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Symmetrized Drude Oscillator Force Fields

Improve Numerical Performance of Polarizable

Molecular Dynamics

Amro Dodin∗,† and Phillip L. Geissler†,‡

†Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720,

United States.

‡Department of Chemistry, University of California, Berkeley, CA 94720, United States.

E-mail: adodin@lbl.gov

Abstract

Drude oscillator potentials are a popular and computationally efficient class of po-

larizable models that represent each polarizable atom as a positively charged Drude

core harmonically bound to a negatively charged Drude shell. We show that existing

force fields that place all non-Coulomb forces on the Drude core and none on the shell

inadvertently couple the dipole to non-Coulombic forces. This introduces errors where

interactions with neutral particles can erroneously induce atomic polarization, leading

to spurious polarizations in the absence of an electric field and exacerbating violations

of equipartition in the employed Carr-Parinello scheme. A suitable symmetrization of

the interaction potential that correctly splits the force between the Drude core and

shell can correct this shortcoming, improving the stability and numerical performance

of Drude oscillator based simulations. The symmetrization procedure is straightfor-

ward and only requires the rescaling of a few force field parameters.
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1 Introduction

The success of classical molecular dynamics simulations hinges on our ability to construct

simple, accurate models for the interactions between atoms. Drude oscillator models are a

widely used family of models that efficiently describe polarizable chemical species in Coulom-

bically heterogeneous environments,1 such as a polarizable ion moving through a nanopore,2

or from the bulk of an electrochemical cell into the double layer. Each atom is split into a

positively charged core particle and a negatively charged shell that are attached by a har-

monic spring. Since each atom is split into two particles, the non-Coulombic forces must also

be split between the two particles. Conventionally the entirety of the non-Coulombic force is

assigned to the core and the shell particle evolves only under Coulombic forces. In this pa-

per, we show that this convention erroneously couples the atomic dipoles to non-electrostatic

forces, leading to artificial atomic polarization induced by collisions with neutral particles.

This unphysical coupling exacerbates numerical issues that arise in Drude oscillator simula-

tions including violations of equipartition and instabilities due to catastrophic polarization.

Fortunately, these errors can be easily corrected by symmetrizing how non-Coulombic forces

are split between the Drude core and shell with minimal computational cost.

Inter-atomic interactions in classical molecular dynamics are described using empirical

force fields that map a particular atomic configuration described by atomic positions, {ri},

and atomic charge distributions, {xi}, to its potential energy. Atomic charge distributions

may be described minimally, as a set of point charges {xi} = {qi}, or may include higher

order multipole moments to better capture electrostatic interactions. The potential energy

function is typically split into separate components,

U({ri}) = Ushort({ri}) + UC({ri}, {xi}) + Ubond({ri}), (1)

where Ushort is the short range (e.g. Lennard-Jones) interaction between atoms, UC describes

their Coulomb interactions, and Ubond contains the interactions between bonded atoms (e.g.

2



bond, angle, and dihedral potentials). The functional form of each of these components

and their parameters differ from one force field to the next and are fit to thermodynamic

properties or electronic structure calculations of the systems of interest.

Most widely used force fields, including the OPLS,3 AMBER,4 and CHARMM5 general

force fields as well as the TIPnP6–8 and SPC9 water models, employ a fixed point charge

model for Coulomb interactions, which assigns a static point charge, qi, to each atom. The

electrostatic component of the potential is given by

U
(fpc)
C ({ri}, {qi}) =

1

2

∑
i 6=j

qiqj
4πε0rij

, (2)

where ε0 is the permittivity of free space and rij is the distance between atoms i and j. The

point charges are fit as parameters of the force field or assigned physically reasonable values

(e.g. integer charges for simple atomic ions). Fixed charge models are ubiquitous due to their

ability to reasonably reproduce thermodynamic properties of homogeneous systems at low

computational cost. In particular, this type of model is referred to as “additive” since the

potential on each atom can be separately computed and summed together to obtain the total

potential, allowing for straightforward computational acceleration through parallelization.

However, fixed charge models can fail to capture the properties of heterogeneous systems

since they implicitly rely on a mean-field approximation in assuming that the atomic charge

distributions do not depend on their local environments. In reality, the charge distributions

of atoms and molecules will change when they are placed in an electric field which in turn

influences the Coulomb forces they exert on other atoms in the system. This mean field

assumption works well when most atoms experience similar electric fields, as is the case in

homogeneous systems, but can yield inaccurate predictions when average fields are spatially

heterogeneous. For example, fixed charge models can fail to capture ion-protein interactions

at Ca2+ binding sites,10 or the motion of ions between regions of different polarizability such

as lipid-water interfaces.11
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Polarizable force fields relax the mean field approximation by allowing atomic charge

distributions to adapt to their electrostatic environments. A broad range of polarizable

models have been proposed and reviewed1,12–15 including Quantum mechanical methods such

as X-POL16 or full QM-MM,17,18 fluctuating charge models,19–30 and self-consistent point

dipole approaches.31–38 In this paper, we focus on Drude oscillator models, which assign

each atom a variable dipole moment but represent them as physical dipoles composed of a

positively charged core harmonically attached to a negatively charged shell.1,39,40 In all these

approaches, atomic or molecular charge distributions respond to their environment, allowing

for improved modelling of heterogeneous systems at the cost of computational efficiency.

The responsiveness of atomic charge distributions to changing electric fields complicates

the evaluation of inter-atomic interactions by breaking the additive structure of the fixed

charge models. Since each atom’s charge distribution changes as a function of its local field,

the electric field that it produces must also change. However, the change in the field produced

by each atom will in turn change the local fields of the other atoms further modifying their

atomic distributions. The atomic charge distributions must then be solved self-consistently

before evaluating the interactions between the atoms and we can no longer take a simple

pair-wise sum over independent interactions. These force fields are therefore called “non-

additive”. Different polarizable models vary in their approach to updating atomic distri-

butions. Some force fields, such as the AMOEBA models,35–37 update the dipole moments

through self-consistent iteration. Drude oscillator models are typically updated using an

extended Lagrangian method,19,41,42 inspired by Car-Parinello Molecular Dynamics,43 that

assign the Drude particle a small fictitious mass and then propagates it as an independent

dynamical variable. To mimic self consistent minimization a dual thermostat scheme is em-

ployed that sets the center of mass motion of the atoms at the desired temperature of interest

while the relative motion of the core and shell is held at a very low temperature, typically 1

K.

While the extended Lagrangian method dramatically accelerates dynamics by eliminating
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the need for self consistent iteration, it can present new complications. The addition of

a charged, low mass Drude particle can cause numerical instabilities when it approaches

another charged atom leading to large forces and catastrophic polarization.1 Furthermore,

the extended Lagrangian method can violate equipartition due to the flow of energy from

the physical degrees of freedom to the fictitious Drude particle.44 Several methods have been

proposed for mitigating these issues, including the addition of a hard wall constraint to

the Drude dipoles that prevents catastrophic polarization,45 and the Temperature-Grouped

Nosé-Hoover thermostat44 which decreases the energy flow between the physical and fictitious

degrees of freedom.

We will show that several of these issues are exacerbated by an unphysical coupling of

the dipole degree of freedom, represented by the displacement between Drude core and shell

particles, and non-Coulombic forces. In section 2, we begin by demonstrating how this

erroneous coupling arises due to assigning the entirety of the non-Coulombic forces to the

Drude core and how it can be corrected by symmetrically assigning these forces. Section

3 presents numerical examples that illustrate how the force field asymmetry can lead to

violations of equipartition and the induction of dipoles in the absence of any electric fields -

issues that are resolved by suitably symmetrizing the potential.

2 Theory and Methods

2.1 The Drude Oscillator Model

The purpose of polarizable force fields is the construction of a model for the response of

atomic charge distributions to an electric field E. We will assume that each atom responds

linearly to the applied field with a polarizability α, so that the atomic dipole µ is given by:

µ = αE. (3)
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This linear-response approximation is well-justified in typical condensed phase systems where

the electric fields only lead to a modest change in the electronic structure. Higher order

multipole moments are typically neglected although there is no restriction that prevents

their inclusion if a more detailed description of short range electrostatics is needed. In

general, atoms may polarize anisotropically (e.g. polarizing more easily in the direction of

bonds) in which case α would be represented by a tensor. For simplicity, we will assume

that each atom is also isotropically polarizable so that α is a scalar number. This does not

modify the arguments and concepts presented in this paper but complicates the notation.

The Drude oscillator model represents each atom as a core particle with charge qc at

position rc and a shell particle with charge qs at position rs. The core and shell charges

must sum to the total charge of the atom q = qc+qs. Since we will be primarily interested in

the dipole degree of freedom we will take q = 0 noting that since the total atomic charge is

taken to be fixed in the Drude oscillator model this contribution can simply be added back

in using the fixed point charge potential in Eq. (2). This assumption simplifies our notation

and allows us to define the Drude charge qD = qs = −qc.

The Drude core and shell are connected by a harmonic potential with spring constant kD

which allows us to relate the Drude model to the polarizable dipole expression in Eq.(3). In

the absence of an applied field, the minimum core-shell displacement d ≡ rc − rs, vanishes

corresponding to no atomic dipole µ := qDd = 0. 1 More generally, when an electric field is

applied, the minimum energy displacement will shift, yielding a dipole moment that aligns

with the field

µ∗ = qDd
∗ =

q2D
kD
E, (4)

where we have used the fact that d∗ is the minimum of the shifted harmonic kD/2|d|2−qdE·d.

We can then compare this expression to Eq. (3) to express the polarizability in terms of

1Rigorously, we can only relate the idealized point dipole µ to a physical dipole comprised of two point
charges if the Drude core and shell are very close. Explicitly, d must be much smaller than the spatial
variations in the electric field in any direction r̂ so that d � maxr̂{∇r̂ · E}/E. The field exerted by the
point and physical dipoles will only agree at distances r � d. The near field contribution at shorter distances
requires higher order multipole terms.
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Drude oscillator parameters

α =
q2D
kD
. (5)

The polarizability α therefore does not fully specify the Drude oscillator parameters qD

and kD since for any choice of qD or kD there exists a choice of the other parameter that

yields a desired α. There are two commonly used conventions for selecting these Drude

parameters. One convention, which is used in the CHARMM Drude force field,1 is to fix the

spring constant to a specified value of kD = 1000 kCal/mol/Å2 and to change the charge

qD →
√
kDα to match the polarizability.42 This approach is appealing since the spring

constant kD plays an important role in determining both the time step and the typical

fluctuations of the displacement vector d which controls how closely the Drude oscillator

represents a point dipole. Fixing the spring constant therefore makes it easier to control

the numerical performance of the model. Alternatively, the Drude charge can be fixed at

qD = −1e and vary the spring constant kD → q2D/α.46

The Drude oscillator model is non-additive since the electric field in Eq. (4) depends on

all dipole moments in the system. The atomic dipoles and electric field must be solved using a

self consistent field (SCF) approach, requiring an expensive iterative minimization. However,

this SCF minimization can be avoided through an extended Lagrangian scheme that treats

the dipoles as dynamical variables. In the Drude oscillator model this is done by splitting

the mass of each atom between the Drude core and shell so that Mi = m
(i)
c + m

(i)
D , where

we have used the notation mD for the shell mass to highlight that this is a key parameter of

the Drude algorithm, and reintroduced the atom label i. The centers of mass of the Drude

oscillators with coordinates,

Ri =
m

(i)
c

Mi

r(i)c +
m

(i)
s

Mi

r(i)s , (6)

along with the positions of any non-polarizable atoms are evolved with a thermostat at the
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temperature of interest T . The relative motion of the core-shell pairs,

di = r(i)c − r(i)s , (7)

are instead held at a low temperature TD to keep them close to their energetic minima and

mimic the SCF minimization.

2.2 Spurious Polarization in Drude Force Fields

The Drude oscillator approach presents one more important decision that must be made

to specify the model. How do we divide the non-Coulombic forces, Ushort and Ubond in Eq.

(1), between the core and shell particles? In particular, we must ensure that the division of

forces between core and shell agrees with the SCF solution of {µi} in Eq. (4), with the dipole

moment responding only to the local electric field and not to Coulomb forces. Thus far, this

has been done by assigning the entirety of the non-Coulomb forces to the core particles and

none to the shells so that

Ushort({ri}) + Ubond({ri})→ Ushort({r(i)c }) + Ubond({r(i)c }), (8)

where we simply evaluate all non-electrostatic potentials and forces at the position of the

Drude core. The resulting forces on the core and shell are then given by

F (i)
c = −∂Ushort({r(i)c })

∂r
(i)
c

− ∂Ubond({r(i)c })
∂r

(i)
c

+ (q
(i)
D + qi)E − k(i)D (r(i)s − r(i)c )

:= F
(i)
short + F

(i)
bond + (q

(i)
D + qi)E − k(i)D (r(i)s − r(i)c )

(9a)

F (i)
s = −q(i)D E + k

(i)
D (r(i)s − r(i)c ) (9b)

where F
(i)
c and F

(i)
s are the forces acting on the ith core and shell respectively. We have also

reintroduced the contributions of the atomic charges qi through the fixed point charge model
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of Eq. (2). This convention is motivated by thinking of the Drude core as a physical degree

of freedom representing the nuclear center of mass while the shell is the fictitious degree of

freedom introduced by the extended Lagrangian scheme.

The SCF minimization in Eq. (4) that we would like to compare to is expressed in terms

di and so we must evaluate the forces acting on the relative degrees of freedom {Ri,di}.

Transforming Eq. (9) into the relative coordinate system defined by Eqs. (6) and (7) yields

F
(i)
R = F (i)

c + F (i)
s = F

(i)
short + F

(i)
bond + qiE (10a)

F
(i)
d =

m
(i)
s

Mi

F (i)
c − m

(i)
c

Mi

F (i)
s =

m
(i)
s

Mi

(
F

(i)
short + F

(i)
bond + qiE

)
+ q

(i)
D E − k

(i)
D di. (10b)

The resulting force expression should raise concerns since the force acting on the relative

motion of the core and shell contains a contribution from non-Coulombic forces.

We can compare this directly to Eq. (4) by noting that the minimum arises when F
(i)
d =

0, giving

µ
(asym)
i = q

(i)
D d

(asym)
i =

q
(i)
D

k
(i)
D

m
(i)
s

Mi

(
F

(i)
short + F

(i)
bond + qiE

)
+
q
(i)
D

2

k
(i)
D

E. (11)

The first term of this expression clearly differs from the SCF result. Moreover, it couples the

dipole moment to non-Coulombic fields and therefore polarizes atomic dipoles in the absence

of any electric field. The ms dependence of this error is also surprising since we arrived at Eq.

(11) using purely energetic arguments that depend only on configurational and not dynamical

information. Traditional Drude force fields therefore display static distributions that depend

on mass, a situation that should not arise in thermodynamic equilibrium. Moreover, these

arguments do not rely on the thermostat at all, assuming only that {di} are minimized

holding the centers of mass fixed. The same error should therefore also appear for a SCF

minimization using the same force fields and coordinates even though the SCF approach

makes no reference to the fictitious masses.
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The counter-intuitive mass dependence of the error arises not from any dynamical effects

but rather from the mass-dependent relative coordinate system in Eqs. (6) and (7). The

extended Lagrangian method is thermodynamically consistent with an exact SCF minimiza-

tion of the degree of freedom that is held at a low temperature by the dual thermostat, in

this case di. For any finite shell mass, ms, the response of this coordinate includes contribu-

tions from both the core and shell - although the core contribution vanishes in the ms → 0

limit. The asymmetric force field in Eq. (9) assigns too much of the non-Coulomb potential

to the core, leading to an excess response of the core than is accounted for by the center

of mass. This excess core response with no concomitant shell response spills over into the

relative coordinate, polluting the dipole response. We see that the spurious force therefore

originates from the discrepancy between the division of the potential between the core and

shell and the definition of the relative coordinate system.

We can make the origin of these spurious polarizations concrete by considering a sim-

ple model molecule comprised of a neutral polarizable atom, treated as a Drude oscillator,

bonded to a neutral non-polarizable atom - sketched in Fig. 1.A. In the absence of an electric

field, we know that the Drude atom should show no net polarization in every atomic config-

uration, regardless of the bonded force, i.e. independent of the displacement of the bonded

atom from their equilibrium geometry. We can then perform the self-consistent minimization

of the relative degree of freedom under the constraint that the center of mass of all atoms is

held fixed - the SCF procedure that corresponds to the dual Drude thermostat. The force

experienced by the Drude core due to its bond to the non-polarizable atom is given by

Fbond = −k(rc − r0)

(
1− req
|rc − r0|

)
, (12)

where rC and r0 are the positions of the Drude core and non-polarizable atom respectively,

k is the bond constant and req is the equilibrium bond length.

Since the core position contributes to the relative Drude coordinate, d, being minimized,
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Figure 1: Schematic of a Drude atom comprised of a core (red) and shell (blue) bonded to
a non-polarizable atom (green). The molecule is shown extended from its equilibrium bond
length req. The centers of mass which are held fixed are shown as dashed circles. (A) The
asymmetric bonded force acting on the core is shown as a red arrow with the relative degree
of freedom is initially set to d = 0. (B) The minimized configuration where the bonded force
and Drude spring force are balanced fixing the centers of mass, showing the spurious atomic
polarization.
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the core can move in response to this force. However, since the minimization is performed

holding the center of masses fixed, the Drude shell must also move in the opposite direction

∼ (rC − r0) in order to keep the center of mass fixed. This will then impose a force on the

core-shell displacement due to the Drude spring. The dipole moment corresponding to the

energy minimization is reached when these two forces are exactly balanced and is given by

Eq. 11 as

µ
(asym)
i = −qD

ms

M

k

kD

(
1− req
|rC − r0|

)
(rC − r0). (13)

This expression clearly depends unphysically on the position of a neutral non-polarizable

atom through req. Furthermore, we see that a dipole moment has formed even in the absence

of any external field. This arose since both the core and shell are included in the d coordinate

and the force is not properly split between them. This leads to the core responding more

strongly than the shell which must then move in the opposite direction to maintain the

fixed center of mass. This motion then leads to the formation of a spurious polarization in

the absence of an electric field shown in Fig. 1.B. As the shell mass approaches the limit

ms → 0, the shell particle must move more to compensate for a small displacement of the

core. This larger shell displacement would lead to a larger restoring force from the Drude

spring limiting how much the core can move to relax the bond force.

2.3 Symmetrized Drude Force Fields

We can find the correct symmetrized division of the non-dipole forces by proposing the

following ansatz:

Ushort({ri}) + Ubond({ri})→ U
(c)
short({r

(i)
c }) + U

(c)
bond({r(i)c })

+ U
(s)
short({r

(i)
s }) + U

(s)
bond({r(i)s })

(14a)

U
(c)
short({r

(i)
c }) + U

(c)
bond({r(i)c }) = ai

(
Ushort({r(i)c }) + Ubond({r(i)c })

)
(14b)

U
(s)
short({r

(i)
s }) + U

(s)
bond({r(i)s }) = bi

(
Ushort({r(i)s }) + Ubond({r(i)s })

)
(14c)
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q(i)c = aiqi + q
(i)
D (14d)

q(i)s = biqi − q(i)D , (14e)

where ai and bi are coefficients that define how the force field is divided between the par-

ticles. Determining an appropriate choice of these coefficients that eliminates the spurious

polarization will be our primary goal in this section.

Before proceeding, there are several features of Eq. (14) that should be highlighted.

First, we note that, in contrast to traditional Drude force fields, we have divided the bare

atomic charge between the core and the shell rather than placing the entirety of the charge

on the core. This is needed so that the dipole response is not polluted by the monopole

response, the qE term in Eq. (11). Second, there is some subtlety to where the forces are

evaluated in the additive and polarizable force fields. In the additive force fields, forces and

potentials are evaluated at the atomic center of mass while in the Drude force field they are

evaluated at the positions of the core and shell. Strictly, the forces and potentials should in

all cases be evaluated at the center of mass but then assigned to the cores and shells weighted

by α and β. However, this can introduce substantial challenges in implementing these force

fields in traditional molecular dynamics software. Instead, we can retain the feature of

traditional Drude force fields that treat the core and shell just like any other atom in the

system evaluating the forces at their positions. This approach is an approximation and can

lead to residual asymmetry in the force field due to differences in the potentials evaluated at

the positions of the core and shell, which we refer to as localization error. As a result, some

of the spurious polarization in Eq. (11) may remain due to this error. We will quantify the

localization error in more depth below in section 2.5, but we note that it is negligible when

d is much smaller than the length scale of variations in the forces. This can be controlled by

increasing the value of the Drude spring constant kD or eliminated entirely by evaluating the

forces at the Centers of mass. In either case, we will drop the explicit coordinate dependence

and assume that a−1(U
(c)
short + U

(c)
bond) ≈ Ushort + Ubond ≈ b−1(U

(s)
short + U

(c)
bond).
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With these caveats in place, we can now proceed by evaluating the forces acting on the

relative degrees of freedom, giving the following expressions:

F
(i)
R = (ai + bi)

(
F

(i)
short + F

(i)
bond + qE

)
(15a)

F
(i)
d =

(
ai
m

(i)
s

Mi

− bi
m

(i)
c

Mi

)(
F

(i)
short + F

(i)
bond + qE

)
+ qDE − kDdi. (15b)

Requiring the center of mass forces to be consistent with the force on the atoms in the

additive force field and the force on the relative degree of freedom to vanish at the SCF

minimum in Eq. (4) yields a simple system of equations for ai and bi,

ai + bi = 1 (16a)

ai
m

(i)
s

Mi

= bi
m

(i)
c

Mi

(16b)

ai =
m

(i)
c

Mi

(16c)

bi =
m

(i)
s

Mi

. (16d)

The symmetrization result has a simple interpretation. The non-Coulomb forces and atomic

charge must be divided between the core and the shell weighted by their mass. This procedure

yields a set of relative coordinates and forces that are consistent with the SCF procedure

and avoid the spurious polarizations that appear in the standard, asymmetric Drude force

fields, so that Eq. 15 reduces to

F
(i)
R =

(
F

(i)
short + F

(i)
bond + qE

)
(17a)

F
(i)
d = qDE − kDdi. (17b)

The SCF minimization of di is then given, as above, by setting F
(i)
d = 0 with resulting
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dipole moments

µ
(sym)
i = q

(i)
D d

(sym)
i =

q
(i)
D

2

k
(i)
D

E, (18)

in perfect agreement with the desired result in Eq. (4).

2.4 Symmetrized Pairwise Potentials

The symmetrization conditions in Eq. (16) express the relationship between the potentials

experienced by cores and shells and can be satisfied by many different force fields. In this

section, we will show how we can concretely construct pairwise potentials that can be ap-

plied in molecular simulations. These pairwise specifications will apply to both non-bonded

pair potentials and bond potentials and will illustrate how they can be generalized to three

and four body potentials such as angle, proper and improper dihedral, and non-bonded

Stillinger-Weber potentials - though the algebra will be more involved and may incur addi-

tional computational cost in implementation.

The central question in symmetrizing pairwise potentials is how we can apply the speci-

fication in Eq. (16) to potentials of the form

U
({
r(i)c , r(i)s , ri

})
=

1

2

(∑
i 6=j

u(i,j)cc (r(i)c − r(j)c ) +
∑
i 6=j

u(i,j)ss (r(i)s − r(j)s )

)

+
∑
i 6=j

u(i,j)cs (r(i)c − r(j)s ) +
1

2

∑
i 6=j

u(i,j)nn (ri − rj)

+
∑
i,j

u(i,j)cn (r(i)c − rj) +
∑
i,j

u(i,j)sn (r(i)s − rj),

(19)

where r
(i)
c and r

(i)
s are the core and shell positions of the ith polarizable atom and ri is the

position of the ith non-polarizable atoms. The polarizable and non-polarizable atoms are

distinct lists so that ri and r
(i)
c refer to different atoms. Equation (19) contains core-core,

core-shell and shell-shell potentials as well as interactions between cores and shells and non-

polarizable particles which can all generally be different. Throughout, we will assume that

15



evaluating any of the potential functions at the core and shell position of a given atom will

yield the same answer. This is the same as the small displacement assumption we applied

to derive the symmetrized force fields.

We are interested in constructing symmetrized force fields that start from a non-polarizable

or asymmetric force field uij that has already been parameterized. Our goal is then to de-

termine how this force field can be split between the cores and shells, motivating the ansatz

u
(i,j)
αβ = a

(i,j)
αβ uij, (20)

where α, β ∈ {c, s, n} label whether the atoms are cores, shells or non-polarizable and i, j

are atom indexes. This ansatz is particularly convenient since many pair potentials include a

scalar parameter that sets their energy scale (e.g. the bond spring constant or the ε parameter

in Lennard-Jones and WCA potentials). Under this scaling ansatz, symmetrization can

then be accomplished by simply rescaling these force field parameters. Since, we seek a

prescription for symmetrizing force fields that works for any number of particles in the

system, the potentials should be symmetrized for each pair of atoms and Equation (16)

should therefore apply to each pair of atoms.

Consider first the pair potentials involving a non-polarizable particle. For interactions

between, two non-polarizable particles a
(i,j)
nn = 1 since there are no cores or shells to split the

interaction between. Similarly, we can immediately use Eq. (16) to split the interactions

between non-interacting particles and cores or shells to give

a(i,j)cn = m(i)
c /Mi (21a)

a(i,j)sn = m(i)
s /Mi. (21b)

This solution is unique since we have two constraints for two variables.

The situation is more complicated for interactions between two Drude pairs. This leaves
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us with four potentially independent parameters that govern the four possible interactions

between the cores and shells on different atoms, a
(i,j)
cc , a

(i,j)
ss , a

(i,j)
cs , and a

(j,i)
cs . This gives us a

system of four linear equations for the coefficients

a(i,j)cc + a(i,j)cs =
m

(i)
c

Mi

(22a)

a(i,j)cc + a(j,i)cs =
m

(j)
c

Mj

(22b)

a(j,i)cs + a(i,j)ss =
m

(i)
s

Mi

(22c)

a(i,j)cs + a(i,j)ss =
m

(j)
s

Mj

. (22d)

While this would at first appear to uniquely specify the four pair potential specifications,

only three of these equations are linearly independent. This indicates that we will have a

one parameter family of possible force field symmetrizations, or alternatively that we are

free to impose one additional independent constraint on the coefficients.

We can take advantage of this flexibility by imposing the condition that a
(i,j)
ss = 0 in order

to decrease the number of pair force evaluations we need to perform while simultaneously

minimizing the force on the lowest mass shell particles that are most prone to numerical

error. This yields the following prescription for the symmetrized force fields between Drude

atom pairs

a(i,j)cc =
m

(i)
c

Mi

+
m

(j)
c

Mj

− 1 (23a)

a(i,j)cs =
m

(j)
s

Mj

(23b)

a(i,j)ss = 0. (23c)

In general, if we are interested in symmetrizing an m body potential involving n Drude

oscillator atoms, we must solve a system of 2n linear equations for the same number of
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coefficients. For example, a three body interaction involving three Drude oscillator pairs

would have 8 coefficients u
(i,j,k)
αβδ , where α, β, δ = c or s. This is no more complicated than the

pair potentials we discuss here but becomes algebraically more difficult. In addition, it can

rapidly increase the number of potentials that must be ccomputed increasing computational

complexity. In general, several of these constraints may be linearly dependent allowing us

to impose further constraints that can reduce the number of potential terms that need to be

evaluated.

It is possible to only symmetrize some non-Coulombic terms in the force field since they

act additively (e.g. we simply add together the bond and angle potentials). This partial

symmetrization will alleviate the spurious polarizations that arise from the symmetrized

terms but will retain the errors from unsymmetrized potentials. Such an approach may be

desirable when the cost of reparameterizing a potential or computing the additional terms

required by symmetrization is too high relative to the mitigation in error. In general, the

most important degrees of motion to symmetrize are those that are similar in frequency to

the Drude oscillator since these will be the ones that can transfer energy most efficiently

to the unphysical degrees of freedom. For most systems of interest using the constant kD

convention, this will be the bond vibrations which can vibrate close to resonance with Drude

oscillators,44 and non-bonded collisions which lead to impulsive δ function like forces that

contain a broad range of frequencies and can be very large in magnitude. Fortunately, these

are typically pairwise potentials and can be symmetrized as described in this section with

modest computational cost.

2.5 Localization Error

After symmetrizing the potential as described above, the primary remaining source of error

is the error from evaluating the forces at the core and shell positions instead of at the center

of mass. In this section, we quantify this localization error by examining how the force acting

on the centers of mass, and relative degrees of freedom differ when the force is evaluated at
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the core and shell positions compared to evaluating them at the center of mass. Throughout,

we will assume that the displacement parameter is small relative to the spatial variations in

the force and can therefore be used as a small parameter in a Taylor expansion to estimate

the error.

We begin by considering the forces acting on the center of mass and relative Drude

coordinates when the asymmetric force field is evaluated at the core and shell positions,

F
(i,asym)
R =

(
F

(i)
short + F

(i)
bond + qE

)
Ri−

m
(i)
s

Mi
di

+qD

(
E|

Ri−
m

(i)
s

Mi
di

−E|
R+

m
(i)
c

Mi
di

)
+kDdi (24a)

F
(i,asym)
d = −m

(i)
s

Mi

(
F

(i)
short + F

(i)
bond + qE

)
R−m

(i)
s

Mi
di

−qD

(
m

(i)
s

Mi

E|
R−m

(i)
s di
Mi

+
m

(i)
c

Mi

E|
R+

m
(i)
c

Mi
di

)
−kDdi,

(24b)

where subscripted coordinates indicate where forces and fields must be evaluated. Taylor

expanding this expression to first order in the Drude displacement di allows us to estimate

the leading order localization error

F
(i,asym)
R ≈ F0|Ri

− qD∇E|Ri
di −

m
(i)
D

Mi

∇F0|Ri
di +O(d2i ) (25a)

F
(i,asym)
d ≈ −qDE|Ri

−kDdi−
m

(i)
s

Mi

F0|Ri
−

(
m

(i)
s

Mi

)2

∇F0|Ri
di−

(
m

(i)
c

Mi

− m
(i)
s

Mi

)
∇E|Ri

di+O(d2i ),

(25b)

where the non-Drude forces have been collected into the term F0 = F
(i)
short +F

(i)
bond + qE for

brevity and ∇ is the derivative operator, which takes the form of a matrix for vector valued

functions F0 and E.

The first two terms in the center of mass force, Eq. (25a), give the expected force if the

Drude pair were a point dipole located at the center of mass. The first term is the non-Drude

forces experienced by the center of mass, while the second is the Coulomb force experiences

by the induced dipole µi = qDdi. The third term, however, is a localization error that

arises due to evaluating the non-Drude forces at the core position instead of the center of
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mass. Consequently, we see that Drude force fields can also induce erroneous forces directly

on the centers of mass. The first two terms in the relative force, Eq. (25b), also give the

expected force for a point dipole at the center of mass. The third term is the asymmetry

error discussed above, while the fourth and fifth terms are new localization errors. The term

proportional to ∇F0 is the localization error in evaluating the non-Drude forces while the

final term is the localization error in evaluating the electric field.

We repeat this process to estimate the leading order localization error for the symmetrized

force field, yielding

F
(i,sym)
R ≈ F0|Ri

− qD∇E|Ri
di +O(d2i ) (26a)

F
(i,sym)
d ≈ −qDE|Ri

− kDdi−
m

(i)
s m

(i)
c

M2
i

∇F0|Ri
di−

(
m

(i)
c

Mi

− m
(i)
s

Mi

)
∇E|Ri

di +O(d2i ). (26b)

Notably, we see that symmetrizing the force field also eliminates the leading order localization

error in the center of mass forces. The localization error in the relative degree of freedom of

the symmetrized force field is of the same order in di as the asymmetric one. However, the

prefactor of the force localization error vanishes more slowly as m
(i)
s → 0 in the symmetrized

force field compared to the asymmetric force field. This may yield larger localization error

for the symmetrized force field in some systems when the Drude mass is taken to be small.

However, this is likely to be outweighed by the elimination of the asymmetry error which is

a lower order error term independent of di.

The localization error can be avoided entirely by evaluating the forces at the center of

mass and then assigning them to the core and shell according to the symmetrization rules

of the previous sections. The only forces that need to be evaluated at the core and shell

positions are the Coulomb fields acting on the Drude charges qD since these are responsible

for the induced dipole forces acting on the polarizable atoms. Such an approach may be

straightforward to implement with minimal computational in some Molecular Dynamics

software where the centers of mass of the Drude atoms are already calculated over the

course of the time step, and would be advantageous in eliminating all sources of localization
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error except for the field localization error acting on the relative degrees of freedom.

3 Benchmark Results

In this section, we demonstrate how applying symmetrized force fields can circumvent some

of the numerical challenges that arise in Drude simulations. A variety of systems will be

simulated in the LAMMPS molecular dynamics software47 using the DRUDE package for

thermalized Drude oscillators.48 This simulation package does not include any corrections for

catastrophic polarizations and directly evaluates the equations of motion under the poten-

tials described above. First, we demonstrate how an asymmetric bond potential in a model

polarizable diatomic molecule as shown in Fig. 1 can lead to energy leakage out of the bond

vibration in Section 3.1, while a symmetrized bond potential avoids this leakage. When

considering a gas of such diatomic molecules in section 3.2 we show how the energy leak-

age leads to violations of equipartition which is attenuated by symmetrizing the potential.

Throughout, we will use parameters that are expected to be the most challenging for Drude

oscillators, including resonances between the center of mass degrees of freedom and Drude

oscillators as well as large Drude masses, in order to test the force field symmetrization under

difficult conditions.

3.1 Energy Leakage in a Diatomic Molecule

Consider a diatomic molecule comprised of one non-polarizable atom and one polarizable

atom represented by a Drude oscillator, as drawn in Fig. 1.A. This is the simplest possible

system we can consider that differentiates between the asymmetric and symmetrized force

fields. In order to best highlight the numerical challenges that can arise in Drude oscillator

simulations, we will consider the most difficult scenario where mc = ms = mnp and kbond =

kD. In this parameter regime, the bond vibrations are resonant with the Drude oscillator and

can therefore efficiently transfer energy to the fictitious degree of freedom - a scenario known
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to cause numerical artefacts.44 In the simulations that follow, k = 500 kCal ·mol−1 · Å−2 ,

m = 1 amu and the equilibrium bond distance is d
(eq)
bond = 1 Å.

The initial state is obtained by sampling a bond displacement dbond from an equilibrium

distribution at T = 300 K. It is then propagated with a timestep dt = 1 fs under a Langevin

thermostat for the relative degree of freedom dDrude at temperature TD = 1 K and damping

time τD = 20 fs, while the center of mass was not thermostatted. This was accomplished by

setting TCoM = 300 K and τCoM → 1012 fs, much longer than the simulation time so that the

dual Langevin thermostat negligibly impacted the Center of Mass dynamics.

Figure 2: Energy leakage in diatomic molecules with a Drude polarizable atom. Bond length
of (A) Asymmetric and (B) Symmetrized force fields. Both plots were initialized in the same
initial condition sampled from a Boltzmann distribution at T = 300 K. Standard deviations
at 1K (blue) and 300 K (red) are provided as guides. (C) The Drude displacement coordinate
for each of the force fields is plotted. In all cases, the relative core shell coordinate is held
at 1K by a Langevin thermostat, while the centers of mass are not thermostatted.

Sample trajectories for each of the two force fields is shown in Fig. 2, shows the conse-

quences of the unphysical coupling between the center of mass and Drude degrees of freedom.

In the asymmetric case shown in Fig. 2.A, this spurious coupling leads to a rapid, unphysi-

cal, loss of energy out of the bond degrees of freedom, damping the vibrations within ∼ 100

fs. After the first few 100 fs, the bond vibrations appear to be thermostatted at the Drude

temperature, TD = 1 K. In contrast, the symmetrized force field does not show any sig-

nificant leakage of energy out of the bond vibration. The symmetrized force field was also

propagated for 109 fs, much longer than is shown but still much shorter than the thermostat

damping time, and still showed no visible leakage of energy. The distinction between the
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force fields is also visible in the relative degree of freedom in Fig. 2, where we see that under

asymmetric force fields, dipole moments do not vanish as expected until the bond vibrations

have fully cooled.

The particular parameters selected in this example are particularly challenging for Drude

oscillator simulations since the bond vibration and Drude oscillator degree of freedom are

near resonance. In addition, since the mass has been evenly split between the core and shell

particle, the error in the asymmetric force field is maximized. As a result, in many systems

the energy leakage into the Drude oscillator modes is likely less extreme. Nevertheless, even

in this extreme regime, we see that the symmetrized force field shows an excellent decoupling

between the center of mass and dipole dynamics. In contrast to the asymmetric force field

which requires us to select as low a Drude shell mass as numerically feasible, the symmetrized

force field continues to perform well even when the mass is evenly split between the core and

shell.

Figure 3: Temperature of (A) Center of Mass coordinate R and (B) Relative Drude coordi-
nate d as a function of Drude mass. In all cases, a dual thermostat scheme was employed
that held the Centers of Mass at TCoM = 300 K and the relative degrees of freedom at TD = 1
K.
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We can further evaluate the performance of the symmetrized force field by introducing a

dual thermostat and varying the Drude mass mD, as shown in Fig. 3. The centers of mass

are held at a temperature of TCoM = 300 K, with a damping time of 100 fs. The timestep

was scaled by
√

min{m̃}, where min{m̃} is the smallest reduced mass in the system to

ensure that the integrator stability was conserved as the masses where varied. Regardless of

timestep, the systems were simulated for 100 ps, discarding the first 1 ps to equilibration.

The remaining parameters are the same as the previous case. We see that neither the

asymmetric nor symmetrized force field are able to fully decouple the Center of Mass and

relative motion at all masses. However, the symmetrized force field is able to better maintain

the center of mass temperature for a much wider range of Drude masses. As expected, both

force fields describe the centers of mass effectively as mD → 0. The situation is slightly more

complicated for the relative degree of freedom, where the asymmetric force field maintains the

Drude temperature better than the symmetrized force field fir small masses before turning

over as mD increases. We attribute this performance difference due to the more favorable

scaling of the localization error in the asymmetric force field as mD → 0. Nevertheless, the

symmetrized force field continues to perform well even in this scenario.

The improved decoupling allows us significantly more flexibility in selecting larger Drude

masses that are more numerically stable and can thereby allow us to extend the timestep

under which Drude oscillator simulations are numerically stable. This flexibility is impor-

tant since the Drude oscillator frequency is typically the limiting factor in extending the

integration timestep, requiring ∆t
√
k/m < 1/4π, where m is the smallest reduced mass

among Drude oscillators. Increasing the Drude mass for which the force field remains accu-

rate allows us to extend the timestep from the 1 fs timesteps typically employed in Drude

simulations.

Moreover, the flexibility in selecting the mass allows us to tune the frequency of the

Drude oscillator more easily without impacting its polarizability. As a result, we can select

the mass to avoid resonances with other modes in the system, mitigating energy leakage into
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the Drude degrees of freedom. Generally, it is best to select m so that |ω−
√
k/m| � (γ+γD)

for all modes ω present in the system, where γ and γD are the friction coefficients of the two

thermostats, in order to avoid this energy leakage. A recent study has taken the opposite

approach and tuned the mass of Drude particles to match plasmon modes at graphitic-

water interfaces49 intentionally bringing the Drude oscillators into resonance with librational

modes of water. This introduces a substantial drag force on the motions of water near the

interface, consistent with observed ”quantum friction” forces.50 In either case, the flexibility

to tune Drude oscillator frequencies without introducing erroneous couplings can enable

further optimizations of Drude oscillator simulations.

3.2 Equipartition Violation in a Gas of Diatomic Molecules

Next, we consider the consequences of this energy leakage on the partitioning of energies in

the system. Previous studies have shown that the transfer of energy into the Drude oscillators

can lead to substantial violations of the equipartition theorem when a velocity rescaling

thermostat such as Nosé-Hoover is used.44 In extreme cases, this leaves Drude oscillator

simulations prone to the flying ice-cube artifact where the relative motion of atomic centers

of mass are frozen out and the entire system translates collectively to compensate for this

loss of kinetic energy. We now consider a gas comprised of 125 of the diatomic molecules

simulated above that can interact through a Lennard-Jones interaction with parameters

ε = 0.1 kCal/mol and σ = 3 Å. The Lennard-Jones interactions are also symmetrized in the

symmetrized force field but act only between cores in the asymmetric force field. To simplify

our consideration, we do not include Coulomb interactions between dipoles in the system.

The system is propagated with a timestep ∆t = 1 fs under a dual Nosé-Hoover thermostat

with TCoM = 300 K, TD = 1 K, τCoM = 100 fs, and τD = 20 fs.

Figure 4.A and B show the kinetic and potential energy in the vibrational degrees of

freedom for the asymmetric and symmetrized force fields respectively and compares them

with the result expected from the equipartition theorem 〈Evib〉 = kBT/2. The asymmetric
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Figure 4: Symmetrized force fields significantly mitigate equipartition violations with Dual
Nosé-Hoover thermostats in gas of diatomic molecules with one Drude polarizable atom.
Bond energies for (A) Asymmetric and (B) Symmetrized force fields. Potential (Blue) and
Kinetic (red) Energies are compared to their expected equipartition result (Black). Despite
equipartition violations, Temperature (C) of the Center of Mass degrees of freedom are
properly maintained at the target value of T = 300 K (Black) for both the asymmetric
(blue) and symmetrized (orange) force fields.

force field shows an extreme deviation from equipartition, and is almost completely frozen out

in these dynamics. In contrast, the error in the symmetrized force fields is much more modest,

showing a deviation of only 10% from the equipartition result even in the extreme parameter

regime considered here. This equipartition violation for the symmetrized force fields is

surprising since the isolated molecule showed no energy leakage even when propagated for

three orders of magnitude longer. For the symmetrized force field, some erroneous coupling

between the centers of mass and Drude oscillators can arise due to the error incurred by

evaluating the Lennard-Jones forces at the position of the core and shell rather than the

center of mass. This error is maximized when the mass is equally split between the core and

shell and can couple the Drude oscillator with the bond vibrations with which it is resonant.

It is much smaller for other parameter choices, with the symmetrized force field showing

excellent agreement with equipartition. Figure 4.C shows that the overall temperature of

the centers of mass is properly fixed by the dual thermostat for both force fields considered.

Maintaining the temperature while the vibrations are colder than equipartition indicates

that the other, translational and rotational, degrees of freedom in the system must have too
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much kinetic energy. The energy leakage in the system therefore introduced error in degrees

of freedom that are not directly coupled to the Drude oscillators.

In these dimer gases, equipartition is violated due to the energy leakage out of the bond

vibrations discussed in section 3.1. The energy in each of the molecular vibrations is rapidly

damped out by the spurious coupling to the low temperature Drude thermostat. The total

kinetic energy in the system will then be too low in the system and the velocity rescaling

thermostat will increase the velocities in the system to compensate, uniformly increasing

the kinetic energy of all degrees of freedom in the system. The energy leakage into the

Drude thermostat and heating up by velocity rescaling eventually balance out to maintain

the Center of Mass degrees of freedom at the desired temperature. However, since energy is

leaking out of the vibrational degrees of freedom much more quickly, they will be artificially

cooled and the other degrees of freedom must compensate by having an inflated temperature.

4 Conclusion

We have demonstrated that placing all non-Coulomb interactions on the core of a Drude

oscillator leads to a potential that spuriously couples atomic polarization to non-Coulombic

forces, and which depends explicitly on the masses of the particles in the system. As a

result, both self-consistent minimization and extended Lagrangian methods can yield atomic

dipoles in the absence of electric fields. In addition, when a dual-Thermostat is used that

holds the Drude oscillator at a low temperature, energy can leak rapidly out of the center of

mass degrees of freedom into the Drude oscillators where it is rapidly quenched. Significant

violations of equipartition can arise due to this energy leakage, polluting the dynamics of

degrees of freedom that seem unrelated to the Drude oscillators.

Symmetrizing the non-Drude potentials can significantly mitigate these errors and allows

for far more flexibility in selecting the Drude mass. In particular, symmetrizing the force

field yields a potential which formally decouples center of mass and Drude oscillator degrees

27



of freedom affording much more flexibility in the choice of Drude particle mass. Using

traditional asymmetric force fields, the Drude mass must be set as low as computationally

feasible to mitigate spurious coupling between the center of mass and Drude oscillator motion

and to minimize the mass dependence of the resulting potential. In contrast, the Drude mass

in the symmetrized force fields can be quite large and chosen to improve numerical stability of

the simulation, extending the allowable time steps, or to avoid resonances between the Drude

oscillators and center of mass motions in the system. Anecdotally, the cost of symmetrizing

the force fields is minimal, with no change in simulation times using the LAMMPS package.

However, symmetrized force fields generally require more force evaluations per time step and

will therefore typically incur additional computational cost. In the simulations presented

here, this was outweighed by the cost of other parts of the simulation.

These errors can be challenging to diagnose in simulations for several reasons but can

nevertheless be significant. The magnitude of the spurious force decreases as the shell mass

decreases. In typical simulations, the shell mass is much smaller than the total atomic

mass leading to a small prefactor. For example, in the typical SWM4-NDP model ms =

0.4 g/mol while the total mass of each rigid water is M = 18.0 g/mol,51 resulting in a ∼ 98%

attenuation of the spurious force. However, the underlying forces, particularly Fshort, can

vary significantly in magnitude. Some configurations, such as during an atomic collision,

will have extremely large values of these forces that can significantly impact the dipole

moment in those configurations. During these collisions, the risk of catastrophic polarization

is particularly high and may lead to numerical instabilities. These brief periods of large

spurious force can be masked by the application of the hard wall polarization constraint45

as well as by the strong thermostats typically applied to the dipole degrees of freedom which

rapidly damp the effect of the instants of large spurious forces. Moreover, the spurious forces

are on average isotropic. Benchmark measures that look only at quantities averaged over

long times or many particles will therefore miss this error since its mean vanishes. It can

nevertheless contribute significantly to particular configurations where the forces become
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anisotropic such as near interfaces or in binding pockets, degrading model performance for

these locations of high interest.

The symmetrization procedure is straightforward and simply requires rescaling the force

field energy parameters. It can therefore be easily applied and tested in force fields based

on Drude oscillators such as the CHARMM Drude force fields.1 The symmetrized force

fields are carefully designed to conserve the forces experienced by the atomic centers of mass

and should therefore require very little reparametrization of parameters that were fit to only

center of mass motions. However, parameters that were fit to atomic polarization, such as the

polarizability tensors, may have had the spurious coupling between polarization and center

of mass motion parameterized into them. For example, in a bonded system, the coupling

between the bond potential and atomic polarization along the bond may have been accounted

for at a mean field level when the atomic polarizability tensor was parameterized, e.g. by

decreasing the polarizability along the bond by an amount that reflects the equilibrium bond

length. Symmetrizing these forces therefore requires additional care and may require a more

involved reparameterization but may significantly improve the numerical performance of the

force field.
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