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ABSTRACT OF THE DISSERTATION 

Analytical techniques to investigate the neurochemical basis of behavior 

by 

Katie Perrotta 

Doctor of Philosophy in Chemistry 

University of California, Los Angeles, 2022 

Professor Anne M. Andrews, Chair 

 

My research combines electrochemistry, chromatography, and chemometrics to enable brain 

neurotransmitter monitoring in vivo. Microdialysis coupled with high performance liquid 

chromatography with electrochemical detection (HPLC-ECD) and voltammetry capitalize on 

the electrochemical properties of monoamine neurotransmitters, such as serotonin and 

dopamine. Electrochemical detection is a sensitive and selective detection method, which is 

beneficial in neurochemical analyses where brain neurotransmitters are present at 

nanomolar to micromolar concentrations 

Fast-scan cyclic voltammetry (FSCV) has spatial and temporal advantages, but has 

poor analyte selectivity due to overlapping oxidation (and reduction) profiles of structurally 

similar neurochemicals and cannot be used to determine information on basal (tonic) 

neurotransmitter levels due to background subtraction. Dopamine is found at higher 

concentrations than other electroactive neurotransmitters in most brain areas, which makes 

it difficult to resolve other lower concentration neurotransmitters and to monitor multiple 

neurotransmitters simultaneously. No voltammetric techniques are currently available to 

monitor serotonin and dopamine simultaneously across timescales (phasic and tonic), despite 

the fact that these neurotransmitters play integrated roles in modulating behavior. 
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In my thesis research, I worked on developing a novel method for neurotransmitter 

co-detection— rapid pulse voltammetry coupled with partial least squares regression (RPV-

PLSR). This approach is adapted from multielectrode systems (i.e., electronic tongues). We 

constructed an initial RPV waveform using key oxidation and reduction potentials. In 

addition to faradaic currents, RPV utilizes capacitive currents, which are important for 

analyte identification. Including capacitive current also enables simultaneous tonic and 

stimulated neurotransmitter measurements. I carried out RPV-PLSR in vivo, to differentiate 

and quantify tonic and stimulated serotonin and dopamine associated with striatal recording 

electrode position, optogenetic stimulation frequency, and antidepressant administration. I 

investigated the contributions of cations and metabolites interferents to RPV and developed 

strategies to mitigate their effects. My research advanced our understanding of the interplay 

between the serotonin and dopamine  

In addition to voltammetry, I used microdialysis for serotonin and dopamine co-

detection throughout my thesis work. Microdialysis is used to monitor neurotransmitters in 

the extracellular fluid when combined with HPLC. Microdialysis experiments have 

commonly been performed using 20-minute sampling times to collect sufficient analyte for 

HPLC detection. However, long sampling times cause researchers to miss biologically 

relevant information happening at shorter timescales. Our group developed fast 

microdialysis that enables serotonin and dopamine co-detection with 2-5-min real-time 

sampling in awake-behaving mice. Using microdialysis, we discovered that selective 

optogenetic stimulation of dopamine neurons produces dopamine and serotonin release in the 

striatum highlighting the importance of multiplexed measurements and the 

interconnectedness of these transmitter systems.  

Recently I discovered that selective optogenetic stimulation of dopamine neurons 

produces dopamine and serotonin release in the striatum highlighting the importance of 
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being able to make multiplexed measurements and the interconnectedness of these 

transmitter systems in modulating behavior. I also used microdialysis to probe the effects of 

maternal stress and/or citalopram administration during pregnancy on adult offspring 

neurochemistry. Male offspring in the chronic unpredictable stress group had elevated 

serotonin levels during citalopram infusion and kappa opioid agonist injection compared to 

other treatment groups. These effects were paralleled with increased depressive- and 

anxiety-like behavior during the forced swim test and novelty suppressed feeding test in male 

offspring in the chronic unpredictable stress group. 

Throughout the duration of my graduate studies I was a teaching assistant (TA) for 

the CHEM 184 Instrumental Analysis course at UCLA. As a TA I developed and implemented 

a new analytical chemistry lab for the course. Students detected mercury levels in various 

fish samples using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to learn about 

standard reference materials, matrix effects, and how to best optimize instrument 

parameters (kinetic energy discrimination). This work was recently published in the Journal 

of Chemical Education as a guide to carry out this experiment at other universities.  
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CHAPTER I 

The Role of Serotonin in Depression and Anxiety 
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 Introduction: The Serotonin Theory of Depression 

The serotonin system has long been linked to the pathology of depression and anxiety. 

The serotonin hypothesis of depression stemmed from the monoamine hypothesis and a series 

of correlational studies, which suggested that low levels of serotonin are related to increased 

depressive symptoms.1-4 In the 1950s, physicians noted that tuberculosis medications, 

namely isoniazid and iproniazid, improved the mood of hospitalized tuberculosis patients. 

Isoniazid and iproniazid were discovered to be monoamine oxidase inhibitors (MAOIs).5 

Monoamine oxidase is responsible for the metabolism of monoamine neurotransmitters, i.e., 

dopamine, norepinephrine, and serotonin.6 The MAOIs prevent degradation of the 

monoamine neurotransmitters, thus increasing their concentrations in brain tissue.7 The 

tricyclic antidepressants (TCAs) were also serendipitously discovered to inhibit the reuptake 

of monoamine neurotransmitters. The MAOIs and TCAs are referred to as first-generation 

antidepressants.  

The fact that MAOIs and TCAs improved mood and reduced anxiety led to the 

catecholamine hypothesis of depression proposed by Schildkraut, Bunney, and Davis in 

1965.8, 9 A role for serotonin came later when the TCA imipramine was discovered to inhibit 

serotonin reuptake, in addition to norepinephrine reuptake. Because TCAs were shown to 

inhibit serotonin reuptake and MAOIs were shown to affect serotonin synthesis, Coppen 

proposed that serotonin was important in the mood-improving properties of MAOIs and 

TCAs.4 The serotonin theory has grown through studies that investigated the effects of 

tryptophan depletion on behavior, plasma or cerebrospinal fluid levels of serotonin and its 

metabolite 5-hydroxyindoleacetic acid (5-HIAA) in depressed patients or those with suicidal 

ideation, and brain serotonin levels in post mortem suicide victims.1, 10-12  



 3 

Based on the evolving serotonin hypothesis and the fact that MAOIs and TCAs had 

many adverse side effects, e.g., seizures, cardiac dysfunction, pharmaceutical companies set 

out to discover drugs that selectively impacted the serotonin system. In 1972, the 

pharmaceutical company Eli Lilly reported on the properties of fluoxetine, which was 

designated the most powerful and selective serotonin reuptake inhibitor at the time. Selective 

serotonin reuptake inhibitors (SSRIs) are currently the first line of treatment for depression 

and anxiety. The SSRIs block the reuptake of serotonin into presynaptic neurons. As per the 

serotonin theory of depression, many believe that treatment with SSRIs is associated with 

increased extracellular serotonin in the brain.13 However, human brain serotonin levels after 

long-term SSRI use have never been measured directly.  

Positron emission tomography (PET) imaging has been used to estimate brain 

extracellular serotonin levels in humans, rodents, pigs, and primates.14 Although, PET does 

not directly measure serotonin levels, PET experiments have been performed simultaneously 

with microdialysis to measure extracellular serotonin levels directly in the medial prefrontal 

cortex of pigs. These experiments showed strong correlations between changes in 

extracellular serotonin determined by microdialysis and using PET to determine 5HT1B15 

and 5HT2A16 occupancy, which indirectly approximates endogenous serotonin. A number of 

PET studies have been done in humans that investigated the effects of acute SSRI 

treatment.17-20 Interestingly, some found no differences in endogenous serotonin levels 

between the SSRI group vs. the control group. 18, 20  

The distribution and binding of serotonin transporters (SERT) was studied with PET 

in patients with major depression and/or anxiety who received long-term SSRI treatment.21 

Several studies have shown decreased SERT binding in patients with major depressive 

disorder.22-24 However, other studies observed increased SERT binding in specific brain 

regions in depressed subjects25, 26 and, Meyer and coworkers did not observe changes in SERT 
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binding potential between subjects with major depressive episodes and non-depressed 

subjects.27, 28 Due to an association between serotonin levels and SERT expression, it is 

hypothesized that low SERT binding is related to lower serotonin levels in those regions.21 

Treatment response to escitalopram or citalopram was related to the ratio of SERT 

binding in the amygdala or habenula to SERT binding in the median raphe nucleus prior to 

treatment.29 The larger this ratio was, the larger the improvement in depression symptoms. 

Similarly, when comparing responders to SSRIs vs. non-responders, responders had larger 

ratios of SERT binding in the striatum to SERT binding in the raphe nucleus than non-

responders.30 These studies highlight that differences in SERT binding in serotonin neuron 

projection areas vs.  the raphe nucleus can serve as predictors for antidepressant treatment 

success. 

Because brain imaging is costly and because brain extracellular serotonin levels 

cannot be directly measured in humans, plasma serotonin levels have been investigated as a 

biomarker in patients diagnosed with depression.31-33 Plasma serotonin levels are regulated 

by SERT on blood platelets.32 Serotonin from the plasma is taken up into platelets, where it 

is either stored in granules or degraded. In an 8-week study, patients with major depressive 

disorder were treated with an SSRI and blood was taken at baseline, 4 weeks, and 8 weeks 

into the study.33 Plasma serotonin levels were measured using an HPLC electrochemical 

coulometric array metabolomics platform33 or UPLC MS/MS31. Patients who had higher 

baseline plasma serotonin levels and/or had the largest decrease in plasma serotonin 

concentrations over the course of treatment were determined to be the most responsive to 

treatment.33 In a similar study, all depressed patients had an overall decrease in plasma 

serotonin concentration with SSRI treatment, but the distinguishing factor between those 

who responded to treatment vs. those who did not respond to SSRI treatment was the 

magnitude of the decrease in plasma serotonin concentration.31 These studies point to using 
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blood plasma levels, a more accessible assay than PET imagining, as a predictor of 

antidepressant treatment response. A limitation of these studies are that while SERT is 

encoded by the same gene in the periphery as the brain, plasma serotonin levels cannot be 

directly related to brain serotonin levels. An extensive review on measuring plasma serotonin 

levels in platelet-poor exposes large variability across .34 A larger survey of literature that 

explores plasma biomarkers in depression and SSRI treatment can be found in these featured 

reviews, overall it is unclear whether plasma serotonin is suitable as a biomarker for 

depression.35-38 

There are studies in rodents that directly investigate changes in extracellular 

serotonin following chronic SSRI administration. One microdialysis study using BALB/cJ 

mice, a mouse strain considered to have elevated anxiety-related behavior, investigated the 

long-term effects of fluoxetine administration.39 While extracellular serotonin levels in the 

dorsal raphe nucleus (DRN) and hippocampus were higher overall in the fluoxetine group 

compared to the control group, serotonin levels decreased each week within the fluoxetine 

group. By day 28, extracellular serotonin in the hippocampus was no longer statistically 

different between the fluoxetine and control groups, which contradicts that idea that 

sustained elevations in serotonin levels is what causes SSRIs to have antidepressant effects. 

Another microdialysis study investigated the effects of infusing the SSRI, fluvoxamine, 

subcutaneously for two weeks via minipumps.40 These authors observed increases in 

extracellular serotonin in the frontal cortex, but no changes in serotonin in the raphe nucleus 

after two weeks. These findings point to inhibitory auto receptors on serotonin neurons in 

the raphe nucleus regulating serotonin levels. However, it also supports the argument that 

elevated serotonin levels are not the cause of antidepressant response. 

A current perspective on the serotonin hypothesis is that serotonin plays a complex 

role in encoding stress, anxiety, and depression that is not as simple as reduced 
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brain/extracellular serotonin being causative of major depressive disorder or anxiety 

disorders.41 However, the studies above highlight that disruption of the serotonin system has 

a large effect on SSRI treatment outcome, and depression and anxiety-like behavior even if 

the relationship between serotonin levels and behavior is not straightforward. Experiments 

that monitor changes in extracellular serotonin levels in the brain during behavior would 

help to unravel the complexities of the involvement of serotonin in the etiology of depression 

and anxiety disorders. In the next section, I discuss in vivo neurochemical sensing techniques 

for serotonin detection.  

Neurochemical Sensors 

Overview 

 Sensing neurochemicals in vivo presents an analytical challenge. Neurotransmitters 

can be present over wide ranges of concentrations, from micromolar to picomolar levels. The 

brain matrix contains proteins, amino acids, mono- and divalent cations, anions, and 

structurally similar metabolites of commonly studied neurotransmitters. Neurotransmitter 

detection in vivo requires methods that have high sensitivity and selectivity, ample temporal 

resolution to monitor fast neurochemical changes, yet are stable over time in the dynamic 

brain matrix to detect homeostatic changes, and are small enough to not induce major tissue 

damage. Sensing serotonin is especially difficult because serotonin is found at lower 

concentrations than structurally similar neurotransmitters and metabolites (e.g. dopamine, 

5-HIAA, etc.) in most brain regions. Below are examples of neurochemical monitoring 

methods that have been adapted to sense serotonin in the brain. 
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Microdialysis 

Microdialysis is a sampling technique that is coupled with chromatography to 

measure neurotransmitters with high selectivity. Microdialysis has been used extensively to 

correlate changes in neurochemistry with changes in behavior; some key studies will be 

discussed in later sections. In its early stages, the sampling time of microdialysis was 10-20 

minutes. Long sampling times were required to accumulate enough dialysate for detecting 

low levels of neurotransmitters. Even with long accumulation times, serotonin concentrations 

are often close to the limit of detection. In older studies, SSRIs were used to elevate the basal 

serotonin levels to mitigate problems with detecting low serotonin levels. However, SSRIs 

modulate depressive and anxiety-like behaviors, potentially confounding behavioral data.42  

Improvements in chromatographic columns, e.g., smaller stationary phase particle 

sizes, detectors, and instrumentation enabled us to reduce sampling times for serotonin from 

20 min to 3 min43 with standard high-performance liquid chromatography (HPLC) and 

~1 min44-46 with ultra-high pressure liquid chromatography (UPLC) for serotonin detection. 

Improved microdialysis sampling times enable us to observe that an injection of saline (an 

mild acute stressor) induced brief serotonin release in the ventral hippocampus (vHPC), a 

brain region that processes emotionally salient information.43 Increases in basal serotonin 

levels post saline injection were captured when sampling at 6-min intervals, but not when 

using 30-min sample intervals. Improving sampling rates in microdialysis has been vital for 

capturing biologically relevant changes in neurochemicals that would have been previously 

missed. However, microdialysis still does not have the resolution to measure transient 

neurochemical release occurring on the order of hundreds of milliseconds.  
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Voltammetry 

 Voltammetry is another widely used neurochemical monitoring method that 

capitalizes on the electrochemical properties of monoamine neurotransmitters. Unlike 

microdialysis, fast-scan cyclic voltammetry (FSCV) has been used to detect endogenous 

dopamine transients.47 Here, scan rates are 400-1000 V/s, which causes large capacitive 

currents. These capacitive currents (100s of mA) are much larger than the faradaic current 

(10s of nA) produced by electrochemical species in the brain. To monitor the faradaic current 

resulting directly from electron transfer when monoamine neurotransmitters (serotonin, 

dopamine, norepinephrine, histamine) are oxidized, the capacitive current must be removed 

through background subtraction in FSCV. Consequently, FSCV is only used to measure 

stimulated and not basal neurotransmitter levels in neurotransmitters. The latter is 

subtracted with the background. Additionally, fast scan rates shift the oxidation and 

reduction potentials of analytes such as neurotransmitters; oxidation and reduction peaks 

that are separated using slow-wave cyclic voltammetry now overlap using FSCV. Typically, 

the oxidation potential for dopamine, serotonin, and norepinephrine is ~0.6 V during FSCV, 

making these species difficult to distinguish from one another, particularly in a complex 

matrix such as the brain having other oxidizable species. 

Serotonin is also difficult to monitor with FSCV because it produces oxidative 

byproducts that can foul electrode surfaces. The ‘Jackson’ waveform, a waveform developed 

for serotonin detection, used increased scan rates (400 V/s for dopamine vs. 1000 V/s for 

serotonin to "outrun" the adsorption of such byproducts.48, 49 The waveform also resembles an 

‘N’-shape (Fig. I.1b.), rather than the traditional triangle shaped voltage ramp used for 

dopamine detection (Fig. I.1a.), because the starting and hold potentials (0.2 V) are higher 

than the potential required to reduce serotonin (-0.1 V).  
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Altering aspects of the FSCV waveform has proven helpful in improving the detection 

of serotonin. The Venton group modified the Jackson waveform by extending the peak 

potential from 1.0 V to 1.3 V, resulting in the extended serotonin waveform (ESW).50 They 

also made further modifications by using a slower scan rate and holding the peak potential 

at 1.3 V for 1 s, which they called the extended hold serotonin waveform (EHSW). Overall, 

the EHSW was more sensitive and the ESW was more selective, and both waveforms reduced 

electrode fouling by 50% compared to the Jackson waveform. Using a different approach, 

Shin and coworkers combined aspects of the Jackson waveform with square-wave 

voltammetry by superimposing square wave steps onto the N-shaped sweep.51 This method, 

which they called N-shaped fast cyclic square-wave voltammetry, also allowed serotonin to 

be monitored with greater sensitivity than by the original Jackson waveform.  

Like traditional FSCV, the aforementioned techniques cannot be used to measure 

basal serotonin levels. However, a voltammetry method called fast-scan controlled-

adsorption voltammetry (FSCAV) was used to measure basal but not stimulated levels of 

neurotransmitters.52 The FSCAV method employs long delay times (0.2-20 s) to accumulate 

serotonin on the electrode surface and the fast scan rates to oxidize the accumulated 

serotonin. The accumulated serotonin concentration estimates basal levels when delay times 

are long enough that serotonin accumulation plateaus. Another technique, called N-shaped 

multiple cyclic square wave voltammetry (N-MCSWV)53 has also been developed for basal 

serotonin monitoring and has a higher temporal resolution (10 s) than FSCAV (20 s). 

 Because none of the above techniques can measure both stimulated and basal levels 

of neurotransmitters, our group developed a new technique called rapid pulse voltammetry 

(RPV) and coupled it with partial least squares regression (PLSR) for multiplexed detection 

of dopamine and serotonin across timescales.54 Unlike the voltammetry methods discussed 

above, RPV-PLSR uses fast voltage pulses rather than sweeps to oxidize and reduce analytes 
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(Fig. I.1c.). Additionally, instead of subtracting capacitive current, RPV-PLSR identifies 

information in both the capacitive and faradaic currents as predictors for neurotransmitter 

concentrations, rather than relying solely on faradaic current. The voltammograms from 

pulse waveforms have unique decay characteristics, in which the capacitive and faradaic 

currents decay at different exponential rates, with capacitive current decaying faster. The 

difference in decay yields unique information about specific analytes at specific sampling 

points (we typically measure 8000 points per voltammogram). This information is used by a 

regression model, such as PLSR, to distinguish one analyte from another. Since the sampling 

rates for RPV-PLSR are very high (1 MHz) the decay profile contains a lot of unique 

information. We have used RPV-PLSR to identify and quantitate serotonin and dopamine at 

the same time so changes in these neurotransmitters can be related to one another.  

Uniquely, a NeuroString sensor was reported for neurotransmitter monitoring in the 

brain and gut.55 The NeuroString sensor was fabricated from a tissue-mimicking material 

consisting of a metal-complexed polyimide layer patterned onto an interconnected 

graphene/nanoparticle network that was then embedded into an elastomer. When coupled 

with FSCV, the NeuroString could multiplex dopamine and serotonin measurements in the 

gut and the brain. Dopamine and serotonin were distinguished during Pavlovian fear 

learning and when SSRIs were administered. The NeuroString also conformed to the gut to 

measure serotonin release by enterochromaffin cells.  

Despite voltammetry being an effective way to observe and quantify fast 

neurochemical events, most voltammetry experiments are performed on head-fixed or 

anesthetized animals rather than freely moving (lightly tethered) animals, such as is done in 

microdialysis. A technique with high temporal resolution that can be used in truly freely 

moving animals will require wireless set-ups that are light weight so as not to interfere with 

movement or evoke stress responses. Wireless head-stage amplifiers have been reported for 
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voltammetry in mice.56-58 Once these are even lighter and more widely available, voltammetry 

techniques like RPV-PLSR can be used to answer more clearly how changes in extracellular 

serotonin encodes certain stress-associated behaviors and behaviors in large, more native 

environments. 

Fluorescent Sensors 

Fluorescent sensors have gained popularity mainly because they are more 

straightforward for neuroscientists to implement, have fast response times, and can be 

incorporated with behavior paradigms or optogenetics. Many labs that use optogenetics and 

calcium imaging can learn to transduce genetically modified fluorescent neurotransmitter 

sensors and to detect them with fiber photometry or two-photon imaging. Additionally, when 

genetically modified fluorescent sensors are used with two-photon imaging, changes in 

neurochemicals can be monitored at the single cell level. 

Genetically modified fluorescent sensors have been developed for glutamate,59, 60 

GABA,61 oxytocin,62 endocannabinoids,63 histamine,64 norepinephrine,65 acetylcholine,66, 67 

dopamine,68-71 and serotonin.72-74 To construct genetically modified fluorescent sensors, the Li 

group at Peking University used various G-protein coupled receptors as scafolds that were 

modified to include a fluorophore, which is quenched in the ligand-unbound state. When 

neurotransmitter (ligand) binds to the sensor, fluorescence emission increases. For example, 

to generate the GRAB5HT sensor, a circularly permutated green fluorescent protein (GFP) 

was inserted into the third intracellular loop of different serotonin receptors.73 Due to better 

performance, the 5HT2C receptor chimera was selected for further optimization and the 

improved sensor was called 5-HT 1.0. The 5-HT 1.0 sensor could be used to sense changes in 

serotonin in vivo during the sleep-wake cycle. In the basal forebrain there were increases in 

extracellular serotonin during wakefulness compared to sleep and lower levels during REM 
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sleep compared to non-REM sleep, which were consistent with previous findings in the 

literature made using electromyogram and delta electroencephalogram recordings.75   

The iSeroSnFR was developed by the Tian group at UC Davis using machine learning 

to optimize the binding of serotonin to an iAChSnFR scaffold.72 Unlike the G-protein coupled 

receptor (GPCR) based sensors described above, iSeroSnFR is a microbial periplasmic 

binding protein- (PBP) based sensor, which means iSeroSnFR can be targeted to intracellular 

regions and had reduced responsiveness to exogenous drugs. The iSeroSnFR sensor also was 

also used to measure changes in serotonin levels in the sleep-wake cycle, as well as during 

social interaction paradigms. Interesting, iSeroSnFR was used to characterize human SERT 

activity in cell culture due to the ability of the sensor to be expressed both intracellularly and 

on the plasma membrane. Another approach to genetically encoded serotonin sensors was to 

use a serotonin-binding lipocalin tick protein as a scaffold for a fluorescent sensor.76 The 

green fluorescent genetically encoded serotonin sensor (G-GESS) was similar to iSeroSnFR 

in that it could be expressed on both intracellular membranes and plasma membranes.  

Another GPCR-based serotonin sensor, called PsychLight, was made using the 5HT2A 

receptor.74 The 5HT2A receptor sensor was not only used to measured changes in serotonin 

levels, but it was incorporated into a cell-based pharmacological assay to predict the 

hallucinogenic potential of drugs that target 5HT2A receptors. Drugs used to treat 

neuropsychiatric disorders target the 5HT2A receptor. Atypical antipsychotics are most often 

used to treat schizophrenia and bipolar disorder. However, some atypical antipsychotics, like 

Abilify77 and Rexulti,78 have been approved for adjunctive treatment with SSRIs for major 

depressive disorder. By definition, psychedelics are considered to be psychoplasogens, i.e. 

small molecules that can induce neuroplasticity in a short period of time.79 New data suggests 

that the antidepressant effect of psychedelics, which are also being investigated for the 

treatment of psychiatric disorders, stems from their ability to increase neuroplasticity.80  
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The Olsen group at UC Davis has been developing psychoplastogens that exhibit 

antidepressant effects but no longer have hallucinogenic properties.81 Psychoplastogens were 

screened for hallucinogenic potential and differentiated from drugs that did not bind to 5HT2A 

receptors using a assay based on PsychLight.74 Drugs were considered to have hallucinogenic 

potential if the response of the sensor was above one standard deviation from vehicle when 

the assay was ran in agonist mode. Drugs that could bind to 5HT2A receptor but did not have 

hallucinogenic potential did not cause the sensor to respond in agonist mode but would 

instead decrease signal in antagonist mode. Dong et. al. screened a designer drug, AAZ-A-

154, for its hallucinogenic potential using the PsychLight assay. They determined that AAZ-

A-154 lacked hallucinogenic properties by the assay and confirmed behaviorally in vivo the 

lack of hallucinogenic effects by the absence of head twitches. Overall, AAZ-A-154 was 

determined to be a non-hallucinogenic psychoplastogen that demonstrated promising 

antidepressant effects in vivo.  

Aptamer-based Sensors 

 Methods for continuous recordings of brain neurochemical activity are constrained by 

the chemical properties of the analyte. For example, many neurotransmitters are not 

electrochemically active and thus, are not candidates for direct monitoring by voltammetry. 

Other neurotransmitters have no known selective catabolic enzymes that produce a product 

that can be monitored electrochemically.82-84 The use of aptamers, single-stranded DNA or 

RNA, as biorecognition elements in sensing architectures is enabling an expansion of types 

of neuroactive molecules that can be selectively detected. 

Our group has been developing In2O3 aptamer-field effect transistor sensors (aptamer 

FETs) for the selective and sensitive monitoring of various neurotransmitters.85, 86 Sensing 

mechanisms using FETs involve detecting changes in charge distributions, e.g., electric 
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fields, at the surfaces of FET semiconductor channels. Like the fluorescent sensors, aptamers 

exist in either bound or unbound conformations. In one conformation, a majority of the 

aptamer is closer to the sensor surface while in the other conformation, the majority of the 

aptamer (and associated solvent ions) is closer to the sensor surface. Changes in bound vs. 

unbound conformations impact semiconductor conductance and hence, source-drain electrode 

current in a nonlinear manner with respect to target concentrations. 

Recently, we developed and deployed aptamer FET probes in vivo to measure changes 

in serotonin.87 The serotonin-aptamer-functionalized FETs on these Si probes detected 

changes in striatal serotonin levels prior to and following electrical stimulation of the dorsal 

raphe nucleus (DRN). Additionally, Gao and coworkers developed a graphene-based aptamer-

FET sensor based on our serotonin and dopamine aptamers that was used for multiplexed 

dopamine and serotonin monitoring with limited crosstalk.88 These graphene-based aptamer 

FET sensors were flexible and had reduced inflammatory responses,89 as detected by 

histology for activated astrocyte (glial fibrillary acidic protein) and microglial (Iba1) markers. 

These multiplexed probes have not yet been used in vivo. Nonetheless, the Zhang group also 

developed dopamine-aptamer graphene-FET probes that detected changes in dopamine 

levels in vivo related to local administration of high potassium and bicuculline, a competitive 

antagonist of GABAA receptors. Another aptamer-FET sensor was developed by Lim et. al. 

that immobilized aptamers on carboxyl-functionalized polyacrylonitrile/poly(3,4-

ethylenedioxythiophene) (PAN/PEDOT) nanohybrids.90 This aptamer-FET sensor detected 

changes in serotonin in 0.6 s, which was faster than previously reported using aptamer FET 

sensors. Despite promising data in vitro, the PAN/PEDOT aptamer FET sensors have not yet 

been implemented in vivo. 
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Near-infrared Fluorescent Single-walled Carbon Nanotubes 

 To enable chemical imaging of neurotransmission in the extracellular space, the 

Landry group at UC Berkeley has developed a near infrared serotonin nanosensor (nIRHT).91 

The nIRHTs employ single-walled carbon nanotubes (SWCNTs) functionalized with a single-

stranded DNA sequence (not an aptamer). These nanosensors had a large increase in relative 

fluorescence in the NIR II range (1000 to 1300 nm). When tested in brain slices, serotonin 

was detectable in the presence of 100 μM fluoxetine, MDMA, 25I-NMOMe, and quetiapine 

(drug molecules that are structurally similar to serotonin). These findings indicated that 

exogenous substrates did not interfere with serotonin detection. The library of DNA-based 

SWCNT sensors was expanded using machine learning.92 Sequence features of DNA were 

used to train a convolutional neural network model that designated DNA ligands as being 

either high or low affinity for serotonin. Support vector machine models then predicted DNA 

sequence optical responses. Data from both models were used to predict large responses of 

DNA-SWCNTs. Overall, the machine learning approach produced five new candidate DNA-

SWCNTs for serotonin that had higher relative fluorescence responses than the original 

nIRHT.  

The NIR II spectral window had utility in transcranial imaging in mice, reaching a 

depth of greater than 2 mm with less than 10-µm resolution.93 By administering nIRHT 

sensors intravenously into the tail vein, the need for craniotomy is circumvented, which 

eliminates tissue damage, immunological responses, and trauma associated with 

intracranial probe implantation that can affect neurochemical measurements.93 A similar 

DNA-based single-walled carbon nanotube sensor was used in vivo to noninvasively measure 

endolysosomal lipid accumulation in Niemann-Pick disease, atherosclerosis, and 

nonalcoholic fatty liver disease models in mice.94 The use of DNA-SWCNTs in vivo for lipid 

accumulation sensing makes their use in the brain a plausible future application.  
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Conclusions—Sensing Serotonin 

 Many advances have been made in the field of neurochemical monitoring since its 

inception in the 1980s. While it was previously difficult to sense serotonin in behaving 

animals, new techniques have been developed that expand the toolbox of serotonin sensing. 

The field of neuroscience has also grown with the development of optogenetics and 

chemogenetics for real-time circuit manipulation. Now, neurochemical monitoring can be 

coupled with circuit manipulation to record spatially and temporally resolved measurements 

in serotonin that relate to specific pathways and behaviors. In the next section, I will review 

studies that have already incorporated neurochemical monitoring with behavior. 

Serotonin Sensing During Behavior 

Behavior Tests 

Laboratory tests such as the elevated plus maze (EPM), open field test (OFT), and 

novelty suppressed feeding test (NSF) are used to quantify anxiety-related behavior.95 The 

EPM, OFT, and NSF place animals in an approach-avoidance conflict, i.e., a brightly lit test 

area, In the NSF, animals are food-deprived for 12-24h prior to testing.96 The forced swim 

test (FST), tail suspension test (TST), and sucrose preference test (SPT) are used to assess 

depressive-like behaviors, though these tests are generally less robust in their translational 

value.97, 98 

The FST and TST place animals in stressful situations for short periods of time, i.e., 

mice or rats are briefly forced to swim in a cylinder of water and or are suspended by their 

tails--in both cases, they cannot escape.99 While the FST, TST, and SPT tests have been used 

extensively to predict antidepressant efficacy, the interpretation of their behavioral outputs 

is contested.98, 100 Regardless, when taken together, these tests provide information about 
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behavioral changes between animal control and treatment groups even if the interpretation 

of the behavioral changes is open to interpretation. 

Learned Helplessness 

The learned helplessness paradigm is used to model a particular aspect of human 

depression.101 In the learned helplessness paradigm, rats or mice are subjected to shock 

stressors in which one group, the escapable stress group, has the ability to terminate the 

stimulus for both groups. The other group, the inescapable stress group, has no control over 

termination of the stressor and develops learned helplessness.  

Inhibition of the medial prefrontal cortex (mPFC) by muscimol, a GABAA agonist, 

causes the behavioral and neurochemical phenotypes between controllable and 

uncontrollable stress during a learned helplessness paradigm to become indistinguishable.102 

Microdialysis was used to monitor changes in extracellular serotonin levels in the dorsal 

raphe nucleus (DRN) during the learned helplessness paradigm in rats in the inescapable 

and escapable stress groups. Untreated rats in the inescapable group had elevated levels of 

extracellular serotonin in the DRN in response to the shock stressor, which were sustained 

even after the shock was terminated. Untreated rats in the escapable stress group did not 

have changes in extracellular serotonin. When muscimol was injected into the mPFC, rats in 

the inescapable stress group had elevated basal extracellular serotonin levels, the same as 

untreated rats in the inescapable stress group. However, when muscimol was injected into 

the mPFC of rats in the escapable stress group, they began to have sustained increases in 

extracellular serotonin levels in the DRN during the stressor, similar to what was observed 

in the inescapable stress group.  

Both groups were conditioned to context and taught how to escape a shuttlebox, where 

freezing and escape efficiency were assessed. When muscimol was injected in the mPFC, the 
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escapable stress group displayed increased freezing behavior and poor escape from the 

shuttlebox compared to mice in the escapable stress group that did not receive muscimol. 

This study implicates the mPFC and serotonin release in the DRN as important in 

distinguishing controllable stress vs. uncontrollable stress in learned helplessness.  

A voltammetry study demonstrated that extracellular serotonin levels decrease in the 

DRN when the mPFC was electrically stimulated, which reinforces the connection between 

the modulation of the mPFC and changes in extracellular serotonin levels in the DRN.103 The 

escapable stress group displayed no change in extracellular serotonin levels in the DRN when 

presented with the stresser, which suggests that when you have the choice to escape, the 

mPFC becomes engaged.104 By this logic, when you do not have the choice to escape the mPFC 

would then become inhibited. If inescapable stress results in inhibition of the mPFC, it would 

support that muscimol injection into the mPFC did not change behavior or neurochemistry 

in the inescapable stress group, since this region would already be under inhibitory control. 

A means of inhibiting glutamate neurons in the mPFC is to activate GABA interneurons in 

the mPFC. 

In a similar study by Amat et.al., extracellular serotonin levels were elevated in the 

vHPC during the stressor in the inescapable stress group.105, 106 Activation of the pathway 

from the vHPC to the mPFC plays a role in anxiogenic behaviors.107 Fibers from the vHPC 

make a direct synapse onto GABAergic neurons in the mPFC108 and these GABAergic 

interneurons project onto glutamatergic pyramidal neurons, which are the main output 

neurons of the mPFC.109 Glutamatergic outputs from the mPFC to the DRN project 

predominantly onto GABAergic neurons in the DRN, which then inhibit DRN serotonin 

neurons. Taken together, increased serotonin levels in the hippocampus during inescapable 

stress could lead to increased levels of serotonin in the DRN through inhibition of 

glutamatergic neurons in the mPFC and disinhibition of serotonin neurons in the DRN.  
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Alternatively, the amygdala is an important brain region in processing and detecting 

threatening and fearful stimuli that also sends projections to the mPFC.110 Similar to inputs 

from the hippocampus, the projections from a subregion of the amygdala, the basolateral 

amygdala (BLA), to the mPFC are primarily glutamatergic and synapse onto either GABA 

or glutamate neurons.111 There is a robust amount of information about involvement of the 

BLA in fear learning, especially the communication of the BLA with the central amygdala 

(CeA) to drive fearful behaviors when a conditioned stimulus (CS) was presented.112  

The BLA also had increased extracellular serotonin levels when the rat was presented 

with an inescapable stressor.113  Similar to how glutamatergic projections from the vHPC 

could activate GABA interneurons in the mPFC, glutamatergic projections from the BLA 

could also inhibit the mPFC through activation of GABA interneurons. However, isolated 

changes in extracellular serotonin levels in the BLA, vHPC, and DRN does not provide a 

complete picture of what could be a very complex circuit that is being relayed through the 

mPFC. A table summarizing relative changes in serotonin during the learned helplessness 

paradigm can be found in Table I.1.  

Fear Conditioning 

 Fear conditioning is an associative learning paradigm. Fear conditioning is based on 

classical conditioning first reported by Pavlov in the early 20th century. The same terms used 

to describe classical conditioning have been adapted for use in fear conditioning.114 Typically, 

fear conditioning involves learning an association between a neutral stimulus and an 

unconditioned stimulus.115 A neutral stimulus, e.g., tone or light, evokes no inherent 

behavioral response. By contrast, an unconditioned stimulus, e.g., foot shock, evokes a 

naturally occurring (unlearned, automatic) behavioral response. In the case of fear 

conditioning, the unconditioned stimulus specifically evokes a fear-related response, e.g., 
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freezing or darting in rodents. Once an association is learned, the neutral stimulus is 

“conditioned” and will produce the same behavior as the unconditioned stimulus. 

In a microdialysis study, rats were contextually conditioned to their test arena (shock 

chamber).116 Extracellular serotonin levels in the mPFC were recorded while the rats were 

in their home cage and when they were returned to the shock chamber for 30 minutes. When 

rats were placed back into the shock chamber, extracellular serotonin levels in the mPFC 

increased. Interestingly, freezing behavior did not positively correlate with extracellular 

serotonin. Extracellular serotonin levels also increased as freezing behavior decreased with 

time spent in the chamber, which further implicated that changes in serotonin did not 

directly correlate with fearful behavior resulting from fear conditioning.  

In another microdialysis study, rats were exposed to two foot shocks that were one 

hour apart.117 During the first foot shock, there were large increases in extracellular 

serotonin in the vHPC. The authors claim there was no change in extracellular serotonin 

levels during the second shock, however, in this experimental paradigm 10-minute sampling 

was used, which may be too long to detect smaller acute changes in extracellular serotonin. 

Although there was no significant increase in extracellular serotonin, there appears to be a 

slight increase in the time course that could be distinguished with a more temporally resolved 

method.  

In fact, when psychLight was used to measure changes in serotonin levels in the bed 

nucleus of the stria terminalis (BNST), DRN, BLA, and the orbitofrontal cortex (OFC) 

complex changes were observed during behavior.74 In the BNST, serotonin decreased during 

the shock before returning to baseline. In the DRN, serotonin initially increased when the 

shock was initiated, but ultimately decreased during the shock. Oppositely, in the BLA and 

OFC serotonin decreased during the shock but then increased after the shock was 

terminated. Decreased serotonin levels in the BLA during the administration of a foot shock 
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that then increased was also observed using the 5HT 1.0 sensor.73 The 5HT 1.0 sensor authors 

also monitored serotonin in the BLA and mPFC when the cue was presented prior to the 

shock during their fear learning paradigm. During presentation of the cue BLA serotonin 

levels gradually increased across the 10 s period. Serotonin levels in the mPFC quickly 

increased and plateaued when the 10 s cue was presented, but then decreased when the shock 

was presented before increasing once more.   

In many of the fear conditioning studies serotonin levels changed in opposite 

directions compared to what was observed during the presentation of the shock in the learned 

helplessness paradigm above. There are two possible reasons for this: 1) inescapable stress 

in the learned helplessness paradigm does not involve Pavlovian learning and/or 2) many of 

the learned helplessness studies used microdialysis whereas the fear conditioning studies 

used genetically modified fluorescent sensors. Differences in temporal resolution may provide 

different outcomes in the data. 

For example, a foot shock induced a decrease in serotonin levels in the BLA that then 

increased following the shock. Using microdialysis with 20 min sampling, the brief decrease 

in serotonin would be missed and it may appear that the observed increase was due to the 

shock itself. Further experimentation would be required to fully understand the region-

specific differences in serotonin responses between learned helplessness and fear 

conditioning paradigms. A table summarizing relative changes in serotonin during the fear 

conditioning paradigm can be found in Table I.2. 

Forced Swim Test 

The forced swim test is also used to assess depressive-like behavior.100 The mouse or 

rat is placed in a cylinder of water, where researchers observe the mobility of the subject. It 

is thought that mice float because they have given up and are therefore more depressed. 
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However, there has been recent skepticism of whether immobility is actually a sign of a 

depressive-like phenotype or if they become immobile for other reasons. 

When a deep brain stimulation treatment was administered prior to the forced swim 

test, rats exhibited increased antidepressant-like behavior compared to those not receiving 

deep brain stimulation.118 Deep brain stimulation of the subcallosal cingulate gyrus has been 

a promising treatment option for human patients that have treatment-resistant depression. 

To study further the effects of deep brain stimulation treatment in rats, experiments were 

conducted in a homologous region, the medial prefrontal cortex (mPFC).119 By performing 

microdialysis during deep brain stimulation of the mPFC, Hamani et al. observed increased 

in extracellular serotonin levels in the dorsal hippocampus during stimulation that were 

sustained after the treatment was terminated.  

The hippocampus is a brain region of interest in the study of depression and anxiety, 

however the current experimental design did not provide a way of directly connecting 

increased dorsal hippocampal extracellular serotonin levels during deep brain stimulation of 

the mPFC to reductions in immobility during the FST following treatment. Despite the 

pathway not being studied directly, hippocampal serotonin release in the extracellular space 

during deep brain stimulation cannot be entirely ruled out as a possible mechanism for 

reductions in immobility during FST following deep brain stimulation.  

 Other microdialysis studies demonstrated that extracellular serotonin levels 

decrease in the vHPC and the mPFC, did not change in the DRN, and increase in the 

amygdala and medial raphe nucleus (MRN) during 5 minutes of forced swim stress.120, 121 

However, longer periods of forced swim stress 8-30 min resulted in extracellular serotonin 

increasing in the mPFC and striatum, and decreasing in the amygdala.120, 122 It is possible 

that longer periods of forced swim stress were processed differently in the brain than acute 

swim stress, resulting in increased extracellular serotonin in the mPFC and decreased 
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extracellular serotonin in amygdala. However, changes in extracellular serotonin levels in 

the vHPC during forced swim stress were inconclusive because 5-minute and 30-minute swim 

stress resulted in decreased extracellular serotonin levels, whereas 8-minute swim stress 

caused increased hippocampal serotonin.122 In the 8-minute study, serotonin was sampled at 

3 minutes, and the other studies used 10-20 minute sampling. The 3-minute sampling could 

have caught information that longer sampling times were missing since extracellular 

serotonin levels dipped below baseline immediately following forced swim stress before 

increasing. A table summarizing relative changes in serotonin during the forced swim test 

can be found in Table I.3. 

Social Interaction 

 Rodents are social creatures, so studying aspects of their social interactions is helpful 

in trying to investigate disorders where social behaviors are altered like in autism spectrum 

disorder and social anxiety.123 One of the oldest social behavior tests, the social interaction 

test, was developed to measure anxiety in a very simple and straightforward way. Another 

test to measure anxiety is the social approach/avoidance test. In the approach/avoidance test, 

the apparatus contains three chambers, one which contains the unfamiliar animal and is 

separated by a transparent wall. The other two chambers are unequal.124 The larger chamber 

is connected to the transparent wall and considered the social compartment. The smaller 

chamber is further from the transparent wall and considered the non-social compartment. 

Beyond these tests, other social behavior tests to analyze social avoidance are the social 

preference-avoidance test, the three-chambered social approach test, the partition test, and 

the modified Y-maze test. 

Genetically modified fluorescent sensors are advantageous because they provide the 

opportunity to record from multiple brain regions at once using multi-site fiber photometry.72 
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Changes in serotonin levels were monitored simultaneously in the OFC, BNST, and BLA 

during social interaction. In the presence of an intruder, serotonin increased in the OFC and 

BLA but didn’t change in the BNST.  

Lv et al. implicates the DRN → mPFC pathway to be involved in social exploration 

behaviors when mice had been socially isolated for 5 weeks.125 Following social isolation, mice 

displayed increased social interaction behaviors in the three-chamber social preference test 

compared to control mice. However, when the DRN → mPFC was activated using 

chemogenetics, the mice that were socially isolated became more antisocial. Additionally, 

serotonin levels were measured in the mPFC by 5HT 1.0. Following the onset of sniffing 

behavior when mice were initially introduced to one another, mice that were group housed 

had a large increase in serotonin levels, but mice that underwent chronic social isolation did 

not. A table summarizing relative changes in serotonin during social interaction tests can be 

found in Table I.4. 

Elevated Plus Maze 

The elevated plus maze (EPM) is an approach-avoidance behavior test.95 It is the most 

frequently used behavior test to study anxiety-related behavior. Findings from our lab have 

shown a positive correlation between elevated anxiety-related behavior in the EPM and 

increased extracellular basal serotonin in the vHPC.126 The raphe nucleus contains serotonin 

cell bodies which send serotonin projections across the brain. The dorsal raphe nucleus (DRN) 

projects primarily to the dHPC, while the median raphe nucleus (MRN) projects primarily to 

the vHPC. Changes in EPM behavior and serotonin release in the vHPC have been studied 

when the DRN127 and MRN128 were lesioned.  

When subjects were placed in an aversive environment, like the EPM, extracellular 

serotonin levels in the vHPC increased. Both rats that had DRN lesions and sham lesions, 
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had increased serotonin levels in the vHPC when in the EPM.127 However, when rats had 

MRN lesions, serotonin levels in the vHPC no longer change when the rats were in the 

EPM.128 Interestingly, rats with either DRN and MRN lesions had no differences in % entries 

into open arms or % time spent in open arms compared to control and sham lesioned rats.127, 

128 Therefore, according to this study, anxiogenic behavior in the EPM is not be related to 

acute serotonin increases in the vHPC. A table summarizing relative changes in serotonin 

during social interaction tests can be found in Table I.5. 

Conclusion 

 The above studies highlight the utility of monitoring serotonin during behavior. 

However, the experimental design of these studies made it difficult to implicate the 

involvement of certain pathways during a behavior. Many of the above studies suggest that 

increased serotonin in the vHPC was related to increased anxiety-like behaviors. However, 

microdialysis in lesioned rats during the elevated plus maze, one of the most robust behavior 

tests to assess anxiety-like behavior, suggests that changes in serotonin levels in the vHPC 

did not impact anxiety-like behavior. Lesion studies did not represent endogenous conditions 

and inhibition of serotonin neurons in DRN → vHPC or MRN → vHPC by optogenetics or 

chemogenetics may be a better indicator of how changes in these pathways modulate anxiety-

like behavior. In the next section I will highlight literature that used optogenetics and 

chemogenetics to modulate serotonin circuits during specific behaviors. 

Optogenetics and Chemogenetics During Behavior 

Optogenetics and Chemogenetics 

 Optogenetics is a genetically engineered method of controlling subpopulations of 

neurons with light.129, 130 An opsin, a naturally occurring light responsive protein, becomes 
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selectively expressed in specific neuronal types through transduction of an adeno-associated 

virus (AAV) containing the opsin. Once expressed, LEDs or lasers can then be used to activate 

or inhibit these neurons. The concept of optogenetics was first published in 2005 by Boyden 

et. al. using channelrhodopsin 2.131 However, since then there have been a number of new 

excitatory and inhibitory opsins developed with varying excitation wavelengths and temporal 

dynamics.132-135  

 Alternatively, chemogenetics modulates neuronal populations using designer 

receptors exclusively activated by designer drugs (DREADDs).136-138 Similar to opsins, 

DREADDs are expressed in specific neurons through the transduction of AAVs. The 

DREADDs are made by modifying G-protein coupled receptors so that they are activated by 

synthetic compounds that are not endogenous to the brain.139 One of these drugs is clozapine 

N-oxide (CNO), though other synthetic ligands have since been developed for chemogenetics 

because CNO is metabolized into clozapine, an antipsychotic.140  

DRN  

DRN → BNST 

 Serotonin neurons projecting from the DRN to the BNST play a role in fear 

behavior.141 During a footshock c-fos was significantly elevated in DRN neurons that 

specifically project to the BNST. When serotonin neurons projecting from the DRN to the 

BNST were optically stimulated during a fear conditioning paradigm, NSF, and the EPM, 

mice demonstrated increased freezing behavior during both cued and contextual fear recall, 

increased latency to feed, and spent less time in the open arms during the EPM compared to 

control mice. More specifically, activation of serotonin neurons in the BNST that express 

5HT2CR were important in increased latency to feed.  
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Conversely, Garcia-Garcia showed that BNST activation decreased latency to feed and 

resulted in anxiolytic behavior in the EPM.142  When an antagonist of 5HT1A receptors, WAY 

100 635, was locally infusing into the BNST, stimulation of the BNST then induced increased 

latency to feed and decreased open arm time compared to control mice. These data suggested 

that 5HT1AR activation in the BNST was what caused anxiolytic behavior. Additionally, when 

BNST neurons were inhibited, mice would then explore the open arms less than control mice. 

However, Marcinkiewcz et. al. suggests that 5HT1A receptors on BNST neurons did not 

modulate anxiety behavior under basal conditions but become involved during threatening 

conditions.143 While Garcia-Garcia suggest that activation of the DRN → BNST is anxiolytic, 

nonspecific optical stimulation of the BNST supports  the findings by Marcinkiewcz that 

excitation of DRN → BNST anxiogenic and inhibition was anxiolytic.144, 145  

DRN → LHb 

Zhang and coworkers demonstrated that stimulation of serotonin neurons in the 

DRN → lateral habenula (LHb) pathway reversed depressive-like behavior induced by 

chronic unpredictable mild stress (CUMS).146 Mice that underwent CUMS had increased 

immobility in the FST. However, when the DRN → LHb pathway was optically activated, 

CUMS mice then had immobility time that was no different from control mice. 

DRN → VTA/SN 

Activation of serotonin neurons in the DRN but not the MRN induced decreased 

immobility in the FST.147 Similar effects were observed when serotonin terminals in the 

ventral tegmental area/substantia nigra (VTA/SN) were stimulated. Together, these data 

suggested that serotonin projections from the DRN to the VTA/SN were likely involved in 

antidepressant behavior. A table summarizing relative changes in serotonin when 

projections from the DRN are activated or inhibited can be found in Table I.6. 
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mPFC → DRN 

 Hamani and coworkers used electrical stimulation of the mPFC to evoke 

antidepressant behavior in the FST.118 When the mPFC was non-specifically optically 

activated, mice did not display changes in immobility in the FST.148 However, when the 

specific glutamatergic pathway between the mPFC and the DRN was stimulated, the mice 

had increased kicking frequency compared to when the laser was not turned on.  

Faye et. al. showed that when the mPFC → DRN pathway was optically activated 

mice had decreased latency to feed and increased number of open arm entries. that appears 

to be mediated by 5HT4 receptors in the mPFC.149 Activation of 5HT4R receptors in the mPFC 

were important in reducing anxiety-like behavior. Local infusion of a 5HT4R agonist, 

RS67333, into the mPFC induced anxiolytic behavior in the EMP and NSF without impacting 

overall locomotor behavior or food consumption. Similarly, when mice were systemically 

given a 5HT4R agonist, mice demonstrated anxiolytic behavior that was terminated when the 

mPFC → DRN pathway was optically inhibited.  

When the glutamatergic pathway between the mPFC and the DRN was optically 

stimulated, mice that underwent social defeat stress had increased latency to their first entry 

into the interaction zone when a novel target was present.150 Conversely, when the pathway 

was inhibited, socially defeated mice had decreased first latency into the interaction zone and 

spend more time in the interaction zone compared to when the laser was off. Grizzell and 

coworkers showed that acute social defeat stress activated the mPFC → DRN pathway.151 

The more the mPFC → DRN pathway was engaged the higher the likelihood of the hamster 

to fight back and/or the longer it took for the hamster to be overtaken by the aggressor, which 

overall pointed to higher stress resilience.  

In a study by Prakash and coworkers, mice that underwent social defeat stress were 

characterized as being either resilient or susceptible to stress.152 In both resilient and 
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susceptible mice, there were a reduced number of GLUT3+ neurons in the DRN. However, 

the number of VGLUT3+ and TPH2+ co-expressing neurons were only decreased in stressed 

mice that were in the resilient group. A table summarizing relative changes in serotonin 

when projections from the mPFC are activated or inhibited can be found in Table I.7. 

MRN 

When serotonin neurons in Ai32 X ePet-Cre+ transgenic mice were stimulated in the 

MRN mice displayed increased approach and feeding latency (min) during NSF compared to 

control mice that received a sham surgery.153 Optical activation of serotonin neurons in the 

MRN also caused mice to spend less time in the open arms compared to the control mice.153, 

154 However, control mice that had sham surgery in the MRN  spent significantly more time 

in the open arms (~70%) compared to control mice that received sham surgery in the MRN 

(~40%), which suggests that surgery placement may have had an effect on behavior in the 

EPM. The underlying mechanism of anxiogenic behavior related to MRN activation may 

involve 5HT2C receptors. Bi-trangenic mice that expressed tetO-ChR2 in Tph2 neurons were 

further crossed with 5HT2CR-KO mice to make triple-transgenic mice.147 When the MRN was 

stimulated in the tri-transgenic mice, mice no longer exhibited anxiogenic behavior in the 

EPM. While activation of the MRN impacted anxiety-like behaviors, stimulation of serotonin 

neurons in the MRN had no impact on immobility in the FST.147 A table summarizing relative 

changes in serotonin when projections from the MRN are activated or inhibited can be found 

in Table I.8. 

Hippocampus 

dHPC  

 When Ai32 X ePet-Cre+ transgenic mice were stimulated in the dHPC, mice displayed 

increased approach and feeding latency (min) compared to control mice.153 However, control 
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mice with sham surgery in the dHPC had increased feeding latency compared to control mice 

that received sham MRN surgery, which suggests that surgery placement may have had an 

effect on behavior during NSF . When mice received optical stimulation in the dHPC during 

the EPM, they spend the same amount of time in the open arms as the control mice the 

received a sham surgery.153  

vHPC 

Optical activation of serotonin neurons in the vHPC did not impact immobility in the 

FST.147 However, when the vHPC was optically stimulated during the EPM, mice spent less 

time in the open arms and travel a shorter overall distance.147 Optical stimulation of the 

vHPC was correlated with increased serotonin in the vHPC, which supports earlier 

microdialysis studies. Additionally, when mice entered the anxiogenic open arms of the EPM, 

Ca2+ transients in the vCA1 region of the hippocampus increase compared to when mice were 

in the closed arm.155 When the specific neurons in the vCA1 region that project to the lateral 

hypothalamus (LH) and the basal amygdala (BA), respectively, were monitored during the 

EPM; there was more Ca+ transient activity in the vCA1 → LH neurons when mice were in 

the open arm than in the vCA1 → BA neurons. Overall, chemogenetic inhibition of 

glutamatergic neurons from the vHPC caused an increase in open arm entries. When 

glutamatergic neurons from the vHPC to the mPFC were specifically activated and inhibited, 

respectively, anxiogenic and anxiolytic behavior in the EPM was induced.156 A table 

summarizing relative changes in serotonin when projections from the hippocampus are 

activated or inhibited can be found in Table I.9. 

Conclusions 

 Optogenetic activation of serotonin neurons in the MRN and vHPC clarify that 

changes in serotonin levels in the vHPC were involved in anxiogenic behaviors. Beyond the 
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previous lesion study mentioned above, there is a body of literature that suggests increased 

serotonin in the vHPC and activation of the MRN → vHPC pathway induces anxiety. 

However, activation of the MRN and vHPC did not appear to impact depressive-like behavior 

in the FST, suggesting that the MRN → vHPC specifically mediates anxiety-like behaviors.  

In addition to serotonergic inputs to the vHPC inducing anxiety behaviors, 

glutamatergic outputs from the vHPC to several different brain regions (BA, LH, mPFC, etc) 

also induced anxiety-like behavior. The vHPC → BA circuit was important for encoding and 

retrieval of contextual fear memories; however, optical activation of the vHPC → LH circuit 

induced avoidance in a place preference test.155 The vHPC → mPFC circuit induced anxiety 

as measured by the EPM, open field test (OFT), and NSF.156, 157  

 The mPFC → DRN has involved in a number of behavior tests within this review. 

Activation of this pathway induced antidepressant and anxiolytic phenotypes across the 

learned helplessness paradigm, FST, NSF, and EPM. Glutamatergic neurons from the mPFC 

project primarily onto GABAergic interneurons in the DRN, which in turn modulate 

serotonergic neurons in the DRN.150, 158 Within the mPFC, glutamatergic pyramidal neurons 

express both inhibitory 5HT1A and excitatory 5HT2A receptors, suggesting a serotonin 

mediated stop-go system that oversees the projection from the mPFC to the DRN.159  

While data on activating serotonergic circuits from the DRN to the BNST and anxiety 

behavior were unclear, it's possible that neither study is wrong. One suggested an excitatory 

5HT2C mediated mechanism, while the other suggested an inhibitory 5HT1A mediated 

mechanism. A compelling follow up experiment would ask which serotonin receptors on 

DRN → BNST neurons were endogenously activated during certain anxiety-related 

behaviors.  

Overall, involvement of the BNST is necessary in prolonged anxiety responses.160 

Activation of glutamatergic neurons from the vHPC → BNST induces anxiolytic behavioral 
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phenotypes.161 Glutematergic oversight by inputs from the hippocampus and BLA to the 

BNST may be more important in modulating anxiety-like and fear behavior than serotonergic 

inputs from the DRN.160 In the next section of this review, I will synthesize neurochemical 

findings with optogenetic and behavior data to point to where the field could combine these 

tools to better understand the etiology of depression and anxiety. 

Conclusions and Challenges 

The Interplay Between Serotonin and Glutamate 

The serotonin hypothesis is simple, it suggests that a depletion of serotonin results in 

depressive-like and anxiety-like behaviors. The serotonin hypothesis has encouraged that 

SSRIs treat depression and anxiety solely by elevating serotonin levels in the brain to combat 

reduced serotonin levels. However, in many of the highlighted studies that measured 

extracellular serotonin levels, elevated levels of serotonin resulted in depressive- and 

anxiety-like behaviors. In other studies that involved circuit modulation, the activation of the 

pathway of the mPFC → the DRN, which showed promising antidepressant and anxiolytic 

effects, resulted in serotonin neurons in the DRN becoming inhibited.  

While the focus of this review is the role of serotonin transmission in depression and 

anxiety, an overwhelming amount of studies pointed to the involvement of the glutamatergic 

projections from the mPFC → DRN as a moderator of depression and anxiety. 162 There were 

early works that demonstrated that administration of NMDA-R antagonists reduced 

depression.162-164 A theory for depression that focused on the glutamate system, also  

highlighted the impact of neuroplasticity on mood disorders.165 Neuroplasticity is the an 

adaptive process of the brain in which connections are strengthened and reorganized. 

Neuronal connections can be strengthened via the arborization of axons and dendrites and 
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changes in post synaptic receptor expression. Dysregulated neuroplasticity in the prefrontal 

cortex and hippocampus has been implicated in the etiology of depression.166-169  

Stress was a known risk factor for depression and anxiety, which impacted plasticity 

of glutamatergic neurons. Increases in stress lead to decreases in dendritic density in 

glutamate neurons in the mPFC, which were reversible or preventable by the administration 

of tricyclics or SSRIs.162, 170-172 Additionally, acute stressors had been associated with 

increased glutamate levels in the prefrontal cortex, amygdala, and hippocampus, as 

measured by microdialysis.173-175 As per this review, we know that changes in serotonin levels 

in the prefrontal cortex, amygdala, and hippocampus have also been associated with stress, 

anxiety-like, and depressive-like behaviors.  

It is well known that serotonin and glutamate interact with one another. Some 

serotonin neurons in the DRN co-express the glutamate transporter, VGLUT3.176-178 Amilhon 

and coworkers highlighted a subset of VGLUT3 containing serotonin neurons projecting to 

limbic regions that played a role in anxiety-related behaviors.179 Additionally, SERT was co-

expressed in thalamic glutamate neurons.180 Overall, the serotonin system is thought to 

modulate the glutamatergic system through the expression and distribution of serotonin 

receptors on glutamate neurons.181 

There are a number of serotonin receptors that are expressed on glutamatergic 

neurons that have been implicated in the pathology of depression and anxiety, including 

5HT1A, 5HT1B, 5HT2A, 5HT2C, 5HT4, 5HT6, and 5HT7.182 Serotonin receptors were distributed 

differently throughout the brain, which could be utilized when developing drugs to target 

specific brain regions of interest.183, 184 As the most widely expressed serotonin receptors, 

5HT1A and 5HT2A have been suggested to oversee ‘adaptive responses to adversity’.185 The 

inhibitory 5HT1A receptor was involved in passive coping through the activation of 

heteroreceptors in limbic regions.186 Drugs like SSRIs desensitized 5HT1A autoreceptors but 
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not heteroreceptors, which disinhibited serotonin neurons and resulted in more serotonin 

release in these limbic regions. Alternatively, the excitatory 5HT2A receptor was involved in 

active coping and promoted plasticity in the cortex. Drugs like psychedelics strengthened 

pathways that express 5HT2A.  

Recently, there has been an influx of research on the use of psilocybin and ketamine 

for the treatment of depression and anxiety. have been of particular interest. A meta-analysis 

on psilocybin treatment showed that subjects had reduced anxiety and depression post 

treatment across studies.187 While psilocybin is a serotonergic psychedelic that is an agonist 

for the 5HT2A receptor, the drug induces neuroplasticity in glutamatergic neurons in the 

frontal cortex.188 Increased neuroplasticity is one of the leading hypotheses of how 

psychedelics treat anxiety and depression.80, 189, 190 Ketamine is an NMDA receptor antagonist 

and dissociative that was previously used as an anesthetic. The mechanism underlying 

ketamine’s antidepressant effects was unclear and is actively being studied for the 

development of novel drug targets. Leading theories on the antidepressant mechanism of 

ketamine included direct inhibition of NMDA receptors and/or induction of synaptic 

plasticity.191, 192  

A new drug was released that modulates the serotoninergic and glutamatergic 

systems, as well as the dopaminergic and norepinephrine systems. Auvelity, a combination 

of dextromethorphan and bupropion, is an NMDA receptor antagonist, σ1 receptor agonist, 

serotonin–norepinephrine reuptake inhibitor, norepinephrine–dopamine reuptake inhibitor 

and nicotinic acetylcholine receptor antagonist.193 Auvelity was FDA approved in the United 

States in 2022, and claims to reduce symptoms of depression in 1 week. Overall, there is 

mounting evidence of a shift towards synthesizing glutamatergic antidepressants.194  
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Neurochemical Sensing, Circuit Modulation, and Behavior  

Neurochemical sensing during behavior can serve as a tool to guide optogenetic and 

chemogenetic experiments. Neurochemical sensors can be deployed to multiplex serotonin 

and glutamate levels in key brain regions such as the hippocampus, mPFC, and DRN during 

anxiety and depressive-like behaviors. Once the direction of change in these neurochemicals 

during specific behaviors is clear, neuromodulation experiments of specific pathways can be 

designed to then induce those neurochemical changes. For example, if there are increases in 

serotonin in the hippocampus during high anxiety behaviors in the EPM, specific serotonergic 

inputs to the hippocampus can then be targeted to see if optical activation of this pathway 

induces the same anxiogenic behavior. In theory activating serotonin neurons that project 

from the raphe nucleus to the hippocampus should also induce increased in serotonin levels 

in the hippocampus, which has been confirmed to be true through microdialysis. 

 Although it is intuitive to think that selective stimulation of a population of neurons 

should result in selective release of that neuron’s respective neurotransmitter, a recent study 

by our group indicated that may not always be the case. We transduced the excitatory opsin, 

Crimson, into dopamine neurons expressing the dopamine transporter.195 When dopamine 

cell bodies were optically activated, we observed increases in dopamine, serotonin, and 

3-methoxytyramine in the striatum. Neurochemical monitoring can be used simultaneously 

with optogenetic and chemogenetic modulation of circuits to investigate if modulation of 

certain circuits induces changes in multiple neurotransmitters. The use of SERT-Cre mice 

would necessitate simultaneous monitoring of serotonin and glutamate, since populations of 

serotonin neurons that co-release serotonin and glutamate would be targeted.  

Neurochemical sensing during pharmacological or genetic modulation of certain 

serotonin receptor subtypes can gleam information into how normal serotonin release is 

disrupted by inhibition or the knockout of key receptors on serotonin or glutamate neurons. 



 36 

For example, the role of serotonin during inescapable stress can be further probed using 

5HT1A or 5HT2A knockout mice, to see if sustained elevations in DRN serotonin levels due to 

inescapable stress are mediated by one of these receptors. Also, the 5HT1A and 5HT2A 

receptors are expressed on glutamatergic neurons that project from the mPFC to the DRN 

and can either inhibit or excite this pathway respectively. Understanding how changes in 

serotonin and glutamate levels in the mPFC results in differential activation of either of these 

receptors during specific behaviors would aid in understanding how antidepressant and 

anxiolytic behaviors are modulated by the mPFC → DRN circuit. 

Challenges  

Simultaneous detection of serotonin and glutamate is a technical challenge. Serotonin 

is an electrochemically active monoamine neurotransmitter, while glutamate is an amino 

acid that requires special derivatization to become electrochemically active.196 Glutamate can 

be electrochemically detected through the use of immobilized enzymes197 or a genetically 

engineered periplasmic glutamate binding protein,198 but cannot be directly detected. 

Therefore, most voltammetry techniques and microdialysis with electrochemical detection 

are not suitable to co-detect serotonin and glutamate. However, it may be possible to use 

RPV-PLSR to detect glutamate if changes in glutamate levels were to affect double-layer 

rearrangement in some way, thereby changing the capacitive current.  

Tissue serotonin and glutamate can be simultaneously detected using LC-MS.199 

However, designing a microdialysis method with a mass spectrometry detector that can 

simultaneously detect both glutamate and serotonin, while having adequate sensitivity for 

serotonin in vivo, may be challenging. Nonetheless, microdialysis is unable to detect 

millisecond changes in neurochemicals, which would be favorable when monitoring 

neurochemical levels during behaviors that may only last several minutes.  
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Genetically modified fluorescent sensors have been developed for both serotonin and 

glutamate, however, a red shifted version of one of these sensors would need to be developed 

in order to successfully multiplex. Aptamer-FET sensors can bind any substrate that an 

aptamer exists for. However, in vivo aptamer-FET probes have currently focused on 

multiplexing serotonin and dopamine, and haven’t been used to make in vivo recordings of 

glutamate.  

In this review the focus was on serotonin’s interaction with glutamate, however, there 

are a number of plausible theories that suggest that the interaction of the serotonin system 

with the dopamine,200-202 norepinephrine,203,204 and GABA205-207 systems also impact 

depression and anxiety. In order to elucidate the role of serotonin in depression and anxiety, 

scientists must study the interactions between serotonin and other neurotransmitter systems 

because serotonin does not act in isolation. A number of neurochemical sensing techniques 

have been expanded to multiplex dopamine and other neurotransmitters.70,71,88,89,208 

Patriarchi and coworkers have demonstrated the feasibility of multiplexing dopamine and 

glutamate using genetically engineered fluorescent sensors.70 The development of a 

red-shifted genetically engineered fluorescent sensor for serotonin would allow for serotonin 

to be multiplexed with glutamate,59, 60 GABA,61 oxytocin,62 endocannabinoids,63 histamine,64 

norepinephrine,65 acetylcholine,66, 67 or dopamine68-71, which would open a new avenue in how 

serotonin is studied. 
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Figures 

Figure I.1 

  

Figure I.1 Voltammetry waveforms. Blue is triangle waveform for FSCV. Purple is the N-shape 

waveform for serotonin. Grey is the RPV-PLSR waveform. 
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Table I.1 

Condition Brain region Change in serotonin 

Escapable stress DRN No change 

Escapable stress + 

muscimol in mPFC 

DRN Increased 

Inescapable stress DRN Increased 

Escapable stress vHPC No change 

Inescapable stress vHPC Increased 

Escapable stress BLA No change 

Inescapable stress BLA Increased 

Table I.1. Changes in serotonin levels during the learned helplessness paradigm. 
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Table I.2 

Condition Brain region Change in serotonin 

During shock vHPC Increase 

Decrease in freezing vHPC Increase 

During cue mPFC Increase 

During shock mPFC Decrease 

During cue BLA Increase 

During shock BLA Decrease 

During shock DRN Decrease 

During shock OFC Decrease 

During shock BNST Decrease 

Table I.2. Changes in serotonin levels during fear conditioning. 
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Table I.3 

Condition Brain region Change in serotonin 

DBS of mPFC dHPC Increase 

Forced swim stress vHPC Decrease and increase 

Forced swim stress mPFC Decrease and increase 

Forced swim stress DRN No change 

Forced swim stress amygdala Increase and decrease 

Forced swim stress MRN Increase 

Forced swim stress striatum Increase 

Table I.3. Changes in serotonin levels during the forced swim test. 
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Table I.4 

Condition Brain region Change in serotonin 

Intruder present BLA Increase 

Intruder present OFC Increase 

Intruder present BNST No change 

Sniffing- group housed mPFC Increase 

Sniffing- chronic social 

isolation 

mPFC No change 

Table I.4. Changes in serotonin levels during social interaction. 
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Table I.5 

Condition Brain region Change in serotonin 

DRN lesion during EPM vHPC Increase 

MRN lesion during EMP vHPC No change 

Table I.5. Changes in serotonin levels during the elevated plus maze. 
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Table I.6 

Pathway/brain 

region 

Modulation Associated 

receptors 

Behavior Test Change in 

behavior 

DRN → BNST 

(5HT) 

stimulate 5HT2CR Fear 

Conditioning, 

NSF, EPM 

↑ anxiety 

DRN → BNST 

(5HT) 

stimulate 5HT1AR NSF, EPM ↓ anxiety 

DRN → BNST 

(5HT) 

inhibit 5HT1AR EPM ↑ anxiety 

DRN → BNST 

(non-specific) 

stimulate N/A EPM ↑ anxiety 

DRN → BNST 

(non-specific) 

inhibit N/A EPM ↓ anxiety 

DRN → LHb 

(5HT) 

stimulate N/A FST ↓ depression 

DRN (5HT) stimulate N/A FST ↓ depression 

VTA/SN (5HT) stimulate N/A FST ↓ depression 

Table I.6. Changes in serotonin levels when projections from the DRN are stimulated or inhibited. 
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Table I.7 

Pathway/brain 

region 

Modulation Associated 

receptors 

Behavior Test Change in 

behavior 

mPFC → DRN 

(non-specific) 

stimulate N/A FST No change 

mPFC → DRN 

(Glu) 

stimulate N/A FST ↓ depression 

mPFC → DRN 

(Glu) 

stimulate 5HT4R NSF ↓ anxiety 

mPFC → DRN 

(Glu) 

stimulate 5HT4R EPM ↓ anxiety 

mPFC → DRN 

(Glu) 

stimulate N/A Social 

Interaction 

↓ sociability 

mPFC → DRN 

(Glu) 

inhibit N/A Social 

Interaction 

↑ sociability 

mPFC → DRN 

(Glu) 

Endogenous 

activation 

N/A Social 

Interaction 

↑ stress 

resilience 

Table I.7. Changes in serotonin levels when projections from the mPFC are stimulated or inhibited. 
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Table I.8 

Pathway/brain 

region 

Modulation Associated 

receptors 

Behavior Test Change in 

behavior 

MRN (5HT) stimulate 5HT2CR EPM ↑ anxiety 

MRN (5HT) stimulate N/A NSF ↑ anxiety 

MRN (5HT) stimulate N/A FST No change 

Table I.8. Changes in serotonin levels when projections from the MRN are stimulated or inhibited. 
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Table I.9 

Pathway/brain 

region 

Modulation Associated 

receptors 

Behavior Test Change in 

behavior 

dHPC (5HT) stimulate N/A NSF ↑ anxiety 

dHPC (5HT) stimulate N/A EPM No change 

vHPC (5HT) stimulate N/A EPM ↑ anxiety 

vHPC Endogenous 

activation 

N/A EPM ↑ anxiety 

vHPC (Glu) inhibit N/A EPM ↓ anxiety 

vHPC → mPFC 

(Glu) 

stimulate N/A EPM ↑ anxiety 

vHPC → mPFC 

(Glu) 

inhibit N/A EPM ↓ anxiety 

Table I.9. Changes in serotonin levels when projections from the hippocampus are stimulated or inhibited. 
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CHAPTER II 
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Introduction 

The idea that neurotransmitters function via coordinated activities to shape behavior 

is becoming increasingly supported by in vivo studies. 4-12 We recently found that optogenetic 

stimulation of midbrain dopamine neurons, which drives reward-related behavior, 13 

produces serotonin release in striatum. 14 Dopamine and serotonin neurons directly and 

indirectly form circuits with one another. 15-17 Both systems exhibit developmental, 

functional, and clinical interplay. 18, 19 The dopamine and serotonin systems are implicated 

in diverse behaviors of relevance to neuropsychiatric and neurological disorders, including 

major depressive and anxiety disorders, 20, 21 schizophrenia, 22, 23 substance use disorder, 24, 25 

and Parkinson’s disease. 26, 27 These and other findings support the overarching hypothesis 

that multiple neurochemical systems, and particularly, the dopamine and serotonin systems, 

function (or dysfunction) concertedly. 28-30  

Neurochemical signaling encodes biologically relevant information across multiple 

timescales. 31 Tonic (basal) neurotransmitter levels arise from clocklike neural firing over 

minutes to hours to days. Phasic (transient) changes in neurotransmitter levels are rapid 

(tens of milliseconds to seconds) and are hypothesized to result from synchronized bursts of 

neural firing in response to evoked or naturally occurring stimuli. 32-36 The ability to monitor 

transitory neurochemical events, in conjunction with changes in tonic signaling, will enable 

a more comprehensive understanding of how chemical neurotransmission encodes 

behaviorally relevant information. 37, 38 

A variety of techniques are available for in vivo neurochemical monitoring with 

various advantages and disadvantages. 39-42 Here, we focus on voltammetry methods, 

including fast-scan cyclic voltammetry (FSCV), to detect electroactive neurotransmitters. 

The use of small carbon-fiber microelectrodes (5-30 µm diameter) 43, 44 and high sampling 

rates (10-100 Hz) 45, 46 in FSCV can be used to differentiate release vs. reuptake processes. 47 
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While widely employed, FSCV suffers from poor analyte specificity. Overlapping oxidation 

(and reduction) profiles of structurally similar neurochemicals, many of which occur at low 

concentrations, make in vivo measurements of transmitters other than dopamine difficult 

with FSCV 48. Moreover, FSCV is limited by the need for background subtraction of large 

capacitive currents generated during voltage sweeps at fast scan rates. Background 

subtraction precludes tonic (basal) neurotransmitter determinations and measurements over 

longer time frames, (e.g., minutes-hours), due to current drift. 49, 50 

Several novel waveforms have been developed that improve and expand various 

aspects of sweep-wave voltammetry. 45, 51 Fast-scan controlled absorption voltammetry 

(FSCAV) enables determination of basal dopamine or serotonin levels. 37,52,53 Other 

adsorption waveforms and accumulation electrodes have been reported. 54,55 Sombers and 

coworkers devised a waveform that allowed prediction and subtraction of electrochemical 

drift for measurements of dopamine, adenosine, and H2O2, 56 as well as sweep waveforms to 

detect the opioid peptide met-enkephalin, H2O2, and pH. 57, 58  

Complex waveforms that combine sweeps or staircases with square-wave pulses have 

been reported. Multiple cyclic square-wave voltammetry was used to quantify tonic dopamine 

in vivo with 10-s resolution. 59 Improvements in selectivity and sensitivity were made using 

fast-cyclic square-wave voltammetry (FCSWV) 60 and N-FCSWV 61 for monitoring dopamine 

and serotonin in vivo, respectively. Multiplexing has not yet been achieved with square-wave 

voltammetry—two different waveforms were needed to measure dopamine 60 vs. serotonin. 61 

Additionally, capacitive current simulation, which relies on assumptions about exponential 

current decay, was needed for background subtraction. Venton and coworkers used single-

walled carbon nanotube electrodes with FSCV to measure simultaneous changes in dopamine 

and serotonin in vivo. 62 The carbon nanotube coating reduced the formation of oxidative 
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byproducts of serotonin and increased the cathodic currents of dopamine and serotonin, 

improving analyte discrimination via more distinct reduction profiles. 63 

Principal components analysis (PCA) 64 and principal components regression (PCR) 65, 

66 have been used for multiplexing via dimensionality reduction in FSCV, with PCR capable 

of quantitative predictions. Another dimensionality reduction method widely used in 

chemometrics is partial least squares regression (PLSR). 67 The PLSR approach is a 

supervised machine learning technique (i.e., it models input and output); PCA and PCR are 

considered unsupervised (i.e., only input data is modeled). The use of PLSR was shown to 

improve predictive accuracy over PCR when analyzing FSCV data for mixtures of 

neurochemicals. 68 Other uses included prediction and correction of FSCV background drift 

and pH changes. 56, 58 Kishida and colleagues pioneered combining FSCV with regularized 

linear regression (i.e., elastic net electrochemistry) for sub-second monitoring of evoked 

dopamine 69, 70 and serotonin 71, 72 in human striatum during decision making tasks.  

While newer waveforms and data processing methods have advanced neurochemical 

measurements, no single voltammetry technique yet enables tonic and phasic levels of 

multiple neurotransmitters to be determined simultaneously. To address this, we 

demonstrate a two-pronged approach to improve waveform design and data analysis. We 

gained inspiration from the voltammetric electronic tongue (VET), 73 used to measure 

analytes in food, 74, 75 beverages, 76, 77 and wastewater. 78 Rather than using conventional pulse 

waveforms, ‘smart’ pulse waveforms are designed for VET sensing. These pulse trains are 

initially constructed based on the electrochemical characteristics of the analytes of interest. 

79 Pulse widths and amplitudes, as well as pulse train frequencies, among other factors, are 

optimized to extract distinguishing electrochemical characteristics for data processing. 80, 81 

Smart pulse design has been shown to outperform conventional 79 and random 74 pulse 

waveforms using the VET method. 
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Data generated by the VET method have been analyzed using a multivariate 

technique, commonly PLSR. 75, 77 As PLSR models covariance, the model prioritizes variations 

in input (current response) that correspond to qualitative and quantitative changes in output 

(analyte classification and concentration). 67 As such, differences in the Helmholtz double 

layer, mass transport, analyte concentrations and adsorption, and other dynamic electrode 

surface properties occurring during an applied pulse are considered as potential sources of 

analyte specific information. This information is encoded in the transient responses of 

faradaic and non-faradaic currents. By including faradaic and non-faradaic current responses 

as input to the model (i.e., not background subtracting), the PLSR model selects aspects of 

the current response that covary with analyte identity and concentration. This is opposed to 

background subtracted methods, where some information is discarded prior to model input 

to increase signal-to-noise. Potentially relevant information in the background is then lost.  

An appropriately trained model can handle voltammetry data without the need for 

background subtraction, noise filtering/removal, or drift subtraction. In addition to VET 

studies, regularized regression applied to FSCV has been used to demonstrate that 

appropriately trained models benefit from information beyond analyte redox potentials when 

background subtraction is avoided. 70, 72 The use of regularized regression accounted for drift 

and noise, similar to PLSR. 

Here, we report on the initial development of rapid pulse voltammetry coupled with 

PLSR (RPV-PLSR) using a smart pulse approach. By avoiding background subtraction, RPV-

PLSR utilizes faradaic and nonfaradaic current to improve analyte identification and 

quantification power. Inclusion of the background current also enables tonic and phasic 

concentration predictions in a single experiment at fast timescales (i.e., limited only by 

waveform frequency).  
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Materials and Methods 

Chemicals 

Dopamine hydrochloride (#H8502) and serotonin hydrochloride (#H9523) were purchased 

from Sigma Aldrich (St. Louis, MO). Artificial cerebrospinal fluid (aCSF) for in vitro 

experiments consisted of 147 mM NaCl (#73575), 3.5 mM KCl (#05257), 1.0 mM NaH2PO4 

(#17844), 2.5 mM NaHCO3 (#88208) purchased from Honeywell Fluka (Charlotte, NC), and 

1.0 mM CaCl2 (#499609) and 1.2 mM MgCl2 (#449172) purchased from Sigma Aldrich. The 

aCSF solution was adjusted to pH 7.3 ± 0.03 using HCl (Fluka, #84415). The phosphate-

buffered mobile phase for high performance liquid chromatography (HPLC) consisted of 

96 mM NaH2PO4, 3.8 mM Na2HPO4 (Fluka #71633), pH 5.4, 2-2.8% MeOH (EMD #MX0475), 

50 mg/L EDTA·Na2 (Sigma #03682), and 500 mg/L sodium decanesulfonate (TCI #I0348) in 

water. All aqueous solutions were made using ultrapure water (Milli-Q, Millipore, Billerica, 

MA).  

In vitro Experiments 

For in vitro training data used for preliminary method validation, carbon fiber 

microelectrodes were fabricated as described previously 44 with minor modifications. Single 

7-μm diameter carbon fibers (Specialty Materials, Lowell, MA) were vacuum-aspirated into 

borosilicate glass capillaries (Sutter Instrument Company, Novato, CA). Each capillary was 

pulled to produce two electrodes by tapering and sealing using a micropipette puller (P-1000, 

Sutter Instrument Company, Novato, CA). Electrode tips were cleaned with 100% 

isopropanol (Fisher A416P, for electronic use) for 10 min and dried at 90-100 ℃ for 

10-20 min. Electrode tips were then sealed by dipping in non-conductive epoxy (Epoxy 

Technology Inc., Billerica, MA) for 7-10 min twice at a 1 h interval at room temperature. 

Epoxied electrodes were dried at 90-100 ℃ overnight. Prior to testing, electrode tips were 
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blunt-cut using a surgical scalpel under a microscope to create 7-μm diameter disk shaped 

conducting surfaces. Bare silver wire (0.010-inch diameter, A-M Systems, Sequim, WA) was 

cleaned using a polishing cloth and inserted into working electrode capillaries to serve as the 

electrical connection (Fig. II.S1). The electrodes were backfilled with 2 M aqueous NaCl for 

electrical connection. Reference electrodes (RE-5B Ag/AgCl, BASi, West Lafayette, IN) used 

for all in vitro experiments were maintained in oversaturated aqueous KCl. Fresh aCSF was 

delivered to a flow cell at a constant flow rate of 2.5-2.7 mL/min by a peristaltic pump. 

(Fig. II.S1). Standards (180 L) of dopamine, serotonin, and their mixtures were injected via 

an autoinjector (VICI E60 Actuator, Valco Instruments Co. Inc., Houston, TX) in pseudo-

random order at >5 min intervals.  

In vivo Experiments 

Animals 

Subjects were virgin female mice generated at the University of California, Los Angeles 

(UCLA) from a DATIREScre lineage (Jackson Laboratory, stock no. 006660) on a C57Bl/6J background 

via heterozygote mating. All surgeries were carried out under aseptic conditions with isoflurane 

anesthesia (5% isoflurane for induction, 1.5-2% for maintenance) on a KOPF Model 1900 Stereotaxic 

Alignment System (KOPF, Tujunga, CA). After each surgery, mice were administered the analgesic 

carprofen (5 mg/kg, 1 mg/mL, sc) for the first three days, and an antibiotic (amoxicillin, 0.25 mg/mL) 

and analgesic (ibuprofen, 0.25 mg/mL) in drinking water for 14 days post-surgery.  

RPV-PLSR  

Three mice first underwent a surgical procedure for head-bar implantation. A pair of 

rectangular head-bars (9 mm  7 mm  0.76 mm, 0.6 g each, laser cut from stainless steel at 

Fab2Order) were attached to the sides of the skull by C&B-METABOND (Fig. II.S1; Parkell, 

Edgewood, NY). The Cre-dependent adeno-associated viral vector (AAV) was obtained from the 
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University of North Carolina Vector Core (Chapel Hill, NC). A nanoinjector was used to deliver 600 nL 

of 7.8  1012/mL AAV5/Syn-Flex-ChrimsonR-tdT unilaterally into the ventral tegmental area 

(VTA)/substantia nigra (SN) area (AP -3.08 mm, ML ±1.20 mm, DV -4.00 mm from Bregma). Then, a 

200 µm diameter ferrule-coupled optical fiber (0.22 NA, Thorlabs, Newton, NJ) was implanted (AP -

3.08 mm, ML ±1.20 mm, DV -3.80 mm from Bregma via the same path of viral vector injection) to 

deliver optical stimulation during experiments.  

After surgery, mice were pair-housed with cagemates to recover for at least 2-3 weeks 

and to allow for expression of genes of interest before an additional craniotomy surgery. 

During this time, subjects were trained to acclimate to the head-fixed testing condition for 

15-30 min/session  6-10 sessions. Two craniotomies were carried out 24 h ahead of testing 

days. A piece of skull (2.0 mm width  2.0 mm length, centered at AP +1.0 mm, ML ±1.0 mm 

from Bregma) above the striatum (STR) of the same hemisphere as the AAV injection site 

was removed for working electrode insertion. For the Ag/AgCl reference electrode, a 0.4 mm 

diameter hole (centered AP +2.8 mm, ML ±2.0 mm from Bregma) was made in the skull on 

the side contralateral to the AAV injection site. The dura remained intact for both surgical 

areas. All surgery areas were first sealed with a thin layer of Kwik-Cast & Kwik-Sil (World 

Precision Instruments, Sarasota, FL) and then covered with a thin layer of C&B-

METABOND. Animals were allowed to recover for 24 h. 

On the testing day, each mouse was transferred and mounted to the head-fixed stage 

via its head-bars (Fig. II.S1). After a 10 min habituation period, the C&B-METABOND cover, 

Kwik-Cast & Kwik-Sil seal, and dura above the recording and reference electrode sites were 

carefully removed. A Ag/AgCl reference electrode made from bleached silver wire was lowered 

into the brain. An optical fiber was calibrated to 10 mW/mm2 daily prior to fiber coupling. 

Optical stimulation was generated via a 532 nm MGL-III-532 laser (Changchun New 
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Industries Optoelectronics Tech. Col, Ltd, Changchun, P. R. China). Square pulses of 50% 

duty at 30 or 40 Hz for 20 s were used to deliver optical stimulation at >5 min intervals. One 

subject received a dose of escitalopram (20 mg/kg, sc). Basal and optically stimulated 

responses were collected before and beginning 1 h after drug administration. 

The working electrode (PEDOT:Nafion carbon fiber microelectrode) was sterilized 

using 70% ethanol, rinsed with saline, and lowered into the striatum for voltammetry 

measurements via a 1 μm-precision motorized digital micromanipulator (MP-225, Sutter 

Instrument, Novato, CA). The PEDOT:Nafion coated electrodes were fabricated as per 

published protocols. 82 Each electrode had a cylindrical conducting surface that was 5-μm in 

diameter and ~75 μm in length. When lowered to a new recording depth, the electrode 

baseline was restabilized for at least 10 min before continuing stimulations.  

During testing, sweetened milk diluted with water was delivered to the subject every 

2 hr. Subject behavior was monitored for signs of distress. After the experiment, each subject 

was prepared for histological verification of Chrimson expression, recording electrode 

position, and the position of the optical fiber. At the end of each in vivo experiment, electrodes 

were removed and post-calibrated using standards of dopamine, serotonin, and their 

mixtures in physiological saline to generate the training set data. 

Microdialysis  

Mice (N=3) at 3-6 months of age were Chrimson-transfected, had an optical fiber implanted, 

and were trained to be head-fixed, as described above. Two-three weeks after Chrimson-transfection, a 

second surgery was carried out first to implant a CMA/7 guide cannula for a microdialysis probe aimed 

at the dSTR (AP+1.00 mm, ML±1.75 mm, DV-3.10 mm from Bregma) into the same hemisphere as 

the viral delivery and fiber implant site (see above). The guide cannula was secured to the skull with 

C&B-METABOND. Animals recovered from the surgery for at least three days before microdialysis. 
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Subjects underwent online microdialysis testing for one day. Following testing, the microdialysis probe 

was removed and the brain of each mouse was prepared for histology to verify the microdialysis probe 

and optical fiber placements, and Chrimson expression. Microdialysis probe and optical fiber tracks 

were visualized using light microscopy. 

On the night before microdialysis (ZT10-12), each mouse was briefly anesthetized with 

isoflurane (1-3 min) for insertion of a CMA/7 microdialysis probe (1 mm length, 6 kDa cutoff, 

CMA8010771; Harvard Apparatus, Holliston, MA) into the guide cannula. Subjects were 

returned to their home cages after insertion and aCSF was continuously perfused through 

the probe at 2-3 μL/min for 30-60 min followed by a 0.3 μL/min flow rate for an additional 

12-14 h to allow stabilization of the brain tissue surrounding the probe. 

On the testing day, subjects were relocated to the head-stage recording set-up and 

allowed to habituate for at least 30 min before basal data collection. Optical stimulation was 

performed as described above, except the pulses were delivered at 10 Hz for 5 min. The first 

stimulation was delivered at ~ZT-2 after 6-18 basal dialysate samples were collected and 

analyzed. Prior to reverse dialysis of escitalopram (10 μM), three optical stimulations were 

delivered at 1-h intervals. After 90-120 min of intrastriatal drug perfusion, an additional 

three optical stimulations were delivered at 1-h intervals while drug perfusion was 

continued.  

High performance liquid chromatography was performed using an Amuza HTEC-500 

integrated system (Amuza Corporation [formally known as Eicom], San Diego, CA). An Eicom 

Insight autosampler was used to inject standards and Eicom EAS-20s online autoinjectors 

were used to collect and inject microdialysis dialysates. 83 Chromatographic separation was 

achieved using an Eicom PP-ODS II column (4.6 mm ID x 30 mm length, 2 μm particle 

diameter). The column temperature was maintained at 21 °C. The volumetric flow rate was 
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450-500 μL/min. Electrochemical detection was performed using an Eicom WE-3G graphite 

working electrode with an applied potential of +450 mV vs. a Ag/AgCl reference electrode. 

Standard curves encompassed physiological concentration ranges of serotonin and 

dopamine in dialysates (0-10 nM). The limit of detection was ≤302 amol (6.05 pM) for each 

analyte; the practical limit of quantification was ≤916 amol (18.3 pM). Dialysate samples 

were collected online at 5-min intervals using a dialysate flow rate of 1.8 μL/min and injected 

immediately onto the HPLC system for analysis. 

Voltammetry Data Acquisition and Analysis 

Measurement Hardware  

Voltammetry measurements were carried out using a two-electrode configuration via a 

Ag/AgCl reference electrode and a carbon fiber microelectrode working electrode. Waveforms were 

generated using a PC with a PCI-6221 data acquisition card (National Instruments (NI), Austin, TX) 

to control an EI-400 potentiostat (Cypress Systems, USA) and a custom ‘headstage’ analog pre-

amplifier. Potentials were applied to the reference electrode while the working electrode was tied to the 

zero-potential terminal (virtual ground) of the pre-amplifier circuit. The pre-amplifier was designed to 

output an analog voltage proportional to electrode current. Detailed information on the custom 

headstage design is in the Supplemental Information (Fig. II.S2). The output voltage was amplified by 

the EI-400, then sampled and quantified by an analog-to-digital converter on the NI PCI-6221 data 

acquisition card. 

Measurement Software 

An in-house software program was developed for this study. The software was programmed in 

MATLAB (R2016a; The MathWorks, Inc., Natick, MA) and consisted of three modules. (1) The signal 

generation module enabled the design of multi-step waveforms at user-specified potentials, scan rates, 

sampling and fundamental frequencies, and numbers of sampled points per waveform period. (2) The 
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MATLAB Data Acquisition Toolbox enabled event-driven communication during the measurement 

process. Waveforms were loaded from the signal generation module while the user specified the 

measurement start and stop points, along with optional parameters for stimulation or injection events. 

The data acquisition card generated the analog potential signal and the stimulation signal and 

digitized the resulting current. Voltammograms for each measurement cycle and the temporal 

evolution of current at potentials of interest were plotted in real-time. At the end of each measurement, 

digitized current measurement data were stored in MATLAB files. (3) The data processing module 

displayed the acquired data in a variety of user-specified formats, allowed for user-defined background 

subtraction, digital filtering and signal averaging, and generated MATLAB or Excel files to be extracted 

for machine learning models. 

Waveforms  

Three different waveforms were used herein. (1) A four-step rapid pulse waveform 

consisting of -0.4 V to +0.2 V to +0.8 V to -0.1 V to -0.4 V at 2 ms per step applied at 10 Hz 

for in vitro RPV to investigate differentiating serotonin from dopamine (Fig. II.1a). (2) A 

triangle waveform 44 for FSCV from -0.4 V to +1.2 V to -0.4 V at a scan rate of 400 ms/V 

delivered at 10 Hz for in vitro comparisons with the RPV waveform (Fig. II.1b). (3) A 

combination of the four-step rapid pulse and triangle waveforms described above. Each 

waveform was delivered in an alternating manner at 5 Hz in vivo and during post calibration 

(Fig. II.1c). 

Machine Learning 

Data were extracted from raw MATLAB files into Excel and imported into Python 

using Pandas 0.25.1 and Jupyter 6.0.1 notebooks. All models were built using the Python 

3.7.4 programming language in Jupyter notebooks using NumPy 1.16.5, SciPy 1.3.1, and 

scikit-learn 0.22.1. 84 Data visualization was via matplotlib 3.1.1. Per each model built, data 
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were normalized unless otherwise noted using either the ℓ1, ℓ2 or maximum norm, as chosen 

by grid search. 84 

Statistics 

Statistical analyses for in vivo data (two-tailed t-tests; Table S1) were carried out 

using Prism, v.9.1.0 (GraphPad Inc., La Jolla, CA). Basal data over six timepoints just prior 

to the first optical stimulation were averaged for N=3 microdialysis mice and N=1 RPV 

mouse. The areas under the curve for microdialysis stimulation peaks were calculated using 

four dialysate samples after the onset of stimulation. Due to faster sampling, the areas under 

the curve for RPV stimulation peaks were calculated using fifty-two points post stimulation 

onset. Data are expressed as means ± standard errors of the mean (SEMs). Throughout, 

P<0.05 was considered statistically significant. 
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Results and Discussion 

We designed and evaluated an initial rapid pulse waveform in vitro for dopamine and 

serotonin co-detection (Fig. II.1a) and to compare with a triangle waveform 44 (Fig. II.1b). For 

in vivo experimentation, we alternated the rapid pulse and triangle waveforms 

(RPV-FSCV; Fig. II.1c). Experimental paradigms utilizing these waveforms are shown in 

Fig. II.2. The RPV-FSCV waveform was used to facilitate within-subjects’ comparisons 

(Fig. II.2a). For experiments in mice, electrodes were post-calibrated in vitro to produce 

training set data (Fig. II.2b). Training set data for each waveform were used to build machine 

learning regression models to classify and to quantify dopamine and serotonin (Fig. II.2c). 

Multiple waveform-model combinations were compared in the context of cross-validation 

accuracy and predicted in vivo responses. 

Rapid Pulse Waveform Design  

We designed an initial rapid pulse waveform (Fig. II.1a) based on potentials 

characteristic of commonly used dopamine or serotonin FSCV waveforms (Fig. II.1b). The 

rapid pulse waveform employed a starting potential of -0.4 V, similar to a commonly used 

dopamine FSCV waveform 85 (Fig. II.1b), but with steps to +0.2 V and -0.1 V, similar to the 

voltages scanned during the N-FSCV waveform used for preventing serotonin adsorption on 

electrode surfaces and to promote reduction of serotonin, respectively. 86 A step to +0.8 V was 

included to ensure the oxidation of serotonin and dopamine, while preventing capacitive 

currents from reaching the maximum current limits of our hardware, which occurs with large 

potential steps. Employing intermediate pulses (e.g., +0.2 V and -0.1 V) has been shown to 

increase analyte discrimination and precision for VETs. 80 Both faradaic and non-faradaic 

currents at intermediate steps contribute analyte-specific information more so than a single, 
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large amplitude pulse step directly to the redox potential of interest (i.e., from -0.4 V directly 

to +0.8 V), which would be dominated by capacitive current. In the future, intermediate steps 

can be added to reach +1.3 V, the upper potential commonly used for dopamine detection and 

recently optimized for serotonin detection. 51 This high upper potential was not used for this 

proof-of-concept experiment for simplification and to keep the pulse duration short. 

Employing a counter pulse completes the redox cycle and generates additional information 

on analyte identity, as demonstrated in electronic tongue pulse design. 79  

In Vitro Model Construction  

Data preprocessing is critical to the training and use of machine learning models, such 

as PLSR. Here, we use the terms ‘feature’ or ‘variable’ interchangeably to refer to the current 

response at a given time point in a voltammogram. We refer to a voltammogram as a ‘sample’ 

determined using a particular combination of analyte concentrations (in vitro) or at a 

particular time relative to a stimulation event (in vivo). 

Preprocessing typically involves mean-centering (setting means across all samples at 

each feature equal to zero) and either standardization (scaling the data to have unit variance 

at each feature across all samples) or normalization (scaling the input features to unit 

length). Mean-centering is done to simplify the computation process and should not affect 

model output. 67 Standardization is commonly used to remove magnitude-related effects, 

while normalization is used to preserve them. All are commonly accepted practices in the 

machine learning field, as well as for PLSR in chemometrics. 67 

Previous implementations of FSCV with PCR or PLSR did not employ mean-centering 

or data standardization. By forgoing these procedures, the magnitudes of the original current 

responses were preserved. This caused the PCR or PLSR models to weigh regions of larger 

current amplitude (i.e., redox peaks) more heavily compared to low amplitude regions (i.e., 
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noise). For techniques like FSCV, which rely mainly on variations in peak current responses 

for classification and quantification of analytes, non-standardized data make sense. The 

model should focus mostly on the variances at the highest peak magnitudes to correlate 

current magnitudes with concentration. However, pulse techniques, such as the VET and 

RPV, are explicitly designed not to rely solely on peak currents for quantification. Instead, 

the entire voltammogram is treated as a holistic source of predictive data. Thus, data are 

standardized, as the model should not treat larger current responses with greater 

importance.  

To investigate the effects of standardization on RPV data, we used a variable selection 

technique. The in vitro raw RPV voltammograms are shown in Figure II.3a. The samples 

obtained (1000 data points or ‘features’) were then represented in 1000 dimensions or 

principal components (PCs), each of which described some amount of variance in the data. 

The PCs were formed via a linear combination of the original variables and weighted 

projection coefficients, known as loadings. 87 Loading vectors of greatest magnitude and 

similar direction in the factor space represented greater correlation.  

Variable selection is the process of determining the features to present to the model 

as input. The relevance of different features can be examined through various methods based 

on the algorithm used. For PLSR, a variable importance in the projection (VIP) score can be 

mathematically calculated for each feature. 88 Generally, VIP scores >1 indicate variables 

that are important for the model to learn from the training data; features with scores <1 are 

considered less important. Thus, VIP scores can be used to evaluate waveform responses and 

serve three purposes. First, the VIP scores allow us to evaluate if RPV-PLSR is truly using 

current responses (features) not just from faradaic currents, but also from noise or capacitive 

currents. Second, the VIP scores allow us to evaluate how preprocessing affects feature 

importance (e.g., standardized vs. non-standardized data). And third, areas of the pulse 
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response that are consistently more important for the model can be considered for more 

frequent sampling in future pulse designs, whereas areas of the current response that 

consistently have low VIP scores can be excluded by either reducing their sampling or 

removing that part of the pulse train. The VIP scores can be used as another metric to 

systematically optimize waveforms for a given analyte panel. 

Preliminary analyses demonstrated that RPV-PLSR with standardized data are not 

dominated by magnitude-related effects and use areas of current response that historically 

have been discarded (Fig. II.3b). For standardized data, the number of features with VIP 

scores >1 was 518 out of a possible 1000 features. For non-standardized data, the VIP scores 

clearly mimicked the magnitude of the current response. Moreover, the number of VIP 

scores >1 was only 231/1000. Standardizing the data allowed for a more than doubling of 

‘important’ features and these features spanned areas of the voltammogram dominated by 

non-faradaic current. 

The use of non-faradaic current by the model is further supported by an analysis of 

the PLSR loadings (Fig. II.3c). The magnitude of the projection of the X loading vectors onto 

the Y loading vectors was calculated as a mathematical representation of the strength of the 

correlation that each data point had with different combinations of dopamine and serotonin. 

To visualize regions of the voltammograms most informative for the model, a moving average 

kernel was applied to map each variable to low, medium, or high correlation (no shading, 50% 

shading, or 100% shading, respectively). Areas of the voltammograms with the highest 

shaded heights were most useful for that analyte (regardless of sign; positive or negative 

values are arbitrary). For example, the current response of the second pulse step (points 

250-500) had high red-shaded areas during capacitive charging illustrating non-faradaic 

contributions to modeling dopamine. Meanwhile, the majority of the decay of the second pulse 
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step, which would include faradic and non-faradaic contributions, was heavily used for 

modeling serotonin.  

Similar to the VIP scores (Fig. II.3b), Figure II.3c demonstrates that RPV pulses can 

be optimized using PLSR analyses (e.g., the last two pulses could be shortened to improve 

temporal resolution as the tail-ends of each decay are not shaded). These findings support 

the theory behind intelligent (and iterative) pulse design in RPV and the key idea that 

background subtracted methods, like FSCV, are likely to be inferior in terms of generating 

information needed to specify analytes and their concentrations, particularly in complex 

mixtures, because key information in capacitive current decay is removed. Instead, the VET-

based approach used for RPV is a ‘soft’ technique, agnostically collecting information across 

the entire pulse train. 89 The capacitive current increases transiently and then decays 

exponentially due to the presence of charged and polar compounds. Concurrently, faradaic 

current approaches a limiting value based on the diffusion and adsorption rates of 

electroactive species. Using multivariate analysis, and specifically, dimensionality reduction, 

the model is trained on trends across the pulse train, not the response of individual currents, 

such as in univariate calibration. 90  

Our findings are further supported by similar results for elastic net electrochemistry, 

91 in which the authors used non-background subtracted voltammograms obtained using a 

FSCV triangular waveform to train an elastic net model, a regularized linear regression 

technique with some similarities to supervised dimensionality reduction techniques like 

PLSR. 92 The large magnitude (i.e., important) regularization coefficients, similar to the large 

magnitude loadings and VIP scores discussed above, were found to span areas of the 

voltammogram outside of the expected peak faradaic responses of dopamine and serotonin 69, 

72.  
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A key difference between RPV and FSCV is that RPV is a pulse method having current 

decay across each pulse step. Since faradaic and capacitive currents evolve at different rates, 

each point in the decay provides unique information that is potentially useful for 

distinguishing analytes. That is, a stepped pulse approach is more information rich when 

coupled with a regression model compared to a sweep method, even if background subtraction 

is bypassed in the latter. Further, because RPV uses a bespoke pulse design, which can 

increase sensitivity when combined with electrode surface modifications, 93 temporal 

resolution can be maximized by changing the pulse parameters. The waveform parameters 

in Figure II.1a are simply a starting point. 

In Vivo Model Construction & Deployment  

Based on our preliminary in vitro RPV findings and the availability of suitable animal 

subjects from an ongoing study, 14 we conducted a pilot in vivo study with RPV-PLSR. This 

small study was designed to compare the feasibility of an RPV waveform (that was 

admittedly unoptimized) with a commonly used FSCV waveform, early in our development 

of RPV and before continuing with the validation and creation of larger and more complex in 

vitro RPV training sets. We have found that advancing to in vivo experiments sooner in 

methods development helps to guide our in vitro efforts (sometimes in unexpected and fruitful 

ways). 94, 95 

We designed a combined rapid pulse-triangle waveform (RPV-FSCV) for use in 

conjunction with an optogenetic stimulation paradigm. The red-shifted opsin Chrimson was 

virally transfected into midbrain dopamine neurons in DATIREScre mice. Four weeks later, 

carbon-fiber microelectrodes coated with PEDOT:Nafion 82 were used to measure dopamine 

and serotonin in the striatum (STR). Optical stimulation (532 nm, 30 or 40 Hz, 20 s) was 

delivered to dopamine cell bodies in the substantia nigra/ventral tegmental area (SN/VTA) 
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while the combined waveform (Fig. II.1c) was applied to the carbon fiber microelectrode with 

each alternating waveform at 5 Hz. After several stimulations, the selective serotonin 

reuptake inhibitor (SSRI) escitalopram was administered, and stimulation continued one-

hour post administration. Similar paradigms have been used to examine dopamine in STR. 

96 Electrodes were then removed and used to obtain post-calibration training data for PLSR 

analysis (Table II.1).  

Training set samples (one normalized, non-background subtracted voltammogram per 

standard) were used to train and to cross-validate the PLSR model. While our hypothesis 

that standardization allows the model to place emphasis on response areas unrelated to 

magnitude was supported by our in vitro data (Fig. II.3b), initial analyses of in vivo data 

using standardization resulted in negative predicted basal concentrations for dopamine, 

serotonin, or both. Nonetheless, dopamine and serotonin showed the expected qualitative and 

quantitative (nanomolar) responses to stimulation.  

By removing magnitude related effects via standardization, identification of analytes 

was possible, but quantitation became less reliable. We attributed this to the limited size and 

concentration range of the training set; standardization emphasizes variability. For accurate 

quantitation, standardization requires large data sets to train the model adequately on small-

magnitude variations. Conversely, the VIP scores for the normalized data mimicked the non-

standardized data in Figure II.3b, meaning that lower magnitude responses were still 

considered by the model due to inclusion of the background, but not as heavily as in 

standardization. Thus, normalization was used as the preprocessing method for the in vivo 

data to retain current amplitudes associated with a small training set size and for comparison 

to previous studies. 66, 68  

After training the PLSR model, the number of components was optimized. The 

variance explained by the model is a function of the number of components included. For 



 86 

PLSR, the first component always explains the maximal covariance in the data, with 

successive decreases in covariance explained by additional components (i.e., the first 

component explains more covariance than the second, which explains more than the third, 

and so on). The total number of components equals the number of samples, at which the data 

set is fully reconstructed (the cumulative variance explained reaches 100%). The model is 

then deployed with an a priori number of components such that only the most relevant 

features that lead to accurate analyte identification and quantification are used to make 

predictions, while the less relevant features (unrelated noise) are not utilized. Notably, ‘noise’ 

as defined by background subtraction may differ from ‘noise’ as defined by a PLSR model, 

meaning the background must be included to allow the PLSR model to discern in the number 

of components. The number of components can be estimated based on training set conditions 

and domain knowledge (i.e., if the degrees of freedom of the system under study are known), 

or determined empirically, commonly by hyperparameter tuning during cross-validation. 

To determine the variance in the Y variable (concentration) explained by the model, 

R2Y scores were calculated (Table II.2). To estimate the generalizability of the model, Q2Y 

scores were calculated (i.e., cross-validated R2Y scores that serve as a proxy for predictive 

accuracy) using leave-one-out cross-validation because of the small training set size. 97 Given 

the known two-component calibration and variability of cross-validation errors for small 

training sets, 98-100 we opted to deploy the two-component PLSR model in vivo at the expense 

of a lower in vitro cross-validation score (Q2Y = 0.1 for two components vs. Q2Y = 0.6 for three 

components). Although ostensibly detrimental to the model, selecting a model with higher 

cross validation error can prevent overfitting, especially in the case of noisy training data. 101 

The two-component model was used to predict in vivo concentrations of dopamine and 

serotonin simultaneously across time in a single subject.  
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As input to the RPV-PLSR model, for each stimulation, 300 scans (120 s total) were 

extracted that included 150 scans prior to stimulation (60 s) and 150 scans after the onset of 

stimulation (60 s). As output, the model predicted dopamine and serotonin concentrations for 

each scan based on the post-calibration training set. A moving average filter was applied to 

smooth and to align concentration vs. time plots. Basal concentrations were calculated as 

pre-stimulation baseline averages of the first 100 scans. Stimulated concentrations were 

defined as the areas under the curve for the stimulation peaks. Representative concentration-

time plots are shown in Figure II.4. 

During the experiment, the carbon fiber microelectrode was lowered from the dorsal 

striatum to the ventral striatum (dSTR and vSTR, respectively). Multiple stimulations were 

delivered at each position relative to the surface of the brain The average predicted basal 

concentration increased for dopamine and decreased for serotonin moving from dSTR to vSTR 

(Fig. II.4a,b, respectively). These trends are in general agreement with previously reported 

dorsoventral dopamine and serotonin gradients in striatum, 102 which is known to be 

neurochemically diverse. 103 To investigate the effects of stimulation strength, we applied a 

40 Hz stimulation in the dorsal striatum and after ~5 min, applied a 30 Hz stimulation at 

the same electrode position. Higher frequency stimulation produced greater stimulated 

dopamine 104, 105 and serotonin release (Fig. II.4c,d).  

The predicted basal concentrations are most likely overestimates of actual 

concentrations given that we biased our in vivo training set towards higher dopamine and 

serotonin concentrations in this proof-of-concept study. Given this limitation, the relative 

differences of the simultaneous dopamine and serotonin levels under varying stimulation 

paradigms and model-waveform combinations are more important than absolute 

concentrations. Optical stimulation of dopamine neurons expressing the excitatory opsin 

Chrimson produced dopamine release detected by RPV-PLSR (Fig. II.4a,c). The RPV-PLSR 
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model, which was trained to differentiate dopamine and serotonin, also predicted serotonin 

release (Fig. II.4b,d). Our recent microdialysis findings support the idea that optical 

stimulation of midbrain dopamine neurons produces serotonin release 14. Linked dopamine 

and serotonin in the striatum has been reported elsewhere. 63 

To increase our confidence in RPV-PLSR predictions, we compared the effects of 

serotonin transporter inhibition on basal and stimulated serotonin and dopamine using RPV-

PLSR vs. microdialysis. The latter is a ‘gold standard’ neurochemical monitoring method that 

relies on chromatographic separations for analyte identification and quantification. 95, 106 

Similar to RPV, DATirescre mice were transfected with Chrimson for optical excitation of 

midbrain dopamine neurons during microdialysis. 14 Dialysis samples were collected at 5 min 

intervals and analyzed immediately online by HPLC with electrochemical detection. The 

optical stimulation was 5 min to match the dialysate sampling time. For RPV, we optically 

stimulated dopamine neurons for 20 s and sampled at 5 Hz.  

Following administration of the selective serotonin reuptake inhibitor (SSRI) 

escitalopram, we observed potentiation of optically evoked serotonin (i.e., greater area under 

the curve) determined by RPV-PLSR and microdialysis (Fig. II.5a,b). Administration of an 

SSRI increases stimulated serotonin overflow due to reduced reuptake of serotonin by high 

affinity serotonin transporters. 61,107,108 Serotonin reuptake inhibition also led to a 60% 

increase in basal serotonin levels 94 observed via microdialysis (Fig. II.5b). By contrast, RPV-

PLR predicted a small relative decrease in basal extracellular serotonin (2%) (Fig. II.5a).  

One factor contributing to the RPV-PLSR prediction of lower basal serotonin following 

escitalopram involves the high concentration and limited number of standards used in the 

PLSR training set, which may result in insensitivity to modest changes. The RPV training 

set employed low micromolar concentration standards, whereas the predicted reduction in 

serotonin basal levels after escitalopram was only ~20 nM. Another factor potentially 
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contributing to the discrepant effects of escitalopram on basal serotonin levels is the 

difference in the routes of drug administration. Mice in the microdialysis study received 

intrastriatal infusion of escitalopram, whereas mice in the RPV study were administered a 

subcutaneous drug injection. Systemic injection of an SSRI activates inhibitory 5HT1A 

autoreceptors on serotonin cell bodies. 109, 110 This negative feedback reduces serotonin neuron 

firing, which acutely results in reduced serotonin release in terminals regions like the 

striatum. Local infusion of escitalopram circumvents activation of somatodendritic 5HT1A 

receptors and produces an increase in terminal region serotonin levels. 94  

Like serotonin, we observed escitalopram-induced potentiation of optically evoked 

dopamine by RPV-PLSR and microdialysis (Fig 5c,d). Local perfusion of escitalopram did not 

affect basal dopamine levels determined by microdialysis (Fig 5d), while subcutaneous 

injection of escitalopram was associated with a small (5%) increase in predicted basal 

dopamine levels by RPV-PLSR (Fig 5c). As discussed, limitations of the training set used for 

RPV-PLSR, as well as the different routes of escitalopram administration may underlie 

variations in the basal dopamine outcomes.  

Despite the high selectivity of escitalopram for serotonin transporters and low affinity 

for dopamine transporters 111, the serotonin and dopamine systems are linked. Serotonin 

neurons innervate the SN and VTA, and both systems project to subcortical and cortical 

regions (e.g., striatum, frontal cortex, dorsomedial thalamus, cerebral cortex). 112,113 Serotonin 

receptors expressed on dopamine neurons in the striatum mediate dopamine release. 114,115 

Moreover, human imaging studies suggest that citalopram and/or escitalopram increase 

striatal dopamine levels 116 and dopamine transporter binding (as a compensatory response), 

117, 118 presumably via increases in extracellular serotonin. Regardless of differences in 

absolute concentrations, microdialysis acts as external validation to confirm that optogenetic 

stimulation of dopamine neurons releases striatal serotonin and escitalopram potentiates 
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optically stimulated dopamine. Overall, these findings indicate that RPV can be used to 

detect pharmacologically induced changes in the stimulated release of two neurotransmitters 

simultaneously in vivo.  

Waveform-model Combination Comparisons  

To compare waveforms and analyses, R2Y and Q2Y scores were generated for different 

model/waveform/background subtracted combinations using the in vivo post-calibration 

training set data (Table II.1). In addition to two-component models, R2Y and Q2Y values were 

computed for three- and five-component models (Table II.2) due to literature precedent. 68 

Greater numbers of components were expected and found to produce erroneous results 

(negative concentrations, noisy oscillations), likely due to model overfitting. This supported 

our choice of the two-component model to analyze the in vivo results, rather than models with 

higher cross validation scores. 101 However, due to the large increase in both R2Y and Q2Y 

moving from two to three components (an ‘elbow’ point; see Fig. II.S3), three-component 

models were chosen to compare cross-validation scores across models. In all cases, training 

data were pre-processed with mean-centering and normalization.  

We sought to answer three questions regarding RPV-PLSR in the context of the 

current training set data and to guide future studies. 1) How does RPV-PLSR compare, in 

terms of prediction, with previously developed FSCV-PCR (i.e., background-subtracted 

voltammograms obtained via a triangle waveform (Fig. II.1b) and analyzed by PCR)? 2) Does 

including background current data in RPV-PLSR result in a benefit over background 

subtracted RPV-PLSR, as suggested by Fig. II.3c? 3) Does RPV-PLSR provide more 

information about analyte identification/quantification than FSCV-PCR or other possible 

combinations (e.g., why not use FSCV-PLSR?). We discuss various combinations below and 

find that each step of RPV-PLSR is needed to result in the optimal combination. For each 
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combination, only the voltammograms for the relevant waveform were extracted to build the 

model (i.e., voltammograms from the triangle waveform were extracted when referring to 

FSCV; voltammograms from the pulse waveform were extracted when referred to RPV). 

Comparing RPV-PLSR to FSCV-PCR  

Having demonstrated the non-background subtracted RPV-PLSR waveform-model 

combination, the effects of striatal recording electrode position, optical stimulation frequency, 

and SSRI administration were examined using background subtracted FSCV data and PCR 

analysis (Fig. II.6). The FSCV-PCR model has been used for dopamine or serotonin 

monitoring. 65 Because background currents, which contain information about tonic 

neurotransmitters levels, are removed, the ‘basal’ levels predicted by the FSCV-PCR model 

are not meaningful and thus, were not considered.  

Optically stimulated release of dopamine (Fig. II.6a,c) and serotonin (Fig. II.6b,d,e) 

were predicted by a two component FSCV-PCR model. However, the stimulated 

concentrations were predicted to be much larger (~1 µM) than by RPV-PLSR and on the high 

end of literature reported values. 37,119,120 No increases in optically evoked release were 

detected in association with higher frequency stimulation for either dopamine or serotonin 

for FSCV-PCR analyses (Fig. II.6c,d) or for serotonin following SSRI administration 

(Fig. II.6e).  

To ensure the model had enough components included to pick up on these differences, 

we tried increasing the number of components in the FSCV-PCR model from three to five. 

These additional components did not cause the serotonin traces to be distinguished by 

stimulation paradigm (data not shown; i.e., the concentration traces looked the same for both 

30 and 40 Hz stimulation frequency regardless of the number of components beyond two). 

This suggests that the model did have enough degrees of freedom, but was undertrained and 
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consistently predicting a response that was not related to serotonin. Meanwhile, dopamine 

traces began to lose noticeable stimulation responses and showed increased noise as the 

number of components was increased from three to five, indicating that for this data set, two 

or three components appear to be better.  

The results thus far support the notion that PLSR can deal more efficiently with noise 

and interferents when trained in vitro and used in vivo because PLSR models covariation of 

input and output, rather than just input, as in PCR. We did notice similarities in predicted 

responses for FSCV-PCR and FSCV-PLSR suggesting that overall, more training data and 

training across common interferents was needed. Further, RPV-PCR produced similar traces 

in the same concentration range for dopamine compared to RPV-PLSR (1.8 to 2.3 µM). 

Serotonin traces showed more variation (larger SEMs) and slightly larger predicted 

concentrations (1.05 to 1.10 µM) but remained responsive to the stimulation paradigms. In 

both cases, stimulated responses were on the same order of magnitude as RPV-PLSR (10-

100 nM). This is despite the low cross-validation score, again supporting the need to 

cautiously interpret these scores when small training sets are used. For these reasons, we 

could not state definitively the necessity for PLSR over PCR, other than to state that previous 

methods support the use of supervised learning over PCR for FSCV. 69 Because PLSR has 

been compared to PCR elsewhere, 68, 87, 92 we do not compare results further here.  

The Need for Including Background Current.  

We hypothesized that avoiding background subtraction would result in information 

gain for the RPV-PLSR model. We indeed observed greater cross validation scores for 

nonbackground-subtracted compared to background-subtracted RPV-PLSR models 

(Table II.2). However, this trend was not consistent across waveform-model combinations. 

The FSCV-PLSR and RPV-PCR analyses showed worse cross-validation accuracy without 
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background subtraction (0.48 compared to 0.44 and 0.40 compared to -0.05, respectively), 

while the FSCV-PCR cross-validation score improved without background subtraction (0.27 

compared to 0.41). Because no clear trend in cross-validation was present when background 

current was subtracted vs. not, we suspect that information gain may be waveform and model 

dependent. Regardless, nonbackground-subtracted voltammograms obtained by our smart 

pulse waveform and analyzed by PLSR (i.e., RPV-PLSR) resulted in the highest three-

component R2Y (0.82) and Q2Y (0.57) scores of all background/waveform/model combinations 

examined (Table II.2). These variation and accuracy metrics suggest that RPV-PLSR may be 

better at modelling and predicting dopamine and serotonin concentrations, at least based on 

the limited training data. 

Comparisons of Further Waveform/Model Combinations  

Other waveform/model/background subtraction combinations were explored 

(Table II.2). Two, three, and five component models were trained and used to analyze the in 

vivo post-calibration training set data. While RPV-PCR and FSCV-PLSR behaved somewhat 

similarly to RPV-PLSR and FSCV-PCR (Fig. II.S4, II.S5), in all other cases, except those 

discussed above, we did not find consistent, biologically relevant responses to stimulation 

paradigms (optical or pharmacological). Although it is possible these models would begin to 

produce meaningful results with more training data, we note that only the RPV-PLSR 

method worked reasonably well for this small data set. The RPV-PLSR method, compared to 

other waveform/model combinations, predicted the most reasonable relative differences when 

monitoring dopamine and serotonin across stimulation and pharmacologic paradigms. The 

absolute concentrations, however, should always be regarded as estimates, especially when 

using dimensionality reduction models. 121 Nonetheless, we attribute the success of RPV-

PLSR to the wealth of information in the pulse and the parsimony of the PLSR model. When 
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combined, our findings support the idea that RPV-PLSR can be used to extract maximally 

relevant information, even with small training set sizes.  

Study Limitations and Future Directions  

We note the following limitations of this proof-of-concept study. The first is training 

set size. While increased training set size should improve model generalizability, 91, 122 

training sets with similar sizes to ours (Table II.1; N=18) have been used in previous studies. 

69, 70 The second limitation is the robustness of our training set. Notably, we did not train for 

responses to interferents (e.g., 5-hydroxyindoleacetic acid, 3,4-dihydroxyphenylacetic acid, 

ascorbic acid), changes in pH or ionic salt concentrations (e.g., Na+, K+, Ca2+, Mg2+), any of 

which could conflate capacitive current responses in the PLSR model. This is a potential 

reason for the likely overestimated basal concentrations. 123 While our findings in vivo 

correspond with previously reported biological phenomena and relative trends, our basal 

concentrations are outside of what is expected for dopamine and serotonin based on previous 

voltammetry and microdialysis studies (~10–1000 nM and ~1–100 nM, respectively). 37, 59, 106, 

124 

In the future, we plan to design more robust training sets that include interferents, 

pH changes, and ionic strength changes to investigate their influence on RPV-PLSR. 

However, most metabolites of dopamine and serotonin are not expected to change 

extracellularly (at least over short time frames) during stimulation because they are 

metabolized intracellularly. 125-127 Further, because the RPV-PLSR model was trained using 

data across a four-step (i.e., intermediate) pulse voltammogram, it is less likely for the 

dimensionality reduction to confound interferents across multiple potential steps and time 

points. While varying pH was not considered in this training set, similar approaches have 
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demonstrated pH insensitivity for dopamine and serotonin when using supervised learning, 

as opposed to unsupervised techniques (i.e., PCR). 69, 72  

Artifacts from ionic and pH changes during stimulated neurotransmitter release occur 

regardless of background subtraction. 123,128 Some literature suggests that physiological 

changes in pH and divalent cationic salt concentrations may pose less of an interference 

problem for biogenic amines when using pulsed voltammetry, 129 as opposed to FSCV, 

especially with Nafion-coated electrodes, 130 potentially due to different surface binding 

mechanisms. The PEDOT:Nafion electrodes used here provide some selectivity against the 

anionic interferents mentioned above and reduce acute (6 h) biofouling, 82 bolstering 

confidence in our predictions of cationic neurotransmitters.  

Long term (chronic) recordings can lead to variability in electrode responses due to 

biofouling. We will continue to calibrate multiple electrodes post-fouling (that is, after in vivo 

recording), which should account for some variability introduced over the course of brain 

implantation. We plan to increase the training size in future training sets, such that the 

model is trained on artifacts of fouling and other confounding factors mentioned above. We 

hypothesize that with increased training data, nonspecific signals can be parsed out by PLSR, 

or another supervised model. In theory, we could add short, highly anodic pulses (i.e., 1.3 V 

vs. Ag/AgCl) to try to renew electrode surfaces (electrochemical cleaning as employed in VETs 

89 and FSCV 121). Larger, historical training sets may also require ensemble weighting 

schemes to account for electrode variation. 122 

At present, we do not directly compare RPV-PLSR to elastic net electrochemistry, 91 

another supervised learning technique. Theoretical comparisons of their underlying 

statistical approaches can be found elsewhere. 92 Instead, we note that dimensionality 

reduction techniques usually require less computation time than regularized techniques, 

suggesting the RPV-PLSR should scale well for larger training sets, which is a long-term goal 
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of both techniques. However, both dimensionality reduction (PLSR) and regularization 

(elastic net) seek to prevent overfitting in some manner, whether by introducing sparsity in 

the latter case or by projecting data to a lower-dimension feature space in the former. Thus, 

both methods improve robustness of predictions. The two methods can be combined as a form 

of variable selection due to their supervised nature (i.e., EN-PLS). 131, 132 In fact, the RPV 

approach can theoretically be combined with any appropriate supervised regression 

technique that enables feature selection, representing a paradigm shift in design and 

analysis of waveform-model combinations.  

Based on the initial findings arising from the non-background-subtracted, supervised 

machine learning regression model (RPV-PLSR), we plan to optimize the pulse waveforms 

presented here, guided by feature selection as discussed earlier. Supervised learning 

techniques can enable iterative construction and optimization of fit-for-purpose waveforms 

to expand measurements to diverse sets of electroactive neurotransmitters (e.g., dopamine, 

serotonin, norepinephrine, etc.). We will also explore other pre-processing and feature 

selection techniques, as well as more advanced supervised regression models. Larger training 

sets across many electrodes with more diverse analyte/interferent panels will be needed 121. 

Further validation and alternatives to in vitro training (i.e., relying on domain knowledge 

and stimulation paradigms, in addition to cross-validation metrics) should be explored to 

bolster confidence for in vivo predictions when using dimensionality reduction and 

regularization models that are trained and validated in vitro, but applied in vivo. Indeed, 

other areas of the physical sciences are currently working to address model generalizability 

through embeddings, representations, and domain knowledge. 133 Based on the current 

findings, future in vivo experiments can be designed more robustly to continue to investigate 

whether data processing models can distinguish and identify analytes in the complex brain 

matrix (e.g., validation using DAT inhibitors, dopamine and serotonin synthesis inhibitors, 
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and in vivo standard addition). Overall, we foresee a new paradigm in which fit-for-purpose 

pulses are iteratively constructed with feature selection feedback (Scheme II.1). 

The coupling of voltammetry with more sophisticated pattern recognition and 

statistical tools is part of a global shift in scientific data analysis. Applications of machine 

learning in the physical sciences have skyrocketed over the last decade. 134 Other chemistry 

disciplines, such as materials, physical, and organic chemistry, were early adopters, but 

modern machine learning techniques have been underutilized in electrochemistry, 

specifically voltammetry. 135, 136 While advanced techniques, such as deep learning, have been 

used for classification of voltammograms, 137, 138 its counterpart (regression) is less often 

reported. 91, 122 The development of this novel voltammetric technique (RPV) coupled with fit-

for-purpose machine learning (ML) pipelines (broadly defined as RPV-ML) represents a new 

paradigm for electroanalytical classification and quantitation of multiplexed neurochemical 

responses across timescales. This single, customizable technique allows for multiplexed 

neurotransmitter measurements in real-time in behaving animals, representing a step 

towards decoding neurotransmission at the molecular scale. 
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Conclusions 

All three aspects of RPV appear essential for its success: intelligent pulse design, avoiding 

background subtraction, and supervised regression (i.e., PLSR). We have demonstrated that 

the RPV-PLSR combined paradigm can identify and quantify two neurotransmitters in vitro. 

When dopamine neurons were optically stimulated, the RPV-PLSR model detected serotonin 

release in vivo, which corroborates a novel finding by microdialysis using the same 

experimental paradigm (i.e., opsin, transfection and stimulation location, and recording 

location). 14 Compared to FSCV-PCR and other waveform/model combinations, RPV-PLSR 

was better equipped to detect changes induced by different stimulation frequencies. When an 

SSRI was administered, RPV-PLSR detected increases in stimulated serotonin levels. 

Overall, our experimental pipeline demonstrates proof-of-concept for a reliable new technique 

that can detect biologically relevant (i.e., nM) changes in basal and stimulated levels of 

multiple neurotransmitters simultaneously across biologically relevant timescales (i.e., 

stimulated and basal levels over ms to h). 
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Figures 

Figure II.1 

  a. b. 

Figure II.1. Voltammetry waveforms used in this study. (a) Four-step rapid pulse 

voltammetry (RPV) pulsed waveform. (b) Fast-scan cyclic voltammetry (FSCV) triangle 

waveform. (c) Combined RPV-FSCV waveform. 

c. 
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Figure II.2 

  

Figure II.2. General scheme for rapid pulse voltammetry-principle least squares regression (RPV-PLSR). (a) 

Dopamine neurons in the substantia nigra and ventral tegmental area (SN/VTA) of DATIREScre mice were 

transfected with the excitatory opsin Chrimson. Basal and optically stimulated dopamine and serotonin 

levels were recorded from the striatum (STR) using the alternating RPV-fast-scan cyclic voltammetry 

waveform (Fig. II.1c). (b) Electrodes used for in vivo measurements were then post-calibrated to provide 

data to build a PLSR model for analyte identification and quantification. (c) The in vivo data were analyzed 

using the model. Aspects of this figure were created using Biorender.com. 

a. b. c. 
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Figure II.3 a. 

b. 

c. 

Figure II.3. (a) Rapid pulse voltammograms of varying 

dopamine (DA) and serotonin (5HT) combinations (nM). The 

pulse waveform is overlaid. (b) Variable importance in the 

projection (VIP) scores for non-standardized vs. standardized 

data obtained from Fig. II3a. (c) Loadings analysis overlaid 

with Fig. II.3a. 
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Figure II.4 

  

Figure II.4. In vivo dopamine and serotonin monitoring using rapid-pulse voltammetry with 

partial least squares regression (RPV-PLSR) analysis (a,b) Time courses of dopamine or serotonin 

at various dorsoventral striatal positions measured with RPV-PLSR (n=3 at 2.80 mm, n=5 at 

2.95 mm, n=7 at 3.15 mm, and n=3 at 3.35 mm for a total of 18 recordings in a single 

representative mouse). (c.d) Time courses of dopamine or serotonin measured in dorsal striatum 

(dSTR) in response to representative sequential 40 Hz and 30 Hz optical stimulations of midbrain 

dopamine neurons (n=1). 

a. b. 

c. d. 
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Figure II.5 

 

 

 

  

Figure II.5. Responses to the selective serotonin reuptake inhibitor escitalopram by rapid pulse voltammetry 

with partial least squares regression analysis (RPV-PLSR) vs. microdialysis. Time courses are shown in the 

center panels for serotonin determined by (a) RPV-PLSR or (b) microdialysis and dopamine by (c) RPV-PLSR or 

(d) microdialysis. Escitalopram (20 mg/kg) was administered subcutaneously at t=-60 min for RPV-PLSR or 

perfused continuously into the dorsal striatum (10 M) for microdialysis beginning at t=-90 min. Optical 

stimulation of Chrimson-transfected dopamine neurons occurred during the time periods marked by yellow bars. 

Basal serotonin or dopamine concentrations before and after/during escitalopram administration are shown in 

the left bar graphs. Stimulation-induced increases in serotonin or dopamine before vs. after/during escitalopram 

are shown in the right bar graphs and are calculated as areas under the curve. *P<0.05, **P<0.01, and 

***P<0.001 (See Table S1 and Methods for statistical details). 

a. 

b. 

c. 

d. 
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Figure II.6 

  

a. b. 

c. d. 

Figure 6. Predictions using a two component fast-scan cyclic voltammetry-principle components (FSCV-

PCR) model for dopamine and serotonin in vivo (a,b) Time courses of dopamine and serotonin, respectively, 

at various dorsoventral striatal recording electrode positions determined by FSCV-PCR. (c,d) Time courses 

of dopamine and serotonin, respectively in response to 40 Hz vs. 30 Hz stimulations predicted by FSCV-

PCR. (e) Time course (left) and area under the curve (right) of serotonin for pre- and post- escitalopram 

administration using FSCV-PCR. 
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Table II.1 

 

Mouse Injection Dopamine (µM) Serotonin (µM) 

1 

1 
0.0 0.0 

5.0 0.0 

2 
0.0 0.0 

0.0 4.0 

3 
0.0 0.0 

2.0 2.0 

2 

1 
0.0 0.0 

4.0 0.0 

2 
0.0 0.0 

0.0 3.0 

3 
0.0 0.0 

1.5 1.5 

3 

1 
0.0 0.0 

5.0 0.0 

2 
0.0 0.0 

0.0 5.0 

3 
0.0 0.0 

2.0 2.0 

    

Table II.1. Training set concentrations for in vivo post-calibration. 
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Table II.2 

 

Model Waveform 

Background 

Subtraction 

C
o
m

p
o
n

e
n

ts
 

R2Y  Q2Y  

2  3  5  2 3  5 

PLSR 

Pulse 

N  0.408 0.823 0.857 0.072 0.574 0.662 

Y  0.754 0.821 0.874 0.550 0.548 0.555 

Triangle 

N  0.720 0.760 0.880 0.420 0.439 0.582 

Y  0.653 0.770 0.844 0.386 0.478 0.034 

PCR 

Pulse 

N  0.356 0.421 0.876 0.033 -0.053 0.651 

Y  0.545 0.563 0.571 0.369 0.396 0.364 

Triangle 

N  0.415 0.667 0.784 0.112 0.405 0.430 

Y  0.413 0.490 0.566 0.170 0.273 0.265 

 

Table II.2. Training (R2Y) and cross-validation (Q2Y) accuracy metrics for each background subtracted (no (N)/yes 

(Y))/waveform/model combination. 
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Scheme II.1 

  

Scheme II.1. Rapid pulse voltammetry-machine learning optimization scheme. 
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Figure II.S1 

  

Figure II.S1. Experimental set-up for in vitro carbon-fiber microelectrode calibration (flow cell, left) and in 
vivo experiments (right). Photograph courtesy of Wesley Smith. Aspects of this figure were created using 

Biorender.com. 
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Figure II.S2 

  

CF

RF

IWE

VO

a. 

b
. 

c. 

Figure II.S2. Effect of the transimpedance amplifier used in the custom headstage 

(a) Representative pulse applied to the electrochemical system. (b) Circuit diagram for the 

transimpedance amplifier (amplifier with feedback resistor RF in parallel with feedback capacitor 

CF) to convert current from the working electrode (IWE) into output voltage (VO ) (left). 

Representative voltammograms with the capacitor in parallel (right). (c) Circuit diagram for 

amplifier without feedback capacitor (left). Representative voltammogram (right). 

RF

IWE

VO
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The rapid pulse voltammetry (RPV) waveform is shown in Figure II.S2a. For this circuit (Fig. II.S2b), the 

relationship between the output voltage and the working electrode current is given by the differential equation: 

𝑉𝑂

𝑅𝐹
+ 𝐶𝐹 ·

𝑑𝑉𝑂

𝑑𝑡
= −𝐼𝑊𝐸                                                                       (1) 

 

If the feedback capacitor is not present (Fig. II.S2c), the relationship is given by: 

                                                                              𝑉𝑂 = −𝑅𝐹 · 𝐼𝑊𝐸                                                                            (2) 

 

Transimpedance amplifiers often include a feedback capacitor connected in parallel to the feedback resistor for 

signal stabilization and filtering purposes. The drawback of their use is that the feedback capacitor disrupts the 

direct proportionality between measured current and output voltage (Equation 1). Instead, the output signal will 

deform (i.e., the exponential current decay will be delayed) according to the differential present in Equation 1 

(Fig. II.S2b). In most cases, the latter is not desired.  

For RPV, we purposefully included a feedback capacitor (Fig. II.S2b) to allow a smoother, longer duration of the 

pulse response. Important electrochemical information is present within the nonfaradaic and faradaic currents 

immediately after a pulse, on the order of tens of microseconds. Without a feedback capacitor, these currents 

decay too quickly to be sampled with high enough time resolution by the data acquisition system (8 µs sampling 

rate; 125 kHz). With a feedback capacitor of appropriate capacitance, the output voltage response is spread out 

over a longer temporal duration. This additional decay time affords the PLSR model more data points to be 

sampled from key electrochemical events that would otherwise be missed or under-sampled. While we recognize 

these electronic components preclude the analysis of an electrochemical system by equivalent circuit analysis, 

due to the deformation of the original working electrode signal, we note our purpose here is to obtain relevant 

information for the PLSR model, not to gain mechanistic insights at the electrode surface. Further, the capacitor 

also helps to stabilize and to reduce the noise of the output signal. 

For these reasons, we implemented the feedback capacitor as shown in Figure II.S2b. The value of the capacitor 

was determined empirically to produce the desired smoothing and decay time of the signal, depending on the 

pulse sequence applied. For our set up, this value was found to be approximately 100 pF. 
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Figure II.S3 

 

  

Figure II.S3. Cumulative training (R2Y) and prediction 

(Q2Y) score metrics for the RPV-PLSR model with 

respect to the number of components. 
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Figure II.S4 

 

 

  

Figure II.S4. In vivo dopamine and serotonin monitoring using rapid-pulse voltammetry with 

principal components regression (RPV-PCR) analysis (a,b) Time courses of dopamine or serotonin 

at various dorsoventral striatal positions measured with RPV-PCR. (c.d) Time courses of 

dopamine or serotonin measured in dorsal striatum (dSTR) in response to a representative 40 Hz 
or 30 Hz sequential optical stimulations of midbrain dopamine neurons. 

a. b. 

c. d. 
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Figure II.S5 

  a. 

Figure II.S5. Predictions using a FSCV-PLSR model for dopamine and serotonin in vivo (a,b) Time courses of 

dopamine and serotonin, respectively, at various dorsoventral striatal recording electrode positions 

determined by FSCV-PLSR. (c,d) Time courses of dopamine and serotonin, respectively in response to 30 Hz 

vs. 40 Hz stimulations predicted by FSCV-PLSR. 
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Table II.S1 

Table II.S1 Statistical Summary. The t-tests were two-tailed and paired or unpaired depending on whether 

matching numbers of pre- vs. post SSRI samples were available. 

 

 

Figure Comparison Test Statistics 

Significant

? 

5A, left 

Basal 5HT RPV: pre- SSRI vs. post- 

SSRI Paired t-test t(5)=238 P<0.001 

5A, right AUC 5HT RPV: pre- SSRI vs. post- SSRI 

Unpaired t-
test t(5)=5.92 P<0.01 

5B, left 

Basal 5HT microdialysis: pre- SSRI vs. 
post- SSRI Paired t-test t(4)=21.7 P<0.001 

5B, right 

AUC 5HT microdialysis: pre- SSRI vs. 
post- SSRI Paired t-test t(8)=2.67 P<0.05 

5C, left Basal DA RPV: pre- SSRI vs. post- SSRI Paired t-test t(5)=544 P<0.001 

5C, right AUC DA RPV: pre- SSRI vs. post- SSRI 

Unpaired t-
test t(5)=3.823 P<0.05 

5D, left 

Basal DA microdialysis: pre- SSRI vs. 
post- SSRI Paired t-test t(4)=0.030 ns 

5D, right 

AUC DA microdialysis: pre- SSRI vs. 
post- SSRI Paired t-test t(8)=2.843 P<0.05 
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Introduction 

Voltammetry is widely used to characterize and quantify neurotransmitter release 

and reuptake.1, 2 While there are now a variety of different voltammetry techniques, fast-scan 

cyclic voltammetry (FSCV) is most commonly used in vivo, particularly for detecting 

dopamine.3 Unlike traditional cyclic voltammetry, FSCV uses fast scan rates, i.e., 400-

1000 V/s, which cause large and continually evolving capacitive currents.2, 4, 5 The capacitive 

current is much larger than the faradaic current produced by electrochemical species in the 

brain. To maintain a suitable signal-to-noise ratio for faradaic current detection, the 

capacitive current is typically removed through background subtraction.6 Background 

subtraction limits FSCV to detecting stimulated and not basal changes in neurotransmitters. 

Other related techniques, such as fast-scan controlled absorption voltammetry (FSCAV) have 

enabled the determination of basal dopamine or serotonin levels.7-9 

The use of fast scan rates shifts the oxidation and reduction potentials of electroactive 

neurotransmitters. Oxidation and reduction peaks for different neurotransmitters that are 

separated using slow-wave cyclic voltammetry converge when using FSCV. For example, 

peak oxidation potentials for dopamine, serotonin, and norepinephrine are ~0.6 V by FSCV, 

making these species difficult to distinguish, particularly in a complex matrix such as the 

brain. The FSCV technique has been used mainly to detect dopamine in vivo because 

dopamine is found at higher concentrations than other electroactive neurotransmitters, 

principally in the striatum, and because striatal dopamine has been robustly associated with 

specific behaviors, including locomotion and reward-related behavior, using 

electrophysiology.10-13  

Modified waveforms are used to improve serotonin detection. Jackson et. al. developed 

an ‘N-shaped’ waveform that purports to avoid byproducts formed during the oxidation of 
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serotonin.4 This waveform also does not oxidize dopamine well, which improves relative 

signals for serotonin. The ‘N-shaped’ waveform was further optimized by Dunham and 

coworkers by changing the switching potential, scan rate, and hold time at the peak 

potential.14 The strategy behind developing these waveforms was to incorporate features of 

the dopamine triangle waveform into the ‘N-shaped’ waveform to try to improve serotonin 

detection and fouling. Ultimately, the two new waveforms they developed using this approach 

outperformed the original ‘N-shaped’ waveform.  

Complex waveforms that combine sweeps or staircases with square-wave pulses have 

also recently been developed.15 Multiple cyclic square-wave voltammetry was employed to 

quantify tonic dopamine in vivo with 10-s resolution16 and was recently adapted in a separate 

application to detect tonic serotonin.17 Improvements in sensitivity and selectivity were made 

using fast-cyclic square-wave voltammetry (FCSWV)18 and N-FCSWV19 for monitoring 

dopamine and serotonin, respectively, in vivo. Park et al. demonstrated that principal 

components regression (PCR) could be used to identify distinct features of dopamine, 

serotonin, norepinephrine, and epinephrine when a FCSWV waveform was applied.18 

While these new cyclic voltammetry waveforms can be used to measure basal 

neurotransmitter levels or a single neurotransmitter, none can be used to monitor basal and 

stimulated levels simultaneously while also co-detecting multiple neurotransmitters.20 We 

recently reported a different voltammetry approach called rapid pulse voltammetry coupled 

with partial least squares regression (RPV-PLSR).21 Rather than a sweep waveform, RPV-

PLSR utilizes a series of rapid pulses. Additionally, instead of subtracting background 

current, RPV-PLSR uses all capacitive and faradaic current information to maximize analyte 

identification, differentiation, and quantification. Pulse waveforms are characterized by 

rapid decays of capacitive and faradaic currents at different exponential rates after each 

pulse step, with capacitive current decaying faster. Differences in current decay yield 
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information about specific analytes used by the PLSR model to distinguish one analyte from 

another. Recent work using random pulse sequences for monoamine neurotransmitter 

detection supports this claim.22, 23  

Varying specific parameters of waveforms, from hold times to potential steps to scan 

rates, can improve analyte-specific currents.1, 14, 24 However, to our knowledge, a systematic 

approach to designing analyte-specific, pulsed waveforms has not been reported. Changes to 

waveform parameters interact in complex ways; hold time impacts peak current, switching 

potential impacts the electrode surface, and so forth.3 Intuitive waveform development is 

inherently a ‘guess and check’-like approach, leaving the overall waveform search space 

relatively unexplored. Our goals are to develop unbiased and generalizable approaches that 

enable the exploration of large waveform search spaces to discover new, perhaps non-

intuitive waveforms, for multiplexed analyte detection. For neurotransmitters, we further 

aim to enable in vivo monitoring across timescales, i.e., quantification of basal and stimulated 

neurotransmitter levels using the same waveform in the same recording session. 

As an example of a generalizable approach, we sought to enhance our original 

generation (OG) RPV waveform21 to improve predictions of basal and stimulated serotonin. 

Serotonin is difficult to detect using voltammetry due to its relatively low physiological 

concentrations, colocalization with other monoamine neurotransmitters having similar redox 

profiles, and irreversible oxidation byproducts25-28 that can foul electrodes. Other waveform 

optimization pipelines have involved stepwise parameter optimization utilizing prior 

knowledge from the voltammetry literature and then experimentally evaluating seeing a new 

waveform compares to either the FSCV triangle or ‘N-shaped’ waveforms.  

In our initial attempts to optimize RPV waveform pulse steps we tried using other 

pulse techniques (chronoamperometry, differential pulse voltammetry) to gain insight into 

which step potentials may be better for particular analytes. However, these efforts were not 
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productive because the behavior of single steps or steps in series, did not align with the 

behavior of an RPV waveform due to the fact that steps are layered in a way that has only 

been previously used for the electronic tongue application.29, 30 With no guiding principles and 

a seemingly infinite number of step combinations that could be used to construct an RPV 

waveform, we had no way to evaluate new step combinations systematically using a human-

centric approach. Therefore, we turned to a statistical optimization model, Bayesian 

optimization.31, 32  

Bayesian optimization enables data-driven experimental design to identify global 

optima in high-dimension search spaces amongst parameters with complex interactions.33 

Bayesian optimization has been widely applied across diverse fields, including automated 

machine learning,34 robotics,35 sensor design,36 materials discovery,37, 38 and chemical 

reaction optimization.39, 40 In our case, alternative approaches can be used to design 

waveforms (e.g., first-principles, chemometric screening, experimental design). However, 

these approaches suffer from limitations associated with computational complexity, an 

exponential number of experiments required per parameter, and/or the inability to account 

for confounding waveform parameter interactions.41  

Bayesian optimization is commonly used for ‘black box’ problems that are practically 

difficult to evaluate due to time/resources/lack of theoretical knowledge.42-44 Black-box 

problems are solved by constructing probabilistic models that are sequentially updated as 

data is acquired (i.e., adaptive experimental design).31, 33 The closed-feedback loop of Bayesian 

optimization outperforms conventional and other state of-the-art optimization procedures, 

including expert scientists, in a fraction of the experimental time and resources.39, 42 

Waveform design is a black box optimization problem. We seek an input (a waveform) 

that is related to an optimal output objective (e.g., maxima of sensitivity/selectivity, minima 

of error, etc.) by an unknown objective function (the black box). Evaluating waveforms is 
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expensive (labor, time, materials, etc.) and the search space is vast. Despite its advantages 

and versatility, applications of Bayesian optimization to analytical chemistry and 

specifically, electrochemistry are still spare.45-48 We are not aware of previous applications of 

Bayesian optimization to voltammetry waveform design.  

Here, we introduce novel training set designs and data processing procedures to 

address the challenging issue waveform optimization in the specific context of generalizing 

in vitro training data to the complex in vivo environment of the brain. We show that 

information contained in voltammograms is dependent on specific potentials that occur in 

specific orders, confirming the need for a parsimonious search approach. We present an 

initial proof-of-concept using Bayesian optimization for automated, machine-learning guided, 

fit-for-purpose voltammetry waveforms. The approach outperforms randomly designed and 

domain expert designed waveforms. Importantly, our approach can be straightforwardly 

applied to the design of any voltammetric waveform for any electroactive analyte. 

Results and Discussion 

Our Bayesian optimization workflow for robust, systematic, and unbiased 

voltammetric waveform development is shown in Fig. III.1. A search is initialized with six 

randomly generated pulse waveforms, where each waveform x is embedded as a vector in 8 

dimensional space such that x≔ [E1, τ1, E2, τ2, E3, τ3, E4, τ4], where E is the potential step (V) 

and τ is the step hold time (ms). In this initial design, for eventual comparison with our 

human-designed four-step waveform (Fig. III.4a), we constrained the search space to four 

steps per waveform, with E1 and E2 constrained to 0-1.3 V and E3 and E4 constrained to -0.5-

0 V. These constraints ensured that waveforms remained inside the solvent window and 

encoded a ‘pulse/counter-pulse’ concept. We constrained τ to 0.5-2.0 ms based on our 

preliminary results showing that capacitive current decays fully after ~2 ms yet important 
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features are contained in as little as ~0.5 ms.15 Pulses as short as 0.5 ms contain valuable 

information and do not result in voltage cross talk (i.e., residual capacitive current from 

successive voltage steps).11, 14 To limit the number of parameters, hold time was defined as 

(100- ∑=〖(τ))〗ms, so that every pulse was applied at 10 Hz; the holding potential was 

defined as E4. 

We experimentally produced calibration curve data (upper left table, Fig. III.1) for 

each random waveform in duplicate and on separate days to assist the model in gauging 

noise/uncertainty. Each generated waveform was trained using the fractional factorial box 

design laid out in the table in Figure III.1. For training, samples A- P the concentrations of 

dopamine, serotonin, 5-hydroxyindoleacetic acid (5-HIAA), 3,4-dihydroxyphenylacetic acid 

(DOPAC), and ascorbic acid were altered so that the model could be trained across all of these 

analytes. The test samples T1- T4 that also had varied levels of serotonin, dopamine, and 

interferents, were used to assess dopamine and serotonin accuracy and limit of detection 

(LOD). Repeats of T1-T3 were made in aCSF at pH 7.1, pH 7.2, and in aCSF with altered ion 

content of Na+ and K+, respectively, to assess the accuracy of dopamine and serotonin in the 

presence of changing H+, Na+, and K+ that it was not trained on. The ability of Bayesian 

optimization to account for noise and variance of the surrogate model (i.e., uncertainty) is a 

key strength of this technique.36 Data for each of the eight random waveforms (gray boxes, 

Fig. III.1) was then processed using PLSR. 

The test set results are used to calculate the eight optimization metrics listed. These 

metrics and corresponding waveform parameters are used to create surrogate models (i.e., 

Gaussian processes36) of the unknown objective functions (i.e., black box functions relating 

waveform parameters to their optimization metric). An acquisition function (i.e., expected 

improvement36) finds the optima of each surrogate function, and outputs the next most likely 
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waveform that will improve the respective metric. The eight different output 

metrics/waveform: dopamine and serotonin accuracy (average test set accuracy; mean 

absolute error of T1-4 predictions), variance at 0 (proxy for LOD) for dopamine and serotonin, 

ion accuracy for dopamine and serotonin (T3 and blank accuracy with altered cations), and 

pH accuracy for dopamine and serotonin (T1, T2 and blank accuracy at pH 7.1 and 7.2). This 

multi-metric approach allows for waveforms with tunable figures of merit (e.g., sensitivity 

can be preferentially optimized should other metrics be satisfactory). 

The eight waveforms output from the first optimization loop of this workflow are 

shown (Fig. III.1, right). For each waveform (a new ‘string’), we obtained calibration curve 

data for the new waveforms, trained the corresponding PLSR model, calculated the 

optimization metrics using test set results, and predicted the next set of optimal waveforms. 

We demonstrate that the Bayesian optimizer is covering a wide search space across all the 

set parameters, mentioned above (Fig. III.2). Although the process may seem random, it is 

exploring the search space parsimoniously. Specific combinations of pulse step potential and 

τ influence serotonin accuracy as measured by partial dependence plots (Fig. III.3). For 

example, combinations of the second step potential, the third step potential, and third step 

tau have high-dimensional interactions, as denoted by the yellow shading (location of 

minima). 

We focused first on the results for the second waveform optimized across strings for 

serotonin prediction accuracy, defined as the mean absolute error in the PLSR model 

predictions of test samples T1- 4. Across four Bayesian optimization strings, three new 

waveforms were predicted by the Bayesian optimizer for serotonin accuracy, as the first 

string was randomly generated to initialize the search space. The evolution of these three 

waveforms (Fig III.4b-d) can be compared to our initial rapid pulse voltammetry waveform 

(Fig. III.4a). We note the similarity of our ‘human-in-the-loop’ waveform (Fig. III.1a) to one 
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of the first-iteration Bayesian optimized overall accuracy waveforms (Fig. III.1, bottom right, 

green). Even in the first iteration, our Bayesian optimization scheme has nearly perfectly 

predicted our chemical intuition choice for the potentials of the Figure III.4a waveform 

design; they differ only by ~100 mV or less. The Bayesian calculations optimized step length 

on their own to find optimal temporal resolution (in this case, 5.8 ms rather than 8 ms).  

 We did not simply ‘get lucky’ or stumble across a great waveform randomly. A 

convergence plot (Fig. III.4e) shows that for each Bayesian string, the waveform optimized 

for serotonin accuracy found a new minimum for serotonin prediction error in each iteration, 

which demonstrates improvement across strings. We compared the predictions of the 

serotonin waveform from string four (BO4wf2 RPV) to the original RPV waveform (OG RPV) 

through calculating the accuracy of test samples 1-4 (Fig. III.5). We determined that the 

BO4wf2 RPV waveform increased prediction accuracy for test samples 1-4 by ~20% compared 

to the OG RPV waveform. 

 The Bayesian optimization process was repeated from a new set of six random 

waveforms and carried out for three strings as described above. We noticed that for certain 

metrics, particularly dopamine and serotonin accuracy, the predicted waveforms between 

Bayesian optimization one and two looked similar (Fig. III.6). For dopamine accuracy the 

string 3 predicted waveforms resulted in the same high to lower potential step for the 

oxidative potentials, and a low to higher potential step for the reductive potentials. The 

serotonin accuracy waveforms share more characteristics with the OG RPV waveform across 

Bayesian Optimization 1 and 2, falling into a low to high potential step for the oxidative 

potential steps and a high to low potential step for the reductive potential steps. 
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Conclusion 

Overall, our Bayesian approach provides a closed feedback loop that enables accelerated 

machine learning-driven design of fit-for-purpose RPV waveforms. We have demonstrated 

that the model covers a wide portion of the search space and that unique waveform 

characteristics are combined to predict new waveforms. Additionally, a Bayesian 

optimization waveform, BO4w2 RPV, has more accurate test sample predictions for serotonin 

than OG RPV. The Bayesian optimization approach has worked to optimize RPV waveforms 

but can be generalized to any voltammetry waveform.  
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Methods 

Chemicals 

Serotonin standards, dopamine standards, and artificial cerebrospinal fluid (aCSF) solutions 

were purchased from and prepared as described in previous literature.15 The standards for 

5-HIAA (#H8876), DOPAC (#850217), and ascorbic acid (#A92902) were purchased from 

Sigma-Aldrich (St. Louis, MO). The aCSF solution was adjusted to pH 7.1, 7.2 or 7.3  ± 0.03 

using HCl (Fluka, #84415). High potassium aCSF buffer contained the following ionic 

composition: 31 mM NaCl (#73575), 120 mM KCl (#05257), 1.0 mM NaH2PO4 (#17844), 2.5 

mM NaHCO3 (#88208) purchased from Honeywell Fluka (Charlotte, NC), and 1.0 mM CaCl2 

(#499609) and 1.2 mM MgCl2 (#449172) purchased from Sigma-Aldrich. All aqueous 

solutions were made using LC-MS water (Fisher Scientific, W6-4). 

Electrode Fabrication and Polymerization 

Carbon fiber microelectrodes were fabricated as follows, 7-μm diameter carbon fibers 

(T650/35, Cytec Carbon Fiber) were vacuum-aspirated into O.D. 1.2 mm, I.D. 0.69 mm, 10 

cm length borosilicate glass capillaries (Sutter Instrument Company, Novato, CA, B120-69-

10). A micropipette puller (P-1000, Sutter Instrument Company, Novato, CA) was used to 

pull each capillary into two electrodes by tapering and sealing the glass around the carbon 

fiber. Four-part epoxy (Sigma Aldrich, Spurr Low Viscosity Embedding Kit- EM0300) was 

then backfilled into the tip of each electrode and epoxied electrodes were dried at 70 °C for 8-

12 hours. Electrode tips were cut to ~100 µm using micro-scissors under an inverted 

microscope. The electrodes were backfilled with a non-toxic metal alloy of gallium-indium-

tin, Galinstan (Alfa Aesar, 14634-18), for electrical conduction. Bare copper wire (0.0253-in. 

diameter, Archor B22) was polished using a 600-grit polishing disc and inserted into working 

electrode capillaries to serve as the electrical connection to the potentiostat, epoxy (Loctite 
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EA 1C) was then put around the top of the electrode to secure the wire in place. The epoxy 

was cured after 24 hours when left at room temperature. 

Electrode tips were cleaned with HPLC-grade isopropanol (Sigma Aldrich #34863) for 

10 min. Electrodes were then overoxidized by applying a static 1.4 V potential for 20 min.37 

Low-density EDOT:Nafion solution was made by first creating a 40 mM EDOT stock; 100 µL 

of this stock was added to 200 µL of Nafion and diluted with 20 mL of acetonitrile.38 A triangle 

waveform (1.5V to -0.8V to 1.5V) was applied using a CHI Instruments Electrochemical 

Analyzer 15x at 100 mV/s to generate a PEDOT:Nafion coating on each electrode.  

In vitro Experiments 

Reference electrodes were made by placing 0.025-inch silver wire (A-M Systems, 783500) into 

bleach for 10 minutes. The electrode was rinsed with DI water before being used in 

experiments. A flow cell (NEC-FLOW-1, Pine Research Instrumentation Inc.) was combined 

with a VICI air actuated injector (220-0302H) to make in vitro measurements.  An HPLC 

pump by Dionex (Sunnyvale, California) was used to move aCSF through the flow cell at a 

constant flow rate of 1.0 mL/min.  

Standards were made using a fractional factorial box design as shown in the table in 

Figure III.1. The fractional factorial box design is a chemometric approach that designs a 

multi-dimensional ‘box’ spanning analytes, their concentrations, and experimental 

conditions of interest.27, 39 We selected a fractional approach to bias towards low analyte 

concentrations and small relative changes. High accuracy and precision in the nM range are 

important for monitoring basal and stimulated neurotransmitter levels using a single 

technique. The fractional approach avoids a full factorial design, which would require orders 

of magnitude (and prohibitively) more calibration samples. In contrast, traditional 
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calibration sets are less information-rich and can lead to spurious correlations when training 

a multiplexed method with overlapping signals arising from analytes and interferents.27 

Calibration standards were injected (roughly 1 mL sample into a 500 μL loop volume) 

A- T4 into a flow cell for 20 seconds at 200- 300 second intervals, depending on the waveform. 

In each string, the calibration curves for the waveforms were completed across multiple days. 

A different electrode was used for each string. We define a training set (i.e., calibration set) 

as known concentration analyte mixtures, i.e., ‘standards’, used to train a PLSR model, while 

a test set is defined as known concentration analyte mixtures not used during training, but 

instead used to test how well a model performs.  

Voltammetry Hardware and Software 

A two-electrode configuration via an Ag/AgCl reference electrode and a carbon fiber 

microelectrode working electrode was used. A PC with a PCIe-6363 data acquisition card 

(National Instruments (NI), Austin, TX) was used to control a WaveNeuro One FSCV 

Potentiostat System (NEC-WN-BASIC, Pine Research Instrumentation Inc.) with a 1,000 

nA/V headstage amplifier (AC01HS2, Pine Research Instrumentation Inc.). The copper wire 

of the working electrode and the silver wire reference electrode were inserted into a 

microelectrode-headstage coupler (AC01HC0315-5, Pine Research Instrumentation Inc.) that 

connects the electrodes to the potentiostat. These wires must be ~0.025 inches to make a good 

connection into the coupler.  

In-house software was developed for RPV and described in our previous paper.15 

However, the software has since been updated and named Seroware. Details about Seroware 

and open-source access to the program can be found in another manuscript, titled ‘Seroware, 

part 1: An open source, end-to-end software suite for voltammetric acquisition and analysis 

of neurotransmitters’. 
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Waveforms 

Bayesian Optimization 1 

     String 1     

 Step 1 Tau 1 Step 2 Tau 2 Step 3 Tau 3 Step 4 Tau 4 Holding 

Potential 

1 0.8 V 0.5 ms 0.5 V 0.5 ms -0.3 V 1.0 ms -0.1 V 1.5 ms 96.5 ms 

2 0.9 V 0.5 ms 0.7 V 1.0 ms -0.4 V 0.5 ms -0.3 V 1.5 ms 96.5 ms 

3 0.5 V 2.0 ms 0.2 V 1.5 ms -0.1 V 1.5 ms -0.3 V 1.0 ms 94 ms 

4 0.6 V 2.0 ms 0.8 V 0.5 ms -0.2 V 2.0 ms -0.4 V 0.5 ms 95 ms 

5 0.2 V 1.0 ms 0.3 V 1.5 ms -0.1 V 1.5 ms  0.0 V 0.5 ms 95.5 ms 

6 0.7 V 1.5 ms 0.6 V 2.0 ms -0.3 V 1.0 ms -0.1 V 2.0 ms 93.5 ms 

 

     String 2     

 Step 1 Tau 1 Step 2 Tau 2 Step 3 Tau 3 Step 4 Tau 4 Holding 

Potential 

1 0.308 V 1.6 ms 0.385 V 1.0 ms -0.397 V 1.5 ms -0.268 V 0.6 ms 95.3 ms 

2 0.747 V 1.0 ms 0.499 V 1.9 ms -0.309 V 0.8 ms -0.237 V 0.5 ms 95.8 ms 

3 0.113 V 0.9 ms 0.930 V 1.7 ms -0.243 V 1.4 ms -0.056 V 1.0 ms 95 ms 

4 0.291 V 1.7 ms 0.106 V 0.9 ms -0.165 V 1.6 ms -0.393 V 0.6 ms 95.2 ms 

5 0.815 V 1.0 ms 0.001105 V 1.1 ms -0.379 V 1.2 ms -0.137 V 1.5 ms 95.2 ms 

6 0.163 V 1.4 ms 0.972 V 1.9 ms -0.080 V 1.9 ms -0.051 V 1.5 ms 93.3 ms 

7 0.747 V 0.5 ms 0.001251 V 0.5 ms -0.162 V 0.8 ms -0.324 V 1.9 ms 96.3 ms 

8 0.362 V 0.7 ms 0.524 V 2.0 ms -0.333 V 1.6 ms -0.291 V 0.9 ms 94.8 ms 
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     String 3     

 Step 1 Tau 1 Step 2 Tau 2 Step 3 Tau 3 Step 4 Tau 4 Holding 

Potential 

1 0.102 V 1.3 ms 0.092 V 0.6 ms -0.350 V 0.8 ms -0.321 V 1.8 ms 95.5 ms 

2 0.517 V 0.7 ms 0.806 V 1.9 ms -0.098 V 1.8 ms -0.493 V 1.3 ms 94.3 ms 

3 0.437 V 0.8 ms 0.548 V 1.9 ms -0.291 V 1.7 ms -0.282 V 0.9 ms 94.7 ms 

4 0.646 V 1.0 ms 0.171 V 1.8 ms -0.236 V 1.5 ms -0.218 V 1.7 ms 94 ms 

5 0.351 V 1.1 ms 0.784 V 0.9 ms -0.350 V 0.6 ms -0.209 V 0.5 ms 96.9 ms 

6 0.325 V 1.7 ms 1.255 V 1.2 ms -0.109 V 1.3 ms -0.306 V 1.0 ms 94.8 ms 

7 0.105 V 0.9 ms 0.303 V 1.8 ms -0.009 V 0.8 ms -0.066 V 1.0 ms 95.5 ms 

8 0.004 V 2.0 ms 0.598 V 0.9 ms -0.212 V 2.0 ms -0.161 V 1.4 ms 93.7 ms 

 
 
     String 4     

 Step 1 Tau 1 Step 2 Tau 2 Step 3 Tau 3 Step 4 Tau 4 Holding 

Potential 

1 0.128 V 1.9 ms 1.248 V 1.9 ms -0.469 V 0.9 ms -0.109 V 1.9 ms 93.4 ms 

2 0.274 V 0.7 ms 0.779 V 1.5 ms -0.180 V 1.4 ms -0.425 V 1.4 ms 94.5 ms 

3 0.578 V 1.0 ms 0.856 V 0.9 ms -0.298 V 1.7 ms -0.141 V 1.7 ms 94.9 ms 

4 0.837 V 1.9 ms 1.074 V 0.5 ms -0.096 V 0.7 ms -0.300 V 0.7 ms 95 ms 

5 0.770 V 0.8 ms 0.945 V 1.5 ms -0.266 V 1.5 ms -0.394 V 1.5 ms 94.9 ms 

6 0.000 V 1.5 ms 0.560 V 1.8 ms -0.216 V 1.3 ms -0.154 V 1.3 ms 94.2 ms 

7 0.315 V 1.4 ms 1.289 V 0.5 ms -0.479 V 1.0 ms -0.293 V 1.0 ms 96.4 ms 

8 0.226 V 0.8 ms 0.286 V 1.8 ms -0.465 V 0.9 ms -0.359 V 0.9 ms 95.7 ms 
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Bayesian Optimization 2 

     String 1     

 Step 1 Tau 1 Step 2 Tau 2 Step 3 Tau 3 Step 4 Tau 4 Holding 

Potential 

1 0.113 V 0.6 ms 1.223 V 0.8 ms -0.271 V 0.6 ms -0.420 ms 0.7 ms 97.3 ms 

2 0.366 V 0.6 ms 0.860 V 2.0 ms -0.309 V 0.6 ms -0.353 ms 0.6 ms 96.2 ms 

3 0.363 V 1.8 ms 1.077 V 1.6 ms -0.192 V 1.5 ms -0.314 ms 0.9 ms 94.2 ms 

4 0.088 V 1.2 ms 1.060 V 1.8 ms -0.165 V 0.6 ms -0.458 ms 1.0 ms 95.4 ms 

5 0.172 V 0.9 ms 0.045 V 2.0 ms -0.110 V 1.7 ms -0.260 ms 1.6 ms 93.8 ms 

6 0.580 V 1.4 ms 0.951 V 1.9 ms -0.482 V 1.9 ms -0.053 ms 1.6 ms 93.2 ms 

 
 
     String 2     

 Step 1 Tau 1 Step 2 Tau 2 Step 3 Tau 3 Step 4 Tau 4 Holding 

Potential 

1 0.543 V 1.7 ms 1.116 V 1.5 ms -0.217 V 1.6 ms -0.293 V 1.0 ms 94.2 ms 

2 0.200 V 1.8 ms 1.111 V 0.9 ms -0.191 V 1.5 ms -0.383 V 0.9 ms 94.9 ms 

3 0.119 V 0.6 ms 0.480 V 2.0 ms -0.006 V 0.6 ms -0.342 V 1.0 ms 95.8 ms 

4 0.129 V 1.2 ms 0.759 V 1.7 ms -0.397 V 1.1 ms -0.453 V 1.8 ms 94.2 ms 

5 0.230 V 1.2 ms 0.116 V 0.5 ms -0.082 V 1.5 ms -0.417 V 1.1 ms 95.7 ms 

6 0.410 V 1.6 ms 1.074 V 1.6 ms -0.197 V 1.3 ms -0.304 V 1.6 ms 93.9 ms 

 
 
     String 3     

 Step 1 Tau 1 Step 2 Tau 2 Step 3 Tau 3 Step 4 Tau 4 Holding 

Potential 

1 0.605 V 1.6 ms 0.505 V 1.5 ms -0.185 V 1.4 ms -0.098 V 1.6 ms 93.9 ms 

2 0.227 V 1.7 ms 1.174 V 0.6 ms -0.180 V 1.3 ms -0.422 V 2.0 ms 94.4 ms 

3 0.300 V 1.7 ms 1.122 V 0.9 ms -0.197 V 0.9 ms -0.420 V 0.8 ms 95.7 ms 

4 0.703 V 0.7 ms 1.123 V 1.2 ms -0.088 V 1.4 ms -0.318 V 0.8 ms 95.9 ms 

5 0.133 V 1.2 ms 1.083 V 1.7 ms -0.213 V 0.7 ms -0.415 V 1.0 ms 95.4 ms 

6 1.159 V 1.5 ms 0.887 V 1.0 ms -0.023 V 2.0 ms -0.275 V 1.0 ms 94.5 ms 
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Bayesian Optimization Models 

Bayesian optimization was done using the open-source Python package Scikit-Optimize.40 

The software uses an ‘ask and tell’ interface. First, the search space was constrained as 

described above. The surrogate model (Gaussian process regressor with a Matérn and white 

noise kernel) was initialized through the ‘tell’ interface using vectorized and normalized 

String 1 waveform parameters (inputs) and optimization metrics (outputs). The acquisition 

function (negative expected improvement) was then minimized using the ‘ask’ interface to 

generate a vectorized waveform to be experimentally queried. After experimental results 

were obtained with the predicted waveform, the metrics of all previous waveforms were 

aggregated with the newest metrics, the Bayesian optimizer was updated using the ‘tell’ 

interface and used to set new query points using the ‘ask’ interface.  

Data Analysis 

Data were extracted using in-house custom acquisition software written in MATLAB 2016a 

and models built as described in previous literature using open-source Python packages 

(Scikit-Learn).15, 41 Briefly, roughly 40-100 voltammograms were extracted per train and test 

sample injection. All voltammograms were normalized and the number of components was 

chosen using cross-validation. Test set metrics were then calculated using the final model. 

The PLSR model was trained to account for drift using voltammograms collected throughout 

the experiment while aCSF containing interferents was flowed and injections were not 

occurring (~2 h). Data, in which drift was evident, were extracted from these background 

epochs and labeled as ‘zero’ analyte concentrations to teach the model what drifting, as 

opposed to analyte-containing, voltammograms look like. These ‘drift zeroes’ were in addition 

to data from injections of aCSF alone (i.e., blanks) to account for flow cell injection and pump 

artifacts. 
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Figures 

Figure III.1 
 

 

  

Figure III.1. Bayesian optimization for machine learning-guided RPV waveform design for serotonin (5HT) 

and dopamine (DA). Upper left corner is a table showing the fractional factorial calibration (A-R) and test 

(T1-4) set design. All calibration sets used here encompassed physiologically relevant mixtures of serotonin 

(0-500 nM, 50 nM increments) and dopamine (0-1000 nM, 100 nM increments), in aCSF, in the presence of 

interferents (i.e., metabolites, pH, ions) to simulate in vivo environments. 
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Figure III.2 
  

Figure III.2.  Parameter distribution plots demonstrating how the Bayesian optimizer is spanning 

the search space. 
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Figure III.3 

 
  

Figure III.3.  Partial dependence plots for serotonin accuracy 
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Figure III.4 

 
  A B 

C D 

E 

Figure III.4. a) OG RPV waveform, b-d) the predicted Bayesian optimization waveforms for the 

serotonin accuracy metric across strings 2-4, e) convergence plot for serotonin accuracy across 

all Bayesian strings, with serotonin accuracy 
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Figure III.5 

 
  

Figure III.5. Violin plots of serotonin predictions for test samples 1-4, 

comparing the prediction accuracy for the OG RPV waveform and the 

BO4wf2 waveform. 
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Figure III.6 

 

  

Figure III.6. Predicted Bayesian optimization waveforms across two separate Bayesian optimization 

experiments. Waveforms for the dopamine accuracy metric are highlighted in red and the serotonin accuracy 

metric in blue. 
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CHAPTER IV 

Optogenetic Stimulation of Midbrain Dopamine Neurons Produces 

Striatal Serotonin Release 

 

The information in this chapter is reproduced with permission from ACS Chemical 

Neuroscience, Copyright 2022. 
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Introduction 

Optogenetics entails expressing light-driven ionotropic receptors in neurons or other 

excitable cells to enable spatially and temporally restricted activation or inhibition.139-142 

Gene constructs for microbial or engineered rhodopsins packaged in viruses are used to 

transduce brain-region-specific gene expression following local delivery. Gene expression can 

be further targeted using Cre recombinase under the control of cell-type-specific promotors, 

in combination with Cre-activated opsin constructs.143 Opsins produce excitatory (e.g., 

channelrhodopsin-2, Chrimson) or inhibitory (e.g., halorhodopsin, archaerhodopsin) effects 

on neural activity.144-146 The discovery and use of opsins have enabled the identification of 

neural pathways involved in the modulation of behavior.13, 147-149  

Opsin-targeted cell types, however, do not operate autonomously. Dopamine and 

serotonin are examples of functionally interconnected neurotransmitter systems. For 

instance, while dopamine signaling is often associated with reward prediction error, 

serotonin transmission also plays a role in processing reward-associated information.150-152 

Moreover, while widely used therapeutics for mood disorders target the serotonin system,153 

the dopamine system encodes information associated with anhedonia, a core symptom of 

major depressive disorder.5, 18, 151, 154-157 Interactions between the dopamine and serotonin 

systems are evident in drug mechanisms of action, e.g., cocaine, methamphetamine, and 

3,4-methylenedioxymethamphetamine.158-161 Thus, these systems act in concert to modulate 

subjective states.29, 162 

Microdialysis is a tissue sampling technique. When combined with chemical 

separation and detection methods, microdialysis enables the identification and quantification 

of neurotransmitters, metabolites, and drugs in the extracellular space.163 Several groups, 

including ours, have optimized microdialysis to monitor brain extracellular dopamine or 

serotonin levels via online coupling with fast separations by high performance liquid 
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chromatography (HPLC) and electrochemical detection in awake mice and rats.83, 94, 95, 119, 164-

166 Dopamine and serotonin can be resolved in the same dialysate samples enabling 

biologically relevant changes in basal and stimulated levels of these neurotransmitters to be 

simultaneously monitored.95, 167  

Here, we set out to determine the magnitude of extracellular dopamine release in the 

dorsal striatum (dSTR) upon optogenetic stimulation of midbrain dopaminergic neurons. The 

excitatory opsin Chrimson was expressed under the control of the dopamine transporter 

promoter in mice. Optical activation of dopamine neurons has been used to study 

dopaminergic encoding of reward and movement.13, 168 In addition to dopamine, we observed 

optically induced increases in the dopamine metabolite 3-methoxytyramine (3-MT) and in 

serotonin levels. These findings demonstrate a functional link between the dopamine and 

serotonin systems in the basal ganglia. They illustrate the importance of monitoring multiple 

neurotransmitters simultaneously. And they suggest that opsin-induced behavioral changes 

may not be attributable solely to the neurotransmitter system or cell type targeted by opsin 

expression. That is to say, while optogenetics imparts highly selective control of specific types 

of neurons, brain function and behavior arise from distributed and interconnected networks. 
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Materials and Methods 

Animal Procedures 

Mice were generated at the University of California, Los Angeles (UCLA) from a DATIREScre 

line (The Jackson Laboratory, stock no. 006660) on a C57Bl/6J background via heterozygous 

matings. Mice were housed in groups of 2-5 same-sex siblings prior to surgery, same-sex-

sibling pairs after the first surgery to deliver viral vectors and to implant optical fibers and 

head bars, and singly after the second surgery to implant a microdialysis guide cannula. Food 

and water were available ad libitum throughout, with the exception of microdialysis testing 

days where mice were hand-fed a 2:1 sweetened condensed milk:water solution via pipette 

every 2 h.  

The light-dark cycle (12/12 h) in the animal colony room was set to lights on at 0730 h 

(ZT0). The same light schedule was maintained in the room where microdialysis was 

performed. The Association for Assessment and Accreditation of Laboratory Animal Care 

International has fully accredited UCLA. All animal care and use met the requirements of 

the NIH Guide for the Care and Use of Laboratory Animals, 2011. The UCLA Chancellor’s 

Animal Research Committee (Institutional Animal Care and Use Committee) preapproved 

all animal procedures. 

Surgeries were carried out under aseptic conditions with isoflurane anesthesia on a 

KOPF Model 1900 Stereotaxic Alignment System (KOPF, Tujunga, CA). A pair of rectangular 

stainless steel head-bars (9 mm  7 mm  0.76 mm, 0.6 g each, Fab2Order, Brownsburg, IN) 

were attached to the sides of the skull by C&B Metabond (Parkell, Edgewood, NY) for head 

fixation (Fig. IV.S1A,B). Viral vectors, 600 nL of 7.8  1012/mL AAV5/Syn-Flex-ChrimsonR-

tdTomato (for experimental groups) or 4.4  1012/mL AAV5/EF1a-DIO-eYFP or 3.3  1012/mL 

AAV5/EF1a-DIO-mcherry (for control subjects), were delivered unilaterally into the SN/VTA 

https://www.sciencedirect.com/topics/neuroscience/isoflurane
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(AP-3.08 mm, ML ±1.20 mm, DV -4.00 mm from Bregma) using a Nanoject II (Drummond 

Scientific, Broomall, PA). A 200 µm diameter optical fiber (0.22 NA, Thorlabs, Newton, NJ) 

with a total length of 1 cm was lowered via the same track to reach the AAV injection site for 

optogenetic stimulation. Optical fibers were secured on the skull with C&B Metabond. The 

top of each optical fiber outside the skull was covered by a sleeve until coupling to a laser 

device for testing. All AAV Cre-dependent adeno-associated viral vectors were obtained from 

the University of North Carolina Vector Core (Chapel Hill, NC). 

After the first surgery, animals recovered for 2-3 weeks (Fig. IV.1B) to allow for viral 

vector expression prior to guide cannula implantation for microdialysis. During recovery, 

subjects were acclimated to being head-fixed over the course of 6-10 training sessions, each 

lasting 15-30 min. A second surgery was carried out on each mouse to implant a CMA/7 guide 

cannula for a microdialysis probe aimed at the dSTR (AP+1.00 mm, ML±1.75 mm, 

DV-3.10 mm from Bregma) in the same hemisphere as the viral delivery and fiber implant 

site. Each guide cannula was secured to the skull with C&B Metabond. Animals recovered 

from the second surgery for at least three days before microdialysis. Following each surgery, 

mice were given daily carprofen injections (5 mg/kg, 1 mg/mL, subcutaneously) for the first 

three days and a combination of an antibiotic (amoxicillin, 0.25 mg/mL) and a second 

analgesic (ibuprofen, 0.25 mg/mL) in their drinking water for 14 days postoperatively. 
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Microdialysis 

Virgin female mice (N=23) underwent microdialysis at 3-6 months of age. Microdialysis was 

carried out over two consecutive days for Chrimson-transfected mice (N=14) and one day for 

control mice (N=9). On the night before the first testing day (ZT10-12), each mouse was 

transferred to the testing room in its home cage and briefly anesthetized with isoflurane 

(1-3 min) for insertion of a CMA/7 microdialysis probe (1 mm length, 6 kDa cutoff, 

CMA8010771) into the guide cannula. Subjects were returned to their home cages and aCSF 

was continuously perfused through the probe via a liquid swivel (375/D/22QM, Instech 

Laboratories Inc., Plymouth Meeting, PA) at 2-3 μL/min for 30-60 min followed by a 

0.3 μL/min flow rate for an additional 12-14 h to allow the tissue surrounding the probe to 

recover from acute changes associated with probe insertion. Subjects were tethered to the 

liquid swivel but otherwise could move freely in their home cages.  

Prior to microdialysis, the tubing connecting the microdialysis probe to the liquid 

swivel was disconnected. The mouse was transferred from its home cage and mounted to the 

head-fixed stage via its head-bars in the same testing room. The microdialysis probe was 

connected between the microdialysis syringe pump and the online autoinjector. The aCSF 

was perfused at 1.8 uL/min throughout each testing day, and samples were collected at 5-min 

intervals. Subjects were habituated for at least 10-min before the optical fiber was coupled 

for stimulation delivery. 

An MGL-III-532 or MGL-III-589 laser (Opto Engine LLC, Ltd, Changchun, P. R. 

China) was used to deliver light pulses. The excitation spectrum of Chrimson has a λmax at 

590 nm. Due to the broad excitation spectrum, either 532 nm (green) or 589 nm (yellow) light 

were used to excite this opsin.145 The output of the optical fiber was calibrated to deliver 

10 mW/mm2 immediately before coupling on each testing day.  
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The stimulation pulse width (50 ms), frequency (10 Hz), and train duration (5 min) 

were selected to generate neurotransmitter release detectable by microdialysis using a 5-min 

dialysate sampling time. In preliminary experiments, we investigated stimulation pulse 

widths that varied from 5-2500 ms. We also investigated laser powers ranging from 

5-20 mW/mm2. Longer pulse widths were ultimately favored over higher laser power with 

shorter pulses to avoid tissue damage over longer stimulation times needed for microdialysis. 

There were no significant differences in stimulation output for frequencies over 10-30 Hz 

using 50% duty cycle and a 5-min train duration. A longer train duration was used previously 

by Correia et al. to investigate the role of serotonin transmission in locomotion.169  

The first stimulation was delivered at ~ZT2 after 6-18 basal dialysate samples were 

collected and analyzed. Prior to reverse dialysis of drugs, three optical stimulations were 

delivered at 1-h intervals (Fig. IV.1B). After 90-120 min of intrastriatal drug perfusion, an 

additional three optical stimulations were delivered at 1-h intervals while drug perfusion 

continued. On day 1, four Chrimson-transfected mice were perfused with the D1-like 

antagonist SCH-23390 (100 μM) through the dialysis probe. On day 2, the same four 

Chrimson-transfected mice were perfused with 100 μM eticlopride (D2-like antagonist).  

Eleven mice not receiving D1- or D2-like antagonists underwent brief (5 min) 

perfusion with 120 mM K+ (KCl substituted isotonically for NaCl in aCSF) to stimulate 

neurochemical overflow94, 95, 106 for peak identification. In Fig. IV.S2, data from a 

representative K+-stimulated mouse are shown. Three Chrimson-transfected mice were 

perfused with an SSRI (10 μM escitalopram) on day one to confirm serotonin peak identity 

(Fig. IV.3A, B). Four mice (three control and one Chrimson-transfected) were administered 

the COMT inhibitor tolcopone (10 mg/kg, intraperitoneal) to identify the 3-MT peak 

(Fig. IV.2C).  
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Dialysate Analysis 

High performance liquid chromatography was performed using an Amuza HTEC-500 

integrated system (Amuza Corporation [formally known as Eicom], San Diego, CA). An Eicom 

Insight autosampler was used to inject standards and Eicom EAS-20s online autoinjectors 

were used to collect and inject dialysate samples online.83 Chromatographic separation was 

achieved using an Eicom PP-ODS II column (4.6 mm ID x 30 mm length, 2 μm particle 

diameter) and a phosphate-buffered mobile phase (96 mM NaH2PO4 (Fluka #17844), 3.8 mM 

Na2HPO4 (Fluka #71633), pH 5.4, 2-2.8% MeOH (EMD #MX0475), 50 mg/L EDTA·Na2 

(Sigma #03682), and 500 mg/L sodium decanesulfonate (TCI #I0348) in water purified via a 

Milli-Q Synthesis A10 system (EMD Millipore Corporation, Billerica, MA). The column 

temperature was maintained at 21 °C. The volumetric flow rate was 450-500 μL/min. 

Electrochemical detection was performed using an Eicom WE-3G graphite working electrode 

with an applied potential of +450 mV vs. a Ag/AgCl reference electrode. 

Dopamine (Sigma #H8502), 3-MT (Sigma #65390), and serotonin (Sigma #H9523) 

standards were prepared in ice-cold 1:1 mobile phase/aCSF (147 mM NaCl (Fluka #73575), 

3.5 mM KCl (Fluka #05257), 1.0 mM CaCl2 (Aldrich #499609), 1.0 mM NaH2PO4, 2.5 mM 

NaHCO3 (Fluka #88208), 1.2 mM MgCl2 (Aldrich #449172), pH 7.3 ± 0.03. (See supplemental 

information in Liu et al., 2020 for detailed information on formulating aCSF).170 Standard 

curves encompassed physiological concentration ranges (0-10 nM; Fig. IV.S5). The limit of 

detection was ≤300 amol (6 pM) for each analyte; the practical limit of quantification was 

≤900 amol (18 pM). Dialysate samples were collected online at 5-min intervals using a 

dialysate flow rate of 1.8 μL/min and injected immediately onto the HPLC system for 

analysis. 
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In situ Hybridization 

We used RNAscope® technology (Advanced Cell Diagnostics Inc., Newark, CA) for in situ 

hybridization to colocalize mRNAs for D1 receptors in dorsal raphe neurons expressing 

SERT, VGLUT3, or both.1, 2, 171, 172 A DATIREScre mouse not transfected with Chrimson was 

sacrificed by cervical dislocation without isoflurane and the brain was removed, 

cryoprotected, and frozen. Coronal sections were cut at 16-μm on a cryostat at -15-20 °C and 

mounted on polylysine-coated slides.  

In situ hybridization was conducted using the RNAscope® fresh-frozen V2 protocol. 

Briefly, sections were incubated in freshly prepared 4% paraformaldehyde (Sigma-Aldrich 

Cat#441244) in phosphate buffered saline for 15 min followed by sequential dehydration in 

50% EtOH, 70% EtOH, and 100% EtOH for 5 min each. Sections were then incubated with 

the necessary reagents from the Multiplex Fluorescent Reagent Kit V2 (ACD #323110) in a 

HybEZ® oven. Probes were as follows: Sert (Mm-Slc6a4 Cat#315851) channel 1, Vglut3 (Mm-

Slc32a1 Cat#319191-C2) channel 2, and Drd1 (Mm-Drd1a-C3 Cat# 406491-C3) channel 3. 

Opal dyes 520, 570, and 690 were paired with each probe, respectively (Cat#FP1487A, 

FP1488A, FP1497A). ProLong™ Diamond Antifade Mountant with DAPI (Molecular Probes 

P36966) was added to stain cell bodies.  

Visualization was carried out using a Leica DMI8 or Zeiss LSM800 microscope and 

images were processed with LAS X and Zen software. Cell nuclei in each field of view were 

identified via DAPI staining. The DAPI labeled nuclei associated with puncta for one or more 

mRNA probes were then counted. Data are reported as percent positive cells calculated by 

dividing the number of cells labeled with Sert, Drd1, and/or Vglut3 by the total number of 

Sert labeled cells. 
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Histology 

At the end of each experiment, the microdialysis probe was removed and the brain of each 

mouse was prepared for histology to verify probe and optical fiber placements, and Chrimson, 

mCherry, or eYFP expression. Subjects were exsanguinated with an overdose of 100 mg/kg 

pentobarbital (2 mL/kg administered at 50 mg/mL, ip) followed immediately by transcardial 

perfusion with 4% paraformaldehyde in PBS. Sections from the midbrain and dSTR were cut 

using a vibratome and mounted on microscope slides. Images were acquired using a Zeiss 

Axio Examiner microscope as follows: tdTomato and mCherry (550 nm excitation/605 nm 

emission), or eYFP (470 nm excitation/525 nm emission). Microdialysis probe and optical 

fiber tracks were visualized via light microscopy. Three of the 23 microdialysis subjects failed 

histology verification for probe or fiber placement. Data for these subjects were excluded from 

analyses.  

Data Analysis and Statistics 

The microdialysis time-course data were analyzed in terms of absolute neurochemical 

concentrations (nM) and as percents of mean pre-stimulation basal neurochemical levels 

(%basal). Overflow peaks following optical stimulation were identified and analyzed 

individually using the following criteria and procedures. (1) For each control mouse, the 

concentrations of six dialysate samples for each neurochemical immediately preceding the 

onset of the first optical stimulation were averaged (nM) and converted to mean 100% basal 

levels. (2) For Chrimson-expressing mice on experimental days 1 and 2, basal levels of 

individual neurochemicals were determined separately by day. The concentrations of the six 

dialysate samples immediately preceding the onset of the first pre-drug or post-drug optical 

stimulation were averaged (nM) and converted to mean 100% basal levels. (3) The AUC for 

each stimulation peak, defined by the four dialysate samples after the onset of stimulation, 
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was calculated by trapezoidal integration and is reported in nM or as a percent of mean pre-

stimulation basal levels.  

Statistical analyses were carried out using Prism, v.9.0.2 (GraphPad Inc., La Jolla, 

CA). Data are expressed as group means ± SEMs. Two-tailed t-tests (either unpaired or ratio 

paired, as appropriate) were used for two-group comparisons. Throughout, P<0.05 was 

considered statistically significant. Detailed statistics are summarized in Table IV.S1. 
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Results and Discussion 

Using microdialysis,83, 94, 95 we quantified extracellular dopamine in a dopamine-rich 

projection region—the dSTR—during optical stimulation of midbrain dopamine cell bodies 

(Fig. IV.1, Fig. IV.S1). To induce dopamine release, we applied 50-ms square pulses at 10 Hz 

and 10 mW/mm2 laser power. Stimulation pulse train durations were 5 minutes to match 

dialysate sampling times. These parameters were optimized to produce reproducible 

neurotransmitter release detectable via microdialysis. Activation of the excitatory opsin 

Chrimson145 produced temporally specified increases in striatal extracellular dopamine levels 

(Fig. IV.2A). Control mice expressing mCherry or yellow fluorescent protein (YFP) in 

dopamine cell bodies showed no detectable changes in dopamine upon optical stimulation 

(Fig. IV.2B). 

Basal (unstimulated) dialysate dopamine levels were not statistically different in 

Chrimson-expressing vs. control mice (Fig. IV.2C; see Table IV.S1 for detailed statistics). 

Basal dopamine levels for control animals were normally distributed around the mean. In 

contrast, basal dopamine levels for Chrimson-expressing animals were not normally 

distributed. Individual dopamine concentrations fell mostly below the mean, apart from three 

animals, one of which was an outlier. Notably, this outlier is not the same animal that is an 

outlier for basal serotonin levels in Chrimson-transfected mice (Fig. IV.4A vide infra). As 

such, we chose to not to exclude outliers from analysis, although exclusion would have led to 

a statistically significant reduction in basal dopamine levels in Chrimson-transfected vs. 

control mice. Stimulated dopamine overflow, quantified as area under the curve (AUC), was 

greater in Chrimson-expressing vs. control mice (Fig. IV.2D; t18=3.0, P<0.01). Dopamine 

levels were increased ~200 pM by optical stimulation.  

In addition to dopamine, optical activation appeared to lead to increases in two other 

chromatographic peaks (Fig. IV.S2). We initially hypothesized that the larger peak (peak 2) 
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was serotonin. However, since retention times commonly shift between standards and brain 

dialysate samples, we could not definitively identify peak 2 using serotonin-containing 

standards. We perfused a selective serotonin reuptake inhibitor (SSRI) through the dialysis 

membrane during intracerebral dialysis to investigate peak identity. Increases in peak areas 

in response to serotonin transporter inhibition identified a small, later eluting peak (peak 3) 

as serotonin (Fig. IV.3A, B; t2=5.7, P<0.05).  

Previous experience analyzing striatal tissue samples then led us to suspect that the 

remaining optically responsive peak was 3-methoxytyramine (3-MT). Dopamine is 

metabolized by catechol-O-methyltransferase (COMT) to produce 3-MT, which is 

hypothesized to function as a neuromodulator.173, 174 We administered the COMT inhibitor 

tolcapone systemically175 and found that peak 2 was selectively decreased (Fig. IV.3C; t3=9.6, 

P<0.01). We also perfused 3-MT through the dialysis membrane into dSTR, i.e., in vivo 

standard addition, and observed a retention time match confirming the identity of peak 2 as 

3-MT and ruling out the possibility that this peak was serotonin (Fig. IV.3D).  

Having identified two optically (i.e., biologically) responsive neurochemicals, in 

addition to dopamine, we quantified their basal dialysate levels. We found no differences in 

basal 3-MT or serotonin levels in Chrimson-expressing vs. control mice (Fig. IV.4A). 

Optogenetic stimulation of midbrain dopaminergic neurons evoked reproducible increases in 

3-MT and serotonin in Chrimson-expressing but not control mice (Fig. IV.4B,C; t18=3.1, 

P<0.01, t15=4.4, P<0.001, respectively). Since basal neurochemical levels varied across 

individual mice (Fig. IV.2C, 4A), we also analyzed optically stimulated neurochemical levels 

normalized to mean pre-stimulation basal levels (Fig. IV.S3). Concentration and %basal 

analyses similarly indicated that in addition to dopamine, 3-MT and serotonin overflow were 

increased in response to optogenetic stimulation of Chrimson-transfected dopamine neurons. 
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Optical stimulation of control mice lacking opsin expression showed no nonspecific increases 

in neurochemicals associated with light-induced arousal.  

We parsimoniously hypothesized that the increased overflow of serotonin associated 

with optical stimulation of dopamine neurons was mediated by activation of dopamine 

receptors on serotonin terminals in striatum. The mRNAs for DRD2 and DRD3 receptors 

(i.e., D2-like) were previously identified in dorsal raphe.176, 177 Ren et al.171 and Spaethling et 

al.178 used single-cell transcriptomics to localize Drd2 transcripts to serotonergic neurons. 

Using RNAseq, Dymecki and colleagues identified Drd2 mRNA in dorsal raphe serotonin 

neurons specified by Pet1 expression.179  

A small number of DRN serotonin neurons has also been reported to contain Drd1a 

mRNA.171, 179 We carried out in situ hybridization to investigate colocalization of D1 receptor 

(Drd1) and serotonin transporter (Sert) mRNAs in the dorsal raphe nucleus (Fig. IV.5A,B). 

We included a probe for the vesicular glutamate transporter type 3 (VGLUT3) because a 

subpopulation of serotonergic neurons co-expresses VGLUT3180 and projects to the 

striatum.12, 180 We found that ~25% of total Sert-positive cells in the dorsal raphe were 

positive for Sert mRNA alone (Fig. IV.5C). Approximately 10% of total Sert-positive cells 

showed colocalization of Sert and Drd1 mRNA, while an additional 35% of Sert-positive cells 

showed Drd1 and Vglut3 mRNA colocalization. Positive and negative in situ hybridization 

controls are shown in Figure SIV.4.  

Since our data suggested that almost half of dorsal raphe serotonin neurons may 

express heterologous D1 receptors, we investigated whether blocking striatal D1-like 

receptors prevents optically stimulated serotonin overflow. We perfused SCH 23390, a D1-

like receptor antagonist, into the dSTR. Basal dopamine (t3=4.4, P<0.05) and serotonin 

(t3=3.5, P<0.05) levels were increased by local D1-like receptor inhibition (Fig. IV.6A,B). 

Stimulated dopamine (t3=6.2, P<0.01), 3-MT (t3=4.8, P<0.05), and serotonin (t3=4.5, P<0.05) 
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levels were also increased by local perfusion of SCH 23390 (Fig. IV.6B,C). Elevations in 

striatal dopamine levels in response to SCH-23390 have been previously reported.181 In 

addition to serotonin neurons, medium spiny neurons (MSNs) in striatum express D1 

receptors. Blocking D1-receptors on MSNs disinhibits dopamine neurons causing an increase 

in dopamine levels.182, 183  

To focus on optically stimulated neurochemical levels, we normalized the SCH 23390 

time-course data. Data prior to drug perfusion were normalized to pre-drug/pre-stimulation 

basal neurochemical levels determined in each mouse (Fig. IV.7A). Data collected during 

drug perfusion were normalized to post-drug/pre-simulation basal neurochemical levels. 

When normalized to the respective basal levels, elevation of stimulated 3-MT (t3=3.7; P<0.05) 

remained (Fig. IV.7A,B). In contrast, potentiation of optically stimulated dopamine and 

serotonin levels were no longer evident during striatal SCH 23390 perfusion (Fig. IV.7A,B). 

Thus, increases in the stimulated AUC for serotonin calculated using dialysate 

concentrations (Fig. IV.6C) was largely the result of SCH 29930-induced increases in basal 

dialysate concentrations.  

The D1-like receptor inhibitory increase in basal serotonin levels (Fig. IV.6A) can be 

explained by a circuit connecting dSTR to the DRN.1 Approximately, 95% of projections from 

the dSTR to the DRN are D1-expressing MSNs,1 which tonically inhibit DRN (and 

presumably serotoninergic) neurons. Blocking D1-like receptors on MSNs dendritic spines184 

could reduce tonic inhibition of DRN cell populations leading to increased serotonin levels in 

the dSTR. Regardless, local inhibition of D1 heteroreceptors on serotonin terminals and/or 

MSNs did not prevent optically evoked striatal serotonin.  

Mice that received the D1-like inhibitor on day 1 of microdialysis were perfused with 

eticlopride (ETC), a D2-like receptor antagonist, on day 2 (Fig. IV.1A). Inhibition of D2-like 

receptors, which are expressed as dopaminergic heteroreceptors and autoreceptors in 
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striatum,185 was not associated with changes in basal levels of dopamine, 3-MT, or serotonin 

(Fig. IV.8A). Though not statistically significant due to small sample sizes, eticlopride 

perfusion into the dSTR potentiated optically evoked dopamine and 3-MT analyzed either as 

basal (nM) concentrations (Fig. IV.8B,C) or %basal levels normalized to pre-stimulation basal 

(Fig. IV.9A,B). Previous studies have shown that extracellular dopamine is increased upon 

inhibition of presynaptic D2 receptors.186, 187 Importantly, in the context of our current 

hypothesis, and similar to striatal D1-like receptor inhibition, D2-like inhibition did not block 

serotonin overflow associated with optically evoked dopamine release.  

Functional interactions between the dopamine and serotonin systems have been investigated 

for more than 50 years.188-190 In prefrontal cortex, dopamine receptor activation by the 

nonselective agonist apomorphine, local dopamine perfusion, or D2 autoreceptor inhibition 

by haloperidol each produced increases in serotonin levels in rats.191 Systemic administration 

of apomorphine was also shown to increase extracellular serotonin in striatum and 

hippocampus.192 Our findings indicate that optogenetic activation of midbrain dopamine 

neurons expressing the excitatory opsin Chrimson produces temporally specified increases in 

striatal serotonin, as well as an active dopamine metabolite, 3-MT.  

We tested hypotheses linking striatal dopamine and serotonin based on the idea that 

these neurotransmitters are released from different terminals in striatum. We found that 

serotonin overflow was not prevented by inhibition of striatal D1-like or D2-like receptors 

(Figs. IV.6-9). Our findings suggest that optically evoked dopamine does not produce 

serotonin release by stimulating dopamine receptors on striatal serotonin terminals (or 

direct/indirect pathway MSNs).  

Our findings contrast with those of Jacobs and coworkers where apomorphine-induced 

or behaviorally evoked increases in striatal extracellular serotonin were inhibited by 

systemic and intrastriatal D2-like receptor inhibition.192, 193 Differences in species (rats vs. 
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mice), drug (raclopride vs. eticlopride) and/or perfusion concentration (10 uM vs. 100 uM) 

might account for the discrepancies between studies. Jacobs and colleagues did not report on 

striatal dopamine levels in their studies, i.e., apomorphine and the tail-pinch and light-dark-

transition behaviors may have direct receptor/serotonin system effects that are different from 

those mediated by evoked dopamine.194 Artigas and colleagues reported that reverse dialysis 

of D1-like or D2-like agonists into striatum in rats did not alter serotonin levels supporting 

the idea that dopamine-serotonin interactions are not mediated by striatal dopamine 

receptors.167  

Another possibility is that serotonin is released from dopaminergic terminals via co-

transmission or co-release. Co-transmission involves release of different neurotransmitters 

from different vesicle populations within the same neurons; co-release entails release of two 

or more neurotransmitters from the same vesicles.195 Anatomical, genetic, and functional 

evidence shows that neurons can have mixed neurochemical phenotypes (for review see195-198 

among others) and argues specifically for a serotonin/glutamate mixed phenotype.12, 180 

Regarding serotonin/dopamine interactions, under conditions where serotonin 

transporters are genetically or pharmacologically inactivated, serotonin appears to be taken 

up by dopamine transporters into dopamine neurons, indicated by double serotonin/tyrosine 

hydroxylase immunoreactivity in the substantia nigra pars compacta and ventral tegmental 

area.199 Thus, SSRI treatment may result in serotonin being used as a ‘false’ transmitter by 

dopamine neurons. Studies on chronic SSRI administration using in vivo neurochemical 

monitoring are needed to test this hypothesis further. In any case, mice with wildtype 

serotonin transporter expression did not show serotonin colocalization in midbrain dopamine 

neurons suggesting that under typical circumstances, such as those investigated here, 

evidence is lacking for serotonin co-transmission or co-release by dopaminergic neurons.199 
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Beyond striatum, a dopaminergic pathway connects the substantia nigra to the dorsal 

raphe, which contains a majority of forebrain-projecting serotonin cell bodies (Fig. IV.10). 

Mesostriatal serotonergic afferents project from the dorsal raphe to the striatum.2 In addition 

to striatum, optical activation of dopamine neurons could increase extracellular dopamine in 

the vicinity of midbrain dopamine cell bodies. Substantia nigra dopamine neurons exhibit 

activity-dependent somatodendritic dopamine release and D2-mediated autoinhibition.3, 200-

202 Activation of nigral D2 autoreceptors might increase extracellular serotonin in the dorsal 

raphe via disinhibition.203 Furthermore, optical stimulation of dopamine cell bodies could 

activate dopamine projections to the dorsal raphe (Fig. IV.10). Both scenarios produce 

dopamine interactions with dorsal raphe serotonin neurons and ostensibly, could increase 

release of serotonin in striatum (and other brain regions).  

Alternately, indirect mechanisms involving SNr-thalamus-cortex-dSTR and/or SNr-

thalamus-cortex-DRN pathways cannot be ruled out.204-207 Moreover, recent reports describe 

the presence of dopamine neurons in the rostral dorsal raphe nucleus.208, 209 Future 

experiments to parse out specific contributions from dopamine neurons in the SNr, SNc, VTA 

and DRN to dopamine-induced serotonin release will be informative. It is also possible that 

optical stimulation of dopamine neurons in Chrimson-transfected mice, in addition to 

releasing dopamine, is interoceptively detected by mice.210 The perception, increased arousal, 

and/or reward associated with dopaminergic activity could lead to increases in extracellular 

serotonin by complex mechanisms not involving direct connections between the dopamine 

and serotonin systems. 

Regardless of mechanism, the present findings indicate that optogenetic stimulation 

of midbrain dopamine neurons evokes striatal serotonin release. We recently reported similar 

findings elucidated by rapid-pulse voltammetry.211 Dopamine-serotonin coupling is likely to 
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be of importance to the facilitation of reward prediction, locomotor control, habit formation, 

and anhedonia.  
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Figures 

Figure IV.1 

Figure IV.1: Optogenetic stimulation of dopamine cell bodies. A. Experimental paradigm and timelines. 

Chrimson-expressing mice underwent microdialysis over two consecutive days. Control mice (transfected 

with mCherry or eYFP) were dialyzed only on Day 1. B. Representative optical microscopy image of 

unilateral Chrimson-positive neurons in the substantia nigra and ventral tegmental area. The coronal 

brain atlas plate 58, adapted from The Mouse Brain in Stereotaxic Coordinates, Paxinos and Franklin, 2nd 
edition (2001) Academic Press, is overlaid on the hemisphere contralateral to transfection. Ventral 

tegmental area (VTA), substantia nigra pars compacta (SNc), and substantia nigra pars reticulata (SNr) 

C. Model showing the location of the microdialysis probe in the dorsal striatum (dSTR) relative to 

Chrimson transfection and optical stimulation in the ipsilateral VTA, SNc, and SNr. Ventral striatum 

(vSTR), artificial cerebrospinal fluid (aCSF). 
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Figure IV.2 

 

  

Figure IV.2: Optical stimulation of dopaminergic cell bodies produces dopamine release in 

striatal terminal regions. A. Dialysate dopamine levels were increased in response to optical 

stimulation in mice expressing Chrimson (N=11) B. but not in control mice (N=9). The yellow 

bars indicate optical stimulations (10 mw/mm2, 50 ms pulse width @ 10 Hz for 5 min). 

C. Basal dopamine levels in mice transfected with Chrimson relative to control mice. 

D. Dopamine overflow, quantified by area under the curve, was increased in Chrimson 

expressing but not control mice. Data are means ± SEMs. **P<0.01. 
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Figure IV.3 

 

  

Figure IV.3: A. The left panel shows the effects of intrastriatal perfusion of 10 µM 

escitalopram on dopamine (DA; top, red) and serotonin levels (5-HT; bottom, blue). Basal 

serotonin levels were significantly increased after escitalopram administration (right). 

B. Representative chromatograms showing dopamine (peak 1), 3-MT (peak 2), and 

serotonin (peak 3) from a control mouse under basal conditions (gray) and during perfusion 

of the selective serotonin reuptake inhibitor (SSRI) escitalopram (green). Peak 3 showed a 

large increase in response to local delivery of the SSRI suggesting that this peak was 

serotonin. A standard containing 500 pM dopamine (peak 1) and serotonin (peak 3) is 

overlaid in black. C. The left panel shows the effects of systemic administration of 

tolcapone, a catechol-O- methyltransferase (COMT) inhibitor on dopamine (DA; top, red), 

3-methyltyramine (3-MT; middle, pink), and serotonin levels (5-HT; bottom, blue). The 

enzyme COMT converts dopamine to 3-MT. Only 3-MT (pink) was significantly reduced 

after tolcapone administration (right). D. Representative chromatograms showing 

dopamine (peak 1), 3-MT (peak 2), and serotonin (peak 3) after the intrastriatal perfusion 

of 50 nM 3-MT (red) vs. a basal dialysate sample from the same control mouse (gray). 

Reverse dialysis of 3-MT confirms peak 2 as 3-MT. A standard containing 5 nM dopamine 

(peak 1), 3-MT (peak 2), and serotonin (peak 3) is overlaid in black. Data in A and C are 

means ± SEMs. *P<0.05, **P<0.01. A peak sometimes appearing between peaks 1 and 2 

was not responsive to optical stimulation or high K+ perfusion, therefore, we did not 

attempt to identify this peak. 
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Figure IV.4 

 

  

Figure IV.4: Optical stimulation of midbrain dopamine neurons evokes overflow of 

3-methyltyramine (3-MT) and serotonin in dorsal striatum (dSTR). A. Basal dialysate levels 

of 3-MT (left, pink) and serotonin (right, blue) in mice with vs. without Chrimson 

transfection. B. Time course of stimulated 3-MT (pink) and serotonin (blue) in mice 

transfected with Chrimson (left) compared to mice transfected with a control protein (right). 

Yellow bars indicate 5-min optical stimulations. C. Comparisons of areas under the curve 

(AUC) for the overflow of 3-MT or serotonin produced by optical stimulation of dopamine 

neurons expressing Chrimson with respect to control mice. Data are means ± SEMs. 

**P<0.01, ***P<0.001. In two mice per group, data for serotonin were below the detectable 

limit. 
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Figure IV.5 
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Figure IV.5: Co-localization of serotonin transporter (Sert), D1 dopamine receptor 

(Drd1), and vesicular glutamate transporter 3 (Vglut3) mRNA in the dorsal raphe 

nucleus. A. Cell nuclei were stained with DAPI (top left, blue). Antisense probes to 

localize Sert (top right, green), Drd1 (bottom left, red), and Vglut3 (bottom right, white) 

mRNA were visualized. Puncta for each mRNA were colocalized in some nuclei but did 

not necessarily overlap. B. Overlay of images in A. Arrows indicate examples of the 

three mRNAs colocalized in the same nuclei. C. Relative quantification of cells 

containing Sert, Drd1, and Vglut3 mRNA with respect to the total number of Sert 
expressing cell bodies. (SEMs are for n=3 z-stack planes in a single mouse. A total of 248 

cells were counted). 

20 µm 

Sert 

Drd1 Vglut3 
20 µm 
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Figure IV.6  

Figure IV.6: Intrastriatal perfusion of a D1-like receptor inhibitor. A. Basal levels for the 

three neurochemicals pre- vs. post-SCH 23390. B.  Time courses before and during 

intrastriatal perfusion of 100 µM SCH 23390 showing optically stimulated increases in 

dopamine (red, top), 3-methyltyramine (3-MT; pink, middle), and serotonin (blue, 

bottom). C. Area under the curve (AUC) comparisons of overflow induced by optical 

stimulation prior to (Pre) and during (Post) SCH 23390 striatal perfusion. Following 

three pre-drug stimuli, SCH 23390 was perfused for 90-120 min in each mouse prior to 

the first post-drug stimulation (see Fig. III.1A for timeline). The data 30 min prior to the 

first post-drug stimulus were used to calculate post-drug basal levels. The drug was 

continuously perfused throughout the post-drug stimulation period. Data are means ± 

SEMs. Some error bars in B cannot be seen due to scale. *P<0.05, **P<0.01 pre- vs. post- 

initiation of drug perfusion. N=4 mice. Each basal data point in A represents the mean of 

six measurements taken just prior to the first pre- or post-drug stimulation (errors not 

shown). The AUC data points in C are means of each of the three stimuli (errors not 

shown). 
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Figure IV.7 

  

Figure IV.7: Effects of intrastriatal perfusion of a D1-like receptor inhibitor analyzed with respect to 

pre-stimulation basal levels. A. Time courses of optically stimulated neurochemical levels before and 

during intrastriatal perfusion of SCH 23390 (100 µM). B. Optically evoked overflow expressed as 

area under the curve for data normalized to pre-stimulation basal levels (AUC (%)). Data are means 

± SEMs. N=4 mice. *P<0.05. The AUC datapoints in C are means of the three stimuli for each mouse 

(errors not shown). 
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Figure IV.8 

  

Figure IV.8: Intrastriatal perfusion of a D2 antagonist does not prevent optically 

evoked serotonin. A. Pre- vs. post-eticlopride basal levels of all three neurochemicals. 

B. Time course before and during intrastriatal infusion of the D2-like receptor 

inhibitor eticlopride (100 µM). C. Areas under the curve (AUC) for optically 

stimulated neurochemical release prior to (Pre) and during (Post) eticlopride 

perfusion into striatum. Data are means ± SEMs for N=4 mice. Serotonin levels for 

one mouse were not detectable. Basal data points in A represent the means of six 

measurements just prior to the first stimulation (errors not shown). The AUC 

datapoints in C represent the means of three stimuli (errors not shown).  
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Figure IV.9 

   

Figure IV.9: Effects of intrastriatal perfusion of a D2 antagonist analyzed with respect to pre-

stimulation basal levels. A.  Time courses before and during intrastriatal perfusion of eticlopride 

(100 µM) showing basal and stimulated neurochemical levels expressed as percents of respective 

pre-stimulation basal levels. B. Optically evoked overflow expressed as area under the curve for 

data normalized to pre-stimulation basal levels (AUC (%)). Data are means ± SEMs for N=4 mice. 

Serotonin levels for one mouse were not detectable. *P<0.05 vs. pre-drug.  %Basal data points in 

A represent the means of six measurements just prior to the first stimulation (errors not shown). 

The AUC datapoints in C are the means of the three stimuli (errors not shown).  
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Figure IV.10 

  

Figure IV.10: Proposed mechanisms of dopamine-mediated serotonin release. The substantia 

nigra (SN) sends dense dopaminergic projections to the striatum (nigrostriatal pathway) and 

to the dorsal raphe nucleus (DRN).1 The DRN sends serotonergic projections to dopaminergic 

cell bodies in the SN and to the striatum.2 We found that optical activation of midbrain 

dopamine neurons produces striatal serotonin release that was not blocked by striatal D1- or 

D2-like receptor inhibition. Another possible mechanism for dopamine-mediated serotonin 

release is that an optogenetically induced increase in dopamine in the SN, which promotes 

D2 somatodendritic autoreceptor activation3 and subsequent disinhibition of serotonin cell 

bodies in the DRN, produces serotonin release in the striatum. Alternately, optically induced 

dopamine release in DRN could act via local D1 or D2-like receptors to increase the 

probability of firing of DRN serotonin neurons projecting to dSTR. 
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Figure IV.S1  

  

Figure IV.S1: Head-fixed recording set-up. A. Schematic showing the locations of the head-bar 

implants (in blue and to scale) and the stimulation (stim) and recording (dSTR) site craniotomies 

relative to a mouse skull. B. Schematic of the head-bar plate holder (in gray and to scale). The 

head-bar plate holder was 30 mm long, 28 mm wide, and 1.3 mm thick. The mini-plates, which 

attach the holder to the head bars, were 9 mm long, 7 mm wide, and 0.65 mm thick, with a 

10 mm gap between them. C. Schematic of the custom head-fixed tube used for fast microdialysis 

recordings with optical stimulation. The restraint tube (2” diameter), constructed of opaque 

(black) plexiglass, provided loose restraint to reduce spontaneous and stimulated physical 

movement, which can evoke movement-induced dopamine release artifacts in dorsal striatum.  
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Figure IV.S2 

  

Figure IV.S2: Optical stimulation of midbrain dopamine neurons increases in striatal 

serotonin and 3-methoxytyramine. Representative chromatograms from a Chrimson-

transfected mouse under basal conditions (gray), and in response to optical stimulation 

(orange) or high-K+ perfusion (red). Both optical stimulation and high-K+ perfusion 

induced increases in neurochemicals (peaks 2 and 3), in addition to dopamine (peak 1). 

Chromatogram of a standard containing 250 pM dopamine (peak 1) and serotonin (peak 3) 

is shown in black. Peaks 2 and 3 in the dialysate samples could not be definitively 

identified based on comparison with retention times in the standard chromatogram.  

1= dopamine, 2= 3-MT, 3= serotonin 
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Figure IV.S3  

Figure IV.S3: Normalized responses to optical stimulation. A. Time courses of %basal dialysate levels 

for DA (top, red), 3-MT (middle, pink), and serotonin (5-HT; bottom, blue) in mice expressing Chrimson 

(left) vs. mice transfected with a control protein (right). Optically induced overflow of dopamine, 3-MT, 

and serotonin were only detected in the Chrimson animals. B. The magnitudes of overflow are 

represented as areas under the curve percent (AUC (%)). Dialysate serotonin concentrations were below 

the detectable threshold in 2/11 Chrimson mice and 2/9 control mice. The yellow bars indicate optical 

stimulations (5 min). **P<0.01 and ***P<0.001.  
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Figure IV.S4 

 

  

Figure IV.S4: RNAscope in situ hybridization controls in dorsal raphe. A.The RNAscope® Multiplex 

Fluorescent Assay as a 3-plex positive control. The RNA polymerase II subunit RPB1 (Polr2a, C1 channel), 

cyclophilin B (PPIB, C2 channel), and ubiquitin C (UBC, C3 channel) are mRNAs found in all mouse cells. 

Cell nuclei stained by DAPI are shown in blue. The overlay is shown on the right B. The RNAscope® 

Multiplex Fluorescent Assay as a 3-plex negative control. A probe for DapB, an mRNA that codes for a 

reductase enzyme from Bacillus subtilis, was used in all three channels with each of the opal dyes to evaluate 

background staining.  
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Figure IV.S5 

 

  

Figure IV.S5: Standard curves for dopamine, 3-methyltyramine 3-MT), and serotonin. Fourteen 

standards (0 nM, 0.008 nM, 0.016 nM, 0.032 nM, 0.063 nM, 0.125 nM, 0.250 nM, 0.500 nM, 0.625 

nM, 1 nM, 1.25 nM, 2.5 nM, 5 nM, and 10 nM) were injected into the HPLC (20 µL volumes) to 

create standard curves. Insets are zoomed in on the lower concentrations ranging from 0-1 nM. 

Quadratic curve-fits were applied to A. dopamine, B. 3-MT, and C. serotonin standards. Each point 

represents N=3 replicates measured on different days. Error bars (standard errors of the means) are 

too small to be visualized in some cases. 
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Table IV.S1 

 

 

Figure Comparison Test Results Significant? 

2C Basal DA: control 

vs. Chrimson  

Unpaired two-

tailed t-test 

t (18)=1.6; P>0.1 No 

2D 

AUC DA: control 

vs. Chrimson 

Unpaired two-

tailed t-test t (18)=3.0; P<0.01 ** 

3A 

DA: 5 mins pre- vs. 
60 mins post-ESC 

Paired two-tailed t-

test t (2)=0.92; P>0.4 No 

3A 

5HT: 5 mins pre- 

vs. 60 mins post-

ESC 

Paired two-tailed 

t-test t (2)=5.7; P<0.05 * 

3C 

DA: 5 mins pre vs. 

60 mins post TOL 

Ratio paired two-

tailed t-test t (3) = 0.83; P>0.46 No 

3C 

3MT: 5 mins pre vs. 

60 mins post TOL 

Ratio paired two-

tailed t-test t (3) = 9.6; P<0.01 ** 

3C 

5HT: 5 mins pre vs. 

60 mins post TOL 

Ratio paired two-

tailed t-test t (3) = 1.3; P>0.29 No 

4A 

Basal 3MT: control 

vs. Chrimson 

Unpaired two-

tailed t-test t (18)=0.27; P>0.7 No 

4A 

Basal 5HT: control 

vs. Chrimson 

Unpaired two-

tailed t-test t (18)=0.52; P>0.6 No 

4C 

AUC 3MT: control 

vs. Chrimson 

Unpaired two-

tailed t-test t (18)=3.1; P<0.01 ** 

4C 

AUC 5HT: control 

vs. Chrimson 

Unpaired two-

tailed t-test t (15)=4.4; P<0.001 *** 

6A 

Basal DA: pre- vs. 
post-SCH 

Ratio paired two-

tailed t-test t (3)=4.4; P<0.05 * 

6A 

Basal 3MT: pre- vs. 
post-SCH 

Ratio paired two-

tailed t-test t (3) = 0.17; P>0.87 No 

6A 

Basal 5HT: pre- vs. 
post-SCH 

Ratio paired two-

tailed t-test t (3) = 3.5; P<0.05 * 

6C 

AUC DA: pre- vs. 
post-SCH 

Ratio paired two-

tailed t-test t (3) = 6.2; P<0.05 ** 

6C 

AUC 3MT: pre- vs. 
post-SCH 

Ratio paired two-

tailed t-test t (3) = 4.8; P<0.05 * 

6C 

AUC 5HT: pre- vs. 
post-SCH 

Ratio paired two-

tailed t-test t (3) = 4.5; P<0.05 * 

7B 

AUC (%) DA: pre 

vs. post SCH 

Ratio paired two-

tailed t-test t (3) = 2.4; P<0.1 Trend 

7B 

AUC (%) 3MT: pre 

vs. post SCH 

Ratio paired two-

tailed t-test t (3) = 3.7; P<0.05 * 

7B 

AUC (%) 5HT: pre 

vs. post SCH 

Ratio paired two-

tailed t-test t (3) = 0.41; P>0.71 No 

Table S1: Statistical summary  
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8A 

Basal DA: pre vs. 

post ETC 

Ratio paired two-

tailed t-test t (3) = 0.31; P>0.78 No 

8A 

Basal 3MT: pre vs. 

post ETC 

Ratio paired two-

tailed t-test t (3) = 0.81; P>0.47 No 

8A 

Basal 5HT: pre vs. 

post ETC 

Ratio paired two-

tailed t-test t (2) = 2.7; P>0.11 No 

8C 

AUC DA: pre vs. 

post ETC 

Ratio paired two-

tailed t-test t (3) = 1.5; P<0.23 No 

8C 

AUC 3MT: pre vs. 

post ETC 

Ratio paired two-

tailed t-test t (3) = 3.1; P<0.06 Trend 

8C 

AUC 5HT: pre vs. 

post ETC 

Ratio paired two-

tailed t-test t (2) = 1.4; P>0.28 No 

9B 

AUC (%) DA: pre 

vs. post ETC 

Ratio paired two-

tailed t-test t (3) = 2.6; P<0.08 Trend 

9B 

AUC (%) 3MT: pre 

vs. post ETC 

Ratio paired two-

tailed t-test t (3) = 4.4; P<0.05 * 

9B 

AUC (%) 5HT: pre 

vs. post ETC 

Ratio paired two-

tailed t-test t (2) = 1.8; P>0.21 No 

S3B 

AUC (%) DA: 

control vs. 

chrimson 

Unpaired two-

tailed t-test 

t (18) = 5.9; 

P<0.001 *** 

S3B 

AUC (%) 3MT: 

control vs. 

chrimson 

Unpaired two-

tailed t-test 

t (18) = 4.1; 

P<0.001 *** 

S3B 

AUC (%) 5HT: 

control vs. 

chrimson 

Unpaired two-

tailed t-test t (15) = 3.1; P<0.01 ** 

 

  



 190 

References 

1. Pollak Dorocic, I.; Fürth, D.; Xuan, Y.; Johansson, Y.; Pozzi, L.; Silberberg, G.; Carlén, 

M.; Meletis, K., A whole-brain atlas of inputs to serotonergic neurons of the dorsal and 

median raphe nuclei. Neuron 2014, 83 (3), 663-678. 

 

2. Muzerelle, A.; Scotto-Lomassese, S.; Bernard, J. F.; Soiza-Reilly, M.; Gaspar, P., 

Conditional anterograde tracing reveals distinct targeting of individual serotonin cell groups 

(b5-b9) to the forebrain and brainstem. Brain Structure and Function 2016, 221 (1), 535-61. 

 

3. Hikima, T.; Lee, C. R.; Witkovsky, P.; Chesler, J.; Ichtchenko, K.; Rice, M. E., Activity-

dependent somatodendritic dopamine release in the substantia nigra autoinhibits the 

releasing neuron. Cell Reports 2021, 35 (1), 108951. 

 

4. Bernstein, J. G.; Boyden, E. S., Optogenetic tools for analyzing the neural circuits of 

behavior. Trends in Cognitive Science 2011, 15 (12), 592-600. 

 

5. Boyden, E. S., Optogenetics: Using light to control the brain. Cerebrum 2011, 

2011, 16. 

 

6. Kim, C. K.; Adhikari, A.; Deisseroth, K., Integration of optogenetics with 

complementary methodologies in systems neuroscience. Nat Rev Neurosci 2017, 18 (4), 

222-235. 

 

7. Entcheva, E.; Kay, M. W., Cardiac optogenetics: A decade of enlightenment. Nature 
Reviews Cardiology 2020. 

 

8. Han, X., In vivo application of optogenetics for neural circuit analysis. ACS Chemical 
Neuroscience 2012, 3 (8), 577-84. 

 

9. Deisseroth, K., Optogenetics. Nature Methods 2011, 8 (1), 26-29. 

 

10. Klapoetke, N. C.; Murata, Y.; Kim, S. S.; Pulver, S. R.; Birdsey-Benson, A.; Cho, Y. K.; 

Morimoto, T. K.; Chuong, A. S.; Carpenter, E. J.; Tian, Z.; Wang, J.; Xie, Y.; Yan, Z.; Zhang, 

Y.; Chow, B. Y.; Surek, B.; Melkonian, M.; Jayaraman, V.; Constantine-Paton, M.; Wong, G. 

K.; Boyden, E. S., Independent optical excitation of distinct neural populations. Nature 
Methods 2014, 11 (3), 338-46. 

 

11. Madisen, L.; Mao, T.; Koch, H.; Zhuo, J. M.; Berenyi, A.; Fujisawa, S.; Hsu, Y. W.; 

Garcia, A. J., 3rd; Gu, X.; Zanella, S.; Kidney, J.; Gu, H.; Mao, Y.; Hooks, B. M.; Boyden, E. 

S.; Buzsaki, G.; Ramirez, J. M.; Jones, A. R.; Svoboda, K.; Han, X.; Turner, E. E.; Zeng, H., A 

toolbox of cre-dependent optogenetic transgenic mice for light-induced activation and 

silencing. Nature Neuroscience 2012, 15 (5), 793-802. 

 

12. Johansen, J. P.; Hamanaka, H.; Monfils, M. H.; Behnia, R.; Deisseroth, K.; Blair, H. 

T.; LeDoux, J. E., Optical activation of lateral amygdala pyramidal cells instructs associative 

fear learning. Proceedings of the National Academy of Sciences 2010, 107 (28), 12692-12697. 

 



 191 

13. Ohmura, Y.; Tanaka, K. F.; Tsunematsu, T.; Yamanaka, A.; Yoshioka, M., Optogenetic 

activation of serotonergic neurons enhances anxiety-like behaviour in mice. The 
International Journal of Neuropsychopharmacology 2014, 17 (11), 1777-1783. 

 

14. Chaudhury, D.; Walsh, J. J.; Friedman, A. K.; Juarez, B.; Ku, S. M.; Koo, J. W.; 

Ferguson, D.; Tsai, H.-C.; Pomeranz, L.; Christoffel, D. J.; Nectow, A. R.; Ekstrand, M.; 

Domingos, A.; Mazei-Robison, M. S.; Mouzon, E.; Lobo, M. K.; Neve, R. L.; Friedman, J. M.; 

Russo, S. J.; Deisseroth, K.; Nestler, E. J.; Han, M.-H., Rapid regulation of depression-related 

behaviours by control of midbrain dopamine neurons. Nature 2013, 493 (7433), 532-536. 

 

15. Lee, K.; Claar, L. D.; Hachisuka, A.; Bakhurin, K. I.; Nguyen, J.; Trott, J. M.; Gill, J. 

L.; Masmanidis, S. C., Temporally restricted dopaminergic control of reward-conditioned 

movements. Nature Neuroscience 2020, 23 (2), 209-216. 

 

16. Moran, R. J.; Kishida, K. T.; Lohrenz, T.; Saez, I.; Laxton, A. W.; Witcher, M. R.; 

Tatter, S. B.; Ellis, T. L.; Phillips, P. E.; Dayan, P.; Montague, P. R., The protective action 

encoding of serotonin transients in the human brain. Neuropsychopharmacology 2018, 43 (6), 

1425-1435. 

 

17. Fischer, A. G.; Ullsperger, M., An update on the role of serotonin and its interplay 

with dopamine for reward. Frontiers in Human Neuroscience 2017, 11, 484. 

 

18. Browne, C. J.; Abela, A. R.; Chu, D.; Li, Z.; Ji, X.; Lambe, E. K.; Fletcher, P. J., Dorsal 

raphe serotonin neurons inhibit operant responding for reward via inputs to the ventral 

tegmental area but not the nucleus accumbens: Evidence from studies combining optogenetic 

stimulation and serotonin reuptake inhibition. Neuropsychopharmacology 2019, 44 (4), 793-

804. 

 

19. Altieri, S.; Singh, Y.; Sibille, E., Serotonergic pathways in depression. In Neurobiology 
of depression, CRC Press: 2011; Vol. 20115633, pp 143-170. 

 

20. Niederkofler, V.; Asher, T. E.; Dymecki, S. M., Functional interplay between 

dopaminergic and serotonergic neuronal systems during development and adulthood. ACS 
Chemical Neuroscience 2015, 6 (7), 1055-1070. 

 

21. Dremencov, E.; Gispan-Herman, I.; Rosenstein, M.; Mendelman, A.; Overstreet, D. H.; 

Zohar, J.; Yadid, G., The serotonin–dopamine interaction is critical for fast-onset action of 

antidepressant treatment: In vivo studies in an animal model of depression. Progress in 
Neuro-Psychopharmacology and Biological Psychiatry 2004, 28 (1), 141-147. 

 

22. de Abreu, M. S.; Maximino, C.; Cardoso, S. C.; Marques, C. I.; Pimentel, A. F. N.; Mece, 

E.; Winberg, S.; Barcellos, L. J. G.; Soares, M. C., Dopamine and serotonin mediate the impact 

of stress on cleaner fish cooperative behavior. Hormones and Behavior 2020, 125, 104813. 

 

23. Hashemi, P.; Dankoski, E. C.; Lama, R.; Wood, K. M.; Takmakov, P.; Wightman, R. 

M., Brain dopamine and serotonin differ in regulation and its consequences. Proceedings of 
the National Academy of Sciences 2012, 109 (29), 11510-11515. 

 



 192 

24. Daw, N. D.; Kakade, S.; Dayan, P., Opponent interactions between serotonin and 

dopamine. Neural Networks 2002, 15 (4-6), 603-616. 

 

25. Di Giovanni, G.; Esposito, E.; Di Matteo, V., Role of serotonin in central dopamine 

dysfunction: 5ht modulation of da function. CNS Neuroscience & Therapeutics 2010, 16 (3), 

179-194. 

 

26. Bengel, D.; Murphy, D. L.; Andrews, A. M.; Wichems, C. H.; Feltner, D.; Heils, A.; 

Mossner, R.; Westphal, H.; Lesch, K. P., Altered brain serotonin homeostasis and locomotor 

insensitivity to 3, 4-methylenedioxymethamphetamine ("ecstasy") in serotonin transporter-

deficient mice. Mol Pharmacol 1998, 53 (4), 649-55. 

 

27. Dunlap, L. E.; Andrews, A. M.; Olson, D. E., Dark classics in chemical neuroscience: 

3,4-methylenedioxymethamphetamine. ACS Chemical Neuroscience 2018, 9 (10), 2408-2427. 

 

28. Drake, L. R.; Scott, P. J. H., Dark classics in chemical neuroscience: Cocaine. ACS 
Chemical Neuroscience 2018, 9 (10), 2358-2372. 

 

29. Abbruscato, T. J.; Trippier, P. C., Dark classics in chemical neuroscience: 

Methamphetamine. ACS Chemical Neuroscience 2018, 9 (10), 2373-2378. 

 

30. Avery, M. C.; Krichmar, J. L., Neuromodulatory systems and their interactions: A 

review of models, theories, and experiments. Front. Neural Circuits 2017, 11. 

 

31. Zangen, A.; Nakash, R.; Overstreet, D.; Yadid, G., Association between depressive 

behavior and absence of serotonin-dopamine interaction in the nucleus accumbens. 

Psychopharmacology 2001, 155 (4), 434-439. 

 

32. Microdialysis techniques in neuroscience. Humana Press: Totowa, NJ, 2013; Vol. 75. 

 

33. Sampson, M. M.; Yang, H.; Andrews, A. M., Advanced microdialysis approaches 

resolve differences in serotonin homeostasis and signaling. In Compendium of in vivo 
monitoring in real-time molecular neuroscience, WORLD SCIENTIFIC: 2017; pp 119-140. 

 

34. Altieri, S. C.; Yang, H.; O'Brien, H. J.; Redwine, H. M.; Senturk, D.; Hensler, J. G.; 

Andrews, A. M., Perinatal vs genetic programming of serotonin states associated with 

anxiety. Neuropsychopharmacology 2015, 40 (6), 1456-70. 

 

35. Ngo, K. T.; Varner, E. L.; Michael, A. C.; Weber, S. G., Monitoring dopamine responses 

to potassium ion and nomifensine by in vivo microdialysis with online liquid chromatography 

at one-minute resolution. ACS Chemical Neuroscience 2017, 8 (2), 329-338. 

 

36. Zhang, J.; Jaquins-Gerstl, A.; Nesbitt, K. M.; Rutan, S. C.; Michael, A. C.; Weber, S. 

G., In vivo monitoring of serotonin in the striatum of freely moving rats with one minute 

temporal resolution by online microdialysis-capillary high-performance liquid 

chromatography at elevated temperature and pressure. Anal Chem 2013, 85 (20), 9889-97. 

 

37. Liu, Y.; Zhang, J.; Xu, X.; Zhao, M. K.; Andrews, A. M.; Weber, S. G., Capillary 

ultrahigh performance liquid chromatography with elevated temperature for sub-one minute 



 193 

separations of basal serotonin in submicroliter brain microdialysate samples. Anal Chem 
2010, 82 (23), 9611-6. 

 

38. Yang, H.; Sampson, M. M.; Senturk, D.; Andrews, A. M., Sex- and sert-mediated 

differences in stimulated serotonin revealed by fast microdialysis. ACS Chemical 
Neuroscience 2015, 6 (8), 1487-1501. 

 

39. Yang, H.; Thompson, A. B.; McIntosh, B. J.; Altieri, S. C.; Andrews, A. M., 

Physiologically relevant changes in serotonin resolved by fast microdialysis. ACS Chemical 
Neuroscience 2013, 4 (5), 790-8. 

 

40. Ferre, S.; Cortes, R.; Artigas, F., Dopaminergic regulation of the serotonergic raphe-

striatal pathway: Microdialysis studies in freely moving rats. The Journal of Neuroscience 
1994, 14 (8), 4839-4846. 

 

41. Shin, G.; Gomez, A. M.; Al-Hasani, R.; Jeong, Y. R.; Kim, J.; Xie, Z.; Banks, A.; Lee, S. 

M.; Han, S. Y.; Yoo, C. J.; Lee, J. L.; Lee, S. H.; Kurniawan, J.; Tureb, J.; Guo, Z.; Yoon, J.; 

Park, S. I.; Bang, S. Y.; Nam, Y.; Walicki, M. C.; Samineni, V. K.; Mickle, A. D.; Lee, K.; Heo, 

S. Y.; McCall, J. G.; Pan, T.; Wang, L.; Feng, X.; Kim, T. I.; Kim, J. K.; Li, Y.; Huang, Y.; 

Gereau, R. W. t.; Ha, J. S.; Bruchas, M. R.; Rogers, J. A., Flexible near-field wireless 

optoelectronics as subdermal implants for broad applications in optogenetics. Neuron 2017, 

93 (3), 509-521 e3. 

 

42. Correia, P. A.; Lottem, E.; Banerjee, D.; Machado, A. S.; Carey, M. R.; Mainen, Z. F., 

Transient inhibition and long-term facilitation of locomotion by phasic optogenetic activation 

of serotonin neurons. Elife 2017, 6. 

 

43. Mathews, T. A.; Fedele, D. E.; Coppelli, F. M.; Avila, A. M.; Murphy, D. L.; Andrews, 

A. M., Gene dose-dependent alterations in extraneuronal serotonin but not dopamine in mice 

with reduced serotonin transporter expression. The Journal of Neuroscience Methods 2004, 

140 (1-2), 169-81. 

 

44. Liu, Q.; Zhao, C.; Chen, M.; Liu, Y.; Zhao, Z.; Wu, F.; Li, Z.; Weiss, P. S.; Andrews, A. 

M.; Zhou, C., Flexible multiplexed in2o3 nanoribbon aptamer-field-effect transistors for 

biosensing. iScience 2020, 23 (9), 101469. 

 

45. Ren, J.; Isakova, A.; Friedmann, D.; Zeng, J.; Grutzner, S. M.; Pun, A.; Zhao, G. Q.; 

Kolluru, S. S.; Wang, R.; Lin, R.; Li, P.; Li, A.; Raymond, J. L.; Luo, Q.; Luo, M.; Quake, S. R.; 

Luo, L., Single-cell transcriptomes and whole-brain projections of serotonin neurons in the 

mouse dorsal and median raphe nuclei. Elife 2019, 8. 

 

46. Huang, K. W.; Ochandarena, N. E.; Philson, A. C.; Hyun, M.; Birnbaum, J. E.; 

Cicconet, M.; Sabatini, B. L., Molecular and anatomical organization of the dorsal raphe 

nucleus. eLife 2019, 8. 

 

47. Saller, C. F.; Salama, A. I., 3-methoxytyramine accumulation: Effects of typical 

neuroleptics and various atypical compounds. Naunyn-Schmiedeberg's Archives of 
Pharmacology 1986, 334 (2), 125-132. 

 



 194 

48. Sotnikova, T. D.; Beaulieu, J.-M.; Espinoza, S.; Masri, B.; Zhang, X.; Salahpour, A.; 

Barak, L. S.; Caron, M. G.; Gainetdinov, R. R., The dopamine metabolite 3-methoxytyramine 

is a neuromodulator. PLoS ONE 2010, 5 (10), e13452. 

 

49. Kaakkola, S.; Wurtman, R. J., Effects of comt inhibitors on striatal dopamine 

metabolism: A microdialysis study. Brain Research 1992, 587 (2), 241-249. 

 

50. Mansour, A.; Meador-Woodruff, J. H.; Bunzow, J. R.; Civelli, O.; Akil, H.; Watson, S. 

J., Localization of dopamine d2 receptor mrna and d1 and d2 receptor binding in the rat brain 

and pituitary: An in situ hybridization-receptor autoradiographic analysis. J Neurosci 1990, 

10 (8), 2587-600. 

 

51. Suzuki, M.; Hurd, Y. L.; Sokoloff, P.; Schwartz, J. C.; Sedvall, G., D3 dopamine 

receptor mrna is widely expressed in the human brain. Brain Research 1998, 779 (1-2), 58-74. 

 

52. Spaethling, J. M.; Piel, D.; Dueck, H.; Buckley, P. T.; Morris, J. F.; Fisher, S. A.; Lee, 

J.; Sul, J. Y.; Kim, J.; Bartfai, T.; Beck, S. G.; Eberwine, J. H., Serotonergic neuron regulation 

informed by in vivo single-cell transcriptomics. FASEB J 2014, 28 (2), 771-80. 

 

53. Niederkofler, V.; Asher, T. E.; Okaty, B. W.; Rood, B. D.; Narayan, A.; Hwa, L. S.; 

Beck, S. G.; Miczek, K. A.; Dymecki, S. M., Identification of serotonergic neuronal modules 

that affect aggressive behavior. Cell Rep 2016, 17 (8), 1934-1949. 

 

54. Belmer, A.; Beecher, K.; Jacques, A.; Patkar, O. L.; Sicherre, F.; Bartlett, S. E., Axonal 

non-segregation of the vesicular glutamate transporter vglut3 within serotonergic projections 

in the mouse forebrain. Frontiers in Cellular Neuroscience 2019, 13, 193. 

 

55. Wang, H.-L.; Zhang, S.; Qi, J.; Wang, H.; Cachope, R.; Mejias-Aponte, C. A.; Gomez, 

J. A.; Mateo-Semidey, G. E.; Beaudoin, G. M. J.; Paladini, C. A.; Cheer, J. F.; Morales, M., 

Dorsal raphe dual serotonin-glutamate neurons drive reward by establishing excitatory 

synapses on vta mesoaccumbens dopamine neurons. Cell Reports 2019, 26 (5), 1128-1142.e7. 

 

56. Bourne, J. A., Sch 23390: The first selective dopamine d1-like receptor antagonist. 

CNS Drug Reviews 2006, 7 (4), 399-414. 

 

57. Cameron, D. L.; Williams, J. T., Dopamine d1 receptors facilitate transmitter release. 

Nature 1993, 366 (6453), 344-347. 

 

58. Burke, D. A.; Rotstein, H. G.; Alvarez, V. A., Striatal local circuitry: A new framework 

for lateral inhibition. Neuron 2017, 96 (2), 267-284. 

 

59. Nishi, A.; Kuroiwa, M.; Shuto, T., Mechanisms for the modulation of dopamine d(1) 

receptor signaling in striatal neurons. Frontiers in Neuroanatomy 2011, 5, 43. 

 

60. Ford, C. P., The role of d2-autoreceptors in regulating dopamine neuron activity and 

transmission. Neuroscience 2014, 282, 13-22. 

 



 195 

61. Jenkins, B. G.; Sanchez-Pernaute, R.; Brownell, A. L.; Chen, Y. C.; Isacson, O., 

Mapping dopamine function in primates using pharmacologic magnetic resonance imaging. 

The Journal of Neuroscience 2004, 24 (43), 9553-60. 

 

62. Martelle, J. L.; Nader, M. A., A review of the discovery, pharmacological 

characterization, and behavioral effects of the dopamine d2-like receptor antagonist 

eticlopride. CNS Neuroscience & Therapeutics 2008, 14 (3), 248-262. 

 

63. Samanin, R.; Garattini, S., The serotonergic system in the brain and its possible 

functional connections with other aminergic systems. Life Sciences 1975, 17 (8), 1201-9. 

 

64. Kostowski, W., Interactions between serotonergic and catecholaminergic systems in 

the brain. Pol J Pharmacol Pharm 1975, 27 (Suppl), 15-24. 

 

65. Waldmeier, P. C.; Delini-Stula, A. A., Serotonin--dopamine interactions in the 

nigrostriatal system. Eur J Pharmacol 1979, 55 (4), 363-73. 

 

66. Petty, F.; Kramer, G.; Moeller, M., Does learned helplessness induction by haloperidol 

involve serotonin mediation? Pharmacol Biochem Behav 1994, 48 (3), 671-6. 

 

67. Mendlin, A.; Martin, F. J.; Jacobs, B. L., Involvement of dopamine d2 receptors in 

apomorphine-induced facilitation of forebrain serotonin output. Eur J Pharmacol 1998, 351 

(3), 291-8. 

 

68. Mendlin, A.; Martin, F. J.; Jacobs, B. L., Dopaminergic input is required for increases 

in serotonin output produced by behavioral activation: An in vivo microdialysis study in rat 

forebrain. Neuroscience 1999, 93 (3), 897-905. 

 

69. Martin-Ruiz, R.; Ugedo, L.; Honrubia, M. A.; Mengod, G.; Artigas, F., Control of 

serotonergic neurons in rat brain by dopaminergic receptors outside the dorsal raphe nucleus. 

Journal of Neurochemistry 2001, 77 (3), 762-75. 

 

70. Vaaga, C. E.; Borisovska, M.; Westbrook, G. L., Dual-transmitter neurons: Functional 

implications of co-release and co-transmission. Curr Opin Neurobiol 2014, 29, 25-32. 

 

71. Nusbaum, M. P.; Blitz, D. M.; Marder, E., Functional consequences of neuropeptide 

and small-molecule co-transmission. Nature Reviews Neuroscience 2017, 18 (7), 389-403. 

 

72. Granger, A. J.; Wallace, M. L.; Sabatini, B. L., Multi-transmitter neurons in the 

mammalian central nervous system. Curr Opin Neurobiol 2017, 45, 85-91. 

 

73. Hnasko, T. S.; Edwards, R. H., Neurotransmitter corelease: Mechanism and 

physiological role. Annu Rev Physiol 2012, 74, 225-43. 

 

74. Zhou, F. C.; Lesch, K. P.; Murphy, D. L., Serotonin uptake into dopamine neurons via 

dopamine transporters: A compensatory alternative. Brain Research 2002, 942 (1-2), 109-19. 

 

75. Kalivas, P. W.; Duffy, P., A comparison of axonal and somatodendritic dopamine 

release using in vivo dialysis. J Neurochem 1991, 56 (3), 961-7. 



 196 

 

76. Cheramy, A.; Leviel, V.; Glowinski, J., Dendritic release of dopamine in the substantia 

nigra. Nature 1981, 289 (5798), 537-42. 

 

77. Geffen, L. B.; Jessell, T. M.; Cuello, A. C.; Iversen, L. L., Release of dopamine from 

dendrites in rat substantia nigra. Nature 1976, 260 (5548), 258-60. 

 

78. Lee, E. H.; Geyer, M. A., Dopamine autoreceptor mediation of the effects of 

apomorphine on serotonin neurons. Pharmacology Biochemistry and Behavior 1984, 21 (2), 

301-11. 

 

79. Silkis, I., Mutual influence of serotonin and dopamine on the functioning of the dorsal 

striatum and motor activity (hypothetical mechanism). Neurochemical Journal 2014, 8, 

149-161. 

 

80. Pollak Dorocic, I.; Fürth, D.; Xuan, Y.; Johansson, Y.; Pozzi, L.; Silberberg, G.; Carlén, 

M.; Meletis, K., A whole-brain atlas of inputs to serotonergic neurons of the dorsal and 

median raphe nuclei. Neuron 2014, 83 (3), 663-78. 

 

81. Gerfen, C. R.; Bolam, J. P., Chapter 1 - the neuroanatomical organization of the basal 

ganglia. In Handbook of behavioral neuroscience, Steiner, H.; Tseng, K. Y., Eds. Elsevier: 

2016; Vol. 24, pp 3-32. 

 

82. Mathur, B. N.; Lovinger, D. M., Serotonergic action on dorsal striatal function. 

Parkinsonism Relat Disord 2012, 18 Suppl 1, S129-31. 

 

83. Cho, J. R.; Chen, X.; Kahan, A.; Robinson, J. E.; Wagenaar, D. A.; Gradinaru, V., 

Dorsal raphe dopamine neurons signal motivational salience dependent on internal state, 

expectation, and behavioral context. The Journal of Neuroscience 2021, 41 (12), 2645-2655. 

 

84. Lin, R.; Liang, J.; Luo, M., The raphe dopamine system: Roles in salience encoding, 

memory expression, and addiction. Trends Neurosci 2021, 44 (5), 366-377. 

 

85. Luis-Islas, J.; Luna, M.; Floran, B.; Gutierrez, R., Optoception: Perception of 

optogenetic brain stimulation. bioRxiv 2021, 2021.04.22.440969. 

 

86. Movassaghi, C. S.; Perrotta, K. A.; Yang, H.; Iyer, R.; Cheng, X.; Dagher, M.; Fillol, M. 

A.; Andrews, A. M., Simultaneous serotonin and dopamine monitoring across timescales by 

rapid pulse voltammetry with partial least squares regression. Anal Bioanal Chem 2021, 413 

(27), 6747-6767. 

 

  



 197 

 

 CHAPTER V 

Optimizing Methods for ICP-MS Analysis of Mercury in Fish: An 

Upper-Division Analytical Chemistry Laboratory Class 

The information in this chapter is reproduced with permission from ACS Journal of Chemical 

Education, Copyright 2022. 

Optimizing Methods for ICP-MS Analysis of Mercury in Fish: An Upper-Division Analytical 

Chemistry Laboratory Class 

Release. Wonhyeuk Jung, Christopher S. Dunham, Katie A. Perrotta, Yu Chen, James K. 

Gimzewski, and Joseph A. Loo. Journal of Chemical Education 2022 99 (10), 3566-3572.DOI: 

10.1021/acs.jchemed.2c00429  



 198 

Introduction 

Government regulatory bodies such as the Food and Drug Administration (FDA) and 

the Environmental Protection Agency (EPA) routinely oversee the administration and 

enforcement of regulations governing hazardous compounds that can enter the food supply.1 

Screening mercury (Hg) in commercial fish products is of particular importance because 

seafood is the main source of this toxin for the general public.2 Mercury toxicity can lead to 

brain damage including psychological disturbance, impaired hearing, loss of sight, ataxia, 

loss of motor control, and general debilitation.3 Moreover, Hg exposure during the 

embryonic phase can lead to severe abnormalities in psychomotor development.4  

Thus, the FDA closely monitors total Hg levels in commercial fish, provides guidelines 

on its consumption, and prohibits the sale of fish that have total mercury levels higher than 

an action level of 1 ppm.5-9 Action levels represent the limit at which the FDA will take 

legal action to remove products from the market. The FDA regularly updates the elemental 

analysis manual for food and related products and inductively coupled plasma-mass 

spectrometry (ICP-MS) is one of the primary methods for the quantification of total Hg in 

fish.10   

ICP-MS is a sensitive tool for elemental quantification with diverse applications, e.g. 

environmental sample analysis, water quality control, and food analysis.11-14 This technique 

utilizes a plasma to achieve ionization and atomization of molecular species into their 

elemental components and is well suited for sensitive quantitative analysis, as it can detect 

analytes at concentrations well into the parts-per-trillion (ppt) range.15 These traits make 

ICP-MS a particularly powerful technique for trace metal analysis in commercial products. 

The prevalence of ICP-MS in real-world analytical chemistry applications has led to a 

number of proposed student lab exercises using ICP-MS over the last decade.16-20 Such 

protocols are of great pedagogical value and introduce students to foundational concepts of 
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ICP-MS and the practical application of the technique. However, important analytical 

chemistry concepts such as the impact of matrix effects on the accuracy of ICP-MS analysis 

and parameter optimization via the usage of a standard reference material (SRM), which 

should closely mimic the composition of the sample , have not been extensively explored in 

previously published student-led ICP-MS experiments.17-20 Here, we introduce a hands-on 

lab exercise for an upper-division, undergraduate analytical chemistry course that mimics 

industry- and government-level ICP-MS protocols. 

This undergraduate lab exercise was tested during the Winter 2020 quarter and fully 

implemented during the Winter 2022 quarter at the University of California, Los Angeles 

(UCLA) for a chemical instrumentation/analytical chemistry class. Students were tasked 

with optimizing experimental and instrument parameters with fish samples that were 

digested with two different acid matrices, Digestion A (5.6% HNO3 and 1.2%H2O2) or 

Digestion B (5.6% HNO3, 0.74%HCl and 1.2%H2O2). In order to analyze these samples in an 

acid composition appropriate for the ICP-MS analysis, students diluted these samples 3.5-

fold with water. The resulting two matrices for the samples were denoted as Matrix A 

(1.62% HNO3 and 0.34% H2O2) and Matrix B (1.62% HNO3,0.21% HCl, and 0.34% H2O2). 

Furthermore, students were introduced to the concept of kinetic energy discrimination 

(KED) as a means of suppressing polyatomic interfering species.21 Polyatomic interference 

is caused by polyatomic species that are isobaric with the target element. KED takes 

advantage of the fact that isobaric polyatomic species will lose more kinetic energy relative 

to the target ions as they travel through a cell filled with a non-reactive gas such as helium 

(Figure V.1).  

The SRM 1947 (Lake Michigan Fish Tissue) from the National Institute of Standards 

and Technology (NIST) was used for method validation.22 Students analyzed each 

sample/matrix combination across multiple lab periods. Each lab section investigated a 
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different KED voltage. Students pooled their data across lab sections together into a 

centralized cloud repository for analysis. Using their data, students determined an optimal 

matrix and KED voltage combination for their analysis. Finally, students used the 

optimized parameter dataset to assess the safety of the fish sample for potential human 

consumption. 

This experiment aimed to achieve the following learning outcomes:  

1. Students will learn how to validate a method with standard reference material (SRM)  

2. Students will investigate how different acid matrix compositions affect accuracy of 

the analysis.  

3. Students will learn how to optimize instrument parameters. In this case, students 

observed how varying the KED voltage affected the analysis.  
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Experimental Procedure 

Reagents 

Hydrochloric acid (37%, ≥99.999% trace metal grade, Sigma-Aldrich, Cat. no.  339253), 

nitric acid (70%, ≥99.999% trace metal grade, Sigma-Aldrich, Cat. no. 225711), hydrogen 

peroxide 30% (trace metal grade, Sigma-Aldrich, Cat. no. 95321), and water (high 

performance liquid chromatography (HPLC)-grade, Fisher, Cat. no. W9-1) were used to 

generate matrices for digestion and analysis. Scandium stock solution (100 µg/mL, 7% 

HNO3, Inorganic Ventures, part no. CGSC10-125ML) and yttrium stock solution (100 

µg/mL, 2% HNO3, Inorganic Ventures, part no. MSY-100PPM-125ML) were diluted to 8 

ng/mL and 4 ng/mL, respectively, with either Matrix A (1.62% HNO3 and 0.34% H2O2) or 

Matrix B (1.62% HNO3,0.21% HCl, and 0.34% H2O2) to generate internal standard (ISTD) 

solutions. Mercury standard (10 µg/mL, 5% HNO3, Agilent, part no. 5190-8575) was diluted 

with either Matrix A or Matrix B to generate a 10 ng/mL stock solution, which was used to 

make calibration solutions. ICP-MS tuning solution (10 mg/mL Ce, Co, Li, Mg, Tl, and Y, 

Agilent, part no. 5190-0465) was diluted to 1 µg/L with 2% HNO3 to conduct instrument 

warm-up and auto-tuning. SRM 1947 (Lake Michigan Fish Tissue, certification date 

9/3/2020, expiration date 12/31/2026) was purchased from NIST.21 Various fish (canned 

Skipjack tuna, Chilean sea bass filet, swordfish filet) were purchased from local 

supermarkets. Following digestion (see the Microwave Digestion & Sample Preparation 

section for details), the samples were stored in acid-resistant Nalgene™ Narrow-Mouth 

Bottles Made of Teflon™ PFA (Fisher, Cat. no. DS1630-0001). 

Microwave Digestion and Sample Preparation 

All samples were digested via microwave digestion. Microwave digestion was performed 

by teaching assistants (TAs) and staff at the ICP-MS facility within the UC Center for 
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Environmental Implications of Nanotechnology at UCLA. Samples (method blank, approx. 

1 g SRM, approx. 1 g fish) were measured into clean Teflon vessels for acid digestion (the 

exact masses are reported in the Experimental Protocol document). The digestion was 

carried out using either a mixture of 4 mL 70% HNO3, 2 mL 30% H2O2, and 1 mL H2O 

(called Digestion A), or 4 mL 70% HNO3, 2 mL 30% H2O2, and 1 mL 37% HCl (Digestion B) 

at 190℃ for 20 minutes in a microwave digestion system (Titan MPS, PerkinElmer). Once 

the samples were cooled to room temperature, they were subsequently diluted to the final 

volume of 50 mL by adding filtered deionized water. In later steps detailed in “Teaching 

Methods”, Digestion A is further diluted to 1.62% HNO3 and 0.34% H2O2 (matching the 

composition of “Matrix A”). Digestion B is diluted to 1.62% HNO3, 0.21% HCl, and 0.34% 

H2O2 (matching the composition of “Matrix B”).  

ICP-MS Instrument Parameters 

An 8800 QQQ ICP-MS system (Agilent) equipped with an SPS 4 Autosampler (Agilent) 

was used for the experiment. 201Hg isotope was targeted for the analysis. MassHunter 

Workstation 4.1 software (Agilent) was used to control the system and to process the data. 

The key parameters for ICP-MS are listed in Table V.1 and were consistent throughout all 

experiments.  

Teaching Assistant Responsibilities and Classroom Organization  

The TAs held several responsibilities both preceding and following the lab period. 

Teaching assistants were tasked with preparing stock solutions of Matrix A and Matrix B 

solvents for calibration curves, preparing working solutions of internal standards, 

preparing sample microwave digestions, performing instrument warm-ups and pre-run 

maintenance (e.g. rinsing the probe, and sample and internal standard inlet tubes), and 

consolidating and uploading student data to the course’s cloud storage repository. The 
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average additional time commitment from the TAs for these tasks was approximately 6 

hours per week. 

     This exercise was performed alongside and independent of several distinct mass 

spectrometry laboratory exercises during the Winter 2022 quarter of the Chemical 

Instrumentation class. The 42 students participating in the class either had limited or no 

prior analytical chemistry lab experience. The class maintained three distinct laboratory 

sections of approximately 14 students per section. Each section operated two distinct, four-

hour lab periods per week (e.g. Tuesday/Thursday morning, Tuesday/Thursday afternoon, 

Wednesday/Friday afternoon) for 10 weeks (i.e. the duration of classroom instruction for the 

academic quarter).   Students from each section worked in groups of 3-4 during the week in 

which they were assigned to this experiment to minimize crowding around the instrument 

while accommodating a relatively large laboratory class size. A full breakdown of the class 

structure is laid out in Figure V.2. 

Hazards 

The handling of mercury samples described in this protocol was approved by and in 

accordance with UCLA Environmental Health and Safety (EH&S) guidelines. Students 

should always wear protective goggles, gloves, and lab coats during the experiment. 70% 

HNO3 and 37% HCl used for mercury extraction are caustic and should be handled with 

care. The calibration solutions that contain HNO3, HCl, and mercury should be generated 

with care in a well-ventilated fume hood and should be disposed of properly following data 

acquisition. Finally, it is highly recommended that the autosampler chamber be ventilated 

during and after the experiment to minimize build-up of mercury-containing vapor. 
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Results and Discussion 

Students were instructed on the fundamental concepts of quantitative analytical 

chemistry and selected concepts of ICP-MS (instrumentation, application) during the 

lecture, in addition to assigned reading for the course. For the laboratory exercise, students 

were provided with the protocol accessible in the Experimental Protocol. During the ICP-

MS experiment, each of the three sections were assigned their own KED voltage to 

investigate (ranging from 0-12 V). Students then compiled their raw data into the central 

data repository to compare KED and matrix effects across the 3 sections.  

Each “Lab Period 1” began with a TA-guided question-and-answer session to ensure 

students completed the pre-lab exercises (see Experimental Protocol), followed by guided 

inquiry and a discussion of experimental methods. These discussions covered: conical tube 

rinse protocols (see Experimental Protocol), sample preparation and dilution, calibration 

curve preparation, and kinetic energy discrimination voltage. During this period, students 

were instructed on how to use serological- and/or micro-pipettes. The TAs prepared the 10 

ng/mL working stock Hg solution, from which students generated their calibration curves 

in Matrix A. Students calculated the calibration curve concentrations in the pre-lab 

assignment. Water was then used to dilute the method blank, SRM, and fish sample 3.5-

fold to match the matrix composition of Matrix A. After the completion of solution 

preparation, students vortexed all containers and loaded their samples into the 

autosampler. 

Next, students were instructed on how to use the instrument software and received 

guidance on basic principles of sample batch design. The final batch parameters were 

approved by the TAs before batch submission to the instrument queue for analysis.  

Representative calibration curves, produced by the MassHunter software using student 
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data, are shown in Figure V.3. All student data presented herein are done with the explicit 

consent of the students who produced the data. 

During “Lab Period 2”, students repeated the procedures followed during lab period 1, 

except now using Matrix B. As above, calibration standards were made in Matrix B from 

the 10 ng/mL working stock Hg solution. Water was used to dilute the method blank, SRM, 

and fish sample 3.5-fold to match the composition of Matrix B. Following sample 

preparation and batch submission to the instrument software queue, students engaged in a 

TA-led discussion about data analysis. Students examined data collected during the 

previous lab period by both themselves and the groups in other lab sections. They were 

asked to first calculate the percent error of the average SRM concentrations of each run 

(Equation 1). Sample and SRM masses from the microwave digestion were provided in a 

shared README file. Using this data, students calculated the expected mercury 

concentration for the SRM in each matrix and compared these values to the acquired data. 

Equation 1: ( (expected [SRM] - observed [SRM] ) / expected [SRM] ) * 100 

A review of recently published literature that involves ICP-MS-based analysis of Hg 

shows that recovery rates around 90 to 95% are accepted as sufficient for method 

validation.23-25 Students validated the method by checking whether the percent error 

calculated from Equation 1 is within 10%. Students were asked to determine which matrix 

performed better in combination with other parameters by comparing expected and 

observed SRM mercury concentrations. Then, students assessed which KED voltage was 

the most optimal by comparing the datasets from several different KED voltages (e.g. 0V, 

2V, 6V). For the final phase of the experiment, students were asked to use the data 

obtained from the optimal set of method parameters to evaluate whether their fish sample 

would be safe to consume according to FDA guidelines.  
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Educational outcomes for this exercise were assessed through a combination of pre- and 

post-lab surveys and a written lab report assignment. All students were provided with a 

short list of questions to address in their report concerning method validation and 

optimization, results, and interpretation. Students from all groups determined that Matrix 

B, with its hydrochloric acid component, served as a superior matrix for mercury analysis. 

Students determined that the choice in optimal gas mode could vary based on the applied 

KED. In many cases, students found that the no gas mode and helium gas mode with a 

KED of 6V to be the optimal method based on SRM error (%). An example of parameter 

optimization analysis as performed by the students is shown in Table V.2. 

Pedagogical Evaluation and Student Outcomes 

The pedagogical benefits of this experiment were evaluated through student laboratory 

reports, student surveys, and anecdotal communication from students throughout and 

following the exercise.  

Student lab reports were structured similar to scientific papers in the Journal of 

Analytical Chemistry. A detailed rubric was used by the TAs to grade each report. This 

rubric outlined strict criteria outlined with the aforementioned learning outcomes that 

must be met by the students in order to achieve a high grade. The discussion and 

conclusion section of the lab report required students to successfully address the following 

items: 

⚫ Is the method valid? Justify your answer. What does having a valid method allow 

you to do? 

⚫ Which matrix performs best? Explain your selection. 

⚫ Do you notice any effects of KED? Is there a KED voltage that performs best? 
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⚫ Which combination of parameters would you use to achieve optimal results? How did 

you come to this conclusion? 

The discussion and conclusion section was worth a total of 27 points and the scores were 

distributed as shown in Figure V.4. The majority of students performed exceptionally well, 

scoring above 25 points out of 27 (above an A-). Only 5 students out of the 38 who submitted 

the report scored below a C. These lab report scores indicate that this laboratory exercise 

successfully taught the students the desired learning goals.  

Below is an example conclusion from a student lab report that demonstrates student 

understanding of the laboratory exercise.  

“With this study, an accurate measurement was able to be made of 

store-bought Skipjack tuna. Utilizing varying experimental conditions such 

as different matrices, KED, and gas modes, an optimal condition was able to 

be found and used. Matrix B, containing 1.6% HNO3, 0.34% H2O2, and 0.21% 

HCl, 6V of KED and a No Gas mode yielded the lowest deviations from a 

NIST-Certified SRM at roughly 1.59%. The concentration of mercury in this 

sample was found to be roughly 43ppb in comparison the FDA reported 95% 

confidence intervals of 120 ppb to 140 ppb. Therefore, this method of analysis 

can verify that the mercury contents of the store-bought Skipjack tuna is 

within safe ranges for human consumption which is essential due to mercury 

being a potent toxin in high quantities.” 

 

Anecdotally, students expressed a significant amount of enthusiasm and engagement 

throughout the lab exercise. Several students provided unprompted feedback expressing 

appreciation for the overall rigor, robustness, and practical nature of the exercise. Perhaps 
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most importantly, a number of students informed the TAs that this exercise significantly 

improved their perception of analytical chemistry and led to a greater interest in the field. 

Surveys were administered prior to and after the conclusion of the lab exercise to gauge 

the educational benefits of the class. Students were asked to rate their understanding on a 

scale of 1-10, 10 being the greatest understanding. The surveys assessed students’ general 

understanding of ICP-MS, how a SRM is used for method verification, polyatomic 

interference, the purpose of using different gas modes, and the application of KED 

(Figure V.5). The students’ understanding increased after the lab in all areas. The class 

also resulted in the students feeling more confident in their ability to explain the concept of 

KED to a colleague. In the post-lab survey, there was an additional question that asked, 

“Did this lab help to improve your understanding of ICP-MS and undergraduate-level 

analytical chemistry techniques and data analysis?”, to which 98% of students responded 

“yes”.  

Our objective in this lab exercise was to use the methodology employed by the FDA to 

teach advanced method development and parameter optimization skills. Students were able 

to successfully select the most optimal ICP-MS method by comparing the experimentally 

determined and expected values of mercury in the SRM. Using this information, students 

could inform the report reader about whether the fish was safe for human consumption 

according to FDA standards. Overall, the real-world relevance of the experiment kept 

students engaged and interested in the lab exercise.  
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Conclusions 

This laboratory exercise was successfully incorporated into an analytical chemistry class 

at UCLA. For this exercise, mercury concentration determination with ICP-MS was 

performed on consumer-grade fish samples. However, this exercise can be adjusted 

accordingly to be implemented into any course curriculum that aims to teach the concept of 

optimizing instrument parameters for measuring real world samples. The utilization of 

FDA-approved practices introduces students to real-life applications of government-level 

analytical chemistry techniques for food safety analysis. The class provides students with 

hands-on practical lab work experience and discussion-focused data interpretation which 

promotes development of analytical skills essential for aspiring analytical chemists. The 

pre- and post- lab surveys and laboratory reports highlight student growth in ICP-MS data 

acquisition, method optimization, and data analysis.  
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Figures 

Figure V.1 

 

Figure V.1. Kinetic energy discrimination can be used to suppress polyatomic interference (or isobaric 

interference). Isobaric polyatomic species have larger collision cross sectional areas compared to the target 

molecule (201Hg, orange spheres) and experience more collisions as they travel through the helium (blue 

spheres)-filled collision/reaction cell. The resulting kinetic energy difference between the target atoms of 

interest and the isobaric polyatomic species (black spheres) can be taken advantage of by utilizing an energy 

filter between the cell and the 2nd quadrupole, ensuring that only the analytes enter the quadrupole analyzer. 

By adjusting the energy difference between the cell and the quadrupole, the potential energy barrier that ions 

need to overcome (depicted as KED voltages in this experiment) can be varied. 
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Figure V.2 

 

Figure V.2. Laboratory section timelines. On Monday samples were delivered to the ICP-MS core at the 

California NanoSystems Institute by the TAs. These samples were digested following the methods described 

above by the core staff and picked up by the TAs the following morning prior to the Tuesday AM section. During 

Period 1 samples were analyzed using Matrix A. Period 2 followed a similar protocol to Period 1 but instead 

used Matrix B. Data from each of the three sections was compiled in a central repository to compare data across 

periods. 
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Figure V.3 

 

Figure V.3. Calibration curves produced from student data. The y-axis is expressed as the ratio between analyte 

signal (Hg) to internal standard (Y). A) Matrix A in no gas mode, B) Matrix A in helium mode, C) Matrix B in no 

gas mode, and D) Matrix B in helium mode. Overall linearity was excellent with R2 values ranging from 0.980 to 

1.000. 
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Figure V.4 

 

Figure 4. The score distribution of the discussion section of the reports. Each point represents an individual 

student. This section specifically evaluates whether the learning objectives stated above were achieved. 
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Figure V.5 

 

Figure 5. Student responses to pre- and post-lab surveys. The numbers listed above the dashed lines are the 

mean of the probability distributions. 
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Table V.1 

. 

RF Power 1550 W Nebulizer Pump 0.10 revolutions per 

second 

RF Matching 1.80 V S/C Temp 2°C 

Sampling Depth 8.0 mm Gas Switch Dilution Gas 

Carrier Gas 1.00 L/min Makeup/Dilution 

Gas 

0.20 L/min 

Option Gas 0.0%   

Table 1. Instrument parameters   
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Table V.2 

 

Matrix Mode KED (V) 
Fish 

(ng/mL) 

Mean SRM 

(ng/mL) 
SRM error (%)  

Error 

within 

10% Y/N 

A No Gas 0V 0.180 2.140 21.64 NO 

A He Gas 0V 0.179 2.060 17.12 NO 

A No Gas 2V 0.180 2.051 16.60 NO 

A He Gas 2V 0.179 1.873 6.453 YES 

A No Gas 6V 0.194 2.233 26.93 NO 

A He Gas 6V 0.230 2.024 15.03 NO 

B No Gas 0V 0.284 1.959 7.423 YES 

B He Gas 0V 0.274 1.912 4.849 YES 

B No Gas 2V 0.266 1.976 8.367 YES 

B He Gas 2V 0.280 1.955 7.236 YES 

B No Gas 6V 0.268 1.852 1.589 YES 

B He Gas 6V 0.237 1.784 -2.147 YES 

Table 2. Student-generated summary of data for determining the optimal parameter combination.  
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CHAPTER VI 

Conclusion 
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Development and Validation of RPV-PLSR 

I worked on a variety of projects throughout my graduate research. My focus, however, 

was on developing a new voltammetry method called rapid pulse voltammetry coupled with 

partial least squares regression analysis (RPV-PLSR). The published or soon to be published 

work on RPV-PLSR was covered in chapters 2 and 3. This chapter covers unpublished work 

done that provided foundations and validation of the RPV-PLSR technique. I worked on the 

RPV-PLSR project with Cameron Movassaghi. We both designed and carried out in vitro 

experiments. I optimized surgeries for and performed in vivo experiments. Cameron coded 

the RPV software, PLSR models, and Bayesian optimization models.  

The RPV-PLSR technique uses faradaic and capacitive current to identify and 

quantify neurotransmitters in vivo across phasic and tonic timescales. The initial waveform 

for dopamine and serotonin co-detection1 (Fig. VI.1a) was developed by former group 

members using an intelligent pulse design approach inspired by VETs2, 3 and was based on 

analyte peak potentials in fast scan cyclic voltammetry (FSCV) waveforms traditionally used 

to detect dopamine4 or serotonin.5 Employing counter pulses (e.g., E3 in Fig. VI.1a) completes 

the redox cycle and generates additional information to confirm analyte identity, as 

demonstrated in voltammetric electronic tongue (VET) pulse design.2, 3 Calibration curves 

(Fig. VI.1b) were produced in the presence of the physiologically relevant interferents 3,4-

dihydroxyphenylacetic acid (DOPAC; 100 µM) and 5-hydroxyindoleacetic acid (5HIAA; 

20 µM). Using six principal components, the R2 value of calibration (i.e., R2Y; goodness of fit) 

was 0.98, while the cross-validated R2 value (i.e., Q2Y; proxy for predictive accuracy) was 

0.90 (Fig. VI.1c). 
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Faradaic and Nonfaradaic Currents in Preprocessing & Feature Selection 

The use of non-faradaic current by the PLSR model was supported by an analysis of 

the PLSR loadings (Fig. VI.2), which are linear combinations of the original variables and 

weighted projection coefficients.6 Loading vectors with the greatest absolute magnitude in 

the factor space represent greater correlation. To visualize regions of the voltammograms 

most informative for the model, a moving average kernel was applied to map each variable 

to low, medium, or high correlation (i.e., 0%, 50%, or 100% shading, respectively). Areas with 

the highest shading heights were most useful for that analyte. As an example, the current 

response of the second pulse (points 250-500) has high red shading during capacitive 

charging, illustrating non-faradaic contributions to modeling dopamine during this pulse. 

Meanwhile, most of the decay of the second pulse, which included faradaic and non-faradaic 

contributions, was heavily used for modeling serotonin. The shading of all four capacitive 

current regions supports the key idea that non-background subtracted methods like RPV 

generate relevant information needed to specify analytes and their concentrations through 

the inclusion of capacitive current at each step. To confirm these findings, a variable 

importance in the projection (VIP) score was calculated for each feature. Variable (feature) 

selection is the process of selecting features to present to the model as input; VIP scores are 

PLSR-specific feature-selection metrics.7 The VIP score calculations confirmed the findings 

of the loadings analysis by spanning non-faradaic areas of the voltammogram. The VIP scores 

also demonstrated that preprocessing can be used a priori to emphasize certain areas of the 

pulse response before the model sees the data; normalization resulted in magnitude-related 

importance (231/1000 points>1 for VIP scores), while standardization resulted in variance-

related importance (518/1000 points>1 for VIP scores). 
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Multi-electrode Training and Comparison to Conventional Methods 

As a proof of concept for training across multiple electrodes, three PEDOT:Nafion-

coated electrodes were used to obtain training, cross-validation, and test data (Fig. VI.3). To 

account for intra-sample variability, ±10 voltammograms were extracted from the maximum 

temporal evolution of post-injection anodic current, resulting in 21 voltammograms per 

sample (roughly 730 voltammograms total). Data were analyzed by PLSR or principle 

component regression (PCR). Background subtraction (BGS) prior to analysis is denoted as 

BGS or non-BGS. Our proposed method is RPV-PLSR (non-BGS). For comparison, we 

included the historically used FSCV-PCR (BGS)8 and recently introduced FSCV-PCR (non-

BGS),9 along with several other combinations. For direct comparison of these methods, all 

samples were mean centered and normalized.  

The R2Y and Q2Y scores (Fig VI.3a) are highest for RPV-PLSR (non-BGS), followed 

by RPV-PCR (non-BGS). The RPV models outperformed all other combinations. All PLSR 

models required the fewest components during hyperparameter tuning (7). Of the PCR 

methods, non-BGS methods required fewer components (8 or 9) compared to BGS (10), 

supporting the parsimony of PLSR (i.e., a “quicker learner”). Fewer components were 

required for non-BGS methods, suggesting that the background currents contain useful, 

covariate information. We compared learning curves for RPV-PLSR vs. FSCV-PCR under 

background8 vs. non-background9 subtracted conditions (BGS and non-BGS, respectively; 

Fig. VI.3b). Avoiding background subtraction resulted in delayed but rapid increases in 

bootstrapped Q2Y, suggesting that non-BGS models learn from low magnitude, non-faradaic 

information when provided sufficient training data (i.e., more evidence for generalizability of 

larger training sets9). Notably, RPV-PLSR (non-BGS) had the most rapid Q2Y learning curve, 

required less training data, and had the highest R2Y, indicating it converges first. For this 
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small training set, RPV-PLSR (non-BGS) best predicted the test set (i.e., 1 µM 

dopamine/0 µM serotonin and 1 µM serotonin/0 µM dopamine; Fig. VI.3c, d). 

In vitro Validation of RPV-PLSR Waveforms 

Below, I describe how the initial RPV waveform (Fig. VI.1a) was evaluated in the 

context of multiple challenges to mimic dynamic in vivo matrices. A training set (i.e., 

calibration set) is defined as known concentrations of analyte mixtures, i.e., “standards”, used 

to train a PLSR model. A test set was defined as known concentrations of analyte mixtures 

not used during training but instead used to test how well a model performs. All calibration 

sets encompassed physiologically relevant mixtures of serotonin (0-500 nM, 50 nM 

increments) and dopamine (0-1000 nM, 100 nM increments), in artificial cerebrospinal fluid 

(aCSF) and in the presence of interferents (i.e., metabolites, pH, ions) to simulate in vivo 

environments. 

For more robust training sets in the future, a fractional factorial box design 

(Table VI.1) will be used. This chemometric approach involves a multi-dimensional ‘box’ 

spanning analytes, their concentrations, and experimental conditions of interest.10, 11 A 

fractional approach was biased towards low analyte concentrations and small relative 

changes because high accuracy and precision in the nM range are important for monitoring 

basal and stimulated neurotransmitter levels in vivo using a single technique. A fractional 

approach further avoids a full factorial design, which would require orders of magnitude (and 

prohibitively) more calibration samples. In contrast, traditional calibration sets are less 

information-rich and can lead to spurious correlations when training a method with 

overlapping signals arising from multiple analytes and interferents.10 

As a general procedure, calibration standards were injected in pseudo-random order 

(the order was randomized, but the same randomized order was injected each time) into a 
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flow cell. Replicate injections accounted for inter-run variability (repeatability). Accruing 

training data over multiple days and electrodes accounted for intra-run variability 

(reproducibility).9, 11, 12 The long-term goal is to accumulate training sets over the course of 

the project. 

RPV-PLSR Can Be Trained to Account for Changes in pH 

Decreases in pH occur in vivo in response to coordinated neural activity, which 

increases carbonic acid13 and can affect capacitive current.14 The effects of pH on RPV-PLSR 

were tested, choosing first to explore transient decreases in pH also known to occur as 

neurotransmitters are released extracellularly through presynaptic membrane fusion, which 

releases vesicular protons.15 Calibration standards sets were prepared in full at three 

physiologically relevant pH values (7.1, 7.2, 7.3) and injected into a flow cell with continuous 

delivery of aCSF (pH 7.3) to simulate small bursts of pH change associated with tonic 

acitivity.16-18 A single PLSR model was trained by combining the calibration sets obtained at 

the three pH values. This model predicted serotonin and dopamine levels in the test set with 

12% and 33% error, respectively (Fig. VI.4a). The precision (standard deviation; 10 nM and 

26 nM for serotonin and serotonin, respectively; or ~5% relative standard deviation in each 

case) of the predictions across pH was consistent meaning that pH changes were not being 

confused with analyte predictions. I suspect that dopamine accuracy was lower 

systematically due to dopamine oxidation (predicted dopamine levels were ~200 nM less than 

expected) associated with lengthy experiments. In the future, dopamine stability can be 

increased using nitrogen purging or adding (and training on) physiological ascorbate levels.19 

Regardless, these preliminary results show that RPV-PLSR models can be trained across 

physiologically relevant pH changes to improve the robustness of dopamine and serotonin 

predictions. 
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Cation Interferents Can Be Identified 

Cationic interferent concentrations (e.g., Na+, K+, Ca2+) fluctuate in the extracellular 

space upon neuronal stimulation due to the generation and recovery from action potentials. 

Cationic gradient can affect double-layer capacitance.20-22 I generated training sets in aCSF 

with 3.5 mM KCl and 147 mM NaCl +(normal) and isotonic 120 mM KCl and 31 mM NaCl 

(altered cation (AC)) buffers.22 When the PLSR model was trained using only normal aCSF 

calibration standards, but used to predict test samples in AC aCSF, serotonin was predicted 

with high accuracy (8% error) but not dopamine (240% error) (Fig. VI.4b). When the model 

was trained with both normal and AC aCSF calibration sets, test samples containing either 

normal or AC aCSF for serotonin (10% error) and dopamine (4% error) were both predicted 

with high accuracy (Fig. VI.4c). Together, the pH and AC experiments demonstrated that 

when PLSR models encounter interferents, they can correct for interferent effects with more 

information-rich training data.  

Increases in capacitive current were evident when AC aCSF was injected compared to 

normal aCSF. Nonetheless, the accuracy of serotonin predictions in varying [K+] and [Na+] 

without explicit training demonstrated that pulse waveforms can predict analyte-specific 

information even in the presence of interferents that affect capacitive current. Using 

Bayesian optimization detailed in Chapter 3, the aim is to identify ‘interferent agnostic’ 

waveforms (i.e., waveforms that accurately predict serotonin and dopamine regardless of 

physiological changes in interferents.) We have serendipitously found that the initial RPV-

PLSR is agnostic for K+ and Na+ (Fig. VI.4b,c). The effects of interferents whose 

concentrations change during and after a stimulus are not corrected for by conventional 

FSCV background subtraction because backgrounds are determined in a static manner prior 

to stimulation; the dynamic effects of interferants on capacitive and Faradaic current 
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remain.4, 21, 23 Nonetheless, the literature suggests that physiological changes in pH and 

divalent cation concentrations pose less of an interference problem for biogenic amines when 

using pulse voltammetry,24 as opposed to FSCV,25 especially when electrodes include Nafion 

surface coatings.1, 26  

Simulation of Phasic and Tonic Detection 

I used RPV-PLSR to predict stimulated and basal serotonin and dopamine 

concentrations, simultaneously, in vivo.1 The RPV-PLSR approach avoids background 

subtraction enabling basal neurotransmitter predictions. However, our initial prediction 

accuracies for basal serotonin and dopamine levels were not very accurate.1 Using an 

expanded calibration set, we collected preliminary data using our lead RPV waveform to 

predict small increases in serotonin and dopamine (simulated phasic concentrations via flow 

cell injections), as well as changes in background dopamine and serotonin levels (simulated 

tonic changes via changes in mobile phases containing 60 nM and 110 nM serotonin and 

dopamine, respectively) (Fig. VI.4d).27, 28 Predicted “basal” and “stimulated” dopamine levels 

showed <10% prediction errors. However, predicted “basal” and “stimulated” serotonin levels 

had >10% errors. While we still have room for improvement, these preliminary data illustrate 

the approach for testing subsequent models for their ability to predict low basal levels and 

small stimulated increases in dopamine and serotonin.  

Structurally Similar Interferents and Electrode Drift 

Neurotransmitter metabolites with structures similar to serotonin and dopamine pose 

the greatest challenge for voltammetry because of highly overlapping electrochemical 

characteristics.29 In preliminary experiments, we used our lead RPV waveform and PLSR to 

predict test samples containing 1000 nM serotonin and dopamine in the presence of 500 nM 
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additions of 5-HIAA, DOPAC, ascorbic acid (AA), or uric acid (UA) (Fig. VI.5a,b). The 

calibration set contained concentrations of serotonin and dopamine that varied; metabolite 

and interferent levels were held constant at a relevant background level (100 µM DOPAC, 

20 µM 5-HIAA, 200 µM AA, and 100 µM UA), unless denoted by 500 nM additions, to 

simulate metabolite concentration changes, as expected in vivo.30-32 

The above experiments were also used to test different and novel data processing and 

drift training methods. The PLSR model was trained to account for drift using 

voltammograms collected throughout the experiment while aCSF containing interferents 

was flowed and injections were not occurring (~2 h). Data, in which drift was evident, were 

extracted from these background epochs and labeled as ‘zero’ analyte concentrations to teach 

the model what drifting, as opposed to analyte-containing, voltammograms look like. These 

‘drift zeroes’ were in addition to data from injections of aCSF alone (i.e., blanks) to account 

for flow cell injection and pump artifacts. Our ‘drift training’ procedure reduced test set 

prediction errors from as much as 93% to 5% for serotonin and 23% to 6.7% for dopamine 

(Fig. VI.5c, d). The drift voltammograms were taken only from the training data, but were 

able to correct the drift present in the test data obtained much later in the day, suggesting 

this procedure is generalizable.  

Notably, dopamine predictions were confounded by the presence of DOPAC when not 

trained on varying concentrations of DOPAC (Fig. VI.5d). To improve dopamine/DOPAC 

differentiation, the model was calibrated using different concentrations of dopamine and 

DOPAC. This greatly improved dopamine test set prediction accuracy (3% error), suggesting 

that metabolites should be included in calibration sets as needed (Fig. VI.5e). These 

preliminary data illustrate that, like the pH and cation experiments, experiments can be 

designed to identify and quantify the effects of specific interferents—DOPAC in this case.  
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Analyte prediction accuracy was further improved using calibration set “bracketing”. 

That is, the calibration set was injected before and after the test set to account for calibration 

changes occurring over the course of the experiment (i.e., drift, fouling). This is essentially 

the concept of using both ‘pre-calibration’ vs. ‘post-calibration’ fouled electrodes to obtain 

training data.33, 34 When using calibration bracketing combined with drift training, the 

precision and accuracy of dopamine predictions improved (Fig. VI.5e-g). 

Pre- and Post-Calibration in vivo  

It was observed empirically that electrode responses were altered in mins to ~1 h after 

in vivo implantation, making pre-fouling data most different from in vivo and post-fouling 

data (Fig. VI.6a).35 This presented difficulties for generalizing in vitro training data to in vivo 

analysis. The in vitro test sets obtained before and after an electrode was implanted in vivo 

were used to investigate the merit of combining pre- and post-fouled calibration data into a 

single model (Fig. VI.6b). When the RPV-PLSR model contained only pre-fouled calibration 

data, it could only accurately predict test data obtained using an electrode that had not been 

implanted in tissue, and not test data obtained on the same electrode after fouling (i.e., after 

in vivo implantation for ~6 h). Similarly, when the model was trained on post-fouled 

calibration data, it could only accurately predict test data acquired from an electrode that 

had been placed in brain tissue. However, when we combined pre- and post-fouled calibration 

data into a single PLSR model, the model predicted both the pre- and post-test data with high 

accuracy. Taken together with the bracketing approach (Fig. VI.5g), this finding supports the 

combined use of pre- and post-fouled training data to quantify in vivo data (Fig. VI.6b). This 

training approach for a generalizable model in vivo is an advantage for acute animal work 

over human work, where collecting post-implantation calibration data on the implanted 

electrode is not possible.36 For future RPV-PLSR in vivo experiments done by our group, we 
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will wait ~1 h post-implantation before collecting data since the greatest electrochemical 

effects of biofouling occurred within the first hour of in vivo experiments (Fig. VI.6c,d). 

Conclusions and Future Directions 

The RPV-PLSR technique can be calibrated in vitro with a high degree of goodness of 

fit. The loadings plots representing contributions from both serotonin and dopamine 

demonstrated that both Faradaic and capacitive currents are being used by the model to 

make analyte predictions. Recent literature using electrochemical impedance spectroscopy 

also suggests that there are analyte-specific contributions to capacitive current, which 

supports our reasoning for not background subtracting.37 We compared RPV-PLSR to RPV 

or FSCV with PCR and FSCV with PLSR in vitro. Much like our findings in vivo, an RPV-

PLSR non-background subtracted approach outperformed all other variations. The model not 

only performed the best but also learned the fastest, as shown by R2Y and Q2Y scores and 

learning curves. 

When challenged, RPV-PLSR could not ignore changes in pH and cationic buffer 

composition in vitro. However, the model predicted dopamine and serotonin accurately when 

standards were made in these environments and then used to train the model. An advantage 

of RPV-PLSR is that basal and stimulated levels of neurotransmitters can be measured. 

Thus, we simulated basal and stimulated levels in vitro using the flow cell. Dopamine was 

predicted with ~10% error, while, serotonin predictions had ~ 20% error. We believe that if 

this experiment was repeated with our more robust training set described in Table VI.1 that 

serotonin would be predicated with higher accuracy. 

We developed a ‘drift training’ protocol that allowed serotonin and dopamine to be 

predicted accurately in the presence of their metabolites. To train for background current 

drift, portions of the background were labeled as ‘zero’ and added to the model. Using this 
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method, we significantly improved predictions for serotonin and dopamine. Prediction 

accuracy was further improved by using ‘bracketing’ in vitro. To improve prediction accuracy 

in vivo, pre- and post-fouled training sets should be implemented and the experimenter 

should let the RPV waveform equilibrate for ~1 h post-implantation before starting 

measurements. 

Developing a Picospritzing Method for in vivo Validation: in vivo Standard Addition 

 In future experiments, the RPV-PLSR waveforms will be initially validated in vivo by 

delivering serotonin, dopamine, and their mixtures directly into the brain near recording 

electrodes. This method allows for the control of the identity of the species producing 

electrode responses. Picospritzing (pressure ejection) and microiontophoresis have been used 

to deliver exogenous substances into the brain. Picospritzing, however, requires lower pipette 

concentrations and minimizes leak current.38, 39 It controls the amount of substance ejected 

better than microiontophoresis and can deliver uncharged substances (e.g., drugs); 

iontophoresis requires charge. Picospritzing has been used extensively to deliver serotonin 

or dopamine to study in vivo transporter function with no evidence of contributions from 

endogenously released neurotransmitter.40-42 

This in vivo standard addition method will be carried out essentially as practiced by 

Daws and coworkers.43 For picospritzing, each CFM will be coupled to a pulled four-barrel 

borosilicate glass pipette (~300 µM tip-tip separation) and implanted into the striatum. 

Pipettes will be calibrated to deliver serotonin, dopamine, or mixtures in aCSF with 100 µM 

ascorbate (200 µM concentrations of analyte; mixtures to mimic in vivo ratios). 

Neurotransmitters will be pressure ejected at 10 min intervals in pseudo-random order. The 

CFMs will be calibrated pre- and post-fouling for model training to account for changes in 

electrode sensitivity over the course of experiments in a within subjects’ design. 
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Pilot experiments have been done in which 120 mM K+ solution was picospritzed into 

the striatum. While the settings of the picospritzer need to be optimized, it was clear that 

RPV-PLSR can detect high K+-induced increases in neurotransmitter release (Fig. VI.7). For 

future experiments, the settings 5-25 psi for 0.25-3.0 s are suggested.44-46  

Pharmacological in vivo Validation 

 Here, DAT-Cre mice will be transfected with the excitatory opsin Chrimson. Previous 

literature from our group demonstrates that selective optical stimulation of dopamine cell 

bodies results in the release of dopamine and serotonin in the striatum.47 To selectively 

release dopamine optogenetically, mice will be pretreated with para-chlorophenylalanine 

(PCPA) for three days to deplete serotonin levels. Two groups of mice will be used in the 

experiments. The first group will be transfected with Chrimson in dopamine cell bodies and 

undergo optogenetics. In this group, both dopamine and serotonin are expected to increase 

with optical stimulation. The second group will be pretreated with PCPA, transfected with 

Chrimson in dopamine cell bodies, and undergo optogenetic stimulation of dopamine cell 

bodies. In the second group, only dopamine release will be increased with optical stimulation. 

The relative concentrations of dopamine and serotonin release will be compared across 

groups to test whether the PLSR model does or does not confuse dopamine with serotonin 

when predicting the identity and concentration of analytes.  

Prenatal Citalopram Exposure Promotes Resilience in Male Offspring 

Exposed to Maternal Stress 
In addition to RPV, I worked on developing HPLC and microdialysis methods for a 

project on the effects of maternal stress. I assisted during the dissection of offspring brains 

at P7, P14, and P21. Dr. Sara Erwin and Dr. Merel Dagher carried out all of the chronic 

unpredictable stress, behavior experiments, and surgeries. They assisted in running HPLC 

and microdialysis experiments once I set up and tested the methods. Sara, Merel, and I 
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designed the microdialysis experimental paradigms together. A manuscript detailing this 

project in its entirety is in preparation.  

Mood and anxiety disorders are highly prevalent during pregnancy and can lead to 

adverse maternal and offspring outcomes. Selective serotonin reuptake inhibitors are the 

most common medications used to treat mood and anxiety disorders. Both human and animal 

studies suggest that serotonin signaling plays an important role in the vulnerability to and 

manifestation of stress-associated affective disorders. Moreover, the serotonin system is an 

early orchestrator of brain development. In this study, pregnant mice underwent chronic, 

unpredictable stress during the latter two-thirds of their pregnancies using ethologically 

relevant and/or mild stressors. Some of the mice received the serotonin-selective reuptake 

inhibitor antidepressant citalopram (Celexa) concomitantly in their drinking water. After 

birth, brain tissue serotonin levels at three developmentally relevant time points for 

serotonin system maturation were measured in the offspring. A subset of the adult offspring 

was assessed for long-term behavioral effects of in utero exposure to stress and/or citalopram. 

Finally, male adult offspring underwent microdialysis in the ventral hippocampus to 

investigate neurochemical effects.  

The offspring of stressed mothers had higher serotonin tissue levels and protein 

concentrations in the forebrain at postnatal day seven compared to control animals. Adult 

male adult offspring displayed greater anxiety-like behavior and stress responsiveness than 

sex-matched control mice. These effects were rescued in male mice whose mothers were 

administered citalopram concomitant with stress. No changes were observed in basal or 

stimulated ventral hippocampal extracellular serotonin levels during adulthood. Yet, male 

adults exposed to in utero stress had increased kappa opioid receptor agonist-induced 

serotonin release in the presence of serotonin transporter inhibition, which was attenuated 

by in utero exposure to citalopram. These findings suggest that prenatal stress negatively 
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impacts neurochemical and behavioral outcomes in offspring that persist into adulthood. 

These outcomes can be reversed with SSRI treatment during pregnancy.   

Methods 

Animals 

Timed-pregnant CD 1 mice (N=75 purchased, 73 pregnant) were purchased from 

Charles River Laboratories (Hollister, CA) and studied. The dams were 12-24 weeks of age 

at the beginning of pregnancy. Dams were either singly housed (stressed groups) or housed 

in groups of 2-4 mice per cage until embryonic day 17 (E17). All dams were singly housed at 

E18 until their offspring were weaned at postnatal day 21 (P21).  

Dams that received citalopram were dosed via drinking water. Citalopram 

hydrobromide (TCI America Cat#2370) was dissolved in 1.5% sucrose (260 mg/L).48 Oral 

concentrations were based on concentrations that produced antidepressant-like effects in 

mice.49, 50 This dose was found to produce blood serum levels of citalopram that fall within 

the human therapeutic range (30-200 ng/mL)51 that crosses the placental barrier to fetus.48 

Each water bottle was filled with ~200 mL citalopram solution and was changed every three 

days. Control and stress only groups received plain drinking water. Water bottles for all 

groups were weighed daily to monitor liquid intake. Food and water were available ad libitum 

throughout the study, except for E16, when all dams were food-deprived for 22-24 h for the 

novelty suppressed feeding (NSF) test.  

After weaning, offspring were housed in 2-5 same-sex siblings per cage. The light-dark 

cycle (12/12 h) was set to lights on at 0730 h (ZT0) in the colony room. The same light schedule 

was maintained in the rooms where behavior tests and microdialysis were carried out. The 

Association for Assessment and Accreditation of Laboratory Animal Care International has 

fully accredited UCLA. All animal care and use met the requirements of the NIH Guide for 
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the Care and Use of Laboratory Animals, revised 2011. The UCLA Chancellor’s Animal 

Research Committee (Institutional Animal Care and Use Committee) preapproved all 

procedures. 

Chronic Unpredictable Stress Paradigm During Pregnancy  

Experiments were carried out in six different cohorts of mice over four years. In the 

first cohort, only control and maternal chronic unpredictable stress (CUS) groups were 

studied. Later cohorts included control, CUS, CUS plus citalopram (CUS+CIT), and CIT. The 

initial cohorts only contained control and CUS groups to determine if stress-induced 

embryonic changes in serotonin48 persisted in postnatal development. Some animals from 

each cohort were used for postnatal offspring tissue analysis, while remaining mice were used 

for adult offspring behavior testing and microdialysis.  

Timed pregnant female mice arrived on E7 and were exposed to chronic unpredictable 

stress from E8 through E14, the developmental equivalent of post-conception day 22-64 in 

humans.52 On E8, pregnant females in the stress groups were restrained, their ears were 

clipped for identification, and they were given an intraperitoneal (ip) saline injection as initial 

stressors. The maternal CUS paradigm was carried out as previously described48 and is 

detailed in Table VI.2. Mice in the stressed groups were singly housed throughout the 

duration of the stress paradigm. On E9, stress dams were exposed to 1% 

2,4,5-trimethylthiazole (Sigma Aldrich #W332518) in water (v/v), a volatile component of fox 

urine, which was placed on a nestlet square (200 µL) on the wire lid of their cage for 15 min. 

On E10, dams in the stress group were exposed to constant light overnight from ZT12-24. On 

E11, stressed dams were placed in a 3.8 cm diameter plastic restraint tube for 30 min.53 On 

E12, they were exposed to constant white noise (70 dB) overnight from ZT12-24. The cage of 

each stressed dam was tilted at a 45° angle on E13 for the duration of the light cycle (ZT0-12). 
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On E14, stress dams were exposed overnight to ~85 g of sani-chip cage bedding saturated 

with 400 mL water from ZT12-24. On E15-17, all pregnant females, irrespective of group, 

underwent the following behavior tests, which were also stressors: open field test (OFT; E15), 

forced swim test (FST; E16), and the novelty suppressed feeding test (NSF; E17). 

Postnatal Dissections and Tissue Collection  

Offspring brains for neurochemical analyses were collected on P7, P14, and P21. At 

each postnatal developmental timepoint, 1-3 pups were randomly selected from each litter 

with fewer pups taken from smaller litters. The random selection process involved spreading 

out the pile of pups to pick animals in different areas of the nest to not introduce bias based 

on litter dynamics, i.e., only picking pups from the top of the pile. The pups were weighed, 

their sex was identified, if possible, and they were transported individually to the procedure 

room. Pups were immediately sacrificed via decapitation without anesthesia. Their brains 

were rapidly removed and placed briefly in deionized water. The following brain regions were 

collected at P7: forebrain, midbrain, and hindbrain.48 At P14 and P21, frontal cortex, 

hypothalamus, hippocampus, brain stem, striatum, and the intact remaining hemisphere 

were collected. Brain tissue samples were placed in Eppendorf tubes and immediately frozen 

on dry ice before storage in a -80° C freezer.  

Tissue Sample Analysis 

All analyses were performed using an Amuza HTEC-500 integrated HPLC system 

(Amuza Corporation, San Diego, CA) with an Amuza Insight autosampler for injecting 

standards and brain tissue extracts. Chromatographic separation for monoamine 

neurotransmitters and metabolites was attained using an Agilent Poroshell 120 column (SB 

C18, 3.0 mm, 100 mm, 2.7 μm particle size). The mobile phase for neurotransmitters 

consisted of 0.1 M monochloroacetic Acid (Sigma #402923), 0.2-0.4 g/L octanesulfonic acid 
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(Acros #41636), pH 2.6, 50 mg/L EDTA·Na2 (Sigma #03682), 0.01% triethylamine (EMD 

TX1200), and 5-10% acetonitrile (EMD AX0145) in water purified via a Milli-Q Synthesis 

A10 system (EMD Millipore Corporation, Billerica, MA).  

The amino acid separation employed a Phenomenex Kinetex LC Column (C18, 

100 mm, 3 mm, 2.6 μm particle size, #00D 4462 Y0) column. The amino acid mobile phase 

consisted of 0.05-0.2 M sodium phosphate monobasic (Fluka #17844), 50 mg/L EDTA·Na2 

(Sigma #03682), pH 7.3-7.5, and 20-25% MeOH (EMD #MMX04751) in water purified via a 

Milli-Q Synthesis A10 system.  

Column temperatures were maintained at 21-35 °C. The volumetric flow rates were 

300-525 μL/min. Electrochemical detection was performed using an Amuza pure graphite 

(PG) working electrode with an applied potential of +600 mV vs. a Ag/AgCl reference 

electrode. Standards were prepared for serotonin (Sigma #H9523), 5-hydroxyindoleacetic 

acid 5-HIAA (Sigma # H8876), norepinephrine (Sigma # A9512), dopamine (Sigma # H8502), 

3,4-dihydroxyphenylacetic acid (DOPAC) (Sigma #850217), homovanillic acid (HVA) (Sigma 

# H1252), phenylalanine (Sigma #78019), tryptophan (Sigma #51145), tyrosine (Sigma 

#93829), valine (Sigma #94619), isoleucine (Sigma #12752), and leucine (Sigma #L8000) in 

ice-cold sonication solution (0.1M glacial acetic acid and 1mg/mL EDTA-Na2). Standard 

curves, which were run with each group of samples, encompassed analyte physiological 

concentration ranges (31-500 nM). Chromatographic run times were 12-18 min for 

neurotransmitters and 20-25 min for amino acids. 

Microdialysis 

Male offspring (N=25) undergoing microdialysis were implanted with guide cannulas 

at 3-6 months of age. Surgeries were carried out under aseptic conditions with isoflurane 

anesthesia, and carprofen and bupivacaine as systemic and local analgesics, respectively, on 
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a KOPF Model 1900 Stereotaxic Alignment System (KOPF, Tujunga, CA). A CMA/7 guide 

cannula (Harvard Apparatus #CMAP000138) for a microdialysis probe was implanted with 

the tip in the vHPC (AP 3.6 mm, ML ±3.2 mm, DV 1.5 mm from Bregma). Each guide cannula 

was secured to the skull with Bosworth Trim II adhesive (Henry Schein #2509679). Animals 

recovered from surgery for at least three days before microdialysis. Following surgery, mice 

were given twice daily carprofen injections (5 mg/kg, 1 mg/mL, sc) for the first three days. 

On the night before the first day of microdialysis (ZT10-12), each mouse was 

transferred to the testing room in its home cage where a CMA/7 microdialysis probe (2 mm 

length, 6 kDa cutoff, metal-free, CMA8010772) was inserted into the guide cannula. Subjects 

were placed into a new, smaller cage that had bedding from their home cage. Artificial 

cerebrospinal fluid (aCSF) (147 mM NaCl (Fluka #73575), 3.5 mM KCl (Fluka #05257), 

1.0 mM CaCl2 (Aldrich #499609), 1.0 mM NaH2PO4 (Fluka #17844), 2.5 mM NaHCO3 (Fluka 

#88208), 1.2 mM MgCl2 (Aldrich #449172), pH 7.3 ± 0.03 was continuously perfused through 

the probe via a liquid swivel (375/D/22QM, Instech Laboratories Inc., Plymouth Meeting, PA) 

at 0.3 μL/min for 14-16 h to stabilize the tissue around the probe. Subjects were tethered to 

the liquid swivel but otherwise could move freely in their home cages during the entirety of 

the microdialysis experiments.  

Microdialysis experiments were carried out between ZT1-8 as previously described.47, 

54, 55 Basal dialysate samples were collected from ZT1-2, followed by three high K+ 

stimulations each lasting 5 min, separated by an hour of aCSF infusion from ZT2-5. After the 

last high K+ stimulation, animals were either (1) perfused with 10 μM citalopram into the 

vHPC for 2 h, (2) systemically injected with 10 mg/kg, ip, U50,588H (Sigma-Aldrich #D8040) 

or U69,593 (Sigma-Aldrich #U103), then perfused with 10 μM citalopram into the vHPC for 

2 h, or (3) perfused with 10 μM citalopram into the vHPC for 2 h followed by an ip injection 

of 10 mg/kg U50,588 or U69,593.  
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Doses for citalopram, U50,588, and U69,593 were determined empirically through 

pilot experiments. The U50,588 dose was determined in a conditioned place aversion 

behavioral assay, where 10 mg/kg ip was found to induce the greatest aversion to the drug-

paired side in male mice. Due to issues with manufacturer availability of U50,588, the kappa 

opioid agonist U69,593 at 10 mg/kg ip was substituted for U50,588 in the last seven mice. 

Analysis of microdialysis samples was performed immediately after collection of each 

sample, i.e., online,54 using an Amuza HTEC 500 integrated HPLC system (Amuza 

Corporation, San Diego, CA) equipped with an Amuza Insight autosampler used for injecting 

standards and an Amuza EAS 20s online autoinjector for collecting and injecting dialysate 

samples. Chromatographic separation was achieved using an Amuza PP ODS III column 

(4.6 mm ID  30 mm length, 2 μm particle diameter) and a phosphate-buffered mobile phase 

with 14.89 g/L NaH2PO4 (Fluka #17844), 1.02 g/L Na2HPO4 (Thermo Scientific 

AC448160050), 2% MeOH (EMD #MX0475), 50 mg/L EDTA·Na2 (Sigma #03682), and 

600 mg/L sodium decanesulfonate (TCI #I0348) in Optima LC/MS grade water (Fisher 

Scientific CAS# 7732 18 5).  

The column temperature was maintained at 25 °C. The volumetric flow rate was 

500 μL/min. Electrochemical detection was performed using an Amuza WE 3G graphite 

working electrode with an applied potential of +450 mV vs. an Ag/AgCl reference electrode. 

Dopamine (Sigma #H8502) and serotonin (Sigma #H9523) standards were prepared in a 1:1 

mixture of mobile phase and aCSF. Standard curves, which were verified weekly, 

encompassed physiological concentration ranges (31 pM-10 nM). All online dialysate samples 

were collected at 5 min intervals at a dialysate flow rate of 2.5 μL/min and injected 

immediately onto the HPLC system for analysis. The ES280 PowerChrom Chromatography 
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Data System (CDS) Software (eDAQ, Denistone East, Australia) was used to collect, display, 

and analyze all chromatographic peaks.  

Statistical Analysis 

Statistical analyses were carried out using Prism, v.9.3.0 (GraphPad Inc., La Jolla, 

CA). Data are expressed as group means ± SEMs, with P<0.05 considered to be statistically 

significant.  

Postnatal Tissue Analysis 

One or two mice per treatment group were randomly selected for tissue 

neurotransmitter analysis at three different early postnatal timepoints (Fig. VI.8A). Brain 

regions from postnatal day 7, 14, and 21 (P7, P14, and P21, respectively) pups were analyzed. 

At P7, brains were sectioned into forebrain, midbrain, and hindbrain due to their small size. 

At P14 and P21, larger brains enabled dissection of frontal cortex, hypothalamus, 

hippocampus, brain stem, striatum, and the intact remaining hemisphere were collected. 

Only the frontal cortex, hippocampus, and striatum were analyzed via HPLC, the other 

regions were saved for future analysis. At P7, serotonin, norepinephrine, and dopamine levels 

normalized for tissue protein levels determined in forebrain, midbrain, and hindbrain showed 

no significant differences in control vs. CUS groups (Fig. VI.9A-C).  

When tissue protein concentrations used to normalize neurotransmitter levels (as a 

proxy for tissue wet weight) were examined in greater detail, we found increases in forebrain 

but not midbrain or hindbrain protein levels in CUS mice compared to controls at P7 (Fig. 

VI.9D-F). Analysis of neurotransmitters without considering protein levels revealed that 

pups exposed to prenatal stress had increased serotonin and norepinephrine concentrations 

only in the forebrain (Fig. VI.9G-I). Concomitant treatment of stressed dams with CIT 

rescued the prenatal stress-induced increases in serotonin in the forebrain of P7 offspring 
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(Fig. VI.9J). No differences were observed in regional tissue neurotransmitter concentrations 

in P14 or P21 brains (data not shown). 

Adult Offspring Neurochemistry 

To assess the effects of prenatal stress with and without maternal SSRI treatment on 

adult offspring neurochemistry, male offspring underwent microdialysis. Only male mice 

were included as behavior data (not shown) pointed to males as more susceptible to the effects 

of prenatal stress than female mice in the tests carried out here. To probe potential 

mechanisms of stress-induced behavioral changes, 8-OH-DPAT injections were given to male 

and female adult offspring to determine differences in 5HT1A receptor activity. No 

differences were seen and thus not probed further in microdialysis experiments (Fig. VI.12).  

Three microdialysis paradigms were explored where the order of the pharmacological 

agents administered was varied to test different hypotheses (Fig. VI.8B). The ventral 

hippocampus (vHPC) was targeted due to dense innervation from serotonin neurons56, 57 that 

undergoes terminal arborization during the postnatal period targeted by the maternal stress 

paradigm. Moreover, the vHPC is involved in encoding emotion-related memories58 and 

anxiety-related behavior59 (Fig. VI.10A). Chromatographic peaks were identified and 

quantified based on standard curves (Fig. VI.10B); peak identity was confirmed by in vivo 

perfusion (standard addition) of serotonin or dopamine (Fig. VI.10C, D). No differences in 

basal or K+-stimulated dialysate vHPC serotonin levels were observed with respect to 

maternal treatment group in adult male offspring (Fig. VI.11A-C). Additionally, no 

differences in vHPC basal dialysate dopamine levels were observed (Fig. VI.11D, E). 

However, the CUS group had higher stimulated dopamine levels compared to control and 

CUS+CIT groups (Fig. VI.11F). 
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After basal and K+-stimulated serotonin and dopamine levels were determined, a 

subset of mice was perfused with citalopram in the vHPC to investigate differences in tonic 

serotonin levels. In a second subset of mice, KOR agonists were injected systemically to 

investigate the effects of KOR activation on serotonin levels. Kappa opioid receptors have 

been implicated in mediating responses to stress.60-63 As in the first subset, citalopram 

(10 uM) was first perfused for 2 h. Then, a KOR-agonist was administered systemically 

(U50,488 or U69,593, 10 mg/kg, i.p.) and dialysate samples were collected for an additional 

1.5 h while CIT continued to be perfused (Fig. VI.13A, D). 

Stress potentiated the increase in serotonin levels induced by KOR activation (Fig. 

VI.13B). This effect was rescued in the CUS+CIT group (Fig. VI.13C). To determine whether 

serotonin levels continued to rise over prolonged periods of CIT perfusions, we infused CIT 

for more than 3 h (Fig. VI.14). While we did observe a significant correlation between 

serotonin concentration over the longer perfusion period, the increase was less than 1 nM, 

confirming that larger increases in serotonin levels were the result of KOR agonist injection. 

As expected, KOR activation decreased dopamine levels (Fig. VI.13E, F). Unexpectedly, 

however, CIT perfusion also decreased dopamine levels. 

To test if whether the findings regarding the treatment group associated effects of 

KOR activation depended on SERT inhibition, in a third subset of mice, a KOR agonist was 

administered prior to CIT perfusion. Decreases in dopamine levels were seen, however, no 

differences in serotonin levels were observed post KOR administration in the absence of 

SERT inhibition (Fig. VI.15). 

Conclusions  

The results of this study point to possible long-term benefits of SSRI treatment during 

stressful pregnancies. As such, the effects of concomitant SSRI treatment might mitigate the 
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adverse effects of maternal stress on offspring behavior and underlying serotonin system 

function. We found that stress induced developmental changes in offspring protein, 

neurotransmitter, and amino acid (data not shown) tissue levels in early postnatal 

development. Stress induced increases in serotonin levels were rescued in offspring whose 

mothers also received citalopram during their pregnancies. While these postnatal effects on 

brain development were no longer observed by postnatal day 14 or 21, their impact on 

behavior were seen in adulthood. We found that male, but not female, mice born to stressed 

mothers displayed increased anxiety- and depressive-like behavior. Moreover, we found that 

male mice experiencing the effects of stress in utero were more susceptible to stress 

challenges, i.e., overnight fasting, than female mice. These behavioral phenotypes were 

reversed in animals whose mothers were concomitantly treated with citalopram in utero.  

 Lastly, we assayed serotonin and dopamine transmission in adult male mice. While 

we did not see changes in basal or stimulated serotonin release, we did find pharmacologically 

induced changes in neurochemistry. Male mice born to stressed mothers showed higher 

serotonin concentrations in the vHPC in response to citalopram administration with and 

without the presence of kappa opioid receptor activation. These effects were rescued in the 

male mice whose mothers had been treated with citalopram in utero.  

 Our results add to the existing literature on the adverse effects of maternal stress 

during pregnancy. Importantly, they suggest long-term benefits of pharmacological 

treatments of stress experienced by pregnant mothers. The decision to take medication 

during pregnancy is influenced by many factors that include severity of maternal disorder, 

type of medication, and other complications. However, contrary to social perception that all 

medications during pregnancy are harmful to the developing fetus, our results show that 

SSRIs do not cause changes litter size, fetal birth weight, or viability, and are efficacious in 

mitigating the trans-generational effects of maternal stress in a mouse model. 
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 While we probed the vHPC, other brain regions are implicated in the adverse effects 

of stress, particularly cortical regions including the prefrontal cortex (PFC).64, 65 Moreover, 

KOR receptor expression and localization in cell populations, i.e., dopaminergic neurons, and 

involvement of the kappa system in stress responses point to a system with much to be 

uncovered. Future experiments should focus on probing serotonergic pathways, i.e., 

MRN → vHPC and MRN → PFC, to understand how the brain adapts to prenatal stress 

exposure. Moreover, future experiments should be designed to dissociate the effects of 

prenatal stress from postnatal maternal care, as maternal care is an important influencer of 

offspring development.66, 67  

In sum, we showed that untreated maternal stress during pregnancy has prolonged 

developmental effects that impacts long-term offspring health. This study fills an important 

gap in the previous literature in answering how long-term behavioral and neurochemical 

effects are impacted given adverse in utero exposures. Importantly, our study strongly points 

to the safety and efficacy of citalopram, a commonly prescribed SSRI, in attenuating adverse 

neurochemical and behavioral effects induced by stress. Finally, we show an important link 

between stress-reactivity and the integral role of the serotonin and kappa systems in 

mediating responses to stress. 
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Figures 

Figure VI.1 

 

  

Figure VI.1: (a) Initial RPV waveform. (b) RPV-PLSR calibration curves for dopamine and serotonin in the 

presence of 100 µM DOPAC and 20 µM 5HIAA, using 1a and 6 components. (c) Calibration (R2Y) and 

cross-validation (Q2Y) variance explained by the PLSR model (star is elbow point). 

6 component model: 
 R2Y = 0.98 
Q2Y = 0.90 

 

R2Y = 0.97 

R2Y = 0.98 

a. b. c. 
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Figure VI.2 

 

 

 

 

 

  

Figure VI.2. Rapid pulse voltammograms of varying dopamine (DA) and serotonin (5-HT) 

combinations (nM). The waveform (black) and DA/HT loadings analyses (red and blue, 

respectively) are overlaid.  
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Figure VI.3 

 

 

 

 

 

 

Figure VI.3: (a) training and validation scores and (b) Learning curves and, by model-waveform 

combination. (c,d) Test set performance by model-waveform combination. 

 

a. b. 

c. 
d. 
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Figure VI.4 

 

 

Figure VI.4: RPV-PLSR training in physiologically relevant conditions. (a) Test set predictions for 

a RPV-PLSR model trained across pH 7.1, 7.2, 7.3. Test set predictions of samples in normal or 

high K+ aCSF, using either (b) a RPV-PLSR model trained with normal K+ aCSF training 

samples, or, (c) combined high and normal K+ training sets. (d) Simulated phasic release in the 

presence of 110 nM dopamine (DA) and 60 nM serotonin (5HT) in aCSF with 100 µM DOPAC, 

20 µM 5HIAA, 200 µM AA, and 100 µM UA to mimic basal levels. 

 

a. b. 

c. 
d. 
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Figure VI.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure VI.5: RPV-PLSR training for interferents and drift. Non-drift-trained 

serotonin (a) and dopamine (b) predictions. Drift-trained serotonin (c) and 

dopamine (d) predictions. Non-drift- (e), drift- (f), and drift-trained with 

bracketing (g) dopamine test set predictions in the presence of varying 

DOPAC. All samples trained in a background level of interferents (100 µM 

DOPAC, 20 µM 5-HIAA, 200 µM ascorbate, and 100 µM urate) unless 

otherwise noted; x-axis in (a-d) refers to amount added in addition to 

background levels. (a-g) Data points per panel were acquired sequentially in 

time, as labeled on the x-axis, to illustrate temporal drift. 

 

a. b. 

c. d. 

e. f. g. 
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Figure VI.6 

  

Figure VI.6: (a) Voltammograms obtained with a pre-fouled (prior to implantation, in aCSF), in vivo 
(striatum of anaesthized mouse), and post-fouled electrode (in aCSF after implantation ~6 h). (b) 

Predicted test set concentrations for serotonin (blue) and dopamine (red) obtained on the same 

electrode pre-biofouling ('pre-bf'; filled symbol) and post-biofouling ('post-bf'; hollow symbol). Actual 

test set concentrations are denoted by a blue (serotonin) or red (dopamine) horizontal lines. All points 

are the average of 41 data points. (c) Comparison of drift over in vivo experimental time course 

(defined as average aggregate difference in current between voltammograms at successive time points; 

t=0 is CFM insertion into brain). Data were obtained at 2 min intervals for the first hour, then every 

30 min for the remaining 4 h. (d) Comparison of in vivo voltammograms post 1-h, zoom in on region of 

capacitive decay (inset). 

b
. 

c. d
. 

a. 
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Figure VI.7 

 

 

 

Figure VI.7: Picospritzing pilot experiment in the dorsal striatum. An aCSF solution 

containing high (120 mM) potassium was picospritzed using various settings. 
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Figure VI.8 

  

Figure VI.8: Overview of experimental paradigms. A. Timeline of in utero exposure and subsequent 

postnatal and behavior testing schedules. B. Timelines for different microdialysis paradigms. Aspects 

of this figure were created using Biorender.com. 
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Figure VI.9  

Figure VI.9: Postnatal day 7 tissue analysis shows increased neurotransmitters and protein concentration 

for stressed pups. Normalized A. forebrain, B. midbrain, and C. hindbrain neurotransmitter tissue levels. 

D. Protein concentrations are significantly increased at P7 in the forebrain of stressed pups, but not the E. 

midbrain or F. hindbrain. Non-normalized neurotransmitter tissue levels show significant increases in 

pups born to stressed mothers in G. forebrain, but not H. midbrain or I. hindbrain. Concomitant treatment 

with CIT rescues maternal stress induced increases in serotonin in J. forebrain. *P<0.05, **P<0.01, 

***P<0.001 

Abbreviations: Serotonin (5HT), 5-Hydroxyindolacetic acid (HIAA), norepinephrine (NE), dopamine (DA), 

3,4-Dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) 
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Figure VI.10  

Figure VI.10: Microdialysis probe and peak verification. A. Cresyl violet image showing microdialysis 

cannula and probe localization to the ventral hippocampus. B. Standard curves for dopamine and serotonin 

used to quantify analyte concentrations. A standard curve was run each week prior to microdialysis 

experiments N=6/analyte. C. Overlay of five chromatograms from a representative mouse showing dopamine 

and serotonin peaks before (basal) and after pharmacological manipulations to verify peak identities. D. 

Time course from the same mouse in C. 
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Figure VI.11  

Figure VI.11: No basal extracellular serotonin or dopamine differences in adult offspring exposed to 

prenatal stress. Basal serotonin (A) and dopamine (D) levels in adult offspring. Microdialysis time course of 

extracellular serotonin (B) and dopamine (E). The yellow bars indicate 120 µM potassium stimulation (5 

min). Serotonin (C) and dopamine high potassium (F) stimulated release quantified by area under the 

curve. *P<0.05 
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Figure VI.12 
  

Figure VI.12: No changes in the temperature after 5HT1A agonist. No temperature changes by A. treatment 

or by B. sex after 8-OH-DPAT i.p. injection.  
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Figure VI.13  

Figure VI.13: Decreases in dopamine and increases in serotonin, post concomitant CIT and KOR 

agonist. A. Time course before and after CIT infusion and KOR agonist injection for serotonin 

concentrations. Significant effect of B. treatment, and C. drug on serotonin concentrations. D. Time 

course before and after CIT infusion and KOR agonist injection for dopamine concentrations. Significant 

effect of F. CIT infusion and agonist injection, but not E. in utero treatment on dopamine 

concentrations. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 
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Figure VI.14  

Figure VI.14: Stable serotonin levels after three hr of CIT infusion. Serotonin concentrations remained 

stable during longer infusion of CIT. Time course is taken from N=1 animal that underwent basal 

collection and two high K+ potassium stimulations. Each point represents a 5 min sample. Points pre-

120 min are neurotransmitter concentrations post-high K+ #2 and pre-CIT infusion. Infusion of CIT 

began at 120 min (or 2 hours into microdialysis testing day) and continued until 310 min, for a 

duration of three hr and 10 min.  
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Figure VI.15  

Figure VI.15: Decreases in dopamine, but not serotonin, post KOR agonist i.p. injection. A. Time 

course before and after KOR agonist injection for serotonin concentrations. No effect of B. KOR 

injection or C. in utero treatment on serotonin concentrations. D. Time course before and after KOR 

agonist injection for dopamine concentrations. Significant effect of E. KOR injection, but not C. in 
utero treatment on dopamine concentrations. *P<0.05 
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Table VI.1  

Table 1: Proposed fractional factorial calibration 

(A-R) and test (T1-4) set design for future use. 
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Table VI.2 

 
Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

 E7: timed-

pregnant 

dams arrived; 

CUS dams 

placed into 

individual 

cages 

E8 10 am: 

ears clipped, 

5-min 

restraint, 

saline 

injection, and 

brief 

transportatio

n stress 

E9 12 pm: 

15-min fox 

urine odor 

exposure 

E10 

4:30 pm

-7 am: 

overnig

ht light  

E11 

10 am-

12 pm: 

30-min 

restraint 

in tubes 

E12 

4 pm-

7 am: 

overnigh

t static 

noise 

(70dB) 

E13 

8 am-

4 pm: 

45° cage 

tilt 

E14 4:30 pm-

7 am: 

overnight wet 

bedding 

E15 6 pm-

10 pm: OFT 

test 

E16 

12 pm-

2:30 pm: 

FST test; 

7 pm: 

begin fast 

for NSF  

E17 

5 pm-

7 pm: 

NSF 

test 

  

  Table VI.2: Maternal chronic unpredictable stress paradigm 
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