
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Iterative LLM-Driven RTL Design Using HDLAgent

Permalink
https://escholarship.org/uc/item/4237d77x

Author
Zakharov, Mark

Publication Date
2024

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
ShareAlike License, available at https://creativecommons.org/licenses/by-sa/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4237d77x
https://creativecommons.org/licenses/by-sa/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
SANTA CRUZ

ITERATIVE LLM-DRIVEN RTL DESIGN USING HDLAGENT
A thesis submitted in partial satisfaction of the

requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE AND ENGINEERING

by

Mark Zakharov

June 2024

The Thesis of
Mark Zakharov is approved:

Professor Jose Renau, Chair

Professor Dustin Richmond

Professor Yi Zhang

Peter Biehl
Vice Provost and Dean of Graduate Studies

Copyright © by

Mark Zakharov

2024

Table of Contents

List of Figures v

List of Tables vi

Abstract vii

Acknowledgments ix

1 Introduction 1
1.1 Introduction . 1

2 Related Works 5
2.1 Related Work . 5

3 HDLAgent 9
3.0.1 Main Context . 10
3.0.2 Compiler Context . 13
3.0.3 Prompt Optimizations . 14
3.0.4 LLM Cost . 14
3.0.5 Usage and Features . 15

4 Setup 18
4.1 Setup . 18

5 Evaluation 20
5.1 Evaluation . 20

5.1.1 Overall Results . 20
5.1.2 HDLAgent Context Insights . 25
5.1.3 Pass Sensitivity . 26
5.1.4 Time and QoR . 28
5.1.5 Self-Reflection with Multi-Agent Debate 31
5.1.6 Insights for HDLs at the age of LLMs 35

iii

6 Future Work and Conclusions 40
6.1 Future Work and Conclusions . 40

Bibliography 42

iv

List of Figures

3.1 HDLAgent flow leveraging compiler feedback. 10
3.2 HDLAgent Main and Compiler context prompt components. 10

5.1 HDLAgent improves Chisel across all LLMs. 21
5.2 HDLAgent improves PyRTL across all LLMs. 22
5.3 HDLAgent improves DSLX HDLEval-Comb across all LLMs. 23
5.4 Verilog succeeds across benchmarks and LLMs 24
5.5 HDL description and few-shot help LLMs to improve results. 26
5.6 GPro-1.0 converges in a few iterations. 28
5.7 LLM and HDL affect total HDLAgent execution time. 29
5.8 QoR is consistent across LLMs but different across HDLs. 30
5.9 All possible scenarios of the . 31
5.10 Introducing a testbench into the generative loop worsens results 32
5.11 Introducing a testbench into the generative loop provides little benefit . 33

v

List of Tables

4.1 Language Tools and Versions . 18
4.2 LLMs used in the evaluation . 19

5.1 Pass@k results for HDLEval-Comb for different LLMs with just a Base
query or with HDLAgent. 27

vi

Abstract

Iterative LLM-Driven RTL Design using HDLAgent

by

Mark Zakharov

Trained on billions of lines of GitHub code, Large Language Models (LLMs) have

emerged as formidable programming assistants, demonstrating pronounced proficiency

in popular programming languages such as Python and C++. This proficiency is at-

tributed to the extensive availability of open-source code in these languages. However,

the training of LLMs is an immensely resource-intensive process. For instance, Meta’s

Llama2-7B model required 184,320 GPU hours for training on 2048 A100 GPUs, in-

curring costs nearing one million dollars. Moreover, the construction of a robust model

necessitates vast datasets. The substantial amount of time, money, and data needed to

train an LLM on a new language may dissuade the creation of future languages, as they

will not be compatible with LLMs “out of the box”.

In response to these challenges, this work introduces HDLAgent, an innova-

tive LLM agent accompanied by a language analysis framework. HDLAgent employs

chain-of-thought reasoning and transfer learning to equip LLMs with knowledge of lan-

guages absent from their original training datasets. Focusing primarily on Hardware

Description Languages, HDLAgent utilizes summaries of language tutorials and a se-

lection of straightforward code examples as contextual foundations to facilitate circuit

design in the specified target language. The efficacy of HDLAgent is further enhanced

vii

through a compiler error feedback loop. This loop adopts a retrieval-augmented strat-

egy, mapping compiler error messages to their corresponding explanations and corrective

suggestions. Through this approach, HDLAgent significantly accelerates the process of

enabling LLMs to understand and operate within previously unfamiliar programming

languages, potentially revolutionizing the adaptability and utility of LLMs in the ever-

evolving landscape of programming language development.

viii

Acknowledgments

I would like to express my deepest gratitude to Professor Jose Renau for his

unwavering support and guidance over the past four years. His mentorship and the

opportunity he provided for me to embark on this unforgettable journey have been

invaluable.

This endeavor would not have been possible without the tireless efforts of

Farzaneh Rabiei, with whom I have had the privilege to collaborate for nearly a year.

Her development of the HDLEval benchmark was vital to the success of this project.

I am also deeply thankful to Professors Dustin Richmond and Yi Zhang for

their continuous support, tutelage, and invaluable advice regarding the industry.

Finally, I extend my heartfelt thanks to my friends, family, and loved ones.

Their strength, encouragement, and inspiration have fueled my passion for the wonderful

field of computing.

ix

Chapter 1

Introduction

1.1 Introduction

Recent advancements in Large Language Models (LLMs), such as OpenAI’s

GPT, Google’s Gemini, and Mistral AI’s Mixtral, are revolutionizing the field of pro-

gramming languages. LLMs are making it easier for newcomers to learn and use pro-

gramming languages by providing intelligent assistance, generating code snippets, and

offering context-aware suggestions. LLMs have the potential to significantly reduce the

entry barriers to programming.

The contribution of this work is to enable LLMs to operate with various Hard-

ware Description Languages (HDLs). HDLs often form niche communities where exist-

ing LLMs may underperform. Although Verilog remains the most popular HDL, it is

showing its age1 and languages like Chisel3 [4], PyRTL [7], and DSLX [12] are being
1The original Verilog was designed in 1983, and modern versions like System-Verilog are semantically

compatible with it.

1

designed as alternatives. Unless off-the-shelf LLMs can work with new HDLs, there is

a significant disincentive to create new HDLs.

Some of the most popular and high-performing LLMs are closed-source. This

means that to make HDLs accessible to a wider community, the solution must work

with LLMs that cannot update their training. Given the significant impact of LLMs,

successful HDLs should support off-the-shelf models without requiring years of waiting

for the next LLM training cycle to potentially incorporate the new HDL. If LLMs can

handle new HDLs, they can facilitate easier adoption. Conversely, if LLMs cannot

handle new HDLs, they become an additional obstacle that impedes the adoption of

new HDLs.

The key contribution of this work is to enable the effective utilization of both

open-source and proprietary LLMs across a diverse range of HDLs. This specifically

addresses the challenge of generating accurate and functional code in HDLs that have

proven difficult for existing LLMs.

To achieve the outlined contributions, this paper proposes an AI Agent (HD-

LAgent) that incorporates state-of-the-art AI coding agent techniques, specifically

adapted to support HDLs with limited LLM support. To test the effectiveness of HDLA-

gent, the evaluation employs both Verilog-specific and HDL-neutral benchmarks. This

will underscore how much of the current testing infrastructure for RTL design is tailored

specifically to the Verilog language and is not suitable for assessing performance across

multiple HDLs, similiar to current LLMs’ knowledge bases.

AI Agents [45] utilize multiple LLM queries and external tools, employing a

2

state machine to manage the LLM’s workflow and guide its interactions. Many agents

leverage three main techniques: self-reflection, Retrieval Augmented Generation (RAG),

and grounding. Self-reflection techniques like Chain-of-Thought (CoT) [34] use LLMs to

improve their own responses. RAG provides context or examples for queries. Grounding

uses external tools to reduce hallucinations or mistakes.

HDLAgent incorporates these state-of-the-art AI coding agent techniques but

adapts them to the challenges of supporting HDLs. The self-reflection adaptations are

tailored to manage module inputs/outputs specific to each HDL. RAG includes an HDL

summary, provides few-shot examples, and compile-error fix examples for LLMs that

may have limited knowledge of the given HDL. Grounding leverages compiler feedback

to improve accuracy and reliability.

HDLAgent uses context (RAG) and compiler feedback (grounding) to carefully

formulate queries for unfamiliar HDLs, where traditional few-shot approaches consis-

tently fail. For instance, using HDLAgent with Mix-8x7B yields a 44% success rate when

writing Chisel and just 3% tests pass without HDLAgent. Other LLM like GPT-3.5o,

go from 3% success rate for DSLX to 48% with HDLAgent. HDLAgent also benefits

LLMs with Verilog. For Mix-8x22B, the success rate goes from 13% to 53%.

An alternative path not explored in this work is to fine-tune the model. It

is possible to fine-tune an LLM for a given language like some LLMs fine-tune for

Verilog [27]. This work does not perform fine-tuning because it is not always possible.

For LLMs like OpenAIs GPT-4T, fine-tuning is not allowed at the time of this work,

limiting it to in-context learning.

3

LLMs are evaluated using benchmarks like HumanEval [5] to quantify the

LLMs’ coding capacity. Since HumanEval tests Python, a more recently proposed

HumanEval-X [43] extends the tests to cover multiple languages. HumanEval-X creates

a test for each supported language to verify the correctness of a response, but it focuses

only on popular languages, not HDLs. VerilogEval [18] follows the HumanEval principle,

but it employs Verilog tests instead of Python. As a futher parallel, HDLEval [?] has all

of its problems written in plain English, allowing them to be implemented in any HDL,

similiar to HumanEval-X’s range of languages. Hence, the testing strategy mirrors the

established benchmarks for LLM programming performance, such as HumanEval and

HumanEval-X, but is uniquely tailored to assess RTL design, thereby extending the

benchmarking paradigm to the domain of HDLs.

In summary, the paper contributions is HDLAgent, which enhances the perfor-

mance of multiple HDLs across multiple LLMs. It shows that HDL design can leverage

LLMs even before training examples or data is available. The evaluation also provides

several insights that future HDLs designers to avoid LLM support issues.

4

Chapter 2

Related Works

2.1 Related Work

There are two main approaches to improve LLM output: Fine-tuning and

Retrieval Augmented Generation (RAG). These techniques can be iteratively combined

to develop Agents that produce even better results.

Fine-tuning is the process of adjusting the parameters of a LLM on a specific

dataset or task to improve its performance. As such, fine-tuning can be applied to

optimize a given LLM for a new language. RTLCoder [19] fine-tunes a 7B mistral

model with GPT generated synthetic Verilog data. HDLAgent uses off-the-shelf LLMs

without fine-tuning.

URIAL [16] bypasses the need for fine-tuning by enriching prompts with il-

lustrative examples. These prompts resemble the few-shot format used by HDLAgent,

incorporating both format and examples. While URIAL has shown effectiveness in

5

circumventing the need for instruction alignment, HDLAgent further illustrates the

possibility of learning previously unknown languages.

Agents [45] iterate through LLMs with three main techniques to improve per-

formance: Self-reflection, few-shot with RAG, and grounding.

Self-reflection techniques use a sequence of interactions with the LLM instead

of a simple question/answer. CoT [34] is an example of self-reflection. Lumos [40]

uses CoT to enable simpler LLMs to outperform more advanced LLMs. These studies

highlight some significant progress in this rapidly evolving field. Recent works [36]

propose an optimization method to find the best prompt.

Few-shot in-context learning [3, 17] with RAG [15] employs instructions and

several examples (few-shot) related to the question or prompt to enhance efficiency.

Various techniques exist for constructing such prompts with an extended context. This

technique of querying an embedding database to augment the context is known as

Retrieval Augmented Generation (RAG).

Grounding involves verifying or checking the LLM’s response using an exter-

nal tool. While this isn’t always feasible, in code generation, a compiler or testbench

can validate and find issues with the LLM-generated response. This triggers further

iterations with the LLM.

Agents with self-reflection, RAG, and grounding have been applied to improve

code generation. If we ignore the HDL target, and focus on generic programming

languages like Python or C++, several works [26, 44] show that many errors can be

fixed by grounding the generated code against a compiler or test. Recent works [8, 20–

6

22, 32, 35] leverage this fact and propose Agents that ground the code generation with

a compiler or tests. Other works [11, 23, 41] propose Agents to iterate over test bench

results to fix the generated code.

Besides CoT, some notable self-reflection for code generation include: Self-

planning [14] proposes a planning stage or self-reflection before code generation; Self-

Debug [6] proposes how to improve code generation by generating explanations in the

intermediate steps; ChatCoder [33] uses self-reflection to paraphrase and elaborate on

the initial question.

Early work [28,29,37] with LLMs and Verilog avoid the Agents because LLMs

like GPT-4 are already reasonable trained for Verilog. Several AI-based chip design

competitions [9, 10] required designs implemented in Verilog. Looking at the top per-

formers, they tend to use GPT-4 and focus on combinational modules where the top

level module IO is fully specified. In all the cases, the human-in-the-loop guides the

LLM to fix problems with the generated code and iterate over the testbench results.

To avoid a human-in-the-loop, a coding Agent can be applied to Verilog gen-

eration. The same coding Agent ideas with self-reflection, RAG, and grounding can

be applied to Verilog. Concurrent works include AutoChip [30], RTLFixer [31], and

HDLdebugger [39].

AutoChip [30] uses testbench feedback to ground the generated Verilog. It is

similar to Self-Edit [41] and Self-Repair [23], but with a Verilog focus. Since the focus

is simulation errors, there are no clear few-shot contexts like in HDLAgent, where a

few-shot can be generated for each error/warning message.

7

RTLFixer [31] uses ReAct [38] for self-reflection, and RAG for grounding com-

piler errors. Similiarly, HDLAgent uses HDL descriptions and few-shot examples to

guide code generation, and compiler fix samples to address compiler errors. These com-

piler fix samples resemble RTLFixer human-generated explanations for various error

messages.

HDLDebugger [39] fine-tunes CodeLlama, but instead of fine-tuning like RTL-

Coder to generate better Verilog, it fine-tunes CodeLlama to fix code generation. HDLDe-

bugger uses the compiler error messages to ground the generation, and applies it to the

fine-tuned CodeLlama to fix the code. HDLDebugger is a different approach than when

available (Publication August 2024) could be applied to HDLAgent in the steps to fix

compiler errors. One issue is that it will require fine-tuning for each HDL. From the

provisional paper, HDLDebugger does not seem to apply self-reflection.

8

Chapter 3

HDLAgent

HDLAgent is an AI Agent (Section 2.1) that leverages the latest novelties in

AI coding Agents but adapts them to HDLs where the LLM may be unfamiliar with

the given HDL.

LLMs are capable of transfer learning [24,42]. HDLAgent leverages this feature

to allow LLMs to handle HDLs with little training data. HDLAgent allows the LLM to

transfer knowledge from other HDLs that it trained on, like Verilog, to the new HDL.

This enables the LLM to adapt learned programming languages to target programming

languages, similar to human learning processes [25].

Figure 3.1 illustrates HDLAgent’s execution flow. The main drawback that

HDLAgent resolves is low knowledge of an HDL. To address this, HDLAgent provides

a ”main context” (Section 3.0.1) and a ”compiler context” (Section 3.0.2). The ”main

context” provides an HDL summary and few-shot examples. The ”compiler context”

helps ground the LLM code generation with compiler error suggestions.

9

Problem
(English)

Solution
(HDL)

LLM

up to n-iterations

Compiler

compiler
context

main
context

Figure 3.1: HDLAgent flow leveraging compiler feedback.

Main
Context
Prompt

Compiler
Context
Prompt

few-shot

HDL description

Prefix

Question

Suffix

Latest Code

Compile error

Sample Fix

Figure 3.2: HDLAgent Main and Compiler context prompt components.

3.0.1 Main Context

The ”main context” in HDLAgent informs the LLM about the specific HDL

used. Figure 3.2 depicts the main context, comprised of four elements: HDL description,

few-shot, Prefix, Question, and Suffix.

The HDL description summarizes the HDL and depends on the LLM’s famil-

iarity with the HDL. As the evaluation shows, the HDL description can be optimized per

LLM, but for simplicity, we pick the HDL description that performs best in Mix-8x7B

10

and GPT-3.5n. The reason is that these two LLMs have lower knowledge of HDLs like

Chisel, DSLX and PyRTL. The HDL description is not helpful only when the LLM is

proficient in a given HDL, such as Verilog.

Even for LLMs that can accommodate the entire HDL reference manual within

their context window, success rate and token cost are enhanced when using a summary

of the manual. As demonstrated in the evaluation, utilizing an HDL description signif-

icantly improves the success rate.

Since the whole tutorial is not practical or beneficial for the evaluated LLMs.

We instead use and HDL description summary. For the HDL Description, we use LLMs

with large context to summarize the HDL reference manual. For summarizing, we try

GPT-4 and GPro-1.0 because these two models can handle larger contexts.

The evaluation shows the results for several prompt options, but for PyRTL

and Chisel the best prompt was generated by GPT-4 when asking ”PyRTL is a Hardware

Description Language with the following reference documentation and tutorial. Create

a documentation that is useful for LLMs trying to generate PyRTL code. The generated

documentation should have some code snippets and any language syntax that it is a not

typical HDL”.

For DSLX, the best summary was created by GPro-1.0. The prompt was the

same as the PyRTL and Chisel best prompt, but it added the following sentence at the

end of the prompt ”Be concise and avoid examples with similar syntax.” As it can be

observed, there is only a small variation on the prompt.

In addition to the HDL description, the ”main context” provides few-shot ex-

11

amples to cover common HDL operations or areas of confusion. The patterns addressed

are bit operations, reductions, loops, multiple options, and a multiply-add block.

Bits correspond to a simple example of bit-manipulation and concatenatation.

Reduction is a simple NOR reduction over a given input.

Loops are an example of a confusing process. In DSLX all variables are im-

mutable, but loops have a special syntax for reduction variables. Adding something like

the text in Listing 3 to the HDL context solves cases where a loop is created by the

LLM.

To introduce more complex examples, the few-shot also includes a simple ALU

that selects between different operations, and a multiply-add example. Clearly, other

examples could be added, but LLMs seem capable to perform knowledge transfer from

just few examples.

The Prefix follows the few-shot. It is a brief statement directing the original

Question with something like: ”The following statements describe the problem to be

addressed in DSLX.”.

The Suffix, added post-question, limits the scope of the problem to address.

It includes instructions such as ”respond with valid program syntax only, without ad-

ditional English explanations” and specifically tailors HDL input and output formats.

Handling IOs is crucial for HDLs with multiple output options, necessitating directives

to maintain output integrity and naming consistency. For DSLX, Suffix includes di-

rectives like ”do not split the outputs into individual bits” and ”variables assigned to

the output struct should have the same name as the struct fields”. This Suffix con-

12

cept is essential even when using Verilog because it can use interfaces, structs, or plain

Verilog-2001 syntax.

The HDLAgent Suffix allows different HDLs to interface with Verilog. Nev-

ertheless, keeping names and common syntax is an essential problem the Suffix must

address, even for a single HDL use case.

3.0.2 Compiler Context

HDLAgent’s compiler context iteratively corrects inaccurately generated HDL

code. It grounds the LLM generated code to correct and provide feedback on halluci-

nations.

In the case that there is a compiler error, HDLAgent builds a query (Figure 3.2)

that starts with ”main context”, ignoring non-code responses. It follows with the latest

code snippet, then a sentence saying that ”the previous code has the following compile

error” followed by the compiler error message. If HDLAgent has a compiler example fix

of how to address the compiler error, the context finishes adding the ”sample fix”.

The example fix is similar to RTLFixer [31] in that it provides an explanation

to fix Verilog messages. We instead extend it to cover multiple HDLs and explain that

a given HDL requires a special way to handle some syntax.

HDLAgent shows the whole latest code snippet. We tried a method inspired

by CWhy [2], which provides a few lines of code around the compiler error message.

This worked fine for some LLMs like GPT-4, but failed with other LLMs. This delta

approach reduces token usage, but it increased error rates so we did not use it in the

13

evaluation. As LLMs improve, it may be something worth reconsidering.

3.0.3 Prompt Optimizations

Besides the previous main and compiler context there are also several subtle

but important optimizations:

• Placing the prompt after the context achieves better results [13].

• HDLAgent approach avoids the chat-like history with all the previous code gen-

erations and fixes. Keeping the original question iteration but not the compiler

error fixes achieves better results [30]. We did a quick test with HDLAgent and

DSLX. Avoiding a history with all the error fixes had a 5% improvement in GPT-4

and a 27% in Mix-8x7B.

• Most LLMs generate code snippets in quoted sections, but not always. Even worse,

it is common to write english explanations even thought the prompt explicitly asks

to just write code. To address this, for each language we have a filter/detector

that removes English and finds code boundaries. For example in Verilog it allows

preprocessor directives and code between module and endmodule. Without this,

some smaller LLMs fail very frequently.

3.0.4 LLM Cost

Our approach approximates LLM cost by the number of tokens utilized. This

metric serves as a practical proxy for monetary cost and the compute resources needed.

14

As the context length increases, so do the costs and computational demands.

While the cost of input and output tokens might vary, we simplify by assuming

fewer tokens equate to lower costs. This token-centric view influences decision-making

regarding iteration methods and context types. Future studies could investigate effi-

ciency metrics like error rate × tokens.

Our current focus prioritizes accuracy while striving to reduce token usage. A

crucial aspect to consider is the ”stateless” nature of LLMs, meaning each call requires a

complete context. APIs like OpenAI and Mixtral lack a ”chat-like” interface that accu-

mulates context across queries. GPro-1.0 is able to do so. This means that, depending

on the cost model for LLMs like GPro-1.0, it may be more efficient to keep the history.

Nevertheless, GPro-1.0 context is not long enough to handle several iterations. For this

work, we flush the history and ignore cost models and consider just total token usage

after all of the HDLAgent iterations.

3.0.5 Usage and Features

HDLAgent processes two types of input: JSON files and ”Spec” files, the con-

tents of which are used to formulate the LLM queries. For the benchmarking results

discussed in this paper, JSON files were utilized, each containing specific fields and

their corresponding content: ”instruction” provides an English description of the de-

sired circuit behavior, ”pipeline stages” is an integer indicating the appropriate LEC

script for combinational or pipelined circuits, ”response” includes the correct Verilog

implementation for comparison in LEC, and ”interface” contains the Verilog-style mod-

15

ule declaration to standardize the I/O and adjust the LLM’s implementation to align

with the ”response” for LEC verification.

Spec files, intended for non-benchmarking user interactions, are formatted as

YAML files. These include all JSON fields except ”response,” as there is no Verilog

implementation for comparison. The YAML format was chosen for Spec files as it is

user-friendly and easily editable, offering a straightforward way for users to modify the

LLM’s output if needed. HDLAgent can also use an LLM to generate a Spec file from

a simple text document outlining and refining the desired behavior. This provides the

benefits of automatic formatting and, more importantly, an increase in clarity from the

user-supplied prompt.

Having an LLM implement a design based on an improved description that

it previously generated from an original human-written prompt is an instance of self-

reflection. This prompting technique leads the LLM to iterate upon and correct its

own work. Past research, such as the Reflexion framework [?], has shown that self-

reflection improves results in the HumanEval benchmark. HDLAgent incorporates a

similar approach with its ”testbench” flow, initiated after the initial RTL version is

generated.

A separate conversation is created, prompting the LLM to generate an assert-

based Verilog testbench. The results of the testbench and the testbench itself are fed

back into the primary conversation if there are any failures. This feedback prompts the

LLM to correct the RTL. The testbench conversation does not have access to the RTL,

preventing it from ”cheating” by designing the testbench based on the RTL. Instead, it

16

relies solely on the English description of the desired behavior. This process produces

a testbench independent of the implementation, designed by the LLM, and used to

critique and improve its own work through self-reflection.

The creation of a separate conversation for testbench generation allows for

the use of a different LLM from the one working on the RTL. Past works have shown

that using a multi-agent debate model can significantly improve results [?], even with

just two distinct agents. HDLAgent permits the use of multiple ”testbench” LLMs,

each critiquing the implementation. However, for evaluation, only self-reflection and

the two-agent debate model were tested, seen in 5.1.5.

17

Chapter 4

Setup

4.1 Setup

Table 4.1 lists all the languages used in the evaluation and the compiler versions

used by this paper. When a date is provided it corresponds to the top-of-tree version

at that given month. For Quality of Results (QoR), we use Yosys synthesis results.

Table 4.1: Language Tools and Versions
Language Tool Version
Verilog Yosys 0.35
Chisel FIRRTL 3.5.0-RC2
pyRTL pyRTL compiler 0.10.2
DSLX XLS 3/2024

Table 4.2 shows the LLMs used. Many LLMs, including GPT-3.5o, are not

deterministic. They have produced differing outcomes for the same example under

identical prompt conditions. OpenAI recently proposed a new API to address this

issue, providing a seed, but this solution still needs to be fully implemented across all

18

Table 4.2: LLMs used in the evaluation
LLM Version Updated Context
GPT-4 gpt-4-1106-preview 4/2023 128000
GPT-3.5n gpt-3.5-turbo-0125 9/2021 16385
GPT-3.5o gpt-3.5-turbo-1106 9/2021 16385
GPro-1.0 gemini-1.0-pro-001 2/2024 32720
Mix-8x7B Mixtral-8x7B-instruct-v0.1 12/2023 32768
Mix-8x22B Mixtral-8x22B-v0.1 3/2024 32768

LLMs. For fair evaluation, we avoid the deterministic settings and perform 1, 5, or 10

runs depending on the pass@k parameter.

19

Chapter 5

Evaluation

5.1 Evaluation

5.1.1 Overall Results

To understand the benefits of HDLAgent across LLMs, we plot each of the

HDLs (Chisel, PyRTL, DSLX, and Verilog) against four benchmark tests: VH stands

for VerilogEval-Human, VM stands for VerilogEval-Machine, HC stands for HDLEval-

Comb, and HP stands for HDLEval-Pipe.

VerilogEval tests consist of several Verilog-specific questions. However, their

evaluation does not fully demonstrate the potential of the LLM/HDLAgent as effectively

as HDLEval (HC, HP) does. This is a common issue across HDLs with the exception

of Verilog. The plots include VH and VM for reference, but the focus of the evaluation

is HDLEval-Comb.

Each bar has five components to showcase the impact of different aspects of

20

HDLAgent. Base is the baseline or typical zero-shot LLM evaluation that does not use

HDLAgent yet still keeps the HDLAgent prompts to format IOs and overall directions

for code generation; Description adds the HDL Description (Section 3.0.1); Few-shot

adds the few-shot related to the language used; Compile adds the compiler feedback

and iterates up to 8 times to fix the code; and Fixes performs the same iterations but

for each iteration provides a suggestion, alongside a generic example, on how to fix that

given compiler error.

GPT-4 GPT-3.5n GPT-3.5o Mix-8x7B Mix-8x22B GPro-1.0

0

20

40

60

80

Su
cc

es
s R

at
e

%

HCHPVHVM HCHPVHVM HCHPVHVM HCHPVHVM HCHPVHVM HCHPVHVM

Fixes
Compile
Few-shot
Description
Base

Figure 5.1: HDLAgent improves Chisel across all LLMs.

Chisel (Figure 5.1) is based on Scala; several LLMs know the basic syntax but only

GPT-4 performs decently with Chisel. All the LLMs except GPT-4 had less than a 3%

success rate with Chisel. Both ”main context” (Description + Few-shot) and ”compiler

context” (Compile + Fixes) provide substantial benefit, demonstrating that all these

components are necessary. Moreover, GPT-3.5o and GPT-3.5n perform better than

high performing LLMs (GPT-4) without HDLAgent. HDLAgent is also able to improve

21

GPT-4, reaching a 69% success rate.

GPT-4 GPT-3.5n GPT-3.5o Mix-8x7B Mix-8x22B GPro-1.0

0

20

40

60

80
Su

cc
es

s R
at

e
%

HCHPVHVM HCHPVHVM HCHPVHVM HCHPVHVM HCHPVHVM HCHPVHVM

Fixes
Compile
Few-shot
Description
Base

Figure 5.2: HDLAgent improves PyRTL across all LLMs.

PyRTL (Figure 5.2) is a Python-based HDL. OpenAI LLMs (GPT-4, GPT-3.5n, GPT-

3.5o) can pass several tests without HDLAgent (Base); however, even these models have

a low success rate, between 27% and 40% in PyRTL. When HDLAgent is enabled, the

success rate increases to between 44% to 59%. Similar to the Chisel case, HDLAgent

speedup comes from several factors.

As with Chisel, all the HDLAgent components are important but the ”compiler

context” (Compile + Fixes) is crucial for both PyRTL and Chisel. This is because these

HDLs are Domain Specific Languages (DSLs), so the LLMs gets confused mixing the

DSL hosts (Scala, Python) with their HDL-specific syntaxes. The compiler context is

able to guide and solve the issues.

DSLX (Figure 5.3) is a Rust-like language. Since DSLX does not allow arbitrary

pipelining, it cannot be evaluated against HDLEval-Pipe and it exhibits very poor per-

22

GPT-4 GPT-3.5n GPT-3.5o Mix-8x7B Mix-8x22B GPro-1.0

0

20

40

60

80

Su
cc

es
s R

at
e

%

HCHPVHVM HCHPVHVM HCHPVHVM HCHPVHVM HCHPVHVM HCHPVHVM

Fixes
Compile
Few-shot
Description
Base

Figure 5.3: HDLAgent improves DSLX HDLEval-Comb across all LLMs.

formance with VerilogEval. GPT-4 has some knowledge of DSLX, and once again, HD-

LAgent significantly enchances the results across all LLMs. Unlike Chisel and PyRTL,

DSLX is not a DSL. In this case, the ”main context” (HDL Description + Few-Shot)

is the biggest HDLAgent factor in this improvement, because explaining the Rust-like

syntax and providing a few examples is more important than grounding the results with

compile errors.

Verilog (Figure 5.4) has the best overall performance for the Base, which is when

no HDLAgent is active. This is the expected behavior due to extensive training with

Verilog syntax. It is also the only fair case where VerilogEval can be used to evaluate an

HDL. Overall, HDLAgent has little impact on the models that are already proficient in

Verilog; however, it has a significant impact on Mix-8x7B and Mix-8x22B, which have

little Verilog knowledge. This is an interesting observation displaying how knowledge

transfer can work even when the LLM is not familiar with Verilog.

23

GPT-4 GPT-3.5n GPT-3.5o Mix-8x7B Mix-8x22B GPro-1.0

0

20

40

60

80

Su
cc

es
s R

at
e

%

HCHPVHVM HCHPVHVM HCHPVHVM HCHPVHVM HCHPVHVM HCHPVHVM

Fixes
Compile
Few-shot
Description
Base

Figure 5.4: Verilog succeeds across benchmarks and LLMs .

One interesting observation regarding Verilog is that ”compiler context” does

not help recover from many errors. Part of the reason is that Verilog error messages use

Yosys, which has error messages more cryptic than PyRTL (Python), Chisel (Scala),

or DSLX. A stricter Verilog compiler with more readable errors could have a different

distribution, but over 80% of the Verilog generated code in HDLEval-Comb compiles

correctly at a first attempt, so there are limits on what compiler error grounding can

provide.

When comparing LLMs, one unexpected behavior is that Mix-8x22B has lower

performance than Mix-8x7B. The model was recently released, but we observe a high

failure rate when it is attempting to follow directions. Using a ”instruct” model will

achieve better results. We kept the ”base” model because it provides interesting insights

on how different models improve and behave with HDLAgent.

One of the main HDLAgent objectives is to enable LLMs to use new HDLs.

24

When comparing different LLMs like GPT-3.5o and GPT-3.5n across various HDLs,

trends indicate that the performance of HDLs remains relatively consistent regardless of

the specific LLM used. For instance, with GPT-4, Verilog shows the highest success rate

at 75%, which is close to its lowest for PyRTL with 59%. This pattern of performance

is consistent across all tested LLMs. The worst performing LLM (Mix-8x22B) has a

53% Verilog success rate, while PyRTL the worst performing HDL Mix-8x22B has a

28% success rate. Without HDLAgent, many LLMs had a zero success rate.

5.1.2 HDLAgent Context Insights

This section discusses HDL Description and few-shot selection. One straight-

forward approach is to use the HDL reference manual directly. While this is feasible

with GPT-4, Mix-8x7B, and GPro-1.0 due to their large context windows, its generally

less effective than using a summarized HDL description. For example, using a full ref-

erence instead of a summary does not change results for GPro-1.0, but reduces success

rate from 77% to 66% for GPT-4, and from 59% to 33% for Mix-8x7B. This indicates

that future LLMs need to improve handling of length contexts, as all evaluated LLM

struggle with this.

Figure 5.5 shows the DSLX, PyRTL, and Chisel success rate as different refer-

ence manuals are summarized for HDLAgent. Each bar shows a different LLM reference

summarization prompt (Section 3.0.1) sorted by accuracy. The breakdown is the con-

tribution of the few-shot examples and the HDL description. Interestingly, adding

Few-shot always improves results, and removing HDL Description and just keeping

25

0

10

20

30

40

50

60

Su
cc

es
s R

at
e

(%
)

DSLX - GPT-3.5n DSLX - Mix-8x7B PyRTL - GPT-3.5n PyRTL - Mix-8x7B Chisel - GPT-3.5n Chisel - Mix-8x7B

Few-shot
HDL Description

Figure 5.5: HDL description and few-shot help LLMs to improve results.

few-shot examples is a reasonable alternative. In some HDL/LLM combinations like

Chisel/GPT-3.5n, using either Few-shot or Description works. For other combinations

like DSLX/Mix-8x7B, HDL Description helps but Few-shot is necessary. Optimal re-

sults require both Few-shot and HDL Description.

5.1.3 Pass Sensitivity

Pass@k is a popular method that measures how results can be improved by

generating multiple attempts. A k=5 means that when 5 LLM tries are used, at least

one has the correct code generation. Table 5.1 shows tests passed for HDLEval-Comb for

multiple LLMs and multiple pass@k values (1,5,10). Only the HDLEval-Comb results

are shown, as it is the most representative benchmark for a multi-lang evaulation.

Less popular HDLs benefit more from higher pass@k values. For example,

DSLX shows a 1.22 to 2.08 times improvement in test pass rates from pass@1 to pass@10.

Verilog has between 1.16 and 1.45 times. This discrepancy is likely because the LLM,

26

Verilog Chisel PyRTL DSLX
k=1 k=5 k=10 k=1 k=5 k=10 k=1 k=5 k=10 k=1 k=5 k=10

GPT-4 Base 97 103 111 69 88 92 53 79 85 46 79 85
HDLAgent 102 109 111 97 103 107 81 92 98 86 100 104

GPT-3.5n Base 71 96 100 0 5 9 36 63 67 15 32 41
HDLAgent 78 93 98 80 97 100 59 79 88 55 80 88

GPT-3.5o Base 64 93 99 1 6 14 37 60 71 4 19 25
HDLAgent 79 92 100 79 91 99 70 78 89 65 86 91

GPro-1.0 Base 66 97 105 1 5 12 6 17 31 0 0 0
HDLAgent 77 96 99 49 84 88 38 66 77 48 74 82

Mix-8x7B Base 16 39 50 4 12 17 0 1 2 0 0 0
HDLAgent 66 86 95 60 80 86 48 71 82 38 72 79

Mix-8x22B Base 18 65 78 2 12 18 2 8 13 0 0 6
HDLAgent 72 96 101 35 79 89 39 67 72 47 75 81

Table 5.1: Pass@k results for HDLEval-Comb for different LLMs with just a Base
query or with HDLAgent.

unfamiliar with the language, starts from an incorrect baseline and struggles to correct

errors through compiler feedback. Not being able to fix is very rare in Verilog but over

10% of the DSLX tests have this problem. The higher the pass@k, the easier to avoid.

Once the code compiles correctly, the failure rate for all the HDLs is comparable. This

means that if a future HDLAgent improved the iterations or better selection point, it

could further improve results.

Figure 5.6 provides more insights on the pass@k results. It shows the increase

in accuracy as HDLAgent iterates with the compiler like GPro-1.0 across HDLs. We

choose GPro-1.0 because it is one of the LLMs that need more iterations to converge.

For Verilog, it converges very fast but for the other HDLs it needs 6 to 8 iterations to

converge. More iterations do not improve, but changing the starting point like pass@5

27

1 2 3 4 5 6 7 8
0.0

0.1

0.2

0.3

0.4

0.5

Su
cc

es
s R

at
e

%

Verilog
Chisel
PyRTL
DSLX

Figure 5.6: GPro-1.0 converges in a few iterations.

improves the results. Overall, 8 iterations is enough across languages because increasing

iterations does not help in success rate but hurts in token usage.

When pass@5 and 8 iterations are used (Table 5.1), HDLAgent HDLs (Chisel,

PyRTL, DSLX) perform better or equal to the same LLM with Verilog (Base). This

is a main contribution on the paper showing that HDLAgent enables the use of small

community HDLs.

5.1.4 Time and QoR

Execution time is an important metric for any AI Agent. Figure 5.7 shows

the execution time boxplot for HDLEval-Comb with different LLMs, where both suc-

cessful and failed tests are considered. All the languages besides Verilog go through a

translation process to Verilog that adds overhead. In HDLAgent, the execution time is

28

Verilog Chisel PyRTL DSLX
0

20

40

60

80

100

120

140

Ex
ec

ut
io

n
Ti

m
e

(s
)

Model
GPT-4T
GPT-3.5n
GPT-3.5o
Mix-8x7B
GPro-1.0

Figure 5.7: LLM and HDL affect total HDLAgent execution time.

a function of tokens
second , number of iterations, and external compiler speed.

Comparing across HDLs, the main outlier is Chisel. Around 2/3 of the execu-

tion time is spent in the FIRRTL compiler to generate Verilog. GPT-4 is faster because

it has less errors and hence less iterations. PyRTL and DSLX are also slower than

Verilog, but this is in part due to the additional iterations.

Comparing across LLMs, GPT-3.5n and GPT-3.5o tend to be faster overall as

they combine less error iterations and speed of results. External tokens
second benchmarking [1]

points that GPro-1.0 is roughly 30% faster than GPT-3.5n and 4 times faster than GPT-

4. HDLAgent results are different because of iterations and speed.

The Quality of Results (QoR) is crucial in hardware generation. Figure 5.8

29

Verilog Chisel PyRTL DSLX
0

5

10

15

20

25

30

Ga
te

 c
ou

nt
 R

at
io

Model
GPT-4
GPT-3.5n
GPT-3.5o
GPro-1.0
Mix-8x7b
Mix-8x22b

Figure 5.8: QoR is consistent across LLMs but different across HDLs.

shows the gate count ratio compared to the best implementation. A ratio of 1 indicates

optimal gate count, while 2 indicates double the gate count. This figure only includes

the successful runs using HDLAgent with HDLEval-Comb. The plot reveals significant

Qor variation compared to the best implementation. Typically, the average varies due

to one or two outliers. For instance, in PyRTL generated by Mix-8x7B, the average

gate count is 1.63, but removing two outliers brings it down to 1.12. This means that

the LLMs sometimes generate very inneficient code but it is not so frequent. An second

observation suggests that GPT-4 may underperform; however, it successfully handles

larger and more complex tests that affect the results. A third observation is that the code

generated by various LLMs displays comparable efficiency. Among these, DSLX appears

to be slightly more efficient. In DSLX generated by GPT-4, 80% of the generated code

is the optimal with a 1 ratio. This seems to imply that an efficient compiler like XLS

combined with a popular syntax can result in better results for generated HDL code.

30

5.1.5 Self-Reflection with Multi-Agent Debate

Figure 5.9: All possible scenarios of the

As mentioned in Section 3.0.5, HDLAgent includes an option to generate Ver-

ilog testbenches for the produced code. This section examines the results of passing the

design through a testbench and iterating upon it in case of any testbench failures before

attempting LEC. Figures 5.10 and 5.11 show the results of using the best-performing

and worst-performing LLMs, GPT-4 and Mix-8x7B, respectively, as both designers and

testers when writing Verilog for HDLEval-comb. If the initial version of the design failed

its testbench, a second version would be generated and this version would then attempt

LEC. The results are categorized into test cases that fail and those that pass LEC in

their initial version, with the red part of the stacked bar representing those that failed

31

Figure 5.10: Introducing a testbench into the generative loop worsens results

LEC in their second version, and the green part representing those that passed LEC in

their second version.

Figure 5.9 illustrates all possible scenarios in the HDLAgent testbench debate

model. Two of these scenarios are labeled ”impossible” because the result of LEC would

be different despite the design not changing. The remaining scenarios, along with the

results shown in Figures 5.10 and 5.11, are explained in the rest of this section.

This paragraph discusses cases where the initial version of the design would

have passed LEC. The ”no benefit” case occurs when the testbench passes, meaning the

design did not undergo a second iteration, and the testbench made no difference. The

32

Figure 5.11: Introducing a testbench into the generative loop provides little benefit

”noncompliant test” case occurs when the initial version of the design would have passed

LEC, but the testbench failed; however, the second iteration of the design still passes

LEC. This suggests that the designer LLM has a strong understanding of the design

requirements, consistently passing LEC, while the test failed, indicating noncompliance

with the design requirements. This points to LLMs being better designers than testers

and ignoring feedback from tests that do not align with the originally stated require-

ments. In contrast, the ”ruined result” case occurs when both the testbench and the

second LEC fail, despite the initial version of the design passing LEC. Here, feedback

from the testbench failure misled the LLM, prompting unnecessary and ultimately in-

33

correct changes, ”ruining” the design. Figure 5.10 shows this is a somewhat common

scenario, especially when Mix-8x7B is the tester, implying that this debate model is

disadvantageous.

This paragraph discusses cases where the initial version of the designs would

not have passed LEC. The ”low coverage test” case occurs when the testbench passes,

meaning there is no second version of the design, so LEC remains a failure. The test

was too simple to provide any insights on how to improve the design, possibly due to

the LLM’s poor understanding of the design requirements. The ”ideal case” is when

the testbench fails, providing feedback that allows for iteration on the design, resulting

in the second version passing LEC. Figure 5.11 shows this is an uncommon scenario

compared to the ”ruined result” scenario seen in Figure 5.10, further indicating that

the debate model decreases performance. The final case is where the testbench fails,

and its feedback provides no benefit, as LEC is not passed with the second iteration.

This is referred to as ”ineffective feedback”.

Overall, the results suggest that HDLAgent’s current multi-Agent debate scheme

provides no advantage for RTL design. Some tests that would have otherwise passed

fail due to the feedback from failed testbenches. Developing a more cohesive arbitra-

tion scheme for inter-Agent debate, as well as fine-tuning for testbench generation and

interpretation, is left for future work.

34

5.1.6 Insights for HDLs at the age of LLMs

The goal of this section is to show some shortcomings in HDLs that need to

be addressed to improve accuracy in an LLM world.

5.1.6.1 Verilog

Verilog is the language that LLMs know the best. For top-performing LLMs

like GPT-4, the main challenge lies in handling pipelining. Verilog allows for unre-

stricted pipelining, which deviates from the traditional Von Neumann architecture or

non-hardware program structure. GPT-4 effectively generates combinational logic be-

cause a typical program without recursion or memory access can be directly translated

to Verilog or combinational logic. Improving pipelining remains an open research ques-

tion that needs to be addressed to enhance LLMs’ performance hardware tasks.

5.1.6.2 Chisel

Besides the common pipelining issue, Chisel LLM code generation needs help to

interface Chisel code to Verilog. As a part of compilation process, the Verilog generated

module’s IO appends ”io_” to all names. Additional clock and reset signals are created

by default, even if unused in the original Chisel code. Listing 1 shows the resulting

Verilog from a compiled Chisel implementaion of a full adder circuit.

To interface modules, HDLAgent adjusts the IO to perform testing. Postpro-

cessing is used to remove the unused signals as well as renaming those modified to their

originals to match the circuit specification. This is necessary as the first step of the LEC

35

checks that the two modules’ IOs match, otherwise a truthful comparison is impossible

and the LEC fails.

In addition, Chisel shares a problem with PyRTL of being a Domain Specific

Language (DSL), and the LLMs use incorrect syntax.

module full_adder(
input clock ,
input reset ,
input io_a,
input io_b,
input io_cin ,
output io_sum ,
output io_cout

);

Listing 1: Chisel IOs have name changes.

5.1.6.3 PyRTL

PyRTL shares common problems with Verilog and Chisel, but it also has a

problem with semantics.

A DSL problem is when the LLM generates Python syntax to implement logic

instead of the PyRTL syntax. Listing 2 invalid cases uses Python ”inp 1” instead of the

PyRTL shift right logical library call. Many of those problems generate errors which

are catched by HDLAgent, and it is able to fix with further HDLAgent iterations.

Besides DSL problems, PyRTL has errors due to inconsistent semantics. In

Verilog and Chisel, a right shift logical of a positive number reduces the size. For

example if inp has 4 bits, and it is right shifted once, the output has 3 bits. Not in

PyRTL, it has 4 bits but the most significant bit is a zero. Listing 2 showcases the

36

inp = pyrtl.inpput(4, 'inp ')
out = pyrtl.Output(4, 'out ')
out <<= inp ^ pyrtl.shift_right_logical(inp, 1)
equivalent: out <<= pyrtl.concat(inp[3] ^ 0, inp[3] ^ inp[2], inp

[2] ^ inp[1], inp[1] ^ inp[0])
CORRECT : out <<= pyrtl.concat(inp[3] , inp[3] ^ inp[2], inp

[2] ^ inp[1], inp[1] ^ inp[0])
INVALID : out <<= inp ^ (inp >>1) # Invalid , >> is a python shift

not PyRTL

Listing 2: PyRTL issues generating right shift.

problem in one HDLEval test. The most significant bit is xored with zero which is not

the expected result.

5.1.6.4 DSLX

fn add_7_to_11() -> Outputs {
//add values from 7 to 11 (exclusive)
let base = u16:7;
let res = for (i, accum): (u16, u16) in u16:0..u16:4 {

accum + base + i
}(u16:0);
Outputs { result: res }

}

Listing 3: Rust DSLX special loop syntax.

DSLX presented a different set of challenges compared to DSLs like Chisel and

PyRTL. Since it does not support unrestricted pipelining, only combinational logic is

used in this section’s feedback.

DSLX shares input/output generation issues with Chisel and PyRTL but faces

even greater challenges. DSLX has a single unnamed output for functions named ”out”

during Verilog generation. DSLX solution to multiple outputs is to use a struct. HD-

37

LAgent addresses it by post-processing the generated Verilog and modifying the output

port name to match the desired name. A better solution that requires DSLX semantic

changes would be to adopt a Go-like syntax that allows for multiple named outputs and

ensures Verilog generation respects those outputs.

Another interesting source of errors stems from DSLX being ”similar to Rust”.

If the HDLAgent’s HDL Description mentions that ”DSLX is similar to Rust...” it gen-

erates even more errors. Even without this sentence, the LLM sometimes generates

legal Rust but illegal DSLX code. Some differences are easy to spot, such as DSLX’s

”assert(cond)” versus Rust’s ”assert_eq!(cond),” while others, like the presence of Rust

annotations like ”#[test]” in DSLX code, are more subtle. To address the ”similar but

not the same” syntax issues, it is suggested to avoid mentioning the similarity and catch

any discrepancies during compilation time, generating a compile error for HDLAgent to

fix.

A more complicated case involves semantic changes. Since DSLX cannot de-

scribe circuits with mutable variables, its expressions cannot describe state changes over

a loop, making it incompatible with the Rust loop semantics. Instead, these expressions

have an accumulator value separate from the iterator, creating a return value calculated

by the body of the for loop. As shown in Listing 3, the for loop body sums the values

between 7 and 11 by accumulating the base value of 7 and the iterator value in the range

of 0 to 4 each loop ”iteration.” This deviation from standard loop semantics required a

dedicated code snippet and explanation in both the initial and supplemental contexts

to correct the LLM’s often incorrect assumptions about DSLX’s generative for loop syn-

38

tax. Addressing these changes will help LLMs to perform better with less HDLAgent

iterations.

39

Chapter 6

Future Work and Conclusions

6.1 Future Work and Conclusions

Large Language Models (LLMs) have the potential to revolutionize computer

science. This paper introduces HDLAgent, an AI Agent that significantly improves

LLMs’ HDL code generation for less popular HDLs like Chisel, PyRTL, and DSLX.

Supporting multiple HDLs without LLM tuning is crucial for pioneering new HDLs that

exploit LLM capabilities. The paper presents several challenges and recommendations

for existing and future HDLs and AI Agents for chip design. The evaluation results

point to pipelining vs combinational performance issues that the AI Agent community

should address.

Evaluation reveals that HDLAgent enables emerging HDLs improving across

all LLMs. The best performing LLM is GPT-4, without HDLAgent, GPT-4 had a

72% success rate for Verilog and 34% for DSLX. Once HDLAgent is applied, all the

40

HDLs have between 72% and 82% in pass@10. This means that HDLAgent is able to

use knowledge transfers across HDLs, and boost the score beyond the GPT-4 Verilog

baseline. This same property is shared across LLMs. The performance of all the HDLs

with HDLAgent are always better than the Verilog performance when HDLAgent is not

applied in pass@10.

This paper’s evaluations of HDLAgent highlight the challenges faced by the AI

Agent community in chip design. These include dealing with QoR outliers, decreasing

execution time and token count, difficulties encountered with DSLs, improving compile

error messages to guide LLMs, dealing with large outputs, pipelining…

In summary, HDLAgent enables the use of LLMs for HDLs beyond Verilog.

The code for HDLAgent will be open-sourced to further benefit the community pointing

to several insights and challenges.

41

Bibliography

[1] Artificial Analysis. https://artificialanalysis.ai/models/gpt-35-turbo.

Online; accessed on April 2024.

[2] CWhy. website, November 2023.

[3] Toufique Ahmed and Premkumar Devanbu. Few-shot training llms for project-

specific code-summarization. arXiv preprint arXiv:2207.04237, 2022.

[4] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Ri-

mas Avižienis, John Wawrzynek, and Krste Asanović. Chisel: constructing hard-

ware in a scala embedded language. In DAC Design Automation Conference 2012,

pages 1212–1221. IEEE, 2012.

[5] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde

de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph,

Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy

Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder,

Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens

42

https://artificialanalysis.ai/models/gpt-35-turbo

Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plap-

pert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss,

Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji,

Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike,

Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight,

Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario

Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large

language models trained on code. 2021.

[6] Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large

language models to self-debug, 2023.

[7] John Clow, Georgios Tzimpragos, Deeksha Dangwal, Sammy Guo, Joseph McMa-

han, and Timothy Sherwood. A pythonic approach for rapid hardware prototyping

and instrumentation. In Field Programmable Logic and Applications (FPL), 2017

27th International Conference on, pages 1–7. IEEE, 2017.

[8] Yihong Dong, Xue Jiang, Zhi Jin, and Ge Li. Self-collaboration code generation

via chatgpt, 2023.

[9] efabless. Efabless 1st competition winners. https://efabless.com/genai/

challenges/1, 2023.

[10] efabless. Efabless 2nd competition winners. https://efabless.com/genai/

challenges/2-winners, 2023.

43

https://efabless.com/genai/challenges/1
https://efabless.com/genai/challenges/1
https://efabless.com/genai/challenges/2-winners
https://efabless.com/genai/challenges/2-winners

[11] Zhiyu Fan, Xiang Gao, Abhik Roychoudhury, and Shin Hwei Tan. Improving

automatically generated code from codex via automated program repair. arXiv

preprint arXiv:2205.10583, 2022.

[12] Google. XLS Website. https://github.com/google/xls/, 2022.

[13] Pranab Islam, Anand Kannappan, Douwe Kiela, Rebecca Qian, Nino Scherrer, and

Bertie Vidgen. Financebench: A new benchmark for financial question answering,

2023.

[14] Xue Jiang, Yihong Dong, Lecheng Wang, Zheng Fang, Qiwei Shang, Ge Li, Zhi

Jin, and Wenpin Jiao. Self-planning code generation with large language models,

2023.

[15] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir

Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen tau Yih, Tim Rock-

täschel, Sebastian Riedel, and Douwe Kiela. Retrieval-augmented generation for

knowledge-intensive nlp tasks, 2021.

[16] Bill Yuchen Lin, Abhilasha Ravichander, Ximing Lu, Nouha Dziri, Melanie Sclar,

Khyathi Chandu, Chandra Bhagavatula, and Yejin Choi. The unlocking spell on

base llms: Rethinking alignment via in-context learning, 2023.

[17] Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mo-

hit Bansal, and Colin A Raffel. Few-shot parameter-efficient fine-tuning is better

44

and cheaper than in-context learning. Advances in Neural Information Processing

Systems, 35:1950–1965, 2022.

[18] Mingjie Liu, Nathaniel Pinckney, Brucek Khailany, and Haoxing Ren. Verilo-

geval: Evaluating large language models for verilog code generation. arXiv preprint

arXiv:2309.07544, 2023.

[19] Shang Liu, Wenji Fang, Yao Lu, Qijun Zhang, Hongce Zhang, and Zhiyao Xie.

Rtlcoder: Outperforming gpt-3.5 in design rtl generation with our open-source

dataset and lightweight solution, 2024.

[20] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah

Wiegreffe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank

Gupta, Bodhisattwa Prasad Majumder, Katherine Hermann, Sean Welleck, Amir

Yazdanbakhsh, and Peter Clark. Self-refine: Iterative refinement with self-feedback,

2023.

[21] Seungjun Moon, Yongho Song, Hyungjoo Chae, Dongjin Kang, Taeyoon Kwon,

Kai Tzu iunn Ong, Seung won Hwang, and Jinyoung Yeo. Coffee: Boost your code

llms by fixing bugs with feedback, 2023.

[22] Ansong Ni, Srini Iyer, Dragomir Radev, Ves Stoyanov, Wen-tau Yih, Sida I Wang,

and Xi Victoria Lin. Lever: Learning to verify language-to-code generation with

execution. arXiv preprint arXiv:2302.08468, 2023.

45

[23] Theo X. Olausson, Jeevana Priya Inala, Chenglong Wang, Jianfeng Gao, and Ar-

mando Solar-Lezama. Is self-repair a silver bullet for code generation?, 2023.

[24] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions

on knowledge and data engineering, 22(10):1345–1359, 2010.

[25] Jean Clarice Scholtz. A study of transfer of skill between programming languages.

The University of Nebraska-Lincoln, 1989.

[26] Florian Tambon, Arghavan Moradi Dakhel, Amin Nikanjam, Foutse Khomh,

Michel C. Desmarais, and Giuliano Antoniol. Bugs in large language models gen-

erated code: An empirical study, 2024.

[27] Shailja Thakur, Baleegh Ahmad, Zhenxing Fan, Hammond Pearce, Benjamin Tan,

Ramesh Karri, Brendan Dolan-Gavitt, and Siddharth Garg. Benchmarking large

language models for automated verilog rtl code generation, 2022.

[28] Shailja Thakur, Baleegh Ahmad, Zhenxing Fan, Hammond Pearce, Benjamin Tan,

Ramesh Karri, Brendan Dolan-Gavitt, and Siddharth Garg. Benchmarking large

language models for automated verilog rtl code generation. In 2023 Design, Au-

tomation and Test in Europe Conference and Exhibition (DATE), pages 1–6, 2023.

[29] Shailja Thakur, Baleegh Ahmad, Hammond Pearce, Benjamin Tan, Brendan

Dolan-Gavitt, Ramesh Karri, and Siddharth Garg. Verigen: A large language

model for verilog code generation, 2023.

[30] Shailja Thakur, Jason Blocklove, Hammond Pearce, Benjamin Tan, Siddharth

46

Garg, and Ramesh Karri. Autochip: Automating hdl generation using llm feedback,

2023.

[31] Yun-Da Tsai, Mingjie Liu, and Haoxing Ren. Rtlfixer: Automatically fixing rtl

syntax errors with large language models, 2024.

[32] Hanbin Wang, Zhenghao Liu, Shuo Wang, Ganqu Cui, Ning Ding, Zhiyuan Liu,

and Ge Yu. Intervenor: Prompt the coding ability of large language models with

the interactive chain of repairing, 2023.

[33] Zejun Wang, Jia Li, Ge Li, and Zhi Jin. Chatcoder: Chat-based refine requirement

improves llms’ code generation, 2023.

[34] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia,

Ed Chi, Quoc Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning

in large language models, 2023.

[35] Chunqiu Steven Xia and Lingming Zhang. Conversational automated program

repair. arXiv preprint arXiv:2301.13246, 2023.

[36] Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny Zhou,

and Xinyun Chen. Large language models as optimizers, 2023.

[37] Kaiyuan Yang, Haotian Liu, Yuqin Zhao, and Tiantai Deng. A new design approach

of hardware implementation through natural language entry. IET Collaborative

Intelligent Manufacturing, 5(4):e12087, 2023.

47

[38] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan,

and Yuan Cao. React: Synergizing reasoning and acting in language models, 2023.

[39] Xufeng Yao, Haoyang Li, Tsz Ho Chan, Wenyi Xiao, Mingxuan Yuan, Yu Huang,

Lei Chen, and Bei Yu. Hdldebugger: Streamlining hdl debugging with large lan-

guage models, 2024.

[40] Da Yin, Faeze Brahman, Abhilasha Ravichander, Khyathi Chandu, Kai-Wei

Chang, Yejin Choi, and Bill Yuchen Lin. Lumos: Learning agents with unified

data, modular design, and open-source llms, 2023.

[41] Kechi Zhang, Zhuo Li, Jia Li, Ge Li, and Zhi Jin. Self-edit: Fault-aware code editor

for code generation. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki,

editors, Proceedings of the 61st Annual Meeting of the Association for Computa-

tional Linguistics (Volume 1: Long Papers), pages 769–787, Toronto, Canada, Jul.

2023. Association for Computational Linguistics.

[42] Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin, Yong-Jin Liu, and

Gao Huang. Expel: Llm agents are experiential learners. arXiv preprint

arXiv:2308.10144, 2023.

[43] Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zihan

Wang, Lei Shen, Andi Wang, Yang Li, Teng Su, Zhilin Yang, and Jie Tang.

Codegeex: A pre-trained model for code generation with multilingual evaluations

on humaneval-x, 2023.

48

[44] Li Zhong and Zilong Wang. Can chatgpt replace stackoverflow? a study on robust-

ness and reliability of large language model code generation, 2024.

[45] Wangchunshu Zhou, Yuchen Eleanor Jiang, Long Li, Jialong Wu, Tiannan Wang,

Shi Qiu, Jintian Zhang, Jing Chen, Ruipu Wu, Shuai Wang, Shiding Zhu, Jiyu

Chen, Wentao Zhang, Ningyu Zhang, Huajun Chen, Peng Cui, and Mrinmaya

Sachan. Agents: An open-source framework for autonomous language agents, 2023.

49

	List of Figures
	List of Tables
	Abstract
	Acknowledgments
	Introduction
	Introduction

	Related Works
	Related Work

	HDLAgent
	Main Context
	Compiler Context
	Prompt Optimizations
	LLM Cost
	Usage and Features

	Setup
	Setup

	Evaluation
	Evaluation
	Overall Results
	HDLAgent Context Insights
	Pass Sensitivity
	Time and QoR
	Self-Reflection with Multi-Agent Debate
	Insights for HDLs at the age of LLMs

	Future Work and Conclusions
	Future Work and Conclusions

	Bibliography

