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ABSTRACT OF THE DISSERTATION 

 

New Technologies for On-Demand Hand Rehabilitation in the Living Environment after 
Neurologic Injury 

By 

 

Diogo Schwerz de Lucena 

 

Doctor of Philosophy in Mechanical and Aerospace Engineering 

 

 University of California, Irvine, 2019 

 

Professor David J. Reinkensmeyer, Chair 

 

High-dosage rehabilitation therapy enhances neuroplasticity and motor recovery 

after neurologic injuries such as stroke and spinal cord injury. The optimal exercise 

dosage necessary to promote upper extremity (UE) recovery is unknown. However, 

occupational and physical therapy sessions are currently orders of magnitude too low to 

optimally drive recovery. Taking therapy outside of the clinic and into the living 

environment using sensing and computer technologies is attractive because it could result 

in a more cost efficient and effective way to extend therapy dosage. This dissertation 

developed innovative wearable sensing algorithms and a novel robotic system to enhance 

hand rehabilitation. We used these technologies to provide on-demand exercise in the 

living environment in ways not previously achieved, as well as to gain new insights into 

UE use and recovery after neurologic injuries. 

Currently, the standard-of-practice for wearable sensing of UE movement after 

stroke is bimanual wrist accelerometry. While this approach has been validated as a way 

to monitor amount of UE activity, and has been shown to be correlated with clinical 

assessments, it is unclear what new information can be obtained with it. We developed 

two new kinematic metrics of movement quality obtainable from bimanual wrist 
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accelerometry. Using data from stroke survivors, we applied principal component analysis 

to show that these metrics encode unique information compared to that typically carried 

by conventional clinical assessments. We presented these results in a new graphical 

format that facilitates the identification of limb use asymmetries. 

Wrist accelerometry has the limitation that it cannot isolate functional use of the 

hand. Previously, we had developed a sensing system, the Manumeter, that quantifies 

finger movement by sensing magnetic field changes induced by movement of a ring worn 

on the finger, using a magnetometer array worn at the wrist. We developed, optimized, 

and validated a calibration-free algorithm, the “HAND” algorithm, for real-time counting of 

isolated, functional hand movements with the Manumeter. Using data from a robotic wrist 

simulator, unimpaired volunteers and stroke survivors, we showed that HAND counted 

movements with ~85% accuracy, missing mainly smaller, slower movements. We also 

showed that HAND counts correlated strongly with clinical assessments of hand function, 

indicating validity across a range of hand impairment levels. 

To date, there have been few attempts to increase hand use and recovery of 

individuals with a stroke by providing real-time feedback from wearable sensors. We used 

HAND and the Manumeter to perform a first-of-its-kind randomized controlled trial of the 

effect of real-time hand movement feedback on hand use and recovery after chronic 

stroke. We found that real-time feedback on hand movement was ineffective in increasing 

hand use intensity and improving hand function. We also showed for the first time the 

non-linear relationship between hand capacity, measured in the laboratory, and actual 

hand use, measured at-home. Even people with a moderate level of clinical hand function 

exhibit very low hand use at home.  

Finally, the challenge of improving hand function for people with moderate to 

severe injuries highlights the need for novel approaches to rehabilitation. One emerging 

technique is regenerative rehabilitation, in which regenerative therapies, such as stem 

cell engraftment, are coupled with intensive rehabilitation. In collaboration with the 

Department of Veteran Affairs Gordon Mansfield Spinal Cord Injury Translational 

Collaborative Consortium, we developed a robot for promoting on-demand, hand 
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rehabilitation in a non-human primate model of hemiparetic spinal cord injury that is being 

used to synergize hand rehabilitation with novel regenerative therapies. Using an 

innovative bimanual manipulation paradigm, we show that subjects engaged with the 

device at a similar rate before and after injury across a range of hand impairment severity. 

We also demonstrate that we could shape relative use of the arm and increase the 

number of exercise repetitions per reward by changing parameters of the robot. We then 

evaluated how the peak grip force that the subjects applied to the robot decreased after 

SCI, demonstrating that it can serve as a potential marker of recovery. 

These developments provide a foundation for future work in technologies for 

therapeutic movement rehabilitation in the living environment by establishing: 1) new 

metrics of upper extremity movement quality; 2) a validated algorithm for achieving a 

“pedometer for the hand” using wearable magnetometry; 3) a negative clinical trial result 

on the therapeutic effect of real-time hand feedback after stroke, which begs the question 

of what can be improved in future trials; 4) the nonlinear relationship between hand 

movement ability and at-home use, supporting the concept of learned non-use; and 5) 

the first example of robotic regenerative rehabilitation. 
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CHAPTER 1. INTRODUCTION 

 

1.1. Upper extremity rehabilitation after neurologic injuries 

Neurologic injuries are often life-changing events because they typically cause 

significant sensory motor impairments. Spinal cord injury and stroke are among the most 

common injuries. There are approximately 300,000 people living with a spinal cord injury 

(SCI) and approximately 17,000 new cases every year [1]. The statistics for stroke are 

even more staggering, with an estimate of one new stroke every 40 seconds and more 

than 7 million survivors currently in the United States alone [2]. Most of the survivors of 

these injuries will live with impairment of the upper extremity that diminishes quality of life 

[1], [3]–[6]. 

After a neurologic injury, spontaneous recovery is expected. The amount of 

recovery of motor function depends on the location and size of the lesion and the initial 

residual capacity [7], [8]. Recovery happens with alterations in activation patterns, 

modulated in response to motor activity, changing the strength of existing (or creating 

new) neural connections [9] – this process is called neuroplasticity. Neuroplasticity is 

amplified shortly after injury (days, weeks, or months); however, the ability to reorganize 

neural circuits is also retained in the chronic phase after a neurologic injury [10].  

High-dosage exercise therapy has been proven beneficial to enhance 

neuroplasticity and drive recovery [11], [12]. The specific exercise dosage necessary for 

motor recovery is unknown, but from animal models it has been estimated that 

improvement in motor capacity happens with hundreds to thousands of repetitions every 

day[13]. However, studies that observed hundreds of occupational and physical therapy 

sessions for stroke and SCI rehabilitation counted an average ~40 upper extremity 

repetitions per session [12], [14], orders of magnitude too low to optimally drive recovery. 
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Robotic technologies can automate hand training, increasing intensity of practice 

through repetitive, meaningful tasks. Virtual environments and computer gaming can be 

coupled with robotics to make the therapy more engaging and stimulating. Moreover, 

robotic therapy has the potential to alleviate some aspects of the labor-intensive of one-

on-one physical therapy. A large number of studies have now investigated the safety and 

shown the efficacy of robotic therapy [15]. However, robotics technologies are bulky, 

complex, and expensive and therefore typically only used in flagship rehabilitation 

facilities, drastically limiting accessibility to these devices, particularly in the chronic phase 

after a neurologic injury. 

Extended time in the clinic is desirable, however, costs are prohibitive and there is 

a limit on how long and intensive therapy sessions can be. Taking therapy outside of the 

clinic and into the living environment using sensing and computer technologies is 

attractive because it could result in a more cost efficient and effective way to extend 

therapy dosage. 

1.2. Rehabilitation in the living environment 

In the living environment, rehabilitation of the upper limb after stroke is more 

difficult than rehabilitation of the lower extremity. One of the main reasons for is the 

phenomenon called upper extremity, learned non-use [16]. For the lower extremity, 

walking requires both legs to be involved. But, for upper extremity use, most tasks can be 

accomplished with one hand. Particularly for those more severely impaired, any use of 

the impaired hand is highly effortful and frustrating. Due to the unilateral nature of the 

motor impairment after a stroke, patients progressively favor using their unimpaired limb 

over the impaired. Even though this compensatory behavior helps stroke survivors to be 

more independent and perform activities of daily living, the lack of exploration and use of 

the impaired limb further reduces the capacity of the limb perpetuating what has been call 

the “vicious cycle” [17].  

Currently, the most-used method of rehabilitation in the living environment is a 

booklet of exercises, in which a therapist prescribes several exercises using a printed 
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handout. However, patients find such an approach demotivating and there is low 

compliance [18]. 

To diminish the learned non-use phenomenon, Taub and colleagues proposed 

constraint-induced movement therapy (CIMT), one of the most successful types of upper 

extremity therapy after stroke [19]. CIMT and robotic therapy are two rehabilitation 

techniques with the most evidence to have benefits to patients [7]. In CIMT patients 

restrain the use of the unimpaired limb (using a mitten) for 90% of their waking hours. 

Patients are also required to do 6 or more hours a day of massed and intensive movement 

training with the impaired limb. This increases arm use, promotes neuroplasticity, and 

helps patients out of the vicious cycle of learn non-use. Several studies have shown the 

efficacy of CIMT in different phases of stroke recovery [20], including neuroplasticity 

evidenced by neuroimaging and neurophysiological techniques. CIMT has been 

successfully extended to be used in the living environment with similar results to those 

seen in the clinic [21], [22]. However, to my knowledge, there are no commercially 

available technologies for helping to complete CIMT at home. 

Functional electrical stimulation (FES) has also been used out of the clinic. Gabr 

and colleagues tested the feasibility of FES integrated with electromyography in the home 

setting and observed increase in active extension of the impaired wrist in 12 stroke 

survivors [23]. In a similar study, Hara and colleagues used a power-assisted FES system 

integrated with electromyography signal to induce muscle contraction with twenty stroke 

survivors that showed significant increases in range of motion and reduction in upper 

extremity spasticity [24]. A review of FES applied to stroke rehabilitation, at home and in 

the clinic, concluded that FES can effectively improve arm function in stroke survivors [25] 

and similar results have been observed for rehabilitation after spinal cord injury [26]. A few 

devices are commercially available using this technology, e.g. Neuromove NM900, 

BioMove 3000, and Bioness H200. 

Another home rehabilitation method that has had increased attention in the past 

years is telerehabilitation. Telerehabilitation consists of any rehabilitation service using 

communication technologies, allowing therapists access to patients from remote areas 
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and easier monitoring people after a neurologic injury. There are a variety of therapeutic 

techniques that fall under the telerehabilitation class and studies have shown promising 

results for stroke and spinal cord injury [27], [28]. For example, phone/video conferencing 

between patients and therapists, in which therapists can guide patients through exercises 

and reinforce correct behavior [27], [29] and other methods of interacting with virtual reality 

environments have been used. Recently, a large randomized controlled trial compared the 

efficacy of home-based telerehabilitation and in-clinic therapy across the United States 

[30]. One-hundred and twenty-four chronic stroke patients were randomized into the two 

groups. The telerehabilitation group received a system with a computer and 12 gaming 

input. For 18 supervised and 18 unsupervised 70-minute therapy sessions, patients 

exercised, played functional games, and received stroke education. The in-clinic group 

received matched levels of therapy with a rehabilitation therapist. Both groups had similar 

level of motor improvements, showing the efficacy of this method.  

Robotic-assisted rehabilitation has also been used for telerehabilitation, where low-

cost robotic systems coupled to virtual reality environments are used at home while 

therapists monitor and help progressing patients. For example, the Java Therapy system 

used a force feedback joystick in which patients interacted with a web-based game and 

therapists would evaluate progress and prescribe exercises [31]. A more recent study 

looked at the feasibility of a joystick handle that assist the impaired limb depending on user 

input [32]. Nineteen stroke survivors that used the device for eight weeks with minimal 

supervision significantly increased scores in clinical measures. Other studies have shown 

feasibility and efficacy of robotic rehabilitation in the home setting [33], [34]. However, 

more studies are still needed to prove their safety and cost-effectiveness in the home 

setting, and there are few or no commercial robotic therapy devices for home use. 

Other home therapy devices that are commercially available have shown positive 

results. Some of them are the Saebo products (SaeboFlex, SaeboReach, and 

SaeboStretch) that are functional orthoses for stretching and massed practice of the hand, 

wrist and elbow [35]. Another promising device is the MusicGlove, an instrumented glove 

with sensor on the fingertips and on the side of the index finger, which is coupled with a 
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musical computer game similar to GuitarHero in which patients need to perform functional 

grips to hit the notes scrolling down on the screen [36]. In a randomized controlled trial 

with the MusicGlove, participants exceeded the target number of recommended 

completed grips as they engaged with the game over three weeks at home. A significant 

increase in self-reported amount and quality of use of the impaired hand were reported 

using this passive device. 

Even though these methods of home therapy have shown promise, and in some 

cases have been shown comparable to in-clinic, one-on-one therapy sessions, they still 

require patients to stop their daily activities, go to a training station, don devices, and 

practice for a limited amount of time. People with neurologic injuries engage in many other 

activities throughout the day, and an intriguing possibility is to use integrated daily activity 

to increase the use of the upper extremity. Here, we explored wearable sensors that can 

be worn throughout the day, monitoring quality and quantity of upper extremity and 

promoting hand use. 

1.3. Wearable sensing for monitoring out-of-the-clinic upper extremity 

use 

Advances in miniaturization and processing speed have allowed development of 

wearable sensing systems for real-world, out-of-the-clinic, monitoring of human activity 

[37]. There are many commercially available wearable devices for health-related 

monitoring and feedback, e.g. electrocardiogram, heart rate, body temperature, blood 

pressure, step counting, and others [38]. To our knowledge, only two devices specifically 

for providing real-time feedback of upper extremity activity are available in the market, the 

ARYS by yband therapy AG (different versions are available for clinics and for the end 

user) and MiGO by Flint Rehab, but neither of them have been tested in clinical trials. In 

research, several groups are exploring the use of accelerometers placed on the wrist for 

that end. 

For rehabilitation after stroke, the use of wrist-worn accelerometers as a means of 

quantifying UE use in the community living environment has been increasing [37], [39], 
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[40]. This approach can quantify people’s actual use of their UE as opposed to their 

capability, which is what is measured by standard clinical assessments, and as opposed 

to subjectively perceived use of the UE, which is what self-assessment questionnaires 

measure. 

Taub and colleagues [41] were the first to propose the threshold-filtered 

transformation to measure functional upper extremity out of the lab (even though some 

other techniques had been previously tested but the results were not satisfactory when 

compared to electromyography signals [42]). The threshold-filtered algorithm divided the 

accelerometer data into 2-second bins and classified each bin as active or not active. The 

number of active bins was the count for that period. This approach had high accuracy and 

low variability (SD = 3%) for the 5 activities of daily living they tested. However, wearing 

an accelerometer only on the impaired wrist suffers from overestimation when people are 

walking and might not be adequate to measure upper extremity use outside of the clinic, 

when the unimpaired hand is not the dominant hand [43]. Using the ratio of counts of the 

impaired to unimpaired arm has been reported to be more accurate and better correlate 

with actual arm use and is mostly used in current studies. 

In particular, several studies have used bimanual wrist accelerometry to measure 

upper extremity in the living environment. Uswatte and colleagues used the ratio between 

impaired and unimpaired hand to validate the self-report Motor Activity Log [44]. Lang and 

her group have showed compelling results using accelerometers to quantify bilateral, real-

world, upper extremity activity after stroke [45]–[47]. They developed new ways to interpret 

bimanual accelerometry data and to extract relevant information from it, including showing 

that bimanual activity asymmetry strongly correlates with clinical assessments. Liao and 

colleagues showed an increase in bilateral arm use in a randomized controlled trial with 

robotic therapy, where an increased bilateral arm use was observed for those in the robotic 

therapy group [48]. Another study determined the usability of bimanual wrist accelerometry 

pre- and post-CIMT in children with cerebral palsy [49]. 

Wrist accelerometry for measuring upper extremity activity in stroke survivors has 

been well-tested in and out of the laboratory. Even though strong correlations with clinical 
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assessments have been observed, those in-lab experiments have shown that 

accelerometers worn near the hand count acceleration from the whole body as a 

combination of wrist, arm, trunk, and lower extremity movements rather than isolated 

hand movement, which is a key indicator of functional upper extremity use [50]. 

Hand activity can be quantified using instrumented gloves, goniometers, and 

motion capture systems, but such devices are cumbersome to wear and socially 

unacceptable, restricting their use to the laboratory. Liu and colleagues have recently 

proposed the use of a finger accelerometer as a companion to wrist accelerometry and 

showed correlation to a gold-standard metric of hand use [51]. However, in order to house 

and power the electronics, the ring is bulky and further studies are needed to prove user 

acceptability.  

In our laboratory, we demonstrated the viability of a device (the “Manumeter”) to 

detect finger and wrist movement while looking like jewelry. The user wears a small 

permanent magnet as a ring, and a sensing/logging wristband detects changes in the 

magnetic field as the ring moves. Distance travel by the finger was calculated by 

estimating joint angle using a radial basis function network applied to the magnetic field 

differential. In a first study, Rowe and colleagues showed that the Manumeter could 

accurately track wrist flexion and extension, radial and ulnar deviation, and finger flexion 

and extension on a single subject performing 12 tasks at different intensity levels. When 

compared to angles obtained with a goniometer device, most of the error stayed within 

6.4 degrees for all the angles estimated in the 15-minute in lab testing [39]. The same 

concept was validated for multiple days and multiple subjects (N=7). Consistent levels of 

accuracy were seen after a week without recalibration of the device and angle estimation 

accuracy was above 92% on average for multiple days of testing [52]. 

Rowe and colleagues also compared wrist accelerometry measurements with the 

Manumeter’s finger distance travelled to evaluate the relationship between arm and hand 

use in 12 tasks performed in the lab. Even though arm was a significant predictor of hand 

use, the relationship of arm and hand was substantially different among tasks. For 

example, hand to arm use was 12 times larger for some distal specific tasks compared to 
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proximal tasks. Four stroke survivors wore the Manumeter at home, during daily activities 

and a wide spread, consistent with that seen in the laboratory exercises, was observed 

in the relationship of arm and hand use [53] as participants performed many tasks 

throughout the day. These results show the utility of measuring hand activity.  

1.4. Using feedback to increase upper extremity use 

Wearable technologies have been proven useful for reversing disuse and 

promoting health and function of people without disabilities. For example, a Journal of the 

American Medical Association review [54] indicated that pedometer feedback is an 

effective way to increase walking activity and thereby improving difficult-to-change health 

outcomes such as body mass index and blood pressure.  

There is strong evidence that extrinsic feedback can improve motor learning after 

stroke [55], [56]. In an international effort, Dobkin and colleagues showed that giving a 

simple time feedback and positive reinforcement after a daily 10-meter walk resulted in 

significant faster walking speed compared to the age-matched control group. This 

increase in speed was enough that participants in the feedback group had the ability to 

walk at a pace associated with unlimited community mobility [57]. 

Giving feedback on upper extremity use has the potential to help stroke survivors 

out of the vicious learned non-use cycle into a virtuous cycle of hand usage and increase 

in performance. Some studies have proposed methods for this type of feedback. 

Markopoulos and colleagues, in 2011, tested usability and credibility of a wrist 

accelerometer device with graphical display for continuous feedback. Nine stroke 

survivors wore the one device on each wrist (wirelessly connected) and survivors gave 

positive feedback on usability and credibility [58]. Luster and colleagues, in 2013, 

evaluated the user tolerance and acceptance of a vibro-tactile cueing device embedded 

in a fabric wristband. Five stroke survivors wore one band on each hand (wirelessly 

connected) and wrist accelerometry using the filtered-threshold algorithm [41] was 

applied to measure upper extremity activity. Participants performed in-lab exercises and 
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reported high level of comfort and usability of the device [59]. To our knowledge, no further 

tests have been reported on these devices. 

More recently, in 2018, Held and colleagues proposed a protocol for a multi-center, 

randomized controlled trial using bimanual wrist accelerometry. They propose giving 

feedback through lights on a wrist-worn device (ARYS by yband therapy AG) and on the 

companion Android App. The feedback is given on the activity is counts, calculated as 

with a 0.1 g threshold over 1-minute aggregated accelerometer data, which is compared 

to a pre-defined daily goal (not specified). Daily goals will be updated based off 

measurements of arm use in the previous week. Vibrotactile feedback would be given 

when 30-minute sedentary periods are detected. All feedback will be regarding the 

impaired hand and the purpose of the second device is unclear [60]. No further 

publications on this trial have been found. 

Only three trials have evaluated the effects of feedback on upper extremity activity. 

In [61], chronic stroke survivors wore accelerometers on both wrists and received 

feedback in terms of amount of use and disparity of use between arms was given twice a 

week by a therapist. Although the feedback increased participants perception of paretic 

UE use, no change on actual use of the arm (as measured using the accelerometers) or 

in functional outcomes were found. A different approach was taken in [62], where 

subacute stroke survivors wore an accelerometer on the paretic wrist for three continuous 

hours a day. Participants were prompted to move their arm every five minutes. Significant 

increase in some clinical outcomes and a significant difference in amount of arm use 

between groups was observed, however baseline data for amount of arm use were not 

collected and there is no evidence that groups were balanced at baseline. The WAVES 

feasibility study has been the only one to give continuous feedback on amount of UE use 

after stroke, in which LED feedback and vibrotactile reminders on a wrist worn device 

were used in a multicenter pilot-controlled trial for acute stroke survivors. Amount of arm 

use as measured with the wrist-worn accelerometer were not presented and no 

comparative statistical analysis was performed [63].  
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The effects of continuous feedback on upper extremity use remain unknown. 

Moreover, all the aforementioned studies used wrist worn accelerometers to measure 

activity; however, in-lab experiments have shown that UE activity counts obtained using 

wrist-accelerometry measure accelerations from the whole body as a combination of 

wrist, arm, trunk and lower extremity movements rather than isolated, more functional 

hand movements.  

1.5. Regenerative rehabilitation in non-human primates 

The discussion so far has centered on technological approaches to increasing 

rehabilitation therapy dosage, or in other words, increasing active use of and practice with 

the impaired upper extremity. When neurologic damage is severe, increasing limb activity 

will likely only have only limited ability to improve limb movement ability. Regenerative 

rehabilitation is an emerging field that seeks to understand and optimize potential 

synergies between regenerative therapies (such as stem cell therapy) and rehabilitation 

[64]–[66]. In the context of paralysis following neurologic injuries such as spinal cord injury 

(SCI), the premise is that any candidate regenerative treatment should be coupled with 

intensive rehabilitation because sensory motor activity shapes the structure and 

connectivity of neurons [67], [68]. Optimal functional outcomes will likely depend on 

optimal forms of movement practice that drive appropriate connectivity. 

Regenerative medicine has struggled to scale treatments from rodents to humans, 

with several failed clinical trials in the context of stroke and spinal cord injury. Inserting an 

intermediate step of studying non-human primates is helping to address this problem 

[69]–[71]. However, a key need is emulating the rehabilitative movement training that 

individuals with neurologic injury will receive in any clinical trial. Failing to intensively train 

a patient following a stem cell graft would be unethical because it would potentially reduce 

the chances of functional benefit from the treatment. Yet there are currently few 

standardized protocols or technologies for delivering intense rehabilitative movement 

training in large animal models. Thus, it is currently difficult to replicate the movement-
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related inputs that are likely to modulate the effectiveness of neuroregenerative 

treatments.  

In the context of hand recovery, previous studies have typically used pellet retrieval 

tasks (such as the Brinkman or Klüver Board), to quantify and train monkey hand function 

(reviewed in [72]). This task requires subjects to retrieve pellets from wells of different 

orientations and depths. While performing this task allows hand dexterity to be quantified, 

it requires substantial finger dexterity to perform, and a human trainer to replenish the 

wells. Other studies have used sleeves that cover the hand to encourage use of the hand 

in hemiparetic models, but beneficial neuroplasticity still depends on active training of the 

hemiparetic hand [73]. One can emulate rehabilitation therapy using chair-based 

exercises with a human trainer, but this strategy is labor intensive and difficult to quantify. 

For humans, as reviewed above, robotics technologies have been developed to 

automate hand movement training following neurologic injury [74], [75]. Robotic therapy 

now refers to a diverse set of technologies and algorithms that can match or improve the 

clinical benefits achievable with conventional rehabilitation therapies [76]. There is 

currently a need to “reverse-translate” such robotic therapy device to help solve the 

problem of emulating rehabilitation therapy in large-animal models in regenerative 

medicine. 

1.6. Outline of the dissertation 

Rehabilitation of the upper extremity is paramount to achieve independence and 

increase quality of life after a neurologic injury. This dissertation focuses on 

understanding upper extremity use after neurologic injuries and developing tools to help 

the rehabilitative process in the living environment. In particular, we developed a new 

algorithm for measuring hand activity in the living environment using magnetometry 

(CHAPTER 2). We performed a first-of-its-kind randomized controlled trial of the effect of 

real-time hand movement feedback on hand recovery after chronic stroke (CHAPTER 3). 

We also used wrist accelerometry to develop new metrics of arm movement quality 

(CHAPTER 4). Finally, we developed an innovative robot for promoting on-demand hand 
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use by non-human primates receiving regenerative treatments for spinal cord injury 

(CHAPTER 5). 

Specifically, in CHAPTER 2, we describe the development and optimization of a 

calibration-free, computationally simple algorithm for counting hand movements with a 

wrist-worn device – the Manumeter. We characterized performance of the “HAND” 

algorithm in three ways – using a robotic simulator to mimic wrist and finger movement 

performed with different hand sizes at different speeds and amplitudes; by conducting in-

laboratory arm and hand movement experiments with unimpaired and stroke survivors; 

and lastly with persons with a s stroke wearing the Manumeter for one day at home during 

their daily activities. 

In CHAPTER 3, we report the results of a randomized controlled trial of the 

“Pedometer for the Fingers” – i.e. the combination of the HAND algorithm with the 

Manumeter. 20 participants with chronic stroke wore the Manumeter for three weeks. Half 

of the group did not receive hand movement feedback (the Manumeter display showed 

the time of day). The other received real-time feedback on amount of hand movement 

detected with the HAND algorithm, along with a daily goal. We aimed to answer the 

question of whether real-time feedback on amount of hand use can help people with a 

chronic stroke increase hand use at home. 

In CHAPTER 4, we explore the use of bimanual wrist accelerometry in the living 

environment with stroke survivors. Most studies using wrist accelerometry found strong 

correlations between accelerometry metrics and clinical assessments. However, we 

hypothesized that bimanual wrist accelerometry carries additional information compared 

to the information that standard clinical assessments typically produce. Using principal 

component analysis on data from the living environment that we acquired from nine 

persons with a stroke using bimanual wrist accelerometers, we verified that accelerometry 

can provide information that is distinct from clinical measurements. In particular, we 

propose a new measure of the quality of spontaneous UE movement: bimanual jerk 

asymmetry. We also introduced a new method of data visualization for bimanual wrist 

accelerometry.  
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In CHAPTER 5, we present the design of a robot for promoting hand use in a non-

human primate model of hemiparetic spinal cord injury. The goal is to synergize hand 

rehabilitation with novel regenerative therapy. The robot implements a novel bimanual 

manipulation paradigm that induced use of the impaired limb in the hemiparetic injury 

model. We show that subjects taught to interact with the robot before injury engaged with 

the device at a similar rate after injury across a range of hand impairment severity. We 

show how we could shape relative use of the arm by changing parameters of the robot 

controller and that we could increase the number of exercise repetitions per reward by 

lowering reward probabilities or increasing task difficulty. We also evaluate how the peak 

grip force that the subjects applied to the robot decreased after SCI, demonstrating that 

it can serve as a potential marker of recovery. 

CHAPTER 6 reviews the main contributions of this work and discusses directions 

for future research.  
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CHAPTER 2. CALIBRATION-FREE HAND MOVEMENT COUNTING 

ALGORITHM  

 

2.1. Contributions 

Background: Wearable sensors that count steps are useful for monitoring health 

interventions and increasing walking activity. Currently, however, there are few ways to 

non-obtrusively count finger and wrist movement, limiting the use of wearable sensing for 

health applications related to the hand, such as hand rehabilitation after neurologic or 

orthopedic injury. We previously developed the Manumeter, a wristwatch-like device that 

uses magnetometers to sense the movement of a magnetic ring worn on a finger. We 

developed an algorithm for the Manumeter that estimates wrist and finger joint angles 

during activities of daily living, but the algorithm requires subject-specific calibration and 

off-line computation. Methods: Here, we describe the development and optimization of a 

calibration-free, computationally-simple algorithm for counting hand movements (“HAND” 

– Hand Activity estimated by Nonlinear Detection), which uses a thresholding approach 

based on magnetic field changes. We characterized performance of the HAND algorithm 

in three ways. First, we used a robotic simulator to mimic wrist and finger movement 

performed with different hand sizes at different speeds and amplitudes. Second, 

unimpaired adults (n=8) and persons with hand impairment after a stroke (n=20) 

performed movement tests in the laboratory, including hand-only and arm-only exercises, 

upper-extremity clinical assessments, and a walking test. Third, persons with hand 

impairment after a stroke (n=29) wore the Manumeter for one day at home during their 

daily activities. Results: For the robotic simulator and hand-only movement test, the 

HAND algorithm counted movements with ~85% accuracy, missing mainly smaller, 

slower movements. The arm-only exercise caused about 4% crosstalk in HAND counts. 

HAND counts correlated strongly with the numbers of blocks the persons with a stroke 

picked up in a minute (i.e. their score on the Box and Blocks Test – BBT, r=0.68), 

indicating validity across a range of hand impairment levels. Walking caused spurious 



15 

 

HAND counts, but fewer than conventional wrist accelerometry (0.2 counts/step vs 0.95 

counts/step). The spontaneous HAND counts that participants achieved at home 

depended nonlinearly on the BBT score measured in the clinic (r=0.68), consistent with 

the hypothesis that some people with measurable hand function in lab still rarely use their 

hand for function at home. Conclusions: These results show how the HAND algorithm 

implements a “pedometer for the hand” for people with varying levels of hand impairment.  

2.2. Introduction 

Wearable sensing systems are increasingly being used for at-home monitoring of 

health-related parameters [37]. In the context of movement quantification, there are many 

systems available for providing feedback about the amount of movement of the lower 

extremities (i.e. step counters and pedometers [38]), but there are few available for 

providing feedback about the amount of movement of the upper extremities (UE). For 

example, to our knowledge, there are only two commercial products that provide real-time 

feedback about arm movement (ARYS by yband therapy AG and MiGo by FlintRehab). 

Both devices use wrist accelerometry to quantify arm activity, but neither appears to have 

been tested in a clinical trial.  

Wrist accelerometry has, however, been used in research settings to quantify real-

world UE activity, with many studies focusing on adults who have experienced 

hemiparesis after a stroke [39], [41], [44], [77] [45]–[47]. The most common approach is 

to count an arm movement every time the wrist acceleration exceeds a threshold, possibly 

with a weighting factor that scales the count based on the magnitude of the acceleration 

peak. Studies have shown a strong correlation between the ratio of the activity of the 

more and less affected limb with clinical UE assessment scores [refs]. Additional 

information about movement can also be extracted using other kinematic metrics such a 

jerk asymmetry, and may relate to the quality of movement [78]. 

Wrist accelerometry has limitations, however. Accelerometers worn on the wrist 

count acceleration of the whole body, which is a combination of wrist, arm, trunk, and 

lower extremity movements [50], [79]. This provides a source of noise that is difficult to 
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filter out when attempting to isolate the amount of UE movement. Further, measuring 

hand activity directly, or combining measures of hand and arm activity, would theoretically 

allow more accurate feedback about functional use of the UE, since various functional 

tasks require different combinations of hand and arm movement [80].  

Hand activity can be quantified using instrumented gloves, goniometers, and 

motion capture systems, but such devices are cumbersome to wear and socially 

unacceptable, restricting their use mainly to the laboratory. Liu and colleagues recently 

proposed the use of a finger accelerometer as a companion to wrist accelerometry and 

showed correlation to a gold-standard metric of hand use [51]. However, in order to house 

and power the electronics, the ring is bulky and further studies are needed to prove user 

acceptability. In our laboratory, we demonstrated the viability of a device – the Manumeter 

– to detect finger and wrist movement while looking like jewelry. The user wears a small 

permanent magnet as a ring, and a sensing/logging wristband uses an array of 

magnetometers to detect changes in the magnetic field as the ring moves. We developed 

an algorithm that uses these changes with a neural network to estimate the wrist and 

finger joint angles. We characterized the accuracy of this algorithm and showed suitability 

of the Manumeter for at-home use [39], [52], [53]. However, estimating joint angles in this 

way requires subject-specific calibration and computationally demanding algorithms. In 

addition, pilot users commented that total angular distance travelled by the joints was not 

an intuitive measure of their amount of hand use. 

To overcome these issues, here we describe the development and testing of a 

novel algorithm called HAND (Hand Activity estimated by Nonlinear Detection). We had 

two main goals in developing the HAND algorithm, first the hand counts had to be 

relatable, similar to steps with a pedometer, where one step is a well-defined, easy-to-

understand event, and second the algorithm had to be free of user-specific calibration, 

yet invariant to hand size. These two characteristics were desirable for creating a practical 

device capable of giving real-time, quantitative feedback of amount of hand use. 

The HAND algorithm achieves the aforementioned goals by thresholding the real-

time change in magnetic field – a computationally simple approach. As we show below, 
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by choosing a threshold close to noise level but requiring multiple samples to be above 

that threshold, the algorithm counts both slow and fast, and small and large, movements 

(similar to how a pedometer counts different types of steps). We also show that this 

approach assigns counts in a way that is fairly insensitive to hand size, sensor position 

on the wrist, and magnet orientation. Thus, it does not require user-specific calibration.  

In this paper, we first describe the design of the HAND algorithm and then 

experiments we ran to optimize its parameters. We then describe a series of experiments 

with unimpaired adults and persons with hand impairment after a stroke, both in the 

laboratory setting and at home, to characterize and validate HAND counts.  

2.3. Methods 

 

2.3.1. THE MANUMETER 

The Manumeter (Figure 1) consists of four magnetometers (LIS3MDL) located at 

25 and 42 mm away from each other on the corners of a board enclosed in a rectangular 

watch-like device (sensing range of ± 4 Gauss with a 16-bit resolution), and a six degrees-

of-freedom inertial measurement unit (IMU, LSM6DSL, accelerometer range set to ± 4G 

and gyroscope range set to ± 500 degrees per second, both with a 16-bit resolution). 

Time and date are managed by a real time clock (PFC2123). 

A system-on-a-chip (NRF52, Nordic Semiconductor) with an ARM Cortex M4 CPU 

and wireless capabilities is used to collect and store the data from the IMU and 

magnetometers into an on-board 4GB flash memory (MT29F4G01ADAGDWB-IT:G TR) 

at 52.6 Hz. The data can later be transferred using the Shockburst Enhanced wireless 

protocol to a secondary board carrying an SD card. The Manumeter also has an OLED 

display, status LED, and a push button available, but they were not used for the 

experiments presented in this paper. The Manumeter is powered with a non-

ferromagnetic battery (PGEB-NM651825-PCB) with 250mAH rated capacity that lasts for 

about 24 hours in continuous use or two weeks in stand-by mode. The companion ring 
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(i.e. the magnetic ring), worn on the index finger, is made of silicone and holds a N52 

grade neodymium magnet disk of 12.7 mm in diameter and 3.18 mm of thickness. 

 

 

Figure 1. The Manumeter. TOP the Manumeter in the plastic enclosure with the companion magnetic 
ring. BOTTOM the Manumeter board, with four magnetometers position at the corners of the board, an 

IMU with 6 degrees of freedom, an OLED display, and the non-ferromagnetic battery. A Cortex M4 
microcontroller controls the components.  

 

2.3.1.1. REMOVING THE EFFECTS OF EARTH’S MAGNETIC FIELD 

As the magnetic field of the Earth is approximately constant over small distances 

and the strength of the magnetic field of the magnet in the ring drops inversely to the 

square of the distance, we can remove the effects of the magnetic field of the Earth by 
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taking the differential signal between the magnetometers located closer to the magnetic 

ring and the ones further away. We used the average of the differential of the two 

magnetometers on the left side of the housing and the differential of the two 

magnetometers on the right side of the housing. Because we are taking an average of 

the two sides, the below algorithm works the same way when the device is placed on 

either hand. For the remainder of this paper we refer to this average as the “differential 

reading”. The differential reading ranges in magnitude up to about 0.12 milliGauss, which 

can be compared to Earth’s magnetic field, which is about 0.5 Gauss in California (and 

ranges from 0.25 to 0.65 Gauss across the globe). 

2.3.2. THE HAND COUNT ALGORITHM 

Since we were interested in a threshold-type algorithm, we first analyzed the 

number of sequential changes of the differential reading in the same direction in each 

axis; i.e. looking at one axis, how many times in a row did the differential reading increase 

or how many times in a row did it decrease?. The number of same-direction changes 

followed a normal distribution with average zero (Figure 3). The HAND algorithm takes 

advantage of this characteristic applying a semi-heuristic approach. It counts the number 

of times the differential reading changes in the same direction for two axes with at least 

a small minimum strength, and considers a hand movement have occurred when this 

count exceeds a threshold. The algorithm also monitors when one axis changes in the 

same direction for a (different and larger) minimum number of samples. This method can 

be interpreted as a peak detection algorithm using a small threshold but takes advantage 

of the differential reading’s short sampling period, which is approximately an order of 

magnitude shorter than a typical hand movement (which are 200-700 ms). This allows us 

to require multiple samples above the threshold before signaling that a movement has 

occurred.  

In total, then, there were four parameters to be selected for the algorithm: 1) 

LPcutoff – which is the low-pass filter cutoff frequency for a 2nd-order Butterworth filter 

that is applied to the differential readings; 2) the threshold, which is the minimum absolute 

value needed for a differential change in the differential reading (i.e. a “sample”) to be 



20 

 

counted as positive or negative for that specific axis (if smaller than the threshold, the 

sample is ignored); 3) SDs (2 axes), which specifies the minimum sequence length 

required for samples in the same direction on two axes. This parameter is a scale factor 

(constrained to be an integer and greater than zero) applied to the standard deviation of 

the distribution of the same-direction sample sequence length (Figure 2). Note, this 

distribution (and thus the standard deviation of the distribution) depends on the LPcutoff 

and threshold parameters, so we calculate the standard deviation after first applying the 

filter and the threshold to a data set with no hand movement (see arm-exercise below). 

The scaled standard deviation is rounded to the closest integer and used as the minimum 

number of same-direction samples required on two axes at the same time to signal that 

a hand movement has occurred. For example, if the standard deviation of the same-

direction sequence length is measured to be 1.5 and we set SDs (2 axes) to 4, at least 

two axes needed to have 6 or more samples (all positive or all negative) with absolute 

value greater than the threshold parameter to be counted as a hand movement; 4) + SDs 

(1 axis) is the number of additional same-direction samples (i.e. over the number 

indicated by SDs (2 axis)) that we require to occur on a single axis (instead of two axes) 

to signal that a hand movement has occurred. Expressing it as the number of additional 

samples makes it explicit that the algorithm applies a more stringent criterion when 

looking at only a single axis. Figure 3 shows an example of the algorithm applied to wrist 

extension data.  
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Figure 2. Distribution of the direction of the change in the differential reading for all axes combined. 

 

 

Figure 3. Example of data during a wrist extension with the hand open TOP Displacement in degrees of 
the wrist during an extension movement; MIDDLE Differential reading for each of the axes (x, y, z); each 
circle is one data point; dashed lines are the threshold of minimum (positive or negative) change to be 
counted; empty circles are not counted (within thresholds); filled circles are counted; BOTTOM current 
count for each of the axes; yellow shaded area is the threshold for two axes together -- when two axes 
are in the yellow area, it is counted; red shaded area is the threshold for one axis to be counted (in this 

example, the x axis reached the threshold and the movement was detected). For this figure, LPcutoff = 16 
Hz and threshold = 16 differential readings, which results in the standard deviation of 1.2 for the 

distribution of sample direction count. SDs (2 axes) and + SD (1 axis) were set to 4 and 3, respectively. 
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2.3.3. UPPER EXTREMITY ACTIVITY COUNTING USING 

ACCELEROMETRY 

To compare the HAND algorithm to another measure of UE activity, we used a 

variation of the wrist accelerometry algorithm proposed in [41], [79]. Using data acquired 

from the accelerometers in the Manumeter, we calculated the sum of the absolute change 

from sample to sample over a running window of 0.25 second (about 13 samples). We 

applied a peak detection algorithm to the running sum with a threshold of 0.33 g and 

limited possible detection to a maximum of 4 peaks per second, where each peak was 

defined as an “activity count”. Note that an activity count can be caused by arm 

movement, but also, by stepping or trunk or hand movement. We selected this variation 

of an established wrist accelerometry algorithm so that we could compare the output of 

the HAND algorithm and the activity counts  

2.3.4. EXPERIMENTAL PROTOCOL 

To evaluate the performance of the HAND algorithm, eight volunteers (six males 

and two females) with an average age of 26.1 ± 3.0 years performed hand and arm 

exercises in the laboratory. In addition, two groups of chronic stroke survivors were 

recruited (see Table 1). All participants provided written consent and the UC Irvine 

Institutional Review Board approved all experiments.  

The first group of participants with a stroke first completed a visit to the laboratory 

where demographic information was collected. The therapist fitted and donned the 

Manumeter and the magnetic ring on the affected wrist and index finger of the impaired 

hand, then performed standard clinical assessments (see below). On leaving the 

laboratory at the completion of the assessments, participants were instructed to wear the 

devices throughout the rest of their day, continuing with their normal daily routine until 

going to take a shower or turning in to sleep, when they were instructed to remove the 

device. They brought the device back or mailed it back in the next day. We chose to avoid 

asking the participants to don and doff the device to ensure that they did not swap hands 
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or misplace the device during the data collection. The participants were also asked to log 

their activities during the day and the time they removed the device, which we used to 

validate the time stamping of the data.  

Table 1. Stroke survivors’ demographics for HAND algorithm 

 

± standard deviation. 

 

The second group of participants who had experienced a stroke visited the lab two 

more times (these visits were part of a separate study looking at the effect of real-time 

hand feedback on motor recovery, the results of which will be presented in the next 

chapter). The second visit was 4 weeks and the third visit 4 months after the first visit. 

The clinical assessments were again performed during all visits while wearing the 

Manumeter. In the last visit, participants performed a 1-minute walk test. Once again, 

participants were asked to wear the Manumeter at home during their normal daily 

activities.  

2.3.4.1. UPPER EXTREMITY EXERCISES 

Unimpaired participants and both groups of individuals with a stroke performed the 

hand-only and arm-only exercises. For the hand-only exercise, subjects sat on a wooden 

Group 1

(n=9)

Group 2

(n=20)

Age 68 ± 9 57 ± 15

Gender (Male [M]/Female [F]) 6 M/3 F 16 M/4 F

Time since stroke 

(monts)
30 ± 23 40 ± 33

Side of hemiparesis

(Right [R]/Left [L])
4 R/5 L 12 R/10 L

Type of stroke

(Ischemic [I]/Hemorrhagic [H])
6 I/3 H 12 I/10 H

BBT 27 ± 20 21 ± 18

FMUE 43 ± 15 40 ± 13
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chair with their arms on the chair’s armrest. A tablet was placed at a comfortable distance 

in front of the subject. The subjects were instructed to mimic the hand postures prompted 

on the tablet. To perform the change in hand posture, participants were asked to perform 

one single, smooth movement of the hand. The postures were composed by 5 wrist 

positions: neutral, flexed, extended, ulnar deviated, and radially deviated, each of them 

with fingers flexed or extended for a total of 10 hand postures. Each posture was 

prompted 5 times for 2 seconds for a total of 50 prompts. Figure 4 shows two sample 

hand postures presented to the participants. The accuracy of the Manumeter was 

calculated as the percentage difference with respect to the total, actual, number of 

executed hand postures (i.e. 50).  

  

Figure 4. Screenshots of movie that showed desired hand postures to participants during the hand-only 
exercise. 

 

For the arm-only exercise (AE), subjects donned a splint holding the wrist and the 

finger in a neutral position and stood. A tablet was again placed at a comfortable distance 

in front of the subject. Starting with their upper arm next to the body, the elbow flexed at 

90 degrees, and the hand in front of the body, participants were asked to perform an arm 

movement in the direction presented on the screen and come back to the original arm 

position (two movements per direction). Five directions were used: front, up, right, left, 

and rotation of the wrist (supination). The directions were presented as text and 

graphically using arrows. A new direction was prompted every 2 seconds. Each direction 
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was presented 20 times for a total of 200 arm movements (20 x 5 directions x 2 

movements/direction). Any hand counts during this exercise were considered false-

positives (since the wrist and fingers were held in a splint that prevented their movement), 

and the “cross-talk” error was calculated as the percentage of the arm movements there 

were counted as hand movements 

2.3.5. CLINICAL EVALUATIONS 

Participants with hand impairment after a stroke were evaluated by an experienced 

physical therapist on a well-established clinical measure of UE function, the Box and 

Blocks Test (BBT) [81], and a well-established measure of UE impairment, the Fugl-

Meyer Upper-Extremity Subscale (FMUE) [82]. They also walked for one minute while 

wearing the Manumeter. Participants were instructed to walk at their normal speed in a 

long hallway while two people counted the number of steps they took. No instructions 

regarding the Manumeter, hand movements, or finger movements were given during 

these tests. 

2.3.6. ALGORITHM CHARACTERIZATION WITH A ROBOTIC 

SIMULATOR 

To test the HAND algorithm ability to count movements for different hand sizes, 

movement speeds, and movement amplitudes, we set up a robotic test bed to emulate 

wrist and finger movements. The test bed had a servo motor connected to an acrylic piece 

using two strings (Figure 5, left). A magnetic ring was placed on the acrylic piece at 

different distances depending on the hand size and movement to be emulated. The 

Manumeter was aligned with the emulated wrist (Figure 5, right).  

This setup allowed us to simulate two types of movement: 1) wrist flexion/extension 

with the metacarpo-phalangeal (MCP) joint extended and 2) finger flexion/extension with 

the wrist in a neutral position (palm of the hand parallel with the forearm). For wrist 

flexion/extension, the servo motor emulated the wrist joint and the acrylic piece 

represented the extended hand and index finger. The distance from the Manumeter to 

the magnetic ring followed dimension #2 in Figure 5. For the finger flexion/extension, the 
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servo motor emulated the MCP joint of the index finger and the acrylic piece represented 

the index finger. The distance from the Manumeter to the emulated joint followed the 

dimension #1 in Figure 5 and the distance from the Manumeter to the ring was kept as 

dimension #2. 

We compared the performance of the algorithm for three simulated hand sizes 

(small, medium, and large) based on [83]. The small hand used the measurements of the 

5th percentile of women’s hand, the medium used the average between the median hand 

sizes of men and women, and the large hand used the 95th percentile of the men’s 

measurements as shown in Figure 5. The movements ranged from 5 to 90 degrees in 

size with 5 degrees increments. The movement velocity followed a bell-shaped profile 

with absolute peak angular velocities ranging from 20 to 600 degrees/second with 

increments of approximately 10 degrees/second. In total, 986 movements were 

performed for each hand size and each movement type. These movements were then 

categorized as slow (<200 degrees/second), medium (200 to 400 degrees/second), and 

fast (>400 degrees/second) based on average absolute wrist movement speed presented 

in [84].  

 

Figure 5. Left: Robotic system to emulate hand movements. For wrist flexion and extension, the wrist joint 
was emulated, and the acrylic piece represented the hand and index finger together. For finger flexion 
and extension, the MCP joint of the index finger was emulated and the acrylic piece represented the 

index finger only. Right: Measurements used for defining the emulated hand sizes in centimeters. The 
Manumeter was aligned with the wrist crease baseline and the magnetic ring was placed touching the 
interdigital folds of the index and middle finger. Dimension #1 is from the wrist crease baseline to the 

intersection of the distal transverse palm crease with the ulnar edge of the palm. This is the best 
approximation to the center of rotation for the MCP joint of the index finger. Dimension #2 goes from wrist 

crease baseline (which closely aligns with the center of rotation of the wrist) and the interdigital folds of 
the index and middle finger. 
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2.4. Results 

 

2.4.1. SELECTING THE HAND ALGORITHM PARAMETERS 

A total of eight unimpaired participants completed the arm-only exercise (AE) and 

hand-only exercise (HE) while wearing the Manumeter on the left and right arm. To 

explore the effects of the LP Cutoff and threshold parameters, the SDs (2 axes) and + 

SDs (1 axis) where defined as 5 and 2, respectively. We applied the hand count algorithm 

to the AE and HE data using a combination of no filtering, 2, 4, 8, and 16 Hz for the LP 

Filter and a 0, 2, 4, 8, and 16 to the threshold. The percentage error for AE and HE are 

presented for each pair of LP cutoff and threshold (Figure 6, left). As can be seen, there 

is a tradeoff between counting false positives during AE and miscounting during HE. In a 

range of LP cutoff (4 to 16 Hz) and thresholds (4 to 8 differential readings) both errors are 

minimized. Based on these results, we selected 8 Hz for the LP Cutoff and 8 for the 

threshold parameter, which corresponded to an average error of 4.14% for AE and 

10.14% for HE.  

Using these selected parameters, we explored the effects of SDs (2 axes) and + 

SDs (1 axis) on the algorithm performance. The average absolute error for the AE and 

HE were calculated for each combination of parameters. Smaller errors were found when 

SDs (2 axes) and + SDs (1 axis) added to 7 (Figure 6, right). The overall best performance 

was obtained with 5 and 2 for SDs (2 axes) and + SDs (1 axis), respectively. For the 

remainder results presented here, the parameters of the algorithm were set to LP Filter = 

8 Hz, threshold = 8 differential readings, SDs (2 axes) = 5, + SDs (1 axis) = 2. 
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Figure 6. HAND algorithm parameter exploration. Left: Counting error for the arm-only exercise (AE) and 
the hand-only exercise (HE) for different thresholds (represented by the colors) and cutoffs (represented 
by the markers) for the low-pass filter. For AE, the error is calculated as the percentage of hand counts to 

the number of arm-only movements averaged across subjects. For HE, the error is calculated as the 
absolute difference between the number of hand counts as a percentage to the number of actual hand 
movements performed averaged across subjects. For both exercises, smaller errors are preferred. The 

errors for the selected parameters (LP filter cut-off = 8 Hz, threshold = 8) are highlighted. Right: Average 
error for AE and HE of the hand count algorithm for different SD parameter 2 axes (x-axis) and number of 
extra SD for 1 axis (represented by the color) using LP filter cut-off = 8 Hz, threshold = 8. The two inner 

figures show the percentage error for AE (left) and HE (right). The selected SDs are 5 for two axes plus 2 
SDs for one axis. 

 

 

2.4.2. ALGORITHM CHARACTERIZATION: EFFECT OF AMPLITUDE 

AND SPEED 

To understand the effects of movement amplitude and speed on the accuracy of 

the HAND algorithm, we used a robotic device to emulate two types of hand movements: 

wrist flexion/extension and finger flexion/ extension. Both types of movements were 

executed ranging from 5 to 90 degrees in amplitude and 20 to 600 degrees/second for 

absolute peak angular speed. The emulation started with small and slow movements, 

going through the range of angular velocities for each amplitude (Figure 7, bottom). Due 

to limits on angular acceleration, the maximum peak angular speed was reduced for 

smaller movement amplitudes – similar to what is seen with human wrist movement [84]. 

The ratio of counted wrist and finger movements to the number of known movements for 

was calculated for three different hand sizes (Figure 7, top). A line of unity slope was 
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expected if all movements were counted. Instead, the slope is reduced for movements 

smaller than 20 degrees of amplitude. There are also ripples when peak movement 

speeds are reset, showing the algorithm misses counts for slow movements. Both effects 

are more prominent in larger hands. The final accuracy for wrist flexion and extension 

was 87%, 93%, and 83% and for finger flexion and extension was 94%, 84%, and 70% 

for small, medium, and large hand, respectively (out of a total of 986 movements for each 

emulated movement and hand size). Note that, even though there is a decline in accuracy 

with increase in hand size, the hand sizes emulated here are on the extremes expected 

for humans (large hand in the 95th percentile for men), so this error can be seen as a 

worst-case estimate for the algorithm performance. 

We analyzed the counting probability for slow, medium, and fast movements 

separately (Figure 8). For slow movements, and in particular, for finger flexion and 

extension, increases in hand size decreased the algorithm’s performance. That is likely 

due to the smaller total distance travelled by the magnetic ring for the finger movement 

compared to wrist movement. For all cases, lower probabilities were found during slow 

movements with steady decrease for slower movements (below 20% in the worst-case 

scenario). Due to physical constraints of the emulation system, movement amplitudes 

were limited to 90 degrees; however, for all movement types, movement speed, and hand 

sizes (with the exception of large hand, slow movements for finger flexion and extension) 

the algorithm accurately counted all the movements for the largest amplitudes (75 to 90 

degrees) indicating that the same would be true for larger movements. For large hand 

and slow movements of the finger, the algorithm had a counting probability of 78% for the 

largest amplitudes. 
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Figure 7. Progression of hand counts for the emulated movements. Top plots show the number of counts 
over the total expected counts for wrist flexion and extension (left) and finger flexion and extension (right) 

using emulated data. The bottom figure shows the progression of the emulated movements that 
increased in amplitude over time sweeping through a range of speeds each amplitude. The range of 

speeds changes for the different amplitudes due to limitations on the maximum angular acceleration of 
the motor.  
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Figure 8. Probability of counting for small, medium, and large hands (top to bottom) for wrist flexion and 
extension and finger flexion and extension (right to left) using emulated data. For each hand size and 

exercise type, absolute maximum angular speed of the movement was used to classify it as slow, 
medium, and fast movement. The probabilities were calculated as the number of hand counts over the 

number of movements. 
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2.4.3. LABORATORY-BASED VALIDATION 

A total of 8 unimpaired participants and 9 stroke survivors performed the hand-

only exercise (HE) with a total of 50 hand movements. Stroke survivors performed the 

exercise only with their impaired hand. Two of the stroke survivors could not perform the 

exercise without assistance and were allowed to use their unimpaired hand to help 

complete the movements. Unimpaired participants performed the exercise twice, one with 

each hand. Unimpaired participants performed the arm-only exercise (AE) with both arms 

using a splint -- similar results would be expected for impaired participants, as this 

exercise is mainly concerned with analyzing the effect of general movements across the 

local magnetic field, which would be expected to not depend on impairment. For the HE, 

in which 50 hand movements were expected, the stroke survivors had an average hand 

count of 60.9 ± 11.1 for the participants who could perform the movements with no 

assistance and 61 and 57 for the two subjects that self-assisted their hand movement. 

The unimpaired participants had on average 52.4 ± 4.9 hand counts, a significantly 

smaller number (t-test, p=0.03). This is likely because, during the HE, for some exercises 

some stroke survivors struggled to change smoothly from one indicated posture to the 

next, performing the hand posture using two separate movements, which were both 

counted, increasing the HE count.  

For the AE, in which no hand counts were expected, participants had an average 

of 6.8 ± 8.8 hand counts after 200 arm-only movements (Figure 9).  

Twenty stroke survivors wore the Manumeter on their impaired arm while 

performing the Box and Blocks Test (BBT) and the Fugl-Meyer Upper Extremity 

Assessment (FMUE) up to three times (separate visits), and during a one-minute walk 

test (Figure 10). We analyzed how the participants’ clinical scores on these tests related 

to the hand counts obtained during the test, as well as the “activity counts” obtained from 

the accelerometers in the Manumeter, using a conventional arm accelerometry algorithm. 

For this analysis, we computed “hand use intensity” and “activity intensity” as the hand 

(or activity) counts per minute the participant was active performing the test. 
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For BBT, there was a strong correlation between BBT score and the hand use 

intensity (𝑟 = 0.67, 𝑝 < 0.01) and activity intensity (𝑟 = 0.64, 𝑝 < 0.01). If the participants 

with BBT = 0 were ignored, the slope for hand counts and activity counts with respect to 

BBT score were 0.9 and 1.8, respectively. This was expected, as for each block 

transferred, participants needed two movements of the arm and one of the hand 

(releasing the block can usually be done with a small movement that the Manumeter did 

not count) and the test takes 1-minute. The ratio of hand to activity was approximately 

constant (0.37 for all participants, 0.5 for participants with BBT>0) across the different 

levels of impairment (𝑟 = 0.20, 𝑝 = 0.06).  

 

Figure 9. Hand counts for hand-only and arm-only exercises performed in the laboratory, plotted as a 
function of exercise progression. Subjects were divided into impaired and unimpaired. Two subjects in the 
impaired group could not perform the HE without assistance of their unimpaired hand and are presented 
with the dashed lines. The impaired, assisted subjects had an average count accuracy of 82% for HE. 
The remainder of the impaired subjects (N = 7) performed the exercise without assistance and had an 

accuracy of 78% for HE. Unimpaired subjects (N=8) had a count accuracy of 95% for HE. Perfect 
counting for HE would be a line with a slope of 1. Only unimpaired subjects performed AE with 96% of 

crosstalk. Shaded areas show 1 SD. 
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Figure 10. Hand use intensity, activity intensity, and hand use to activity ratio (from top to bottom) during 
BBT, FMUE, and 1-minute walking test (from right to left) performed in the lab. Linear fit is presented with 

the shaded area showing the 95% confidence interval. Each color (connected by lines) represents one 
subject, and each subject can have one to three samples for each test. 

 

For the FMUE tests, there were strong correlations between hand use intensity 

and FMUE score (𝑟 = 0.68, 𝑝 < 0.01), and hand to activity ratio and FMUE score (𝑟 =

0.57, 𝑝 < 0.01). In particular, there was a sharp increase in hand counts after FMUE score 

of 40. Activity intensity had a weaker, yet significant, correlation with the FMUE score (𝑟 =

0.42, 𝑝 < 0.01).  
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For the 1-minute walk test, there was a stronger correlation activity intensity and 

step counts (𝑟 = 0.6, 𝑝 < 0.01) than hand intensity and step counts (𝑟 = 0.37, 𝑝 = 0.03). 

This shows that the HAND algorithm is less affected by walking than accelerometry alone. 

 

Figure 11. Hand use intensity at home for different levels of impairment using two sampling rates for the 
Manumeter. Parameters for the 30.3 Hz rate were obtained in a similar manner as presented in this paper 

for the 52.6 Hz rate. 

 

2.4.4. AT-HOME VALIDATION 

A total of 29 stroke survivors wore the Manumeter at home during their daily 

activities. The first 9 participants wore a previous version of the Manumeter in which data 

was sampled at 30.3 Hz; however, the same algorithm was used, and selection of 

parameters was performed in a similar fashion presented here. These participants only 

wore the Manumeter for one day, for 9.21 ± 1.75 hours. The remainder 20 stroke survivors 

wore the Manumeter twice, first for 5.88 ± 2.41 hours and then for 6.85 ± 1.98 hours. Data 
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was lost for three participants in their first visit due to technical problems with the device. 

Intensity of hand use, given as hand counts/hour, were calculated for all participants 

(Figure 11), and we found a significant correlation between hand intensity of hand use, 

and BBT score (𝑟 = 0.64, 𝑝 < 0.01). Participants with low clinical hand function (i.e. low 

BBT’s) generated lower hand counts during spontaneous movement at home. There was 

a nonlinearity in this relationship, such that there was a sharp increase in hand activity for 

participants with BBT > 30 (Figure 16). 

One participant (BBT = 40) wore the Manumeter at home for 15 days with the 

magnetic ring and 6 days without the magnetic ring (Figure 12). The amount of hand 

counts without the magnetic ring was on average 18% of the hand counts during the days 

with the ring (similar level of activity was seen on both periods). These counts come from 

distortion in the Earth’s magnetic field caused by ferrous metal object or local magnetic 

field from electronic devices (e.g. cell phones). 

 

Figure 12. Data for one subject (BBT = 40) using the Manumeter for 21 days. The subject wore the 
Manumeter without the magnetic ring ([-] ring) for 6 out of the 21 days and with the ring ([+] ring) for the 
remainder days. The hand and activity counts were smoothed using a 1-hour running window average 
and presented in the middle plot as the average across the days with and without the ring. The left and 

right plots show the distribution of hand and activity counts per hour with a line representing the average 
intensity. 

 



37 

 

We compared hand use intensity as a function of level of impairment for people 

with impairment on the dominant side (before stroke) versus those with impairment on 

the non-dominant side (Figure 13). BBT and hand use intensity were averaged for those 

with multiple data points to remove dependency. Strong, significant correlations were 

observed for both cases (𝑟 = 0.78, 𝑝 < 0.01 for impairment on dominant side and 𝑟 =

0.58, 𝑝 = 0.04 for impairment on non-dominant side). The linear model 

ℎ𝑎𝑛𝑑 𝑢𝑠𝑒 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦~𝐵𝐵𝑇 ∗ 𝐼𝑚𝑝𝑎𝑖𝑟𝑒𝑑𝐼𝑠𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑡 (where 𝐼𝑚𝑝𝑎𝑖𝑟𝑒𝑑𝐼𝑠𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑡 is a 

categorial variable determining if the impaired side is the dominant side) showed no 

significant difference for the intercept or interaction between BBT and 

𝐼𝑚𝑝𝑎𝑖𝑟𝑒𝑑𝐼𝑠𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑡 (p=0.35 and p=0.50, respectively). This shows that the hand use 

intensity as measured with the HAND algorithm was a strong predictor of clinical hand 

function, independent of impaired to dominant side interaction. 

2.5. Discussion 

This paper describes and characterizes a calibration-free, computationally simple 

algorithm for measuring hand activity with the Manumeter, a wearable sensor that looks 

like jewelry. We optimized the parameters for the algorithm to simultaneously reduce 

errors in counting hand movement in a laboratory-based exercise, and spurious hand 

counts from arm-only exercise. We characterized the algorithm performance using a 

robotic device that emulated wrist and finger movement, and using in-laboratory 

movement exercises performed by unimpaired participants and stroke survivors. Stroke 

survivors also wore the Manumeter during a 1-minute walking test and during standard 

clinical tests (BBT and FMUE). We showed that the Manumeter was less affected by 

walking than accelerometry alone, and that the hand counts obtained during these tests 

were strongly correlated with the scores in the BBT and FMUE. Finally, stroke survivors 

wore the Manumeter at home during their daily activities. We showed that for a range of 

hand impaired level (BBT score < 30), they exhibited a low level of hand use intensity. 

Hand use rose quickly for participants with BBT score > 40. 
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2.5.1. RATIONALE FOR THE HAND ALGORITHM  

Previous versions of the Manumeter have successfully measured total distance 

traveled by the finger and was validated for multiple days with no recalibration. However, 

it required user-specific calibration, which was sensitive to the positioning of the device 

on the wrist, and orientation of the ring. The algorithm was computationally complex, and 

even though it had the potential to be embedded in a wrist-worn device, the power 

requirements would be elevated. 

A computationally simple thresholding approach has been used for wrist 

accelerometry to measure upper extremity activity out of the clinic and the same 

technique could be applied to the Manumeter data. However, we have observed lower 

signal-to-noise ratio with the Manumeter compared to wrist-accelerometry and setting the 

appropriate threshold for different movements speeds and hand sizes would be 

challenging. Moreover, even though it has been successful in estimating upper-extremity 

activity, the counts obtained with the stand thresholding approach for wrist accelerometry 

were not relatable to the user. 

2.5.2. ALGORITHM ACCURACY 

We first investigated the Manumeter accuracy through a hand and wrist emulated 

system with accuracies from 70 to 93%. However, some of the emulated movements 

were well below human average speeds. Hoffman and Strick asked unimpaired 

participants to step-track angles with their wrist. In movements of 20 degrees, participants 

had a peak velocity of 200 degrees/second when asked to move at “half natural” speed 

[84]. In our analysis, movements with peak velocity below 200 degrees/second (down to 

20 degrees/second) were classified as slow movements and were the main source of 

inaccuracy.  

We further investigated the algorithm accuracy through in-lab experiments. An 

average of 90% accuracy for unimpaired participants and 80% for stroke survivors was 

found. In both cases the Manumeter tended to overestimate the counts. We attributed 

some of the inaccuracy to participants doing multiple movements when changing from 
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one posture to the next. This was particularly prominent for stroke survivors who 

decomposed movements into segments. Pedometers have been reported to have similar 

accuracy (70% - 90%) when measuring distance traveled outside of the clinic [85]; 

therefore, there is utility for wearable devices at this level of accuracy. For wrist 

accelerometry with stroke survivors, the variability in the test-retest has been shown as 

39% for raw counts and 3% for threshold-filtered counting [41]. However, these algorithms 

cannot report metrics of accuracy on number of movements as they are not counting 

individual movements. 

 

Figure 13. Interaction between handedness and stroke impairment side for hand use intensity versus 
impairment level. Participants with multiple data points were averaged (both BBT and hand use intensity). 

Both linear models are significant: (𝑟 = 0.78, 𝑝 < 0.01) for impairment on dominant side and (𝑟 = 0.58, 

𝑝 = 0.039) for impairment on non-dominant side. The intercept and interaction between BBT and the 
relation impaired to dominant side were not significant (p=0.35 and p=0.50, respectively). 
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2.5.3. HAND COUNTS OUTSIDE OF THE CLINIC 

Twenty-nine stroke survivors wore the Manumeter at home for one or two days (4 

months apart). Intensity of hand use, given as hand counts/hour, was significantly 

correlated with BBT score (r = 0.64). Two of the low-level stroke survivors (yellow and 

green on the left of Figure 11) were much younger than the remaining participants (18 

and 24 years old compared to an average of 63 years old) and still going to school, which 

might help them get more hand counts than expected at that level of motor capacity. The 

remaining participants with BBT < 30 were approximately constant in hand use intensity 

at around 200 hand counts/hour (similar to the intensity measured when one subject did 

not wear the magnetic ring for several days). There was a sharp increase in hand use 

intensity as participants BBT score increased beyond 30. This is consistent with results 

presented in [86], in which sixty-seven stroke survivors performed several clinical 

assessments and were classified into low, moderate, and high level of upper limb function 

using a clustering algorithm across the clinical assessments. A similar threshold of 30 

blocks in the BBT was observed to split between high and moderate function levels. The 

main difference between the moderate and high-level groups was possession (or lack of) 

fine manual dexterity. Even though similar gross function (e.g. range of motion, speed, 

and strength) can be observed in both groups, it is the hand dexterity ability of the high-

level participants that make the difference when performing everyday tasks [86].  

We also analyzed the effects of impairment on dominant and nondominant side. 

Several studies have investigated these effects on wrist accelerometry [43], [47], [87], 

with a general agreement that unilateral wrist accelerometry is affected by impairment 

and dominance side. In [20], it was suggested that unilateral wrist accelerometry might 

not be useful for measuring arm activity out of the clinic as no significant correlation with 

clinical assessment (BBT, FMUE, and ARAT) was found. However, the accelerometer 

was only used for 3 hours each day. In [47], [87] showed similar results for larger 

populations, in which unimanual and bimanual (ratio of impaired to unimpaired) 

accelerometry had weak correlation with self-assessed amount of arm use (MAL-AS) 

when the impaired and dominant side were different (r=0.28 and r=0.32 for [47], [87], 
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respectively) than when they were the same (r=0.56 and r=0.72 for [47], [87]) . These 

differences were not observed with the HAND algorithm, where hand use intensity was 

strongly, significantly correlated with BBT for both groups (impairment and dominance on 

the same or different sides, r=0.58 and r=0.78, respectively). One could suppose that this 

difference relates to the perception of limb use (MAL) versus capacity, however we see 

similar correlations for both groups for the subset of participants that took the assessment 

(r=0.54 for impairment on the nondominant side (N=9) and r=0.52 for impairment on the 

dominant side (N=11)) An explanation could be that the hand movements measured here 

are more functional and therefore more connected to actual use of the arm rather than 

general movements of the limb. 

2.5.4. LIMITATIONS AND FUTURE WORK 

Even though the HAND algorithm had low crosstalk when arm-only exercises and 

the walking test were performed, more advanced data processing techniques could be 

applied to further reduced these erroneous counts. Accelerometry data could be 

incorporated to support distinguishing hand movements from walking and arm 

movements. Slow hand movements were the other source of problem. It is not known the 

amount of slow, small hand movements participants were performing at home. It is 

possible that the HAND algorithm is undercounting movements for those with lower motor 

capacity and further investigation would be needed to understand the magnitude of this 

error. 

In an ongoing randomized controlled trial, we are investigating the effects of giving 

real-time feedback on hand activity to stroke survivors. We hypothesize that quantitative, 

real-time, relatable feedback on amount of hand use can increase hand activity at home 

and promote motor recovery. We also aim to explore the HAND algorithm and the 

Manumeter to quantify hand use outside of the clinic for aged matched control 

participants. 

  



42 

 

CHAPTER 3. EFFECTS OF HAND COUNT FEEDBACK ON RECOVERY 

 

3.1. Contributions 

In CHAPTER 2, we introduced, characterized, and tested the HAND algorithm. In 

this chapter, we use the HAND algorithm to test, in a randomized controlled trial, whether 

providing a daily goal and real-time feedback on amount hand use to stroke survivors can 

increase their hand activity and drive recovery. Background: Quantitative real-time 

feedback can modulate health-related activity; for example, pedometers are effective in 

increasing walking activity and overall health. Here, we report the results of a randomized 

controlled trial of a “Pedometer for the Fingers”, the Manumeter, designed for home use 

by people with hemiparesis following a stroke. The Manumeter is a wristwatch-like device 

that senses the magnetic field of a small magnet ring worn on the index finger. We use 

the HAND (Hand Activity estimated by Nonlinear Detection) algorithm, a calibration-free, 

computationally simple algorithm that uses the direction of the magnetic field to count 

hand movements, enabling real-time feedback on the number of hand movements using 

a built-in display. Study design: Assessor-blinded, parallel-group, randomized controlled 

trial. Objective: To test whether real-time feedback on amount of hand use can help 

people with a chronic stroke increase hand use at home and improve clinical hand 

function. Methods: Twenty participants with a chronic stroke wore the Manumeter for one 

day (baseline, no feedback) and then for three weeks (with or without feedback). Subjects 

in the experimental group received a daily goal based on their baseline Box and Blocks 

Test (BBT) score and real-time feedback on the number of hand movements performed 

while wearing the Manumeter. Subjects in the control group used the device as a 

wristwatch. Both groups also received a book of upper extremity exercises tailored by a 

blinded physical therapist. Participants returned for a follow-up visit three months after 

the end of the intervention, when they wore the Manumeter for another day (follow-up, no 

feedback). The primary outcome was the BBT score at 3 months. Results: The 

experimental group wore the Manumeter significantly longer (11.2±1.3 hours per day) 
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compared to the control group (10.1±1.1 hours per day), but did not detectably increase 

their hand use intensity, as measured with the device. BBT and Motor Activity Log score 

did not improve significantly at 3 months, although the scores on the Fugl-Meyer Upper 

Extremity Scale and the Action Research Arm Test did, for both groups. There were no 

significant differences between groups for any of the clinical outcomes, although there 

was a trend toward improved clinical hand function for the experimental group in multiple 

outcome measures. There was a nonlinear relationship between clinical hand function 

and intensity of hand use, where people with BBT score up to ~25 did not use their hand 

at home. Conclusions: Interactive feedback from a wearable device that senses hand 

movement was ineffective in increasing hand use intensity and improving hand function. 

At-home hand use after a stroke is very low even for people with a moderate level of 

clinical hand function, consistent with the concept of learned non-use. 

3.2. Introduction 

It is estimated that one person will suffer a stroke every 40 seconds with more than 

7 million stroke survivors currently living in the United States alone [2]. More than 50% 

have long-term upper extremity (UE) motor deficits, reducing their independence and 

capacity to perform daily activities [5], [6]. These limitations lead to compensatory 

behavior with the unimpaired limb and reduced use of the impaired limb, which further 

reduces their performance on daily tasks driving a vicious cycle called learned non-use 

[17]. 

Wearable technologies have already proven useful for reversing disuse and 

promoting health and function of people without disabilities [88], [89]. For example, a 

recent review in the Journal of the American Medical Association indicated that daily 

pedometer feedback is an effective way to increase walking activity for people without 

disabilities and thereby improve difficult-to-change health outcomes such as body mass 

index and blood pressure [54]. Wearable sensing has the potential to help stroke 

survivors out of the learned non-use cycle. However, it requires a device capable of giving 

real-time, relatable feedback about the amount of hand use. 



44 

 

Wrist-worn accelerometers have been increasingly used to measure out-of-the-

clinic UE spontaneous activity after stroke. Studies have shown a strong correlation 

between clinical assessments (e.g. Fugl-Meyer Upper Extremity Scale, Action Research 

Arm Test, Box and Blocks Test) and UE activity using threshold-based algorithms applied 

to wrist accelerometry, which validates their ability to continuously assess UE impairment 

in community living. However, even though extrinsic feedback using wearable sensors 

has the potential to benefit stroke survivors [56], most studies have applied it to the lower 

extremity [90]–[92]. Only three trials have given feedback about the upper extremity, with 

only one of them giving real-time feedback to the subjects. 

In [61], chronic stroke survivors wore accelerometers on both wrists and received 

feedback in terms of amount of use and disparity of use between arms, which was given 

twice a week by a therapist. Although the feedback increased participants perception of 

paretic UE use, no change on actual use of the arm (as measured using the 

accelerometers) or in functional outcomes were found. A different approach was taken in 

[62], where subacute stroke survivors wore an accelerometer on the paretic wrist for three 

continuous hours a day. Participants were prompted to move their arm every five minutes. 

A significant increase in some of the clinical outcomes and a significant difference in 

amount of arm use between groups were observed, however baseline data for amount of 

arm use were not collected and there is no evidence that groups were balanced at 

baseline. The WAVES feasibility study has been the only one to give continuous feedback 

on amount of UE use after stroke, in which light feedback and vibrotactile reminders on a 

wrist worn device were used in a multicenter pilot-controlled trial for acute stroke 

survivors. Amount of arm use as measured with the wrist-worn accelerometer were not 

presented and no comparative statistical analysis was performed [63].  

All the aforementioned studies used wrist worn accelerometers to measure activity; 

however, in-lab experiments have shown that UE activity counts obtained using wrist-

accelerometry measures accelerations from the whole body as a combination of wrist, 

arm, trunk and lower extremity movements rather than isolated, and more functional, 

hand and wrist movements. The accelerometry counts are also not relatable to the user 

(compared to the “steps” measured by a pedometer). To overcome these issues, we have 
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previously developed the Manumeter [39], [52], [53] in which we use changes in the 

magnetic field caused by a magnetic ring to measure hand and wrist activity, using a 

wrist-watch-like sensing unit worn at the wrist. We also previously developed and 

validated an algorithm (Hand Activity based on Nonlinear Detection (HAND)) for counting 

hand movements with the Manumeter.  

The primary goal of this study was to investigate the efficacy of providing real-time 

feedback on hand function and hand activity after stroke using the Manumeter. We 

hypothesized that participants who received feedback would significantly improve their 

hand use intensity, and, consequently, the motor ability of the affected arm. 

3.3. Methods 

 

3.3.1. THE MANUMETER 

The Manumeter (Figure 14) is a non-obtrusive, jewelry-like device for monitoring 

wrist and finger movement. Four magnetometers on the edges of a watch-like device 

measure changes in the magnetic field produced by the movements of the magnetic ring 

worn on the index finger. Wrist and finger movements are counted using the HAND 

algorithm, which uses a thresholding approach based on magnetic field changes to count 

movements (as shown in CHAPTER 2). Wrist accelerometry is obtained using a 6 DOF 

IMU and an OLED display allows real-time feedback on amount of hand use. A button on 

the side of the Manumeter changes the information on the screen when that function is 

enabled. 

3.3.2. PARTICIPANTS 

Twenty-two chronic stroke survivors were recruited for this parallel-group, 

assessor-blinded, randomized control trial. Participants in the study met the following 

criteria: (1) 18 to 80 years of age, (2) experienced one or multiple strokes at least six 

months previously, (3) Fugl-Meyer Upper Extremity Score < 60, (4) Absence of moderate 

to severe upper limb pain (< 3 on the 10 point visual-analog pain scale), and (5) Ability to 
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understand the instructions to operate the device. Participants with implanted 

pacemakers were not allowed in the study for safety reasons concerning the magnetic 

ring.  

 

 

Figure 14. The Manumeter. TOP the Manumeter in the plastic enclosure with the companion magnetic 
ring. BOTTOM the Manumeter board, with four magnetometers position on the edges of the board, an 

IMU with 6 degrees of freedom, an OLED display, and the non-ferromagnetic battery. All controlled by a 
Cortex M4 microcontroller. 

 

We limited the number of participants who scored zero in the Box and Blocks Test 

at baseline to 6. We instructed these participants to increase hand activity and function 

through passive movements (e.g. by helping move the impaired hand with the unimpaired 

hand). Participants were recruited through our database of volunteers from previous 
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studies, the out-patient clinic at the U.C. Irvine Douglas Hospital, and other area hospitals 

and stroke clubs. All trials were performed at UC Irvine, and all participants provided 

informed consent according to a protocol approved by the local Institutional Review 

Board. The study was pre-registered on ClinicalTrials.gov (NCT03084705). 

3.3.3. SAMPLE SIZE 

Power analysis based on our data from another study on a wearable hand training 

device, the MusicGlove [93], found an effect size of 1.2 for within subject improvement 

after three weeks. We expect the increase in activity due to continuous feedback from the 

Manumeter to at least match this therapeutic effect. Thus, 11 participants in each group 

gave us an 80% chance to demonstrate a difference between the interactive feedback 

and control group with a = 0.05 (one-tailed), assuming a <10% dropout rate. Based on 

our previous work, we expected a low dropout rate. 

3.3.4. DAILY GOAL 

For each participant, the daily goal was defined based on their score on the Box 

and Blocks Test (BBT) at the beginning of the study and not changed through the three 

weeks of therapy. Data from a pilot study (see CHAPTER 2) was used to set daily goals, 

where 9 chronic stroke survivors (6 males and 3 females) with an average age of 67.9 ± 

8.8 years and BBT of 24.7 ± 20.3, five with stroke affecting their dominant side. 

Participants wore the Manumeter during normal daily activities for an average of 9.21 ± 

1.75 hours. We aimed to make the goal particularly challenging for those who have motor 

capacity but are not using it for daily activities. Participants that had at least 50% of hand 

capacity with their impaired hand (compared to the unimpaired, measured with the BBT) 

were set to 1200 counts/hour or 12000 for 10 hours of Manumeter use per day. This 

number was comparable to those of unimpaired office workers, measured in pilot testing. 

A linear increase from 540 to 1200 was used for those with BBT ratio from 0 to 50% 

(Equation 1, Figure 15). 

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑔𝑜𝑎𝑙 (𝐵𝐵𝑇 𝑟𝑎𝑡𝑖𝑜) = {
1320 ∗ 𝐵𝐵𝑇 𝑟𝑎𝑡𝑖𝑜 + 540, 𝐵𝐵𝑇 𝑟𝑎𝑡𝑖𝑜 < 0.5

1200, 𝐵𝐵𝑇 𝑟𝑎𝑡𝑖𝑜 ≥ 0.5
 (1) 

https://clinicaltrials.gov/show/NCT03084705
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Here, BBT ratio is the ratio of BBT for the impaired and unimpaired hand and 

intensity goal is given in hand counts/hour. We estimated a Manumeter wear time of 10 

hours per day. The daily goal was set as 10 times the intensity goal (hand counts/day). 

 

Figure 15. Intensity goal based on BBT ratio. The function was based on data from pilot participants. After 
intensity goal was defined, the daily goal was obtained by multiplying the intensity goal by the 10 hours of 

expected daily wear time. 

 

3.3.5. THE EMOJI FEEDBACK 

An emoji displayed on the watch screen was used in two different ways during the 

study. For the first three participants in the experimental group, the emoji represented 

their performance in the last 10 minutes towards the daily goal. We calculated their current 

hand count rate (counts/hour for the last 10 minutes) and compared to the goal count rate 

– the count rate needed to get to their goal at 8 pm. The goal count rate was limited to 

two times their hourly goal. The emoji’s “happiness level” and left-right position on the 

screen were dependent on the goal ratio (ratio between the current count rate to the goal 
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count rate). Goal ratios between 0 and 1 showed a frowning emoji to the left of the screen 

(with 0 being all the way to the left) and goal ratios greater than 1 displayed a smiley emoji 

to the right of the screen (with 2 being all the way to the right). The LED was also an 

indicator of performance and blinked at a rate inversely proportional to the goal ratio if the 

goal ratio was below 1 and it did not blink when goal ratio was equal or above 1. The LED 

only blinked if the Manumeter screen was facing the user. After the daily goal was 

achieved, the emoji and LED feedback were disabled. 

The remaining eight participants in the experimental group had a game on the wrist 

implemented. The game promoted bursts of hand activity, in which participants had to get 

30 hand counts in 30 seconds while the Manumeter screen was facing the user. The 

emoji moved from left to right and from frowny to smiley as participants increased their 

hand counts in 30 seconds. When brought all the way to the right (30 hand counts in 30 

seconds), a celebration was displayed with a motivating, fun message. Other motivating 

messages were shown during the game as the user achieved the 25%, 50%, and 75% 

milestones. The emoji was reset if participants changed the orientation of their arm. 

There were two main reasons for changing the type of feedback with the emoji. 

First, based on feedback from the initial users, we wanted to explore the game-on-the-

wrist concept to make the Manumeter more engaging. The Manumeter provides a unique 

opportunity that participants can exercise their hand while receiving visual feedback on 

their wrist (as no arm movement is required to detect hand activity). The first type of 

feedback was not dynamic enough to take advantage of this feature, as it considered data 

for the last 10 minutes. Second, the first type of feedback required an estimated time for 

the end of the day, which could vary drastically for out-of-the-clinic use of the Manumeter. 

3.3.6. OUTCOMES 

The primary outcome was the Box and Blocks Test (BBT) measured three months 

after completion of the hand training period of the study. Secondary outcomes were Fugl-

Meyer Upper Extremity Scale (FMUE), Action Research Arm Test (ARAT), Motor Activity 

Log (MAL) and amount of upper extremity activity measured using the Manumeter. The 

BBT (primary outcome) and FMUE were performed at the two baselines, post-therapy, 
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and follow up. The remainder secondary outcomes and other relevant clinical tests were 

performed at the first baseline, post-training, and at the three-month follow-up. 

3.3.7. STUDY DESIGN 

The trial was composed of two baselines (three to ten days apart), a post-therapy 

examination after the three weeks of the hand training interventions, and a follow-up 

assessment three months after the end of the hand training interventions. 

The first baseline consisted of acquiring demographic information, stroke details, 

hand dominance, and clinical testing: BBT (primary outcome), FMUE, ARAT, MAL, NIH 

Stroke Scale (NIH SS), grasp and grip strength, Mini-Mental State Exam (MMSE), 

Modified Ashworth Scale, and Visual Analog of Pain scale. All the clinical data were 

collected by a blinded physical therapist. During clinical testing, participants wore 

Manumeters (with the screens turned off) on both wrists, and the magnetic ring on the 

index finger of the impaired hand (only for BBT of the unimpaired hand was the magnetic 

ring switched to the index finger of the unimpaired hand). Before leaving the lab, 

participants were fitted with another Manumeter on their unimpaired ankle and asked to 

keep the Manumeters and ring on for the remainder of the day during their normal daily 

activities (other than showering, bathing or swimming). These data were used as baseline 

to analyze increase of amount of hand use for each participant once they started the hand 

training intervention. The first baseline was performed primarily in the morning to allow 

more hours of baseline activity. Participants were asked to ship the Manumeters and the 

ring back using a prepaid shipping box. 

On the second baseline, performed three to ten days after the first baseline, 

participants played a grip strength tracking game [94] and used the FINGER robot to 

measure finger proprioception [95]. BBT and FMUE were performed again to establish a 

steady baseline. Participants then received a book of tabletop exercises tailored to them 

by a blinded physical therapist and were instructed to practice the exercises for a total of 

three hours per week. 
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At the end of the second baseline, participants were randomized into experimental 

and control group with a 1:1 ratio and balanced for BBT with separated randomizations 

for participants with BBT > 0 and those with BBT = 0. All participants were asked to wear 

the Manumeter for the next three weeks on their paretic arm and the magnetic ring on the 

index finger of that hand, keeping the magnet facing upwards. They were also instructed 

to orient the screen such that the text was readable from their perspective. The 

Manumeter is water-resistant, but not waterproof, so participants were instructed to take 

the device off when showering, bathing, or swimming.  

Participants randomized to the experimental group were taught to read each of the 

three available screens for the Manumeter: the counts screen, the goal screen, and the 

time screen. The counts screen showed their current number of hand movement 

performed during the day, battery indicator, and the feedback emoji. The goal screen 

showed their daily goal of hand counts, number of sprints performed that day, and daily 

goal of sprints. The time screen showed the current time as well as the emoji feedback 

(Figure 16). To change screens, participants had to push the button on the side of the 

device.  

Participants randomized to the control group received sham Manumeters that still 

recorded activity but showed only the time screen (with no emoji feedback). All the 

participants received a binder with their tailored tabletop book of exercises, instructions 

on how and when to use and charge the Manumeter.  

As an important safety consideration, participants were instructed to remove the 

magnetic ring when cooking or working with hot metal or in proximity to sharp ferrous 

objects or MRI machines. 

Even though the Manumeter’s battery lasted for more than two full days of use, 

participants were asked to charge the device every night, while sleeping. A binder with 

this information and instructions on how to charge the device was provided to each 

participant. 
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3.3.8. DATA ANALYSIS 

For evaluating changes in clinical scores, the average between baseline 1 and 

baseline 2 was used for BBT (primary outcome) and FMUE, baseline 1 was used for the 

remaining outcomes. We used a linear mixed-effect model to test significance of time, 

group (intervention vs control), and time and group interaction on all clinical outcomes. 

The model allowed random intercept and slope for each participant. All statistical 

analyses were performed in R with significance level was set to 0.05. Correlations are 

defined as strong for |𝑟| ≥ 0.50, moderate for 0.25 ≤ |𝑟| < 0.50, and no correlation for 

|𝑟| < 0.25. 

 

Figure 16. Manumeter screens available for the participants in the experimental group. The counts screen 
showed their current number of hand movement performed during the day, battery indicator, and the 
feedback emoji. The goal screen showed their daily goal of hand counts, number of sprints performed 
that day, and daily goal of sprints. And the time screen showed the current time as well as the emoji 

feedback. 
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3.4. Results 

A total of 25 stroke survivors were screened for this study; 22 participants met the 

inclusion criteria and were successfully recruited. Half of them were randomized into the 

control group and the other half into the experimental group. Two participants dropped 

out during the three weeks of intervention - one due to a family emergency and another 

due to sickness (Figure 17). Table 2 shows the demographic data and key baseline 

clinical outcomes for the participants included in the data analysis. Some of the 

Manumeter data was lost during the intervention period: 

• Total data loss (n=2, experimental group): technical problems when 

downloading the data from the device 

• Partial data loss (n=2, one in each group) due to technical problems when 

downloading the data from the device 

• Partial loss (n=1, experimental group): device was stolen from car two 

weeks into the intervention. Device was promptly replaced 

• Partial data removal (n=1, experimental group): lost the magnetic ring. Ring 

was replaced after 6 days. Participant kept using the Manumeter without 

the ring during that period 

• Total data removal (n=1, control group): participant wore the Manumeter on 

the unimpaired hand 

Clinical data was kept for all participants with Manumeter data loss or data 

removal, as these technical problems did not affect the Manumeter functionalities during 

the study. 
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Table 2. Demographic data and key baseline clinical outcomes for RCT 

 

± standard deviation. 
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Figure 17. CONSORT flow diagram. 

 

3.4.1. EFFECTS OF FEEDBACK ON HAND ACTIVITY 

Participants in the experimental and control group wore the Manumeter for 17.2 ± 

4.4 and 16.1 ± 3.9 days, respectively – a nonsignificant difference (t-test, p=0.66). 

However, those in the experimental group wore the Manumeter significantly longer each 

day compared to the control group across the three weeks of therapy with averages of 

11.2 ± 1.3 and 10.1 ± 1.1 hours/day (t-test, p=0.005) for the experimental and control 

groups, respectively. Comparing the wear time for the two halves of the therapy period 

(Figure 18A), we found no difference between groups for the first half (t-test, p=0.238) but 

a significant difference for the second half (t-test, p=0.002), suggesting more compliance 

in the experimental group even after the novelty effect. 
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Figure 18. Manumeter compliance and change in hand use intensity. (A) Average daily wear time of the 
Manumeter with significant difference between groups (t-test, p=0.002) during the second half of the three 

weeks of therapy. (B) Minimal hand use intensity change that can be detected based on daily hand use 
intensity variability versus average use intensity across the three weeks of therapy. (C) Individual change 

in hand use intensity from baseline. Changes were only calculated for periods of the day that baseline 
data was available. (D) Average change in hand use intensity across participants in each group. Error 

bars show ± 1 standard deviation. 

 

Change in hand use intensity was calculated for each participant as the difference 

to the baseline. The difference was first calculated in a minute by minute basis, only using 

the periods of the day that baseline data were available. No significant difference was 

found between groups or over time. The individual change in the average hand use 

intensity is presented in Figure 18C. It shows that some of the decrease in average hand 

use intensity in the first half of therapy was mainly driven by two participants (one in each 

group); however, there was no clear increase in hand use intensity even for the other 

participants.  
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3.4.2. CLINICAL OUTCOMES 

Providing hand feedback with a daily goal caused a trend toward improved clinical 

hand function with better retention at the 3-month follow-up (Figure 19), however there 

was no significant difference between experimental between groups. FMUE, ARAT and 

MAL HW improved significantly over time (Table 3). 

Table 3. Changes in clinical score in the RCT 

 

± standard deviation 
Delta PT = change from baseline to post-therapy evaluation 

Delta FU = change from baseline to follow-up evaluation 
N = 10 for each group (note: missing 1 participant in each group for FU evaluation) 

Significance level: * p<0.5; ** p<0.01; *** p<0.001. 
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Figure 19. Change in clinical scores from baseline. For BBT and FMUE, BL is the average for the scores 
in baseline 1 and baseline 2. Bars represent ± 1 standard deviation. Time points are BL = baseline, B1 = 

baseline 1, PT = post-therapy, FU = Follow-up. Clinical assessments are BBT = Box and Blocks Test, 
FMUE = Fugl-Meyer Upper Extremity Scale, ARAT = Action Research Arm Test, MAL-AS = Motor Activity 

Log – Amount Scale. 

 

3.4.3. RELATIONSHIP BETWEEN CLINICAL SCORES AND HAND USE 

There was a nonlinear relationship between clinical score (BBT) and hand use 

intensity (Figure 20). Participants with BBT up to 25 did not use their hand at home, even 

though they had moderate levels of hand function measured with the BBT. Two 

exceptions were participants E1 and E3. These participants are significantly younger (18 

and 29 years old) than the remaining participants (averaging 60±10 years old). 
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Figure 20. Nonlinear relationship between hand use intensity and impairment level. Each circle 
represents the average hourly count for one day. Participants were ordered by BBT and then by FMUE. 

The box and whisker plots represent the individual distribution of daily hand use intensity across the three 
weeks of therapy for participants in both groups (control in gray, experimental in blue). Box and whisker 

plots do not include baseline and follow-up data. Subject identification is presented on the top, with E’s for 
participants in the experimental group and C’s for participants in the control group. Note that x-axis 

equally spaced and not scaled to BBT. BBT=Box and Blocks Test, FMUE=Fugl-Meyer Upper Extremity 
Scale. 

 

3.4.4. NOVELTY EFFECTS AND MINIMAL DETECTABLE CHANGE 

In Figure 20 we can identify the two participants (C9 and E8) who had unusual 

hand use intensity at baseline. When we compared baseline hand use intensity with daily 

hand use intensity during the three weeks of therapy using a one sample t-test, we 

observed a significant difference (significance level set to 0.05) for 6 out of 17 subjects. 

If this difference were simply random, the odds that it would occur for 6 out of 17 subjects 
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for baseline hand use is ~1e-8 (0.05 to the 6th power). We conclude that baseline hand 

use was influenced by some factor. 

We expanded this approach to calculate the minimal detectable change based on 

the daily hand use intensity across the three weeks of therapy. We calculated the minimal 

detectable change using a one sample t-test with significance level set to 0.05 for each 

participant (Figure 18B). A strong, significant correlation (r=0.73, p=0.0015) was found 

between the minimal detectable change and the daily average of hand use intensity 

across the weeks of therapy. It showed that, in average, a change of 31% from the daily 

average of hand use intensity was necessary for significance. 

3.5. Discussion 

The goal of this study was to investigate the efficacy of real-time feedback of hand 

movements in increasing hand activity and motor recovery. Participants showed a 

significant increase in the clinical outcomes FMUE, ARAT, and MAL-HW as a function of 

time. Both groups showed a non-significant increase in BBT from baseline to post-

therapy, which was sustained (also not significant) at 3-month follow-up only by the 

experimental group. There was no significant difference between groups in number of 

days wearing the Manumeter, however participants in the experimental group wore the 

Manumeter for significantly longer each day. Continuous feedback did not significantly 

increase hand movement intensity.  

3.5.1. THE NONLINEAR RELATIONSHIP BETWEEN HAND CAPACITY 

AND HAND USE 

It is not surprising that stroke survivors with lower hand function have a reduced 

use their impaired hand outside the clinic. Several studies have correlated amount of 

upper extremity use with clinical assessments [96], [97]. However, from learned non-use 

phenomenon it is expected that this relationship is not linear. A threshold at which stroke 

survivors have enough function to perform daily activities and leave the learn non-use 

vicious cycle is expected [17], [98]. Here, we show that participants that scored up to 25 

in the BBT did not use their hand at home. A sharp increase in hand use intensity was 
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observed for participants with higher motor capacity. This is consistent with results 

presented in [86], in which sixty-seven stroke survivors performed several clinical 

assessments and were classified into low, moderate, and high level of upper limb 

function. A similar threshold between 20 and 30 blocks in the BBT was found to split 

between high and moderate function levels. The main difference between the moderate 

and high-level groups was possession (or lack of) fine manual dexterity. Even though 

similar gross function (e.g. range of motion, speed, and strength) can be observed in both 

groups, it is the hand dexterity ability of the high-level participants that make the difference 

when performing everyday tasks [86].  

3.5.2. HAND USE COUNTS FOR FUNCTION RECOVERY 

Providing hand feedback with a daily goal caused a trend toward improved clinical 

hand function, even though there was no detectable change in amount of hand use. One 

explanation may be that participants receiving feedback paid more attention to their 

impaired hand. For example, in [62], subacute stroke survivors wore an accelerometer on 

the impaired wrist for three continuous hours per day for four weeks. No feedback on 

amount of upper extremity use was given, but participants were prompted with a 

vibrotactile reminders about their impaired arm every five minutes. The vibrotactile 

feedback brought attention to the impaired experienced significant increase in clinical 

outcomes (FMUE and ARAT). 

Changes in hand function with no increase in upper extremity activity were also 

observed in [99], in which 60 stroke survivors wore wrist accelerometer on both wrists for 

3 days on admission to rehabilitation and for 3 days before discharge (3 weeks apart). 

Even though participants significantly improved hand function, there was no change in 

amount of upper extremity use as measured with the wrist accelerometers. 

A possible explanation is that the variability in hand use is too high and inducing 

significant changes in hand use is therefore more challenging than expected. Here, we 

showed that the necessary increase in hand activity for a detectable change is about 31% 

of the daily average across the three weeks of therapy. For someone with 1000 hand 

counts per hour, that is an extra 300 counts per hour or 3000 counts for the average 10 
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hours of Manumeter use. Comparing to steps, it would take an adult 30 minutes of 

moderate intensity walk to take 3000 steps [100]. However, there is no comparable 

activity for increasing upper extremity repetitions at the same proportion. Hand exercise, 

particularly that requiring repetitive finger extension, is slow and fatiguing, relative to the 

same number of repetitions of walking. Could it be that the smaller, more fatigable nature 

of hand extensor muscle limits hand exercise to levels lower than needed to make a 

change? If so, finding ways to encourage exercise while limiting fatigue are important. 

3.5.3. LIMITATIONS 

One limitation was regarding the baseline, in which portions of the hand activity 

seemed incompatible with what was observed during the weeks of intervention. Using as 

baseline the hours immediately after a visit to lab produced a highly unusual number of 

outlier days – 6 out of 17 subjects, in which 4 of them had unusually high hand activity 

levels, but 2 had unusually low hand activity levels. We attributed these anomalies to the 

disruption of daily routine and motivation from meeting with the therapist. For 

accelerometry, it is recommended to use at least 3 days of monitoring to estimate habitual 

physical activity [101].  

A second limitation is the high variation in age of the participants. The two younger 

participants (both on the control group) had unusually high counts for their impairment 

level. This suggests that age can have a large effect on amount of hand use. Age can 

also influence engagement with new technologies, such as the Manumeter. 

Another limitation of this study was the goal setting strategy. With the high 

variability observed across and within participants, a goal based on hand capacity as 

measured in the clinic may not ideal. A possible solution is to use an adaptive goal, 

updated based on the average hand use across several days.  
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CHAPTER 4. UNIQUE OUTCOMES DERIVED FROM WEARABLE 

SENSING 

 

4.1. Contributions 

In CHAPTER 3, we showed that providing a daily goal and real-time feedback on 

amount of hand use did not increase hand activity and did not significantly change 

functional outcomes in stroke survivors. Here, we further explore the use of wearable 

sensing technologies to introduce new accelerometry metrics related to quality of 

movement. These metrics could be used as alternatives to quantity of movement when 

providing feedback on upper extremity movement after stroke. Background: Wearable 

sensing is a new tool for quantifying upper extremity (UE) rehabilitation after stroke. 

However, it is unclear whether it provides information beyond what is available through 

standard clinical assessments. Methods: To investigate this question, people with a 

chronic stroke (n=9) wore accelerometers on both wrists for 9 hours on a single day during 

their daily activities. We used principal components analysis (PCA) to characterize how 

novel kinematic measures of jerk and acceleration asymmetry, along with conventional 

measures of limb use asymmetry and clinical function, explained the behavioral variance 

of UE recovery across participants. Results: The first PC explained 55% of the variance 

and described a strong correlation between standard clinical assessments and limb use 

asymmetry, as has been observed previously. The second PC explained a further 31% 

of the variance and described a strong correlation between bimanual magnitude and jerk 

asymmetry. Because of the nature of PCA, this second PC is mathematically orthogonal 

to the first and thus uncorrelated with the clinical assessments. Conclusions: Therefore, 

kinematic metrics obtainable from bimanual accelerometry, including bimanual jerk 

asymmetry, encoded additional information about UE recovery. One interpretation is that 

the first PC relates to “functional status” and the second to “movement quality”. We also 
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describe a new graphical format for presenting bimanual wrist accelerometry data that 

facilitates identification of asymmetries. 

4.2. Introduction 

More than 50% of people who have had a stroke exhibit long-term upper extremity 

(UE) deficits, including decreased use of the affected limb for activities of daily living [3]. 

Since most of our daily activities involve the use of both of our hands [46], [102], 

understanding bilateral use of the UEs after stroke is paramount for understanding 

decreased use of the limb. 

Advances in miniaturization and processing speed have allowed development of 

wearable sensing systems for real-world, or out-of-the-clinic, monitoring of human activity 

[37]. For rehabilitation after stroke, the use of wrist-worn accelerometers as a means of 

quantifying UE use in the community living environment has been increasing [37], [39], 

[40]. This approach can quantify people’s actual use of their UE as opposed to their 

capability, which is what is measured by standard clinical assessments such as the Fugl-

Meyer Assessment (FMA) or Box and Blocks Test (BBT), and as opposed to subjectively 

perceived use of the UE, which is what self-assessment questionnaires such as the Motor 

Assessment Log (MAL) measure. 

An increasing number of studies have evaluated the viability of applying wrist-worn 

accelerometry to measure UE use after stroke [39], [41], [44], [77] [45]–[47]. The majority 

found strong correlations between accelerometry metrics and clinical assessments, 

including the FMA, BBT, and MAL, among others (see reviews [40], [77]). These findings 

validate the ability of wrist accelerometry to continuously assess UE impairment in 

community living. However, paradoxically, they raise the question of whether wrist 

accelerometry provides additional information beyond what can be obtained with standard 

clinical assessments. It seems reasonable to expect that bimanual wrist accelerometry 

carries additional information since it collects extended amounts of bimanual, kinematic 

data during daily living activities, as opposed to simply scoring or timing a fixed set of 
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movements, as standard clinical assessments typically do. However, the additional 

information that accelerometry might convey remains relatively unexplored.  

Lang and her group have showed compelling results using accelerometers to 

quantify bilateral, real-world, UE activity after stroke [45]–[47]. They developed new ways 

to interpret bimanual accelerometry data and to extract relevant information from it, 

including bimanual activity asymmetry, a measure that strongly correlates with clinical 

assessments. However, partly due to software limitations on commercial wrist 

accelerometers, most of these studies have focused on activity counts rather than 

kinematics.  

Aiming to extract additional kinematic information from bimanual wrist 

accelerometry, we propose two new metrics. The first, jerk asymmetry, is based on the 

physical quantity of jerk, which has been suggested to reflect fundamental kinematic 

building blocks or subunits of movement and exhibits significant differences for the 

affected and non-affected arm after stroke [103], [104] (NOTE: we will use the terms “non-

affected” and “affected” for simplicity although we understand that the “non-affected” limb 

is somewhat affected [105]). Jerk has also been shown to contain unique information 

about movement recovery after stroke [106] and to predict disease onset in Huntington’s 

Disease [107]. With bimanual accelerometry, it is possible to calculate jerk asymmetry 

between the two limbs during daily life. The second, acceleration magnitude asymmetry, 

is based on the concept that the brain specializes the control of each limb for either control 

or for posture [108]. Thus, one might expect differences in the profiles of the peak 

accelerations experienced throughout the day, depending on how individuals re-

specialize hand roles after neural injury. 

The first goal of this study was to address the question of what new information 

accelerometry can provide that is distinct from clinical measurements. To this end, we 

used principal component analysis (PCA), an exploratory data analysis technique suited 

for characterizing patterns of variance in data [109]. A secondary goal was to develop an 

alternative method of data representation that highlights the asymmetries in bimanual UE 

activity after stroke. 
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4.3. Methods 

 

4.3.1. PARTICIPANTS 

Participants were nine males, seven right-handed, and six with stroke affecting 

their dominant side. Table 4 summarizes the population. All participants provided 

informed consent and were compensated for their time. 

Table 4. Participants’ demographic and clinical information for bimanual wrist accelerometry 

 

BBT: Box and Blocks Test; NHPT: Nine Hole Peg Test; MAL: Motor 

Activity Log; AS/HS – Amount of Use / How Well Score. 

 

4.3.2. PROCEDURE 

Participants first completed a visit to the laboratory, in which UE assessments 

(BBT, NHPT, and MAL) were performed by a trained therapist and demographic 

information was collected. The therapist helped the participants don an accelerometer on 

each wrist. Both the devices were started simultaneously using serial interfaces with a 
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computer. The participants were instructed to wear the devices throughout their day and 

continue with their normal daily routine until going to take a shower or turning in to sleep, 

when they were instructed to remove the device. They brought the device back the next 

day. We chose to avoid asking the participants to don and doff the devices to ensure that 

they did not swap hands or misplace the device during the data collection. The 

participants were also asked to log their activities during the day and the time they 

removed the device, which was used to validate the time stamping of the data.  

4.3.3. ACCELEROMETRY 

A system consisting of a LSM9DS0 9DOF IMU (with ranges of ±6 g for the 

accelerometer, ±4 Gauss for the magnetometer, and ±500 DPS for the gyroscope), an 

Arduino Pro Mini with real time clock, a 400 mAh battery, and a micro-SD card socket for 

data logging (Figure 21) was assembled for this study. The IMU data were read and 

stored at 30 Hz into the micro-SD card, and later transferred to a computer by the 

therapist.  

 

Figure 21. Wrist accelerometer. Electronics, enclosure and wristband used in the study. 
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4.3.4. DATA PROCESSING 

To process the accelerometer data, a similar approach to the already established 

and well tested method presented in [46], [80], [110] was used. First, the recordings were 

clipped to remove data from before and after participants wore the device. Gravity 

direction was estimated using the 9DOF data of the IMU with Mahony’s Algorithm [111]. 

The effects of gravity were then removed from the acceleration vector and its magnitude 

calculated. A band-pass filter in the frequencies of 0.25 Hz to 2.5 Hz was applied to the 

magnitude of the acceleration and the data were down sampled to 1 Hz (taking the 

average value for every 1 second bin). The resulting down-sampled acceleration was 

converted into activity counts, where 1 activity count = 0.017 g and values below 1 activity 

count were set to 0. Walking artifacts were not removed, however [79] has shown that 

bimanual wrist accelerometry is not significantly affected by ambulatory movement after 

stroke. 

To calculate the laterality of the movements, one established method [110] uses 

the log-ratio of the counts for each arm. However, this method breaks down when either 

of the two counts is 0. In [110], when that happens values are set to -7 or +7, for the 

affected or non-affected side, respectively. To avoid that problem, in this study we used 

a different laterality equation: 

𝑙𝑎𝑡𝑒𝑟𝑎𝑙𝑖𝑡𝑦 =
𝑐𝑜𝑢𝑛𝑡𝑠𝑎𝑓𝑓 − 𝑐𝑜𝑢𝑛𝑡𝑠𝑛𝑜𝑛−𝑎𝑓𝑓

𝑐𝑜𝑢𝑛𝑡𝑠𝑎𝑓𝑓 + 𝑐𝑜𝑢𝑛𝑡𝑠𝑛𝑜𝑛−𝑎𝑓𝑓

 (2) 

where 𝑐𝑜𝑢𝑛𝑡𝑠𝑎𝑓𝑓 and 𝑐𝑜𝑢𝑛𝑡𝑠𝑛𝑜𝑛−𝑎𝑓𝑓 are the vectors representing the counts on the 

affected side and non-affected side, respectively. The result, 𝑙𝑎𝑡𝑒𝑟𝑎𝑙𝑖𝑡𝑦, is bounded from 

-1 to +1, where values closer to 0 mean a bimanual activity, values near -1 represent 

larger activity on the affected side, and values closer to +1 denote higher activity on the 

affected side. Values of -1 and +1 are unilateral activities in the affected and non-affected 

side, respectively. When both counts are 0, the sample is counted as resting. A laterality 

index was calculated as the mean of the laterality vector. 

Using the laterality vector and the resting samples, the data were divided into four 

different categories: “resting” (both counts equal to 0), “unimanual movement of the 
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affected side” (defined as 𝑙𝑎𝑡𝑒𝑟𝑎𝑙𝑖𝑡𝑦 < −0.95; results were similar with 𝑙𝑎𝑡𝑒𝑟𝑎𝑙𝑖𝑡𝑦 <

−0.90), “unimanual movement of the non-affected side” (𝑙𝑎𝑡𝑒𝑟𝑎𝑙𝑖𝑡𝑦 > 0.95), and 

“bimanual” (when −0.95 ≤ 𝑙𝑎𝑡𝑒𝑟𝑎𝑙𝑖𝑡𝑦 ≤ 0.95). The number of samples in each of these 

groups divided by the total number of samples was used to calculate the ratio, with 

respect to total worn time, of each category. 

Two new metrics were also calculated: the magnitude asymmetry and the jerk 

asymmetry. The magnitude asymmetry index was calculated using the accelerometer 

magnitude, before converting to activity counts, as in 

𝑎𝑐𝑐_𝑎𝑠𝑦𝑚𝑚 =
𝑎𝑐𝑐𝑢𝑛𝑖_𝑎𝑓𝑓 − 𝑎𝑐𝑐𝑢𝑛𝑖_𝑛𝑜𝑛−𝑎𝑓𝑓

𝑎𝑐𝑐𝑢𝑛𝑖_𝑎𝑓𝑓 + 𝑎𝑐𝑐𝑢𝑛𝑖_𝑛𝑜𝑛−𝑎𝑓𝑓

 (3) 

where 𝑎𝑐𝑐𝑢𝑛𝑖_𝑎𝑓𝑓 and 𝑎𝑐𝑐𝑢𝑛𝑖_𝑛𝑜𝑛−𝑎𝑓𝑓 are the average magnitude of the acceleration for 

unimanual samples in the affected side and unimanual samples in the non-affected side, 

respectively. Similar to laterality, the index 𝑎𝑐𝑐_𝑎𝑠𝑦𝑚𝑚 is bounded from -1 to +1. Values 

close to 0 represent symmetrical average acceleration magnitude for both UE, and values 

close to -1 or +1 represent higher average acceleration magnitude on the affected side or 

non-affected side, respectively. This metric is a modified version of the magnitude ratio 

proposed in [13], the differences being that in [13] the median of the log ratio of the 

magnitude of the acceleration was used instead, and magnitudes in the both bimanual and 

unimanual samples were considered. The rationale behind only using accelerations of 

unimanual movements is that in bimanual movement there might be a coupling of the 

acceleration of the two limbs (for instance, when manipulating an object with both hands). 

Therefore, using only unimanual samples guarantees that one limb is not interfering with 

the other. 

The jerk asymmetry was calculated in a similar fashion, except that the magnitude 

of the differential of the acceleration vector was used instead of the magnitude of the 

acceleration: 

𝑗𝑒𝑟𝑘_𝑎𝑠𝑦𝑚𝑚 =
𝑗𝑒𝑟𝑘𝑢𝑛𝑖_𝑎𝑓𝑓 − 𝑗𝑒𝑟𝑘𝑢𝑛𝑖_𝑛𝑜𝑛−𝑎𝑓𝑓

𝑗𝑒𝑟𝑘𝑢𝑛𝑖_𝑎𝑓𝑓 + 𝑗𝑒𝑟𝑘𝑢𝑛𝑖_𝑛𝑜𝑛−𝑎𝑓𝑓

 (4) 

where 𝑗𝑒𝑟𝑘𝑢𝑛𝑖_𝑎𝑓𝑓 and 𝑗𝑒𝑟𝑘𝑢𝑛𝑖_𝑛𝑜𝑛−𝑎𝑓𝑓 are the average magnitude of the jerk for unimanual 

samples in the affected side and unimanual samples in the non-affected side, respectively. 
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The 𝑗𝑒𝑟𝑘_𝑎𝑠𝑦𝑚𝑚 metric should be read in the same way as 𝑎𝑐𝑐_𝑎𝑠𝑦𝑚𝑚, but using average 

jerk magnitude instead of average acceleration magnitude. 

 

4.3.5. STATISTICAL ANALYSIS 

Paired t-tests were performed to evaluate the difference between the affected side 

and the non-affected side in the acceleration magnitude and the jerk. To study the 

interrelation of the standard clinical assessments and bimanual wrist accelerometry 

metrics, PCA was applied. PCA aims to reduce dimensionality, by transforming the data 

into a new set of variables using principal components (PCs), which are orthogonal to 

each other and ordered by the amount of data variance they can explain.  

In [109], the PCA method is explained in detail, and to provide a brief conceptual 

overview useful for interpreting the analysis to follow, we now summarize one example 

given in this source. Specifically, the size of the hand, wrist, height, forearm, head, chest, 

and waist were measured for a sample of men and then PCA was applied. The analysis 

showed that the first PC, which explained 60% of the variation, was characterized by an 

overall correlation in size (all the variables were strongly correlated), which means that 

the first PC accounted for the fact that when one of the size measures increases, the 

other ones also tend to increase. The second PC, which explained less than 20% of the 

variation, showed that the main source of variation, after the overall size was accounted 

for, was the contrast of hand and wrist size to height. It is important to highlight that the 

second PC only accounts for new information that was not varying in the direction of the 

first PC. This is an important concept to understand the contribution of this study. 

The methodology for calculating each metric is presented in Figure 22. 
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Figure 22. Data processing methodology. Dashed lines carry jerk data and full lines carry acceleration 
data.  
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Figure 23. Example of two types of data representation for a participant with Box and Blocks Test score 
equal to 1. The top plot is proposed in this study. The upper part of the plot shows the percentage of 

activity time for unimanual, bimanual movements, and inactivity in the x-axis. In the y-axis is presented 
the average relative opposite jerk for unimanual movements. The bottom plot was proposed in [46] and 
shows the histogram of number of activity counts in terms of magnitude ratio and bilateral magnitude 

(BBT = Box and Blocks Test Score) for the same subject. 
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4.4. Results 

 

4.4.1. VISUALIZING BIMANUAL WRIST ACCELEROMETRY DATA  

Participants wore the device for 9.1 ± 2.6 continuous hours on average. One of our 

goals was to develop a graphical means to summarize the data. Figure 23 compares two 

approaches for visualizing the large amount of data obtained from one participant in this 

relatively short period. The bottom approach to plotting the data was developed in [46] 

and the top one is a complementary approach proposed here that makes certain 

relationships more explicit. Both plots show data from the same subject. 

The bottom plot shows a 2D histogram of number of activity counts, plotted in terms 

of magnitude ratio on the x-axis (comparable to the laterality index defined above), and 

bilateral magnitude on the y-axis (which is the sum of the acceleration magnitude for both 

accelerometers). This type of plot makes clear through its heat map the overall statistical 

distribution of movements in terms of laterality and bilateral magnitude. However, its use 

of a color-map histogram makes it difficult to perceive the quantitative relationship of total 

bimanual to total unimanual activity, and the amount of rest (inactivity of both limbs) is not 

explicit. Judging asymmetry requires judging color gradients, and one would in fact have 

to sum colors in the bimanual regime to precisely quantify amount of bimanual activity. 

An advantage of this plot, however, is that it makes explicit that, during bimanual activities, 

there is more use of the non-affected side, clear from the skewing of color to the right side 

of the plot. 
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Figure 24. Sample plots for three participants and group average. The top two plots and the bottom left 
plot show inactivity and inactivity percentage of time, and average relative opposite jerk for three 

participants in order of Box and Blocks score. Bottom right plot shows the average for all 9 participants. 
Error bars represent standard error (BBT = Box and Blocks Test Score). 

 

The top plot is an alternative presentation of the same data from the same 

participant that averages the total activity in each category of limb use (unimanual, 

bimanual, and inactivity) and shows the ratio with respect to total recording time, making 

the asymmetry as well as the amount of inactivity explicit. Specifically, the x-axis 

quantifies the percentage of time for each of the different types of activities is presented: 

non-affected and affected unimanual activity, and bimanual activity. Percentage of activity 

time is obtained adding the three types of activity and percentage of inactivity time is 

represented in the remainder of the x-axis. These four percentages add up to a hundred 

percent, representing the full time the participant wore the devices. For the example 

participant shown in Figure 23, the inactivity time was about 42%, unimanual activity 
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affected and non-affected side were around 3% and 36%, respectively, and bimanual 

activity was 19%.  

 

 

Figure 25. Weights (or “loadings”) for each PC normalized to the highest weight in that PC. PC1 accounts 
for 55% of the variance of the data and PC2 accounts for 31% (Accel Asymm = Acceleration Asymmetry 

Metric, Jerk Asymm = Jerk Asymmetry Metric, Avg Laterality = Average Laterality, NHPT = Nine-Hole 
Peg Test Ratio (affected/non-affected), MAL-AS = Motor Activity Log – Amount Scale, MAL-HW = Motor 

Activity Log – How Well Scale, and BB = Box and Blocks Test Ratio (affected/non-affected)). 
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In the y-axis, a kinematic measure derived from the accelerometers is presented. 

For the purpose of presentation, the calculated jerk was normalized to the maximum jerk 

of the population and transformed as: 

𝑅𝑂𝐽 = 2 −
𝑗𝑒𝑟𝑘

𝑚𝑎𝑥_𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑗𝑒𝑟𝑘
 (5) 

where ROJ is the relative opposite jerk, jerk is the jerk calculated from the accelerometer 

data, and max_average_jerk is the maximum average jerk across all the participants. 

For the participant in Figure 23, the average relative opposite jerk was 1 and 1.75, 

for the affected and non-affected, respectively. That is, jerk was higher for the impaired 

arm. 

4.4.2. LIMB ASYMMETRY AFTER STROKE 

Figure 24 shows three sample participants with different BBT scores, all who 

exhibited asymmetry of use (higher use ratio for the non-affected arm) and jerk (higher 

for the affected arm). The amount of rest (i.e. the pink mountains of inactivity) varied 

broadly across participants, which might be expected since the amount of rest would likely 

depend strongly on the activities the participant chose to perform in the single day that 

they were measured.  

The average of the data from all 9 participants (Figure 24, bottom) makes the 

overall use and kinematic asymmetries clear. Calculating the averages across 

participants, the non-affected limb showed a significantly greater activity time ratio than 

the contralesional limb (0.39 ± 0.15 and 0.60 ± 0.14, paired t-test, p < 0.001). The average 

acceleration magnitude was, however, significantly greater on the unilateral affected limb 

movements compared to the non-affected limb (0.12 ± 0.047 g and 0.047 ± 0.012 g, 

paired t-test, p=0.002). Jerk magnitude average was also significantly greater for the 

affected limb movements compared to the unaffected limb (3.56 ± 1.45 g/s and 1.56 ± 

0.38, paired t-test, p= 0.004). 
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Table 5. Types of correlation between each variable in the PCs 

 

“+” for strong positive correlations (≥ 0.75) 

“(+)” for moderate positive correlations (≥ 0.5 & < 0.75) 
“-” for strong negative correlations (≤ −0.75) 

“(-)” for moderate negative correlations (≤ −0.5 & > −0.75) 
NHPT is time based (lower is better). 

 
 

4.4.3. VARIANCE IN UPPER EXTREMITY RECOVERY 

We applied PCA to characterize the UE behavioral variance across participants, 

using the clinical assessments (4 values for each of the 9 participants) and accelerometry 

measures (3 values for each participant).  

We found that two PCs were sufficient to account for 86% of the variance in the 

data (Figure 25). We normalized the weights (or “loadings”) of each PC to the highest 

weight in that PC, so that values over 0.75 indicated strong correlation and values 

between 0.5 and 0.75 indicated moderate correlation [109] (Table 5). The first PC 

explained 55% of the variance and described a strong correlation between the standard 

clinical assessments and the conventional accelerometry measure (activity count 

asymmetry). The second PC explained a further 31% of the variance and described a 

strong correlation between acceleration asymmetry and jerk asymmetry. 
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4.5. Discussion 

The first PC that we found is consistent with what several studies have already 

shown: standard clinical assessments are correlated with each other as well as limb use 

asymmetry quantified with accelerometry [40]. One interpretation is that this first PC 

relates to “functional status” of the limb, and that functional status can be reasonably well 

predicted using either clinical assessments, including timed tests such as the BBT and 

NHPT or subjective surveys, such as the MAL, or with accelerometry-based measures of 

use asymmetry.  

In contrast, the second PC was composed solely of the new kinematic metrics 

proposed in this study, jerk asymmetry and acceleration asymmetry. Because of the 

nature of PCA, this second PC is mathematically orthogonal to the first and thus 

uncorrelated with clinical assessments and the average laterality. And yet, it explained 

31% of the variance of the participants. Thus, this PC appears to express additional 

information about UE recovery variability not available in the standard clinical 

assessments used here. 

4.5.1. INTERPRETING THE NON-CLINICAL INFORMATION  

What is the nature of this non-clinical information? One interpretation is that the 

second PC related to “movement quality”. The clinical hand assessments we used here, 

the BBT and NHPT, are timed tests of hand dexterity, and are relatively “blind” to how a 

person achieves the targeted functional task. Further, the MAL and the use asymmetry 

accelerometry measure relate to subjective and objective amount of use of the limb, 

respectively, and again, not to the details of how the limb is being used (although the MAL 

“how well” scale perhaps should – this is an interesting question). The kinematic 

measures, in contrast, likely relate to the quality of the movement: jerk relates to 

smoothness [103], and acceleration magnitude possibly relates to specialization of the 

roles of the limbs [108], and/or relative coarseness versus fineness of the movements 

achieved by each UE throughout the day.  



79 

 

If this “movement quality” interpretation is accepted, what this analysis seems to 

say is that there are aspects of movement quality that are uncorrelated with functional 

status. Although one might expect movement quality usually to degrade with lower 

functional status, we speculate that people sometimes achieve higher UE function, but 

with low movement quality, or, conversely, exhibit lower UE function, but with higher 

movement quality. If quality of movement during daily life is an outcome important to 

people with a stroke, perhaps kinematic analysis of accelerometry provides a window to 

assess it.  

4.5.2. VISUALIZING BIMANUAL ACCELEROMETRY DATA 

A secondary goal of this work was to develop a data representation for bimanual 

wrist accelerometry that can simplify and complement the 2D color histograms developed 

in [46]. By averaging data, the “asymmetry” plots presented here better highlight the 

imbalance in both bilateral UE use and kinematics. Moreover, the plots illustrate inactivity 

ratio, a feature of limb non-use not contained in the color maps.  

4.5.3. LIMITATIONS AND FUTURE DIRECTIONS 

The number of participants was limited, and the results should be confirmed with a 

larger sample size. We only enrolled men, which had the advantage of eliminating any 

effects of sex in the PCA but limits the scope of interpretation. We did not analyze effects 

of stroke side and limb dominance. We have not yet studied age-matched controls without 

a stroke either and doing so would provide a deeper understanding of any non-stroke-

related asymmetries in the acceleration magnitude and jerk metrics, for example. Another 

limitation was that the period of data collection was only one day. Recording 

accelerometry data for a longer period of time will be important for gaining insight into 

overall levels of inactivity and their relation to other limb metrics. However, we speculate 

that, even with relative short recordings, acceleration and jerk asymmetry estimates 

should be fairly accurate, since it seems unlikely that these properties change significantly 

on a day-to-day basis. Shorter recording times may therefore be sufficient for such 
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kinematic measures. Finally, there are many ways to measure movement smoothness, 

and these should be investigated [104]. 

An important future direction is to incorporate measurements of wrist and finger 

movement with the measurements of arm movement that accelerometry provides. Our 

group recently developed the Manumeter, in which a wrist unit with magnetometers 

senses the magnetic field changes from a magnetic ring worn on a finger [39], [52], [53]. 

The Manumeter wrist unit also incorporates accelerometers, allowing bimanual wrist 

accelerometry. Combining finger movement and arm movement measurements should 

provide greater insight into the variability of UE recovery in individuals who have 

experienced a stroke [53]. 
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CHAPTER 5. REINFORCEMENT LEARNING BASED ROBOT FOR 

HAND TRAINING AFTER SCI 

 

5.1. Contributions 

In previous chapters, we explored the use of wearable sensing for measuring and 

providing feedback on amount of hand activity after stroke. We discussed that, to increase 

amount of hand use, feedback needs to be paired with mechanisms for increasing hand 

activity. Here, we introduce a robot that aims encourage the use of the impaired hand and 

arm of non-human primates after a lateralized spinal cord injury. Background: Non-

human primate studies are helping to optimize protocols for translating neuroregenerative 

therapies to humans. However, an unsolved need is emulating the intensive movement 

rehabilitation that will be provided to patients as an obligatory component of any clinical 

trial. Here we describe a novel robotic system for providing on-demand hand rehabilitation 

to rhesus macaque monkeys engaging in trials of regenerative therapies after a spinal 

cord injury (SCI). The SCI is lateralized, producing weakness and incoordination in one 

hand, similar to the effects of a stroke. Subjects with this injury use their unimpaired hand 

for daily activities, causing disuse of the impaired hand. Methods: To encourage use of 

the impaired hand, we designed a robot that presents a bimanual coordination task in 

which manipulating a hand trainer with the impaired hand causes the robot to deliver food 

treats to the unimpaired hand. Results: We show that subjects taught to interact with the 

robot before injury engaged with the device at a similar rate after injury across a range of 

hand impairment severity for durations up to 1.5 years after injury. By rewarding different 

arm and hand movements, we shaped relative use of the arm and hand. We found we 

could increase the number of exercise repetitions per reward by lowering reward 

probabilities or increasing task difficulty. The peak grip forces the subjects applied to the 

robot decreased after SCI, serving as a potential marker of recovery. Conclusions: 

These results are the first example of using a robot to deliver rehabilitative exercise in 

primates after spinal cord injury receiving a regenerative therapy and provide insights into 
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how robotics technologies can advance translational science for neuroregeneration 

studies. 

5.2.  Significance 

Non-human primate studies have potential to accelerate translation of 

neuroregenerative treatments after spinal cord injury, but a key need is providing efficient, 

quantifiable, intense rehabilitative movement training. This is necessary because 

rehabilitation is included as an obligatory component of any human clinical trial in order 

to maximize the potential benefit of treatment. Here, we describe a novel robotic training 

paradigm that promoted hand activity of monkeys receiving a stem cell therapy after a 

spinal cord injury.  

5.3. Introduction 

Regenerative rehabilitation is an emerging field that seeks to understand and 

optimize potential synergies between regenerative therapies and rehabilitation [64]–[66]. 

In the context of paralysis following neurologic injuries such as spinal cord injury (SCI), 

the premise is that any candidate regenerative treatment should be coupled with intensive 

rehabilitation because sensory motor activity shapes the structure and connectivity of 

neurons [67], [68]. Optimal functional outcomes will likely depend on optimal forms of 

movement practice that drive appropriate connectivity. 

Regenerative medicine has struggled to scale treatments from rodents to humans. 

Inserting an intermediate step of studying non-human primates is helping to address this 

problem [69]–[71]. 

However, a key need is emulating the rehabilitative movement training that 

individuals with neurologic injury will receive in any clinical trial. Failing to intensively train 

a patient following a stem cell graft would be unethical because it would potentially reduce 

the chances of functional benefit from the treatment. Yet there are currently few 

standardized protocols or technologies for delivering intense rehabilitative movement 

training in large animal models. Thus, it is currently difficult to replicate the movement-
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related inputs that are likely to modulate the effectiveness of neuroregenerative 

treatments.  

In the context of hand recovery, previous studies have typically used pellet retrieval 

tasks (such as the Brinkman or Klüver Board), to quantify and train monkey hand function 

(reviewed in [72]). The task requires subjects to retrieve pellets from wells of different 

orientations and depths. While performing this task allows hand dexterity to be quantified, 

it requires substantial finger dexterity to perform, and a human trainer to replenish the 

wells. Other studies have used sleeves that cover the hand to encourage use of the hand 

in hemiparetic models, but beneficial neuroplasticity still depends on active training of the 

hemiparetic hand [73]. One can emulate rehabilitation therapy using chair-based 

exercises with a human trainer, but this strategy is labor intensive and difficult to quantify. 

For humans, robotics technologies have been developed to automate hand 

movement training following neurologic injury [74], [75]. Robotic therapy now refers to a 

diverse set of technologies and algorithms that can match or improve the clinical benefits 

achievable with conventional rehabilitation therapies [76]. Since robotic therapy has 

shown benefits in humans and is a vetted and increasingly used rehabilitative training 

strategy, we sought here to reverse-translate robotic movement therapy to a non-human 

primate model of SCI. 

The primate model we studied uses a lateralized spinal cord injury to cause 

impairment in only one hand. This allows the monkey to achieve daily tasks through the 

use of their other hand and legs. The behavioral outcome of this model is thus similar to 

that following a stroke in humans in which hemiparesis causes disuse of one hand, as 

well as to the behavioral outcome following lateralized SCI in humans. Here, we increased 

activity of the impaired hand using a bimanual robotic task.  

 

 

 



84 

 

5.4. Methods 

 

5.4.1. SUBJECTS 

We studied a total of 38 adult male rhesus monkeys (Macaca mulatta) aged 8.50 

+/- 1.70 years and weighing 12.20 +/- 2.25 kg. Twenty subjects received a right-side C7 

spinal cord hemisection or hemicontusion lesion (as described in [69]–[71]), producing 

impairment of the right hand. Nineteen of the injured subjects used the robot before and 

after lesion and one used the robot only after lesion.  

5.4.2. ROBOT DESCRIPTION 

The Bimanual Vending Machine (BVM) is a novel, cage-mounted robot for semi-

automated training and assessment of non-human primate hand and arm function. The 

BVM consists of two main subsystems: a hand trainer and a reward system. The key 

design concept of the BVM is that monkeys manipulate the hand trainer with one hand 

(the impaired, right hand) in order to bring food treats progressively closer to the other 

hand (the unimpaired, left hand) via the reward system (Figure 26).  
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Figure 26. The Bimanual Vending Machine and sample data. Top: The Bimanual Vending Machine. 
Subjects manipulate the hand trainer on the right track by touching, gripping, pulling, or rotating it with 

their impaired, right hand. Manipulating the hand trainer causes a reward cart on the left track to progress 
toward them through a clear acrylic tunnel, to an opening where the subject can grasp the reward with 

their unimpaired, left hand. To prevent using the unimpaired hand to both manipulate the hand trainer and 
retrieve the reward, the reward cart is programmed to retract promptly into the tunnel if the monkey stops 
touching the hand trainer. A tablet computer interfacing to a microcontroller controls the hand trainer and 
reward subsystems. Cameras mounted on the device record data to the tablet computer. The device is 

hung from the front of the cage using hooks. Bottom: Sample data showing the sensed grip force, handle 
velocity along the track, and handle rotation speed. To count exercise repetitions (or “counts”) in each 

degree of freedom, we identify peaks in these sensed variables. 
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5.4.2.1. HAND TRAINER 

The hand trainer consists of a 3D-printed handle mounted on a linear track of 260 

mm and attached to a belt drive controlled by a motor (19:1 Metal Gearmotor 37D, Pololu) 

with an encoder giving displacement measurement with a resolution of 0.10 mm (Figure 

1). The linear track is positioned in front of the right, impaired hand and allows four types 

of input: touch, hand grip, pulling and pushing along the linear track, and rotation (which 

can be accomplished by forearm pronation and supination, for example).  

To measure hand grip force, two steel bars are connected to a load cell (TAL220, 

up to 98 N). The handle is enveloped in copper tape connected to a microcontroller to 

enable capacitive touch sensing. To allow rotation, this handle system rotates on a DC 

motor (50:1 Metal Gearmotor 37D, Pololu) measured with an encoder with 0.11 degree 

of resolution. 

A custom printed circuit board with a load cell amplifier (INA125P, Texas 

Instrument) and a microcontroller system (Teensy 3.2) collects and transmits the data 

from the presence and touch sensors, load cell, and motor positions to the main controller 

board (Arduino) at 100 Hz using UART serial communication. 

5.4.2.2. REWARD SYSTEM 

The reward system is designed so that manipulating the hand trainer drives food 

treats (yogurt-covered raisins and/or almonds) toward the subject. A custom-designed, 

automatic, reward dispenser delivers the treats into a rewarding cart that rides on a track 

of 280 mm length aligned with the non-injured side of the subject. The system first drops 

1-3 treats (the “reward”) into the cart when the cart is positioned at the farthest point away 

from the cage. Interaction with the hand trainer then drives the reward cart closer toward 

the subject. The reward cart is equipped with an array of three reflectance sensors 

(GP2S60, Sharp) that determine when a reward is available and when it is retrieved by 

the subject. To avoid subjects retrieving rewards prematurely, but to still allow them to 

see the reward progressing toward them, the reward cart travels inside a clear acrylic 

tunnel and only exits the tunnel and becomes accessible to the subject as it nears the 
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cage. The edges of the tunnel are protected with silicone padding to avoid finger pinching 

when the reward cart retreats.  

Software measures prevent the subject from compensating, defined as using only 

their non-impaired hand to operate the machine. To prevent compensation, the reward 

cart is programmed to promptly retract back into the tunnel if the monkey stops touching 

the hand trainer. Thus, the only way to retrieve a reward is for the monkey to keep the 

impaired hand on the hand trainer and then to use the unimpaired hand to pick up the 

reward from the reward cart. 

5.4.3. TRAINING MODES 

Three different modes can be used to train the subjects to interact with the robot 

and to progressively challenge hand function: 1) Touch Mode, for which the subject only 

needs to touch the handle with either hand to drive the reward cart closer. In this mode, 

bimanual activity is not required. This mode is designed for familiarization with the device 

and the early phases of learning; 2) Bimanual Touch Mode, in which subjects use their 

right (impaired) hand to interact with the hand trainer and their left hand (unimpaired) to 

collect rewards. This mode is used to learn the bimanual task and to promote use of the 

impaired limb early after SCI before a gripping motion is possible; and 3) Parallel Mode, 

in which, like Bimanual Touch Mode, subjects use the right hand to grip the hand trainer 

and the left hand to collect rewards. In this mode, monkeys drive the reward card by 

squeezing the handle, pushing or pulling the handle, or rotating the handle (or some 

combination of them, thus the name Parallel Mode).  

In Parallel Mode, a “repetition” or “count” of each of the three possible exercises is 

defined as a peak in the linear or rotational velocity, or a peak in the derivative of the force 

applied to the handle (Figure 26). Peaks are detected using the peak finder function in 

the SciPy Python Library with prominence threshold set to 100 mm/s, 10 degrees/s, and 

3 Newtons for linear motion, rotation, and gripping of the handle, respectively. Each peak 

corresponds to a roughly bell-shaped profile in the velocity or force (Figure 26). 
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For Parallel Mode, the amount of activity required to obtain a reward can be graded 

using the control software. Specifically, the contribution of each type of exercise to the 

amount the reward cart progresses along its track is graded through a software gain 

parameter for each exercise. Setting this gain has the effect of setting a difficulty, defined 

as the required amount of upper extremity activity, as measured by the hand trainer, to 

drive the reward cart from to the beginning of the linear track to the cage. For grip force, 

difficulty is specified in Newtons, for push/pull in millimeters and for rotation in degrees. 

Subjects can choose how to achieve the needed amount of activity, e.g. a difficulty of 200 

Newtons for hand grip can be achieved by exerting four grips with peak force of 50 N or 

10 grips with peak force of 20 N. The default difficulties for gripping, push/pull, and rotation 

were set to 200 N, 6000 mm, and 540°. When difficulty was changed, each gain was 

scaled by the same factor. 

5.4.4. PROBABILISTIC REWARDING 

A probabilistic rewarding paradigm was implemented to increase the exercise to 

reward ratio. Once the subject drives the reward cart to the edge of the tunnel, this 

paradigm allows the cart to proceed out of the tunnel on the next exercise repetition only 

if a computer-generated random number between 0 and 1 falls below a set value (the 

reward chance). For the times the reward cart is not allowed to come out of the tunnel, 

the reward cart returns to the beginning of the linear track, at which point the subject has 

to drive it forward again to the tunnel edge with impaired hand activity to have another 

chance at accessing the reward.  

5.4.5. QUANTIFYING ENGAGEMENT 

We were interested in quantifying the level of engagement with the robot when it 

was on their cage. Since the robot is touch sensitive, one approach for doing this is to 

measure the percentage of session time the subjects spend touching the robot. However, 

we noted that some subjects kept holding the handle when they ate the reward, while 

others did not. Maintaining contact with the robot while eating biases touch time in way 

that make it seem like these subjects had higher engagement. Therefore, to reduce this 



89 

 

effect, we quantified engagement with the robot as the ratio of 30 second periods during 

which the subject touched the robot to the total number of 30 second periods when the 

robot was on the cage (thus allowing for eating time, with or without touching the robot). 

We computed this measure for different time windows and found no conceptual 

differences in the results for different time windows, so we present the results for the 30 

second window here. 

5.4.6. DATA ANALYSIS 

Temporal data is presented in weeks pre- and post- SCI. For subjects with multiple 

training sessions in one week, the variable of interest was averaged across the sessions 

in that week. If a subject did not use the robot in a given week, data were interpolated 

from the nearest week. The same approach was used for extrapolating the data, 

replicating their first and last data points through prior and/or subsequent weeks to keep 

the number of subjects constant throughout time, in order to visualize the ensemble 

average over time. However, only actual data points were used for all bar plots and 

statistical analysis. 

5.5. Results 

Our primary goal in developing the BVM robot was to provide non-human primates 

with rehabilitative hand movement exercise after SCI. Here, we analyze data acquired 

with the device over 200 hours of use total among 37 subjects. During this period, the 

human trainers freely altered training parameters (session duration, difficulty, and reward 

chance) with the goal of promoting more exercise repetitions, or sometimes, to perform 

experiments that tested the effects of those parameters.  

5.5.1. LEARNING TO USE THE BVM 

A total of 37 subjects learned to use the BVM before SCI. Training sessions were 

offered to the subjects 1-5 times per week, for 3-60 minutes per session. Trainers started 

the subjects in touch mode, spending an average of 0.6 +/- 0.21 hours over 4.50 +/- 3.28 

weeks in this mode before progressing to bimanual touch mode for another 1.61 +/- 2.94 
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hours over 6.68 +/- 5.89 weeks. A total of 27 subjects eventually learned to use the robot 

in parallel mode. Of these, 18 subjects received a SCI. After SCI, the trainers again 

progressed subjects from touch mode (0.37 +/- 0.29 hour over 2.64 +/- 1.49 weeks) to 

bimanual touch (2.38 +/- 2.04 hours over 9.33 +/- 8.07 weeks) to parallel mode. One 

subject learned to use the robot only after he had already experienced a SCI and 

progressed to parallel mode after 0.33 hours over 2 weeks of touch mode and 1.2 hours 

over 8 weeks of bimanual mode. 

Two subjects found a way to partially compensate with their unimpaired hand 

during parallel mode. They achieved this by using the unimpaired hand (or both hands) 

to manipulate the hand trainer and thereby drive the reward cart forward. Then, while 

holding the hand trainer with the impaired hand, they reached with the unimpaired hand 

to obtain the treat. Even though this type of compensation still requires activity of the 

impaired hand, the repetitive activity that drives the cart arises primarily from the 

unimpaired hand. For what follows, we focus on data from subjects who used the BVM in 

parallel mode without such compensation both before and after SCI (n = 13). The data 

after SCI represents 97 hours of usage over 78 weeks and includes over 200,000 exercise 

repetitions.  

5.5.2. ENGAGEMENT WITH THE BVM ROBOT 

Figure 27 shows the means across animals of three quantitative measures of robot 

use – engagement, exercise rate, and grip force – before and after SCI. Also shown are 

the time evolution of three parameters that the trainers manipulated – session length, 

training difficulty, and reward chance.  
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Figure 27. Overview of BVM usage in parallel mode. Usage data are shown before and after SCI (top row 
- engagement, exercise rate, grip), as well as robot parameters (bottom row -- session length, difficulty, 
and reward chance). Shown are the average +/- std for 13 subjects who used the BVM in parallel mode 

both before and after the SCI. This subject began using the robot one year after the SCI, when he 
showed some return of hand movement.  

 

First, we focus on engagement – what percent of 30 second time periods did the 

subjects choose to interact with the robot while it was on the cage? Before SCI, 

engagement was 92% +/- 13% and after the SCI it was 88 +/- 14%, a non-significant 

difference (Figure 27A). Note that the trainers decreased difficulty after SCI (Figure 27E) 

to help the animal re-learn to operate the robot in parallel mode, and this may have helped 

to keep them engaged.  

Engagement did then decrease steadily to about 50% over the 80 weeks of robot 

use after SCI (Figure 27A). However, during his period the trainers increased session 

length and decreased reward chance, on average, (Figure 27D and Figure 27F), which, 

while allowing subjects to achieve more exercise repetitions, may have decreased 

engagement. Indeed, engagement steadily dropped within a session for three subjects 

who experienced 60-minute training sessions at low reward rates (Figure 28A). Another 

possibility that could explain decreased engagement over the time after SCI is that 

subjects became less interested in the robot task the more they experienced it. However, 
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when we divided data into sessions that occurred during the first 20 weeks versus second 

20 weeks after SCI (controlling for duration and reward chance), there was not a 

significant drop in engagement (Figure 28B).  

 

Figure 28. Quantifying Robot Engagement. A: Engagement dropped steadily during longer sessions with 
low reward chances. Shown is the average engagement for three subjects who trained with these 
parameters. B: Engagement remained high for sessions 20 weeks after the SCI. Here we selected 
sessions for subjects with the same reward chance before and after SCI, in both time periods (< 20 

weeks, and > 20 weeks), and looked only at the first ten minutes of training C: Engagement in the first 
parallel session after SCI remained high for subjects with a range of hand impairment levels, quantified as 

the change in grip force after SCI. Each point is a subject. 

 

A key question is whether more impaired animals were less engaged. The peak 

grip force used to drive the reward cart decreased significantly after SCI (Figure 27C). 

Using the individual decrease in hand grip force as a marker of hand impairment, we 

found no significant relationship with engagement. That is, subjects with a larger drop in 

hand force still exhibited a high engagement percentage (Figure 28C).  
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In summary, SCI-injured subjects with a range of hand impairment remained 

engaged with the robot during periods lasting up to 1.5 years. Engagement progressively 

decreased during longer training sessions with low reward chances.  

5.5.3. EXERCISE WITH THE BVM ROBOT 

Subjects achieved 57 +/- 54 exercise repetitions/minute with the BVM before SCI, 

and 30 +/- 22 repetitions/minute after SCI, a significant decrease (Figure 27B). Exercise 

rate decreased slightly over the 80-week period we monitored after SCI, possibly again 

due to the increased session lengths and lowered reward chances. The longest sessions 

that we allowed were sixty minutes, which is the length of a typical rehabilitation therapy 

sessions for humans. During these sessions, subjects achieved on average 1138 +/- 1096 

exercise repetitions.  

5.5.4. SHAPING HAND AND ARM ACTIVITY 

Across all parallel mode sessions, 39% of repetitions were grips, 44% push/pull 

and 17% rotation of the handle (Figure 29), indicating that the subjects chose a variety of 

strategies to drive the reward cart, as, indeed, parallel mode was designed to allow. 

However, to potentially target rehabilitation to specific movement, we tested whether we 

could shape the relative use of these three motions. Four non-injured subjects who were 

experienced with parallel mode used the robot under four sequential conditions. Each 

condition changed how the different types of hand and arm activity contributed to the 

movement of the reward cart (i.e. the “difficulties” associated with each degree of freedom 

– DOF).  

For the first eight weeks, we rewarded all activity types (i.e. gripping, push/pull, 

and rotation, difficulty gains were set to 200 N, 6000 mm, and 540° respectively). During 

this period, subjects predominantly gripped the handle to obtain rewards (Figure 29). For 

the next ten weeks, we removed the contribution of gripping through software and 

subjects therefore had to find an alternative solution to drive the reward cart. This change 

in gain triggered a significant increase in total exercise activity (t-test p<0.01) mostly 

through a significant increase in the two other activity types: rotation (t-test p<0.05), and 
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pull/push (t-test p<0.01). However, even though animals started exploring the other types 

of activity, they continued to grip the handle as well (t-test p=0.25). This may have been 

due to the mechanical association of these two activities, as most animals would squeeze 

the handle while they were pulling and pushing, masking which activity was actually being 

rewarded. 

 

 

Figure 29. Shaping Exercise Motions. A: Exercise rate for each of the degrees of freedom (DOF) of the 
robot across all parallel mode sessions, measured in counts/minute, where a count is an exercise 

repetition. This is data from all 13 subjects who used the robot in parallel mode before and after SCI. B: 
Exercise rate for a subset of four subjects before SCI as we sequentially varied the difficulty associated 

with each of the three DOF. Each vertical bar summarizes data from a time period ranging from 6-8 
weeks for the four subjects. A line through a DOF indicates that we removed the effect of that DOF on the 

reward cart during that time period. * = p < 0.05; ** p < 0.01, paired t-test. 

 

The robot experienced a mechanical failure during the subsequent six weeks, but 

in a way that logically continued the experiment. Specifically, the pulley on the hand 

trainer track began slipping on the motor shaft causing push/pull movements to be 

incorrectly sensed. In this situation, even though counts remained high for push/pull, the 

size of each movement was largely reduced due to the slippage, causing push/pull to 

have little effect on the movement of the reward cart (similarly to when we made 
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squeezing the handle have little effect through the software). This change caused animals 

to increase rotation activity (t-test p<0.05) while still squeezing and pushing/pulling. 

Finally, for eight more weeks, we removed the contribution of rotation and push/pull 

(now through software with a repaired robot) and re-enabled the gripping gain such that 

gripping was the only activity that drove the reward cart forward. This re-weighting of 

gains caused a significant reduction in rotation activity (t-test p<0.01), but there was no 

change in push/pull or grip activity.  

In summary, removing the ability of a specific movement to drive the reward card 

caused subjects to search for and increase other movements that worked. 

5.5.5. INCREASING THE AMOUNT OF EXERCISE 

A goal for the robot was to generate a large amount of hand activity, which required 

consideration of how to reduce the ratio of exercise repetitions to rewards. We explored 

two training strategies for achieving this. First, we implemented a probabilistic reward 

scenario in which subjects manipulated the hand trainer to bring food treats to the end of 

the tunnel, but the food cart emerged from the tunnel at a defined reward chance and 

retracted otherwise. By lowering the reward chance, we sought to drive more hand activity 

per reward. Indeed, counts per reward increased as we decreased reward chance (Figure 

30A, p < 0.001 – we kept difficulty low for these sessions). Subjects who exercised at a 

3% reward rate accomplished an average of 65 +/- 32 exercise repetitions per reward 

(n=8, 231 sessions).  

The second strategy was to increase difficulty thus requiring more hand activity to 

drive the reward cart to the end of the tunnel. Again, counts per reward increased as we 

increased difficulty (Figure 30B, p < 0.01 – we kept reward chance high for these 

sessions). Subjects who exercised at the highest difficulty we tried (200 N for gripping) 

accomplished an average of 35 +/- 40 exercise repetitions per reward (n=5, 84 sessions).  

We explored the effect of increasing session duration on the exercise repetitions 

achieved using these two strategies, for two subjects for each strategy. For all subjects, 

the number of exercise repetitions increased approximately linearly with the total training 
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time over a 3-week period (Figure 30C). The highest slope (and therefore shortest training 

time to achieve a given count level) was achieved by one subject who trained with high 

difficulty and high reward rate. 

 

Figure 30. Strategies to increase the exercise to reward ratio. A: Low reward chance/low difficulty strategy 
– lowering reward chance increased exercise repetitions (counts) per reward. For this data, we held 

difficulty constant at a low level 40 N. B: High reward chance/high difficulty strategy – increasing difficulty 
increased counts per reward as well (** p < 0.01, t-test). For this data, we held reward chance at its 

maximum value, 100%. C: Using a running window of three weeks over months of data, we calculated 
total training time during the three weeks as we varied session length for four subjects with a SCI (each 

subject is a different color and marker type; each point is a three-week period). Two subjects trained with 
each strategy. Total counts increased approximately linearly with total training time for each subject, with 
the highest slope (and therefore shortest training time to achieve a given count level) associated with one 

of the subjects who trained with the high reward chance/high difficulty strategy. 
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5.6. Discussion 

Robotics technologies are increasingly being developed to automate tasks that 

have not been previously automated, including medical rehabilitation following neurologic 

injury. Here, we described the development and testing of a novel robotic therapy device 

designed to improve the evaluation of regenerative therapies in a large animal model. 

Our primary design goal for the BVM was to emulate movement rehabilitation provided to 

neurologic patients as an obligatory component of any human clinical trial. We asked: 

“how can we deliver engaging, intensive, on-cage, movement training of the hand, 

gradable for very impaired hands up to less impaired hands, at an appropriate reward 

dispensing rate over rehabilitation-typical time periods?” We were constrained by the 

nature of the model – a hemi-injury to the spinal cord – and thus created a robotic task 

that senses and requires bimanual coordination.  

Our key results were as follows: We were able to promote activity of the impaired 

hand in all animals exposed to the BVM robot, although 27% of subjects did not progress 

to the most challenging mode – parallel mode – and 7% of animals who progressed to 

parallel mode learned a strategy to partially compensate with the unimpaired hand. 

Subjects were highly engaged with the robot before injury and remained engaged months 

after injury. Engagement progressively declined during longer sessions. After SCI, 

subjects achieved an average exercise rate of about 30 counts/minute, through a mixture 

of arm and hand motions. We were able to shape activity toward gripping, push/pull, or 

rotation by changing the difficulty of each of these degrees of freedom, although subjects 

typically persisted in performing the movement that worked previously, as well as adding 

the new movement (a result also found in an experiment studying human motor search 

[112]). Decreasing reward rate or increasing difficulty increased the ratio of exercise 

repetitions to reward. We discuss now the potential of the BVM robot to improve 

translational science of regenerative rehabilitation, then limitations and directions for 

future research. 
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5.6.1. TOWARD ROBOTIC REGENERATIVE REHABILITATION SCIENCE 

We developed the BVM to provide hand rehabilitation exercise for a specific model 

of SCI. Does the BVM drive enough hand activity to cause a rehabilitative response? 

Surprisingly, the adequate dose of hand rehabilitation is still debated, and the dose-

response curve in the context of neuroregenerative therapy is unknown. Perhaps the best 

data for developing a guideline comes from a meta-analysis of a series forepaw 

rehabilitation experiments in a rat model of stroke [113]. These data suggested a 

threshold effect of rehabilitation – at least 300 reaches per day were required to see a 

positive effect – when training sessions were provided five days per week for three weeks. 

Taking three weeks as the time unit for evaluating dosage, this means we should aim to 

provide at least 4500 exercise repetitions over the three weeks. We achieved this for two 

subjects for whom we experimented with longer session times. Each subject used a 

different strategy – low reward rate/low difficulty or high reward rate/high difficulty. These 

subjects were rewarded ~51 and ~40 times per week, which meets site guidelines for 

calories from food rewards. Two other subjects experienced longer sessions but did not 

reach 4500 repetitions. However, there was a linear relationship between session 

duration and counts, so further increasing training time would be expected to allow these 

subjects to meet this criterion. If the trend apparent in Figure 30 holds for more subjects, 

the high reward rate/high difficulty strategy may allow this to happen with overall shorter 

training time. 

The current standard approach for assessing and promoting hand movement 

practice in non-human primates are pellet retrieval tasks (such as the Brinkman or Kluver 

Board). The BVM fully automates training whereas a conventional pellet retrieval board 

approach requires a human to replace pellets in the wells. The pellet retrieval approach 

also has the limitation that subjects with severely impaired hands cannot retrieve treats 

from the slots, although this can be helped by designing wider, shallower slots. The BVM 

provides a means for trainers to progress subjects through varying levels of task difficulty, 

mimicking what commonly happens in human rehabilitation. Trainers can select one of 

the three training modes – touch, bimanual touch, and parallel – and, indeed, trainers had 
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subjects spend on average approximately two months in bimanual touch mode after SCI, 

before progressing to parallel mode. The trainers could also vary the difficulty of parallel 

mode using the difficulty parameter that specified the amount of upper extremity activity 

needed in each DOF to drive the reward cart out of the tunnel.  

Is the type of exercise activity that the robot encourages comparable to what 

happens in human rehabilitation? Rehabilitation therapists incorporate three main 

activities into therapy sessions: 1) activities aimed at helping patients learn how to 

achieve functional goals (in which case they often allow compensation with the 

unimpaired hand in persons with hemi-injuries); 2) activities aimed at improving quality of 

movement (in which case they discourage compensation during training); and 3) activities 

aimed at completing a high dose of exercise (again, typically, while discouraging 

compensation during this exercise). The BVM mainly focuses on the last activity - 

exercise dose, and like a therapist, prevents compensation. Many studies have found that 

achieving a high number of simple movements is rehabilitative. For example, Butefisch 

et al. found a therapeutic benefit of performing a high dose of repetitive, power grasping 

after stroke [114]. Robotic therapy devices that encourage a limited repertoire of 

stereotypical arm and hand movement have also been found to be therapeutic after stroke 

(see review [115]). Studies with patients who have an SCI are scarcer but also suggest 

efficacy (see review [116]). Thus, training with the BVM is different than what happens 

during training in a conventional rehabilitation program, it does replicate a beneficial 

component of rehabilitation. 

The BVM is also potentially useful for translational science because it quantifies 

the amount and content of rehabilitation exercise. Thus, going forward, it will be possible 

to include the amount and type of rehabilitation exercise that subjects achieve as a 

covariate in analyzing the effects of regenerative treatments. Further, the BVM can 

generate novel measures of recovery. Here, for example, we found that the grip force (i.e. 

the peaks in hand grip pulses that subjects used to drive the robot in parallel mode) were 

sensitive to SCI and increased in one subject after stem cell engraftment. Other measures 

will likely be possible. 
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5.6.2. LIMITATIONS AND FUTURE DIRECTIONS 

One limitation of the BVM is that 7% of subjects partially compensated with their 

unimpaired hand. We recently developed an algorithm using presence sensors 

embedded in the hand trainer to detect which hand is engaging the hand trainer, and we 

can now prevent partial compensation. Another limitation is that the most challenging 

mode – parallel mode – focuses on power grasp, which exercises gross finger flexion. 

Finger extension and individuation will also likely be important targets [117]. We are 

currently exploring a new training mode in which subjects must exert a finger extension 

force against a plate attached to hand trainer to drive the reward cart. It is also possible 

to develop other types of handles that, for example, better challenge finger dexterity. On 

the other hand, if it were desired to target rehabilitation of hand strength, we have 

developed a robotic protocol in a rat model for promoting large gripping forces with an 

analogous device [118]. Such a grip strength-building protocol could potentially be applied 

with the BVM. Further, we have not yet designed modes that train combined hand and 

arm coordination.  

Another possibility for promoting dexterity and providing training variety is to 

combine training with the BVM with training in a pellet retrieval task. It is possible to 

achieve 500 pellet retrieval motions per day by placing a treat pellet in one of the wells 

and requiring the animal to clear all pellets before refilling, including another treat pellet 

[73]. Robotics technology could automate well refilling, and automatically quantify pellet 

retrieval using sensors. Implementing a hand trainer for the BVM comprised of a small 

set of sensorized wells is one approach that would allow further control over reward 

frequency. 

Proprioception is another important function often compromised by neurologic 

injuries, and indeed, baseline finger proprioception predicts benefit from robotic hand 

rehabilitation after stroke [119], [120]. Regenerative therapies may form relay circuits that 

carry somatosensory information, including proprioception. A key direction for future 

research is to determine whether the BVM robot can be used to re-train and quantify 

somatosensation.  
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We developed the robot for use in a model of SCI, but, as mentioned above, this 

model of SCI mimics the hemiparesis of stroke. Thus, the BVM may also be useful for 

future research on non-human primate models of stroke.  

Finally, we reverse-translated the concept of robotic therapy, which has primarily 

been developed for humans, to a non-human primate model of SCI. Some aspects of the 

BVM robot design are unique to the nature of the user, such as the use of food rewards 

or the requirement to prevent compensation, although the compensation prevention 

strategy we implemented might be useful for ensuring scientific quality of studies of home-

based training of humans. Nonetheless, we expect that insights gained with the BVM will 

provide new directions for robotic therapy for humans. For example, with non-human 

primates, we could no longer verbally instruct the subject how to use the robot, and 

instead relied on a reinforcement learning (RL) approach, in which a scalar variable (the 

reward cart location) indicated to subjects that they were performing the desired 

movements. There have been limited attempts to implement RL-based motor training in 

robotic therapy for humans, perhaps precisely because therapists have a tradition of 

verbally instructing patients in a multitude of details about their desired and actual 

movement performance. However, it has recently been hypothesized that stimulating RL 

mechanisms may be important for promoting movement recovery, since these 

mechanisms are a primary way by which humans improve motor skill outside of coached 

training sessions. Solving a RL problem requires exploration, which may be required to 

identify subject-specific optimal movement strategies. What we learn about the 

parameters that determine the efficacy of RL-based motor rehabilitation with non-human 

primates will be useful for optimizing this strategy with humans. 
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CHAPTER 6. CONCLUSIONS AND MAIN CONTRIBUTIONS  

Rehabilitation of the upper extremity is paramount to achieve independence and 

increase quality of life after a neurologic injury. This dissertation focused on 

understanding upper extremity use after neurologic injuries and developing tools to help 

the rehabilitative process in the living environment. We first summarize the main 

contributions in the areas of wearable sensing of hand function, then robotic training of 

hand function in non-human primates. We then discuss limitations and directions for 

future research. 

6.1. Wearable sensing for monitoring and feedback of the upper 

extremity 

The use of wearable sensing for health-related monitoring has vastly increased in 

the past few years. It allows monitoring in the “wild”, outside-of-the-clinic. Yet, it is still 

unclear what information, outside of that available with clinical assessments, can be 

gained from wearable sensing of UE movement for people after stroke, and how to use 

that information to promote hand movement recovery.  

After reviewing the wearable sensing literature, we argued that there are limited 

options for non-obtrusive, out-of-the-clinic monitoring of distal movements, such as wrist 

and finger movements - technology that could be applied to hand rehabilitation after 

neurologic or orthopedic injuries the wearable sensing on upper extremity monitoring 

field. To tackle this problem, our lab has previously developed the Manumeter. The 

Manumeter is a wristwatch-like device that works in companion with a magnetic ring worn 

on the index finger to estimate wrist and finger angles. However, our previous approach 

toward quantifying hand movement with the Manumeter required subject-specific 

calibration and offline computation. In CHAPTER 2, we showed the development a 

threshold-based algorithm, HAND, to address these problems. 

We first investigated the HAND algorithm accuracy through a robotic system that 

emulates hand and wrist movements, and found it counted emulated movements with 
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accuracies from 70 to 93%. However, some of the emulated movements were well below 

human average speeds. In our analysis, movements with peak velocity below 200 

degrees/second (down to 20 degrees/second) were classified as slow movements and 

were the main source of inaccuracy. 

We further investigated the algorithm accuracy through in-lab experiments. An 

average of 90% accuracy for unimpaired participants and 80% for stroke survivors was 

found. In both cases the Manumeter tended to overestimate the counts. We attributed 

some of the inaccuracy to participants with stroke making multiple movements when 

changing from one posture to the next. Pedometers have been reported to have similar 

accuracy (70% - 90%) when measuring distance traveled outside of the clinic; therefore, 

there is utility for wearable devices at this level of accuracy.  

In CHAPTER 3, we investigated the efficacy of real-time feedback on hand activity 

and motor recovery with 20 stroke survivors. Half of the participants received feedback 

and half of them did not. The goal of this study was to investigate the efficacy of real-time 

feedback of hand movements in increasing hand activity and motor recovery. Participants 

showed a significant increase in the clinical outcomes FMUE, ARAT, and MAL-HW as a 

function of time. Both groups showed a non-significant increase in BBT from baseline to 

post-therapy, which was sustained (also not significant) at 3-month follow-up only by the 

experimental group. There was no significant difference between groups in number of 

days wearing the Manumeter, however participants in the experimental group wore the 

Manumeter for significantly longer each day. Real-time feedback did not significantly 

increase hand movement intensity.  

We showed for the first time the non-linear relationship between hand capacity and 

hand use at home. Several studies have correlated amount of upper extremity use with 

clinical assessments [96], [97]. However, from the learned non-use phenomenon it is 

expected that this relationship is nonlinear. Here, we showed that participants that scored 

up to 25 in the BBT did not use their hand at home. A sharp increase in hand use intensity 

was observed for participants with higher motor capacity.  
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Providing hand feedback with a daily goal caused a trend toward improved clinical 

hand function, even though there was no detectable change in amount of hand use. One 

explanation may be that participants receiving feedback paid more attention to their 

impaired hand, and similar effects have been previously observed [62]. Other studies 

have failed at correlating change in clinical outcomes and change in amount of upper 

extremity use at home [99]. A possible explanation is that the variability in hand use is too 

high and inducing significant changes in hand use is therefore more challenging than 

expected. Here, we showed that the necessary increase in hand activity for a detectable 

change is about 31% of the daily average across the three weeks of therapy. Hand 

exercise, particularly that requiring repetitive finger extension, is slow and fatiguing, 

relative to the same number of repetitions of walking. Could it be that the smaller, more 

fatigable nature of hand extensor muscle limits hand exercise to levels lower than needed 

to make a change? If so, finding ways to encourage exercise while limiting fatigue are 

important. Perhaps wearable hand feedback can only be effective if it is coupled with a 

structured plan for how to achieve higher levels of hand activity. 

In CHAPTER 4, we explored the use of bimanual wrist accelerometry in the living 

environment with stroke survivors. Similar work has been carried out by several other 

groups and there is a general agreement that standard clinical assessments are 

correlated with each other and with accelerometry measures of limb use asymmetry [40]. 

However, we showed that there is additional kinematic information that can be extracted 

from bimanual wrist accelerometry. It makes sense that wearing sensors on both hands 

all day long should contain information other than that extracted from a 1-minute 

assessment in the laboratory.  

To explore some of this available information, we proposed and tested, with a small 

group of 9 stroke survivors, two new metrics: jerk asymmetry and acceleration magnitude 

asymmetry. We applied the principal component analysis to show that these proposed 

metrics contain extra information (explaining 31% of the variance in the data) than clinical 

assessment and hand use asymmetry (that explained 55% of the variance).  
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We related these two new metrics to movement quality. The clinical hand 

assessments we used here, the BBT and NHPT, are timed tests of hand dexterity, and 

are relatively “blind” to how a person achieves the targeted functional task. The kinematic 

measures, in contrast, likely relate to the quality of the movement: jerk relates to 

smoothness [103], and acceleration magnitude possibly relates to specialization of the 

roles of the limbs [108], and/or relative coarseness versus fineness of the movements 

achieved by each UE throughout the day. This analysis says that there are aspects of 

movement quality that are uncorrelated with functional status, which has also been 

previously observed using a robotic therapy device [106]. 

If this “movement quality” interpretation is accepted, it is an important extension to 

bimanual wrist accelerometry. The lack of movement quality information has been one of 

the most challenging aspects of the clinical application of wrist accelerometry clinically 

[77]. These new metrics could be used as feedback in a similarly to the hand use that we 

explored in previous chapters. 

6.2. Regenerative rehabilitation in non-human primates 

In CHAPTER 5, we described the development and testing of a novel robotic 

therapy device designed to improve the evaluation of regenerative therapies in a large 

animal model. Our goal was to emulate hand rehabilitation provided as a component of 

any human clinical trial. The translation of this regenerative therapy to humans is the 

ultimate goal of this project. We asked: “how can we deliver engaging, intensive, on-cage, 

movement training of the hand, gradable for very impaired hands up to less impaired 

hands, at an appropriate reward dispensing rate over rehabilitation-typical time periods?” 

We were constrained by the nature of the model – a hemi-injury to the spinal cord – and 

thus created a robotic task that senses and requires bimanual coordination.  

Our key results were as follows: We were able to promote activity of the impaired 

hand in all animals exposed to the BVM robot, although 27% of subjects did not progress 

to the most challenging mode – parallel mode – and 7% of animals who progressed to 

parallel mode learned a strategy to partially compensate with the unimpaired hand. 
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Subjects were highly engaged with the robot before injury and remained engaged months 

after injury. Engagement progressively declined during longer sessions. After SCI, 

subjects achieved an average exercise rate of about 30 counts/minute, through a mixture 

of arm and hand motions. We were able to shape activity toward gripping, push/pull, or 

rotation by changing the difficulty of each of these degrees of freedom, although subjects 

typically persisted in performing the movement that worked previously, as well as adding 

the new movement (a result also found in an experiment studying human motor search 

[112]). Decreasing reward rate or increasing difficulty increased the ratio of exercise 

repetitions to reward. The peak grip force the subjects applied to the robot decreased 

after SCI and recovered in a subject whose spinal cord successfully incorporated a stem 

cell graft. We discuss now the potential of the BVM robot to improve translational science 

of regenerative rehabilitation, then limitations and directions for future research. 

We developed the BVM to provide hand rehabilitation exercise for a specific model 

of SCI. Does the BVM drive enough hand activity to cause a rehabilitative response? 

Surprisingly, the adequate dose of hand rehabilitation is still debated, and the dose-

response curve in the context of neuroregenerative therapy is unknown. Perhaps the best 

data for developing a guideline comes from a meta-analysis of a series forepaw 

rehabilitation experiments in a rat model of stroke [113]. These data suggested a 

threshold effect of rehabilitation – at least 300 reaches per day were required to see a 

positive effect – when training sessions were provided five days per week for three weeks. 

Taking three weeks as the time unit for evaluating dosage, this means we should aim to 

provide at least 4500 exercise repetitions over the three weeks. We achieved this for two 

subjects for whom we experimented with longer session times. Each subject used a 

different strategy of low reward rate/low difficulty or high reward rate/high difficulty. These 

subjects were rewarded ~51 and ~40 times per week, which meets site guidelines for 

calories from food rewards. Two other subjects experienced longer sessions but did not 

reach 4500 repetitions. However, there was a linear relationship between session 

duration and counts, so further increasing training time would be expected to allow these 

subjects to meet this criterion.  
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The current standard approach for assessing and promoting hand movement 

practice in non-human primates are pellet retrieval tasks (such as the Brinkman or Kluver 

Board). The BVM fully automates training whereas a conventional pellet retrieval board 

approach requires a human to replace pellets in the wells. The pellet retrieval approach 

also has the limitation that subjects with severely impaired hands cannot retrieve treats 

from the slots, although this can be helped by designing wider, shallower slots. The BVM 

provides a means for trainers to progress subjects through varying levels of task difficulty, 

mimicking what commonly happens in human rehabilitation. Trainers can select one of 

the three training modes – touch, bimanual touch, and parallel – and, indeed, trainers had 

subjects spend on average approximately two months in bimanual touch mode after SCI, 

before progressing to parallel mode. The trainers could also vary the difficulty of parallel 

mode using the difficulty parameter that specified the amount of upper extremity activity 

needed in each DOF to drive the reward cart out of the tunnel.  

Is the type of exercise activity that the robot encourages comparable to what 

happens in human rehabilitation? Rehabilitation therapists incorporate three main 

activities into therapy sessions: 1) activities aimed at helping patients learn how to 

achieve functional goals (in which case they often allow compensation with the 

unimpaired hand in persons with hemi-injuries); 2) activities aimed at improving quality of 

movement (in which case they discourage compensation during training); and 3) activities 

aimed at completing a high dose of exercise (again, typically, while discouraging 

compensation during this exercise). The BVM mainly focuses on the last activity - 

exercise dose, and like a therapist, prevents compensation. Many studies have found that 

achieving a high number of simple movements is rehabilitative. For example, Butefisch 

et al. found a therapeutic benefit of performing a high dose of repetitive, power grasping 

after stroke [114]. Robotic therapy devices that encourage a limited repertoire of 

stereotypical arm and hand movement have also been found to be therapeutic after stroke 

(see review [115]). Studies with patients who have an SCI are scarcer but also suggest 

efficacy (see review [116]). Thus, training with the BVM is different than what happens 

during training in a conventional rehabilitation program, it does replicate a beneficial 

component of rehabilitation. 



108 

 

The BVM is also potentially useful for translational science because it quantifies 

the amount and content of rehabilitation exercise. Thus, going forward, it will be possible 

to include the amount and type of rehabilitation exercise that subjects achieve as a 

covariate in analyzing the effects of regenerative treatments. Further, the BVM can 

generate novel measures of recovery. Here, for example, we found that the grip force (i.e. 

the peaks in hand grip pulses that subjects used to drive the robot in parallel mode) were 

sensitive to SCI and increased in one subject after stem cell engraftment. Other measures 

will likely be possible. 

6.3. Future directions 

The Manumeter has the potential to be expanded to other target groups (e.g. 

children with cerebral palsy, people with Parkinson’s). Studies with unimpaired, age- 

matched controls are need to great insight into normative amounts of hand use and hand 

use variability. From unpublished data, we observed that unimpaired office workers 

achieve around 12,000 hand movements in a day. Understanding how hand use changes 

across groups of people performing different daily activities will give important insights on 

how to more efficiently use the Manumeter to help rehabilitation. 

Even though the Manumeter is nonobtrusive and participants enjoyed wearing the 

device, removing the need of the magnetic ring and use wrist accelerometry to count hand 

movements would be powerful next step. We have seen this opportunity in experiments 

performed in the laboratory, in which even hand-only movements caused changes in the 

wrist accelerometry signal through the movements of the skin, muscles, and tendons. 

Using wrist accelerometry opens the possibility of using smart watches and expands 

research to larger and more powerful studies (e.g., recruiting participants through the 

ResearchKit by Apple and ResearchStack by Android). It would also allow other research 

groups to apply the methods developed in our laboratory to their own studies, as the 

current design of the Manumeter requires customized hardware and firmware that makes 

it less accessible. 
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For the Bimanual Vending Machine, we will further investigate the effects of the 

combination of the robotic therapy and stem-cell therapy on hand recovery. There will be 

in total 10 robots available for training which will support increasing exercise intensity. We 

aim to correlate amount of hand exercise repetitions with functional recovery. 

Furthermore, we are investigating methods to incorporate somatosensory measurement 

and training into the robot as it is another important function often compromised by 

neurologic injuries that is currently not exploited. 
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