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Abstract

A parameter regime is identified where the simple scheme of treating interference as Gaussian
noise (TIN), with power control and jamming, is optimal for the secure generalized degrees
of freedom (GDoF) region of Gaussian broadcast networks under the robust assumption of
finite-precision channel state information at the transmitter (CSIT). The network consists of
one transmitter equipped with K antennas, and K single-antenna receivers. The results are
generalized to groupcast (equivalently, compound broadcast) settings where each message is
desired by a disjoint group of receivers. Noting that messages are independently encoded in
the GDoF-optimal scheme, the result for the broadcast channel is extended to its counterpart
Gaussian interference channel under finite precision CSIT. Evidently, both secrecy constraints
and finite precision CSIT limit the benefits of more sophisticated schemes, leading to optimality
of simpler schemes for larger parameter regimes. Aligned Image bounds are the key to the proof
of optimality for these larger parameter regimes under finite precision CSIT.

C. Geng was with UC Irvine when he finished his contribution to this work.
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1 Introduction
Generalized degrees of freedom (GDoF) studies [1–5] have emerged as a valuable means to gain
insights into the fundamental limits of wireless networks. Of particular interest are the serendipitous
parameter regimes where simple schemes turn out to be optimal. While such regimes exist even
under the idealized assumption of perfect channel state information at the transmitter(s) (CSIT)
[6–8], recent works have shown that more conservative models that limit CSIT to finite precision
may yield even larger parameter regimes where simple schemes are optimal [9]. This is especially
important because finite precision CSIT models are closer to practice.

Robustness is especially important for communication under security constraints. While there
is an abundance of literature on information theoretic secrecy [10–33], robustness issues, especially
for larger networks, remain relatively unexplored. Fragile schemes are susceptible to catastrophic
failures due to small deviations from their idealized assumptions. Such deviations are unavoidable
in practice. In the absence of security constraints, a failed communication attempt may prompt a
more conservative re-transmission. Failure in a secure communication setting on the other hand,
may also lead to a loss of secrecy which is irreversible. Therefore, it is especially important to avoid
the idealized assumption of perfect CSIT when studying secure communication [34–36].

Until recently, GDoF characterizations for finite precision CSIT models were intractable as the
bounds produced by various classical techniques (Csiszar-sum lemma [37], extremal inequalities
[38], compound channel bounds [39]) fell short even in very simple settings, e.g., the two user
MISO broadcast channel (BC) as exemplified by the Lapidoth-Shamai-Wigger conjecture [37].
This changed with the emergence of Aligned Image (AI) bounds in [40]. These are combinatorial
bounds based on counting the number of codewords that can be aligned at one receiver while
remaining resolvable at another receiver. The AI bounds were originally introduced in [40] to settle
the Lapidoth-Shamai-Wigger conjecture, and have been generalized significantly in subsequent
works [41]. Indeed, AI bounds have been used successfully to find robust GDoF-optimal schemes
for a variety of settings [42–51].

Motivated by these observations, in this work we initiate1 the study of GDoF of K user MISO BC
under secrecy and finite precision CSIT constraints. The contributions of this work are as follows.
We identify a parameter regime where the simple scheme of treating interference as Gaussian noise,
along with power control and jamming, is optimal for the secure GDoF of the K user MISO
BC under the robust assumption of finite precision CSIT. Remarkably, no such parameter regime
is known for the K user MISO BC if either the secrecy constraint, or the finite-precision CSIT
constraint, or both of those constraints are relaxed. To the best of our knowledge, this is the
first set of secure GDoF results under finite-precision CSIT for the K user MISO BC. The results
are generalized to groupcast (equivalently, compound broadcast) settings where each message is
desired by a disjoint group of receivers. Noting that messages are independently encoded in the
GDoF-optimal scheme, the result for the broadcast channel is extended to its counterpart Gaussian
interference channel under finite precision CSIT. Here also, the optimality of TIN is shown for a
parameter regime that is in general strictly larger than the corresponding regimes established in
prior work without security [6] or finite-precision CSIT [33] constraints. Remarkably, it turns
out that the AI bounds combine quite naturally with the mutual information bounds that are

1As noted, there is prior work on GDoF under finite precision CSIT but without secrecy constraints (e.g., [42–50]),
on GDoF with secrecy but under perfect CSIT (e.g., [29–33]), and on secure DoF with limited CSIT (e.g., [34–36]),
yet Generalized DoF with secrecy and finite precision CSIT, especially for arbitrarily large networks, remain almost
entirely unexplored.
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Figure 1: Broadcast network with groupcast messages.

introduced by secrecy constraints, producing tight converse bounds for the GDoF characterizations
in this paper. Thus, the overarching take-home messages from this work are two-fold – (i) that
the combination of secrecy constraints and finite-precision CSIT constraints creates new parameter
regimes where relatively simple and robust schemes are GDoF optimal, and (ii) that AI bounds are
the key to identifying these new parameter regimes.

The paper is organized as follows. In Section 2 we define the channel model for the group-
cast/unicast setting and introduce other relevant definitions. The results are presented in Section
3. Section 4 follows with examples that illustrate the results. The proofs appear in Section 5.
Finally, we present the conclusion in Section 6.

Notations: For real number x and positive integers Y, Z, with Y ≤ Z, define (x)+ , max(0, x),
[Y : Z] , {Y, Y + 1, · · · , Z} and [Y ] , [1 : Y ]. For a set S, |S| denotes its cardinality. For two
functions f(x) and g(x), denote f(x) = o(g(x)) if limx→∞ f(x)/g(x) = 0. All logarithms are to the
base 2.

2 Channel Model and Preliminaries
We consider a Gaussian broadcast network depicted in Fig. 1, which consists of one transmitter
with K antennas and K groups of users. Group i contains Li users, each of which has one receiving
antenna. The independent messages {Wj : j ∈ [K]} are jointly encoded into codewords {Xi : i ∈
[K]}, where Xi = {Xi(t) : t ∈ [n]} is a codeword spanning n channel uses. The message Wj is
desired by all the users in Group j. When there is more than one user for a message, we refer to
this setting as Gaussian broadcast channel with message groupcast (GBC-groupcast). In the special
case where each group contains only one user (i.e., Li = 1,∀i ∈ [K]), the channel is referred to as
Gaussian broadcast channel with message unicast (GBC-unicast).
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For the purpose of robust GDoF studies, for all k ∈ [K], the received signals are described as
follows.

Y
[lk]
k (t) =

K∑
i=1

P̄α
[lk]

ki G
[lk]
ki (t)Xi(t) + Z

[lk]
k (t). (1)

All Xi(t), Y
[lk]
k (t), Z

[lk]
k (t), G

[lk]
ki (t) ∈ C. During the t-th channel use, Xi(t) is the channel input at

transmitting antenna i subject to a unit average power constraint (E[|Xi(t)|2] ≤ 1), Y [lk]
k (t) is the

channel output at User lk in Group k, and Z
[lk]
k (t) is the zero-mean unit-variance complex additive

white Gaussian noise (AWGN) at the same user. We define P̄ =
√
P , where P > 1 is a nominal

parameter that approaches infinity in the GDoF limit. The channel strength parameter α
[lk]
ki ≥ 0

represents the strength of the link between the transmitting antenna i and the lk-th receiver in
Group k, and is denoted as αki when Lk = 1. G

[lk]
ki (t) ∈ G are the channel coefficient values, which

are assumed to be known perfectly to the receivers, and known only up to finite precision to the
transmitters. The set of channel coefficient random variables G is defined in Section 2.1.

A secure rate tuple (R1, R2, ..., RK) is achievable if, for any ϵ > 0, there exist n-length codes
such that (i) the size of each message set |Wj | ≥ 2nRj ; (ii) the decoding error probabilities at all
users are no larger than ϵ; and (iii) the following secrecy constraint is satisfied,

H(WK
−i|Y

[li],n
i ,G) ≥ H(WK

−i)− nϵ ∀i ∈ [K], (2)

where WK
−i , {Wk : ∀k ∈ [K]\{i}}, Y [li],n

i = {Y [li]
i (t)|t ∈ [n]}, and G is the set of channel coefficients

defined in Section 2.1. The secure channel capacity region C is the closure of the set of all achievable
secure rate tuples. The secure GDoF region D is defined as

D ,
{
(d1, d2, ..., dK) : di = lim

P→∞

Ri

logP
, ∀i ∈ [K], (R1, R2, ..., RK) ∈ C

}
. (3)

The sum GDoF value dΣ and the symmetric GDoF value dsym are defined respectively as

dΣ , max
(d1,d2,··· ,dK)∈D

K∑
i=1

di, (4)

and

dsym , max
(d1,d2,··· ,dK)∈D

di=d,∀i∈[K]

d. (5)

2.1 Finite precision CSIT
In the setting of finite precision CSIT, we assume that the transmitter is aware of the values of the
channel strength parameters α[lk]

ki , but the channel coefficients G[lk]
ki (t) are known to the transmitter

only up to finite precision. Specifically, the transmitter knows only the joint probability density
function of the channel coefficients G , {G[lk]

R,ki(t), G
[lk]
I,ki(t) : t ∈ [n], lk ∈ [Lk], i, k ∈ [K]}. The

joint density of G is assumed to follow the “bounded density assumption” [40, 42, 43], i.e., there
exists a positive finite constant fmax, such that, for any finite disjoint subsets of G, say G1 and G2,
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the density of G1 conditioned on G2 satisfies fG1|G2
(g1|g2) ≤ f

|G1|
max, where gi is a realization of Gi,

i = 1, 2. The bounded density assumption eliminates the possibility that, given a set of channel
coefficients, the values of some other channel coefficients can be precisely deduced. Furthermore,
to avoid degenerate scenarios, the magnitudes of channel coefficient values are also bounded away
from zero and infinity, i.e., there exists a finite constant ∆ > 1 such that 1/∆ ≤ |G[lk]

ki (t)| ≤ ∆ for
all channel coefficients.

2.2 Definitions
We will need several definitions. Let us start with the polyhedral TIN region, which is a GDoF
region originally defined in [6] and subsequently shown in [33] to be securely achievable by the
scheme of TIN, together with power control and cooperative jamming. See Section II-C for details.

Definition 2.1 (Polyhedral TIN Region). For a set of channel strength parameters α = {αij :
i, j ∈ [K]}, the polyhedral TIN region associated with a permutation σ, denoted as Pσ(α), is a
collection of the tuples (d1, d2, · · · , dK) satisfying

0 ≤di ≤ αiσ(i) ∀i ∈ [K], (6)
m∑
j=1

dij ≤
m∑
j=1

(
αijσ(ij) − αij−1σ(ij)

)
∀(i1, i2, · · · , im) ∈ Πm, ∀m ∈ [2 : K], (7)

where Πm is the set of all permutation of m distinct indices from [K], and modulo-m arithmetic
is implicitly used on the user indices, e.g., im = i0. σ = (σ(1), σ(2), · · · , σ(K)) represents a
permutation of the tuple σ0 , (1, 2, · · · ,K).

The permutation operator σ is needed because, while the polyhedral TIN region was originally
defined for the interference channel where the association between messages and transmit antennas
is fixed, in the broadcast setting the TIN scheme could choose any mapping of transmit antennas
to messages. In the following Pσ(α) is abbreviated as Pσ when there is no ambiguity in the channel
strength parameters.

Definition 2.2 (CTIN Regime). The CTIN regime, denoted as ACTIN , is the set of channel
strength parameters {α[li]

ij : li ∈ [Li], i, j ∈ [K]} satisfying the following conditions:

α
[li]
ii ≥ max

j:j ̸=i
{α[li]

ij + α
[lj ]
ji } ∀i ∈ [K], (8)

α
[li]
ii ≥ max

j,k:j,k ̸=i,j ̸=k
{α[li]

ik + α
[lj ]
ji − α

[lj ]
jk } ∀i ∈ [K]. (9)

The CTIN regime is named for the convexity of the GDoF region achievable by TIN when the
channel is in this regime [52], and is recently identified as a regime where TIN is GDoF optimal
without the secrecy constraint under finite precision CSIT [9]. In fact, it can be further argued that
the GDoF region in the CTIN regime remains optimal even if the secrecy constraint is imposed;
i.e., secrecy incurs no GDoF penalty. See Lemma 2.2 for the details of this observation.

Definition 2.3 (SLS-σ). The SLS-σ regime, denoted as ASLS,σ, is the set of channel strength pa-
rameters {α[li]

ij : li ∈ [Li], i, j ∈ [K]} with the message ordering σ satisfying the following conditions:

α
[li]
iσ(i) ≥α

[lk]
kσ(i) ∀li ∈ [Li], lk ∈ [Lk], k, i ∈ [K], (10)
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Figure 2: (a) A network with variable channel strength parameters (α, β, γ), and (b) the regions for the
channel strength parameters in which the channel is respectively in the CTIN regime (red polyhedron), in the
SLS-σ0 regime (gray-shaded cube), and in the SLS+ regime (dashed box).

α
[li]
iσ(i) ≥α

[li]
ik ∀li ∈ [Li], k, i ∈ [K], (11)

α
[li]
iσ(i) ≥ max

k,j,lj : j ̸=i,
k ̸=σ(i),lj∈[Lj ]

{
α
[lj ]

jσ(i) + α
[li]
ik − α

[lj ]
jk

}
∀li ∈ [Li], i ∈ [K]. (12)

The significance of the SLS-σ regime is that it was shown in [44] that when the channel is in
this regime, then a simple layered superposition (SLS) scheme is GDoF optimal for GBC-unicast
without secrecy constraints, provided K ≤ 3. Although the result of [44] is limited to K ≤ 3 and to
the unicast setting, note that the SLS-σ regime is defined in general for all K, σ and the groupcast
setting.

Definition 2.4 (SLS+ Regime). The SLS+ regime, denoted as ASLS+, is the set of channel strength
parameters {α[li]

ij : li ∈ [Li], i, j ∈ [K]} satisfying the following conditions:

α
[li]
ii ≥α

[lk]
ki ∀li ∈ [Li], lk ∈ [Lk], k, i ∈ [K], (13)

α
[li]
ii ≥ max

k,j,lj :
k,j ̸=i,lj∈[Lj ]

{
α
[lj ]
ji + α

[li]
ik − α

[lj ]
jk

}
∀li ∈ [Li], i ∈ [K]. (14)

Note that the SLS+ regime does not use the permutation operators σ. This is because this
regime will be used only for the interference channel setting, where the assignment of transmitters
to messages is already fixed by default as σ0, i.e., message Wi is sent from transmit antenna i. The
SLS+ regime has the same set of conditions as the SLS-σ0 regime except for (11), so the SLS+

regime contains the SLS-σ0 regime. Moreover, the conditions in the CTIN regime imply those in
the SLS-σ0 regime. As a result, we have the inclusion ACTIN ⊂ ASLS,σ0 ⊂ ASLS+ .

To illustrate the progressive inclusion relationships, let us consider as an example the network
in Fig. 2(a), where the values of the channel strength parameters are shown next to each link.
Since our ability to visualize is limited to three dimensions, we allow three variables (α, β, γ)
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among the channel strength parameters. Fig 2(b) identifies the regions where the channel strength
parameters (α, β, γ) place the channel into each of the three parameter regimes. The dashed box is
the region for the SLS+ regime, the gray-shaded cube is the region for the SLS-σ0 regime, and the
red polyhedron is the region for the CTIN regime. Evidently, the dashed box contains the gray-
shaded cube, and the cube includes the red polyhedron, thus visually demonstrating the progressive
inclusion relationships among these three regimes.

2.3 Polyhedral TIN region under secrecy constraints
For a conventional GIC (without secrecy constraints), in the TIN scheme each transmitter encodes
its own message with Gaussian signaling, and each receiver decodes its intended signal by treating
the interference from other users as Gaussian noise. Suppose we require that each receiver must
decode its message at a non-negative SINR (i.e., signal to interference and noise power ratio) value
in dB scale. Such a scheme is called the polyhedral TIN scheme, and its achievable GDoF region is
the polyhedral TIN region [6]. In [33], it has been shown that the polyhedral TIN region remains
achievable under the secrecy constraint. The achievability under secrecy constraint is based on a
scheme combining TIN and cooperative jamming. The scheme splits the transmitted signal from
each transmitter into two parts: the first carries the desired message based on a Gaussian wiretap
codebook, and the second is a random Gaussian jamming signal that helps reduce the information
leakage at unintended users.2 We point out that this achievable scheme only needs the knowledge
of the channel strength parameters αki at the transmitters. Therefore, the polyhedral TIN region
is achievable under the secrecy constraint and finite precision CSIT.

Since cooperation among transmitters cannot hurt, the polyhedral TIN GDoF region for an
interference channel remains achievable in the corresponding broadcast channel obtained by allow-
ing full cooperation among the transmit antennas. Later we will show that in certain parameter
regimes, this independent encoding approach is in fact optimal from the GDoF perspective for the
broadcast network under finite precision CSIT and secrecy constraints, i.e., joint encoding does
not offer any advantage. Note that in a broadcast channel, even if the messages are mapped to
separate transmit antennas, the mapping σ can be arbitrarily chosen, allowing the broadcast chan-
nel to mimic any of the K! interference channels corresponding to different permutations σ. The
following lemma follows trivially from this observation.

Lemma 2.1. In a GBC-unicast setting, for all permutations σ, the polyhedral TIN region Pσ is
achievable under the secrecy constraint (2) and finite precision CSIT.

Let us formalize another useful observation in the following lemma.

Lemma 2.2. For a GIC-unicast setting, if the channel is in the CTIN regime, then the secure
GDoF region is equal to the polyhedral TIN region Pσ0 under finite-precision CSIT.

Proof. Achievability of Pσ0 follows from the discussion preceding Lemma 2.1. The converse follows
from the observation that Theorem 4.1 of [9] already shows that Pσ0 is the GDoF region in the
CTIN regime under finite precision CSIT in the absence of secrecy constraints, and imposing the
secrecy constraint cannot make the GDoF region any larger.

2Given a target secure GDoF tuple, the power allocations for the two parts can be determined via the power
control algorithms proposed in [52,53].
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3 Results
Our first result is the following theorem for GBC-unicast.

Theorem 3.1. For a GBC-unicast setting under finite precision CSIT, if the channel is in the
SLS-σ regime for some message ordering σ, then the secure GDoF region is equal to the polyhedral
TIN region Pσ.

The proof of Theorem 3.1 is relegated to Section 5.1. The results in Theorem 3.1 can be extended
to the case of Gaussian interference channel with message unicast (GIC-unicast) by recognizing that
messages therein are separately encoded with the ordering σ = σ0.

Corollary 3.1. For a GIC-unicast setting under finite precision CSIT, if the channel is in the
SLS+ regime,3 then the secure GDoF region is equal to the polyhedral TIN region Pσ0.

Remark 3.1. Note that Corollary 3.1 identifies a parameter regime (the SLS+ regime) that is in
general strictly larger than the baseline CTIN regime identified in Lemma 2.2. As a result, Lemma
2.2 is recovered as strictly a special case of Corollary 3.1. See Fig. 2 for an illustration of these
two regimes, and Example 4.3 in Section 4 for GDoF regions of channels in these two regimes.

The next result establishes the sum secure GDoF value for GBC-unicast with K = 2 for arbitrary
channel strengths under finite precision CSIT.

Theorem 3.2. For GBC-unicast with K = 2, under finite precision CSIT, its sum secure GDoF
value is

dΣ = max
k=1,2

(α1k − α2k)
+ + max

k=1,2
(α2k − α1k)

+. (15)

The proof appears in Section 5.2.
Finally, we generalize the result of Theorem 3.1 to the groupcast setting.

Theorem 3.3. For a GBC-groupcast setting under finite precision CSIT, if the channel is in the
SLS-σ regime for some message ordering σ, then the secure GDoF region is equal to the polyhedral
TIN region P̄σ = Pσ(ᾱ) associated with the set of channel strengths ᾱ = {ᾱij : i, j ∈ [K]}, where

ᾱiσ(i) = min
li∈[Li]

{α[li]
iσ(i)} ∀i ∈ [K], (16)

ᾱiσ(i) − ᾱiσ(j) = min
li∈[Li]

{α[li]
iσ(i) − α

[li]
iσ(j)} ∀i, j ∈ [K]. (17)

The proof of Theorem 3.3 is relegated to Section 5.3. Note that {ᾱij} defined in (16) and (17)
form a set of channel strengths in the SLS-σ regime for an equivalent GBC-unicast setting.4 Such
a GBC-unicast has the same secure GDoF region as the GBC-groupcast with {α[li]

ij }. Another
3Condition (11) is not required for GDoF optimality in a GIC-unicast. This is because in a GIC-unicast setting

(or, equivalently, a K-user GIC) only the link from Transmitter i to Receiver i is able to carry the message Wi.
In contrast, in the GBC-unicast setting of Theorem 3.1, condition (11) is needed for the bound (6) to hold in the
converse proof.

4ᾱiσ(i) ≥ maxk: k ̸=i{ᾱiσ(k), ᾱkσ(i)} is due to (10), (11). ᾱiσ(i) ≥ maxj,k: j ̸=i,k ̸=σ(i){ᾱjσ(i) + ᾱik − ᾱjk} must hold
because, from (12), we have minli∈[Li]{α

[li]

iσ(i) −α
[li]
ik } ≥ minlj∈[Lj ]{α

[lj ]

jσ(i) −α
[lj ]

jk } for all j ̸= i, k ̸= σ(i), and therefore
ᾱiσ(i) − ᾱik ≥ ᾱjσ(i) − ᾱjk by (17).

8



observation is that P̄σ is the intersection of the polyhedral TIN regions over all possible choices of
users (one from each group). This can be seen by how ᾱ is applied to describe P̄σ, or the argument
of upperbounds for the GDoF region in Section 5.3.

The results of Theorem 3.3 can be extended to the case of GIC with message groupcast (GIC-
groupcast) as well.

Corollary 3.2. For a GIC-groupcast, if the channel is in the SLS+ regime, then under finite
precision CSIT, the secure GDoF region is equal to the polyhedral TIN region P̄σ0.

Remark 3.2. The TIN, power control and cooperative jamming scheme is robust against errors in
the transmitters’ knowledge of channel strengths provided that the transmitters’ estimates of channel
strengths are conservative. In other words, as long as the channel strengths for desired links are
not overestimated and those for interfering links are not underestimated by the transmitter(s),
the messages remain decodable and secure. Take a GIC-unicast setting as an example, with the
transmitters’ belief that the channel is in the SLS+ regime. The transmission scheme based on TIN,
power control and cooperative jamming achieves some GDoF tuple in Pσ0. Suppose, the desired
channels are stronger and the cross-channels are weaker than what the transmitters believe. The
scheme still works; i.e., it still achieves the same GDoF tuple, and the security of each message
is preserved. This is because each receiver finds both its desired codeword and the accompanying
jammer shifted upward in power, compared to what the transmitters expect; meanwhile it finds the
other codewords shifted downward in power. As a result, the desired message remains decodable
while the other messages remain secure.

4 Examples
In this section, we illustrate the results presented in Section 3 with some examples.

Example 4.1 (Application of Theorem 3.2). Here we consider GBC-unicast with K = 2 users,
i.e., a 2-user MISO Gaussian broadcast channel. We compare its GDoF under different CSIT
assumptions and secrecy constraints. Fig. 3 depicts the symmetric GDoF of a 2-user MISO
symmetric GBC (where α11 = α22 = 1 and α12 = α21 = α). When perfect CSIT is available, the
symmetric GDoF value with or without the secrecy constraint is shown with the dotted line, and
is achievable via zero-forcing in either case [30, 54]. Under finite precision CSIT, the symmetric
GDoF value without secrecy constraints is shown with the dashed line, and is achieved by interference
enhancement, where each user decodes a common message and then its own private message after
removing the former from the received signal [43]. The symmetric secure GDoF value under finite
precision CSIT is given by Theorem 3.2 and is shown with the solid line . It is evident that both the
CSIT degradation and the secrecy requirement incur a penalty on the symmetric GDoF value: the
former eliminates the gains of zero-forcing, and the latter prevents the use of common messages.

Example 4.2 (Application of Corollary 3.1). Consider a 2-user symmetric GIC under finite pre-
cision CSIT (where α11 = α22 = 1 and α12 = α21 = α). This corresponds to a GIC-unicast setting
with K = 2 users. According to Corollary 3.1, when 0 ≤ α ≤ 1, the symmetric secure GDoF value5

is 1− α. First, compare with the case of symmetric 2-user GBC under finite precision CSIT (the
5We note that when α ≥ 2, the symmetric secure GDoF value is 0 according to [55]. Under finite precision CSIT,

the symmetric secure GDoF value remains open when 1 < α < 2.
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Figure 3: Symmetric GDoF value for 2-user symmetric Gaussian BC.

solid line in Fig. 3). We notice that in the same regime the full cooperation between the transmitting
antennas does not provide any GDoF benefit. Next, compare with the case of symmetric 2-user GIC
under perfect CSIT. We note that with perfect CSIT, (i) when α ≤ 2

3 , the symmetric secure GDoF
value is equal to 1 − α, and (ii) when 2

3 < α < 1, the symmetric secure GDoF is strictly larger
than 1− α, as shown in [55, 56]. This shows that the scheme of TIN with cooperative jamming is
optimal for a broader channel parameter regime in the case of finite precision CSIT.

Example 4.3 (Illustration of Remark 3.1). Consider the three channels depicted in Figure 4,
where all K = 3 messages are assumed to be unicast, and they are either jointly encoded (GBC)
or independently encoded (GIC). First for the channel in Figure 4(a), it is in the CTIN regime;
therefore it is in the SLS-σ0 regime as well. According to Theorem 3.1, the secure GDoF region for
the GBC (the red region) is described as (d1, d2, d3) ∈ R3

+

∣∣∣∣∣∣∣∣
d1 ≤ 1, d1 + d2 ≤ 2,
d2 ≤ 2, d1 + d3 ≤ 3,
d3 ≤ 3, d2 + d3 ≤ 3,

d1 + d2 + d3 ≤ 4

 (18)

. When the secrecy constraint is removed, the GDoF region without secrecy constraint (the blue
region) is described as [44, Theorem 1] (d1, d2, d3) ∈ R3

+

∣∣∣∣∣∣∣∣
d1 ≤ 1, d1 + d2 ≤ 2.5,
d2 ≤ 2, d1 + d3 ≤ 3.5,
d3 ≤ 3, d2 + d3 ≤ 4,

d1 + d2 + d3 ≤ 4

 (19)

. The gap between the blue and the red region is the GDoF loss due to secrecy. The secrecy
constraint disallows the presence of codewords that can be decoded by multiple users, a main feature
of the simple layered superposition scheme which achieves GDoF optimality of a GBC in the SLS-σ0
regime [44]. Since the channel is in the CTIN regime, Lemma 2.2 implies that the red region is
also the GDoF region for the corresponding GIC, with and without secrecy constraint. As a result,
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Figure 4: Channels and their GDoF regions under different message settings and secrecy constraints. (a)
A topology in the CTIN regime; shown in blue is the GDoF region for GBC without secrecy; shown in red is
the GDoF region for GIC without secrecy, as well as for GBC and GIC with secrecy. (b) A topology in the
SLS-σ0 regime; its GDoF region for GBC without secrecy (blue), and for GBC and GIC with secrecy (red).
(c) A topology in the SLS+ regime; its GDoF region for GIC with secrecy.

one can find that, in this channel regime, imposing secrecy constraint on a GBC and disallowing
transmitter cooperation induce the same amount of GDoF loss.

Next, we consider the channel in Figure 4(b) which is easily verified to be in the SLS-σ0 regime.
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From Theorem 3.1, the secure GDoF region for the GBC (the red region) is described as (d1, d2, d3) ∈ R3
+

∣∣∣∣∣∣∣∣
d1 ≤ 1, d1 + d2 ≤ 1.5,
d2 ≤ 2, d1 + d3 ≤ 2.5,
d3 ≤ 3, d2 + d3 ≤ 2,

d1 + d2 + d3 ≤ 2.5

 (20)

. When the secrecy constraint is removed, the GDoF region for the GBC (the blue region) is
described as [44, Theorem 1] (d1, d2, d3) ∈ R3

+

∣∣∣∣∣∣∣∣
d1 ≤ 1, d1 + d2 ≤ 2,
d2 ≤ 2, d1 + d3 ≤ 3,
d3 ≤ 3, d2 + d3 ≤ 3,

d1 + d2 + d3 ≤ 3

 (21)

. Similar to the case in Figure 4(a), the gap between these two regions indicates the GDoF loss due
to secrecy. Note that this channel is no longer in the CTIN regime, so the GDoF region for this
channel operating as a GIC without secrecy constraint is not known. However, since the channel is
in the SLS+ regime, from Corollary 3.1 the red region is still the secure GDoF region for the GIC.
In other words, there is no GDoF loss due to independent encoding under secrecy constraints.

In Figure 4(c), the channel is in the SLS+ regime, but not in the SLS-σ0 regime. According to
Corollary 3.1, the secure GDoF region for the GIC (the red region) is described as (d1, d2, d3) ∈ R3

+

∣∣∣∣∣∣∣∣
d1 ≤ 1, d1 + d2 ≤ 1.5,
d2 ≤ 2, d1 + d3 ≤ 1,
d3 ≤ 3, d2 + d3 ≤ 1.5,

d1 + d2 + d3 ≤ 2

 (22)

. However, since the channel is not in the SLS-σ0 regime, the GDoF region for the GBC and GIC,
and the secure GDoF region for the GBC remain open.

Example 4.4 (Application of Theorem 3.3). Here we demonstrate how to apply Theorem 3.3 to
find the secure GDoF region of the GBC-groupcast setting in Figure 5(a) and (d), both of which
are in the SLS-σ0 regime. First we consider the channel in Figure 5(a), where K = 2, L1 = 2 and
L2 = 1. Let P(l1,l2) be the secure GDoF region of the GBC-unicast associated with User l1 in Group
1 and User l2 in Group 2, where l1 ∈ {1, 2} and l2 ∈ {1}. They are respectively found with Theorem
3.1 and plotted as the colored regions in Figure 5(b). Then, from Theorem 3.3, the secure GDoF
region of the GBC-groupcast is the intersection of these secure GDoF regions (the slashed region).
On the other hand, if the secrecy constraint is removed, the GDoF regions of the GBC-unicast
associated with the choice of users (l1, l2), denoted as Q(l1,l2), can be found with [43, Theorem 1] as
the colored regions in Figure 5(c). The intersection of the colored regions (the slashed region) can be
shown to be the GDoF region of the GBC-groupcast for this example as follows. An outerbound of
the GDoF region is the intersection of the GDoF region of the GBC-unicast over all possible choices
of users. The vertices of the slashed region can be achieved. (1, 0) and (0, 2) are trivially achievable.
(1, 1) is achievable with the following scheme: at transmitter side, W1 and W2, each having 1 DoF,
are encoded into Xc and Xp respectively, and sent with X1 = Xc and X2 = c1Xc + P̄−1Xp, where
c1 =

√
1− P−1 is chosen to satisfy the input power constraint; at receiver side, all users in each

12



X1

X2

W
1
;
W
2

! Y
[1]
1 ! cW1

! Y
[2]
1 ! cW1

! Y
[1]
2 ! cW2

1:5

1

2

11

(a) d1

d2

O 1

1

2

2

P(1;1)

P(2;1)

T

i2[2]P(i;1)

(b)

d1

d2

O 1

1

2

2

Q(1;1)

T

i2[2]Q(i;1)
= Q(2;1)

(c)

X1

X2

W
1
;
W
2

! Y
[1]
1 ! cW1

! Y
[2]
1 ! cW1

! Y
[1]
2 ! cW2

! Y
[2]
2 ! cW2

1:5

1

2

1

1
1

(d)
d1

d2

O 1

1

2

2

P(2;1)

P(1;1)

P(1;2)

P(2;2)
T

i;j2[2]P(i;j)

(e)

d1

d2

O 1

1

2

2

Q(1;1)

Q(2;1)

Q(1;2)

Q(2;2)
T

i;j2[2]Q(i;j)

(f)

Figure 5: Channels illustrating the application of Theorem 3.3. (a) A channel where the secrecy constraint
induces a GDoF loss. (b) The secure GDoF region for (a). (c) The GDoF region for (a) without secrecy
constraint. (d) A channel where the secrecy constraint does not induce a GDoF loss. (e) The secure GDoF
region for (d). (f) The GDoF region for (d) without secrecy constraint.

group can decode Xc, and the user in Group 2 can then remove Xc from Y
[1]
2 and decode Xp. Note

that in this channel, imposing secrecy constraints reduces the GDoF region.
Next we consider the channel in Figure 5(d), where K = 2, L1 = L2 = 2. Following the

notations in Figure 5(b), the secure GDoF regions of the GBC-unicasts, each of which is associated
with a choice of users, are plotted as the colored regions in Figure 5(e). Their intersection (the
slashed region) is the secure GDoF region for the GBC-groupcast by Theorem 3.3. On the other
hand, without secrecy constraint, the GDoF regions of the GBC-unicast associated with choices of
users can be found as the colored regions in Figure 5(f). The GDoF region of the GBC-groupcast
(the slashed region) is the intersection of these colored regions by a similar argument applied in
Figure 5(c): the outerbound is the same; the slashed region is achievable because it is the same as
the slashed one in Figure 5(e), which is a polyhedral TIN region. Unlike the channel in Figure 5(a),
in this channel imposing a secrecy constraint does not induce a GDoF loss.

5 Proofs
5.1 Proof of Theroem 3.1
Suppose the channel is in the SLS-σ regime; i.e., there exists a tuple σ such that (10) – (12) hold.
The achievability follows from Lemma 2.1 directly. Hereafter we only consider the converse. For
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the bounds in (6), the proof follows the single user capacity bound and (11), i.e.,

di ≤ max
k∈[K]

αik = αiσ(i). (23)

For the bounds in (7), the proof is mainly based upon the AI bounds [40, 42–44, 57, 58]. We
define a deterministic model for (1) as follows:

Ȳk(t) =

K∑
i=1

⌈
P̄

α′
kσ(i)Gkσ(i)X̄σ(i)(t)

⌉
∀k ∈ [K], (24)

where α′
kσ(i) = αkσ(i) − maxm∈[K] αmσ(i) = αkσ(i) − αiσ(i) (the last equality is due to (10)), and

⌈z⌉ = ⌈x⌉ + j⌈y⌉ for a complex number z = x + jy. The channel input X̄σ(i)(t) = ⌈Xσ(i)(t)⌉
mod ⌈P̄αiσ(i)⌉ = X̄R,σ(i)(t) + jX̄I,σ(i)(t), and

X̄R,σ(i)(t), X̄R,σ(i)(t) ∈ {0, 1, · · · ,
⌈
P̄αiσ(i)

⌉
}. (25)

Next, we will prove that, with finite-precision CSIT and the secrecy constraint, the GDoF region
of the deterministic model (24) constitutes an outer bound of the original GBC (1). To this end,
we need the following lemma.

Lemma 5.1. For all k ∈ [K],

I(Wk;Y
n
k | G) ≤I(Wk; Ȳ

n
k | G) + no(logP ), (26)

I(WK
−k; Ȳ

n
k | G) ≤I(WK

−k;Y
n
k | G) + no(logP ), (27)

where WK
−k , {Wi : ∀i ∈ [K]\{k}}.

The proof of Lemma 5.1 is relegated to Appendix A. Let (i1, i2, · · · , im) ∈ Πm with 2 ≤ m ≤ K.
(See Definition 2.1 for the definition of Πm.) For all ϵ > 0 and all j ∈ [m] with the modulo-m
arithmetic implicitly used (i.e., i0 = im), we have

nRij ≤I(Wij ;Y
n
ij | G) + nϵ (28)

≤I(Wij ; Ȳ
n
ij | G) + no(logP ) (29)

≤I(Wij ; Ȳ
n
ij | G)− I(WK

−ij ;Y
n
ij | G) + nϵ+ no(logP ) (30)

≤I(Wij ; Ȳ
n
ij | G)− I(WK

−ij ; Ȳ
n
ij | G) + no(logP ) (31)

≤I(Wij ; Ȳ
n
ij | G)− I(Wij−1 ; Ȳ

n
ij | G) + no(logP ) (32)

≤H(Ȳ n
ij | Wij−1 ,G)−H(Ȳ n

ij | Wij ,G) + no(logP ). (33)

We apply Fano’s inequality in (28). Since, as (26) implies, the deterministic model incurs no GDoF
loss, (29) holds. Next we plug in the secrecy constraint (2) to have (30). The deterministic model
incurs no GDoF cost in the secrecy constraint, as (27) implies, so we have (31). Finally, (32) holds
because I(X,Y ;Z) ≥ I(X;Z) for arbitary random variables X,Y, Z. Summing the rate Rij over
all j ∈ [m], one gets (with no(logP ) suppressed)

n

m∑
j=1

Rij ≤
m∑
j=1

H(Ȳ n
ij | Wij−1 ,G)−H(Ȳ n

ij−1
| Wij−1 ,G) (34)
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≤
m∑
j=1

max
k∈[K]

(αijk − αij−1k)
+n logP (35)

=

m∑
j=1

(
αijσ(ij) − αij−1σ(ij)

)
n logP. (36)

In (35), we invoke the AI bound, as stated in the following lemma.

Lemma 5.2 (Lemma 1 in [42]). For j ∈ [m], we have

H(Ȳ n
ij | Wij−1 ,G)−H(Ȳ n

ij−1
| Wij−1 ,G) ≤ max

k∈[K]
(αijk − αij−1k)

+n logP + no(logP ). (37)

Since we assume the channel is in the SLS-σ regime, (36) holds. More specifically, condition
(12) implies αijσ(ij) − αij−1σ(ij) ≥ αijk − αij−1k for all k ∈ [K] and j ∈ [m], and condition (10)
implies αijσ(ij) ≥ αijσ(ij−1) for all j ∈ [m]. As a result, we establish the outer bound (7). �

5.2 Proof of Theorem 3.2
For the converse, applying Lemma 5.2 to (34) with K = 2 yields (15). In the following, we show
how to achieve the outer bound. Without loss of generality, we assume α11 = maxi,j={1,2} αij . We
consider the following two cases:

1. α11+α22 ≥ α12+α21: In this case, the outer bound (15) becomes (α11−α21)+ (α22−α12)
+.

When α22 ≤ α12, we can achieve the secure GDoF tuple (α11 −α21, 0) by letting X2 = 0 and
X1(t) = V1(t) ∼ CN (0, P−α21) taken from a Gaussian wiretap codebook of size 2n(Rs1+Rc1),
where

Rs1 = log
(
1 + Pα11−α21∆−2

)
− log(1 + ∆2), (38)

Rc1 = log(1 + ∆2), (39)

and W1 is encoded at rate Rs1. The rate Rs1 for message W1 is achievable under the secrecy
constraint, because according to [33, Theorem 4], the following secure rate is achievable:

R1 = inf
g
{I(V1;Y1|G = g)− I(V1;Y2|V2,G = g)} , (40)

where the time index t is suppressed, g = {Gij : i, j ∈ [2]} is a realization of G, and the
infimum is taken over the support of the random varaibles in G. This can be shown further
that R1 ≥ Rs1, because

R1 = inf
g

{
log(1 + Pα11−α21 |G11|2)− log(1 + |G21|2)

}
(41)

≥ log
(
1 + Pα11−α21∆−2

)
− log(1 + ∆2) = Rs1, (42)

where in (42) the inequality holds because it is assumed 1/∆ ≤ |Gij(t)| ≤ ∆. Noting that
Rs1 = (α11−α21) logP +o(logP ), we have d1 = α11−α21. When α22 > α12, the achievability
follows Lemma 2.1 where σ = (1, 2).

2. α11 + α22 < α12 + α21: In this case, the outer bound (15) becomes (α12 − α22)
+. When

α12 > α22, we can achieve the secure GDoF tuple (α12 − α22, 0) by letting X1(t) = 0 and
X2(t) = V1(t) ∼ CN (0, P−α22) taken from a Gaussian wiretap codebook with which the
message W1 is encoded.
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5.3 Proof of Theorem 3.3
First we consider the converse part. In the groupcast setting, every message is required to be
reliably decoded by all the users in its designated group. The outer bounds in Theorem 3.1 for a
GBC-unicast associated with a choice of users (one from each group) are also outer bounds for the
GBC-groupcast. More specifically, let l = (l1, l2, · · · , lK) be a choice of users (li ∈ [Li]), and Pσ(l)
be the polyhedral TIN region associated with the message ordering σ and the user choice l. Since
condition (10) - (12) are satisfied for all l ∈ L ,

∏K
i=1[Li], according to Theorem 3.1, Pσ(l) is the

GDoF region associated with l, and the intersection of the polyhedral TIN regions over all possible
user choices includes the GDoF region of the GBC-groupcast Dσ, i.e.,

Dσ ⊆
∩
l∈L

Pσ(l) = P̄σ. (43)

For the achievability, as a stepping stone we first consider the GDoF region achieved by the
polyhedral TIN scheme without secrecy constraints. Let the codeword Xσ(i) carry message Wi. The
GDoF region achieved by the polyhedral TIN scheme associated with σ, denoted as Po

σ, contains
tuples (d1, d2, · · · , dK) satisfying di ≥ 0 and

di = min
li∈[Li]

{
α
[li]
iσ(i) + rσ(i) − max

j∈[K]\{i}

(
α
[li]
iσ(j) + rσ(j)

)+
}
, (44)

where ri ≤ 0 for all i ∈ [K]. Since Po
σ contains all GDoF tuples achieved by the polyhedral TIN

scheme, it is related to the polyhedral TIN region P̄σ. In fact, the following lemma holds.

Lemma 5.3. P̄σ ⊂ Po
σ.

A proof of Lemma 5.3 can be inferred by adopting the procedures in [53], where the application
of the polyhedral TIN scheme to a GIC with compound settings is studied. This is done by first
recognizing that (44) has a similar formulation to Equation (93) of [53], and following Equation
(94)–(105) of [53].6 Instead of repeating the same arguments, let us instead present an alternative
proof based on Max-Plus algebra, that may be of interest by itself. The details of this proof are
presented in Appendix B.

From Lemma 5.3, every GDoF tuple (d1, d2, · · · , dK) ∈ P̄σ can be achieved with some power
control tuple (r1, r2, · · · , rK) (ri ≤ 0, ∀i ∈ [K]) and TIN, without the secrecy constraints for now.
As shown in (69) and (70), such a tuple satisfies

di = ᾱiσ(i) + rσ(i) − max
j∈[K]\{i}

(
ᾱiσ(j) + rσ(j)

)+
. (45)

Recall that {ᾱij} is defined in (16) and (17).
Next, based on the polyhedral TIN scheme described above, we show that TIN with co-

operative jamming is able to achieve the entire region P̄σ even under the secrecy constraints.
Let (d1, d2, · · · , dK) ∈ P̄σ satisfy (45) for some (r1, r2, · · · , rK) with ri ≤ 0 for all i ∈ [K].
The channel input of the TIN with cooperative jamming scheme is defined, for all i ∈ [K], as
Xσ(i)(t) = Vσ(i)(t)+Jσ(i)(t), where Vσ(i)(t) and Jσ(i)(t) are independent. Vσ(i)(t) ∼ CN (0, P rσ(i)/2)

6Note that in [53] the GDoF region achieved by the polyhedral TIN scheme is derived based on no prior assumption
of the channel regime. There is indeed an assumption of the channel regime in [53, Theorem 1], but it is used to
show the optimality of TIN within such a regime, and is not used in the derivation of the GDoF region achieved by
the polyhedral TIN regime.
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Figure 6: The decomposition of the received signal in Group i (a) seen by Receiver l∗i , which attains the
minimum in (44), and (b) seen by Receiver li ̸= l∗i . The solid horizontal axis marks the noise level. Each
colored partition represents a message-carrying codeword or a jammer with the top level as its power in dB
scale and the height as its degree of freedom. The blue partition (Vσ(i)) is a codeword desired by the receivers
in Group i, the yellow ones (Vσ(j), j ̸= i) are codewords desired by the receivers in the other groups, and the
red ones (Jσ(j), j ∈ [K]]) are jammers.

is taken from a Gaussian wiretap codebook with which message Wi is encoded, and Jσ(i)(t) ∼
CN (0, P rσ(i)−di/2) is a randomly generated jamming signal. Note that since di ≥ 0 and ri ≤ 0,
the power of the input codeword E[|Xσ(i)|2] = E[|Vσ(i)|2] + E[|Jσ(i)|2] = 1

2(P
rσ(i) + P rσ(i)−di) ≤ 1

satisfies the unit average power constraint for all i ∈ [K].
In the following we show with [33, Lemma 1] that all recievers in Group i can decode Vσ(i) while

all the other messages are kept secrect from them. Let l∗i be the receiver in Group i that attains
the minimum in (44); i.e.,

α
[l∗i ]

iσ(i) + rσ(i) − di = max
j∈[K]\{i}

(
α
[l∗i ]

iσ(j) + rσ(j)

)+
. (46)

Figure 6(a) depicts an example of how the channel inputs constitute the output at Receiver l∗i via
their respective links. Receiver l∗i can decode Vσ(i) by treating the jammer Jσ(i) and all the other
inputs Xj (j ̸= σ(i)) as noise. Note that all the other message-carrying codewords Vj (j ̸= σ(i))
have power levels no larger than that of the jammer Jσ(i). By [33, Lemma 1], all of them satisfy
the secrecy constraint for Receiver l∗i .

17



On the other hand, for the other receivers li ̸= l∗i in Group i, we have

α
[li]
iσ(i) + rσ(i) − di ≥ max

j∈[K]\{i}

(
α
[li]
iσ(j) + rσ(j)

)+
. (47)

This means the jammer Jσ(i) has a greater power level than all the other inputs do, as depicted
in Figure 6(b). Vσ(i) remains decodable by treating the jammer Jσ(i) and the rest as noise. Vσ(j)

(j ̸= i) remain secret, as they have power levels no larger than the jammer Jσ(i) does, a no-better
condition than the one seen by Receiver l∗i .

As a result, any secure GDoF tuple (d1, d2, · · · , dK) ∈ P̄σ is achievable, i.e., P̄σ ⊆ Dσ. Together
with (43), we have established the secure GDoF region for the GBC-groupcast to be P̄σ.

6 Conclusion
We identify a new channel parameter regime where the simple scheme of TIN and cooperative
jamming is optimal for the secure GDoF region of Gaussian broadcast channel under finite-precision
CSIT. The AI bounds play a key role in giving tight converse bounds and identifying the new
parameter regimes. We also extend the results to its counterpart Gaussian interference channel
and generalize them to groupcast settings. As a part of the future work, it is of interest to explore
beyond the channel regimes identified in this work, which may lead to other robust schemes than
TIN and cooperative jamming. Another interesting direction is to generalize the settings by adding
helpers/eavesdroppers, and study how they strengthen/undermine the secure communications.

A Proof of Lemma 5.1
The proof of (26) is identical to the one in [40, Appendix] and is not repeated here. In the following
we prove (27) only. Firstly we define the following terms for all k, i ∈ [K] with the channel use
index t suppressed:

X̃i =P̄αiiXi, (48)

Ỹk =
K∑
i=1

⌈
GkiP̄

α′
ki

⌈
X̃i

⌉⌉
, (49)

X̂i =
⌈
X̃i

⌉
− X̄i, (50)

δi =
⌈
X̃i

⌉
− X̃i, (51)

∆k =Yk − ⌈Yk⌉ , (52)

ϵki =
⌈
GkiP̄

α′
ki

⌈
X̃i

⌉⌉
−GkiP̄

α′
ki

⌈
X̃i

⌉
, (53)

ϵ̄ki =GkiP̄
α′
kiX̄i −

⌈
GkiP̄

α′
kiX̄i

⌉
, (54)

δ̂ki =P̄α′
kiX̂i −

⌈
P̄α′

kiX̂i

⌉
. (55)

Now we proceed to the proof of (27).

I(WK
−k; Ȳ

n
k | G) (56)
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≤I(WK
−k; Ȳ

n
k , Ỹ n

k , Y n
k | G) (57)

≤I(WK
−k;Y

n
k | G) + I(WK

−k; Ỹ
n
k | Y n

k ,G) + I(WK
−k; Ȳ

n
k | Y n

k , Ỹ n
k ,G) (58)

≤I(WK
−k;Y

n
k | G) +H(Ỹ n

k | Y n
k ,G) +H(Ȳ n

k | Y n
k , Ỹ n

k ,G) (59)
≤I(WK

−k;Y
n
k | G) +H(Ỹ n

k | ⌈Y n
k ⌉ ,G) +H(Ȳ n

k | Ỹ n
k ,G), (60)

where (60) holds because ⌈Y n
k ⌉ is a function of Y n

k , and H(X | f(Y )) ≥ H(X | Y ) for any function
f and random variables X,Y . Next we show that H(Ỹ n

k | ⌈Y n
k ⌉,G) and H(Ȳ n

k | Ỹ n
k ,G) in (60) is

bounded above by no(logP ). For H(Ỹ n
k | ⌈Y n

k ⌉,G), we note that for all k ∈ [K], (with the channel
use index t supressed,)

Ỹk = ⌈Yk⌉+∆k +
K∑
i=1

(
GkiP̄

α′
kiδi + ϵki

)
, (61)

and both Ỹk and ⌈Yk⌉ take integer values in their respective real and imaginary part. The sum of
the truncation errors ∆k +

∑K
i=1GkiP̄

α′
kiδi + ϵki has its real and imaginary part taking an integer

value in (−1− 2K∆,K(1 + 2∆)). Therefore, we have

H(Ỹ n
k | ⌈Y n

k ⌉ ,G) ≤H({∆k +

K∑
i=1

(
GkiP̄

α′
kiδi + ϵki

)
}nt=1) (62)

≤n2 log2 (2 ⌈K(1 + 2∆)⌉) = no(logP ). (63)

For H(Ȳ n
k | Ỹ n

k ,G) in (60), we note that for all k ∈ [K], (with the channel use index t supressed,)

Ỹk =Ȳk +
K∑
i=1

Gki

⌈
P̄α′

kiX̂i

⌉
+

K∑
i=1

(
Gkiδ̂ki + ϵ̄ki + ϵki

)
. (64)

Since Ỹk, Ỹk and ⌈GkiP̄
α′
kiX̂i⌉ take integer values in their respective real and imaginary part, the

sum of the trunction errors
∑K

i=1Gkiδ̂ki+ ϵ̄ki+ ϵki must be an integer in (−2K(1+∆), 2K(1+∆))
in its real and imaginary part. Therefore,

H(Ȳ n
k | Ỹ n

k ,G)

≤
K∑
i=1

H({
⌈
P̄α′

kiX̂i

⌉
}nt=1 | G) +H({

K∑
i=1

(
Gkiδ̂ki + ϵ̄ki + ϵki

)
}nt=1) (65)

≤
K∑
i=1

H({X̂i}nt=1 | G) + n2 log2 (2 ⌈2K(1 + ∆)⌉) , (66)

where (66) is because ⌈P̄α′
kiX̂i⌉ is a function of X̂i. Finally, seeing that E[|⌈X̃i⌉|2] ≤ E[|2X̃i|2] ≤

4P−αii , we can further bound H(X̂i(t)) above with a constant by following the same procedure
in [40, (130) – (149), Appendix]. Now H(Ȳ n

k | Ỹ n
k ,G) in (60) is bounded by no(logP ), and (27) is

therefore established.

B Proof of Lemma 5.3 with Max-Plus Algebra
We present the proof of Lemma 5.3 using max-plus algebra. First we revisit the definitions of the
operators on scalars and matrices in max-plus algebra, and define graphs associated with square
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matrices. Next we state a useful result of matrix equations of a certain type. Finally we present
the proof of Lemma 5.3 by reformulating (44) with max-plus algebra and deducing that all GDoF
tuples in P̄σ are achievable by the polyhedral TIN scheme.

B.1 Definition of operators in max-plus Algebra
The following definitions and observations are adopted from [59, Chapter 3]. To keep this proof
self-contained, we summarize the definitions necessary for the derivations and the discussions in
the following sections.

We define two operators on the set R̄ , R ∪ {−∞}: ⊕ and ⊗. For a, b ∈ R̄, define a ⊕ b ,
max{a, b}, and a⊗ b , a+ b. The identity element for ⊕ is ϵ , −∞. Let A ∈ R̄K×M be a K ×M
matrix with (i, j)-th entry denoted as [A]ij . When x ∈ R̄K×1 = R̄K , we call x a K × 1 vector
with [x]i as the ith component. For two matrices A ∈ R̄K×M and B ∈ R̄M×N , we define A ⊗B
as a K × N matrix, with[A ⊗ B]ij =

⊕M
m=1[A]im ⊗ [B]mj . For two matrices of the same size

A,C ∈ R̄K×M , we define A⊕C as a K ×M matrix with [A⊕B]ij = [A]ij ⊕ [C]ij . For a sqaure
matrix D ∈ R̄K×K , we denote Dn = D ⊗D ⊗ · · · ⊗D︸ ︷︷ ︸

n times

. For two vectors x,y ∈ R̄K , by x ≤ y we

mean for all i ∈ [K], [x]i ≤ [y]i.
We can associate a square matrix D ∈ R̄K×K with a precedence graph G(D). It takes [K] as

its vertices, and the edge from vertex i to j, denoted as (i, j), is either set with weight [D]ij , or
removed if [D]ij = ϵ. A path from vertex i1 to im, denoted as a tuple π = (i1, i2, · · · , im), where
i1, i2, · · · , im ∈ [K] are not necessarily distinct, is an ordered collection of edges (ij , ij+1), where
j ∈ [m− 1]. The length of π is the number of edges in π. The weight of π, denoted as ω(π), is the
sum of the weights of the edges along π over normal algebra; i.e., ω(π) =

∑m−1
j=1 [D]ij+1ij . A circuit

is a path with both ends being the same, and its weight can be defined in the same way as is the
weight of a path. One observation of the connection between D and G(D) is that, [Dn]ij is the
maximum path weight over all length-n paths from vertex j to i.

B.2 A useful result in max-plus algebra
We consider the following matrix equation, into which the GDoF achieved by the polyhedral TIN
scheme (44) can be recast:

P ⊗ r ⊕ q = r, (67)

where P ∈ R̄K×K and r, q ∈ R̄K . How the equation (44) can be recast into (67) is presented in
Appendix B.3, but for now we consider this matrix equation in general. For a given P and q, the
existence of a solution r ≤ 0 is of interest, where 0 is a K × 1 vector with 0 as its components.
The following theorem offers a set of conditions of P and q that guarantees such a solution to (67)
exists.

Theorem B.1. Let P ∈ R̄K×K , and q, r ∈ R̄K . If (a) G(P ) has the maximum circuit weight no
larger than zero, and (b) q ≤ 0, and for all k ∈ [K − 1], P k ⊗ q ≤ 0, then there exists a solution
r ≤ 0 to the equation P ⊗ r ⊕ q = r. The solution is

r = q ⊕ (P ⊗ q)⊕ · · · ⊕
(
PK−1 ⊗ q

)
. (68)

Proof. According to Theorem 3.17 of [59], condition (a) guarantees that (68) is a solution to the
matrix equation P ⊗ r ⊕ q = r. Condition (b) further implies that such a solution r ≤ 0.

20



B.3 Proof of Lemma 5.3 with Theorem B.1
It can be shown that the GDoF achievable by the polyhedral TIN scheme (44) can be reformulated
in the form of the matrix equation (67). Firstly we recognize that, on the right-hand side of (44),
rσ(i) is independent of li. By taking it out of the minimum operator, and moving everything therein
to the left, we have

di + max
li∈[Li]

{
max

j∈[K]\{i}

{
−α

[li]
iσ(i),−α

[li]
iσ(i) + α

[li]
iσ(j) + rσ(j)

}}
= rσ(i) (69)

⇒ di + max
j∈[K]\{i}

{
−ᾱiσ(i),−ᾱiσ(i) + ᾱiσ(j) + rσ(j)

}
= rσ(i) (70)

⇒
(
di − ᾱiσ(i)

)
⊕

⊕
j∈[K]\{i}

{(
di − ᾱiσ(i) + ᾱiσ(j)

)
⊗ rσ(j)

}
⊕

(
ϵ⊗ rσ(i)

)
= rσ(i). (71)

In step (70) we swap the two maximum operators and apply the definition of {ᾱij} in (16) and
(17). In step (71) we take di into the maximum operator, then replace all maximum operators with
⊕ and substitute ⊗ for the + operator with respect to rσ(j), and finally add ϵ⊗ rσ(i) on both sides
with ⊕ operator. Such an addition does not change the right-hand side, because rσ(i)⊕ (ϵ⊗rσ(i)) =
max{rσ(i),−∞ + rσ(i)} = rσ(i). The equations for all i ∈ [K] can be further summarized into a
matrix equation of the form (67), where

[P ]ij =

{
di − ᾱiσ(i) + ᾱiσ(j) if i ̸= j

ϵ if i = j
, (72)

[q]i =di − ᾱiσ(i), (73)
[r]i =ri. (74)

As a result, the GDoF region achieved by the polyhederal TIN scheme is

Po
σ =

{
(d1, d2, · · · , dK) ∈ RK

∣∣∣∣ di ≥ 0,∀i ∈ [K], and
∃ r ≤ 0 s.t. P ⊗ r ⊕ q = r

}
. (75)

Next, we apply Theorem B.1 for the conditions of a GDoF tuple being in Po
σ. Condition (a) in

Theorem B.1, which requires all circuits in G(P ) to have non-positive weights, yields a set of bounds
equivalent to the ones in (7). Consider a circuit π = (i1, i2, · · · , im, i1), where i1, i2 · · · , im ∈ [K] are
distinct, and 2 ≤ m ≤ K. Then, (with modulo-m arithmetic being implicity used on the indices,)

0 ≥ ω(π) =
m∑
j=1

[P ]ijij−1 (76)

=
m∑
j=1

dij − ᾱijσ(ij) + ᾱijσ(ij−1), (77)

which gives a bound in (7). Since every circuit in G(P ) yields a bound identical to the one of some
permutation in Πm (m ∈ [2 : K]), and vice versa, the set of bounds that condition (a) gives is
equivalent to the one formed by the bounds in (7).

Condition (b) in Theorem B.1 requires q ≤ 0 and P k ⊗ q ≤ 0 for all k ∈ [K − 1]. We divide
this condition into two cases. The first case q ≤ 0 offers a set of the bounds equal to the one in
(6), because for all i ∈ [K]

0 ≥ [q]i = di − ᾱiσ(i). (78)
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As for the other case, P k ⊗ q ≤ 0 (∀k ∈ [K − 1]), it offers no tighter bounds than some linear
combinations of multiple bounds in (6) and (7). As a result, this case is redundant. For example,
consider a path π = (i1, i2, · · · , im), where i1, i2, · · · , im are distinct, and 2 ≤ m ≤ K. Then

ω(π) + [q]i1 =

m∑
j=2

[P ]ijij−1 + [q]i1 (79)

=

m∑
j=2

(
dij − ᾱijσ(ij) + ᾱijσ(ij−1)

)
+
(
dij − ᾱijσ(ij)

)
. (80)

Moreover,

ω(π) + [q]i1 ≤[Pm−1]imi1 ⊗ [q]i1 (81)
=[Pm−1 ⊗ q]im ≤ 0, (82)

where (81) is because [P n]ij is the maximum path weight over all paths of length n from vertex j
to i. The inequality in (82) holds because P k ⊗ q ≤ 0 for k ∈ [K − 1]. From (80) and (82) we find∑k

j=1 dij ≤ ᾱi1σ(i1) +
∑k

j=2 ᾱijσ(ij) − ᾱijσ(ij−1), which is looser than (77).
Note that condition (a) and (b) in Theorem B.1 yield the bounds on the GDoF tuples that are

the same as those in P̄σ. For every GDoF tuple in P̄σ, we can find an r ≤ 0 satisfying the matrix
equation in (77). As a result, every GDoF tuple in P̄σ is in Po

σ as well, which concludes the proof.
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