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Abstract

We propose an extension of the Wasserstein 1-metric (W1) for density matrices, matrix-valued 

density measures, and an unbalanced interpretation of mass transport. We use duality theory and, 

in particular, a “dual of the dual” formulation of W1. This matrix analogue of the Earth Mover’s 

Distance has several attractive features including ease of computation.

I. Introduction

Optimal mass transport (OMT) has proven to be a powerful methodology for numerous 

problems in physics, probability, information theory, fluid mechanics, econometrics, systems 

and control, computer vision, and signal/image processing [1], [2], [3], [4], [5]. 

Developments along purely controls-related issues ensued when it was recognized that mass 

transport may be naturally reformulated as a stochastic control problem; see [6], [7], [8], [9], 

[10], [11], [12], [13], [14] and the references therein.

Historically, the problem of OMT [1], [3] began with the question of minimizing the effort 

of transporting one distribution to another with a cost proportional to the Euclidean distance, 

as in Monge’s original formulation, between starting and ending points of the mass being 

transported. However, the control-theoretic reformulation [2] which was at the root of the 

aforementioned developments was based on the choice of a quadratic cost. The quadratic 

cost allowed the interpretation of the transport effort as an action integral and gave rise to a 

Riemannian structure on the space of distributions [15], [16], [17]. The originality in our 

present work is two-fold. First, we formulate the transport problem with an L1 cost in a 

similar manner, as a control problem with an L1-path cost functional, and secondly, we 

develop theory for shaping flows of matrixvalued distributions which is a non-trivial 

generalization of classical OMT.

The relevance of OMT on flows of matrix-valued distributions was already recognized in 

[18], [19] and was cast as a control problem as well, albeit in a quadratic-cost setting. At that 
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point, interest in the geometry of matrix-valued distributions stemmed from applications to 

spectral analysis of vectorvalued time series (see [18] and the references therein). Yet soon it 

became apparent that flows of matrix-valued distributions represent evolution of quantum 

systems. In fact, there has been a burst of activity in applying ideas of quantum mechanics to 

OMT of matrix-valued densities as well as, utilizing an OMT framework to study the 

dynamics of quantum systems: three groups [20], [21], [22] independently and 

simultaneously developed quantum mechanical frameworks for defining a Wasserstein-2 

distance on density matrices, via a variational formalism generalizing the work of [2]. We 

note that [20], [21], [22] develop matricial generalizations of the Wasserstein 2-metric (W2) 

and explore the Riemannian-like structure for studying the entropic flows of quantum states. 

While [20], [22] aimed to explain the Lindblad equation as gradient flow with respect to 

Wasserstein-2 metric, our motivation in [21] was to develop a transport distance for matrix-

valued densities that is computable and suitable for engineering applications.

Thus, in our present note, along the lines of [21], we develop a natural extension of the 

Wasserstein 1-metric to density matrices and matrix-valued measures. Our point of view is 

somewhat different from the earlier works on matricial Wassserstein-2 metrics. We mainly 

use duality theory [23], [3]. Further, we do not employ the Benamou and Brenier [2] control 

formulation of OMT, but rather the Kantorovich-Rubinstein duality. This new scheme is 

computationally more attractive and, moreover, it is especially appealing when specialized to 

weighted graphs (discrete spaces) that are sparse (few edges), as is the case for many real-

world networks [24], [25], [26].

II. Optimal mass transport

We begin with duality theory, explained for scalar densities, upon which our matricial 

generalization of the Wasserstein-1 metric is based.

Given two probability densities ρ0 and ρ1 on , the Wasserstein-1 distance between them 

is

(1)

where ║·║ represents the Euclidean distance and  denotes the set of couplings 

between ρ0 and ρ1, i.e., the set of joint distributions of ρ0 and ρ1. The Wasserstein-1 distance 

has a dual formulation via the following result due to Kantorovich and Rubinstein [23], [1], 

[3]:

(2)

where ║f║Lip denotes the Lipschitz constant. When f is differentiable, ║f║Lip = ║∇xf║. 

It follows that
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(3)

Starting from (3), by once again considering the dual, we readily obtain the very important 

reformulation [23]

(4)

where the optimization variable  now becomes flux. Alternatively, this can be written 

as the control-optimization problem in the Benamou-Brenier style [2], [3]

(5)

This “dual of the dual” formulation turns the Kantorovich and Rubinstein into a control 

problem to determine a suitable velocity (control vector) u.

Remark 1

We remark that from a computational standpoint, when applied to discrete spaces (graphs), 

this formulation leads to a very substantial computational benefit in the case of sparse 

graphs; this is due to the fact that (1) involves solving systems of the order of the square of 

the number of nodes, while equation (4), solving systems of the order of the number of 

edges. This fact has been utilized recently in studying biological networks [27]. See also 

[28], [29] for an efficient algorithm based on (4).

III. Gradient on space of Hermitian matrices

We closely follow the treatment in [21]. In particular, we will need a notion of gradient on 

the space of Hermitian matrices and its dual, i.e. the divergence.

Denote by ,  and  the set of n × n Hermitian, skew-Hermitian and general complex-

valued matrices, respectively. We will assume that all of our matrices are of fixed size n × n. 

Next, denote the space of block-column vectors consisting of N elements in ,  and  as 

,  and , respectively. We also let  and  denote the cones of nonnegative 

and positive-definite matrices, respectively, and

(6)

Chen et al. Page 3

IEEE Control Syst Lett. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(7)

The tangent space of , at any  is given by

(8)

and we use the standard notion of inner product, namely

for ,  and . For 

Given , we denote  as the block-wise 

conjugate of X.

For a given  we define

(9)

to be the gradient operator. By analogy with the ordinary multivariable calculus, we refer to 

its dual with respect to the Hilbert-Schmidt inner product as the (negative) divergence 
operator, and this is

(10)

i.e.,  is defined by means of the identity

This notion of gradient operator is motivated by the Lindblad equation in quantum 

mechanics [21]. The operator ∇L depends on the choice of the basis L, which is assumed to 

be fixed throughout. There is no standard way of choosing L. A standing assumption, is that 
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the null space of ∇L, denoted by ker(∇L), contains only scalar multiples of the identity 

matrix I.

IV. Wassertein-1 distance for density matrices

In this section, we show that both (3) and (4) have natural counterparts for density matrices, 

i.e. matrices in . This setup obviously works for matrices in  of equal trace.

We treat (3) as our starting definition and define the W1 distance in the space of density 

matrices  as

(11)

Here ║ · ║ is the operator norm, i.e., the maximum of the singular values. The above is 

well-defined since by assumption, the null space of ∇L is spanned by the identity matrix I. 
This should be compared to the connes spectral distance [30], which is given by

where [D, f] = Df − fD denotes the Lie bracket. We next show that the dual of (11) is

(12)

which is the counterpart of (4). Here ║·║* denotes the nuclear norm [31], that is, the sum 

of the singular values. In particular, we have the following theorems.

Theorem 2

Notation as above. Then

Proof 1

We start from (12) and use the fact that

It follows
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This implies that (11) and (12) are dual to each other. Since both of them are strictly 

feasible, the duality gap is zero. Therefore .

Theorem 3

The W1 distance defined as in (11) is a metric on the space of density matrices .

Proof 2

Obviously W1(ρ0, ρ1) ≥ 0 holds with equality if and only if ρ0 = ρ1. The symmetric property 

that W1(ρ0, ρ1) = W1(ρ1, ρ0) is also clear from the definition. Here we prove the triangle 

inequality. That is, for any , we have

It is easier to see this from the dual formulation (12). Let u1, u2 be the optimal fluxes for (ρ0, 

ρ1) and (ρ1, ρ2) respectively. Then u1 + u2 is a feasible flux for (ρ0, ρ2), namely,

It follows that

which completes the proof.

V. WasserteIn-1 distance: the unbalanced case

In this section, we extend the definition of Wasserstein-1 distance to the space of 

nonnegative matrices , i.e., we remove the constraint of both matrices having equal 

traces. Compare also with some very interesting recent work [28] on fast computational 

methods for W1 in the unbalanced scalar case.
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In order to compare matrices of unequal trace we relax the constraint in (12), which forces 

tr(ρ0) = tr(ρ1), by introducing a “source” term . That is, we replace our continuity 

equation (12) with

(13)

With this added source, we define a Wasserstein-1 distance in  as follows. Given 

, we define

(14)

Here α > 0 measures the relative significance between u and v.

Another natural way to compare  is by finding  having equal trace 

that are close to ρ0, ρ1 in some norm (here taken to be the nuclear norm), as well as close to 

one another. More specifically, we seek μ, ν to minimize

(15)

Putting the two terms together we obtain the following definition of Wasserstein-1 distance

(16a)

(16b)

(16c)

It turns out these two relaxations of W1 are in fact equivalent.

Theorem 4

With notation and assumptions as above,

(17)
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Proof 3

Clearly, . On the other hand, let u, v be a minimizer of (14), and v = 

v1 − v0 with  i.e., v0, v1 are the negative and positive parts of v respectively, then 

μ = ρ0 + v0, ν = ρ1 + v1 together with u is a feasible solution to (16). With this,

which implies that . This completes the proof.

Theorem 5

The formula (14) defines a metric on .

Proof 4

The proof follows exactly the same lines as in Theorem 3.

Using the technique of Lagrangian multipliers one can deduce the dual formulation of (12) 

and establish the following:

Theorem 6

Notation as above. Then

(18)

Proof 5

Straight calculation gives
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This together with the strong duality completes the proof.

VI. Wasserstein-1 distance for matrix-valued densities

With little effort we are able to generalize the definition of Wasserstein-1 distance to the 

space of matrix-valued densities. Examples of matrix-valued densities include power spectra 

of multivariate time series, stress tensors, diffusion tensors and so on, and hence our 

motivation in considering matrix-valued distribution on possibly more than a one 

dimensional spatial coordinates.

Given two matrix-valued densities ρ0, ρ1 satisfying

(19)

we can define their Wasserstein-1 distance as

or through its dual
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For more general densities where condition (19) may not be valid, we define

or, equivalently,

One can introduce positive coefficients β1 > 0, β2 > 0 to trade-off the relative importance of 

u1 and u2 in establishing correspondence between the two distributions as follows:

or, equivalently,

Remark 7

By splitting the penalty on the two fluxes u1, u2 into two terms ║u1║* + ║u2║*, we attain 

an alternative definition of Wasserstein-1 for matrix-valued densities, as

with dual formulation

VII. Example

We use our framework to compare power spectra of multivariate time series (in discrete 

time). Evidently, the distance between two power spectra induces a distance between 
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corresponding linear modeling filters and, thereby, can be used to compare (stable) MIMO 

systems [18].

Consider the three power spectra as shown in Figure 1 (in different colors). What is shown in 

the three subplots are power spectra of two time series (in subplots (a) and (c)) and their 

cross-spectrum (in subplot (b)) as functions of time (the phase of the cross spectra are not 

shown). Thus, the three different colors represent the three different matrixvalued power 

spectra given by:

where

The distances between the each pair for different β1, β2 values, α = 1, for the particular 

choice L = [L1, L2] with

are tabulated in Table I. We observe that when the penalty on the rotation part is large (β1 ≫ 
β2), we have V1 (ρ0, ρ2) > V1 (ρ0, ρ1) and V1 (ρ0, ρ2) > V1 (ρ2, ρ1). On the other hand, 

when the penalty on translation is large relative to the cost of rotation (β1 ≪ β2), we have V1 

(ρ0, ρ1) > V1 (ρ0, ρ2) and V1 (ρ0, ρ1) >V1 (ρ1, ρ2). These findings are in agreement with the 
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intuition when observing the relative frequency directionality of power in the three spectra. 

More specifically, ρ1 requires a significant drift in directionality before we can match it with 

the other two, while this is less important when comparing ρ0 and ρ2. For this latter case, it 

is the actual frequency where the power resides that distinguishes the two while the 

directionality is more in agreement.

What this example underscores is the ability of the metric to be tailored to applications 

where we need to trade off and compromise, in a principled way, between two vastly 

different features of matrix-valued distributions, i.e., spatial location versus directionality of 

the “intensity.” What was achieved in this paper is the construction of a suitable and easily 

computable metric that can be utilized for this purpose.

VIII. Future research

We introduced generalization of the scalar W1 distance to matrices and matrix-valued 

measures. This new metric, W1, is computationally simpler and more attractive than earlier 

metrics, based on quadratic cost criteria. In fact, our “dual of the dual” formulation makes 

the metric especially attractive when comparing matrix-valued data on a discrete space 

(graph, network). In particular, the primal-dual algorithm developed in [28], [29] for scalar 

W1 problems based on the “dual of the dual” formulation has proved to be efficient and 

reliable. Our next step will be generalizing it to matrix-valued densities.

We note that the Wasserstein 1-metric has been used as a tool in defining curvature [32] and 

in analyzing the robustness of complex networks derived from scalar-valued data [24], [25]. 

The formalism presented in the current work, suggests alternative notions of curvature and 

robustness when the nodes of a network carry matrix-valued data, e.g., in diffusion tensor 

imaging. We plan to pursue such issues in future work.
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Fig. 1. 
Power spectra
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TABLE I

Distances between power spectra

ρ0, ρ1 ρ1, ρ2 ρ0, ρ2

β1 = 10, β2 = 1 77.85 77.76 137.36

β1= 1, β2 = 1 249.40 162.03 199.78

β1 = 1, β2 = 10 210.93 110.25 113.46
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