non-coding RNAs in mouse hippocampus

In addition, EC supplementation of HFD-fed mice caused changes in expression of 167 IncRNAs.
The fold-change values of IncRNA non-coding genes varied from -1.60 to 2.06 with an average fold-change
of -1.27 for the downregulated genes and 1.26 for the upregulated genes. LncRRIsearch database analysis
retrieved 1481 IncRNA target genes from the identified differentially expressed IncRNAs. The differentially
expressed IncRNAs and their target genes together forms a complex network (Figure 6A). Pathway
enrichment analysis of the target genes reveals that the most over-represented pathways include
neuroactive ligand-receptor interaction, neurodegeneration, chemokine signaling, cytokine-cytokine
receptor interaction, calcium signaling, focal adhesion, PI3K-Akt signaling, regulation of actin
cytoskeleton, cAMP signaling, MAPK signaling, and non-odorant GPCRs (Figure 6B). The target genes
identified for these pathways include Atp2b2, Bacel, Cacnalc, Ccré4, Ccr5, Creb5, Cx3crl, Grin2a Gsk-38,

Lpl, Igfr1, Mapk10, Mylk4, Nos1, Ryr3, Tacrl, Taok2, Taok3, and Tnr.
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Figure 6. Modulation of hippocampal IncRNA expression in the hippocampus of HFD-fed mice upon EC
supplementation. A) Network presentation of differentially expressed IncRNA (purple rectangles) and
their potential target genes (blue circles). B) Histogram of pathway subsets identified with IncRNA target
genes. The target genes are involved in processes including neuroactive ligand-receptor interaction,
neurodegeneration, chemokine signaling, cytokine-cytokine receptor interaction, calcium signaling, focal
adhesion, PI3K-Akt signaling, regulation of actin cytoskeleton, cAMP signaling, MAPK signaling, and non-
odorant GPCRs. The most enriched top 30 pathways were identified using KEGG (*). Additional KEGG (**),

Biocarta (***), and WikiPathway (****) pathways were identified using the Genetrial2 online database.

3.2.4 Transcription factors affected by EC and their interactions with EC metabolites

Following identification of differentially expressed protein-coding genes, we used bioinformatic
tools to identify potential transcription factors, which could be involved in the regulation of our identified
genes and therefore could be affected by EC (Figure 7A). Seven significant transcription factors were
identified, NR5A2, RBPJ, GATA4, RARa, FLI1, HNF4a and SREBF1. Our next step was to assess if major
circulating EC metabolites could interact with these transcription factors and modify their activities, by
performing in-silico 3d docking analysis between the proteins and the metabolites. Using such approach,
we observed that (-)-epicatechin-7-0-B-D-glucuronide (E7G) presents a high potential binding capacity to
RARa transcription factor (-10.1 kcal/mol) (Figure 7B). We also observed that (-)-epicatechin-3'-sulfate
(E3'S) also presents binding capacity to RARa (-8.8 kcal/mol). Moreover, the docking analyses revealed
that E3’S and (-)-epicatechin-5-O-B-D-glucuronide (E5G) could bind to HNF4a transcription factor, with
binding capacity of -7.9 kcal/mol and -9.3 kcal/mol, respectively (Figure 7B). Taken together, these
bioinformatic analyses allowed identification of potential transcription factors involved in the genomic
modifications induced by EC in the hippocampus by interacting with the major EC metabolites found in

mice.
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Transcription factor Name
NR5A2 Nuclear receptor subfamily 5, group A, member 2
RBPJ Recombination signal binding protein for immunoglobulin kappa J region
GATA4 GATA binding protein 4
RARa Retinoic acid receptor, alpha
FLI1 Friend leukemia integration 1
HNF4a Hepatic nuclear factor 4, alpha
SREBF1 Sterol regulatory element binding transcription factor 1
NKX2-5 NK2 Homeobox 5
SRF Serum Response Factor
CBEPA CCAAT Enhancer Binding Protein Alpha
TBP TATA-binding protein
NFYB Nuclear Transcription Factor Y Subunit Beta
CPEBI1 Cytoplasmic Polyadenylation Element Binding Protein 1
SOX2 SRY-Box Transcription Factor 2
SP1 specificity protein 1
NFKBI1 Nuclear Factor Kappa B
RELA Nuclear Factor NF-Kappa-B P65 Subunit
TRP53 Tumor Protein P53

RARA/ETG o

- '}1‘
;#6“-::_::»;‘,‘5}.
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Figure 7. Transcription factors involved in the observed genomic modifications and their potential
interactions with EC metabolites. A) List of identified potential transcription factors, which could be
involved in the regulation of the identified differentially expressed protein-coding genes and therefore
could be affected upon EC supplementation. B) In-silico docking analysis of interactions between EC
metabolites and transcription factors showing that major circulating EC metabolites found in mice could
interact with select identified transcription factors. RARa demonstrated energetically favorable binding
to (-)-epicatechin-7-0-glucuronide (E7G) and (-)-epicatechin-3'-sulfate (E3’S), and HNF4a to E3’S and (-)-

epicatechin-5-0-f -D-glucuronide (E5G).
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3.2.5 Integration of multi-genomic modifications by EC in the hippocampus

The next step of our analysis was to integrate data obtained from different genomic analysis.
Comparison between differentially expressed protein-coding genes, targets of differentially expressed
miRNAs and of differentially expressed IncRNAs identified 5 genes in common (Figure 8A). Also, 28 of
differentially expressed protein-coding genes were in common with targets of differentially expressed
miRNAs and 26 were identified in common with targets of differentially expressed IncRNAs. These
observations suggest that expression levels of the mRNA of these genes can be affected by the capacity
of EC metabolites to regulate the expression of protein non-coding genes. Because EC could affect the
activities of transcription factors which will result in changes in expression of genes and non-coding RNAs
that can interact with mRNAs, we aimed to build a network of interactions between identified
differentially expressed genes, gene targets, and potential transcription factors (Figure 8B). This analysis
allowed us to observe global interactivities between the studied types of RNAs and potential transcription
factors, showing complex, multi-omic mode of action of EC in mice hippocampus in vivo.

Together with the comparison of identified differentially expressed genes and target genes of
non-coding RNAs, we also compared the pathways identified as enriched in the 3 omic analyses. We
observed that 3 pathways were in common between protein-coding genes and targets of IncRNAs and 40
pathways in common between targets of miRNAs and of IncRNAs (Figure 8C). The identified pathways
were involved in cellular functions including cell signaling pathways, neuronal cell function, and cellular
metabolism. Moreover, 18 pathways were identified to be regulated by all three types of RNA which
included pathways related to neurodegenerative diseases, like Alzheimer’s disease, pathways regulating
endothelial cell functions like focal adhesion, or pathways related to inflammation and cell signaling
transduction. This suggests that these common pathways can be affected simultaneously by mRNA and

targets of miRNAs and IncRNAs. An example presented is a pathway related to neurodegeneration where
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we identified 15 differentially expressed genes, 24 targets of miRNAs, and 17 as targets of IncRNAs (Figure
8D).

To further investigate the observed interactions between different omic effects, we also
combined pathways identified for each omic analysis and grouped them into functional groups (Figure
8E). We observed that these pathways are involved in the regulation of neurological functions and
diseases, inflammation, cell-cell adhesion, cell signaling, and metabolic pathways. This suggests that, by
regulating the expression of different types of RNAs, EC can affect pathways in the hippocampus
regulating these cellular functions. For each functional pathway group, we identified differentially
expressed genes and target genes involved in each pathway with the aim to construct a network. Example
networks of neurofunction-related and cell-cell adhesion functional groups show that pathways and
involved genes within each functional group are interconnected (Figure 8E). This demonstrates that

regulation of different types of RNAs can exert multitudinous effects on cellular functions.
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Figure 8. Integrative analyses of multi-genomic data and networks of gene obtained from the
hippocampus of EC supplemented HFD-fed mice. A) Venn diagram comparison of the differentially
expressed mRNA, target genes of miRNA, and target genes of IncRNA identified from comparing EC
supplemented HFD-fed mice to the HFD-fed mice. The comparison shows 5 genes were commonly
modulated by all three types of RNAs upon EC supplementation. B) Integrative network showing
interactions of differentially expressed protein-coding genes, transcription factors, miRNAs and IncRNAs.
The network reveals global interactivities between the studied types of RNAs and potential transcription
factors. Gray rectangles = IncRNAs; Red rectangles = transcription factors; Green rectangles = miRNAs;
White circles = differentially expressed mRNAs, and miRNA and IncRNA targets. C) Venn diagram
comparison of common pathways obtained from differentially expressed protein-coding genes, target
genes of differentially expressed miRNAs and target genes of differentially expressed IncRNAs. This
suggests that these common pathways can be affected simultaneously by mRNA and targets of miRNAs
and IncRNAs. D) A representative integrated analysis of differentially expressed genes and target genes of
differentially expressed miRNAs and IncRNA indicated in a pathway related to neurodegeneration. Blue =
differentially expressed genes; Yellow = target genes of differentially expressed miRNAs, Green = target
genes of differentially expressed IncRNAs. E) Integrated histogram of pathway subsets obtained from
differentially expressed protein-coding genes, targets of differentially expressed miRNAs and IncRNAs.
These pathways are involved in the regulation of neurological functions and diseases, inflammation, cell-
cell adhesion, cell signaling, and metabolic pathways. Pathway and gene interaction networks implicated
in neurofunction-related and cell-cell adhesion functional group show that pathways and involved genes
within each functional group are interconnected. The most enriched top 30 pathways were identified
using KEGG (*). Additional KEGG (**), Biocarta (***), and WikiPathway (****) pathways were identified

using the Genetrial2 online database.
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3.3 Comparison of the effect of HFD (HF vs. C) and EC (HFE vs. HF)

The expression profile of genes identified in the EC supplemented group was compared to the
expression profile identified as differentially expressed by the HFD group. The heatmap analysis showed
that the expressions of genes obtained following the EC supplementation have the opposite expression
profile when compared to the gene expression profile obtained after consumption of the HFD (Figure 9A).
This implies that most of the genes identified as upregulated by the HFD were identified as downregulated
by the EC consumption and vice versa. This finding suggests that EC consumption can reverse HFD-induced
changes of protein-coding and non-coding gene expression profiles in the hippocampus. There was a total
of 270 protein-coding genes in common that are differentially expressed by consumption of the HFD and
EC (Figure 9B). Expression profiles of the common protein-coding genes also demonstrate that EC
consumption can reverse the effect of the HFD-induced changes in the protein-coding gene expressions
in the hippocampus. In agreement with the finding, the fold changes of the differentially expressed genes
induced by the EC consumption show strong inverse correlation with the ones differentially expressed by

consumption of the HFD (Figure 9C).
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Figure 9. Comparison of global genomic modifications induced by the HFD and by EC supplementation

in the hippocampus. The expression profile of genes identified in the EC supplemented group was
compared to the expression profile identified as differentially expressed by the HFD group. A) Heatmap
analysis shows that the expressions of genes obtained following the EC supplementation (HFE vs. HF) have

the opposite expression profile when compared to the gene expression profile obtained after
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consumption of the HFD (HF vs. C), suggesting EC consumption can reverse HFD-induced changes of
protein-coding and non-coding gene expression profiles in the hippocampus. B) Venn diagram shows a
total of 270 protein-coding genes in common that are differentially expressed by consumption of the HFD
and EC. Expression profiles of the common protein-coding genes demonstrate that EC consumption can
reverse the effect of the HFD-induced changes in the protein-coding gene expressions in the
hippocampus. C) Correlation plot of differentially expressed protein-coding genes identified from HF vs. C

and HFE vs. HF comparisons confirming the significant inverse relationship (r = -0.89, p < 2.2x107®).

The pathway enrichment analysis indicated that 36 pathways were identified to be commonly
modulated by both EC and HFD consumption (Figure 10A). Consistent with the findings observed in the
heatmap (Figure 9A and B), expressions of select genes obtained upon EC supplementation show the
opposite expression profile when compared to the ones obtained following consumption of the HFD. For
example, Drd1 and Gngt2 genes implicated in the pathway related to neuronal consequences of
alcoholism were downregulated in the hippocampus of mice fed the HFD while their levels were restored
by EC supplementation (Figure 10B). Similarly, a couple of genes implicated in the Alzheimer’s disease
pathway showed opposite expression profiles. Psme2b (26S proteasome), Irs1, and Tubb4b were
upregulated and Calm5 downregulated in the HFD group while they all show opposite expression profiles
upon EC supplementation (Figure 10C). In the insulin signaling pathway, the HFD downregulated the
expression of Slc2a4 and upregulated the expression of Irs1 in the hippocampus while EC reversed these

effects (Figure 10D).
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Figure 10. Comparison of enriched pathways and protein-coding genes modulated by the HFD and by
EC supplementation in the hippocampus. A) Venn diagram and lists of the common enriched pathways
identified in HF vs. C and HFE vs. HF comparison. The pathway enrichment analysis indicated that 36
pathways were identified to be commonly modulated by both EC and HFD consumption. Drd1 and Gngt2
genes implicated in the pathway related to neuronal consequences of B) alcoholism were downregulated
(green) in the hippocampus of HFD-fed mice. In the C) Alzheimer’s disease pathway, Psme2b (26S
proteasome), Irs1, and Tubb4b were upregulated (red) and Ca/m5 downregulated in the HFD group. In the
D) insulin signaling pathway, the HFD downregulated the expression of Sic2a4 and upregulated the

expression of Irs1. Their levels were all reversed by EC supplementation.

3.4. Association of the genomic data with human diseases

Next, we aimed to identify associations of the identified genes in the present study with known
human diseases. The Comparative Toxicogenomics Database, a database that interrelates differentially
expressed genes with diseases, was used to understand the potential roles of the identified genes in
prevention or development of human diseases. Using this approach, we found that genes identified as
differentially expressed by the HFD, compared to control diet, are shown to be involved in neurological
diseases, such as nervous system malformations, neurodegenerative diseases, and peripheral nervous
system diseases. Genes that were identified as modulated by EC on the HFD were also associated with
diseases related to neurodegeneration, such as brain injuries, cerebrovascular disorders, intracranial
arterial diseases, movement disorders or Parkinson’s disease. Comparison of the diseases identified in the
2 groups revealed 4 neurological conditions in common which include nervous system diseases, brain
diseases, central nervous system diseases, and neurologic manifestations (Figure 11A).

As cognitive analyses performed on these mice identified anxiolytic effect of EC (under revision),

we next aimed to assess how the global gene expression profile in the hippocampus induced by EC is
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correlated with anxiety in humans. Correlation analysis of gene expression changes obtained in the
hippocampus following EC supplementation and genomic signatures identified in patients with anxiety
disorder indicated a significant inverse relationship (r =-0.15; p < 0.05) (Figure 11B). This suggests that EC-
induced changes in hippocampal gene expressions may explain its neuroprotective actions against
anxiety-related behavior, an observation that is in accordance with our previous findings for the same

animal set (under revision).
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Figure 11. Association of identified differentially expressed genes with human neurological disorders.
A) Comparison of neurological disorders in humans associated with differentially expressed genes
following HFD and following EC diet. Comparison of the diseases identified in the diet groups revealed 4
neurological conditions in common which include nervous system diseases, brain diseases, central
nervous system diseases, and neurologic manifestations. B) Correlation analysis between gene expression
changes obtained in the hippocampus following EC supplementation and genomic signatures identified in
patients with anxiety disorder. The correlation plot indicates a significant inverse relationship (r =-0.15; p
< 0.05), suggesting that EC-induced changes in hippocampal gene expressions may in part explain its

neuroprotective actions against anxiety-related behavior.
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Figure 12. Summary of functional analysis of multi-genomic data. EC can modulate the expression of
protein-coding and non-coding genes that are involved in various processes such as pathways regulating
BBB permeability, neuroinflammation, neurodegeneration, and neuronal function which may in part

explain the neuroprotective capacity of EC.
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4. Discussion

HFD and associated obesity can contribute to cognitive and mood dysfunction [36]. We previously
reported that chronic consumption of a HFD induced anxiety-related behavior in mice which was
mitigated by EC supplementation (under revision). To better understand the underlying the anti-anxiety
mechanisms of EC, the present study conducted multi-genomic analysis that included analyses of mMRNAs,
miRNA, and IncRNA in the hippocampus of HFD-fed obese mice. Both HFD consumption and EC
supplementation induced significant changes in the expression of protein-coding and non-coding genes.
For the first time, the capacity of EC to regulate the expression of hippocampal protein-coding and non-
coding transcripts in a preclinical model of obesity was investigated. We observed a significant inverse
relationship between hippocampal gene expression profiles of HFD-fed and EC-supplemented mice. This
suggests that EC can counteract changes driven by consumption of the HFD and/or associated obesity in
the hippocampus.

Several studies reported that EC can exert beneficial effects by triggering complex multi-omic
modifications. Consumption of a cocoa flavanols drink (containing 64 mg EC) for one month improved
vascular function in healthy middle-aged volunteers compared to control subjects [37]. This improvement
was accompanied by significant changes in whole blood cell expression profiles of genes involved in the
regulation of inflammation, cell adhesion, and chemotaxis of immune cells [38]. Similarly, in a 4-week
randomized, double-blind, placebo-controlled crossover trial, EC supplementation (100 mg/day)
downregulated groups of genes involved in inflammation, PPAR signaling, and adipogenesis in PBMCs
from prehypertensive subjects aged between 30 and 80 [39]. This change in gene expression profiles was
accompanied by EC-mediated decrease in plasma insulin and improvement in insulin resistance.

Our pathway enrichment analysis revealed that differentially expressed mRNAs and targets of
differently expressed miRNAs and IncRNAs upon EC supplementation are involved in different biological

processes regulating neurofunction, inflammation, and cell-cell adhesion, metabolism, and cell signaling
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pathways. Interestingly, these transcripts were particularly enriched in the pathways regulating BBB
permeability, neurofunction, inflammation, and neurodegeneration in the hippocampus. Recently, it has
been shown that a western-type diet given to mice induces not only increased BBB permeability but also
decreased cognitive function [40], phenotypic changes found to be associated with significant changes in
the expression of protein-coding as well as non-coding RNAs in hippocampal microvasculature of male
[41] and female mice [42]. On the other hand, studies have suggested the capacity of EC to mitigate BBB
dysfunction and protect from neurodegeneration via multi-omic regulation. For instance, gut microbiome-
derived EC metabolites, 5-(4’-hydroxyphenyl)-y-valerolactone-3’-sulfate and 5-(4’-hydroxyphenyl)-y-
valerolactone-3’-O-glucuronide, exerted neuroprotective action in TNF-a-stimulated human brain
microvascular endothelial cell by modulating the expressions of mRNAs, miRNAs, IncRNAs, and proteins
involved in the regulation of cell adhesion, cytoskeleton organization, focal adhesion, and interaction with
immune cells [17]. Similarly, in brain microvascular endothelial cells stimulated by lipid stress, a model of
BBB dysfunction, structurally related EC metabolites (SREM) and gut microbiome-derived EC metabolites
simultaneously modulated the expression of mMRNA, miRNA, and IncRNAs involved in VEGF signaling, cell
adhesion, and permeability [16]. An inverse correlation was identified between gene expression profiles
of the lipid-stressed cells and cells exposed to EC metabolites mixtures, suggesting the capacity of EC to
counteract the adverse effects of lipotoxic stress on gene expressions [16].

We also identified 36 common enriched pathways comparing HF vs. C and HFE vs. HF, and several
genes involved in pathways modulated by HFD consumption that were inversely modulated by EC
supplementation. This supports the capacity of EC supplementation to reverse the effect of HFD on gene
expressions. In the pathway related to neuronal consequences of alcoholism, Drd1 and Gngt2 are
downregulated following the consumption of the HFD while both were upregulated by EC
supplementation. Drd1 encodes the D1 subtype of the dopamine receptor. Interestingly, studies report

robust antidepressant-like effects upon D1R activation [43]. For instance, levo-stepholidine (I-SPD), an
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antipsychotic medication, has antidepressant effects on rats with depressive- and anxiety-like behaviors.
The antidepressant effect was attributed to activation of D1R that leads to activation of downstream
PKA/mTOR signaling pathway, which in turn increases synaptic proteins and enhances synaptic plasticity.
Similarly, EC-induced restoration of Drd1 may in part explain the observed anxiolytic effects of EC in HFD-
fed mice. Although a direct relevance of Gngt2, a member of Gi/o family, in anxiety has not been
established, it has been reported that Gi/o levels decrease with aging, particularly in age-vulnerable brain
regions like the hippocampus [44]. Similarly, several genes implicated in the Alzheimer’s disease pathway
showed opposite expression profiles. Psme2b (26S proteasome), Irs1, and Tubb4b were upregulated and
Calm5 downregulated in the hippocampus of HFD group while they all showed opposite expression
profiles upon EC supplementation. It has been shown that the proteosome [45] and IRS1 [46] play
important role in the development of Alzheimer’s disease. In the insulin signaling pathway, consumption
of the HFD downregulated hippocampal gene expression of Slc2a4, which encodes GLUT4, an insulin-
regulated glucose transporter that plays an important role in glucose uptake and utilization in the brain
[47]. Reduced hippocampal GLUT4 expression has been proposed to be responsible for inducing anxiety-
like behavior in diabetic rats [48]. The capacity of EC to reverse HFD-induced downregulation of Sic2a4
also may in part explain its capacity to protect HFD-fed mice from anxiety. Interestingly, the HFD
upregulated the expression of Irs1 in the hippocampus while EC downregulated its expression. It is
possible that the observed downregulation is due to the mitigation of HFD-induced increase in plasma
insulin levels upon EC supplementation observed in this set of animals (under revision). Consistent with
our result, EC-mediated improvements of plasma insulin were observed in HFD-fed mice [49, 50].
Similarly, downregulation of select genes involved in the insulin signaling cascade was found in immune
cells of prehypertensive adults upon EC supplementation [39].

In addition to the modulation of protein-coding genes, we observed that EC modulated the

expression of non-coding RNAs, including miRNAs and IncRNAs. Studies have shown that several miRNA

148



are modulated in patients with neurodegenerative diseases suggesting that non-coding RNA also play a
role in the pathogenesis of neurodegeneration [18]. Indeed, miRNAs such as miR-15b, miR-127-3p, miR-
let-7f-5p, miR-124, miR-219, miR-342-3p, and miR-455-3p are involved in the development of Alzheimer’s
diseases [18]. Similarly, several miRNAs, including miR-34a, miR-16, miR-34c, miR-182, and miR-124, are
associated with the pathogenesis as well as treatment of depression and anxiety [51-55]. For instance,
targeted deletion of the miR-34-family resulted in increased resilience to stress-induced anxiety in mice
[52]. Similarly, chronic corticosterone administration induced depressive behavior and increased miR-34a
levels in the hippocampus while miR-34a downregulation exerted antidepressant-like effects [53]. Among
the miRNAs identified as differentially expressed by EC, miR-467 has been reported to promote
inflammation and insulin resistance in mice [56]. EC supplementation downregulated miR-467 expression
in the hippocampus of HFD-fed mice which may partly explain the beneficial effect of EC. Moreover, miR-
669, which plays a protective role in ischemic stroke in mice [57], was increased by EC. EC also modulated
IncRNAs expressions. Although the role of many IncRNAs in regulating biological functions are unknown,
studies have suggested that IncRNAs are involved in the pathogenesis of Parkinson’s disease [58],
Alzheimer’s [59], and depression [60]. Interestingly, a study reported that expression of the IncRNA
Gm15628, which we identified as modulated by EC, was altered in the brain of mice following a stroke
[61]. Taken together, our findings suggest that mRNAs, miRNAs and for the first time IncRNAs, may
contribute to the neuroprotective properties of EC in the hippocampus.

In-silico docking analysis suggests that certain EC metabolites could bind to some of the identified
transcription factors, potentially affecting their activity and the expressions of related genes. Among the
identified transcription factors, RARa demonstrated energetically favorable binding to (-)-epicatechin-7-
O-glucuronide (E7G) and (-)-epicatechin-3'-sulfate (E3’S), and HNF4a to E3’S and (-)-epicatechin-5-O-3-D-
glucuronide (E5G). RARa modulates several pathways crucial for synaptic plasticity [62], which when

disrupted increase susceptibility to depression [63]. It has been proposed that RARa has anti-
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inflammatory effects and can promote clearance of amyloid beta (AB) [64]. HNF4a also plays a critical role
in emotional behaviors. A TNFa inhibitor, infliximab, was effective in ameliorating depressive symptoms
in patients, especially in those with a high inflammatory condition [65]. Genomic studies proposed that
HNF4a anti-depressive effects are linked to the regulation of gluconeogenesis, lipid homeostasis, and
serotonin metabolism [66, 67].

In conclusion, our multi-genomic data including transcriptomic, microRNomic, and IncRNomic of
the hippocampus of EC supplemented HFD-fed mice revealed that EC can exert neuroprotective effects
by regulating pathways that modulate BBB permeability, neurofunction, inflammation, and
neurodegeneration in the hippocampus (Figure 12). HFD and associated obesity can be detrimental to the
brain, eliciting BBB dysfunction and neuroinflammation, and consequently cognitive impairment and
mood disorders. Our results indicate that EC can counteract HFD-induced alterations of hippocampal gene
expression profiles. Additionally, we observed that gene expression profiles upon EC supplementation are
negatively correlated with gene expression profiles associated with symptoms of anxiety disorder in
humans. This suggests that EC could elicit neuroprotective action and reduce the risk of HFD-induced or
obesity-associated mood disorders. The present study does not establish a direct causal link between the
observed changes in gene expression levels of protein-coding and non-coding genes and alteration in
cognitions and mood. However, the bioinformatic analyses provide valuable insights and biological
networks possibly affected by consumption of EC. Although the causal relationship was not investigated,
protein-coding genes, mMiRNA, IncRNA, and transcription factors that have been described in
neurofunction were identified. Further studies elucidating the direct role of the identified transcripts and

proteins in mood and cognition upon EC consumption are warranted.
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Supplementary materials

Supplementary Figure S1. Genomic modifications induced by consumption of the HFD in the
hippocampus. (A) Volcano plot representing the distribution of differentially expressed genes, mapping
the up- (red) and down- (green) regulated genes in the hippocampus of HFD-fed mice when compared to
those obtained from the hippocampus of control diet-fed mice. (B) Pie chart showing the distribution of
different types of RNAs that are identified as differentially expressed. (C) Histogram of a subset of
pathways obtained from the differentially expressed protein-coding genes in the hippocampus of HFD-
fed mice compared to the control mice. (D) Network of differentially expressed miRNAs (blue circles) and
their target genes (yellow circles). Histogram of subset of significant gene pathways of (E) miRNA target
genes and (F) IncRNA target genes identified in the hippocampus of HFD-fed mice compared to the ones
identified in the control diet-fed mice. The most enriched top 30 pathways were identified using KEGG
(*). Additional KEGG (**), Biocarta (***), and WikiPathway (****) pathways were identified using the
Genetrial2 online database.
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Chapter 5

Discussion
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This dissertation project investigated the neuroprotective potential of EC, particularly its capacity
to mitigate HFD-/obesity-associated alterations in cognition and mood using preclinical models of obesity.
The specific objectives of this thesis were to 1-assess the effects of EC on memory and learning and its
capacity to mitigate neuroinflammation in the hippocampus of HFD-fed obese mice, 2- assess long-term
effects (24 weeks) of EC on HFD-induced alterations in memory and mood and gut-microbiota in obese
mice, and 3- investigate the underlying mechanisms of EC in the hippocampus using a multi-genomic and

bioinformatic approach.

The flavan-3-ol EC was previously shown to have anti-inflammatory actions in various
tissues/organs [1-5]. As obesity is characterized by a condition of low-grade chronic inflammation that can
potentially lead to neuroinflammation and alterations in cognition [6-8], we first investigated the capacity
of dietary EC (20 mg/kg body weight) to mitigate hippocampal inflammation and impaired learning and
memory in HFD-fed (60% kcal from fat) mice. After 13 weeks on the dietary intervention, HFD-fed mice
developed obesity, which was not affected by EC supplementation. On the other hand, EC
supplementation significantly improved short-term recognition memory in HFD-fed mice while neither
HFD consumption nor EC supplementation affected mouse spatial memory and learning. The HFD
consumption caused metabolic endotoxemia and increases in parameters of inflammation in the
hippocampus, which were all mitigated by EC supplementation. There was a strong positive correlation
between plasma endotoxin concentration and hippocampal TLR4 mRNA levels, suggesting that the
hippocampal inflammation induced by the HFD consumption can be, in part, explained by increased
activation of LPS-mediated TLR4 signaling pathway while this was attenuated by EC supplementation.
Moreover, BDNF mRNA levels were significantly increased in the EC supplemented groups compared to
the groups without the supplementation, suggesting the capacity of EC to exert neuroprotective actions
in part by upregulating this neurotrophic factor. This finding is in agreement with other previous report

on EC regulating BDNF [9].
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Although HFD consumption for 13 weeks impaired short-term object recognition memory, the
HFD-fed mice did not show other major behavioral changes. To further understand the potential capacity
of EC to mitigate obesity-induced changes in cognition, we conducted a longer dietary intervention study
(24 weeks) with a HFD (45% kcal from fat) that is more comparable to the amount of fat consumed by
humans. EC was supplemented at two levels, one that can be extrapolated to average human dietary
consumption (2 mg/kg body weight) [10], and a higher amount (20 mg/kg body weight) that could be
reached in humans by supplementation [11]. Consistent with the first study, the HFD consumption
induced obesity while EC had no influence upon body weight and body composition. The HFD had adverse
effects on metabolic parameters, and both doses of EC improved glucose homeostasis. Surprisingly,
supplementation with EC had no beneficial impact upon learning and memory and did not mitigate HFD-
induced spatial memory impairment. In fact, control mice supplemented with the higher amount of EC
displayed even poorer object recognition memory compared to the non-supplemented controls
suggesting that higher doses of EC might not always be better for brain function. Interestingly, this decline
was absent in HFD animals indicating that high doses of EC are better tolerated by mice in combination
with a high fat meal. Despite this, EC ameliorated the HFD-induced increase in anxiety in a dose-
dependent manner with the high EC dose restoring open field center exploration time back to the levels
observed in control diet-fed mice. This implies that the mechanisms leading to learning and memory

impairment are uncoupled from those associated with anxiety.

The neuroprotective effect of EC decreasing HFD-induced anxiety-related behavior may be, in
part, explained by its capacity to mitigate alterations in glucocorticoid signaling in the hippocampus. In
fact, the HFD consumption significantly decreased mRNA levels of both GR and MR, while EC mitigated
these alterations. Consistent with our findings, high hippocampal MR expressions have been linked to a
low-anxiety phenotype [12] while inhibition of the MR was linked to anxiety-like behavior as well as

decreased adult hippocampal cell proliferation [13]. Although current evidence on the role of the
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hippocampal GR on anxiety-related behavior is conflicting, upregulation of GR expression was correlated
with decreased anxiety-related behavior [14]. EC also mitigated increased hippocampal mRNA level of
11B-HSD1. As inhibition of 11B-HSD1 has been proposed to provide neuroprotective effects in humans
[15], its role in mood regulation in obesity would be an interesting area to further investigate. Moreover,
hippocampal BNDF mRNA levels were positively correlated with center exploration time in the open field,
consistent with the previous findings that the neuroprotective capacity of EC is partly mediated via BDNF
upregulation [9, 16]. Additionally, we investigated whether the anxiolytic effects of EC could be explained
by shifts in the microbiota. Similar to a previous 15-week dietary EC and HFD study [3], EC (20 mg/kg body
weight) did not significantly affect the overall microbial community in HFD-fed mice. However, the long-
term EC supplementation modulated select microbial species that have putative roles in mood regulation
(i.e., Enterobacter and Lactobacillus) altered by the HFD consumption. This may be in part involved in EC-

mediated improvement of the anxiety-related behavior.

The mechanisms affecting the CNS are mostly likely to be multifactorial and a full understanding
of EC actions in the hippocampus remains to be elucidated. Thus, we conducted an untargeted genomic
study to gain more detailed insights into the molecular mechanisms underlying the neuroprotective
effects of EC against HFD- and obesity-induced anxiety in mice. Hippocampal gene expression following
EC supplementation (20 mg/kg body weight) showed the opposite profile when compared to the gene
expression profile obtained after consumption of the HFD. This suggests that EC could counteract HFD-
induced alterations of hippocampal gene expression profiles. Additionally, we observed that gene
expression profiles upon EC supplementation are negatively correlated with gene expression profiles
associated with symptoms of anxiety disorder in humans. The multi-genomic data, including
transcriptomic, microRNomic, and IncRNomic of the hippocampus of EC supplemented HFD-fed mice,
revealed that EC could exert neuroprotective effects by regulating pathways that modulate BBB

permeability, neurofunction, inflammation, and neurodegeneration.

163



Overall, this thesis contributes to the explanation of mechanisms related to the neuroprotective
potential of EC in the context of HFD and associated obesity. Our results suggest that EC could mitigate
HFD-induced alterations in memory and anxiety, in part, by ameliorating neuroinflammation, modulating
BDNF- and glucocorticoids-regulated signaling, mitigating dysbiosis, and counteracting the effects of HFD
on the hippocampus at a multi-genomic level. It is important to consider that the reported findings are
entirely based on gene expression analyses and do not establish a direct causal link between the observed
changes and alteration in cognition and mood. Therefore, further studies analyzing protein levels of the
identified genes and functional validation of the proteins are warranted to support the underlying
mechanisms of EC in the brain. Moreover, the fact that the composition of circulating EC metabolites
found in humans differs from the composition found in mice [17] should be considered when
interpretating the results obtained from the animal models. In addition, in humans, obesity results from
complex interaction of individual factors (i.e., genetic background, medications, infection, gut-brain-
hormone axis, sleep) and the environment (i.e., culture, social media, policies, food marketing, economic
systems) [18]. Therefore, clinical studies will be essential to support the concept that consumption of EC
could contribute to improvement in cognition and mood in obesity. Further research to understand safe
EC doses is also warranted as the safety of long-term supplementation with high EC doses and its effects

on the brain is not clear.
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