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What this study adds
Our spatiotemporal approach to investigate patterns of respira-
tory health impacts associated with exposure to wildfire smoke 
clearly showed that the highest excess hospitalizations were 
concentrated in areas downwind of wildfires. The temporal evo-
lution of excess hospitalizations was also evident and mainly 
driven by wind patterns that first transported smoke offshore 
and later in the opposite direction. To our knowledge, our anal-
yses are the first to investigate the variation respiratory health 
impacts considering both fine spatial and temporal dimensions, 
a particularly necessary endeavor in regions where wildfires are 
associated with strong winds that contribute to ignitions, spread 
flames, and transport smoke particles, thus increasing popula-
tion exposure.
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Respiratory hospitalizations and wildfire smoke:  
a spatiotemporal analysis of an extreme firestorm 
in San Diego County, California
Rosana Aguileraa,*§, Kristen Hansenb,§, Alexander Gershunova, Sindana D. Ilangob,c,  
Paige Sheridanb,c, Tarik Benmarhniaa,b  

Introduction
Wildfire smoke adversely impacts public health, notably 
through respiratory diseases,1–3 as fine particulate matter can 
penetrate deeply into the lungs.4 Several literature reviews have 

characterized how fine particles from wildfire smoke, an acute 
exposure and episodic in nature, have influenced morbidity and 
mortality across many regions.2,5–8 Wildfire fine particulate mat-
ter in the US is projected to increase with global change,9 as 
well as the associated health impacts of exposure to wildfire 
smoke.10,11

Despite recent efforts in fire and fuel management to prevent 
large wildfires from occurring,12,13 wildfire smoke continues to 
reach coastal zones and impact large populations. In this con-
text, early warning systems, including advisories combined with 
emergency public health measures, have been developed to pre-
vent the burden associated with exposure to wildfire smoke.14 
Epidemiological studies of differential impacts of wildfire 
smoke exposure have mainly targeted population subgroups 
(such as children, the elderly or individuals with preexisting 
respiratory conditions such as asthma) that may be more vul-
nerable to the effects of wildfire smoke.15–18 Such information 

Background: Wildfire smoke adversely impacts respiratory health as fine particles can penetrate deeply into the lungs. 
Epidemiological studies of differential impacts typically target population subgroups in terms of vulnerability to wildfire smoke. Such 
information is useful to customize smoke warnings and mitigation actions for specific groups of individuals. In addition to individual 
vulnerability, it is also important to assess spatial patterns of health impacts to identify vulnerable communities and tailor public health 
actions during wildfire smoke events.
Methods: We assess the spatiotemporal variation in respiratory hospitalizations in San Diego County during a set of major wildfires in 
2007, which led to a substantial public health burden. We propose a spatial within-community matched design analysis, adapted to 
the study of wildfire impacts, coupled with a Bayesian Hierarchical Model, that explicitly considers the spatial variation of respiratory 
health associated with smoke exposure, compared to reference periods before and after wildfires. We estimate the signal-to-noise 
ratio to ultimately gauge the precision of the Bayesian model output.
Results: We find the highest excess hospitalizations in areas covered by smoke, mainly ZIP codes contained by and immediately 
downwind of wildfire perimeters, and that excess hospitalizations tend to follow the distribution of smoke plumes across space (ZIP 
codes) and time (days).
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extent, particularly in this region where the most damaging wildfires are associated with strong wind conditions.
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can be particularly useful to target specific individuals when 
smoke warning systems are activated. In addition to individual 
vulnerability, it is also important to assess the spatial variability 
of wildfire smoke health impacts to identify vulnerable commu-
nities for tailoring public health actions during wildfire smoke 
events.

Population exposure levels to wildfire smoke vary widely 
depending on population location, the area burned, fuels, fire 
intensity, rate of spread, and meteorological factors such as 
wind.6,8 In Southern California (SoCal), the largest fires are typi-
cally driven by the onset of desiccating Santa Ana winds (SAWs) 
in early fall and before the arrival of winter precipitation, which 
in turn can promote further fuel drying.19 SAW-driven wildfires 
burn in the backcountry foothills and transport smoke towards 
coastal areas, where most of the population is concentrated. 
As the offshore (easterly) SAWs subside, the return of prevail-
ing onshore winds can spread smoke particles over a broader 
coastal and inland area. Fall wildfires in this region tend to last 
longer than wildfires at other times of the year20 and cause the 
greatest damage to human health and property.21,22 Furthermore, 
SoCal is estimated to experience the highest percentage increase  
in respiratory admissions from wildfire smoke in coastal  
Western US.10

In this study, we aimed to assess the spatial variation in 
respiratory hospital admissions in San Diego County during 
a set of major wildfires in October 2007, which led to a sub-
stantial public health burden.17 For this purpose, we propose a 
within-community matched design23 adapted to assess the dif-
ferential effects on respiratory health due to smoke exposure, 

compared to reference periods before and after wildfires, while 
explicitly accounting for the spatial variation of such effects. We 
conducted sensitivity analyses using the 2007 wildfires as well 
as similar wildfires that took place in October 2003, in terms 
of magnitude and location. In addition, we conducted a falsifi-
cation test by applying our approach for the same dates in two 
years without wildfire activity (2000 and 2004).

To our knowledge, no study has previously conducted a spa-
tiotemporal analysis of health impacts associated with exposure 
to wildfire smoke. Unlike previous efforts that typically report 
global estimates for a region and/or wildfire event, we identify 
and quantify excess hospitalizations related to wildfire smoke 
pollution resolving finer spatial (ZIP code) and temporal (daily) 
scales. Analyzing exposure both across space and time is war-
ranted due to variations in smoke plume extent and associated 
exposure to wildfire air pollution.

Methods

Study setting

More than two dozen major fires broke out between October 20 
and 23, driven by strong SAWs and burning over 972,000 acres 
across SoCal. Overall, the 2007 SoCal wildfires imposed $3.4 
million in health care costs for hospital and emergency depart-
ment visits alone.24 Three of the largest fires (Witch, Harris, 
and Poomacha, Figure 1, Table 1) burned on the western slopes 
of the coastal ranges in San Diego County with smoke blown 
towards the densely populated coastal zone. Hutchinson et al.17 

Figure 1. Population in each of the 108 ZIP codes in San Diego County, California, USA (location is shown in red; inset figure). Wildfire total perimeters for 
October 2007 are also shown: 1 – Witch and 2 – Harris ignited on October 21, 3 – Rice on the 22nd, 4-Ammo and 5-Poomacha on the 23rd (Table 1). Santa 
Ana winds, blowing from the North East, can transport smoke from wildfires burning inland to the most populated coastal areas.
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found that respiratory diagnoses, especially asthma, were ele-
vated during these wildfires for the beneficiaries of a low-cost 
health coverage program targeting children and adults with low 
income and resources.

SoCal experienced a similar set of wildfires in October 2003, 
fanned by moderate SAWs,19 and affecting human health.1 In 
San Diego County, the largest fire (Cedar) started on October 
25, burning almost 300,000 acres. The severity of the imme-
diate human impact of the October 2003 and 2007 wildfires 
was exacerbated by the rapid growth of an extensive Wildland-
Urban Interface (WUI) proximate to a large population in 
SoCal.19,25 Due to similarities in fire areas burned, fire ignition 
dates, and both October 2003 and 2007 firestorms being SAW-
driven, we used the 2003 events to test the effectiveness of our 
within-community matched design in quantifying excess counts 
for hospitalizations and their spatiotemporal variation.

Exposure to wildfire smoke

The study area covered 108 ZIP code polygons in San Diego 
county (Figure 1). Fire perimeters were obtained from the Fire 
and Resource Assessment Program (http://frap.fire.ca.gov/) of 
the California Department of Forestry and Fire Protection. The 
fire perimeters were used to identify ZIP codes directly affected 
by the burned area of each wildfire (i.e., ZIP codes overlap-
ping with fire perimeters). To assess the extent and exposure 
to wildfire smoke plumes, we visually described the temporal 
evolution and assessed the spatial extent of the smoke plumes 
using satellite imagery from the Moderate Resolution Imaging 
Spectroradiometer (MODIS) Rapid Response System (https://
modis.gsfc.nasa.gov/). By combining the information provided 
by fire perimeters and satellite imagery showing smoke plumes, 
we were able to determine which days and ZIP codes were 
exposed to wildfire smoke for both 2007 and 2003 firestorms.

In addition, smoke plumes obtained from the NOAA Hazard 
Mapping System (HMS; https://satepsanone.nesdis.noaa.gov/
pub/volcano/FIRE/HMS_ARCHIVE/) were available for the 
2007 firestorm (eFigure 2; http://links.lww.com/EE/A107). The 
HMS product uses visible satellite imagery and trained satellite 
analyst skills to estimate the spatial extent of smoke, though 
it cannot discern whether a given plume is at ground level or 
higher in the atmosphere.

Respiratory health data

We used daily clinical data for hospitalizations for respiratory 
diseases from the Office of Statewide Health Planning and 
Development database of patient discharges for the study period 
and all ZIP codes in San Diego County. Respiratory hospital-
izations correspond to pulmonary diagnoses such as asthma, 
chronic obstructive pulmonary disease, pneumonia, and intersti-
tial lung disease-9 (codes 460–519). Number of hospitalizations 
was then aggregated at the daily level by ZIP code. ZIP codes 
reported in the database correspond to the patient’s residential 
address. The total population based on the 2010 US Census for 
San Diego County was 3.1 million.

Within-community matched design: a spatiotemporal 
approach

We propose a spatial within-community matched design,23 
adapted to the examination of wildfire impacts, to analyze the 
spatial variation of ZIP code level hospital admissions attrib-
utable to the 2007 wildfire smoke. Each ZIP code’s hospital 
admission daily rate within a 5-day exposed period was com-
pared to ZIP code‐specific control periods that are matched to 
the same day of the week within a 2-week period before and 
after the given exposed day. This design has the advantage of 
controlling for any (measured or not) time-fixed ZIP code-level 
confounding factors.

Exposed days (October 22–26) were selected based on pre-
vious evidence of the 2007 wildfires and their impacts on pub-
lic health.17 We further assessed this period by the presence of 
SAWs and smoke plumes (based on satellite imagery) starting 
October 21–22 and considering that the areal growth of the 
fires lessened by October 25–26, when SAWs stopped and the 
prevailing onshore winds returned.26 Bidirectional control days 
were selected on the same day of the week as the exposed days, 
during the 2 weeks before (October 8–21) and after (October 
27–November 9).

We then compared, for each ZIP code, the number of admis-
sions between exposed and control days. We first identify four 
control days (i.e., baseline) for each exposed day taking the 
same week day on the previous two and next two weeks in the 
same ZIP code. We use the median of these 4 control days as the 
contrast for each exposed day. We subtract this median from 
the exposed day admissions count to form our difference. For 
plotting purposes, we average over the 5 exposed day contrasts. 
We thus estimated the excess count of admissions for a given 
exposed day and compared the spatial distribution of any pat-
tern, or lack thereof, to the extent of the smoke plumes across 
the study region. For this purpose, we used the geospatial data-
sets (see Exposure to wildfire smoke).

In addition to our primary analysis, we conducted a sensitiv-
ity analysis by looking at different exposed and corresponding 
control days for the same 2007 wildfire events, as well as sim-
ilar wildfires in October 2003 in terms of magnitude and loca-
tion. Lastly, we conducted a falsification test by applying our 
approach above to the same time period but in 2 years without 
wildfire activity (October 2000 and 2004) in the region. These 
two periods were selected based on the absence of wildfire in 
October and the preceding month. Falsification hypotheses can 
help adjudicate whether observational associations are robust. 
We expected a lack of specific spatiotemporal patterns in respi-
ratory hospitalizations in the absence of wildfires.

Spatial statistical tools were implemented after the analyses 
described above, to examine spatial clustering. A local indica-
tor of spatial autocorrelation, Anselin Local Moran’s I was used 
to examine spatial clusters of ZIP codes with counts of excess 
hospitalizations in years with wildfires (2007 and 2003) when 
we expect an aggregation of high values nearby fire perimeters. 
We used the Moran’s I Global index of spatial autocorrelation 
to assess the similarity, or spatial dependence, across zip codes 
with respect to excess counts of respiratory hospitalizations in 
years without wildfires (2000 and 2004).

Bayesian Hierarchical Model

We use a spatial Bayesian Hierarchical Model (BHM) to assess 
and increase precision in our estimates for the 2007 firestorm 
outcomes. BHM provides a decrease in variance of estimations 
by leveraging observations in nearby locations to provide esti-
mates in any given ZIP code. BHM reduces variation in such 
estimates due to aggregation, thus increasing precision. We use 
all 5 exposed day outcomes aggregated (i.e., differences in hos-
pitalization counts in all 5 exposed days added together) from 
our 2007 within-community matched design analysis as the 

Table 1.

Characteristics of the five major wildfires that burned in San 
Diego County during October 2007

Number in  
Figure 1

Wildfire  
name

Ignition  
date

Total area  
(acres)

1 Witch October 21, 2007 197,000
2 Harris October 21, 2007 90,728
3 Rice October 22, 2007 9,472
4 Ammo October 23, 2007 21,084
5 Poomacha October 23, 2007 49,390

http://frap.fire.ca.gov/
https://modis.gsfc.nasa.gov/
https://modis.gsfc.nasa.gov/
https://satepsanone.nesdis.noaa.gov/pub/volcano/FIRE/HMS_ARCHIVE/

https://satepsanone.nesdis.noaa.gov/pub/volcano/FIRE/HMS_ARCHIVE/

http://links.lww.com/EE/A107
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response value in a linear BHM, using the spBayes package in 
R.27 Because point-referenced data are required for BHMs, we 
used population-weighted centroids provided by the US Census 
Bureau as location for our ZIP codes.

We fit an empirical semivariogram to estimate the starting  
prior to the parameters: sill ( σ 2 ), nugget ( τ 2 ), and range ( φ ).  
We used a spherical covariance structure based on the shape of 
the empirical semivariogram. The hierarchical model involves the 
following two stages:

First stage:Y W N X W I| , ( , )θ β τ∼ + 2

Second stage:W N H| , ( , )σ φ σ2 20∼

where W is the vector of spatial random effects and θ  is the 
vector of parameters including β,  sill, nugget, and range. The 
Yi are conditionally independent given W. H is the spatial cor-
relation structure, in this case, we specify it as spherical and iso-
tropic. The second stage model is the process model introduced  
to capture spatial dependence. We completed model specifi-
cation by adding priors to β  and τ2,  and the hyperparam-
eters φ  and σ 2.  This all can be viewed as a Bayesian spatial 
extension to a general linear model. Our X is only using an 
intercept and therefore the full model captures the spatial pro-
cess underlying the distribution of excess hospitalizations in San 
Diego county during the 5 exposed days.

We used prior distributions of parameters such that the model 
is not particularly sensitive to the priors we input. We used 
10,000 Markov chain Monte Carlo samples, 7,500 of which 
were used for burn in. Recovered samples of spatial weights 
were used for the estimation and interpolation across space 
using multi-level B-splines on a 300 × 300 raster grid. Though 
the above methodology assumes isotropy, we acknowledge that 
spatial correlation across grid cells in our study area will differ 
based on climatic and topographic characteristics.

Lastly, to represent the precision of the BHM estimates, we 
estimate the signal-to-noise ratio (SNR) using the resulting 
model output (weights for each ZIP code and standard devia-
tions). To estimate the SNR, we take the excess count estimates 
for each ZIP code and divide it by the standard deviation by ZIP 
code provided from the BHM output. The SNR is thus mapped 
for each ZIP code as an indication of areas where estimates of 
excess hospitalizations are more (or less) precise. Traditionally, 
precision is found at an SNR of about 2, due to the scarcity of 
the data for this study SNR as high as 2 was not expected.

Results

Characteristics of wildfires, smoke exposure, and 
respiratory hospitalizations

The wildfires were continuously fanned by the SAWs, increas-
ing the burned area and delineating clear smoke pathways 

Table 2.

Hospital admissions for respiratory conditions during the months of fall (September, October, and November) during wildfires (2003 
and 2007) and during periods without wildfire in 2000 and 2004

Hospital Admissions for Respiratory Conditions in San Diego County

With wildfire

Descriptive statistic (based on daily values)

2003 2007

September October November September October November

Mean 0.37 0.41 0.46 0.36 0.44 0.39
SD 0.70 0.79 0.81 0.71 0.81 0.71
Max 5 8 6 6 8 5
Sum 1,199 1,372 1,482 1,163 1,483 1,274

Without wildfire

Descriptive statistic (based on daily values)

2000 2004

September October November September October November

Mean 0.41 0.44 0.51 0.32 0.35 0.42
SD 0.77 0.81 0.89 0.62 0.68 0.77
Max 6 6 6 4 5 5
Sum 1,315 1,489 1,642 1,037 1,164 1,347

Global monthly values are based on daily hospitalizations throughout the 108 ZIP codes pertaining to San Diego County.

Table 3.

Excess respiratory hospitalizations on each exposed day as compared with control days, that is, same day of the week 2 weeks 
before and after the exposed period

Wildfire period – exposed days

Excess counts of respiratory hospitalizations

October 2007 October 2003

20–24 22–26(*) 24–28 22–26 24–28 26–30(*)

Day 1 –6 28 19 7 –16 6
Day 2 1 13 27 –10 –2 12
Day 3 28 19 10 –16 6 –1
Day 4 13 27 7 –2 12 5
Day 5 19 10 –5 6 –1 8
Total excess 54 96 58 –14 –1 30
Total counts 273 325 267 199 221 257

Exposed 5-day periods include three sets during the October 2003 and 2007 wildfires, with associated exposure to smoke. This table also displays the total respiratory hospitalizations for each exposed 
5-day period in San Diego County. (*) indicates the main exposed 5-day period for each year.
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directed to coastal ZIP codes (e.g., eFigures 1, 2, and 4C; 
http://links.lww.com/EE/A107). Once these offshore winds 
weakened around October 25, smoke was widespread across 
the entire county (eFigure 1; http://links.lww.com/EE/A107). 
By October 26, onshore winds started blowing smoke partic-
ulate matter back towards inland ZIP codes (eFigure 2; http://
links.lww.com/EE/A107). In addition, the progression of fire 
perimeters (eFigure 3; http://links.lww.com/EE/A107) showed 
that by this day most of the wildfires in the county had reached 
the total area attributed to the final perimeters as shown in 
Figure 1.

Monthly mean values for counts of hospitalizations for 
respiratory conditions in the entire County were similar during 
the fall months of 2000, 2003, 2004, and 2007 (Table 2). The 
highest maximum number of hospitalization counts (8) in a 
given ZIP code, as well as for total counts in the study region, 
was however observed in October 2007. Considering the spa-
tial distribution of hospitalization counts for October 22, 2007 
(eFigure 3; http://links.lww.com/EE/A107), these higher counts 
were concentrated in ZIP codes located immediately down-
wind of the largest wildfire whereas this pattern, or any other, 
was not observed on the same day in a nonwildfire period, for 
example, 2004.

Spatiotemporal patterns of excess hospitalizations

Our spatiotemporal approach revealed an aggregation of 
admissions for respiratory conditions, particularly those ZIP 
codes where wildfires were burning and on ZIP codes located 
to the west of the fire perimeters. Based on the Local Moran’s 
I index, clustering of high values of excess counts were mainly 
found downwind of the Witch Fire (eFigure 5; http://links.
lww.com/EE/A107). For the exposed period of October 22–26, 
excess counts represented 30% of total counts of admissions 
for respiratory conditions in the county (Table 3). The mean 
number of excess admissions during the exposed 5-day period 
was 3. The ZIP code with the largest excess count of admissions 
overlapped with the Witch Fire perimeter (Figure 2A). In the 
exposed of our BHM, this same area showed the highest mean 
counts in excess hospitalizations (eFigure 4; http://links.lww.
com/EE/A107) and the highest precision for the BHM estimates 
(Figure 3).

Total excess counts for each of the additional two sets of 
exposed periods represented 20% of the total admissions. As 
shown in Figures 2B, C, the mean excess count per ZIP code was 
also lower than in our main period above, confirming that the 
greatest exposure and impact on health was registered imme-
diately after ignition of the largest fires on October 21 (i.e., 
exposed days October 22–26).

For the selected exposed period of October 22–26, MODIS 
images provided a visual assessment of wildfire smoke disper-
sion and subsequent exposure, and showed that, compared 
to the pre-fire conditions when the air was clear (Figure 4A), 
smoke from the wildfires burning in the backcountry reached 
coastal areas and the Pacific Ocean (Figure 4C) by the action of 
strong SAWs. For reference, prefire rates of hospitalizations are 
shown in Figure 4B. On October 22, the day after the largest 
fires had ignited, the excess count for respiratory conditions in 
a given ZIP code reached a high of 6 (Figure 4D). Once these 
offshore winds weakened, around October 25, the smoke plume 
drifted towards inland areas with the onset of onshore winds. 
The next day, we observed migration of increased excess counts 
towards inland ZIP codes, following smoke dispersed back 
inland (Figure 4F).

The two other case-day periods for 2007 yielded lower counts 
of excess hospitalizations overall and at the individual ZIP code 

Figure 2. Mean excess counts for admissions during the 2007 selected 
exposed days. A, The main exposed 5-day period, October 22–26, is com-
pared to a set of two different 5-day periods (B, C). The 5-day period between 
October 22–26 yielded the highest mean excess count of admissions, con-
centrated mainly in the surroundings, and particularly downwind with respect 
to SAW, of the Witch Fire. Fire perimeters in (A–C) correspond to the total 
area burned.

http://links.lww.com/EE/A107
http://links.lww.com/EE/A107
http://links.lww.com/EE/A107
http://links.lww.com/EE/A107
http://links.lww.com/EE/A107
http://links.lww.com/EE/A107
http://links.lww.com/EE/A107
http://links.lww.com/EE/A107
http://links.lww.com/EE/A107
http://links.lww.com/EE/A107
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level (Table 3; Figure 2B, C). The case-day period with the high-
est excess hospitalizations for the October 2003 wildfires was 
between October 26–30 and represented 12% of county total. 
This period experienced widespread smoke, particularly down-
wind of the wildfires (e.g., Figure  5A). Figure  5B shows that 
the highest excess counts were found immediately downwind 
of the Cedar Fire, which was also confirmed by Local Moran’s 
I test, as shown in eFigure 5; http://links.lww.com/EE/A107. In 
terms of October 2000 and 2004, the falsification test periods 
without wildfire smoke, a noisy pattern in space and time was 
observed (Figure 6). This absence of specific patterns was fur-
ther confirmed by a set of Global Moran’s I tests presented in 
eTable 1; http://links.lww.com/EE/A107. When comparing indi-
vidual exposed days for the 22–26 period, the excess counts in 
a given exposed day in 2007 were at least 9–28 counts higher 
than during 2004 but not necessarily in 2000 (Table  4). The 
excess counts for this period in 2000 and 2004 represented 8 
and 5% of the total counts for the respective respiratory hospi-
talizations in the county.

Discussion

In this study, we found that individuals in ZIP codes exposed 
to wildfire smoke were the most affected in terms of increased 
number of excess hospitalizations during the October 2007 
firestorm, with respect to control days prefire and postfire. 
In addition, the three largest wildfires (Witch, Harris, and 
Poomacha) in October 2007 burned from 17 to 27 % of areas 
that had burned in the past 5 years.20 Specifically, there was 
extensive overlap between these fires and those that occurred 
in San Diego County during the October 2003 firestorm. 
Therefore, because most destructive wildfires in the region 
tend to break out in the backcountry slopes where SAWs are 
the strongest, wildfire-prone areas can be identified, both his-
torically (e.g., Wildfire Hazard Potential by the USDA Forest 
Service) and in specific weather forecasts and warnings (e.g., 
National Weather Service Red Flag Warnings).

In spite of warnings and evacuation notifications issued soon 
after the start of the fires in 2007, which prompted an unprec-
edented large-scale evacuation in the county, only 42% of the 
households in the affected areas received a notification through 

a computerized mass-communication system.28 Though many 
other channels of communication, such as the media, police, 
and fire rescue sirens and loudspeakers and responders going 
door-to-door, were used to notify communities at risk, individu-
als in affected areas could have failed to timely evacuate the area 
and thus extend their exposure to thick smoke in the immediate 
proximity to the fires. In addition, cultural and linguistic obsta-
cles were encountered when addressing the largely diverse pop-
ulation in the county,28 and some communities in the proximity 
of the fires might have not been fully aware of the evacuation 
notifications.

Based on the smoke transport driven by the offshore SAWs, 
we also expected a significant increase of excess hospitaliza-
tions in most of the vastly populated coastal ZIP codes covered 
by the plumes. Hutchinson et al.,17 modeled the fine partic-
ulate matter (PM2.5) levels during these 2007 wildfire events 
and found that most of the western part of the county greatly 
exceeded the US EPA 24-hour air quality standard of 35 μg/m3. 
Though coastal ZIP codes were also shown to be affected by 
increases in PM2.5, as smoke moves downwind, it can become 
more diluted and often more widespread, as seen on satellite 
images (e.g., Figure  3C). Furthermore, with wildfires burn-
ing in inland areas, it is not unexpected that the surrounding 
ZIP codes and those immediately downwind show the great-
est impacts in terms of excess hospitalizations for respiratory 
conditions.

Emission factors, which specify the mass of a pollutant emit-
ted per unit mass of biomass burned, for fine particles in smoke 
are highly dependent on fuel characteristics, stage of combus-
tion, and burn conditions.5 Although public health regulatory 
decisions are more relevant to the potency values (i.e., PM2.5 
mass), the emission factors reflect real-world exposures and 
can provide further insight while assessing the health effects 
of wildland fires.29 This information is; however, often difficult 
to obtain and approaches like our spatial within-community 
matched design can help identify the differential effects, in time 
and space, of wildfire exposure with respect to fire and smoke 
characteristics.

Study limitations include the use of patient home address 
to estimate exposures, though this is an intrinsic characteristic 
of our dataset as is the case in most epidemiological studies. 

Figure 3. Signal-to-noise ratio (SNR) per ZIP code, based on estimates of the Hierarchical Bayesian Model of the October 22–26, 2007 exposed days. Higher 
SNR values indicate higher precision in our estimates and are concentrated in ZIP codes covered by and downwind of the Witch fire.

http://links.lww.com/EE/A107
http://links.lww.com/EE/A107
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Though we considered hospitalizations at the daily level, with-
in-day heterogeneity in health outcomes30 may also be relevant 
for future spatiotemporal studies that consider finer scales in 
the study of wildfire impacts. Overall, the within-community 
matched design analysis presented in our article, together with 
the examination of smoke plumes using satellite imagery, smoke 
plume polygons, and previous publications that studied the 

2007 and 2003 wildfires in great detail, we aimed to provide an 
alternative to modeling pollution for exposure taking advantage 
of the wind-driven nature of wildfires in the region. In addition, 
our approach can be extended to different exposures as well as 
different temporal and spatial scales.

Most studies addressing differential respiratory effects from 
wildfire smoke exposure tend to make this distinction based on 

Figure 4. Prefire conditions were observed on October 20, 2007, in terms of (lack of) visible smoke (A) and spatial distribution of hospitalizations for respiratory 
conditions (B). The extent of the smoke plume and the spatiotemporal evolution of excess counts of admissions are shown for exposed days 1 (October 22; C, 
D) and 5 (October 26; E, F). Red perimeters in satellite imagery (C, E) show the location of thermal anomalies, identified as fires, detected by MODIS using data 
from middle infrared and thermal infrared bands.
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characteristics of certain individuals, such as young children, 
those with preexisting cardiopulmonary conditions, and smok-
ers. Identifying specific vulnerabilities to wildfire smoke helps 
targeting these population groups for preventive measures and 
health monitoring. In spite of the obvious threat that communi-
ties in the proximity of a wildfire can experience, the examina-
tion of spatiotemporal patterns in the response of adverse health 
outcomes has not received much attention in the literature.

 Understanding the spatial variation of impacts of wildfire on 
public health is of vital importance and particularly relevant in a 

wildfire-prone region like SoCal that is densely populated down-
wind of wildfire-risk areas. In addition to an expected increase 
in wildfire frequency and severity in a warming climate,31 as 
well as a potential gradual shift of the wildfire season from fall 
to winter,32 the region is continuously experiencing spatial pat-
terns of population expansion from coastal areas, leading to 
the expansion of the WUI,19 potentially increasing sources of 
wildfire ignition. All the above conditions lead to an increased 
probability of large and destructive wildfires during SAW events 
with downwind impacts on respiratory health.

Figure 5. A, Fire total perimeters for October 2003 (1 – Roblar 2, 6,900 acres; 2 – Cedar, 270,000 acres; 3 – Paradise, 57,000 acres; 4 – Mine/Otay, 45,000 
acres). The MODIS satellite image shows the smoke plumes on October 26, 2003. B, Mean excess counts for admissions during the 2003 main exposed days 
(A) October 26–30, compared to a set of two different exposed 5-day periods. The 5-day period between October 26–30 yielded the highest mean excess 
count of admissions, concentrated mainly and immediately downwind of the Cedar Fire, which started burning on October 25.
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