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Abstract
Structure-Aware Representation Learning and Its Medical Applications
by
Jiayun Wang
Doctor of Philosophy in Vision Science
University of California, Berkeley
Professor Stella X. Yu, Co-chair

Professor Meng C. Lin, Co-chair

Deep learning models have made remarkable progress in understanding object-centric visual
data by focusing on one or more objects present in the scene. However, they may not
perform well for scene-centric visual data that includes multiple objects, backgrounds, and
other elements in the scene. Furthermore, the low interpretability of deep learning models
due to their high complexity may hinder their trustworthiness and practical deployment in
the real world.

In this dissertation, we present a structure-aware representation learning method to address
these challenges. Rather than solely relying on end-to-end supervised learning, we first use
deep learning to learn multi-level representations that explicitly model the structures of in-
dividual objects, such as their shape and geometry, and then map the representations to
the final prediction with a shallow classifier like a single-layer perceptron. This approach
achieves more robust performance for non-object-centric visual data as it explicitly extracts
structure-aware representations from the input. Additionally, the method disentangles rep-
resentation learning and classification. Thus, analyzing the shallow classifier can provide
quantitative interpretation of why a prediction is made. We demonstrate the effectiveness of
our approach on several standard computer vision benchmark datasets, as well as real-world
medical applications like dry eye disease diagnosis, and 3D dental casting.

Part I of the dissertation describes a segmentation-based method to learn instance-level
representations that enable us to understand the individual characteristics of objects. We
demonstrate its effectiveness with an application to multi-level gland morphology quantifi-
cation from medical images for disease diagnosis purposes.

Part II presents approaches for learning geometric shape representations from visual data and
how such representations can be used for reconstructing 3D shapes. We provide a medical



application of 3D dental casting and jaw reconstruction.

In Part III, based on the instance-level and shape-aware representations from previous parts,
we map the representations to the final prediction with a shallow model and show how it could
be analyzed and interpreted. We demonstrate an application to demographics prediction
from medical images, where we can identify the most relevant features that inform the
model’s decision and improve its reliability.

To make the proposed method suitable for deployment for practical uses, Part IV introduces
how we improve the efficiency of deep learning models using constrained neural optimization.
We provide its special cases including orthogonal convolutional neural networks and recurrent
parameter generators.
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Chapter 1

Introduction

Deep learning has achieved remarkable success in numerous computer vision applications,
such as image classification and object detection [113, 307, [200} [183]. Such models now
achieve performance that is comparable to or surpasses human abilities on benchmark
datasets such as ImageNet [67], where only a dominant object is the primary focus of each
image. However, deep learning models trained on ImageNet are still far from achieving
human-level performance and cannot generalize well on scene-centric images, where multiple
objects exist and the overall scene is the focus.

Additionally, deep learning models are getting larger and larger: the past few years have
witnessed the exponential growth of the training data, the size and the computation of such
models. For example, foundation models [31], a large deep learning model trained on a
vast quantity of data at scale, can be adapted to a wide range of downstream tasks with
superior performance at the cost of the gigantic size of the model. For example, an NLP
foundation model known as GPT-3 [36] has astonishing 175 billion parameters. With the
increased size and complexity, it is also getting increasingly challenging to interpret deep
learning models. The difficulty in interpreting and understanding deep learning models may
lead practitioners and users to question the model’s reliability and trustworthiness, making
it challenging to deploy them in real-world settings. A lot of efforts have been techniques are
available to interpret deep learning models, such as visualization tools that show how the
model processes input data [262, 301] or feature attribution methods that identify the most
critical features or components of the input data for making a prediction [27]. However, these
techniques typically provide qualitative visualizations to aid model interpretation, and may
not be efficient when we need quantitative conclusions or a ranking of the most important
decision indicators.

As deep learning models continue to grow in size, there is a growing concern that they
may not be accessible to the general public with limited data or computational resources.
While these large models can achieve state-of-the-art performance on many tasks, they may
be impractical for use in real-world applications that require efficient and timely processing.
To address this issue, it is necessary to develop techniques for making these models more
efficient, particularly for edge computation and scenarios that require real-time feedback.
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However, improving the efficiency of these models without sacrificing performance remains
a challenging task.

To address these challenges, we present a structure-aware representation learning method
in this dissertation. We learn from domain experts on the specific structures of the data
they focus on when performing the targeted task, and incorporate learning representations
to reflect such structures in our framework. As specific examples of structure-aware repre-
sentations, we extract representations at the individual object level from the visual data with
segmentation. For each individual object, we make the representations aware of its shape
and 3D geometry. The representations augment the texture-focused, categorical representa-
tions which are commonly used by existing methods, and make the deep learning methods
robust and more generalizable. After obtaining multi-level structure-aware representations,
we utilize a shallow classifier, such as a single-layer perception [89], to map these representa-
tions to the final prediction. This approach allows us to separate representation learning and
classification, enabling a detailed analysis of the decision-making process. Specifically, by
examining the shallow classifier, we can obtain a quantitative interpretation of the model’s
predictions, including the most significant indicators and their corresponding certainty lev-
els. For instance, we can identify the key features of the data that contribute to a particular
prediction and assess the model’s confidence in its prediction.

We further improve the efficiency of the proposed representation learning methods. We
show how we can make models more efficient, including reducing training data and model
training time, to get them ready for practical use [304} 303, 44]. Specifically, we propose to
use constrained neural optimization to improve the efficiency of deep neural networks. This
approach includes several specialized cases, such as orthogonal convolutional neural networks
and recurrent parameter generators, which achieve higher efficiency on less training data
compared to existing methods.

We demonstrate the effectiveness of our approach on standard computer vision bench-
mark datasets, as well as several real-world medical applications, including the diagnosis of
dry eye diseases and 3D dental casting.

In the remaining part of the introduction, we first explain the important concept of
representation learning and how it helps achieve robust performance and interpretability.
We then give an overview of the dissertation, where the details of the proposed structure-
aware representation learning method are introduced.

1.1 Representation Learning

What is representation? David Marr [1] defined it as a “formal system for making explicit
certain entities or types of information, together with a specification of how the system does
this“. We are interested in representation learning, which could bring the representations or
the structures of the data explicit.

For example, in the context of image processing, according to Marr’s theory [195], rep-
resentation learning involves learning multi-level representations of the image, starting from
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Figure 1.1: The comparison of end-to-end learning (Upper) and multi-level representation learning
(Lower). While end-to-end learning also extracts representations from the data, they are only
used to predict the final label, and thus such methods suffer issues like fragile performance and
cannot generalize well. The multi-level representation learning extracts multi-level information from
different layers of the network and achieves robust performance. We then map the representations
to the final label with a shallow classifier. Analyzing the classifier could provide insights on why
the prediction is made.

low-level features such as edges, and progressing to mid-level features such as geometry and
object segmentation, and finally to the high-level categorical information, for example, the
foreground object is a cup, and the function is to grab the cup. By extracting multi-level
features, representation learning makes it easier for machine learning algorithms to make
accurate predictions.

One may question why we do not rely on labels and perform end-to-end learning. We
compare the end-to-end learning and representation learning in Fig. End-to-end learning
involves collecting data from the world, working on data curation and annotation, curating
and annotating the data, and feeding it to a machine learning model, such as a deep neural
network. Final task labels are the only output. While representations exist as the output of
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each layer of the network, they are used to predict the sole final label and thus may not be
robust and generalizable.

However, in multi-level representation learning, or multi-level feature learning, rather
than learning the final labels only, we can extract multi-level representations from different
layers of the network, such as the low-level material, mid-level pose and geometric structure
like it has a handle, and high-level semantic category. We then use a small shallow model,
like a single-layer perceptron, to map the representations to the final prediction. Analyzing
the shallow model reveals the most important indicator of why the decision is made. Thus,
the multi-level representation learning method could achieve robust performance and high
interpretability for practical tasks.

In this dissertation, we use an application of quantitative and interpretable dry eye
diagnosis to guide the study of multi-level interpretable representation learning. We provide
a summary of the proposed method for the case study with comparisons to end-to-end

learning in Fig. [1.2]

1.2 Dissertation Overview

We summarize the dissertation in Fig. with details below:

Part I: Learning instance-level representation with segmentation. Existing
methods focus on learning image-level representations. In addition to high-level semantics,
we, however, also learn the mid-level organization of objects to understand the individual
characteristics of objects. In Chapters [2| and |3] we move from learning coarse, image-level
representations to fine-grained, instance-level representations for meibomian glands depicted
in meibography images, which plays a significant role in automated dry eye disease diagnosis.
Specifically, to learn instance-level representations, we use an instance-segmentation that
leverages the power of pixel representations, rather than commonly-used detect-then-segment
methods like Mask-RCNN [115], which fail to segment glands at an instance level. We show
the method based on pixel representations has robust segmentation performance as it adapts
to the dense and tilted structures of glands.

Part II: Learning 3D-geometry-aware representation. Chapters 4| and [5| describe
how we learn equivariant representations from 3D visual data that disentangle semantics and
geometric shapes, as well as how they can be used for reconstructing 3D shapes. In Chapter
[6), we show a healthcare application in 3D dental casting and jaw reconstruction.

Part III: Interpretable models from structure-aware representations with ap-
plications to demographics prediction. Building on the learned representations de-
scribed in the previous parts (i.e. individual-object-aware and 3D-geometry-aware represen-
tations), we can map these representations to the final output with a shallow model and gain
insights into why a particular prediction was made (Fig. ) This interpretability is crucial
for understanding the model’s decision-making process and for building trust in the model’s
outputs. By analyzing the learned representations and their corresponding contributions
to the final prediction, we can identify the most relevant features that inform the model’s
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Figure 1.2: As a case study, we apply the proposed structure-aware representation methods to
quantitative and interpretable dry eye diagnosis. We compare end-to-end learning (Upper) with
the proposed structure-aware representation learning (Middle), and provide possible improvements
as detailed in other parts of the paper (Lower). Our method differs from end-to-end learning which
has low interpretability. We incorporate domain knowledge by learning multi-level representations
that matter for interpretability. Our method also achieves more robust performance as we explicitly
extract multi-level representations instead of solely relying on image-level representations. This
enables an interpretable understanding of the disease as well as diagnosis. Note that this dissertation
only includes interpretable demographics prediction, with the work of other predictions being in
press.

decision, and improve the model’s accuracy and reliability. In Chapter [7] we demonstrate
an application of the interpretable model to predict demographics from meibography and to
quantitatively identify the most important indicators for each demographic prediction.
Part IV: Improving learning efficiency. In this part, we focus on improving the
efficiency of deep representation learning models. Specifically, we present constrained neural
optimization (details in Fig. [1.4)) with its specific cases of orthogonal convolutional neural
networks in Chapter [§ and recurrent parameter generators in Chapter [0 We show how
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Figure 1.3: Overview of the dissertation
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Figure 1.4: We achieve efficient learning via constrained neural optimization. Common and existing
method use unconstrained optimization and search in the whole space, which may take quite a
few steps to optimize. We consider constraints for models, or prior information, and search in a
subspace. With constrained optimization, it takes fewer steps to achieve optimality as the search
space is smaller, thus we could have faster training time. Additionally, as the number of model
parameters is smaller with the constraint, the evaluation or inference time is also reduced. We
consider two different constraints under this framework: orthogonality (Chapter |8)) and recurrence

(Chapter @
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we can improve learning efficiency by reducing training data and time with minimal loss of

performance.
Summary. Finally, in Chapter [10] we summarize the contributions of this dissertation

and discuss several future directions.
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Learning Instance-Level
Representation



Chapter 2

Learning Coarse, Image-Level
Representations of Meibomian Glands

2.1 Introduction

Dry eye disease is a multifactorial ocular surface disorder and is very common among adults.
Meibomian glands (MGs) are believed to play a critical role in ocular surface health by
secreting lipids into the tear film to slow down the rate of aqueous evaporation and minimize
symptoms of dry eye. Dysfunction of MGs is the most frequent cause of dry eyes [28].
The ability to visualize the glands and to monitor their changes with time or treatment
is important for evaluating the risk of meibomian gland dysfunction (MGD) and dry eye
diseases. Meibography, which is a photo documentation of MGs in the eyelids using either
trans-illumination or infrared light, is commonly used in dry eye clinics for the diagnosis,
treatment, and management of MGD.

The measurement of glandular loss is of significant clinical impact for the diagnosis of
MGD [13,227]. Percent MG atrophy, the ratio of gland loss area to the total eyelid area, may
be an important clinical factor for assessing MGD severity. Using a standardized MG atrophy
grading scale, the percent atrophy can be classified based on severity [12,235]. In this paper,
a previously published clinical-grading system [231] (i.e., meibosocre) was applied (Table
2.1). Figure depicts some sample meibography images with varying percent atrophy
and corresponding meiboscores to help readers gain insights on the relationship between the
percent atrophy and meiboscore. Currently, clinicians subjectively estimate the degree of
MG atrophy severity. They assign a severity score after grossly estimating the relative ratio
between MG atrophy area and total eyelid area. This subjective assessment has several
limitations: (1) it may have high inter- and intra-observer variability and low repeatability
[215] 236]; (2) it is based on qualitative judgments, therefore lacking quantitative evaluations
to accurately track longitudinal changes; and (3) it may take a longer time and more costly
to manually process a large number of images.

Recent advances in deep learning [162} |218| |47], a particular form of artificial intelligence
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Figure 2.1: Meibography images with ground-truth percent atrophies (%) and ground-truth
meiboscores. Rows 1-4 refer to images with meiboscores of grade 0-3, respectively. Given a
meibography image, the area of gland atrophy (marked in red) and eyelid (marked in blue)
are compared by our deep learning algorithm to estimate the percent atrophy A (Equation
, and are further converted to meiboscore according to the criteria in Table [2.1

Table 2.1: Percent MG atrophy to meiboscore conversion criteria

Percent MG atrophy / % | Meiboscore
0 0
0 - 33% 1
33% - 66% 2
66% 3

(AI), show the ability of deep neural networks to learn predictive features directly from a
large dataset of labeled images, without explicitly specifying rules or features. Additionally,
deep learning has shown great success in medical imaging, such as diabetic retinopathy [288,

346], breast cancer [183, [76], melanoma [78], and others [180} [54]. It is of interest

to use deep learning methods to benefit the process of evaluating atrophy in meibography
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images. Specifically, clinicians can use such methods to automatically segment the eyelid
and atrophy areas in meibography images, and then compute the percent atrophy, for the
purpose of evaluating MG atrophy. Therefore, an automated method will potentially provide
valuable and timely information on MG atrophy.

This study aimed primarily to develop and validate an automated deep learning system
for evaluating MG atrophy severity from meibography images with clinician-verified anno-
tations of eyelid and atrophy areas. Additionally, the performance of human clinicians and
deep learning algorithm in determining the atrophy severity in meibography images were
compared.

2.2 Methods

2.2.1 Development and Evaluation Dataset

This study was based on the utilization of a meibography image dataset with clinician-
verified annotations of eyelid and atrophy areas, for deep learning algorithm development
and evaluation.

Subject recruitment and demographics. Adult human subjects (ages 18 year or
greater) were recruited from the University of California, Berkeley (UCB) campus and sur-
rounding community for a single-visit ocular surface evaluation during the period from 2012
to 2017. During the visits, meibography images of the upper and lower eyelids for both eyes
were captured with the OCULUS Keratograph 5M (OCULUS, Arlington, WA), a clinical
instrument that uses an infrared light with wavelength 880 nm for MG imaging [347]. During
image captures, the same testing conditions were kept (i.e., the ambient light was off with
the subject’s head positioned on the chin rest and forehead strap). [340] showed that MG
contrast in meibography captured using the same instrument was repeatable and invariant
to ambient light conditions and head poses. Only upper eyelid images were used in this
study. A total of 775 images were collected and pre-screened to rule out images that did not
capture the entire upper eyelid (69 images or 8.90%). Examining clinicians assigned an MG
atrophy severity score during the exam using the meiboscore scale in Table 2.1 which was
previously defined |231]. The meiboscores assigned during the examination were referred to
as “clinical meiboscore” and were assigned by multiple clinicians. All clinicians were masked
from the subject’s ocular surface health status. The most experienced clinician (TNY) also
provided a separate set of the clinical meiboscore data for evaluation purposes (i.e., com-
paring scores among group clinicians, the lead clinical investigator (LCI) and our machine
learning algorithm against the ground-truth data generated by the machine algorithms).
Subject demographics can be found in Table

Data annotations. A team of trained individuals labeled and measured the total eyelid
and atrophy regions using the polygon tool in Fiji (ImageJ version 2.0.0-rc-59)[246|. For
labeling the total eyelid region, the upper border was defined at the MG orifices, the lower
border was set at the edge of proximal tarsal plate, and the horizontal borders were where
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Table 2.2: Subject demographics and meiboscores of the meibography image datasets

Development Evaluation
Train Validation
Images (No.) 398 99 209
Patient Demographics
Unique individuals (No.) | 308 7 191
Age (average £+ SD) 25.5 +£10.9 | 27.0 £ 12.6 | 26.4 + 11.6
Female/ total patients 63.5% 66.6% 68.3%
Development Evaluation
Atrophy Severity Distribution | Train \ Validation
No. | % No. | % No. %
Meiboscore 0 73 | 18.3% | 18 | 18.2% | 38 | 18.20%
Meiboscore 1 267 | 67.1% | 67 | 67.7% | 142 | 67.90%
Meiboscore 2 53 | 13.3% | 13 | 13.1% | 27 | 12.90%
Meiboscore 3 5 1.3% |1 1.0% | 2 1.0%

the top and bottom borders intersected. For labeling the total atrophy region, the upper
border was drawn at the proximal ends of normal glands, the lower border was at the edge
of proximal tarsal plate, and the horizontal borders were where the upper and lower borders
intersected. Portions of glands that appeared atrophied (e.g., fainter, thinner) compared to
other glands on the same eyelid were included in the atrophy region. The areas measured for
the regions of interest were captured by selecting “Analyze; Measure” when the regions of
interest were active. Final annotations were verified by an LCI (TNY) before they were made
available for the machine learning algorithm to minimize variability in the ground-truth data.
From the fine-grained MG atrophy and total eyelid area annotation masks, these ground-
truth annotated data were used to calculate the percent atrophy, which was then converted
to meiboscore according to Table 2.1] for generating both “ground-truth percent atrophy”
and the “ground-truth meiboscore”. Figure depicts examples of atrophy- and eyelid-
area annotations, along with corresponding ground-truth percent atrophy and ground-truth
meiboscores. Algorithms were considered to achieve 100% accuracy if they predicted results
exactly the same as the ground-truth annotations. Note that machine learning systems can
“predict” the MG atrophy region and percent atrophy from an meibography image not seen
in the training phase. Machine predictions are different from medical predictions, which
usually refer to predicting the future status of a disease or condition.

Data allocations. All meibography images were randomly allocated into two sub-
datasets: development and evaluation datasets. The former was used for developing the
deep learning algorithm, while the latter was for evaluating the performance of the algorithm.
The percent atrophy distributions of the two datasets were very similar as shown in Figure
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Figure 2.2: Percent atrophy distribution of the development and evaluation datasets. The
distributions of the two sets are similar, indicating the scenario differences between training
and evaluation are minimized.
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Figure 2.3: Data composition by atrophy severity. The meiboscore distributions of the train,
validation and evaluation sets are similar, indicating the scenario differences among training,
validation and evaluation are minimized.

[2.2] This minimized the scenario differences between training and evaluation. For algorithm
development, the development dataset was further divided randomly into 2 subsets: a train
set and a validation set. The images in the train set were used to train the deep learning
model, while the validation set was used for tuning the model hyperparameters (e.g. network
architectures, learning rate, etc.). The evaluation dataset, which did not have any overlapped
image with the development dataset, was evaluated using the model that achieved the best
performance from the validation set. The patient demographics and atrophy severity of the
development and evaluation datasets can be found in Table and Figure 2.3
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Meibography image Predicted eyelid and atrophy area
Figure 2.4: The pipeline to evaluating meibography atrophy. The network aims to predict
the atrophy area (white part in the right image) and the total eyelid area (white and grey
part in the right image). Based on the predicted mask, the percent atrophy can be calculated.

2.2.2 Algorithm Design and Training

In computer vision, image segmentation is the process of partitioning an image into multiple
segments . Earlier methods first extracted hand-engineered features of the image,
and then used the features to classify pixels independently , . More recently,
deep learning methods incorporated feature extraction and classification together into a
unified framework, and achieved the state-of-the-art in image segmentation [47 [20]. A deep
learning algorithm was built upon the pyramid scene parsing network (PSPNet) to
segment the atrophy and eyelid region of a given meibography image, and then the percent
atrophy was calculated (Figure .

The input to the neural network was a meibography image. The network could be
considered as several stages of computations, parameterized by millions of parameters, and
mapped the input image to the output segmentation masks of MG atrophy and eyelid area.
Additionally, the network generated a vector indicating if MG atrophy existed in a given
meibography image. The auxiliary output helped improve the segmentation performance
by providing additional information. The final optimization goal was to have both correct
segmentation and atrophy existence vector prediction.

Parameters of a neural network were determined by training the network on the devel-
opment dataset. The network was repeatedly given images with known ground truth (the
segmentation masks of atrophy and eyelid area, as well as atrophy existence vectors in our
model). The model predicted the segmentation masks and vector of the given meibography
image, and adjusted its parameters over the training process to make the predictions increas-
ingly more similar to the ground truth. The parameters of the model were optimized using
stochastic gradient descent and the model performance was evaluated by the validation
set every epoch. When atrophy area and eyelid area were predicted, the percent atrophy A
using the following equation can be calculated as follows:

area of atrophy
A= 2.1
area of eyelid (2.1)

A hyperparameter search was performed on the network architectures, data augmenta-
tion techniques, learning rate, auxiliary loss ratio and learning rate decreasing policy. The
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hyperparameters, which attained the best performance over the validation set, was selected.
The convolutional neural networks were developed using the PyTorch|229] deep learning
framework. The proposed networks were repeatedly trained and evaluated on two NVIDIA
GeForce GTX 1080 GPUs with NVIDIA CUDA v8.0 and NVIDIA cuDNN v5.1 acceleration.

2.2.3 Evaluation Protocol

Evaluating the performance of the trained deep model was necessary. First, when performing
the extensive tuning of hyperparameters on the training set, the model was evaluated on the
validation set to select the hyperparameters that achieved the best performance. Addition-
ally, once the best-performance model was obtained, the performance on the evaluation set
was further evaluated to obtain the final performance. The algorithmic performance includ-
ing segmentation, percent atrophy and meiboscore grading performance was also examined.

Atrophy segmentation. Two evaluation metrics were adopted to comprehensively
assess the similarity between the predicted MG atrophy region and the ground-truth atrophy
region.

Accuracy (or pixel accuracy): In atrophy segmentation example, the atrophy region was
referred to as our region of interest (ROI). To evaluate how similar the network predictions
were compared to the ground truth, the label of ROI (region of interest) was denoted as
class 7, while the rest as class j. n;; was denoted as the number of pixels of class i predicted
to belong to class j, n; as the number of correctly classified ROI pixels (true positives,
TP), n;; as the number of pixels wrongly classified as ROI (false positives, FP), n;; as true
negative (TN), and nj; as false negative (FN). If the total pixel of the input image was n,
n = n;; + ny + nj; + nj. Thus, accuracy (abbreviated as ACC) was defined as follows:

Ny + Njj N + Njj TP+TN

(2.2)

Similarly, in total eyelid area segmentation example, the eyelid region would be the ROI.
ACC reported the percentage of pixels in the image that were correctly classified. However,
this metric sometimes provided misleading results when ROI was small, as the measure
would be biased by mainly reporting how well non-ROI cases were identified.

Mean IU: Mean intersection over union (mean IU, or Jaccard index) quantified the percent
overlap between the target mask and our prediction output. It measured the number of pixels
common between the target and prediction masks divided by the total number of pixels
present across both masks. Denoting ground truth ROI segmentation mask as G'T, network
predicted segmentation mask as prediction, mean IU [186] could be written as following:

GT N prediction Ny B TP
GT U prediction Nij + Nji + Ny - FP+FN+TP

mean [U = (2.3)

Intuitively, Equation [2.3| was analogous to harmonic average of the precision and recall,
F1-score, which was defined as 2TP/(FP+FN+2TP), and provided a more “comprehensive”
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evaluation - the method considered both precision and recall. For segmentation tasks, higher
mean [U value indicated higher alignment of the algorithm prediction with the ground-truth.

In summary, ACC reflected the performance of pixel-wise classification accuracy, while
mean [U for how the predicted ROI segmentation mask overlapped with the real counterpart.
Mean IU was considered as a stricter evaluation metric than ACC in terms of segmentation.
Both evaluation metrics for each image in the evaluation dataset and the calculated average
score of all images were reported.

Percent atrophy. Percent atrophy from the atrophy masks (Equation 1) can be cal-
culated, and the percent atrophy performance of algorithm prediction can also be evaluated
against the ground-truth. One standard way is to compute the atrophy ratio difference over
the evaluation set and compute the root-mean-square deviation (RMSD) as follows:

RMSD(A) =

==

DA =AY (2.4)

where A;) is the real atrophy ratio of i*" image defined in Equation , /l) represent the %
atrophy ratio predicted by the neural network. N is the total number of images in evaluation
set. Intuitively, Equation reflects the mean difference between predicted percent atrophy
and ground truth over all the images in the evaluation set. RMSD could also be considered
as the error made by the algorithm when predicting the percent atrophy of an image.

Converting to meiboscore. Percent atrophy, as a numerical indicator, provided substantial
information on the MG atrophy severity of a meibography image. In order to compare with
human clinicians’ performance, the numerical ratios were converted back to the meiboscore.

From the meibography images with different percent atrophy in Figure images near
the grading transition limits (0, 33%, 66%) were very similar and difficult to classify. A
tolerance threshold near the grading transition limit was necessary. The converting criteria
in Table was applied with a relaxed standard. As illustrated in Figure[2.5] the tolerance
threshold was set at 0.25%, so classifying images with percent atrophy 0-0.25%, 32.75%
- 33.25%, and 65.75% - 66.25% either to its ground-truth or adjacent meiboscores were
both considered as correct prediction. The same relaxed converting criteria for both human
clinicians and algorithm in the experiments were followed for fair comparison.

2.3 Results

2.3.1 Network Training Details

Each meibography image and its corresponding segmentation mask(s) were resized to the
size of 420x420 pixels. During training, 400x400 pixels were randomly cropped out of a
given meibography image and corresponding annotations in every training epoch for data
augmentation. A center crop of 400x400 pixels was made to a given meibography image and
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Figure 2.5: Relaxed meiboscore conversion rule with the tolerance threshold. The percent
atrophy to the meiboscore conversion criteria is relaxed with tolerance threshold near the
grading transition limits (0, 33%, 66%). The threshold is set to be 0.25%. Therefore, when
percent atrophy falls in 0 - 0.25%, 32.75% - 33.25% or 65.75 — 66.25%, the correct prediction
can be either the ground-truth meiboscore or the adjacent meiboscore.

corresponding annotations during the evaluation process for both validation and evaluation
datasets.

Different network architectures (SqueezeNet, resnet18, resnet34, resnet50), auxiliary loss
ratio (for 0 to 1.0 with grid of 0.1), learning rate, and learning rate decreasing policy were
carefully assessed to obtain the best performance of the network on the validation datasetﬂ
The algorithm performance of the model on the evaluation dataset is reported.

2.3.2 Algorithm Performance

The baseline characteristics of the training and evaluation dataset were described in Ta-
ble 2.2l Development and evaluation dataset had similar characteristics regarding patient
demographics and MG atrophy severity.

Table shows the ACC, mean IU and RMSD of meibography images with different
meiboscores. Note that images with meiboscore of grade 0 do not have atrophy so there are
no corresponding ACC and mean IU. The performance of meiboscore of grade 0 can however
be measured by RMSD and meiboscore grading accuracy. Regarding atrophy segmentation,
ACC was higher than mean IU. The instance average ACC values were 97.6% and 95.5% for
eyelid and atrophy respectively, while mean IU values were 95.4% and 66.7% for eyelid and
atrophy respectively. Regarding mean U for different gland atrophy severity, mean IU was
the lowest for meiboscore of grade 3 samples, which only included 5 images in the training
set and only 2 in evaluation set. Regarding percent atrophy prediction performance, the
instance average error was 6.7%. Although images with different meiboscores had relatively
similar RMSD, the RMSD value was the highest at 9.0% for meiboscore of grade 1 and

IThe best performance of the network over the validation set was resnet50, auxiliary loss ratio 0.1,
learning rate le-3, 200 epochs in total, with learning rate decrease at 100, 150, and 180 respectively.
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Table 2.3: Performance of the eyelid and atrophy segmentation algorithm

Eyelid Area Atrophy Area Percent Atrophy
ACC mean [U | ACC mean [U | RMSD
Meiboscore 0 97.9% 96.1% / / 9.0%
Meiboscore 1 97.5% 95.5% 95.7% 64.6% 6.2%
Meiboscore 2 97.6% 95.6% 94.5% 78.3% 5.7%
Meiboscore 3 91.9% 82.1% 86.8% 63.7% 6.9%
Class average accuracy 96.3% 92.3% 92.4% 68.8% 7.0%
Instance average accuracy | 97.6% 95.5% 95.4% 66.7% 6.7%

Table 2.4: Performance of the eyelid and atrophy segmentation algorithm under 10-fold cross
validation

Eyelid Area Atrophy Area Percent Atrophy

ACC mean [U ACC mean U RMSD
Meiboscore 0 98.0 + 0.4% | 96.0 £ 0.5% | / / 9.8 + 0.8%
Meiboscore 1 97.6 £0.3% | 95.4 & 0.6% | 96.1 £ 1.7% 65.9 + 1.8% | 5.6 + 0.6%
Meiboscore 2 97.9 £ 0.5% | 96.0 & 0.9% | 94.6 £ 1.9% 77.3+1.8% | 7.4 £ 1.6%
Meiboscore 3 92.4 + 2.0% | 83.8 & 4.0% | 85.1 £ 3.9% 61.6 + 4.5% | 7.3 + 2.0%
Class average accuracy 96.4 & 0.8% | 92.8 &£ 1.5% | 91.9 = 2.5% | 68.3 £2.7% | 7.5 £ 1.3%
Instance average accuracy | 97.6 &= 0.4% | 95.5 = 0.7% | 95.7 £ 1.8% | 67.6 & 1.8% | 6.6 & 0.8%

the lowest at 5.7% for meiboscore of grade 2. Although the intention was to capture each
subject for one single visit, there were 3 subjects (providing a total of 10 images) from 467
subjects (0.6% subjects) returned to the research facility for two visits within at least 2-
year time lapse. Therefore, a 10-fold cross validation was performed to confirm that the
images obtained from the repeated visits would not bias the study results. The results (e.g.,
mean and standard deviation of ACC, mean IU and RMSD) were reported in Table [2.4]
Specifically, the development and evaluation sets were randomly split 10 times according to
the number of images of each meiboscore category presented in Table The algorithm was
trained on different development sets and evaluated on the corresponding evaluation sets for
10 times. Figure[2.6plots the predicted percent atrophy versus ground-truth percent atrophy.
While most of the points fall on the ideal line (percent atrophy prediction equals to ground-
truth), the deep learning algorithm tends to give higher percent atrophy for some cases of
meiboscore of grade 0. This is because the algorithm has been trained to be sensitive to even
small atrophy, which might have been ignored by clinicians. The errors are greatly reduced
when converting to meiboscores using the relaxed criteria as described in the “evaluation
protocols” section.

Figure visualizes the atrophy region and eyelid region segmentation results of clin-
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Figure 2.6: Algorithm-predicted percent atrophy versus ground-truth percent atrophy. The
average root-mean-square deviation (RMSD) of the predicted percent atrophy is 6.7%. While
most of the points fall on the ideal line (percent atrophy prediction equals to the ground-
truth), more percent atrophy errors occurred for meiboscore of grade 0. Note that the errors
are greatly eliminated when applying relaxed meiboscore conversion criteria. The thresholds
near grading transition limits are marked in blue.

Table 2.5: Confusion matrix of LCI and clinical meiboscore

LCI Meiboscore
Number Meibo 0 | Meibo 1 | Meibo 2 | Meibo 3
96 Meibo 0 | 45% 51% 4% 0%
Clinical Meiboscore | 84 Meibo 1 | 11% 69% 18% 2%
22 Meibo 2 | 0% 32% 50% 18%
5 Meibo 3 | 0% 20% 40% 40%

ician team and computer. From the visualization, the human segmentation and computer
segmentation appear to be very similar, especially for eyelid region segmentations.

2.3.3 Human Clinician’s Performance

The confusion matrix is a specific table layout that allows visualizations of how two identities
perform the same classification task. Table[2.5|shows the confusion matrices of study clinician
and single clinician. The highest agreement percentage was 69% for meiboscore of grade 1,
while the lowest was 40% for meiboscore of grade 3. The kappa score is 0.324 for clinical
team and the LCI, which led to a fair agreement according to Landis et al.[164] In other
words, clinicians’ ratings have high variability.
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Figure 2.7: Eyelid (outlined in blue) and atrophy (outlined in red) segmentations from the
deep learning algorithm versus the ground-truth. Rows 1-4 refer to meiboscores of grade 0-3,
respectively. The first and third columns are ground-truth images from the annotators, while
the second and fourth columns are algorithm predictions. The algorithm predictions shared
high visual similarity with the ground-truth, especially for eyelid region segmentation.

2.3.4 Comparing Meiboscores

The meiboscore grading performance of the algorithm was compared against the ground-
truth meiboscores. The ground-truth meiboscores were obtained from the percent atrophy
(calculated from human-annotated segmentation masks) using Table 2.1] Table and
Figure show the meiboscore grading performance by the algorithm, clinical team (clin-
ical meiboscore), and the LCI meiboscore. The algorithm achieves 95.6% overall grading
accuracy, which outperforms the LCI meiboscore by 16.0% and clinical team meiboscore
by 40.6%. For each meiboscore, the algorithm also largely outperforms human clinicians.
Figure depicts some failure cases in meiboscore grading of human clinicians and our
algorithm. Failure cases appear for both human-assigned and algorithm meiboscores when
percent atrophy is near the meiboscore grading transition limits.

2.4 Discussion

The present work introduces a deep learning approach to automatically predict the MG atro-
phy region and compute percent atrophy in the meibography image. The proposed method
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Figure 2.8: Meiboscore grading performance of the clinical team, the lead clinical investigator
and the proposed algorithm. The algorithm outperforms the LCI meiboscore by 16.0% and
clinical team meiboscore by 40.6%.

Table 2.6: Meiboscore grading performance of clinicians and algorithm

Clinical team | Lead clinical investigator | Algorithm
Meiboscore 0 86.8% 100% 100%
Meiboscore 1 48.2% 78.0% 95.7%
Meiboscore 2 46.2% 57.7% 88.5%
Meiboscore 3 50.0% 100% 100%
Class average accuracy 57.8% 83.9% 96.1%
Instance average accuracy | 55.0% 79.6% 95.6%

has three advantages: (1) low variability and high repeatability (test-retest reliability); (2)
output quantitative result rather than qualitative description, e.g., specific gland atrophy
region and numerical percent atrophy prediction; (3) efficient and low cost. The average
processing time per meibography image was approximately 0.29 SecondsE|. This means that
more than 1000 unprocessed or raw meibography images can be evaluated for atrophy sever-
ity in 5 minutes without additional human resource needed.

The algorithm also has very high performance. The accuracies of eyelid area and atrophy
area achieve 97.6% and 95.4% respectively, and the overall mean IUs are 95.5% and 66.7%
respectively. Our algorithm achieves a 95.6% overall grading accuracy and outperforms the
LCI meiboscore grading accuracy by 16%. From the visualization of the predicted eyelid
and atrophy segmentation, the algorithm predictions have high visual similarity with the

2Experiments performed on one NVIDIA GeForce GTX 1080 GPU.
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Figure 2.9: Examples of failure cases in meiboscore (MS) grading: human clinicians vs
machine algorithm. GT refers to the ground-truth. Failure cases occur for both clinicians and
the algorithm for the images with percent atrophy near the meiboscore grading boundaries.

ground-truth annotations. In all, the proposed algorithm achieves very high performance
with low variability and high repeatability in evaluating MG atrophy from meibography
images. Additionally, the proposed algorithm could potentially be applied to other similar
image segmentation tasks in the clinical community.

Furthermore, regarding MG atrophy evaluation, numerical-percent-atrophy reporting is
a better assessment than simple meiboscore grading. It is challenging to distinguish different
meiboscores when the percent atrophy is near the grading transition limits (0, 33%, 66%),
since no distinct changes observed for meibography images in these regions. Forcing a strict
meiboscore near the boundary can lead to grading inconsistency and variability. When
applying numerical percent atrophy, however, clinicians would not need to worry about the
images with percent atrophy near these grading transition limits. Additionally, there are
several different grading scales for gland atrophy . Conversion between different
grading system is impossible as the percentage information already got lost. Numerical
percent atrophy adopted in this study overcomes the above-mentioned problems.

In conclusion, a deep learning approach to automatically evaluate the MG atrophy in
meibography images has been developed. The system has high accuracy, repeatability and
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low variability, as well as outperforming human clinicians by a significant margin. The quan-
titative outputs (specific atrophy region and percent atrophy) provide valuable information
of MG atrophy severity of the meibography image. In the present work, our deep learning
system could only predict MG atrophy region, but not individual MG morphology. Future
work can explore how deep learning can automatically analyze MG morphological char-
acteristics (e.g., gland number, width, intensity and tortuosity), which can be potentially
important for advancing the efficiency of MGD treatment and management. Capturing hu-
man expert knowledge with data-driven, deep-learning systems is the future of image-based
medical diagnosis. The possibility of using deep learning methods for clinical diagnosis in
ocular surface diseases is shown. New surveys can be enabled by automatic and quantitative
evaluations, opening up many exciting opportunities for targeted medical treatment and
drug discoveries.
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Chapter 3

Learning Fine-Grained, Instance-Level
Representations of Meibomian Glands

3.1 Introduction

Meibomian glands (MGs), located in the upper and lower eyelids with orifices at the eyelid
margins, are believed to play a critical role in ocular surface health by secreting lipids into the
tears, which form a polar lipid film that serves to retard aqueous evaporation. Meibomian
gland dysfunction (MGD) can result in an unstable tear film and excessive evaporation of
tears from the ocular surface, and is the most frequent cause of dry eye symptoms [28]. The
ability to visualize MGs and to monitor their temporal changes is important for evaluating the
risk of MGD, identifying active pathology, and following treatment outcomes. Meibography,
which is the photodocumentation of MGs in vivo using either trans-illumination or infrared
imaging, is now commonly used in clinics for the diagnosis, treatment, and management of
MGD (194} 235].

The relative size of areas of MG atrophy, or gland loss area, is an important clinical
measure for assessing MGD severity. Currently, clinicians estimate the degree of MG atrophy
subjectively by comparing the area of glandular loss to the total eyelid area [235| 237].
Though commonly used, the method only evaluates the overall severity of gland atrophy,
not detailed individual MG morphological features. Recent studies have shown that MG
morphological features, such as length, curvature or tortuosity, and local contrast (average
gland region intensity normalized by its surrounding intensity) may also be indicative of
MGD severity and related to ocular surface disease [197, |134} 340, [63]. Additionally, the
presence of glands that were once patent but now contain little or no meibum, referred to
as ghost glands, is also thought to be associated with MGD. These glands have a faint or
“ghostly” appearance in meibography images due to decreased local contrast of the glandular
structures [63), 306].

To accurately measure individual MG morphological features from meibography images
would be prohibitively time consuming in a patient care setting and would require exten-
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sive training and standardization across the field to be accurate and repeatable for research
purposes. To date, there has been little progress made in understanding the roles played
by various MG morphological features in MGD and various related pathologies (e.g., dry
eye, tear film instability). The lack of quantification tools for individual gland morphology
hinders such progress. Fortunately, recent advances in deep learning [162, 218, |47], a form
of artificial intelligence, demonstrate the ability of deep neural networks to learn to perform
quantification tasks directly from a large dataset of images without explicitly specifying
rules. Recent papers [302, 233] have proposed deep-learning-based approaches to analyz-
ing MG morphology from meibography images and some have outperformed trained human
observers. However, such methods are only capable of evaluating global MG morphology
rather than the fine-grained morphology of individual glands. Therefore, employing deep
learning approaches to partitioning individual MG regions from meibography images, a pro-
cess known as image segmentation, quantitatively measuring gland morphological features,
and identifying the presence of ghost glands is of timely interest to many clinicians.

This study aims to develop an automated approach based on deep learning that segments
MGs in meibography images, identifies ghost glands, and quantifies individual MG morpho-
logical features. The health and morphology of the MGs are likely to be related to the quality
of the lipid layer and the stability of the tear film. If such detailed morphological features
could be obtained and quantified quickly and accurately, this would provide researchers with
a powerful tool to quantitively explore their etiological significance in ocular surface disease.
In the longer term, the proposed tool could make a significant contribution to improving the
diagnosis, treatment, and long-term management of tear film instability and evaporative dry
eye.

3.2 Methods

3.2.1 Data Collection and Annotation

Subject recruitment and imaging. Adult human subjects, mean (SD) age 27.8 (12.9)
years, were recruited from the University of California, Berkeley campus and surrounding
community for single-visit ocular surface evaluations during the period from 2012 to 2017.
Eligible subjects were 18 years of age or older with no history of ocular injury or surgery, and
not taking prescription ocular medications or systemic medications with effects on the ocular
surface or tear film. Contact lens wearers were required to discontinue wear at least 24 hours
prior to the study visit. Meibography images of the upper and lower eyelids of both eyes
illuminated with 800 nm infrared light were captured with the OCULUS Keratograph 5M
(R) (OCULUS, Arlington, WA) [194]. During image capture for all subjects, the ambient
light was off with the subject’s head positioned in a chin rest and forehead strap apparatus.

Informed consent was obtained from all subjects after a thorough description of the
goals, procedures, risks and potential benefits of the study. This study conformed to the
tenets of the Declaration of Helsinki, and was approved by the U.C. Berkeley Committee for
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Figure 3.1: Meibography images with ground truth MG regions (outlined in color). The
first two rows refer to upper eyelids while the last two refer to lower eyelids. Different colors
correspond to different glands. Only MGs overlapping with the central region with width
equaling to 50% eyelid width were considered since the far temporal and far nasal regions
are out of focus.

Protection of Human Subjects.

Data annotations. A total of 1550 images were collected and pre-screened to rule out
images that did not capture the entire eyelid (107 images or 6.9%), thus 1443 images were
used for the study. This study utilized a meibography image dataset from a previous paper
, in which the percent area of MG atrophy was estimated in upper eyelid meibography
images. In the current paper, to 689 of these upper eyelid images were added 754 lower eyelid
images from the same subjects. Both upper and lower eyelid images then had the total eyelid
area, any regions of MG atrophy, and each individual MG contour traced, or “annotated”, by
one of 10 trained observers, using the polygon tool in Fiji (ImageJ version 2.0.0-rc-59)[259].
For lower eyelid images, only the individual MGs were annotated, not the overall lid and
atrophy regions, because the border of the lower tarsal plate could not be easily defined due to
inter-subject variation in lower eyelid eversion. Far temporal and nasal gland contours were
not annotated because these regions are generally out of focus in meibography images due to
the anterior curvature of the eye. All visible glands within approximately the central 50% of
the eyelid area of each meibography image were annotated. Every gland was also identified
as a ghost or non-ghost gland. Note that ghost gland regions and MG atrophy regions are
mutually exclusive because ghost glands are faint but still visible, while atrophy regions have
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Figure 3.2: The MG segmentation network. The gland segmentation network takes a mei-
bography image as an input and produces two intermediate outputs: the entire MG region
segmentation (along with pixel-wise feature embedding, see the supplementary materials for
details) and the number of glands. The predicted MG contour/embedding and gland number
are further exploited by the network to predict instance MG region segmentation.

no discernable glands for annotation. Final annotations were verified by a single lead clinical
investigator (TNY) before they were made available to the machine learning algorithm, in
order to minimize variability in the ground truth data (i.e., the manual annotations from
trained observers) that would arise from using multiple unsupervised observers. Figure
depicts several examples of MG region annotations. Detailed statistics can be found in Table
.1} Algorithms were considered to achieve 100% accuracy if they predicted results identical
to the ground truth annotations.

Data allocations. Meibography images were allocated into two subsets according to
collection time. The development set contained meibography images collected from the
years 2015 to 2017, while the evaluation set contained those collected from the years 2012
to 2013. The development set was used for developing the deep learning algorithm, while
the evaluation set was used for evaluating the performance of the algorithm. For algorithm
development, the development set was further divided randomly into 2 subsets for train-
ing and validation. The images in the training set were used to train the deep learning
model, while the validation set was used for tuning the model hyperparameters (e.g., net-
work architectures, learning rate). The evaluation set, which did not have any overlapping
images/subjects with the development dataset, was evaluated using the model that achieved
the best performance from the validation set.

3.2.2 Algorithm Design and Training

Data processing. Raw MG annotations were preprocessed to a standardized format before
feeding to the deep learning model. Detailed procedures are available in the supplementary
materials.

Gland segmentation. In computer vision, image segmentation is the process of par-
titioning an image into multiple regions [223| [191]. Instance segmentation, one important
task of image segmentation, aims to identify the contour of each object at the detailed pixel
level [252 182]. Instance segmentation techniques are suitable for segmenting MGs since
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Figure 3.3: Ghost gland classification network. The neural network has three inputs: an
entire meibography image, a specific gland mask (the region within the predicted contour)
and a corresponding cropped gland image. Inputs consist of a global view of the meibog-
raphy image and a local view of individual gland, and thus two subnetworks are used to
learn to identify ghost glands. The global network learns a representation from the entire
meibography image and the individual gland mask, while the local network learns a repre-
sentation from the individual gland image. T'wo representations are concatenated to predict
ghost glands. In this example, the network outputs “0”, indicating it is a non-ghost gland.

contours of individual MGs are desired outputs. Recently, deep learning approaches have
outperformed all other methods in instance segmentation [182, 80, 65]. A deep learning
algorithm was built upon an instance segmentation network with discriminative loss[65] to
predict individual MG regions in meibography images not previously seen in the training
phase. Figure depicts the architecture of the proposed MG segmentation network, which
takes a meibography image as input and produces the contour for each gland as output.
Details on the network design and training can be found in the supplementary materials.

Ghost gland identification. The deep learning model was also designed to identify
ghost glands (Figure at the individual MG level from a meibography image. Details on
the network design and training can be found in the supplementary materials.

3.2.3 Evaluation Metrics

After finishing the training of deep learning models and identifying the model with the
best performance on the tuning set of images, its performance with respect to MG instance
segmentation and ghost gland identification was evaluated on the evaluation dataset.
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Gland segmentation. To quantify the similarity between the predicted MG region
(i.e., the entire MG region within the predicted contour) and the ground truth, the mean
intersection over union (mean IU) was used. This metric was also used by a previous paper
evaluating predicted MG atrophy segmentation [302]. Mean IU, or the Jaccard index, quan-
tifies the percent overlap between the target region and the prediction output. It measures
the number of pixels in common between the target and prediction regions divided by the
total number of pixels present across both regions. Denoting ground-truth gland region seg-
mentation as GT, network predicted segmentation as P, the mean IU[186] can be written as
follows

GTNP

GTUP (3-1)

mean U =
Intuitively, mean IU is analogous to the harmonic average of the precision and recall (F1-
score) and provides a fair evaluation of the segmentation algorithm by considering both
precision and recall. For segmentation tasks, a higher mean IU value indicates a better
alignment of the algorithm prediction with the ground truth.

Gland detection. In addition to evaluating the similarity between the predicted region
and the ground truth, it is also necessary to evaluate how well the model detects objects
for instance segmentation. Since there are multiple glands presented in an image, a high
detection performance means the model does not miss or wrongly identify individual glands.
The evaluation metric is available in the supplementary materials.

Ghost gland identification. Confusion matrices and receiver operating characteristic
(ROC) curves were used to evaluate ghost gland classification performance. A confusion
matrix is a table that is used to describe the performance of a classification model on a set
of test data for which the true class labels are known. Each row of the confusion matrix
represents a true class label while each column represents each a model-predicted label. Sen-
sitivity and specificity (with 50% probability threshold) were calculated from the confusion
matrix. A ROC curve|107] graphically depicts the diagnostic ability of a binary classifier
system as its threshold is varied.

3.2.4 Morphology Analysis

A meibography image reveals the morphology of multiple glands. Individual gland features
as well as global morphology are both important. We thus aimed to quantify both local and
global morphological features.

Local morphological features. Based on individual MG segmentations, morphological
features such as average gland local contrast, gland length, width and tortuosity can be
quantitively measured. Details on measuring each feature from a meibography image are
available in the supplementary materials.

Visualizations of gland local contrast, length and tortuosity extraction are shown in
Figure [3.4] Figure [3.5) and Figure [3.6] respectively. Specifically, local contrast of a gland
region represents its pixel intensity normalized by the surrounding pixel intensity (gray
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Figure 3.4: Local contrast calculations of MGs. To “normalize” the individual gland in-
tensity, the average gland local contrast is defined as the difference of average intensity of
the gland region and surrounding area with negative values set to 0. Specifically, given an
input image (left), instance glands are segmented. For a segmented gland region (middle),
its surrounding area (outlined in orange) can be obtained by binary dilation operation (see
the supplementary materials for details). The difference in intensity is thus calculated. The
surrounding areas of all glands are also shown (right).

Wy

Meibography MG segmentation

Figure 3.5: Principal curves (marked in yellow) fit for gland length calculation. Gland length
is defined as the number of pixels in each principal curve.

scale: 0-255). Glands containing little or no meibum have a faint, ghost-like appearance
and low contrast in the meibography images. Additionally, showed that gland local
contrast in meibography captured using the same instrument was repeatable and invariant
to ambient light conditions. Therefore, it is of interest to include local contrast of a gland
as a morphological feature in the present study.

Association of local morphological features with ghost glands. One goal of
analyzing MG morphology is to understand which morphological features are most associated
with ghost glands. A linear support vector machine (SVM) for classifying MGs as ghost
glands or non-ghost glands was constructed with the four aforementioned morphological
features as explanatory variables (inputs). The model could be considered to be using the
weighted sum of input morphological features as the probability of classifying a gland as
a ghost gland. Weights are learned by training the model. Feature coefficients, or model
weights, thus reflect the relative importance of different features for the ghost gland decisions
of the model.

Global morphological features. Several global morphological features can also be
measured quantitively with this deep learning approach. Global features that can be ex-
tracted include number of glands per image, gland density (the ratio of the gland area to the
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Figure 3.6: Two sample MGs with tortuosity marked below. For each MG (outlined in red),
the convex hull (outlined in blue) of the shape is extracted. Gland tortuosity is defined as
the convexity defect of a gland, the ratio of the cavity area (green region) to the convex
hull area. More tortuous glands have greater gland tortuosity values. The left gland is more
tortuous.

eyelid area), and percent atrophy (the ratio of atrophy area to the eyelid area).The number
of glands was calculated for both upper and lower eyelids while gland density and percent
atrophy were calculated over upper eyelids only due to the inability to annotate the full
eyelid and atrophy regions in lower eyelid images as explained above.

3.3 Results

The algorithm development and evaluation were performed for the whole dataset with both
upper and lower eyelid images for local morphological features, and with upper eyelid images
for global morphological features. Normalized histograms of global morphological features
(total number of glands, gland density, and percent atrophy) are shown in Figures 7 (a)- (c)
for upper eyelid images, and of local morphological features (local contrast, length, width,
tortuosity, and identification of ghost glands) in Figures 7 (d)-(h).

3.3.1 Dataset and Training Details

Subject demographics stratified on the development and evaluation datasets can be found
in Table |3.1] Details of data preprocessing and network training are available in the supple-
mentary materials.

3.3.2 Gland Segmentation Performance

Table reports the performance of the MG instance segmentation algorithm. For gland
segmentation, mean IUs were 58.4% and 68.0%. Gland detection performance is available in
the supplementary materials. Figure and Figure [3.8] provide visualizations of the ground
truth and predicted MG segmentations for upper and lower eyelids, respectively, with the
last row in each figure presenting illustrative examples of failure cases.
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Table 3.1: Subject Demographics of the Meibography Image Dataset

Development

Upper eyelid Train Tune Evaluation
Images (No.) 389 97 203
Patient Demographics

Unique individuals (No.) | 260 94 109

Age (average + SD) 27.8 £ 13.1 | 27.0 £ 11.5 | 27.9 £ 12.7
Female/ total patients 69.60% 66.00% 69.40%
Lower eyelid ?‘re;ilopmen'trune Evaluation
Images (No.) 445 108 201
Patient Demographics

Unique individuals (No.) | 272 97 106

Age (average £ SD) 279+ 13.1 | 28.2 £ 13.4 | 27.7 £ 12.6
Female/ total patients 68.40% 63.90% 67.60%

Table 3.2: Gland Segmentation Performance

Upper eyelid | Lower eyelid
Precision | 62.70% 76.90%
Recall 53.90% 74.10%
Mean IU | 58.40% 68.00%

3.3.3 Ghost Gland Identification Performance

Table|3.3|reports confusion matrices of ghost gland classification for the upper and lower eye-
lids. The deep learning algorithm achieved 84.7% sensitivity and 72.5% specificity for ghost
gland classification in upper eyelid images, and 84.1% sensitivity and 70.8% specificity for
ghost gland classification in lower eyelid images. ROC curves for ghost gland classifications
for the upper and lower eyelids are shown in Figure (3.9

3.3.4 Morphological Features and Associations with Ghost
Glands

To give readers a sense of extracted features, individual MG morphological features from
an example meibography image are shown in Figure |[3.11] Detailed morphological features
including local contrast, gland length, width, tortuosity and ghost gland identification of the
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Figure 3.7: Upper eyelid MG segmentation ground truths versus predictions. Different colors
refer to different MGs. The predictions were visually similar to the ground truths. The last
row depicts some failure cases.

Table 3.3: Performance of Ghost Gland Classification

Upper eyelid Predicted: Ghost | Predicted: Non-ghost
Actual: Ghost 188 (84.7%) 34 (15.3%)

Actual: Non-ghost | 789 (27.5%) 2085 (72.5%)

Lower eyelid Predicted: Ghost | Predicted: Non-ghost
Actual: Ghost 74 (84.1%) 14 (15.9%)

Actual: Non-ghost | 699 (29.2%) 1693 (70.8%)

13 visible glands in that image are shown. Figure depicts the normalized histograms
of local and global morphological features for the whole meibography image dataset. To
determine the important morphological gland features associated with ghost glands, the
feature coefficient of an SVM model constructed on MG features was analyzed. The feature
coefficient of the SVM model reflects the importance of different input features. An SVM
model achieving 57% sensitivity and 65% specificity was used. The corresponding feature
coefficient of gland local contrast was approximately 73% , gland length was 69%, gland width
was 14% and gland tortuosity was 30%. Gland local contrast and length had comparably
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Ground truth Prediction Ground truth Prediction

Figure 3.8: Lower eyelid MG segmentation ground truths versus predictions. Different colors
refer to different MGs. The predictions were visually similar to the ground truths. The last
row depicts some failure cases.

large coefficient values.

3.4 Discussion

This work presents a deep learning-based approach to automatically analyzing MG morphol-
ogy by segmenting individual glands from meibography images. This approach introduces
the following three innovations: 1) Instance gland regions are automatically segmented from
the meibography image; 2) Ghost glands are automatically identified; 3) Morphological fea-
tures at the individual MG level are analyzed. The proposed approach to quantifying gland
morphological features makes it possible to further study the quantitative relationships be-
tween gland morphology and clinical signs, to improve the understanding of MG morphology
and pathology, and could ultimately provide quick and accurate diagnostic information in
the clinical setting.

Previous works have explored the plausibility of automatically segmenting glands from
meibography images with the goal of MG morphological analysis, and have achieved satis-
factory results for certain images , . However, such methods only segment entire MG
regions instead of individual MG regions, which is a serious limitation for further morpho-
logical analysis. While additional post-processing could break the entire region into several
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Figure 3.9: ROC curves for ghost gland classification.

smaller parts, such methods are unlikely to achieve adequate results as MGs are usually
dense, close to or even overlapping with each other. The proposed method, in contrast,
is able to segment instance glands even when they are close or slightly overlapping, which
makes it more appropriate for further morphological analysis. Empirically, a mean IU with
value of 50% or higher suggests a good match between the prediction and the ground truth
in computer vision. Thus, both the numerical performance evaluation metric (58% and 68%
for upper and lower eyelid, respectively) and the visual examples reported in the previous
section validated the acceptable performance of the proposed algorithm.

The proposed approach is able to identify ghost glands, which have been shown previously
to be indicative of MGD [63, |306]. Based on gland segmentation and quantified morpho-
logical features, further analysis of the association between individual gland morphological
features and ghost glands suggested that low MG local contrast was most associated with
the presence of ghost glands. This is consistent with the definition of ghost glands, which
have low contrast to their surroundings in images since they contain little or no meibum.
The coefficient of gland length is the second largest, meaning that longer glands are more
likely to be ghost glands. Future studies of the links between gland health, pathology and
morphological features such as gland local contrast and length are warranted to verify and
further understand this finding.

The average processing time (including segmentation, classification and morphological
analysis) per image was approximately 0.32 seconds. Experiments were performed on a single
graphics processing unit (GeForce RTX 2080 Ti. NVIDIA, Santa Clara, CA.). This means
that more than 900 unprocessed or raw meibography images can be evaluated for atrophy
severity in 5 minutes without additional human intervention. The processing speed renders
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Figure 3.10: Histograms (in percentage) of various morphological features of our meibogra-
phy image dataset.

it possible to automatically analyze a large number of meibography images within a short
time and greatly improve efficiency in the clinical and research settings. Such evaluations
currently would be prohibitively time consuming and without standardization for large-scale
clinical trials or on-site ocular health screenings with large numbers of patients.

As with any emerging methodology, the proposed approach has certain limitations. Only
glands in the central eyelid region were analyzed. Because the entire eyelid is a curved surface,
imaging the central region of the tarsal plate with an optimal focus causes defocus of the
peripheral glands. Additionally, incomplete eyelid eversion may also occlude far peripheral
glands, making accurate identification of MG morphological features challenging. In terms of
global morphological features, gland density and percent atrophy were not analyzed for the
lower eyelids in this study due to the inability to accurately annotate lower eyelid boundaries
for many subjects. The tarsal plate of the lower eyelid is about 5 mm in length , which
is approximately half the length of the upper eyelid. Variability among patients in the eyelid
area exposed by eversion of the lower lid makes it difficult to consistently determine its
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Meibograph MG regions

contrast 12.1 | 118 | 20.5 17.6 18.4 | 234 7.4 14.1 16.7 124 | 17.5 14.7 17.2
length (mm) 427 | 9.74 | 6.24 | 6.97 6.71 8.94 | 4.1 7.84 | 929 | 5.80 | 9.13 502 | 8.96
width (mm) 0.608 | 0.300 | 0.427 | 0.378 | 0.397 | 0.340 | 0.232 | 0.404 | 0.317 | 0.303 | 0.279 | 0.319 | 0.322

tortuosity (%) | 15.9 | 49.0 | 254 | 20.9 221 349 | 449 | 263 | 340 | 269 | 34.2 24.0 32.5
|__ghost gland 1 1 0 1 0 0 1 0 0 0 0 0 0

Figure 3.11: Individual MG morphological features. Based on MG regions (upper right),
individual MG morphological features (lower) can be measured. In the last row, 1 indicates
a ghost gland while 0 indicates a non-ghost gland.

boundaries. It is also important to note that deep learning model performance is measured
against, and ultimately depends upon, human expert annotations of the original meibography
images. It is thus not possible to eliminate completely the subjective nature of the expertise
needed to train the algorithm . Finally, it should be noted that infrared imaging of
the eyelids may or may not provide the best images of all MGs, as some researchers have
found significant differences in detecting gland dropout between infrared imaging and other
methods such as optical coherence tomography .

The scope of this study is restricted to reporting a new approach to evaluating mor-
phological features in meibography without providing clinical understanding of what the
variability of these features may indicate. Few other studies to date have attempted to in-
vestigate the associations among MG morphological features, especially local features, and
basic physiological or ocular health outcomes. Some researchers have used the 0-3 (per eye-
lid) discrete ordinal meiboscore proposed by Arita et al., or variations thereof . These
scores are generally based on global features such as percent area of the eyelid affected, and
do not have fine resolution or consider local morphological features of individual MGs. With
the proposed method, a great deal more detailed and accurate information about both the
overall status and the fine-grained morphology of the MG array in the eyelid can be made
available to researchers. Future work is warranted using the proposed methodology to study
the relationships among MG morphological features, gland health and pathology, the quality
and thickness of the tear lipid layer, tear film instability and dry eye.

In conclusion, a deep learning model to automatically segment individual MGs, analyze
both global and local MG morphology and predict the presence of ghost glands in meibogra-
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phy images has been developed. Given its accuracy and efficiency, the quantitative outputs
(morphological features at the individual gland level) can potentially be helpful in furthering
our understanding of the interplay between MG features and clinical signs and symptoms
by analyzing large-scale image datasets [63]. Future work is warranted to improve MG seg-
mentation performance for highly overlapping glands and peripheral glands in the nasal and
temporal regions of the tarsal plate, and to expand our understanding of the relationships
between MG morphology and various ocular pathologies.
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Chapter 4

Learning to Geometry-Aware

Representations with Spatial
Transformer for 3D Point Clouds

4.1 Introduction

3D computer vision has been on the rise with more advanced 3D sensors and computational
algorithms. Depth cameras and LiDAR sensors output 3D point clouds, which become
key components in several 3D computer vision tasks including but not limited to virtual /
augmented reality |[178244], 3D scene understanding [291] 295, 59|, and autonomous driving
[50, (174 |325].

On the algorithmic side, convolutional neural networks (CNNs) have achieved great suc-
cess in many computer vision tasks |67, [L61]. However, the concept of convolution cannot be
directly applied to a point cloud, as 3D points are not pixels on a regular grid with regular
neighbourhoods. One line of approaches is to convert the 3D point cloud into a representa-
tion where CNNs are readily applicable, e.g., a regular voxel representation [327, 250, 313]
or 2D view projections [277] 239, (143, |355].

Another line of approaches is to develop network architectures that can directly process
point clouds [238] 241}, 247, |87]. Analogous to convolution on 2D pixels, convolution on 3D
points needs to first identify local neighborhoods around individual input points. This step
is achieved by computing the so-called point affinity matriz, i.e., the adjacency matrix of
a dense graph constructed from the point cloud. These neighborhoods are then used for
extracting features with point-wise convolutions. By stacking basic point convolution layers,
a neural network can extract information from the point cloud with an increasing level of
abstraction.

However, unlike images where 2D pixels are laid out on a regular grid with simple and
well-defined local neighborhoods, local neighborhoods of 3D points are ill-defined and subject
to various geometric transformations of 3D shapes. Most methods [238, 241, (317, |176]
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Figure 4.1: Spatial transformers learn several global transformations at each layer to obtain dif-
ferent local point neighborhoods. We show transformed point clouds at different layers learned
by spatial transformers for different instances of a category (e.g. tables). Compared with pre-
vious works adopting fixed local neighborhoods, dynamic point neighborhoods make the network
more powerful in learning semantics from point clouds. For example, corresponding geometric
transformations capture similar semantic information even high intra-class spatial variations exist.
The second transformation at layer 1 deforms different tables to be more semantically similar, and
makes parsing the part of table base easier. Furthermore, the proposed transformer is a stand-alone
module and can be easily added to existing point cloud processing networks.

define local neighborhoods as nearest neighbors in the Euclidean space of the input 3D point
coordinates.

This common practice of defining a nearest neighbor graph according to the Euclidean
distances on the fixed input 3D point coordinates may be simple but not optimal. First, such
distances may not be able to efficiently encode semantics of 3D shapes, e.g., semantically or
topologically far points might be spatially close in terms of the Euclidean distances. Secondly,
fixed neighborhoods throughout the network may reduce the model’s learning capacity as
different layers capture information at different levels of abstraction, e.g., objects have a
natural hierarchy and in order to segment out their parts, it would be more efficient to
provide different layers the ability to parse them at different spatial scales.

We propose to address these fixed point neighbourhood restrictions by dynamically learn-
ing local neighborhoods and transforming the input point cloud at different layers. We use
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Figure 4.2: At each layer, we apply multiple spatial transformers to deform the input point cloud
for learning different neighborhoods. We show local neighborhoods of input point cloud examples
with and without deformable transformers. Different colors indicate different neighborhoods, and
intensities indicate distances to the central point. The dynamic neighborhood enhance the network
capacity to learn from objects with large spatial variations. Rotating table and earphone for better
visualizations.

1

a parametric model that takes both point coordinates and learned features as inputs to
learn the point affinity matrix. At different layers of the network, we learn several differ-
ent transformations (dubbed as spatial transformers or transformers hereafter, Fig and
corresponding point local neighborhoods (Fig.. Spatial transformers allow the network
to adaptively learn point features covering different spatial extensions at each depth layer.

To spatially transform a point cloud, we learn a function, ®, that generates transformed
point coordinates from the input point coordinates and feature maps. However, it is nontriv-
ial to learn ® without smoothness constraints. Since any isometric (e.g. rigid) transformation
cannot change the distance metric, we consider non-rigid transformations, both linear and
non-linear families. That is, our spatial transformers are parameterized functions condi-
tioned on the input point coordinates P and feature map F'; they are subsequently used
to transform the point coordinates, resulting in a new point affinity matrix for obtaining
dynamic local neighborhoods.


https://drive.google.com/file/d/1261A3Pgnx8FWnZdiKLm6qReQev_j_aSK/view?usp=sharing
https://drive.google.com/file/d/11iaI_rKzueMRdlPCpFFBaDBZeLABFMwV/view
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We consider three families of spatial transformers. 1) Affine transformation P — AP,
where A is an affine matrix. 2) Projective transformer P BP where P is 3D points
expressed in homogeneous coordinates. 3) Deformable transformer P +— C'P 4+ DF, where
C, D are respective transformation matrices of point coordinates and features F'. The trans-
formation depends on both the input point coordinates and the features the points assume.

Our work makes the following contributions.

e We propose to learn linear (affine) and non-linear (projective, deformable) spatial
transformers for new point affinity matrices and thus dynamic local neighborhoods
throughout the neural network.

e We demonstrate that our spatial transformers can be easily added to existing point
cloud networks for a variety of tasks: classification, detection, and segmentation.

e We apply spatial transformers to various point cloud processing networks, with point-
based and sampling-based metrics for point neighborhoods, and observe performance
gains of dynamic graphs over fixed graphs.

4.2 Background

We discuss related works that motivate the necessity of our proposed spatial transformers.

View-based methods project 3D shapes to 2D planes and use images from multiple views
as representations. Taking advantages of the power of CNNs in image processing [81], |105],
239, 277], view-based methods achieve reasonable 3D processing performance. However,
certain information about 3D structures gets lost when 3D points are projected to 2D im-
age planes; occluded surfaces and density variations are thus often troublesome for these
methods.

Voxel-based methods represent 3D shapes as volumetric data on a regular 3D grid, and
proceed with 3D convolution [327, 198, 283]. Their caveates are quantization artifacts,
inefficient usage of 3D voxels, and low spatial resolutions due to a large memory requirement.
In addition, 3D convolutions are not biased towards surface property extraction and thus
cannot capture geometrical and semantic information efficiently. Recent works that apply
different partition strategies [154, 250, 283, 313] relieve these issues but depend heavily
on bounding volume subdivision instead of local geometric shapes. In contract, our method
works directly on the 3D point cloud, minimizing geometric information loss and maximizing
processing efficiency.

Point cloud processing methods take a point cloud as the input and extract semantic
information by point convolutions. PointNet [238] directly learns the embedding of every 3D
point in isolation and gather that information by pooling point features later on. Although
it achieves good performance at the time, PointNet does not learn any 3D local shape infor-
mation since each local neighborhood contains only one point. PointNet++ [241] addresses
this caveate by adopting a hierarchical application of isolated 3D point feature learning to
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multiple subsets of a point cloud. Many other works also explore different strategies for
leveraging local structure learning from point clouds [317, [176]. Instead of finding neigh-
bors of each point, SplatNet [278] encodes local structures from the sampling perspective:
it groups points based on permutohedral lattices 3], and then applies bilateral convolution
[141] for feature learning. Super-point graphs |[165] partition a point cloud into super-points
and learn the 3D point geometric organization. Many works focus on designing novel point
convolutions given 3D point local neighborhoods [241} 278, 176|, ignoring how the local
neighborhoods should be formed.

Unlike pixels in a 2D image, points in a 3D point cloud are un-ordered, with irregular

and heterogeneous neighborhoods; regular convolution operations thus cannot be applied.
Many works [317, 176, 314, [284) 351, [172] aim to design point convolution operations that
resemble regular 2D convolutions. Fixed input point coordinates are used to define local
neighborhoods for the point convolution, resulting in the same local neighbourhoods at
different layers that limit the model’s processing power. In contrast, our work uses spatial
transformers at each layer to learn dynamic local neighborhoods in a more adaptive, flexible,
and efficient way.
Spatial Transformations. The idea of enabling spatial transformation in neural networks
has been explored for 2D image understanding [139]. It is natural to extend the idea to 3D
point clouds. PointNet [238] adopts a rigid transformation module on the input point cloud
to factor out the object pose and improve classification accuracy. KPConv [287] applies local
deformation in the neighborhood of point convolution to enhance its learning capacity. In
contrast, our work learns several different global transformations to apply on the input point
cloud at each layer for dynamic neighborhoods.

4.3 Methods

We first briefly review different geomet-
ric transformation methods and their
influence on the affinity matrix of point
cloud data, then describe the design of
our three spatial transformers, namely,
(a) affine, (b) projective and (c) de-
formable. We apply the spatial trans-
former block, consisting of multiple spa-
tial transformers, to each layer of a net-
work for altering local neighborhoods
for better point feature learning. We

conclude the section by introducing how Figure 4.3: Geometric transformations. We illustrate
the transformers can be added to exist- how a grey square transforms after rigid, affine, pro-
ing point cloud processing networks and jective and deformable transformations.

the relevance to other works.

P[] o) 4

hnear transformations non- hnear transformations
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4.3.1 Geometric Transformations

We propose to learn transformations on the input point cloud to deform its geometric shape,
and alter local neighborhoods with new point affinity matrices. The hypothesis behind the
usage of geometric transformation is as follows:

Hypothesis 1. Let P = {p;} be the input point cloud and let N; be the local neighborhood
around p; € R® from which we extract local features. Let N = {N;} be the set of local

netghborhoods. Assume N = {/Vz} be the optimal neighborhood for learning local features,
then 3(smooth) ® : N; — N; for all p;.

Essentially we are going to use different types of geometric transformations to approxi-
mate ®. The new learned affinity matrix will dynamically alter local neighborhoods to allow
better feature learning.

Mlustrated in Fig[4.3] transformations can be categorized into rigid and non-rigid transfor-
mations, and the latter can be further categorized into linear and non-linear transformations.
We now discuss different spatial transformations.

Rigid Transformations. The group of rigid transformations consist of translations and ro-
tations. However, rigid transformations are isometric (in ¢, distance) and therefore preserves
the point affinity matrix. Thus, local neighborhoods are invariant to rigid transformations
in terms of k-NN graphs. Hence, we do not consider rigid transformations.

Affine Transformations. Affine transformations belong to non-rigid linear transforma-
tions. Consider a 3D point cloud P = {p;}}¥; C R? consisting of N three-dimensional
vectors p; € R3. Then, an affine transformation can be parameterized by an invertible
matrix A € R**® and a translation vector b € R3. Given A, b, the affine transformed co-
ordinates p; can be written as p; — Ap; + b. Note that translation b does not change the
point affinity matrix and point neighborhoods. Recall that an affine transformation preserves
collinearity, parallelism, and convexity.

Projective Transformations. Projective transformations are non-rigid non-linear trans-
formations. We first map the 3D point cloud P to the homogeneous space and get P, by
appending one-vectors to the last dimension. The projective transformation is parameterized
by A € R** and the transformed point p; — Ap;. Compared to the affine transformations,
projective transformations have more degrees of freedom but cannot preserve parallelism.
Projective transformations preserve collinearity and incidence, hence fail to capture all pos-
sible deformations. For example, points lying on the same line will always be mapped to a
line, and this constraint may be overly restrictive. It is of interest to be able to break this con-
straint if these points are from different semantic categories. A more general transformation
that covers various deformations may be more effective.

Deformable Transformations. When all the points have the freedom to move without
much constraint, the 3D shape can deform freely. We refer to this general spatial trans-
formation as a deformable transformation. It has more degrees of freedom and does not
necessarily preserve the topology.
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Learning new per-point offsets would be computationally hard and costly, we thus use a
parametric offset model instead. Taking both point coordinates and features as inputs, the
model would learn offsets dependent upon both spatial and feature representations of the
input point cloud.

4.3.2 Spatial Transformers for 3D Point Clouds

Our so-called spatial transformer method applies a geometric transformation to the input
point cloud to obtain different local neighborhoods for feature learning. It can be applied to
existing point cloud processing networks as spatial transformers only alter local neighbor-
hoods.

Suppose at layer ¢, the spatial transformer block contains k® transformers. Each trans-
former learns a transformation to apply to the input point coordinates. We refer to the
transformed points as nodes of a sub-graph and their feature on it the corresponding sub-
feature. We then concatenate all sub-features from these transformers to form the final
output of the learning block. Suppose that the i*" spatial transformer at the ¢ layer takes
as input the original point cloud P € R**V and previous feature map F*1) ¢ RN,
Affine. We form k® new transformed point from p; as:

g = A"p; + b, i=1,2,., k0. (4.1)

Since the point affinity matrix is invariant under uniform scaling and translation, we set
|Ail|» = 1,b =0, for all . Thus, with th) = {g(t)} , we simplify Equation as:

%, j
GV =AYP =12 kO (4.2)

We compute the k nearest neighbours of each transformed point GZ@ and obtain the

point affinity matrix Sl-(t), based on which we define local neighborhoods and apply point
convolutions on previous point cloud feature map F¢~D. We get the point cloud feature

FO e REVXN of the sub-graph from i-th transformation and its altered neighborhoods:

FO = CONV(FED, 8D 1), i =1,2,..., k0, (4.3)

where CONV denotes the point convolution: It takes (a) previous point cloud features,
(b) the affinity matrix (for defining local neighborhoods of every point) and (c) the number
of neighbors (for defining the size of neighborhoods) as inputs.

In point convolutions such as [317], the point affinity matrix changes the input feature in
a non-differentiable way. Therefore, we append the transformed point cloud Pi(t) to the input
feature for the sake of back-propagating the transformation matrix A. In sampling-based
convolutions such as bilateral convolution [278], the point affinity matrix changes the input
feature in a differentiable way; no additional operation is needed.
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For all the k) sub-graph in layer/ block ¢, we learn k® point cloud features Fi(t). The
output of this module is the concatenation of all the sub-graph point cloud features:

FO = CONCAT(F® F{" ., F®), (4.4)

where F" ¢ RSN and §O = Ef(t) fOFO e RN In our implementation, we
randomly initialize A from the standard normal distribution N (0, 1). Before computing the
coordinates of the transformed point cloud, we normalize A by its norm || A||r, as the point
affinity matrix is invariant under uniform scaling.

Projective. Analogous to the affine spatial transformer, for the " graph at ¢"™ layer, we
apply a projective transformation to the point cloud P in homogeneous coordinates and get
the transformed point cloud as:

G =BYP i=12 k9, (4.5)

where Bi(t) € R** is the transformation matrix in homogeneous coordinates. We then follow
the same procedure as in Equations and to get the output feature F*.
Deformable. Affine and projective transformations can transform the input point cloud,
alter the point affinity matrix, and provide learnable local neighborhoods for point convolu-
tions at different layers. However, they are limited as affine transformations are linear and
projective transformations map lines to lines only. We define a non-linear deformable spatial
transformer at the ¢ layer and i*" sub-graph as

G\ =A"p 4 DY (4.6)

where AE”P is the affine transformation component and Dl@ € R¥¥ gives every point
additional freedom to move, so the point cloud has the flexibility to deform its shape. Note
that the translation vector b in Equation is a special case of the deformation matrix Dgt).
In general, the deformation matrix DZ@ can significantly change local neighborhoods.

The spatial transformer parameters are learned in an end-to-end fashion from both point
cloud coordinates and features. Since affine transformation AZ(-t)P is dependent on spatial
locations, we let the deformation matrix Dl@ depend on the features: Di(t) = Ci(t)]-" (-1,
where C"! € R® transforms the previous layer feature F¢-) ¢ RPY from RS to R3.
Hence, the deformable transformation in Equation can thus be simplified as:

P P
G = [A§t) Cfﬂ { ;(t_n] =" Lf(t—l)] v (4.7)

where C’Z-(t) e R¥™G+"Y) i the concatenation of affine and deformable transformation
matrix that captures both point cloud coordinates and features.

After we compute the transformed point coordinates G, we follow Equations and
to learn the feature of each transformed sub-graph and concatenate them as the final
output feature of layer ¢.
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Our deformable spatial transformer has two parts: Agt)P and Ci(t)]: (=1 for a linear
transformation of 3D spatial coordinates and a nonlinear transformation of point features
(which reflect semantics) respectively. In Section , we provide empirical analysis of these
two components.

4.3.3 Spatial Transformer Networks

We spatially transform the input point cloud in order to obtain dynamic local neighborhoods
for point convolutions. The transformer can be easily added to existing point cloud processing
networks. We first describe the procedure and then provide three applications with several
networks.

Point Cloud Networks with Spatial Transformers. Consider segmenting N 3D points
into C' classes as an example. Figld.4] depicts a general network architecture for point cloud
segmentation, where several spatial transformers are used at different layers. At layer ¢, we

learn k® transformation matrices {AE“}?S{, apply each to the input point coordinates P,
k(1)
i=11

and then compute the point affinity matrices {SZ-(t)}
edge convolution [317].

e.g., based on k-NN graphs for the

For each sub-transformation, we learn a feature Fi(t) of dimension N X fi(t). We then
concatenate all k) features at this layer to form an output feature F* of dimension N x §®.
where ) = me fi(t). The output feature serves as the input to the next layer for further
feature learning.

Note that affine or projective transformation matrices are applied to the original point
cloud coordinates P, since each layer has not just one but multiple spatial transformers.
However, the deformable transformation matrix Ci(t) is applied to the previous feature map,
the feature transformation component is thus progressively learned.

By stacking several such transformation learning blocks and finally a fully connected layer
of dimension C, we can map the input point cloud to the segmentation map of dimension
C x N, or downsample to a vector of dimension C' for classification tasks. For the spatial
transformer block in a point cloud detection network (Fig., C' is the dimension of the
output feature. We train the network end-to-end.

Classification Networks. A point cloud classifier [241}176] takes 3D points, learns features
from their local neighborhoods, and outputs C' classification scores, where C' is the number
of classes. We add spatial transformers at each layer to obtain different local neighborhoods
for feature learning.

Point-based Segmentation Networks. These networks [241, 238, 176, 317] take 3D
points and compute their point affinity matrices and local neighborhoods from the point
coordinates. Features are learned by applying convolution operators on the points and their
local neighborhoods.

We use the edge convolution in [317] as our baseline, which takes relative point coordinates
as inputs and achieves the state-of-the-art performance. Specifically, we retain their learning
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Figure 4.4: The point cloud segmentation network with spatial transformers. Our network consists
of several spatial transformers. At each layer, we learn k transformation matrices A to apply to the
input point cloud P, and compute the corresponding point affinity matrices based on their k-NN
graphs. For each sub transformation, we can learn a sub-feature, and then concatenate all features
to form an output feature of dimension f x N. The output feature will be used for the next spatial
transformer block for feature learning. By stacking several such transformation learning blocks and
finally a fully connected layer of dimension C' (the number of class), we can map the input point
cloud to the C' x N segmentation map.

settings and simply insert spatial transformers to generate new local neighborhoods for the
edge convolutions.

Sampling-based Segmentation Networks. To demonstrate the general applicability of
our spatial transformers, we consider point affinity matrices on transformed point clouds as
defined in sampling-based networks such as SplatNet [27§].

SplatNet groups 3D points onto a permutohedral lattice [3] and applies bilateral filters

[141] on the grouped points to get features. The permutohedral lattice defines the local
neighborhoods of every point and makes the bilateral convolution possible. We add spatial
transformers to deform the point cloud and form various new lattices. The local neighbor-
hoods can dynamically configure for learning point cloud semantics. We keep all the other
settings of SplatNet.
Detection Networks. Detecting objects in a 3D point cloud generated from e.g. LiDAR
sensors is important for autonomous navigation, housekeeping robots, and AR/ VR. These
3D points are often sparse and imbalanced across semantic classes. Our spatial transform-
ers can be added to a detection network and improve feature learning efficiency and task
performance with dynamic local neighborhoods.

Our baseline is VoxelNet [357], the state-of-the-art 3D object detector for autonomous
driving data. We adopt all its settings, and add spatial transformers on the raw point cloud
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Figure 4.5: The object detection network. We add spatial transformers to the the point feature
learning network of [357] for obtaining dynamic local neighborhoods. Transformers only affect
feature learning but not point coordinates for grouping.

data, before point grouping (Fig. To demonstrate that spatial transformers enhance
feature learning for point cloud processing, we let transformers only affect point features but
not point coordinates for grouping. With spatial transformers, point coordinates could also
be transformed at the grouping stage, which would lead to non-cuboid 3D detection boxes.
Although interesting, we do not explore this variation and deem it beyond the scope of this

paper.

4.3.4 Relevance to Other Works

We review related works on deformable convolutions [61] and DGCNN [317].
Deformable Convolutions. Deformable convolutional networks learn dynamic local
neighborhoods for 2D images. Specifically, at each location pg of the output feature map Y,
deformable convolutions modify the regular grid R with offsets {Apn}_,, where N = |R].
The output on input X by convolution with weight w becomes:

Y(po) = Y w(pn)X(po+ P+ Aps) (4.8)

pn€R3

Note that KPConv [287] directly adapts this formula to point clouds as deformable point
convolutions. Although also achieving dynamic local neighborhoods, our spatial transformers
alter neighborhoods differently:

1. Deformable point convolutions learn to alter each neighborhood with an offset to the
regular grid R. We learn global transformations on the input point cloud and the metric of
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defining local neighborhoods changes. Global transformations like affine transformations
can retain the global geometric properties such as collinearity and parallelism, while local
transformations has no such constraints as only local neighborhoods are available.

2. Offsets of deformable point convolutions are dependent upon feature values, while trans-
formation matrices of our spatial transformers are dependent upon point coordinates for
affine and projective transformations, or both point coordinates and feature values for
deformable transformations. Access to point coordinates provides additional information
and regularzation.

Dynamic Graph CNN. Dynamic local neighborhoods have also been explored in DGCNN
[317] for point cloud processing. It has three main differences with our work.

1. How neighborhoods are defined is different. DGCNN uses high-dimensional feature maps
to construct the point affinity matrix and generate local neighborhoods. Our local neigh-
borhoods are from transformed point clouds. Reusing point features for defining neighbor-
hoods may be straightforward, but reduce the distinction between spatial and semantic
information and hurt generalization.

2. It is computationally costly to build dense nearest neighbor graphs in a high-dimensional
feature space.

3. DGCNN [317] uses only one nearest neighbor graph at different layers, whereas we have
multiple graphs at each layer for capturing different geometric transformations.

With less computational cost and more flexibility in geometric transformations, we achieve
better empirical performance on semantic segmentation (Table and Table |4.3)).

4.4 Experiments

We conduct comprehensive experiments to verify the effectiveness of our spatial transform-
ers. We benchmark with two types of networks, point-based and sampling-based metrics
for defining point neighborhoods, on four point cloud processing tasks: classification, part
segmentation, semantic segmentation and detection. We conduct ablation studies on de-
formable spatial transformers. We further provide visualization, analysis and insights of our
method.

4.4.1 Classification

We benchmark on ModelNet40 3D shape classification [327]. We add transformers to two
baselines 317, 278] and adopt the same network architecture, experimental setting and
evaluation protocols. Table and Figld.6] show that adding spatial transformers to point-
based and sampling-based method gives 1% and 2% gain.
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Table 4.1: Spatial transformers improves ModelNet40 classification accuracy. We report Model-
Net40 classification accuracy of different baselines, without and with spatial transformers, with or
without random rotations. Point-based refers to the baseline method adopting Euclidean-distance
based affinity matrices [317]. Sampling-based refers to the baseline method adopting permutohedral-
lattice based affinity matrices [278]. We observe accuracy gains for different baseline networks with
spatial transformers. Transformer gains are invariant to input rotations.

Point-based Point-based with rand. input rotations Samplin-based
| PointNet [238] DGCNN [317] | |317] (fixed) Affine Proj. Deformable | [317] (fixed) Deformable SplatNet|278| Affine Proj. Deformable
Avg. ‘ 86.2 89.2 88.8 89.3  89.2 89.9 ‘ 85.7 88.3 86.3 874  87.1 88.6

In addition, our performance gain over [317], which builds one per-layer dynamic neigh-
borhood graphs with high-dimensional point features, demonstrates the advantages of our
method of building multiple dynamic neighborhood graphs with transformed 3D point co-
ordinates.

Fig[d.12)shows that spatial transformers align the 3D shape better according to its seman-
tics. We augment training and testing data with random rotations, and observe that spatial
transformers gain 3% over its fixed graph counterpart.

ModelNet40 Classification Error

14.3% 13.7%

4.4.2 Part Segmentation

12% 11.2%

10.1% i A i
We benchmark on ShapeNet part segmen- "
tation [45], where the goal is to assign a .
part category label (e.g. chair leg, cup
handle) to each 3D point. The dataset " Fx  Dwamic | Fix  Dvamic! Fix  Dymamic
. . \ﬁ—l . T ! : T !
Conta‘lns 167 881 Shapes from 16 Ca’tegorles7 Point-based method Point-based method Sampling-based method

w/ random input rotation

annotated with 50 parts in total, and the

number of parts per category ranges from
2 to 6. Figure 4.6: Spatial transformers lead to higher

accuracy and more rotation invariance on Model-
] Net40. We report classification errors for differ-
Point-based Method ent baselines, without and with spatial transform-
Network Architectures. Poini-based €S with or without random rotations. Transform-
methods construct neighborhoods based ©' consistently lead to the lower errors than fixed
. . . graph baselines, and the improvement is larger upon
on point coordinate operations such as ;
edge convolution for our baseline DGCNN random rotations.
[317]. We follow the same network architecture and evaluation protocols of [317]. The net-
work has 3 convolutional layers; the output feature dimension is 64. To capture information
at different levels, all the convolutional features are concatenated and fed through several
fully connected layers to output the segmentation.
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Ground-truth Fix Our Dynamic

Figure 4.7: Spatial transformers improve the part segmentation performance. We show part
segmentation results of different baselines, where different parts are marked with different colors.
With spatial transformers, part segmentation for objects with less rigid and more complicated
structures improves (1st and 2nd row, lamp). The segmentation consistency within each part also
improves (3rd row, rocket).

As a fixed graph baseline, we use the same input point coordinates as the metric to define
fixed local neighborhoods. We insert spatial transformers to alter the metric for defining
point neighborhoods for edge convolutions. There are point-based affine, projective and
deformable networks when inserting different spatial transformers (Section . As for
classification, directly uses learned features to build point affinity matrices for dynamic
neighborhoods.

We follow and use three edge convolution layers. At each layer, we keep the number

of graphs k£ and sub-graph feature dimension f the same, and search for the best architecture.
We report results of affine, projective and deformable networks with k=4, f=I!32. For fair
comparisons, we increase the number of channels of baselines so all the methods have the
same number of parameters.
Results and Analyses. In Table we report the instance average mIOU (mean in-
tersection over union), as well as the mIOU of some representative categories in ShapeNet.
Compared with the fixed graph baseline, the affine, projective and deformable spatial trans-
formers achieve 0.5%, 0.2% and 1.1% improvement respectively and beats the fixed graph
baseline methods in most categories. Specifically, we observe 8.0%, 8.3% and 4.7% perfor-
mance boost with spatial transformers over the fixed graph baseline. Our deformable spatial
transformers gain 4.0% over [317].

We also beat other state-of-the-art methods [238| [241, 247] by a significant margin.
Adding deformable spatial transformers to PointCNN gains 6% (4%) on motorbike
(bag) and 1% on average. We observe that categories with fewer samples are more likely to
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Table 4.2: Spatial transformers improve part segmentation performance. We report mloU(%) on
ShapeNet PartSeg dataset. Compared with several other methods, deformable spatial transformers
achieve the SOTA in average mloU.

Avg. | aero bag cap car chair earphone guitar knife lamp laptop motorbike mug pistol rocket skateboard table
# shapes 2690 76 55 898 3758 69 787 392 1547 451 202 184 283 66 152 5271
3DCNN [238] 794|751 728 733 700 872 635 884 79.6 744 939 58.7 91.8 764 512 65.3 7.1
PointNet |238 83.7 834 787 825 749 89.6  73.0 91.5 859 80.8 953 65.2 93.0 81.2 579 72.8 80.6
PointNet++ [241] 85.0 824 79.0 877 773 90.8 718 91.0 859 837 953 71.6 94.1 81.3 587 76.4 82.6
FCPN |247] 81.3 840 828 864 88.3 8.3 736 93.4 874 774 977 81.4 958 87.7 68.4 83.6 73.4
DGCNN |317] 81.3 840 828 864 78.0 90.9 768 91.1 874 830 957 66.2 94.7 803 587 74.2 80.1
Point-based |317| fixed graph 842|837 824 840 782 90.9 (9.9 913 86.6 825 958 66.5 94.0 80.8 56.0 73.8 79.8
Point-based affine 84.7 841 835 869 79.6 90.9 725 91.6 882 833 96.1 68.9 953 833 60.9 75.2 79.7
Point-based projective 844|843 842 885 77.9 904 728 91.2 86.6 81.7 96.0 66.6 048 81.3 61.6 72.1 80.5
Point-based deformable 85.3 |84.6 833 88.7 794 90.9 779 91.7 87.6 835 96.0 68.8 952 824 643 76.3 81.5
Point-based deformable random | 84.7 | 84.3 84.4 832 789 90.8 75.6 914 871 83.0 959 66.8 94.8 821 623 5.7 80.4
PointCNN [176 849|827 828 825 80.0 90.1 758 91.3 87.8 826 95.7 69.8 93.6 81.1 615 80.1 81.9
PointCNN deformable 85.8| 834 86.6 85.5 79.1 903 78.5 91.6 87.8 842 958 75.3 94.6 833 650 80.7 81.7
Sampling-based baseline [278 84.6 | 81.9 839 8.6 79.5 90.1 735 91.3 84.7 845 96.3 69.7 95.0 81.7 59.2 70.4 81.3
Sampling-based projective 844|821 84.0 89.1 779 89.6 737 91.1 833 830 96.3 67.2 94.5 79.8  60.0 68.8 82.1
Sampling-based deformable 852|829 838 87.6 79.6 90.6 73.0 922 86.1 85.7 96.3 2.7 95.8 83.1 65.1 76.5 81.3

gain possibly due to regularization by transformers. Figld.7] shows that deformable spatial
transformers make more smooth predictions and achieve better performance than the fixed
graph baseline.

From affine to deformable transformations, the performance increases as the degree of
freedom increases for the transformer. Projective transformers, however, perform slightly
worse than affine transformers. The performance drop could result from geometrical dis-
tortion caused by mapping 3D points with homogeneous coordinates. Furthermore, for de-
formable transformers, when removing the constraint that the transformed points should be
similar to the input point cloud (Fig., feature only G = C'F'), the performance also drops,
indicating the necessity of the proposed similar-to-input constraint on spatial transformers.

Sampling-based Method

Network Architectures. Sampling-based methods construct neighborhoods are based on
sampling operations on point coordinates. SplatNet [278] groups points on permutohedral
lattices and applies learned bilateral filters [141] on naturally defined local neighbors to
extract features. We follow the same architecture as SplatNet [278]. The network starts with
a single 1 x 1 regular convolutional layer, followed by 5 bilateral convolution layers (BCL).
The output of all BCL are concatenated and fed to a final 1 x 1 regular convolutional layer to
get the segmentation output. Since each BCL directly takes raw point locations, we consider
it as a fixed graph baseline. We add deformable spatial transformers to the network and feed
transformed point graphs to BCL to construct permutohedral lattices. With gradients on
the permutohedral lattice grid, we can make the transformation matrix learned end-to-end.
Note that we increase the channel of convolution layers for fair comparisons.

Results and Analyses. Table shows that our deformable spatial transformers (with
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Figure 4.8: Transforming both point cloud coordinates and features for dynamic local neighbor-
hoods leads to the largest gain. We report different parts of deformable transformers’ performance
gain over fixed local neighborhood baseline on ShapeNet part segmentation. 0% means achieving
the same accuracy as fixed local neighborhood baseline and negative value means achieving worse
accuracy than fixed neighborhood baseline. Compared with preserving either affine part AP or
feature part C'F', deformable spatial transformers (AP + C'F') achieves largest gains on every cate-
gory, specifically 8% gains on earphone and rocket.

k = 1 at all BCLs) gains over the sampling-based fixed graph baseline [278] in most categories
with 0.6% on average and 5.9% for the rocket category. It also beats other state-of-the-art
baselines.

4.4.3 Semantic Segmentation

We benchmark on the Stanford 3D semantic parsing dataset [15]. It contains 3D scans by
Matterport covering 6 areas and 271 rooms. Each point is annotated into one of 13 categories
such as chair, table, floor, clutter. We follow the data processing procedure of [238]: We first
split points by room, and then sample rooms into several 1m x1m blocks. When training,
4096 points are sampled from the block on the fly. We train our network to predict the
point class in each block, where each point is represented by 9 values: XYZ, RGB and its
[0,1]-normalized location with respect to the room.

Network Architectures. We adopt DGCNN [317] as Section with C' = 13, the
number of semantic categories.

Results and Analyses. In terms of average mloU, Table shows that affine and de-
formable spatial transformers gain 0.9% and 1.2% respectively over the fixed graph baseline.
Deformable transformers also gain 1.1% over [317] and beat all other state-of-the-art meth-
ods. Likewise for sampling-based methods [278|, we observe 1.4% gain.
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Figure 4.9: Spatial transformers improve semantic segmentation results. We show qualitative
visualizations for semantic segmentation of deformable spatial transformers and the fixed local
neighborhood baseline. The first column is the input point cloud, the second and the third column
shows the fixed graph and our spatial transformer results, and the last column is the ground truth.
Points belonging to different semantic regions are colored differently. We observe better and more
consistent segmentation result with our spatial transformer, specifically for the areas circled in red.

As for part segmentation, semantic segmentation performance improves when point
clouds are given more freedom to deform (from affine to deformable spatial transformers)
based on transformation of original locations and feature projections. Projective trans-
formers give least performance gain, suggesting that mapping 3D points via homogeneous
coordinates may not be most efficient.

Fig[1.9 shows that semantic segmentation results are smoother and more robust to miss-
ing points and occlusions with our deformable transformers.
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Table 4.3: Spatial transformers improve semantic segmentation performance. We report mIoU(%)
on S3DIS semantic segmentation dataset. Adding spatial transformers to [317] and [278] improves
the performance.

PointNet[238] DGCNN[317] [317|(FIXED) PB17|+AFF B17]+DEF SplatNet [278] [278|+DEF

477 56.1 56.0 56.9 57.2 54.1 55.5
ceiling floor wall beam column window clutter
"[B17](FIXED) 925 93.1 76.1 51.0 41.7 49.6 46.8
[317|-+AFF 92.7 93.6 76.7 52.6 41.2 48.7 478
[317]+PROJ 92.5 93.5 76.7 52.7 40.7 48.5 48.0
|317|+DEF 92.8 93.6 76.8 52.9 41.1 49.0 48.0
door table chair sofa, bookcase board
[317|(FIXED) 63.4 61.8 43.1 23.3 42.0 435
[317|+AFF 63.7 63.4 45.1 27.0 41.3 448
[317|+PROJ 63.5 62.3 44.8 27.0 41.5 44.9
|317|+DEF 63.5 64.2 45.2 28.1 41.7 46.1

Table 4.4: Spatial transformers improve object detection performance. We report car detection
AP (%) on KITTTI validation set. Adding spatial transformers leads to 2% performance gain.

birds’ eye 3D
Easy Medium Hard | Easy Medium Hard
VoxelNet[357] 77.3 59.6 51.6 | 43.8 32.6 27.9

VoxelNet + fixed graph | 84.3 67.2 59.0 | 45.7 34.5 32.4
VoxelNet + deformable | 85.3 69.1 60.9 | 46.1 35.9 34.0

4.4.4 3D Object Detection

We benchmark on KITTI 3D object detection [91]. It contains 7,481 training images / point
clouds and 7,518 test images / point clouds, covering three categories: Car, Pedestrian, and
Cyclist. For each class, detection outcomes are evaluated based on three difficulty levels:
easy, moderate, and hard, according to the object size, occlusion state and truncation level.
We follow the evaluation protocol in VoxelNet [357] and report car detection results on the
validation set.

Network Architectures.. Shown in Fig[l.5] the network first partitions raw 3D points
into voxels. We add deformable spatial transformers; points in each voxel are represented
with point features. There are two deformable feature learning layers, each layer having 2
sub-graphs with 16-dimensional outputs. Note that the voxel partition is based on the input
point coordinates. As in VoxelNet, the point features in each voxel are fed to 2 voxel feature
encoding layers with channel 32 and 128 to get sparse 4D tensors representing the space.
The middle convolutional layers process 4D tensors to further aggregate spatial contexts.
Finally a Region Proposal Network (RPN) generates the 3D detection.



4.4. EXPERIMENTS o8

Table 4.5: Performance of different number of deformable transformation modules. Metric is
average mIOU (%).

fixed graph | 1 graph | 2 graphs | 4 graphs
9 =32 84.2 84.9 85.2 85.3
FOED — 64 84.2 85.3 85.2 83.5

In the first row, the output feature of each sub-graph is of dim. 32, while the number of
subgraphs changes; the second row limits the multiplication of number of sub-graphs and
sub-feature dim. to be 64.

We report the performance of 3 networks: (1) VoxelNet baseline [357]; (2) the fixed

graph baseline, where we used the original point cloud location to learn the point feature
at the place of spatial transformer blocks; (3) deformable spatial transformer networks as
discussed above.
Results and Analyses. Table reports car detection results on KITTI validation set.[]
Compared with baseline, having a point feature learning module improves the performance
by 7.3% and 2.8% for birds’ eye view and 3D detection performance on average, respectively.
The deformable module further improves 8.9% and 3.9% respectively over VoxelNet.

4.4.5 Ablation Studies 85.3%

84.9%
We conduct ablation studies to understand WM

how many spatial transformers may be suf-
ﬁcient to aChieV@ SatiSfaCtOI‘y perfOI'mance, all transformers no L1 trans. no L2 trans. no L3 trans.
We also study transformations of point co-

ordinates and features of deformable spatial Figure 4.10: Part segmentation performance (av-

transformers.  The influences of updating erage mIOU) of deformable transformers at dif-
transformation matrices and transformers at ferent layers. When applying all transformers at

different layers are investigated. three layers, the performance is highest. Remov-
The Number of Transformers. Table ing transformers at different layer lead to perfor-
[4.5 shows that for the fixed sub-feature di- mance drop. Removing transformers at layer 3
mension, the more graphs in each layer, the gives the most performance drop.

higher the performance. With the fixed com-

plexity, (i.e., the product of the number of sub-graphs and the sub-feature dimension fixed
at 64), the best performance is achieved at k =1, f =64 and k =2, f =32 .

Two Components in Deformable transformers. A deformable spatial transformer has
two components (Equation : affine transformation on point coordinates, AP, and three-

!The authors did not provide code. We use the implementation by [129] and obtain lower performance
than the original paper.
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dimensional projection of high-dimensional feature, C'F'. Fig[4.8 shows that both affine and
feature only spatial transformers also improve performance, but the combination of both
leads to the largest gain.

Updating Transformation Matrices.

The transformation matrices are updated in o N Neghor Reiont g
an end-to-end fashion with the ultimate goal

of increasing the task performance. It is

of interest to understand if updating trans- 5 a * P

Transformed shape

Table

formation matrix boosts the performance.
Specifically, we randomly initialize transfor-
mation matrices of deformable spatial trans-
formers and keep them not updated during
training. The performance is 0.5% better
than fixed graphs, indicating that adding
more transformation graphs at different lay-
ers helps; however, it is 0.6% worse than up-

5y
\

Figure 4.11: Local neighborhoods of two query
points (red and yellow) using (transformed)
3D coordinates with nearest neighbor retrieval.

i ) ) S Neighborhoods of transformed point clouds makes
dating transformation matrices, indicating semantic information extraction more efficient:

%earning to update tr‘ansf‘ormation matrices  }q neighborhood inside the dashed circle adapts
in an end-to-end fashion is helpful. to table base part. [View rotating version for bet-
Transformers at Different Layers. We ter visualization.

start with all deformable transformers effec-

tive at three layers, and remove transformers one layer a time. In Fig/d.10| the part seg-
mentation performance is best with all transformers, whereas removing transformers at layer
3 gives the largest performance drop, suggesting that transformers at every layer help and
those at the last layer are most important.

4.4.6 Time and Space Complexity

With spatial transformers, the model size changes little and the inference takes slightly more
time (Table . Note that for fair comparisons, we increase the number of channels in the
fixed graph baseline model for all the experiments. Even without increasing the number of

Table 4.6: Model size and test time on ShapeNet part segmentation. Spatial transformers slightly
increase the inference time.

Sampling-based Point-based
[278] | |278] + transformer || [317] (fixed) | [317] + transformer
# Params. 2,738K 2,738K 2,174K 2,174K
Inference time (s/shape) | 0.352 0.379 0.291 0.315
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parameters of baselines (not shown in Table [4.6]), adding spatial transformers only increases
the number of parameters by 0.1%, as the number of parameters of spatial transformers
(only transformation matrices) is very small.

4.4.7 Visualization and Analysis

We visualize the change in local neighborhoods when applying spatial transformers. We also
visualize the transformed 3D points globally and locally.

Dynamic Neighborhood Visualization. To illustrate how our spatial transformers learn
diverse neighborhoods for 3D shapes, we show the nearest neighbors of two query points
and use corresponding colors to indicate corresponding neighborhoods. (1) Fig shows
that neighborhoods retrieved from deformed shapes encode additional semantic information,
compared to neighborhoods from 3D coordinates. (2) Fig[i.2] shows that for table and
earphone, different graphs enable the network to learn from diverse neighborhoods without
incurring additional computational cost.

Global Visualization of Deformable Transformations. Fig{d.12]depicts some examples
of learned deformable transformations in ShapeNet part segmentation. Fach graph at a
certain layer aligns the input 3D shape with similar semantic geometric transformations.
For example, regardless of the shape of the rocket, graph 2 at layer 2 always captures the
rocket wing information.

Local Distributions after Deformable Transformations. 3D Points often do not have
balanced sampling, which makes point convolution challenging, as the k-NN graph does not
accurately represents the exact neighborhood and 3D structure information. Our deformable
spatial transformer gives every point flexibility and finds better neighborhoods.

We wonder if transformers make the point cloud closer to balanced sampling. We nor-
malize the point coordinates for fair comparisons. Figld.13] visualizes the local distribution
around a sample point on skateboard: After deformable transformation, the points are moved
to a more uniform distribution. We analyze the standard deviation of raw and transformed
point cloud coordinates in ShapeNet data. The standard deviation of point coordinates de-
creases 50.2% over all categories after spatial transformations, indicating a more balanced
distribution of transformed points.

We check if the point coordinates are statistically different before and after the application
of transformers. We perform t-test on the original and transformed point clouds. The t-
score is 7.15 over all categories with p-value smaller than 1e-9. The transformed point cloud
distribution is thus statistically different from the input point cloud distribution.

4.5 Summary

We propose novel spatial transformers for 3D point clouds that can be easily added onto to
existing point cloud processing networks. They can dynamically alter local point neighbor-
hoods for better feature learning.
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Figure 4.12: Examples of learned deformable transformations in ShapeNet part segmentation. 3D
shapes include rocket, table and earphone (from up to bottom). Every two rows depict an instance
with learned transformations. We observe that each transformation at certain layer aligns input 3D
shape with similar semantic geometric transformation, e.g., graph 2 at layer 2 in rocket examples
captures rocket wings. Graph 2 at layer 1 in table examples captures table surfaces.
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Figure 4.13: Spatial transformers improve the point cloud processing efficiency by improving local
distributions of points. We show local distributions of a point cloud without and with transformers.
The standard deviation of the transformed point cloud is smaller, enhancing the local neighbor-
hood grouping (e.g. when using k-NN for affinity matrices, more balanced point distributions make
feature learning in each neighborhood suffer less variations and outliers) and feature learning effi-
ciency.

We study one linear (affine) transformer and two non-linear (projective and deformable)
transformers. We benchmark them on point-based [317, and sampling-based point
cloud networks and on three large-scale 3D point cloud processing tasks (part segmentation,
semantic segmentation and object detection). Our spatial transformers outperform the fix
graph counterpart for state-of-the-art methods.

There are some limitations of our spatial transformers. First, there are not many con-
straints on deformable spatial transformers to capture the geometry of the 3D point clouds.
More complex non-linear spatial transformers may further improve the performance. On the
other hand, spatial transformers learn global transformations of 3D point clouds for altering
local neighborhoods. It is unclear if combining both global and local transformations ,
would further improve the learning capacity and task performance.
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Chapter 5

3D Shape Reconstruction from
Free-Hand Sketches

5.1 Introduction

Human free-hand sketches are the most abstract 2D representations for 3D visual perception.
Although a sketch may consist of only a few colorless strokes and exhibit various deformation
and abstractions, humans can effortlessly envision the corresponding real-world 3D object
from it. It is of interest to develop a computer vision model that can replicate this ability.
Although sketches and 3D representations have drawn great interest from researchers in
recent years, these two modalities have been studied relatively independently. We explore
the plausibility of bridging the gap between sketches and 3D, and build a computer vision
model to recover 3D shapes from sketches. Such a model will unleash many applications,
like interactive CAD design and VR/AR games.

With the development of new devices and sensors, sketches and 3D shapes, as represen-
tations of real-world objects beyond natural images, become increasingly important. The
popularity of touch-screen devices makes sketching not a privilege to professionals anymore
and increasingly popular. Researchers have applied sketch in tasks like image retrieval |90,
343, 256, 169, 309, 333] and image synthesis [90, 348}, 230} 311}, |181} [92] to leverage its power
in expression. Furthermore, as depth sensors, such as structured light device, LIDAR, and
TOF cameras, become more ubiquitous, 3D data become an emerging modality in computer
vision. 3D reconstruction, the process of capturing the shape and appearance of real objects,
is an essential topic in 3D computer vision. 3D reconstruction from multi-view images has
been studied for many years [85} [55, |7, 222]. Recent works [248) 68, 79] have further explored
3D reconstruction from a single image.

Despite these trends and progress, there are limited works connecting 3D and sketches.
We argue that sketches are abstract 2D representations of 3D perception, and it is of great
significance to study sketches in a 3D-aware perspective and build connections between two
modalities. Researchers have explored the potential of distortion-free line drawings (e.g.
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edge maps) for 3D modeling [170} 1332, |171]. These works are based on distortion-free line
drawings and generalize poorly to free-hand sketches (Fig.). Furthermore, the role of
line drawings in such works is to provide geometrical information for the subsequent 3D
modeling. Some other works [66] [189] employ neural networks to reconstruct 3D shapes
directly from line drawings. However, their decent reconstructions come with two major
limitations: a) they use distortion-free line drawings as training data, which makes such
models hard to generalize to free-hand sketches; b) they usually require inputs depicting the
object from multi-views to achieve satisfactory outcomes. Therefore, such methods cannot
reconstruct the 3D shape from a single-view free-hand sketch well, as we show later in the
experiment section. Other works such as [300, [116] tackle 3D retrieval instead of 3D shape
reconstruction from sketches. Retrieved shapes come from the pre-collected gallery set and
may not resembles novel sketches well. Overall, reconstructing a 3D shape from a single
free-hand sketch is still left not well explored.

We explore single-view free-hand sketch-based 3D reconstruction (Fig[5.1jC). A free-hand
sketch is defined as a line drawing created without any additional tool. As an abstract and
concise representation, it is different from distortion-free line drawings (e.g. edge maps)
since it commonly has some spatial distortions, but it can still reflect the essential geomet-
ric shape. 3D reconstruction from sketch is challenging due to the following reasons: a)
Data insufficiency. Paired sketch-3D datasets are rare although there exist several large-
scale sketch datasets and 3D shape datasets, respectively. Furthermore, collecting sketch-3D
pairs can be very time-consuming and expensive than collecting sketch-image pairs, as each
3D shape could be sketched from various viewing angles. b) Misalignment between two rep-
resentations. A sketch depicts an object from a certain view while a 3D shape can be viewed
from multiple angles due to the encoded depth information. ¢) Due to the nature of hand
drawing, a sketch is usually geometrically imprecise with a individual style compared to the
real object. Thus a sketch can only provide suggestive shape and structural information.
In contrast, a 3D shape is faithful to its corresponding real-world object with no geometric
deformation.

To address these challenges, we propose a single-view sketch-to-3D shape reconstruction
framework. Specifically, it takes a sketch from an arbitrary angle as input and reconstructs a
3D point cloud. Our model cascades a sketch standardization module U and a reconstruction
module G. U handles various sketching styles/distortions and transfers inputs to standard-
ized sketches while G takes a standardized sketch to reconstruct the 3D shape (point cloud)
regardless of the object category. The key novelty lies in the mechanisms we propose to tackle
the data insufficiency issue. Specifically, we first train an photo-to-sketch model on unpaired
large-scale datasets. Based on the model, sketch-3D pairs can be automatically generated
from 2D renderings of 3D shapes. Together with the standardization module U which unifies
input sketch styles, the synthesized sketches provide sufficient information to train the re-
construction model G. We conduct extensive experiments on a composed sketch-3D dataset,
spanning 13 classes, where sketches are synthesized and 3D objects come from the ShapeNet
dataset [46]. Furthermore, we collect an evaluation set, which consists of 390 real sketch-3D
pairs. Results demonstrate that our model can reconstruct 3D shapes with certain geomet-
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Figure 5.1: Left: We study 3D reconstruction from a single-view free-hand sketch, differing from
previous works [66, 300, 189] which use multi-view distortion-free line-drawings as training data.
Center: While previous works [66, 300] employ distortion-free line drawings (e.g. edge-maps) as
proxies for sketches, our model trained on synthesized sketches can generalize better to free-hand
sketches. Further, the proposed sketch standardization module makes the method generalizes well
to free-hand sketches by standardizing different sketching styles and distortion levels. Right: Our
model unleashes many practical applications such as real-time 3D modeling with sketches. A demo
is here.

ric details from real sketches under different styles, stroke line-widths, and object categories.
Our model also enables practical applications such as real-time 3D modeling with sketches
(Fig5.1R).

To summarize our contributions: a) We are one of the pioneers to study the plausibility
of reconstructing 3D shapes from single-view free-hand sketches. b) We propose a novel
framework for this task and explore various design choices. ¢) To handle data insufficiency,
we propose to train on synthetic sketches. Moreover, sketch standardization is introduced to
make the model generalize to free-hand sketches better. It is a general method for zero-shot
domain translation, and we show applications on zero-shot image translation tasks.

5.2 Background

3D Reconstruction from Images. While SfM [222] and SLAM [85] achieve success in
handling multi-view 3D reconstructions in various real-world scenarios, their reconstructions
can be limited by insufficient input viewpoints and 3D scanning data. Deep-learning-based
methods have been proposed to further improve reconstructions by completing 3D shapes
with occluded or hollowed-out areas [336] [55] |144]. In general, recovering the 3D shape
from a single-view image is an ill-posed problem. Attempts to tackle the problem include
3D shape reconstructions from silhouettes [68], shading [248], and texture [323]. However,
these methods need strong presumptions and expertise in natural images [350], limiting their
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Figure 5.2: Model overview. The model consists of three major components: sketch generation,

, and . To generate synthesized sketches, we first render
2D images for a 3D shape from multiple viewpoints. We then employ an image-to-sketch transla-
tion model to generate sketches of corresponding views. The standardization module standardize
sketches with different styles and distortions. Deformation Ds is only used in training for augmen-
tation such that the model is robust to geometric distortions of sketches. For inference, sketches are
dilated (D7) and refined (R) so their style matches that of training sketches. For 3D reconstruction,
a view estimation module is adopted to align the output’s view and the ground-truth 3D shape.

usage in real-world scenarios. Generative adversarial networks (GANs) [96] and variational
autoencoders (VAEs) |153] have achieved success in image synthesis and enabled [326] 3D
shape reconstruction from a single-view image. Fan et al. [79] further adopt point clouds as
3D representation, enabling models to reconstruct certain geometric details from an image.
They may not directly work on sketches as many visual cues are missing.

3D reconstruction networks are designed differently depending on the output 3D represen-
tation. 3D voxel reconstruction networks [283] |106} 1330] benefit from many image processing
networks as convolutions are appropriate for voxels. They are usually constrained to low
resolution due to the computational overhead. Mesh reconstruction networks [312, [157] are
able to directly learn from meshes, where they suffer from topology issues and heavy com-
putation [224]. We adopt point cloud representation as it can capture certain 3D geometric
details with low computational overhead. Reconstructing 3D point clouds from images has
been shown to benefit from well-designed network architectures |79, 192], latent embedding
matching [193], additional image supervision [210], etc.
Sketch-Based 3D Retrievals/Reconstructions. Free-hand sketches are used for 3D
shape retrieval [300, [116] given their power in expression. However, retrieval methods are
significantly constrained by the gallery dataset. Precise sketching is also studied in the
computer graphics community for 3D shape modeling or procedural modeling [170, (127,
171]. These works are designed for professionals and require additional information for
shape modeling, e.g., surface-normal, procedural model parameters. Delanoy et al. [66] first
employ neural networks to learn 3D voxels from line-drawings. While it achieves impressive
performance, this model has several limitations: a) The model uses distortion-free edge
map as training data. While working on some sketches with small distortions, it cannot
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Figure 5.3: Synthesized sketches are visually more similar to free-hand sketches than edge maps
as they contain distortions and emphasize perceptually significant contours. After standardization,
the free-hand sketches share a uniform style similar to training data.

generalize to general free-hand sketches. b) The model requires multiple inputs from different
viewpoints for a satisfactory result. These limitations prevent the model from generalizing to
real free-hand sketches. Recent works also explore reconstructing 3D models from sketches
with direct shape optimization [104], shape contours [98], differential renderer [349], and
unsupervised learning . Compared to existing works, the proposed method in this
work reconstructs the 3D point cloud based on a single-view free-hand sketch. Our model
may make 3D reconstruction and its applications more accessible to the general public.

5.3 3D Reconstruction from Sketches

The proposed framework has three modules (Figl5.2)). To deal with data insufficiency, we
first synthesize sketches as the training set. The module U transfers an input sketch to a
standardized sketch. Then, the module G takes the standardized sketch to reconstruct a 3D
shape (point clouds). We also present details of a new sketch-3D dataset, which is collected
for evaluating the proposed model.

5.3.1 Synthetic Sketch Generation

To the best of our knowledge, there exists no paired sketch-3D dataset. While it is possible
to resort to edge maps , edge maps are different from sketches (as shown in the 3rd
and 4th rows of Fig. We show that the reconstruction model trained on edge maps
cannot generalize well to real free-hand sketches in Sec. [5.4.4] Thus it is crucial to find an
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efficient and reliable way to synthesize sketches for 3D shapes. Inspired by [181], we employ a
generative model to synthesize sketches from rendered images of 3D shapes. Fig[5.2]L depicts
the procedure. Specifically, we first render m images for each 3D shape, where each image
corresponds to a particular view of a 3D shape. We then adopt the model introduced in
[181] to synthesize gray-scale sketches images, denoted as {S;|S; € RW*#} as our training
data. W, H refer to the width and height of a sketch image.

5.3.2 Sketch Standardization

Sketches usually have strong individual styles and geometric distortions. Due to the gap
between the free-hand sketches and the synthesized sketches, directly using the synthesized
sketches as training data would not lead to a robust model. The main issues are that the
synthesized sketches have a uniform style and they do not contain enough geometric dis-
tortions. Rather, the synthesized sketches can be treated as an intermediate representation
if we can find a way to project a free-hand sketch to the synthesized sketch domain. We
propose a zero-shot domain translation technique, the sketch standardization module, to
achieve this domain adaption goal without using the free-hand sketches as the training data.
The training of the sketch standardization module only involves synthesized sketches. The
general idea is to project a distorted synthesized sketch to the original synthesized sketch.
The training consists of two parts: a) since the free-hand sketches usually have geometric
distortions, we apply predefined distortion augmentation to the input synthesized sketches
first. b) A geometrically distorted synthesized sketch still has a different style and line style
compared to the free-hand sketches. Thus, the first stage of the standardization is to apply a
dilation operation. The dilation operation would project distorted synthesized sketches and
the free-hand sketches to the same domain. Then, a refinement network follows to project
the dilated sketch back to the synthesized sketch domain.

In summary, as in Fig[5.2] the standardization module U first applies a dilation operator
D, to the input sketch, which is followed by a refinement operator R to transfer to the
standardized synthesized-sketch style (or training-sketch style) S;, i.e. U = Ro Dy. R is
implemented as an image translation network. During training, a synthesized sketch S; is
first augmented by the deformation operator D; to mimic the drawing distortion, and then
U aims to project it back to S;. Please note that D; would not be used during the testing.
We illustrate the standardization process in Fig[5.2R with more details in the following.
Deformation. When training U, each synthesized sketch is deformed with moving least
squares [258] for random, local and rigid distortion. Specifically, we randomly sample a
set of control points on sketch strokes and denote them as p, and denote the corresponding
deformed point set as ¢q. Following moving least squares, we solve for the best affine transfor-
mation [,(z) such that: min ), w;|l,(p;) — ¢;|*, where p; and ¢; are row vectors and weights
w; = m. Affine transformation can be written as ,(p;) = p;M + T. We add constraint
MTM = I to make the deformation is rigid to avoid too much distortion. Details can be
found in [258].
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Style Translation. Adapting to unknown input free-hand sketch style during inference
can be considered as a zero-shot domain translation problem, which is challenging. Inspired
by [338], we first dilate the augmented training sketch strokes with 4 pixels and then use
image-to-image translation network Pix2Pix [137] to translate the dilated sketches to the un-
distorted synthesized sketches. During inference, we also dilate the free-hand sketches and
apply the trained Pix2Pix model such that the style of an input free-hand sketch could be
adapted to the synthesized sketch style during training. The dilation step can be considered
as introducing uncertainty for the style adaption. Further, we show in Section that
the proposed style standardization module could be used as a general zero-shot domain
translation technique, which generalizes to more applications such as sketch classification
and zero-shot image-to-image translation.

A More General Message: Zero-Shot Domain Translation. We illustrate in Figl5.4]
a more general message of the standardization module: it can be considered as a general
method for zero-shot domain translation. Consider the following problem: we would like
to build a model to transfer domain X to domain Z but we do not have any training data
from domain X. We propose a general idea to solve this problem is to build an intermediate
domain Y as a bridge such that: a) we can translate data from domain X to domain Y and
2) we can further translate data from domain Y to domain Z. We give two examples in the
caption of Figl5.4l and provided experimental results in Section [5.4.5]

5.3.3 Sketch-Based 3D Reconstruction

Our 3D reconstruction network G (pipeline in Fig5.2R) consists of several components.
Given a standardized sketch §i, the view estimation module first estimates its viewpoint. §Z
is then fed to the sketch-to-3D module to generate a point cloud P, ,,., whose pose aligns
with the sketch viewpoint. A 3D rotation corresponding to the viewpoint is then applied
to P pre to output the canonically-posed point cloud F;. The objective of G is to minimize
distances between reconstructed point cloud P; and the ground-truth point cloud F; 4.
View Estimation Module. The view estimation module g; aims to determine the 3D pose
from an input sketch S. Similar to the input transformation module of the PointNet [240],
g1 estimates a 3D rotation matrix A from a sketch S ,le, A= g1(§ ). A regularization loss
Lown = ||[I — AAT|2 is applied to ensure A is a rotation (orthogonal) matrix. The rotation
matrix A rotates a point cloud from the viewpoint pose to a canonical pose, which matches
the ground truth.

3D Reconstruction Module. The reconstruction network g, learns to reconstruct a 3D
point cloud P, from a sketch S Le., Pye = gQ(S). P, is further transformed by the
corresponding rotation matrix A to P so that P aligns with the ground-truth 3D point
cloud Py’s canonical pose. Overall, we have P = gl(S) gg(S) To train GG, we penalize the
distance between an output point Cloud P and the ground-truth point Cloud P,,. We employ
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Figure 5.4: Sketch standardization can be considered as a general zero-shot domain translation
method. Given a sample from a zero-shot (input) domain X, we first translate it to a universal
intermediate domain Y, and finally to the target domain Z. 1st example (2nd row): the input
domain is an unseen free-hand sketch. With sketch standardization, it is translated to an interme-
diate domain: standardized sketch, which shares similar style as synthesized sketch for training.
With 3D reconstruction, the standardized sketch can be translated to the target domain: 3D point
clouds. 2nd example (last row): the input domain is an unseen nighttime image. With edge
extraction, it gets translated to an intermediate domain: edge map. With the image-to-image
translation model, the standardized edge map can be translated to the target domain: daytime
image.

the Chamfer distance (CD) between two point clouds P, P, C R*:

dep (P Py) = Z min |p - a3+ > min [|p — a3 (5.1)
pEP qEPgt

The final loss of the entire network is

L= dep(GoU(S)|Pig)+ ALown (5.2)
- Z dCD (Az : Pi,pre”-Pi,gt) + )\Lorth (53)

- ZdCD (gl(gi) ‘92(§i)\|Pz’,gt) + ALortn (5.4)
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Figure 5.5: Left: Performance on free-hand sketches with different design choices. The design
pool includes the model with a cascaded two-stage structure (2nd column), the model trained
on edge maps (3rd column), the model whose 3D output is represented by voxel (4th column),
and the proposed model (5th column). Overall, the proposed method achieves better performance
and keeps more fine-grained details, e.g., the legs of chairs. Right: 3D reconstructions on our
newly-collected free-hand sketch evaluation dataset. Examples of some good
reconstruction results. Our model reconstructs 3D shapes with fine geometric fidelity of multiple
categories unconditionally. Outlined in red: Examples of failure cases. Our model may not handle
detailed structures well (e.g., watercraft), recognize the wrong category (e.g., display as a lamp)
due to the ambiguity of the sketch, as well as not able to generate 3D shape from very abstract
sketches where few geometric information is available (e.g., rifle).

where A is the weight of the orthogonal regularization loss and gl = Ro Dy o Dy(S;) is the
standardized sketch from S;. We employ CD rather than EMD (Section to penalize
the difference between the reconstruction and the ground-truth point clouds because CD
emphasizes the geometric outline of point clouds and leads to reconstructions with better
geometric details. EMD, however, emphasizes the point cloud distribution and may not
preserve the geometric details well at locations with low point density.

5.4 Experimental Results

We first present the datasets, training and evaluation details, followed by qualitative and
quantitative results. Then, we provide comparisons with some state-of-the-art methods. We
also conduct ablation studies to understand each module.

5.4.1 3D Sketching Dataset

To evaluate the performance of our method, we collected a real-world evaluation set con-
taining paired sketch-3D data. Specifically, we randomly choose ten 3D shapes from each
of the 13 categories of the ShapeNet dataset [46]. Then we randomly render 3 images from
different viewpoints for each 3D shape. Totally, there are 130 different 3D shapes and 390
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rendered images. We recruited 11 volunteers to draw the sketches for the rendered images.
Final sketches are reviewed for quality control. We present several examples in Figl5.3

5.4.2 Training Details and Evaluation Metrics

Training. The proposed model is trained on a subset of ShapeNet [46] dataset, following
settings of [330]. The dataset consists of 43,783 3D shapes spanning 13 categories, including
car, chair, table, etc. For each category, we randomly select 80% 3D shapes for training and
the rest for evaluation. As mentioned in Section corresponding sketches of rendered
images from 24 viewpoints of each 3D shape of ShapeNet are synthesized with our synthetic
sketch generation module.

Evaluation. To evaluate our method’s 3D reconstruction performance on free-hand sketches,
we use our proposed sketch-3D datasets (Section . To evaluate the generalizability of
our model, we also evaluate on three additional free-hand sketch datasets, including the
Sketchy dataset [256], the TU-Berlin dataset [77], and the QuickDraw dataset [97]. For
these additional datasets, only sketches from categories that overlap with the ShapeNet
dataset are considered.

Following the previous works |79, |193] 337, we adopt two evaluation metrics to measure
the similarity between the reconstructed 3D point cloud P and the ground-truth point cloud
P,:. The first one is the Chamfer Distance (Eqn., and another one is the Earth Mover’s
Distance (EMD): dgpp(P, Pyt) = ming.pesp,, Y _,ep || — ¢(2)]|, where P, Py has the same
size |P| = |Py| and ¢ : P — P, is a bijection. CD and EMD evaluate the similarity between
two point clouds from two different perspectives (more details can be found in [79]).

5.4.3 Implementation Details

Sketch Generation. We utilize an off-the-shelf sketch-image translation model [181] to
synthesize sketches for training. Given the appropriate quality of the generated sketches on
the ShapeNet dataset (with some samples depicted in Fig., we directly use the model
without any fine-tuning.

Data Augmentation. During training, to improve the model’s generalizability and ro-
bustness, we perform data augmentation for synthetic sketches before feeding them to the
standardization module. Specifically, we apply image spatial translation (up to +10 pixels)
and rotation (up to £10°) on each input sketch.

Sketch Standardization. Each input sketch S; is first randomly deformed with moving
least squares [258] both globally and locally (D;), and then binarized and dilated five times
iteratively (Ds) to obtain a rough sketch S,.. The rough sketch S, is then used to train a
Pix2Pix model [137], R, to reconstruct the input sketch S;. The network is trained for 100
epochs with an initial learning rate of 2e-4. Adam optimizer [152] is used for the parameter
optimization. During evaluation, random deformation D; is discarded.

3D Reconstruction. The 3D reconstruction network is based on [79]’s framework with
hourglass network architecture [213]. We compare several different network architectures
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Table 5.1: Ours outperforms baselines for 3D reconstruction. [66] uses edge-maps rather than
sketches as input. [330] uses voxels rather than point clouds as output. [217] represents the 3D
shapewith multi-view depth maps. “cas.” refers to the two-stage cascaded training following [181,
79]. CD and EMD measure distances between reconstructions and ground-truths from different

perspectives (see text for details). The lower, the better.

Chamfer Distance (x10~7%) Earth Mover’s Distance (x1072)
errer points edge [66| voxel [330] cas. [217] retrieval|300| | ours | points edge 66| voxel |330| cas. [217| retrieval|300|| ours
airplane 114 7.8 35.1 7.7 8.0 11.2 6.1 | 85 7.3 10.8 127 8.5 11.9 6.5
bench 29.2 16.7 202.8 4141 168 14.5 13.0| 11.1 8.7 22.0 25.8 10.0 8.6 7.8
cabinet 61.7 50.4 59.1 354.5 51.5 45.3 39.2| 176 17.8 17.0 29.6 184 17.2 16.0
car 20.8 13.3 1732 1142 14.1 14.2 10.4| 8.9 20.0 252 20.0 21.6 212 18.0
chair 418 36.4 108.6  237.1 36.1 33.0 26.9| 15.1 15.6 194 22.8 16.1 15.3 13.0
display 68.6 48.3 33.1 340.2 49.3 38.2 37.7| 155 15.1 13.1 279 164 14.6 14.4
lamp 63.3 59.4 107.0  214.0 60.2 63.5 46.3| 21.3 226 212 249 223 226 20.4
speaker 88.2 79.7 203.2 4064 81.2 72.3 62.1| 194 19.2 23.8 28.0 21.8 20.0 17.9
rifle 17.0 12.1 170.1 154 123 14.2 10.1| 11.2 13.8 23.7 154 152 17.6 124
sofa 328 20.9 1412 4824 223 20.3 16.3| 11.1 8.5 18.6 254 9.1 8.6 7.7
table 55.2 49.4 1347 469.5 50.5 49.1 40.7| 19.1 17.7 18.5 26.5 18.2 18.2 17.3
telephone 30.7 27.3 26.9 259.8 27.1 27.4 21.3| 134 13.6 15.1 272 151 15.3 12.3
watercraft 32.9 26.0 129.1 53.8 26.0 27.3 20.3 | 12.5 11.1 23.1 17.8 122 12.7 10.6
avg. 42.6 34.4 1172 264.1 35.0 33.1 26.9| 14.2 14.7 19.3 234 158 15.7 13.4
free-hand sketch| 87.1 89.0 1625 3342 91.8 89.2 86.1| 18.6 16.4 229 26.1 17.0 16.8 16.0

(simple encoder-decoder architecture, two-prediction-branch architecture, etc.) and find that
hourglass network architecture gives the best performance. This may be due to its ability
to extract key points from images [213, 40]. We train the network for 260 epochs with an
initial learning rate of 3e-5. The weight A\ of the orthogonal loss is le-3. To enhance the
performance on every category, all categories of 3D shapes are trained together. The class-
aware mini-batch sampling [263] is adopted to ensure a balanced category-wise distribution
for each mini-batch. We choose Adam optimizer [152] for the parameter optimization. 3D
point clouds are visualized with the rendering tool from [205].

5.4.4 Results and Comparisons

We first present our model’s 3D shape reconstruction performance, along with the compar-
isons with various baseline methods. Then we present the results on sketches from different
viewpoints and of different categories, as well the results on other free-hand sketch datasets.
Note that unless specifically mentioned, all evaluations are on the free-hand sketches rather
than synthesized sketches.

Baseline Methods. Our 3D reconstruction network is a one-stage model where the input
sketch is treated as an image, and point clouds represent the output 3D shape. As conducting
the first work for single-view sketch-based 3D reconstruction, we explore different design
options adopted by previous works on distortion-free line drawings and /or 3D reconstruction,
including architectures, representation of sketches and 3D shapes. We compare with different
variants to demonstrate the effectiveness of each choice of our model.
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1) Model design: end-to-end vs. two-stage. Although the task of reconstructing 3D
shapes from free-hand sketches is new, sketch-to-image synthesize and 3D shape reconstruc-
tion from images have been studied before |181} [330} [79]. Is a straight combination of the
two models, instead of an end-to-end model, enough to perform well for the task? To com-
pare these two architectures’ performance, We implement a cascaded model by composing a
sketch-to-image model [358] and an image-to-3D model [79] to reconstruct 3D shapes.

2) Sketch: point-based vs. image-based. Considering a sketch is relatively sparse in
pixel space and consists of colorless strokes, we can employ 2D point clouds to represent
a sketch. Specifically, 512 points are randomly sampled from strokes of each binarized
sketch, and we use a point-to-point network architecture (adapted from PointNet [240]) to
reconstruct 3D shapes from the 2D point clouds.

3) Sketch: Using edge maps as proxy. We compare with a previous work [66]. Our
proposed model uses synthetic sketch for training. However, an alternative option is using
edge maps as a proxy of the free-hand sketch. As edge maps can be generated automatically
(we use the Canny edge detector in implementation), the comparison helps us understand if
our proposed synthesizing method is necessary.

4) 3D shape: voxel vs. point cloud. We compare with a previous work [330]. In
this variant, we follow their settings and represent a 3D shape with voxels. As the voxel
representation is adopted from the previous method, the comparison helps to understand if
representing 3D shapes with point clouds has benefits.

5) 3D shape: depth map vs. point cloud. In this variant, we exactly follow a previous
work [217] and represent the 3D shape with multi-view depth maps.

Comparison and Results. Table and Fig[5.5]Ll present quantitative and qualitative
results of our method and different design variants. Specifically for quantitative comparisons
(Table , we report 3D shape reconstruction performance on both synthesized (evaluation
set) and free-hand sketches. This is due to that the collected free-hand sketch dataset is
relatively small and together they provide a more comprehensive evaluation. We have the
following observations: a) Representing sketches as images outperforms representing them
as 2D point clouds (points vs. ours). b) The model trained on synthesized sketches performs
better on real free-hand sketches than the model trained on edge maps (89.0 vs. 86.1 on
CD, 16.4 vs. 16.0 on EMD). Training with edge maps could reconstruct okay overall coarse
shape. However, the unsatisfactory performance on geometric details reveals such methods
are hard to generalize to free-hand sketches with distortions. It also shows the necessity of
the proposed sketch generation and standardization modules. ¢) For model design, the end-
to-end model outperforms the two-stage model by a large margin (cas. vs. ours). d) For 3D
shape representation, while the voxel representation can reconstruct the general shape well,
the fine-grained details are frequently missing due to its low resolution (32 x 32 x 32). Thus,
point clouds outperform voxels. The proposed method also outperforms a previous work
that uses depth maps as 3D shape representation [217] . Note that the resolution of voxels
can hardly improve much due to the complexity and computational overhead. However, we
show that increasing the number of points improves the reconstruction quality (details in
supplementary).
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Figure 5.6: Left: Ours (2nd row) versus nearest-neighbor retrieval results (last row) of given
sketches. Our model generalizes to unseen 3D shapes better and has higher geometry fidelity.
Right: 3D reconstructions of sketches from different viewpoints. Before the view estimation mod-
ule, the reconstructed 3D shape aligns with the input sketch’s viewpoint. The module transforms
the pose of the output 3D shape to align with canonical pose, i.e. the pose of the ground-truth 3D
shape.
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Figure 5.7: Left: Our approach trained on ShapeNet can be directly applied to other unseen sketch
datasets and generalize well. Our model is able to reconstruct 3D shapes from sketches
with different styles and line-widths, and even low-resolution data. Right: Standardized sketches
converted from different individual styles (by different volunteers). For each rendered image of a 3D
object, we show free-hand sketches from two volunteers and the standardized sketches from these
free-hand sketches. Contents are preserved after the standardization process, and standardized
sketches share the style similar to the synthesized ones.

Retrieval Results. We compare with nearest-neighbor retrievals, following methods and
settings of (Fig). We could generalize to unseen 3D shapes and reconstructs with
higher geometry fidelity (e.g., stand of the lamp).

Reconstruction with Different Categories and Views. Fig[5.5R shows 3D reconstruc-
tion results with sketches from different object categories. Our model reconstructs 3D shapes
of multiple categories unconditionally. There are some failure cases that the model may not
handle well.

Fig[5.6R depicts reconstructions with sketches from different views. Our model can
reconstruct 3D shapes from different views even if certain parts are occluded (e.g. legs of
the table). Slight variations in details exist for different views.

Evaluation on Other Free-Hand Sketch Datasets. We also evaluate on three other
free-hand sketch datasets , , . Our model can reconstruct 3D shapes from sketches
with different styles, line-widths, and levels of distortions even at low resolution (Fig[5.7]L).
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Table 5.2: Ablation studies of standardization and view estimation module. CD is enlarged by
10%, and EMD by 102. (a) 3D shape reconstruction errors of ablation studies of standardization
and view estimation module. Having both standardization and view estimation module gives the
highest performance. The lower, the better. (b) Reconstruction error with different components of
the standardization module: deformation and style translation. Having both parts gives the highest
performance. (c) The sketch standardization module improves cross-dataset sketch classification
accuracy. A ResNet-50 model is trained on TU-Berlin [77] and evaluated Sketchy dataset |256].
The sketch standardization module gives 3 percentage points gain.

(a) (b) (c)
error ‘ no standard. no view est. | ours deform. trans. ‘ CD EMD (%) ‘ ace.
CD 92.6 86.8 86.1 X X 92.6 18.2 w/o std. | 75.1
EMD 18.2 16.2 16.0 X v 87.2 16.3 w/ std. | 78.1
v X 90.1 174
v v 86.1 16.0

5.4.5 Sketch Standardization Module

Visualization. The standardization module can be considered as a domain translation
module designed for sketches. We show the standardized sketches of these free-hand sketches
and compare them to the synthesized ones Figl5.7R. With the standardization module,
sketches share a style similar to synthesized sketches which are used as training data. Thus,
standardization diminishes the domain gap of sketches with various styles and enhances the
generalizability.

Ablation Studies of the Entire Module. The sketch standardization module is intro-
duced to handle various drawing styles of humans. We thus verify this module’s effectiveness
on real sketches, both quantitatively (Table[5.2h) and qualitatively (Fig.[5.5R). As shown in
Table [5.2]a, the reconstruction performance has a significant drop when removing the stan-
dardization module. Its effect is also proved in visualizations. In Fig. [5.5R, we can observe
that our full model equipping with the standardization module can produce 3D shapes with
higher quality, being more similar to GT shapes, e.g., the airplane and the lamp.
Ablation Studies of Different Components. The standardization module consists of two
components: sketch deformation and style translation. We study each module’s performance
and report in Table 5.2b. We observe that the style transformation part improves the
reconstruction performance better compared with the deformation part, while having both
parts gives the highest performance.

Additional Applications. We show the effectiveness of the proposed sketch standardiza-
tion with two more applications. The first applications is on cross-dataset sketch classifica-
tion. We identify the common 98 categories of TU-Berlin sketch dataset [77] and Sketchy
dataset [256]. Then we train on TU-Berlin and evaluate on Sketchy. As reported in Table
[5.2c, adding additional sketch standardization module, the classification accuracy improves
3 percentage points.
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Figure 5.8: Zero-shot domain translation results. We aim to translate zero-shot images (Left)
to the training data domain (Right). Specifically, we evaluate the proposed zero-shot domain
translation performance on three new datasets: UNDD [209], Night-Time Driving and GTA
. The novel domains of night-time and simulated images can be translated to the target
domain of daytime and real-world images by leveraging the synthetic edge map domain as a bridge.
The target domain is CityScapes dataset . We extract corresponding edge maps and train an
image-to-image translation model to translate edge maps to the corresponding RGB images.
1st, 3rd, 5th, 7th rows of column 1 depict some sample training RGB images and 2nd, 4th, 6th,
8th rows of column 1 depict the corresponding edge maps respectively.

The second application corresponds to the second example depicted in Fig/5.4. The
target domain is CityScapes dataset , where the training data comes from. We extract
corresponding edge maps with a deep learning approach and train an image-to-image
translation model to translate edge maps to the corresponding RGB images. We
evaluate the zero-shot domain translation performance on three new datasets: UNDD
(night images), Night-Time Driving (night images) and GTA (synthetic images;
screenshots taken from simulated environment). The novel domains of night and simulated
images can be translated to the target domain of daytime and real-world images. We visualize
the results in Figl5.8

5.4.6 View Estimation Module

Removing the view estimation module leads to a performance drop of CD and EMD (Table
5.2k). For qualitative results (Fig[5.6R), without the 3D rotation, the reconstructed 3D
shape has the pose aligned with the input sketch. With the 3D rotation, the 3D shape is
aligned to the ground truth’s canonical pose.
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5.5 Summary

We study 3D shape reconstruction from a single-view free-hand sketch. The major novelty
is that we use synthesized sketches as training data and introduce a sketch standardization
module, in order to tackle the data insufficiency and sketch style variation issues. Extensive
experimental results shows that the proposed method is able to successfully reconstruct 3D
shapes from single-view free-hand sketches unconditioned on viewpoints and categories. The
work may unleash more potentials of the sketch in applications such as sketch-based 3D
design/games, making them more accessible to the general public.
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Chapter 6

3D Dental Casting from a Single
Image

6.1 Introduction

In dentistry, dental casts (gypsum teeth models) play a significant role in clinics, including the
diagnosis for various syndromes, giving support to plastic and orthognathic surgery, detecting
normal and abnormal growth, and providing information for planning and evaluating medical
procedures and treatments [6,|148]. Accurate and reliable 3D dental cast reconstruction helps
clinicians plan effective treatments.

Several non-contact methods such as laser scanning, magnetic resonance imaging, Moiré
stripes, and stereophotogrammetry have been employed for 3D dental cast reconstruction (82,

Previous approaches

[ h
i Multiview S : E

» i [ Imaging }{ Registration } { Reconstruction ] :» 8 ‘
) : |

207 | ¢ Y T Ty T ey g
£" '~A 4 T TTTT T T T T T T T T TS S T e e e e e S k >
»: [ Front-View }{ Occlusal-View },[ Multi-View 3D ] i :

Depth Depth Reconstruction

Front-View Photo N e e e e _()_ll_llfl?ljl;(’ilf}l _______________________ / 3D Dental Cast

Figure 6.1: 3D dental cast reconstruction. To reconstruct a 3D dental cast, previous approaches
require the full teeth model and perform multiview imaging, registration and finally multi-view 3D
reconstruction, which are expensive and time-consuming (top). We study the plausibility of dental
cast reconstruction from a single image. Specifically, from a front-view photo of a dental cast,
we first predict the front-view depth map, and then synthesize the occlusal-view depth map, and
finally project depth maps back to the 3D space and perform multi-view reconstruction to obtain
the 3D dental cast (bottom). Our method relies on minimum input and is more efficient.
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275, [123]. Though successful, these methods are complicated, time-consuming and requires
a certain level of human labor. Additionally, these model-based methods overfit to a specific
dental cast and has little generalizability, meaning the same procedure need to be done for
every dental cast |123] [275] We seek a more efficient, inexpensive and generalizable approach
for dental cast reconstruction.

Great progress has been made in 3D shape reconstruction from a single image in the
computer vision community recently. Methods based on voxel reconstruction network [106],
330], point processing network |79, [240] and graph-based neural network [312, [157] are able
to reconstruct satisfactory 3D shapes from a photo. These methods take a very small amount
of time to reconstruct 3D shapes in the inference stage and has a very high generalizabil-
ity for a certain category of objects. We resort to neural-network-based methods for 3D
reconstruction.

We pioneer to study the plausibility of full 3D dental cast reconstruction from a single
photo (Figl6.1)). The major challenge lies in how detailed structures of individual tooth
can be reconstructed. Though state-of-the-art 3D reconstruction algorithms is able to re-
construct coarse 3D shapes from a single-view image, they hardly preserve fine details due
to computational overhead and lack of sufficient information 330} 312, [79]. We aim to re-
construct dental casts with both coarse and fine geometrical fidelity. While it seems very
challenging to reconstruct it from a single photo, it is not inaccessible as the oral cavity
has certain structures, strong regularity and similarity. We learn proper priors to guide the
dental cast reconstruction from the data.

State-of-the-art 3D reconstruction approaches are good at reconstructing global shapes
but not fine-grained details, partially due to 3D data are usually represented in an irregular
grid (meshes, point clouds) and strong generative models based on convolutions are not
directly applicable. Convolutions are applicable to 3D representations in a regular grid
(voxels, some signed distance functions), but the computational overhead to reach fine-
grained details are usually very high. On the other hand, generative adversarial networks
(GANSs) achieves great success in synthesizing many realistic photos with fine-grained details
[137, 316] but may not have satisfactory geometric shape [214, 208]. We propose a 3D
reconstruction model that reconstructs shapes with good geometry and fine-grained details.

Specifically, for a photo of a dental cast from a viewpoint, we first predict a corresponding
depth map, and then synthesize a novel view of the depth map with GANs. With all the
synthesized depth maps, we finally project them back to the 3D space and obtain the full
3D dental cast.

To summarize, our work makes following contributions: 1) We are the first to reconstruct
the 3D dental cast with both coarse and fine geometrical fidelity from a single image. 2) We
improve state-of-the-art single-view 3D reconstruction approaches by adding fine geometric
loss. Qualitative and quantitative results demonstrate that our model an reconstruct 3D
shapes with fine-grained details without much computational overhead.
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6.2 Background

Novel-View Synthesis. Object-centric view synthesis approaches aim to either synthesize
novel views of the same instance [201], 268| or novel instances in the same category [282, 267,
356] by direct pixel prediction, pixel flow prediction, or 3D modeling by way of differentiable
rendering. While not trained to generate specific views, generative adversarial networks that
can successfully disentangle pose from identity [49} 214, 266] can be used to synthesize new
views of objects in the same category. These methods show a high generalizability for objects
within the category.

Multi-View 3D Reconstruction. Multi-view 3D reconstruction is also a problem that
has long been studied with classical computer vision techniques [110, [190] like multi-view
stereo and visual hull reconstruction. StM [222] and SLAM [85] achieve success in handling
multi-view 3D reconstructions in various real-world scenarios. Their reconstructions can
be limited by insufficient input viewpoints and 3D scanning data. Deep learning based
methods have been proposed to further improve reconstructions by completing 3D shapes
with occluded or hollowed-out areas [336), |55, [144].

Methods that require full shape supervision in the multi-view [55, (144} |330] case are
typically trained using ShapeNet [46]. There are other approaches that use more natural
forms of multi-view supervision such as images, depth maps, and silhouettes [144, [292, |321},
334], with known cameras.

Single-View 3D Reconstruction. In general, recovering the 3D shape from a single-
view image is an ill-posed problem. Attempts to tackle the problem include 3D shape
reconstructions from silhouettes [68|, shading [248], and texture [323]. However, these meth-
ods need strong presumptions and expertise in natural images [350], which limit their usage
in the real-world scenarios. Generative adversarial networks (GANs) [96] and variational
autoencoders (VAEs) [153] have achieved success in image synthesis and enable [326] 3D
shape reconstruction from a single-view image. Fan et al. |79 further adopt point clouds
as 3D shape representation, which enables models to reconstruct fine-grained details from a
single-view image.

3D reconstruction networks are designed differently depending on the output 3D represen-
tation. 3D voxel reconstruction networks [283] [106} 1330] benefit from many image processing
networks as convolutions are appropriate for voxels. They are usually constrained to low
resolution due to the computational overhead. Mesh reconstruction networks [312, [157] are
able to directly learn from meshes, where they suffer from topology issues and heavy com-
putation [224]. Point cloud representation capture fine-grained 3D geometric details with
low computational overhead. Reconstructing 3D point clouds from images has been shown
to benefit from well-designed network architectures [79, [192], latent embedding matching
[193], additional image supervision [210], etc. However, the above-mentioned methods fail
to reconstruct 3D shapes with fine-grained details.

As we aim to reconstruct 3D shapes with both coarse and fine geometrical fidelity, we fo-
cus on image/depth-map based 3D reconstruction approaches. Soltani et al. [17] proposed to
synthesize multiple depth maps and silhouettes from given single-view or multi-view depth
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Figure 6.2: Pipeline of the proposed approach. For a photo of a dental cast from a viewpoint (we
use front-view photo as an example), we first reconstruct a corresponding depth map (depth recon-
struction). Then, we synthesize novel views of the depth map with GANs (novel view synthesis).
Depth maps are finally projected back b to the 3D space and combined to obtain the full 3D dental
cast ( ).

maps and silhouettes, and perform multi-view reconstruction for the final 3D shape. As
showed in Section this approach reconstruct 3D shapes with satisfactory coarse ge-
ometrical fidelity, but fail to reconstruct good local geometric structures and suffers from
alignment issues when combining multi-view depth maps.

6.3 Approach

For a photo of a dental cast from a viewpoint, we first predict a corresponding depth map,
and then synthesize a novel view of the depth map with GANs. With synthesized depth
maps, we finally project them to back the 3D space to obtain the full 3D dental cast (Fig..
We introduce details of each component of our approach as follows.

6.3.1 Data Collection and Prepossessing

We collect 2,427 3D dental casts for the study. The dataset originates from full jaw gyp-
sum models. For simplicity without loss of generality, only upper jaws were used in this
paper. The casts are digitized through a precise optical scanning process and serialized into
triangular mesh representation [289)].

A cusp-based algorithm was used to properly align all dental casts to a canonical pose.
The algorithm fits a parabolic curve with detected cusps of the teeth to determine the
occlusal and anterior directions, which are used for the preliminary data alignment.

6.3.2 Rendering and Depth Prediction from Photo

To build our training dataset, we first render a grayscale front-view photo and a depth map
for each 3D model. We normalize the 3D mesh and use a single fixed point light source
during rendering for simplicity and consistency. The grayscale photo and depth map pair is
then used to train the depth reconstruction module. Specifically, we employ pix2pix [137]
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Figure 6.3: Novel view synthesis. We first inversely project a given depth map back to the 3D
space to obtain a 3D point cloud, and then rotate the point cloud to the desired novel viewpoint.
It is further rendered to a partial depth map . We then use GANs to synthesize a full novel-view
depth map y from the partial depth map. Adversarial loss, £1 loss and fine geometric fidelity loss
are used for reconstructing a dental cast with coarse and fine geometric structures.

for depth reconstruction. Note that reconstructing high-quality depth maps from greyscale
photos is not very challenging due to the consistency of rendering settings (such as light
source).

6.3.3 Novel View Synthesis for Depth Maps

State-of-the-art models are able to synthesize novel views with fine details within a relatively
small angle difference. We utilize the property of the depth map and synthesize a new view
with a larger angle difference (90°).

Specifically, we first inversely project a given depth map back to the 3D space, and then
rotate it to the desired novel viewpoint. It is further rendered to a partial depth map x.
We then use GANSs to synthesize a full novel-view depth map y from the partial depth map.
Figl6.3] depicts the pipeline of the novel view synthesis module.

Three loss terms are used to train the novel view synthesis module. First a GAN loss
aims at training the generator G and the discriminator D adversarially:

Laan(G, D) = Egyllog D(x, y)] + Eg[log(1 — D(z, G(x)))] (6.1)

where G tries to minimize this objective against an adversarial D that tries to maximize it.
The second term is the ¢; loss to encourage synthesized depth map G(z) and the ground-
truth depth map to be pixel-wise similar:

Ly, = By [[ly — G(2)]]1] (6.2)
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The last loss term, fine geometric fidelity loss, aims to preserve the 3D geometry of
the synthesized and the ground-truth depth map. Specifically, we adopt contextual loss
[199], and compare the performance of alternative choices in Section m Rather than
comparing the pixel-wise difference, contextual loss handles distribution difference and thus
can penalize the geometric difference between the synthesized depth map and the ground-
truth depth map. Contextual loss can also be considered as an updated version of chamfer
loss (a detailed comparison between contextual loss and chamfer loss can be found in [199]),
which can be used for measuring the distance between two point clouds. Specifically, first
the cosine distances d(G(z);, y;) are computed between all pairs G(x);,y;. The distances are
then normalized

7 dG(@)i,y5)

di; = 6.3
Then, the pairwise affinities
a.
exp(1 — )
i hZ_e10,1] (6.4)

Y exp(l — )

can be computed. Note that h is a scalar bandwidth parameter and we set h = 0.1 in our
paper. Then, the contextual similarity between images is defined as:

CX(G(x),y) = %Z max A, (6.5)

where N is the number of pixels.
The contextual loss can thus be defined as:

Lex (G(z),y) = —1og(CX(G(x),y)) (6.6)

Our final objective is a combination of the three loss terms controlled with corresponding
loss weight A:

G* = arg mén max Laan(G, D) + Ay Lo, (G) + Aox Lex (G) (6.7)

Note that a major novelty of the paper is that we introduce a fine geometric fidelity loss
for the novel view synthesis. We show that with the geometric loss, the reconstructed 3D
shape avoids misalignment issues and has better fine geometric details.

6.3.4 3D Reconstruction

We project multiple synthesized depth maps back to 3D space to create the final rendering.
We reconstruct 3D shapes from multi-view depth maps by first generating a 3D point cloud
from each depth image with its corresponding camera setting. The union of these point
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clouds from all views can be seen as an initial estimation of the shape. We also create
silhouettes/masks from the depth maps by binarizing depths with a certain threshold. We
then refine it by applying silhouettes to filter out noise points. A point will be kept only if
all of its multi-view 2D projections are valid in the silhouettes. Supervision on the camera
angles or distance from the 3D shape centroid is not explicitly provided to the models. The
point clouds can be further converted to meshes based on triangulation for clinical use.

6.4 Experimental Results

We first present details of our dataset, evaluation metrics and implementation, followed
by qualitative and quantitative results of each module of our model. Along the way, we
provide comparisons with a state-of-the-art method [17]. We also conduct ablation studies
and hyper-parameters analysis to understand the benefits of different modules.

6.4.1 Dataset and Evaluation Metrics

The proposed model is trained on a dataset consisting of 2,427 3D dental casts in the mesh
format. We randomly select 80% (1,941) for training and 20% (486) for evaluation. Each 3D
dental cast is aligned to a canonical pose and normalized for consistency and simplicity. Each
mesh model is rendered to obtain the grayscale photo and the depth image with Pyrender.

To evaluate the performance of the proposed method, we use peak signal-to-noise ratio
(PSNR) to measure the difference between the reconstruction and the ground-truth. Note
that outputs for both the depth reconstruction and novel view synthesis are depth maps,
so we evaluate the difference on the reconstructed and ground-truth depth map in the pixel
space.

6.4.2 Implementation Details

Depth Reconstruction. We follow pix2pix [137] settings with 9-block ResNet backbone
model. The weight of the ¢; loss Ay, = 100. The network is trained for 200 epochs with
initial learning rate 2e-4. Adam optimizer |[152] is used for the parameter optimization.

Novel View Synthesis. We follow pix2pix [137] settings with 9-block ResNet backbone
model. The weight of the ¢; loss Ay, = 100 and the weight of the contextual loss A¢x = 10.
The network is trained for 200 epochs with initial learning rate 2e-4. Adam optimizer [152]
is used for the parameter optimization.
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Image Predicted Depth GT

Figure 6.4: Depth prediction from photo results. Each row depicts an example. For each example,
the column from left to right depicts: input photo, predicted depth map, and ground-truth depth
map. The predicted and the ground-truth depth are visually similar, and the PSNR is 22.7 £ 2.0.
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3D Reconstruction. This part is standard multi-view 3D reconstruction with no
learning-based method involved. Specifically we create silhouettes/masks from the depth
maps by binarizing depths with a certain threshold 0.25 and apply silhouettes to filter out
noise points. In other words, for pixels with depth value smaller than 0.25 will be removed.
The reconstructions are dense point clouds.

6.4.3 Depth Reconstruction

Figl6.4] depicts the depth prediction from photo results. Specifically, we take front-view
depth prediction as an example, although the model also works on other viewpoints. Each
row shows an example, and for each example, the column from left to right depicts: input
grayscale image, reconstructed depth map, and ground-truth depth map. Visually the re-
construction and the ground-truth depth maps are very similar. The PSNR between the
reconstruction and the ground truth is 22.7 £ 2.0.

6.4.4 Novel-View Synthesis

Figl6.5 depicts results of the novel view synthesis of depth maps. For consistency, we synthe-
size the occlusal view from the front view in this paper. The model also works on different
input and output viewpoints. Synthesized and ground-truth depth maps are visually sim-
ilar. Specifically, each tooth are well separated and the structure is relatively clear. Our
model can handle dental casts that are not well-aligned to the canonical pose, although the
reconstruction is slightly worse than the one with the canonical pose. The PSNR between
the synthesized depth map and the ground truth is 16.3 & 2.0.

6.4.5 3D Dental Cast Reconstruction

We project the depth maps back to the 3D space to obtain the 3D model. Figl6.6| depicts
the 3D reconstructions results. Dental cast with both coarse and fine geometrical fidelity are
reconstructed, although geometric structures near the boundary have slightly worse details.

We find that reconstructing from front-view and occlusal view only already gives satis-
factory 3D dental cast so only use two views for reconstruction in this paper. Our method
can also synthesize more novel views from or to other viewpoints (for example, side-views)
and perform multi-view 3D reconstruction from them.

6.4.6 Ablation Studies

As mentioned before, there are alternative choices for the fine geometrical fidelity loss. Figl6.7]
and Table show the qualitative and quantitative results of novel view synthesis with no
geometric loss [17], with chamfer loss and with contextual loss.
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Figure 6.5: Novel view synthesis results. Each row depicts an example. For each example, the
column from left to right depicts: input depth map, depth map from a different viewpoint (occlusal-
view), synthesized depth map, and ground-truth depth map. The PSNR between the synthesized
depth map and the ground truth is 16.3 + 2.0.
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Figure 6.6: 3D reconstruction results. View 1 (front-view) is the input to the view synthesis
module (and originally predicted from the front-view photo) while view 2 (occlusal view) is the
synthesized depth map from view 1. Dental cast with both coarse and fine geometrical fidelity are
reconstructed, although geometric structures near the boundary have slightly worse details.

View 2
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Figure 6.7: Novel view synthesis with no geometric loss, with chamfer loss and with contextual
loss. Without geometric loss, the reconstructed 3D shapes suffers misalignment issues and different
teeth has worse local geometric structures. Adding chamfer loss alleviate the misalignment issue,
but local structures (especially for teeth near the boundary) can still improve. Contextual loss
solves the misalignment issue and reconstructs the 3D dental cast with both good global and local
geometric details.
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Table 6.1: PSNR performance of different choices of fine geometric fidelity loss. The contextual
loss achieves the best result.

No geometric loss [17| | Chamfer loss & Contextual loss
PSNR 19.24+25 17.1+£25 16.3 £ 2.0

The contextual loss achieves the highest PSNR at 16.3, outperforming [17] and chamfer
loss by 2.9 and 0.8, respectively. Visually the contextual loss outperforms alternative choices
and reconstructs 3D shapes with coarse and fine geometrical fidelity.

6.4.7 Hyper-Parameter Analysis

Table 6.2: PSNR performance of different weight Ay, of the contextual loss. s, = 10 gives the
best result.

0.1 1 10 100
PSNR | 17.0+23 | 16.5+2.0 | 16.3£2.0 | 16.6 £2.1

We study the influence of the hyper-parameter, weight Ay, of the contextual loss (Table
. While changing weight Ay, does not affect the performance much, setting A\, = 10 gives
the best result

6.5 Summary

We propose a novel approach to reconstructing a 3D dental cast from a singe image. With
GANs and fine geometric fidelity loss to achieve both coarse and fine geometrical fidelity,
our approach learns priors of teeth structures and reconstructs a dental cast with both good
global and local geometric details. The efficient and low-cost method can be of significance
in dental clinics. The proposed approach also improves state-of-the-art single-view 3D re-
construction algorithms by reconstructing 3D shapes with both coarse and fine geometrical
fidelity with limited additional computational overhead.
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Chapter 7

Interpretable Demographics
Prediction from Meibography Images

7.1 Introduction

The Meibomian glands of the human eyelid secrete lipid-rich meibum that during blinking
forms a thin film on the surface of the tears [155, 38| that serves to inhibit evaporation
of the tears and stabilize the tear film by reducing surface tension [35, [75]. Dysfunction
of the Meibomian glands leading to insufficient or poor quality lipids is a primary cause
of dry eye (DE) [125] 286], a globally impactful and highly prevalent ocular surface disease
[225]. Infrared meibography is the biomedical imaging of the glands, exposed by everting the
eyelids, using a thermographic camera. Meibography has been increasingly used in recent
years for clinical diagnosis and treatment of Meibomian gland dysfunction (MGD) as well
as in clinical research on MGD and DE; however, there are few studies that have examined
how the detailed morphological structure of these glands relates to the signs and symptoms
of MGD and DE [18] |4} [58]. Furthermore, it is unknown how the detailed morphology of the
Meibomian glands relates to subject demographic characteristics such as age, gender, and
ethnicity — all of which are well-documented factors in the prevalence and severity of MGD
and DE |12, |150} 290, 1310, |142].

There are a number of studies to date that have employed traditional statistical tech-
niques to examine broad, global assessments of the Meibomian glands such as the overall
percent area of gland atrophy (e.g., the 4-level meiboscore of Arita [11], the 5-level score
and software-based atrophy area of Pult [236]) and their relationships to various subject
characteristics. With few exceptions, however, the detailed, local morphological character-
istics of the glands in meibography images (e.g., length, width, tortuosity, local contrast)
have not been studied with respect to subject characteristics or clinical outcomes. A major
impediment to detailed morphological analysis of meibography images and to its use in both
research and clinical eyecare has been the technical difficulty and time-consuming nature of
quantifying local meibography features [63]. In a previous work we developed a deep learning
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model that proved capable of quickly and automatically identifying and quantifying eight
different metrics describing both global and local morphological features in novel meibogra-
phy images with good accuracy [306]. In this study we will build on this work by training
a supervised machine learning model to identify and quantify the morphological features
observed in meibography images and to then use these images and image-derived metrics to
predict the demographic characteristics of the subjects who provided them.

The significance of attempting to predict subject demographics from meibography im-
ages is twofold. First, it offers an alternative approach to traditional associative statistical
modeling for determining whether the morphology of the Meibomian glands differs depend-
ing on age, gender, or ethnicity — all known factors in MGD and DE. Rather than testing
a null hypothesis under certain assumptions, we train the machine learning model not only
to learn to use meibography image features to predict subject demographic characteristics
but to reveal what the most highly weighted image features were in contributing to this
prediction. This could shed further light on the etiology of MGD at a more detailed level,
and possibly reveal novel relationships.

Second, de-identified biomedical imaging is not currently considered Protected Health
Information (PHI), and is therefore not subject to the strict regulations on its use, sharing,
storage and transmission [187}212,|305]. These regulations, however, are in active debate and
are likely to evolve rapidly, as ocular features such as retinal vein patterns, eye movements,
and iris patterns have been proven to provide unique biometric “fingerprints” that can be
used to identify individuals with a high level of accuracy [140, |253] [196]. It seems reasonable,
given the highly detailed morphology revealed in meibography images, that meibography
could be developed into a biometric identifier as well, thus requiring far greater patient safety
and privacy protections — even for de-identified images — than it is subject to today. The field
of artificial intelligence and machine learning is evolving rapidly and its capabilities ever-
expanding. If we can train a machine learning model now to take de-identified meibography
images as input, and based solely on the detailed morphology revealed in those images,
reconstruct some characteristics of the subjects that provided those images, it is very easy
to imagine with larger training datasets and improved models, being able in the near future
to reveal a patient’s individual identity.

7.2 Methods

7.2.1 Development and Evaluation Dataset

This study utilized a meibography image dataset from a previous paper [306] along with
corresponding subject demographic information for deep learning algorithm development
and evaluation.

Subject recruitment and Imaging. Adult human subjects (age > 18 years) were
recruited from the University of California, Berkeley campus and surrounding community
for single-visit ocular surface evaluations during the period from 2012 to 2017. Eligible
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Figure 7.1: Histogram (in percentage) of demographic features of our meibography image
dataset

subjects were free of any eye conditions contraindicating meibography, not currently taking
medications with effects on the anterior eye or adnexa, and with no history of ocular surgery.
Meibography images of the upper eyelids for both eyes were captured with the OCULUS
Keratograph 5M (OCULUS, Arlington, WA), a clinical instrument that uses an infrared
light with wavelength 880 nm for Meibomian gland imaging [347]. During image capture,
the ambient light was off with the subject’s head positioned on a chin rest and forehead
strap. A total of 750 images were collected and prescreened to rule out images that did not
capture the entire upper eyelid (61 images or 8.90%); the remaining 689 images were used
in the analysis.

Demographics. Subject demographics were documented during the visit. Three de-
mographic characteristics were studied in this paper, namely age, gender and ethnicity.
Histograms depicting the distributions of these demographic features are presented in Fig-
ure [7.1] Specifically for ethnicity, only Caucasians and Asians were considered due to lack
of sufficient subjects of other ethnicities. The total number of images used for ethnicity
prediction is thus 421 after ruling out subjects with other ethnicities, while the numbers of
images used for age and gender prediction both stay 689.

Morphological features. The development of an interpretable deep learning model
for predicting demographic characteristics requires morphological features such as gland
length and tortuosity as data sources. Eight morphological features were quantified for each
meibography image: number of glands, gland density, percent area of gland atrophy, gland
local contrast, gland length (mm), gland width (mm), gland tortuosity and percentage of
ghost glands. Histograms of these morphological features are presented in Figure [7.2]

Data partitioning. Meibography images were partitioned into two non-overlapping
subsets for training and evaluating the deep learning model. The partition was based on
image collection time. Specifically, images collected from years ranging from 2015 to 2017
were combined to be the development set, while those collected from years ranging from
2012 to 2013 were combined to be the evaluation set. All images were taken with the same
instrument under the same protocol. The development set was further divided randomly
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Figure 7.2: Histogram and density plots of learned morphological features from meibography
images

Table 7.1: Subject demographics of the meibography image dataset used in the study

Development

Train Tune Evaluation
Images (n) 389 97 203
Subject Demographics
Subjects (n) 260 94 109
Mean (SD) Age (yrs) | 27.8 (13.1) | 27.0 (11.5) | 27.9 (12.7)
% Female Subjects 69.6 66 69.4

into 2 subsets for training and validating the model. Specifically, the validation set was used
to find the best hyperparameters (e.g., model learning rate) for the model that was trained
on the training set. The evaluation set was for evaluating or testing the performance of
the model. Subject demographics stratified on development and evaluation datasets can be
found in Table 1. Different subsets had similar demographic feature distributions, so that
the distributional shift between the training and evaluation sets was minimized.

7.2.2 Algorithm Design and Training

The overall goal is to design an interpretable deep learning model that can predict the
demographic characteristics of a subject. Interpretability requires the model to be able to
identify the most highly weighted morphological features used by the algorithm to predict
the demographic characteristics of a subject directly from their meibography image. A two-
stage model was designed with a first stage attribute learning model to identify and quantify
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Figure 7.3: Overall pipeline of the proposed interpretable deep learning model for predicting
demographics from images

Table 7.2: Means and standard deviations of morphological features

% atrophy Gland density | # glands | Gland local contrast] Gland length (mm) Gland width (mm) Gland tortuosity | % ghost gland2]
Mean 19.70% | 40.70% 15.9 22.2 [77 [0.35 [ 63.60% 7.80%
Standard deviation | 13.80% | 7.10% 2.8 7.2 |1 | 0.05 | 10.60% 16.90%

morphological features from input meibography images, and a second stage demographic
prediction model to predict subject demographic features from meibography images and
corresponding first-stage morphological features. Figure depicts the overall pipeline.

Deep attribute learning. In the first stage, a deep learning model was developed to
predict and quantify the morphological features of a given meibography image (first part
of Figure . The primary goal of the attribute learning model is to provide value ranges
rather than exact values of morphological features for the final demographic predictions.
There are two underlying reasons for this: 1) Predicting coarser value ranges is easier than
predicting precise values for the deep learning model, especially since the dataset (689 im-
ages in total) was not sufficiently large-scale to learn precise morphological feature values.
2) Morphological attribute prediction was an intermediate result, with the major purpose of
interpreting relationships between demographic features and morphological features. Pre-
dicting value ranges is adequate for the purpose. For example, it would be acceptable for
predicting gender to find that females exhibit a high probability of having > 15 glands rather
than a high probability of having exactly 16 glands. Therefore, our first stage deep learning
model predicts morphological features to fall within ordinal ranges (or, in the case of ghost
gland percentage, binary classes).

The morphological attribute learning model specifically predicts a ternary level rather
than an exact numerical value for each morphological feature. As depicted in Figure[7.4] the
model predicts each morphological feature value to fall below p — o (level 1), between p — o

'Measured in pixel intensity of the meibography image. The lowest intensity the sensor could detect was
0 and the highest was 255.
2For the percentage of ghost glands prediction, a binary classification was used (= 0, > 0).
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Figure 7.4: The original distribution of a morphological features is mapped to a normal
distribution. The deep attribute learning model predicts if a morphological feature value is
below p — o, between p — o and p + o, or above u + o, where p, o refer to the mean and
standard deviation of the original morphological feature value distribution.

and p+o (level 2), or above pu+o (level 3), where p and o refer to the mean and standard
deviation of the morphological feature predicted value distribution. Table 2 provides the
and o for all morphological features investigated. Specifically for the percentage of ghost
glands, 77.1% images (or 531 images) have 0 ghost glands. Therefore, for the percentage
prediction, a binary class was used (percentage of ghost glands =0 or > 0).

Demographic feature prediction. In the second stage, a deep learning model was de-
veloped to predict demographic features from both meibography images and corresponding
attributes from the attribute learning model in stage one (second part of Figure. Specifi-
cally, a given image was input to ResNet18 |113] (a residual neural network of 18 convolution
layers) to obtain a 64-dimensional vector. The vector can be considered as an embedding
that encodes information of the image. The vector was combined with 8 predicted vectors of
morphological features from the deep attribute learning model. All vectors are of the same
dimension. The combined 9 vectors were fed to a fully convolutional layer for predicting the
demographic features.

Among three demographic features to be predicted, gender and ethnicity are categorical,
while age is continuous numerical. Following Dana et al. [62] based on dry eye prevalence,
subject age has been stratified into 3 categories: 1) <39 years old, 2) > 39,< 50 years
old, and 3) >50 years old. The final output of the demographic prediction model can be
interpreted by analyzing the learned coefficients of the morphologic features used to predict
the demographic characteristics. Higher coefficient values indicate a stronger effect of a
morphological feature in predicting a demographic feature.

7.2.3 Evaluation Metrics

The model is trained on the training set with varying hyperparameters (e.g., different learning
rates) and the highest performance model on the validation set was selected for the final
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Figure 7.5: The relaxed morphological feature classification evaluation rule with the tolerance
threshold. The tolerance threshold was set at 0.060, and classifying images with percent
atrophy p — 1.060 to u — 0.940, u — 0.060 to pu + 0.060, and p + 0.940 to pu+ 1.060 either
to its ground-truth or adjacent level were both considered as correct prediction.

evaluation on the evaluation set. The highest performance models were selected for attribute
learning and demographic prediction, respectively. Both were evaluated with classification
accuracy.

Classification evaluation with tolerance threshold. The evaluation technique was used
for evaluating deep attribute learning performance. As described in the previous section,
the deep attribute learning model predicts the trinary level of each morphological feature.
However, near the transition limits of different levels (¢ — o and pu+o0), the morphological
features may be very similar and difficult to classify. A similar technique described in
Wang et al. [302] was applied here. A tolerance threshold near the grading transition
limit was necessary. As illustrated in Figure [7.5] the tolerance threshold was set at 0.030,
and classifying morphological feature values within p — 1.060 to p — 0.940, and p+0.940
to 4 1.060 either to their ground-truth or adjacent level were both considered as correct
predictions. Note that the tolerance threshold does not apply to predictions of the percentage
of ghost glands as that is a binary classification.

Five-fold cross validation. For evaluating both attribute learning and demographic pre-
diction performance, in additional to reporting classification accuracy on the evaluation set
with the best performing model on the validation set, five-fold cross validation accuracy is
also reported. First, the entire dataset (including both development and evaluation sub-
sets) was randomly split into 5 folds. Second, 5 iterations of training and evaluation were
conducted. At each iteration, 4 folds were used for training and the remaining fold for eval-
uation. The mean and standard deviation of the classification accuracy on each fold were
reported as five-fold cross validation accuracy.
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Table 7.3: Classification accuracy for morphological feature prediction of the attribute learn-
ing model. Note that the second row reports accuracies on the evaluation set and the last
two rows reports means and standard deviations of accuracies on the 5-fold cross validation
set.

Percent atrophy Gland density Number of glands Gland contrast | Gland length | Gland width | Gland tortuosity | Percent ghost gland | Average
Evaluation accuracy (%) 73.1 75.2 82.1 78.5 76.6 76.1 78.4 72.1 76.5
Cross-validation accuracy - mean (%) | 73 76.7 80.1 79.1 T 76 78.3 1.7 76.6

SD (%) 3.9 41 4 15 38 1 13 338 1

7.3 Results

7.3.1 Attribute Prediction Performance

Table 3 reports the performance of the attribute prediction accuracy for morphological fea-
tures. Specifically, model accuracies on the evaluation set and 5-fold cross validation are
reported. For attribute prediction (including percent atrophy, gland density, number of
glands, gland local contrast, gland length, gland width, gland tortuosity and percentage of
ghost glands), the model achieved 76.5% accuracy on the evaluation set, and 76.6% average
accuracy for five-fold cross validation. The average standard deviation of the 5-fold cross
validation is 4.0%.

7.3.2 Demographic Prediction Performance

For each subject demographic feature, classification accuracy of the demographic prediction
model is reported. Similarly, accuracies on the evaluation set and 5-fold cross validation
are reported. Additionally, the coefficients for morphological features were also analyzed by
ranking coefficients from largest to smallest, thereby identifying the most highly weighted
morphological features for demographic prediction.

It is also of interest to understand how demographic features change with morphological
features. One way is to compare average values of morphological features of different demo-
graphic groups. For each split in the five-fold cross validation, morphological features ranked
from most highly weighted to least were recorded. For both age and ethnicity, the top 2
most important features were observed to be consistent for every split. Average values for
the top 2 most important morphological features sorted by demographic groups are reported
below.

Age. The 5-fold mean (SD) classification accuracy for age was 75.7 (4.5)% (Table 4
upper). Coefficient analysis showed the two most important morphological features for de-
termining age were percent area of gland atrophy and percentage of ghost glands (Table 4
lower). For the three age groups from youngest to oldest, the average percent area of atro-
phy increases from 18.1% to 25.2% to 33.6%, while the average percentage of ghost glands
increases from 5.6% to 14.2% to 28.7%. Older subjects tend to have a higher percent area
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Table 7.4: Upper: Classification accuracy for subject age prediction of the demographic
feature prediction model. Note that the second row reports accuracies on the evaluation
set and the last two rows reports means and standard deviations of accuracies on the 5-fold
cross validation set. Lower: Average values for the top 2 most highly weighted (largest model
coefficients) morphological features stratified on age group.

Age <39 | Age <39, >50 | Age > 50 | Average
Evaluation accuracy (%) 86.1 70.1 71.1 75.8
Cross-validation accuracy - mean (%) | 85.9 71.1 70.2 75.7
SD (%) 14 15 15 15

Age <39 | Age <39, >50 | Age > 50
Avg. % atrophy 18.1 25.2 33.6
Avg. % ghost glands 5.6 14.2 28.7

Table 7.5: Classification accuracy for subject ethnicity prediction of the demographic feature
prediction model. Note that the second row reports accuracies on the evaluation set and
the last two rows reports means and standard deviations of accuracies on the 5-fold cross
validation set. Lower: Average values for the top 2 most highly weighted (largest model
coefficients) morphological features stratified on ethnic group.

Caucasian | Asian | Average
Evaluation accuracy (%) 85.1 86.4 85.8
Cross-validation accuracy — mean (%) | 84.6 86.8 85.7
SD (%) 19 1 15
Caucasian | Asian
Avg. gland density (%) 39.2 42
Avg. % ghost glands 10.5 7.9

of atrophy and a higher percentage of ghost glands compared with younger subjects.

Gender. The 5-fold mean (SD) classification accuracy for gender was 56.5 (5.0)% which
is close to a random guess accuracy of 50%. Therefore, gender could not be accurately pre-
dicted from meibography images with the proposed deep learning model, nor could important
morphological differences be identified.

Ethnicity. As shown in the histogram of ethnicity (Figure [7.1), although the entire
dataset was comprised of subjects of eight different ethnicities, most ethnicities did not have
sufficient sample sizes for trustworthy predictions to be obtained. Therefore, predictions were
only conducted for Asian and Caucasian subjects (75% of all subjects). The 5-fold mean
(SD) classification accuracy for ethnicity (predicting if the subject is Asian or Caucasian) was
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85.7 (4.5)% (Table 5 upper). Coefficient analysis showed the two most important Meibomian
gland morphological features for determining ethnicity were gland density and percentage
of ghost glands (Table 5 lower). Asian subjects exhibited approximately 2.8% greater gland
density than Caucasians. Asian subjects exhibited 2.6% fewer ghost glands than Caucasians.

7.4 Discussion

The work presents an interpretable deep learning model to predict demographics from mei-
bography images. The proposed approach makes the following two contributions: 1) Using
deep learning models to find morphological features predictive of demographics offers an
alternative to traditional associative modeling and may reveal new relationships; 2) The
proposed approach investigates an early stage of the technology that could be used to de-
velop meibography images into a biometric fingerprint capable of identifying individuals.

Previous studies have explored the associations between subject demographics and the
symptoms of MGD and DE [290, 310, [142]. In this study we explored associations between
subject demographics and specific Meibomian gland morphological features. The results
showed that older subjects had a higher percent area of gland atrophy and a higher percentage
of ghost glands. Previous works |8, 133] have identified age-related changes Meibomian gland
structure and function, including changes to the acini, loss of progenitor stem cells, abnormal
meibum secretion, and MGD. The proposed method also identified age-related changes with
a new focus on changes in gland morphology which was quantitatively analyzed directly from
meibography images.

As for ethnicity, Caucasians subjects exhibited a higher percentage of ghost glands and
lower gland density compared with Asian subjects. Previous work [150] observed ethnic
differences (specifically between Asians and Caucasians) in Meibomian gland morphological
patterns in the pediatric population by qualitatively identifying MG morphoclimatic changes
such as presence of gland shortening and gland tortuosity. Major differences compared to
this study lie in the efficiency and extensibility. Each subject need to be manually annotated
for morphological features in their study, while this study used a deep-learning-based model
to automatically analyze morphological features from subject meibography. This work thus
studied 10 times as many as subjects in their study (70), and no additional manual annotation
is needed for new subjects.

The proposed deep learning model was unable to predict gender with high accuracy.
Previous works [111] however identified changes in the anatomic lid margin and gland mor-
phology in different gender groups. Hypotheses for the discrepancies include: 1) Number
of subjects in this study was not large enough to identify intergroup differences, 2) The
proposed deep learning method was unable to identify intergroup differences, 3) Meibogra-
phy image only is unable to predict the subject gender, and clinical signs such as tear film
breakup time is also necessary for the prediction. Future work is warranted to verify the hy-
potheses and study if meibography images encode enough gland morphological information
for revealing subject gender.
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In the United States, health care providers and researchers are held accountable for
the privacy and security of protected health information (PHI) and individually identifiable
health information [2]. However, the frequency and magnitude of health care data breaches
continues to climb [261], with significant impacts for patients in the areas of identity theft,
faulty treatment, insurance coverage, job security, financial well-being, and mental health
[234], 57]. While the majority of a person’s medical and health information is considered
PHI and thus subject to strict regulations on its use, storage, and dissemination, this is
currently not the case for de-identified medical imaging [187, 212, |305]. This is already an
area of active debate, as biometric identifiers of unique individuals continue to be developed,
and many types of medical images are highly unlikely to be exactly homomorphic between
individuals, particularly with today’s high resolution imaging and sophisticated image pro-
cessing software. In the case of the eye, retinal vein patterns, iris patterns, and idiosyncratic
eye movement patterns have all been shown to be accurate biometrics [140, 253, [196]. Mei-
bography, given the highly detailed morphology of the Meibomian glands, could also serve as
a biometric identifier with some further development of current technology. In this study, we
have shown that a relatively straightforward deep learning algorithm trained on a fairly small
dataset was capable of extracting some of the demographic characteristics of the subjects
that provided the de-identified meibography images. Further development of the models
and larger training datasets will certainly gain in accuracy and specificity, with individually
identifiable meibography images on the horizon. While there is a potential for meibography’s
use as a highly accurate biometric identifier, there is also concern with the lack of regulation
and enforcement of the privacy and security of such images (assuming they are de-identified).
Considering that combining data from multiple sources (e.g., multi-modal biometrics) sig-
nificantly increases the likelihood of accurate individual identification 9, |156], it seems clear
that urgent updates are needed in the regulations and enforcement governing the security of
all biomedical imaging of patients and research subjects, regardless of whether it has been
anonymized.

The study has certain limitations. Only Meibomian gland morphology in the central
upper eyelid was analyzed as imaging the central region of the tarsal plate with an optimal
focus causes defocus of the peripheral glands. This work thus only presents results on demo-
graphic features and central tarsal plate morphological features as morphological features of
peripheral glands were not used in this analysis. For ethnicity, due to limited and imbalanced
samples for some races, only Asian and Caucasian meibography images were distinguished
using this deep learning approach. This leaves morphological features for other ethnic groups
undiscovered.

In conclusion, an interpretable deep learning model to predict demographic characteristics
from meibography images was developed. The model could be helpful in furthering the
understanding of the relationships between local features of Meibomian gland morphology
and subject demographics. Future work will extend the model to investigate detailed aspects
of Meibomian gland morphology and the signs and symptoms of MGD and DE. Finally, this
work suggests that de-identified meibography images — currently not considered PHI and
thus not subject to strict regulations on their use and dissemination — could in the future
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be developed into biometric identifiers of individuals with the rapidly evolving capabilities
of artificial intelligence.
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Improving the Learning Efficiency
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Chapter 8

Orthogonal Convolutional Neural
Networks

8.1 Introduction

While convolutional neural networks (CNNs) are widely successful [161} 67, [265], several
challenges still exist: over parameterization or under utilization of model capacity [101} 52|,
exploding or vanishing gradients [29, 94], growth in saddle points |64, and shifts in feature
statistics [136]. Through our analysis to solve these issues, we observe that convolutional fil-
ters learned in deeper layers are not only highly correlated and thus redundant (Fig), but
that each layer also has a long-tailed spectrum as a linear operator (Fig), contributing
to unstable training performance from exploding or vanishing gradients.

We propose orthogonal CNN (OCNN), where a convolutional layer is regularized with
orthogonality constraints during training. When filters are learned to be as orthogonal
as possible, they become de-correlated. Their filter responses are much less redundant.
Therefore, the model capacity is better utilized, which improves the feature expressiveness
and consequently the task performance.

Specifically, we show that simply by regularizing convolutions with our orthogonality
loss during training, networks produce more uniform spectra (Fig) and more diverse
features (Fig), delivering consistent performance gains with various network architec-
tures (Fig) on various tasks, e.g. image classification /retrieval, image inpainting, image
generation, and adversarial attacks (Table [8.1)).

Many works have proposed the orthogonality of linear operations as a type of regular-
ization in training deep neural networks. Such a regularization improves the stability and
performance of CNNs [25, 329, 24}, [23], since it can preserve energy, make spectra uniform
[354], stabilize the activation distribution in different network layers [251], and remedy the
exploding or vanishing gradient issues [14].

Existing works impose orthogonality constraints as kernel orthogonality, whereas ours
directly implements orthogonal convolutions, based on an entirely different formulation of a
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Figure 8.1: Our OCNN can remove correlations among filters and result in consistent performance
gain over standard convolution baseline and alternative kernel orthogonality baseline (kernel orth)
during testing. a) Normalized histograms of pairwise filter similarities of ResNet34 for ImageNet
classification show increasing correlation among standard convolutional filters with depth. b) A
standard convolutional layer has a long-tailed spectrum. While kernel orthogonality widens the
spectrum, our OCNN can produce a more ideal uniform spectrum. c¢) Filter similarity (for layer 27
in a) is reduced most with our OCNN. d) Classification accuracy on CIFAR100 always increases
the most with our OCNN.

convolutional layer as a linear operator.
Orthogonality for a convolutional layer Y = Conv(K, X) can be introduced in two dif-

ferent forms (Fig[8.2).

1. Kernel orthogonality methods [329, 24, 23] view convolution as multiplication be-
tween the kernel matrix K and the im2col [335, [121] matrix X, i.e. Y = KX. The
orthogonality is enforced by penalizing the disparity between the Gram matrix of ker-
nel K and the identity matrix, i.e. ||[K KT — I||. However, the construction of X from

input X is also a linear operation X = QX, and () has a highly nonuniform spectrum.

2. Orthogonal convolution keeps the input X and the output Y intact by connect-
ing them with a doubly block-Toeplitz (DBT) matrix IC of filter K, ie. YV = KX
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Table 8.1: Summary of experiments and OCNN gains

Task Metric Gain
CIFAR100 classification accuracy 3%
Image . -
. : ImageNet classification accuracy 1%
(Classification - > . - -
semi-supervised learning classification accuracy 3%
fine-grained image retrieval | kNN classification accuracy 3%
Feature unsupervised image inpainting PSNR 4.3
Quality image generation FID 1.3
deep metric learning NMI 1.2
Robustness black box attack attack time 7x less

and enforces the orthogonality of I directly. We can thus directly analyze the linear
transformation properties between the input X and the output Y.

Existing works on CNNs adopt kernel orthogonality, due to its direct filter representation.

We prove that kernel orthogonality is in fact only necessary but not sufficient for orthog-
onal convolutions. Consequently, the spectrum of a convolutional layer is still non-uniform
and exhibits a wide variation even when the kernel matrix K itself is orthogonal (Fig[3.1p).

More recent works propose to improve the kernel orthogonality by normalizing spectral
norms [203], regularizing mutual coherence [25], and penalizing off-diagonal elements [33].
Despite the improved stability and performance, the orthogonality of K is insufficient to
make a linear convolutional layer orthogonal among its filters. In contrast, we adopt the DBT
matrix form, and regularize ||Conv(K, K) — I.| instead. While the kernel K is indirectly
represented in the DBT matrix IC, the representation of input X and output Y is intact and
thus the orthogonality property of their transformation can be directly enforced.

We show that our regularization enforces orthogonal convolutions more effectively than
kernel orthogonality methods, and we further develop an efficient approach for our OCNN
regularization.

To summarize, we make the following contributions.

1. We provide an equivalence condition for orthogonal convolutions and develop efficient
algorithms to implement orthogonal convolutions for CNNs.

2. With no additional parameters and little computational overhead, our OCNN con-
sistently outperforms other orthogonal regularizers on image classification, generation,
retrieval, and inpainting under supervised, semi-supervised, and unsupervised settings.

Better feature expressiveness, reduced feature correlation, more uniform spectrum, and en-
hanced adversarial robustness may underlie our performance gain.
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Figure 8.2: Basic idea of our OCNN. A convolutional layer Y = Conv (K, X) can be formulated as
matrix multiplications in two ways: a) imZ2col methods [335,|121] retain kernel K and convert input
X to patch-matrix X. b) We retain input X and convert K to a doubly block-Toeplitz matrix k.
With X and Y intact, we directly analyze the transformation from the input to the output. We fur-
ther propose an efficient algorithm for regularizing C towards orthogonal convolutions and observe
improved feature expressiveness, task performance and uniformity in £’s spectrum (Fig).

8.2 Background

Im2col-Based Convolutions. The im2col method [335, [121] has been widely used in
deep learning as it enables efficient GPU computation. It transforms the convolution into a
General Matrix to Matrix Multiplication (GEMM) problem.

Fig illustrates the procedure. a) Given an input X, we first construct a new input-
patch-matrix X € ROWxHW! by copying patches from the input and unrolling them into
columns of this intermediate matrix. b) The kernel-patch-matrix K € RM*“** can then
be constructed by reshaping the original kernel tensor. Here we use the same notation for
simplicity. ¢) We can calculate the output ¥ = KX where we reshape Y back to the tensor
of size M x H x W — the desired output of the convolution.

The orthogonal kernel regularization enforces the kernel K € RM <Ok t6 be orthogonal.
Specifically, if M < Ck?, the row orthogonal regularizer is Lyorthrow = ||[K KT — I||p where

I is the identity matrix. Otherwise, column orthogonal may be achieved by Lyorth-coi =
K"K —1I||F.

Kernel Orthogonality in Neural Networks. Orthogonal kernels help alleviate gradient
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vanishing or exploding problems in recurrent neural networks (RNNs) |72, 322, 42, |14, 297,
228]. The effect of soft versus hard orthogonal constraints on the performance of RNNs
is discussed in [297]. A cheap orthogonal constraint based on a parameterization from
exponential maps is proposed in [42].

Orthogonal kernels are also shown to stabilize the training of CNNs [251] and make more
efficient optimizations [25]. Orthogonal weight initialization is proposed in [257] 202]; utiliz-
ing the norm-preserving property of orthogonal matrices, it is similar to the effect of batch
normalization [136]. However, the orthogonality may not sustain as the training proceeds
[257]. To ensure the orthogonality through the whole training, Stiefel manifold-based op-
timization methods are used in [109, [220, |128] and are further extended to convolutional
layers in [220).

Recent works relax and extend the exact orthogonal weights in CNNs. Xie et al. enforce
the Gram matrix of the weight matrix to be close to identity under Frobenius norm [329)
. Bansal et al. further utilize mutual coherence and the restricted isometry property [25].
Orthogonal regularization has also been observed to help improve the performance of image
generation in generative adversarial networks (GANs) [33] (34} 203].

All the aforementioned works adopt kernel orthogonality for convolutions. Sedghi et al.
utilize the DBT matrix to analyze singular values of convolutional layers but do not consider
orthogonality [260].

Feature Redundancy. Optimized CNNs are known to have significant redundancy between
different filters and feature channels [138] 126]. Many works use the redundancy to compress
or speed up networks [103, 119, [126]. The highly nonuniform spectra may contribute to
the redundancy in CNNs. To overcome the redundancy by improving feature diversity,
multi-attention [353], diversity loss [175], and orthogonality regularization [51] have been
proposed.

Other Ways to Stabilize CNN Training. To address unstable gradient and co-variate
shift problems, various methods have been proposed: Initialize each layer with near-constant
variances [94} 114]; Use batch normalization to reduce internal covariate shifts [136]; Repa-
rameterize the weight vectors and decouple their lengths from their directions [254]; Use
layer normalization with the mean and variance computed from all of the summed inputs
to the neurons |19]; Use a gradient norm clipping strategy to deal with exploding gradients
and a soft constraint for vanishing gradients [228].

8.3 Orthogonal Convolution

As we mentioned earlier, convolution can be viewed as an efficient matrix-vector multiplica-
tion, where matrix K is generated by a kernel K. In order to stabilize the spectrum of /C,
we add convolutional orthogonality regularization to CNNs, which is a stronger condition
than kernel orthogonality. First, we discuss the view of convolution as a matrix-vector mul-
tiplication in detail. Then, fast algorithms for constraining row and column orthogonality
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Figure 8.3: Convolution based on the doubly block-Toeplitz (DBT) matrix. We first flatten X to
a vector x, and then convert weight tensor K € RM*Cxkxk a5 DBT matrix K € RMH W)X (CHW),
The output y = Kx. We can obtain the desired output ¥ € RM xH'xW' by reshaping y. The
example has input size C' x 4 x 4, kernel size M x C' x 2 x 2 and stride 1.

in convolutions are proposed. Condition [8.3| summarizes the orthogonality. In this work, we
focus on the 2D convolution case, but concepts and conditions generalize to other cases.

8.3.1 Convolution as a Matrix-Vector Multiplication

For a convolutional layer with input tensor X € RE**W and kernel K € RM*Oxkxk e
denote the convolution’s output tensor Y = Conv(kK, X), where Y € RM*H">W' We can
further view K as M different filters, {K; € RE****}. Since convolution is linear, we can
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rewrite Conv(K, X)) in a matrix-vector form:
Y =Conv(K,X) &y =Kx (8.1)

where x is X flattened to a vector. Note that we adopt rigorous notations here while x
and X are not distinguished previously. Each row of K has non-zero entries corresponding
to a particular filter K; at a particular spatial location. As a result, K can be constructed

as a doubly block-Toeplitz (DBT) matrix X € RMHIWIX(CHW) from kernel tensor K €
RM ><C’><k><k:'
We can obtain the output tensor Y by reshaping vector y back to the tensor form.

Fig8.3] depicts an example of a convolution based on DBT matrix, where we have input size
of C' x 4 x 4, kernel size of M x C' x 2 x 2 and stride 1.

8.3.2 Convolutional Orthogonality

Depending on the configuration of each layer, the corresponding matrix € R(MH' W) (CHW)

may be a fat matrix (M H'W' < CHW) or a tall matrix (M H'W’' > CHW). In either case,
we want to regularize the spectrum of K to be uniform. In the fat matrix case, the uniform
spectrum requires a row orthogonal convolution, while the tall matrix case requires a column
orthogonal convolution, where K is a normalized frame [158] and preserves the norm.

In theory, we can implement the doubly block-Toeplitz matrix K and enforce the orthog-
onality condition in a brute force fashion. However, since K is highly structured and sparse,
a much more efficient algorithm exists. In the following, we show the equivalent conditions
to the row and column orthogonality, which can be easily computed.

Row Orthogonality. As we mentioned earlier, each row of K corresponds to a filter K; at
a particular spatial location (h',w’) flattened to a vector, denoted as K. € REW. The
row orthogonality condition is:

17 (%h/lawi) = (]7 h/27w12>

0, otherwise

(Kingwt o s Kyt ) = { (8.2)

In practice, we do not need to check pairs when the corresponding filter patches do not
overlap. It is clear that (Kiy . , Kjnyuy.) = 0 if either [hy — hg| > k or |wy — wa| > &,
since the two flattened vectors have no support overlap and thus have a zero inner product.
Thus, we only need to check Condition [8.2) where |hy — hs|, |wy —ws| < k. Due to the spatial
symmetry, we can choose fixed hq,w; and only vary i, j, he, we, where |hy — hol, |w; —ws| < k.

Fig[8.4] shows examples of regions of overlapping filter patches. For a convolution with
the kernel size k and the stride S, the region to check orthogonality can be realized by the
original convolution with padding P = [¥3!|-S. Now we have an equivalent condition to

S
Condition [8.2] as the following self-convolution:

Conv (K, K, padding = P, stride = S) = I (8.3)
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Figure 8.4: The spatial region to check for row orthogonality. It is only necessary to check
overlapping filter patches for the row orthogonality condition. We show two example cases: stride
S = 1 with kernel size k£ = 3 and stride S = 2 with kernel size £ = 4. In both examples, the orange
patch is the center patch, and the red border is the region of overlapping patches. For example,
pink and purple patches fall into the red region and overlap with the center region; blue patches are
not fully inside the red region and they do not overlap with the orange ones. We can use padding
to obtain the overlapping regions.

where I, € RM*XMx@P/S+1)x(2P/S+1) ig  tensor, which has zeros entries except for center M x

M entries as an identity matrix. Minimizing the difference between Z = Conv (K, K, padding =
P, stride = S) and I,¢ gives us a near row-orthogonal convolution in terms of DBT matrix

K.

Column Orthogonality. We use tensor L j, ., € RE*HXW ¢4 denote an input tensor, which
has all zeros except a 1 entry at the i*® input channel, spatial location (h,w). Denoting
einw € RETW as the flattened vector of E; v, we can obtain a column K., of K by

multiply K and vector ejnw:
Kz-,z‘hw = ICeth = COHV(K, Ei,h,w) (84)

Here, we slightly abuse the equality notation as the reshaping is easily understood. The
column orthogonality condition is:

1, (ia hlawl) = (j, h2,w2)

. (8.5)
0, otherwise

<’C-,ih1w1 7’C-,jh2w2> == {
Similar to the row orthogonality, since the spatial size of K is only k, Condition (8.5 only
needs to be checked in a local region where there is spatial overlap between K. ;;,,, and

K. jhow,- For the stride 1 convolution case, there exists a simpler condition equivalent to
Condition [R5}

Conv(K”, KT padding = k — 1,stride = 1) = I (8.6)
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where K7 is the input-output transposed K, i.e. KT € RO*Mxkxk [ c ROXCx2k-1)x(2k=1)
has all zeros except for the center C' x C' entries as an identity matrix.

Comparison to Kernel Orthogonality. The kernel row- and column-orthogonality con-
ditions can be written in the following convolution form respectively:
Conv(K, K, padding = 0) = I, (8.7)
Conv(KT, KT padding = 0) = Iy '
where tensor I, € RM*Mx1x1 T e REXCXIXI gare hoth equivalent to identity matricedT]
Obviously, the kernel orthogonality conditions [8.7| are necessary but not sufficient condi-
tions for the orthogonal convolution conditions in general. For the special case when
convolution stride is k, they are equivalent.

Row-Column Orthogonality Equivalence. The lemma below unifies the row orthog-
onality condition and column orthogonality condition [8.5] This lemma [166] gives a
uniform convolution orthogonality independent of the actual shape of K and provides a
unique regularization: ming Loy, = ||Z — Lo||%, which only depends on Condition .

Lemma 1. The row orthogonality and column orthogonality are equivalent in the MSFE sense,
i.e. ||[KKT — I = ||KTK — I'||% + U, where U is a constant.

We leave the proof to Section of supplementary materials.

Orthogonal Regularization in CNNs. We add an additional soft orthogonal convolution
regularization loss to the final loss of CNNs, so that the task objective and orthogonality reg-
ularization can be simultaneously achieved. Denoting A\ > 0 as the weight of the orthogonal
regularization loss, the final loss is:

L = Liask + ALoyen (8.8)

where Ly, is the task loss, e.g. softmax loss for image classification, and Ly, is the
orthogonal regularization loss.

8.4 Experiments

We conduct 3 sets of experiments to evaluate OCNNs. The first set benchmarks our approach
on image classification datasets CIFAR100 and ImageNet. The second set benchmarks the
performance under semi-supervised settings and focuses on qualities of learned features. For
high-level visual feature qualities, we experiment on the fine-grained bird image retrieval.
For low-level visual features, we experiment on unsupervised image inpainting. Additionally,
we compare visual feature qualities in image generation tasks. The third set of experiments
focuses on the robustness of OCNN under adversarial attacks. We analyze OCNNSs in terms
of DBT matrix K’s spectrum, feature similarity, hyperparameter tuning, and space/time
complexity.

1Since there is only 1 spatial location.
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8.4.1 Classification on CIFAR100

The key novelty of our approach is the orthogonal regularization term on convolutional
layers. We compare both conv-orthogonal and kernel-orthogonal regularizers on CIFAR-100
[160] and evaluate the image classification performance using ResNet [113] and WideResNet
[344] as backbone networks. The kernel-orthogonality and our conv-orthogonality are added
as additional regularization terms, without modifying the network architecture. Hence, the
number of parameters of the network does not change.

ResNet and Row Orthogonality. Though we have derived a unified orthogonal convo-
lution regularizer, we benchmark its effectiveness with two different settings. Convolutional
layers in ResNet [113] usually preserve or reduce the dimension from input to output, i.e. a
DBT matrix K would be a square or fat matrix. In this case, our regularizer leads to the row
orthogonality condition. Table shows top-1 classification accuracies on CIFAR100. Our
approach achieves 78.1%, 78.7%, and 79.5% image classification accuracies with ResNet18,
ResNet34 and ResNet50, respectively. For 3 backbone models, OCNNs outperform plain
baselines by 3%, 2%, and 1%, as well as kernel orthogonal regularizers by 2%, 1%, and 1%.

WideResNet and Column Orthogonality. Unlike ResNet, WideResNet [344] has more
channels and some tall DBT matrices K. When the corresponding DBT matrix K of a
convolutional layer increases dimensionality from the input to the output, our OCNN leads to
the column orthogonality condition. Table[8.3|reports the performance of column orthogonal
regularizers with backbone model of WideResNet28 on CIFAR100. Our OCNNs achieve 3%

and 1% gain over plain baselines and kernel orthogonal regularizers.

Table 8.2: Top-1 accuracies on CIFAR100. Our OCNN outperforms baselines and the SOTA
orthogonal regularizations.

ResNet18 | ResNet34 | ResNet50
baseline [113] 75.3 76.7 78.5
kernel orthogonality [329] 76.5 7.5 78.8
OCNN (ours) 78.1 78.7 79.5

Table 8.3: WideResNet [344] performance. We observe improved performance of OCNNs.

WideResNet [344] | Kernel orth [329] | OCNN
Acc. 77.0 79.3 80.1
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8.4.2 Classification on ImageNet

We add conv-orthogonal regularizers to the backbone model ResNet34 on ImageNet [67],
and compare OCNNs with state-of-the-art orthogonal regularization methods.
Experimental Settings. We follow the standard training and evaluation protocols of
ResNet34. In particular, the total epoch of the training is 90. We start the learning rate
at 0.1, decreasing by 0.1 every 30 epochs and weight decay le-4. The weight A of the
regularization loss is 0.01, the model is trained using SGD with momentum 0.9, and the
batch size is 256.

Comparisons. Our method is compared with hard orthogonality OMDSM [12§], kernel
orthogonality [329] and spectral restricted isometry property regularization [25]. Table
shows the Top-1 and Top-5 accuracies on ImageNet. Without additional modification to
the backbone model, OCNN achieves 25.87% top-5 and 7.89% top-1 error. The proposed
method outperforms the plain baseline, as well as other orthogonal regularizations by 1%.

Table 8.4: Top-1 and Top-5 errors on ImageNet [67] with ResNet34 [113]. Our conv-orthogonal
regularization outperforms baselines and SOTA orthogonal regularizations.

Top-1 error | Top-5 error
ResNet34 (baseline) [113] 26.70 8.58
OMDSM 128 26.88 8.89
kernel orthogonality [329) 26.68 8.43
SRIP [25] 26.10 8.32
OCNN (ours) 25.87 7.89

8.4.3 Semi-Supervised Learning

A general regularizer should provide benefit to a variety of tasks. A common scenario that
benefits from regularization is semi-supervised learning, where we have a large amount of
data with limited labels. We randomly sample a subset of CIFAR100 as labeled and treat the
rest as unlabeled. The orthogonal regularization is added to the baseline model ResNet18
without any additional modifications. The classification performance is evaluated on the
entire validation set for all different labeled subsets.

We compare OCNN with kernel-orthogonal regularization while varying the proportion
of labeled data from 10% to 80% of the entire dataset (Table [8.5). OCNN constantly out-
performs the baseline by 2% - 3% under different fractions of labeled data.

8.4.4 Fine-grained Image Retrieval

We conduct fine-grained image retrieval experiments on CUB-200 bird dataset [320] to
understand high-level visual feature qualities of OCNNs. Specifically, we directly use the
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Table 8.5: Top-1 accuracies on CIFAR100 with different fractions of labeled data. OCNNs are
consistently better.

% of training data 10% | 20% | 40% | 60% | 80% | 100%
ResNet18 [113] 31.2 | 47.9 | 60.9 | 66.6 | 69.1 | 75.3
kernel orthogonality ﬂ329] 33.7 | 50.5 | 63.0 | 68.8 | 70.9 | 76.5
Conv-orthogonality 34.5 | 51.0 | 63.5 | 69.2 | 71.5 | 78.1
Our gain 33 | 31 | 26 | 26 | 24 2.8

Retrievals

Figure 8.5: Image retrieval results on CUB-200 Birds Dataset. The model (ResNet34) is trained
on ImageNet only. First row shows our OCNN results, while the second row shows the baseline
model results. Ours achieves 2% and 3% top-1 and top-5 k-nearest neighbor classification gain.

ResNet34 model trained on ImageNet (from Section to obtain features of images in
CUB-200, without further training on the dataset. We observed improved results with OC-
NNs (Fig. With conv-orthogonal regularizers, the top-1 k-nearest-neighbor classification
accuracy improves from 25.1% to 27.0%, and top-5 k-nearest-neighbor classification accuracy
improves from 39.4% to 42.3%.
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Corrupted Image (input) Deep image prior OCNN (ours) Original image (GT)

Figure 8.6: Tmage inpainting results compared with deep image prior || Top — comparison on
text inpainting example. Bottom — comparison on inpainting 50% of missing pixels. In both cases,
our approach outperforms previous methods.

8.4.5 Unsupervised Image Inpainting

Table 8.6: Quantitative comparisons on the standard inpainting dataset || Our conv-
orthogonality outperforms the SOTA methods.

Barbara | Boat | House | Lena Peppers | C.man | Couple | Finger | Hill Man | Montage

Convolutional dictionary learning |226] 28.14 31.44 | 34.58 | 35.04 | 31.11 2790 | 31.18 | 31.34 | 32.35 | 31.92 28.05
Deep image prior (DIP) |2£§]_ 32.22 33.06 | 39.16 | 36.16 33.05 29.8 32.52 | 32.84 | 32.77 | 32.20 34.54
DIP + kernel orthogonality—|3_29] 34.88 34.93 | 38.53 | 37.66 34.58 33.18 | 33.71 | 34.40 | 35.98 | 32.93 36.99
DIP + conv-orthogonality (ours) 38.12 | 35.15 | 41.73 | 39.76 | 37.75 | 38.21 | 35.88 | 36.87 | 39.89 | 33.57 | 38.48

To further assess the generalization capacity of OCNNs, we add the regularization term
to the new task of unsupervised inpainting. In image inpainting, one is given an image X
with missing pixels in correspondence of a binary mask M € {0, 1}¢*#*W of the same size
of the image. The goal is to reconstruct the original image X by recovering missing pixels:

min £(X; Xo) = min [[(X — X,) © M||% (8.9)
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Deep image prior (DIP) [293] proposed to use the prior implicitly captured by the choice
of a particular generator network fy with parameter 6. Specifically, given a code vector/
tensor z, DIP used CNNs as a parameterization X = fp(z). The reconstruction goal in
Eqnf8.9 can be written as:

min || (fo(2) — Xo) © M|% (8.10)

The network can be optimized without training data to recover X. We further add our
conv-orthogonal regularization as an additional prior to the reconstruction goal, to validate
if the proposed regularization helps the inpainting:

min ||(fo(2) — Xo) © || + MLorn(0) (8.11)

In the first example (Fig., top), the inpainting is used to remove text overlaid on an
image. Compared with DIP [293], our orthogonal regularization leads to improved recon-
struction result of details, especially for the smoothed face outline and finer teeth recon-
struction.

The second example (Fig, bottom) considers inpainting with masks randomly sampled
according to a binary Bernoulli distribution. Following the procedure in [226, 293|, we sample
a mask to randomly drop 50% of pixels. For a fair comparison, all the methods adopt the
same mask. We observe improved background quality, as well as finer reconstruction of the
texture of butterfly wings.

We report quantitative PSNR comparisons on the standard data set [121] in Table .
OCNN outperforms previous state-of-the-art DIP [293] and convolutional sparse coding [226].
We also observe performance gains compared to kernel orthogonal regularizations.

8.4.6 Image Generation

Orthogonal regularizers have shown great success in improving the stability and performance
of GANSs [34], 203, [33]. We analyze the influence of convolutional orthogonal regularizers on
GANs with the best architecture reported in [95]. Training takes 320 epochs with OCNN
regularizer applied to both the generator and discriminator. The regularizer loss A is set to
0.01 while other settings are retained as default.

The reported model is evaluated 5 times with 50k images each. We achieve an inception
score (IS) of 8.63 & 0.007 and Fréchet inception distance (FID) of 11.75 & 0.04 (Table [8.7)),
outperforming the baseline and achieving the state-of-the-art performance. Additionally, we
observe faster convergence of GANs with our regularizer (Fig..

8.4.7 Robustness under Attack

The uniform spectrum of K makes each convolutional layer approximately a 1-Lipschitz
function. Given a small perturbation to the input, Az, the change of the output Ay is
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Figure 8.7: OCNNs have faster convergence for GANs. For IS (left) and FID (right), OCNNs
consistently outperforms CNNs [95] at every epoch.

Table 8.7: Inception Score and Fréchet Inception Distance comparison on CIFAR10. Our OCNN
outperforms the baseline [95] by 0.3 IS and 1.3 FID.

I FID
PixelCNN [204] | 4.60 | 65.93
PixellQN [219] | 5.20 | 49.46
EBM [74] | 6.78 | 38.20
SNGAN [203] | 8.22 | 21.70
BigGAN [33] | 9.22 | 14.73
AutoGAN [95] | 8.32 | 13.01
OCNN (ours) | 8.63 | 11.75

Table 8.8: Attack time and number of necessary attack queries needed for 90% successful attack
rate

Attack time/s | # necessary attack queries
ResNet18 [113] 19.3 27k
OCNN (ours) 136.7 46k

bounded to be low. Therefore, the model enjoys robustness under attack. Our experiments
demonstrate that it is much harder to search for adversarial examples.

We adopt the simple black box attack [99] to evaluate the robustness of baseline and
OCNN with ResNet18 [113] backbone architecture trained on CIFAR100. The attack sam-
ples around the input image and finds a “direction” to rapidly decrease the classification
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Figure 8.8: Model accuracy v.s. attack time and necessary attack queries. With our conv-
orthogonal regularizer, it takes 7x time and 1.7x necessary attack queries to achieve 90% successful
attack rate. Note that baseline ends at accuracy 3.5% while ours ends at 5.5% with the same
iteration.

confidence of the network by manipulating the input. We only evaluate on the correctly
classified test images. The maximum iteration is 10,000 with pixel attack. All other settings
are retained. We report the attack time and number of necessary attack queries for a specific
attack successful rate.

It takes approximately 7x time and 1.7x attack queries to attack OCNN, compared with
the baseline (Table and Fig[8.8). Additionally, after the same iterations of the attack,
our model outperforms the baseline by 2%.

To achieve the same attack rate, baseline models need more necessary attack queries,
and searching for such queries is nontrivial and time consuming. This may account for the
longer attack time of the OCNN.

8.4.8 Analysis

To understand how the conv-orthogonal regularization help improve the performance of
CNNs, we analyze several aspects of OCNNs. First, we analyze the spectrum of the DBT
matrix K to understand how it helps relieve gradient vanishing/exploding. We then analyze
the filter similarity 