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On Parallel Scalable Uniform SAT Witness
Generation ? ??

Supratik Chakraborty1, Daniel J. Fremont2, Kuldeep S. Meel3,
Sanjit A. Seshia2, and Moshe Y. Vardi3

1 Indian Institute of Technology, Bombay
2 University of California, Berkeley

3 Department of Computer Science, Rice University

Abstract. Constrained-random verification (CRV) is widely used in in-
dustry for validating hardware designs. The effectiveness of CRV depends
on the uniformity of test stimuli generated from a given set of constraints.
Most existing techniques sacrifice either uniformity or scalability when
generating stimuli. While recent work based on random hash functions
has shown that it is possible to generate almost uniform stimuli from
constraints with 100,000+ variables, the performance still falls short of
today’s industrial requirements. In this paper, we focus on pushing the
performance frontier of uniform stimulus generation further. We present
a random hashing-based, easily parallelizable algorithm, UniGen2, for
sampling solutions of propositional constraints. UniGen2 provides strong
and relevant theoretical guarantees in the context of CRV, while also of-
fering significantly improved performance compared to existing almost-
uniform generators. Experiments on a diverse set of benchmarks show
that UniGen2 achieves an average speedup of about 20× over a state-of-
the-art sampling algorithm, even when running on a single core. More-
over, experiments with multiple cores show that UniGen2 achieves a near-
linear speedup in the number of cores, thereby boosting performance even
further.

1 Introduction

Functional verification is concerned with the verification and validation of a
Design Under Verification (DUV) with respect to design specifications. With
the increasing complexity of DUVs, functional verification has become one of the
most challenging and time-consuming steps in design validation [3]. In view of the
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high computational cost of formal verification, simulation-based techniques have
been extensively employed in industrial practice. The success of such techniques
depends on the quality of input stimuli with which the design is simulated. The
generation of high-quality stimuli that uncover hidden bugs continues to be a
challenging problem even today [21].

The problem of high-quality stimulus generation has led to the emergence of
constrained-random simulation, also known as constrained-random verification
(CRV) [22]. In CRV, a verification engineer is tasked with the construction of
verification scenarios, expressed as constraints over stimuli. Typically, construct-
ing these scenarios involves applying past user experience, inputs from design
engineers, and domain-specific knowledge. A constraint solver is then invoked
to generate random stimuli satisfying the constraints. Since the distribution of
errors in the design is not known a priori, each random stimulus is just as likely
to produce an error as any other. Therefore, achieving a uniformly random dis-
tribution over stimuli satisfying the constraints is highly desirable.

While constraint-solving technologies have witnessed significant advance-
ments over the last decade, methods of generating uniformly distributed solutions
still face huge scalability hurdles. This has been observed repeatedly in the lit-
erature [6] and by industry practitioners4. In this paper, we take a step towards
remedying the current situation by proposing an easily parallelizable sampling
algorithm for Boolean constraints that provides strong theoretical guarantees
(similar to those provided by an almost-uniform generator) in the context of
CRV, and also runs significantly faster than current state-of-the-art techniques
on a diverse set of benchmark problems.

Since constraints arising in CRV can often be encoded as propositional formu-
lae in conjunctive normal form (CNF), we focus on almost-uniform sampling of
satisfying assignments of CNF formulae (known as SAT witnesses). This problem
has been extensively studied in both theoretical and practical contexts, and has
many applications, including probabilistic reasoning, approximate model count-
ing, and Markov logic networks [4]. Until recently, approaches to solving this
problem belonged to one of two classes: those which provide strong guarantees
of uniformity but scale poorly [2,24], and those which scale to large problem
instances but rely on heuristics and hence offer very weak or no uniformity guar-
antees [11,16,14].

Recently, Chakraborty, Meel, and Vardi [4] proposed a new algorithmic ap-
proach to bridge the gap between these two extremes. The main idea behind
their approach is to use universal hashing in order to partition the space of
witnesses into roughly equal “cells”. Under an appropriate partitioning scheme,
choosing a random witness from a randomly chosen cell provides strong unifor-
mity guarantees. The most recent instance of this approach is called UniGen [6].
While UniGen scales to formulae much larger than those that can be handled
by previous state-of-the-art techniques, the runtime performance of UniGen still
falls short of industry requirements.

4 Private Communication: R. Kurshan



Since the end of Dennard scaling, there has been a strong revival of interest in
parallelizing a wide variety of algorithms to achieve improved performance [10].
One of the main goals in parallel-algorithm design is to achieve a speedup nearly
linear in the number of processors, which requires the avoidance of dependencies
among different parts of the algorithm [8]. Most of the sampling algorithms
used for uniform witness generation fail to meet this criterion, and are hence
not easily parallelizable. In contrast, the algorithm proposed in this paper is
inherently parallelizable, and achieves a near-linear speedup.

Our primary contribution is a new algorithm, UniGen2, that addresses key
performance deficiencies of UniGen. Significantly, UniGen2 generates many more
samples (witnesses) per iteration compared to UniGen, thereby reducing the
number of SAT calls required per sample to a constant. While this weakens
the guarantee of independence among samples, we show that this does not hurt
the primary objective of CRV. Specifically, we prove that UniGen2 provides al-
most as strong guarantees as UniGen with respect to discovery of bugs in a CRV
setting. On the practical front, we present an implementation of UniGen2, and
show by means of extensive experiments that it significantly outperforms exist-
ing state-of-the-art algorithms, while generating sample distributions that are
indistinguishable from those generated by an ideal uniform sampler. UniGen2 is
also inherently parallelizable, and we have implemented a parallel version of it.
Our experiments show that parallel UniGen2 achieves a near-linear speedup with
the number of cores.

2 Notation and Preliminaries

Let F denote a Boolean formula in conjunctive normal form (CNF), and let X be
the set of variables appearing in F . The set X is called the support of F . Given
a set of variables S ⊆ X and an assignment σ of truth values to the variables
in X, we write σ↓S for the projection of σ onto S. A satisfying assignment or
witness of F is an assignment that makes F evaluate to true. We denote the
set of all witnesses of F by RF and the projection of RF onto S as RF↓S . For
the rest of the paper, we use S to denote the sampling set, the set of variables
onto which we desire assignments to be projected. Even when no projection is
desired, S can often be restricted to a very small subset of X (an independent
support ; see [6] for details) such that RF ∼= RF↓S . For notational simplicity, we
omit mentioning F and S when they are clear from the context.

We use Pr [X] to denote the probability of event X. In this paper, we intro-
duce the notion of (l, u) almost-independent almost-identically distributed (de-
noted henceforth as (l, u)-a.a.d.) that is similar to independently identically dis-
tributed (i.i.d.) but somewhat weaker. A set of events E1, E2, . . . , En are (l, u)-
a.a.d. if ∀i, l ≤ Pr[Ei] ≤ u and l ≤ Pr[Ei|({E1, E2, · · · , En} \ Ei)] ≤ u.

Given a Boolean formula F and sampling set S, a probabilistic generator of
witnesses of F is a probabilistic algorithm that generates a random witness in
RF↓S . A uniform generator Gu(·, ·) is a probabilistic generator that guarantees
Pr [Gu(F, S) = y] = 1/|RF↓S |, for every y ∈ RF↓S . An almost-uniform generator



Gau(·, ·, ·) relaxes the above guarantees, ensuring only that 1/((1 + ε)|RF↓S |) ≤
Pr [Gau(F, S, ε) = y] ≤ (1 + ε)/|RF↓S | for every y ∈ RF↓S . Probabilistic genera-
tors are allowed to occasionally “fail” by returning no witness although RF↓S 6=
∅. The failure probability must be bounded by a constant strictly less than 1.

A special class of hash functions, called r-wise independent hash functions,
play a crucial role in our work. Let n,m and r be positive integers, and let
H(n,m, r) denote a family of r-wise independent hash functions mapping {0, 1}n

to {0, 1}m. We use h
R←− H(n,m, r) to denote the probability space obtained by

choosing a hash function h uniformly at random from H(n,m, r). The property
of r-wise independence guarantees that for all α1, . . . αr ∈ {0, 1}m and for all

distinct y1, . . . yr ∈ {0, 1}n, Pr [
∧r
i=1 h(yi) = αi : h

R←− H(n,m, r)
]

= 2−mr. For

every α ∈ {0, 1}m and h ∈ H(n,m, r), let h−1(α) denote the set {y ∈ {0, 1}n |
h(y) = α}. Given RF↓S ⊆ {0, 1}|S| and h ∈ H(|S|,m, r), we use RF↓S,h,α to
denote the set RF↓S ∩ h−1(α). If we keep h fixed and let α range over {0, 1}m,
the sets RF↓S,h,α form a partition of RF↓S .

We use a particular class of such hash functions, denoted by Hxor(n,m),
which is defined as follows. Let h(y)[i] denote the ith component of the vector
h(y). This family of hash functions is then defined as {h | h(y)[i] = ai,0 ⊕
(
⊕n

k=1 ai,k · y[k]), ai,j ∈ {0, 1}, 1 ≤ i ≤ m, 0 ≤ j ≤ n}, where ⊕ denotes the
XOR operation. By choosing values of ai,j randomly and independently, we can
effectively choose a random hash function from Hxor(n,m). It was shown in [12]
that this family is 3-wise independent.

3 Related Work

Uniform generation of SAT witnesses was first studied by Jerrum, Valiant, and
Vazirani [15], who showed that the problem can solved in probabilistic poly-
nomial time given access to a ΣP

2 oracle. In addition, they showed that almost-
uniform generation is polynomially inter-reducible with approximate model count-
ing. Bellare, Goldreich, and Petrank [2] improved this result and provided an
algorithm in BPPNP. Unfortunately, their algorithm fails to scale beyond a few
tens of variables in practice [4]. A completely different approach to uniform gen-
eration of SAT witnesses is due to Yuan et al. [24], wherein a sample is generated
by performing a random walk over a weighted binary decision diagram (WBDD).
The high space requirement of this technique limits its applicability in practice.

In several settings (some industrial), generation of stimuli for CRV is typically
done via heuristic methods that provide very weak or no guarantees of unifor-
mity. One of the earliest such methods was to randomly seed a SAT solver [19].
While this is simple in principle, the distributions generated by random seeding
have been shown to be highly skewed in practice [17]. An alternative approach
focusing on the generation of “diverse” solutions was proposed by Nadel [20],
but it also fails to provide theoretical guarantees of coverage.

Markov Chain Monte Carlo (MCMC) algorithms, such as those based on
simulated annealing or the Metropolis-Hastings algorithm, have been studied



extensively in the literature [18] in the context of generating samples from a
probability space. The eventual convergence to the target distribution for MCMC
methods is often impractically slow in practice under mild requirements. Most
MCMC-based sampling tools therefore use heuristic adaptations [17,16] to im-
prove performance and reduce correlation between samples. Unfortunately, these
heuristics significantly weaken or even destroy the theoretical guarantees.

Interval propagation [14] has been used extensively in industrial practice to
achieve scalable stimulus generation. Techniques based on interval propagation,
however, generate highly non-uniform distributions. Recent efforts via the con-
version of constraints into belief networks [11,7] have also failed to achieve the
desired balance between performance and guarantees of uniformity.

Recently, several random hashing-based techniques have been proposed to
bridge the wide gap between scalable algorithms and those that give strong guar-
antees of uniformity when sampling witnesses of propositional constraints [4,6,9].
Hashing-based sampling techniques were originally pioneered by Sipser [23] and
further used by Jerrum, Valiant, and Vazirani [15], and Bellare, Goldreich, and
Petrank [2]. The key idea in hashing-based techniques is to first partition the
space of satisfying assignments into small “cells” of roughly equal size using r-
wise independent hash functions (for a suitable value of r), and then randomly
choose a solution from a randomly picked cell. Bellare et al. showed that by
choosing r = n (where the propositional constraint has n variables), we can
guarantee uniform generation. The resulting algorithm, however, does not scale
in practice. Chakraborty, Meel, and Vardi [4] subsequently showed that with
r = 3, a significantly more scalable near-uniform generator named UniWit can
be designed. Building on the principle underlying UniWit, Ermon et al. [9] sug-
gested further algorithmic improvements to uniform generation of witnesses.

Recently, Chakraborty et al. proposed a new algorithm named UniGen [5],
which improves upon the ideas of UniWit. In particular, UniGen provides stronger
guarantees of uniformity by exploiting a deep connection between approximate
counting and almost-uniform sampling [15]. Furthermore, UniGen has been shown
to scale to formulae with hundreds of thousands of variables. Even so, UniGen is
typically 2-3 orders of magnitude slower than a single call to a SAT solver and
therefore, its runtime performance falls short of the performance of heuristic
methods commonly employed in industry to generate stimuli for CRV 5. In this
paper, we offer several improvements to UniGen and obtain an algorithm with
substantially improved performance that can be further scaled by parallelization
to match the requirements of industry.

4 A Parallel SAT Sampler

In this section, we first motivate the need for sampling solutions of constraints
in parallel, and then provide technical details of our algorithm, UniGen2.

5 A random-constrained test case generator is typically allowed to be 10× slower than
a constraint solver (private communication with industry expert W. Hung).



Parallelization:
While simulation-based verification typically involves running in parallel many
simulations with different input stimuli, the generation of these stimuli is often
done sequentially. This is because existing approaches to stimulus generation
are not efficiently parallelizable without degrading guarantees of uniformity. For
example, approaches based on random seeding of a SAT solver maintain informa-
tion about which regions of the solution space have already been explored, since
the random seed often is not enough to steer the solver towards new regions of the
solution space [17]. Different threads generating solutions must therefore com-
municate with each other, impeding efficient parallelization. In MCMC-based
approaches, to generate independent samples in parallel each thread has to take
a walk until a stationary distribution is reached. This often takes exponential
time in the case of hard combinatorial spaces with complex internal structure [9].
Heuristics to speed up MCMC-based techniques destroy guarantees of uniformity
even in the sequential case [17]. Methods based on random walks on WBDDs
are amenable to parallelization, but they are known not to scale beyond a few
hundred variables. The lack of techniques for sampling solutions of constraints in
parallel while preserving guarantees of effectiveness in finding bugs is therefore
a major impediment to high-performance CRV.

The algorithm UniGen2 presented in this section takes a step forward in ad-
dressing the above problem. It has an initial preprocessing step that is sequential
but low-overhead, followed by inherently parallelizable sampling steps. It gener-
ates samples (stimuli) that are provably nearly as effective as those generated
by an almost-uniform sampler for purposes of detecting a bug. Furthermore, our
experiments demonstrate that a parallel implementation of UniGen2 achieves a
near-linear speedup in the number of processor cores. Given that current prac-
titioners are forced to trade guarantees of effectiveness in bug hunting for scal-
ability, the above properties of UniGen2 are significant. Specifically, they enable
a new paradigm of CRV wherein parallel stimulus generation and simulation
can provide the required runtime performance while also providing theoretical
guarantees.

Algorithm:
Our algorithm, named UniGen2, bears some structural similarities with the UniGen
algorithm proposed earlier in [6]. Nevertheless, there are key differences that al-
low UniGen2 to outperform UniGen significantly. Like UniGen, UniGen2 takes a
CNF formula F , a sampling set S and a tolerance ε (that is chosen to be at least
6.84 for technical reasons). Note that the formula F and set S uniquely define
the solution set RF↓S .

Similarly to UniGen, UniGen2 works by partitioning RF↓S into “cells” using
random hash functions, then randomly selecting a cell by adding appropriate
constraints to F . If the chosen cell has the right size (where the acceptable size
range depends on the desired tolerance ε), we can enumerate all the solutions
in it and return a uniform random sample from among them. Unlike UniGen,
however, UniGen2 samples multiple times from the same cell. This decreases the



generation time per sample by a large factor (about 10× in our experiments),
while preserving strong guarantees of effectiveness of the samples in finding bugs.

Algorithm 1 EstimateParameters(F, S, ε)

/* Returns (hashBits, loThresh, hiThresh) as required by GenerateSamples */
1: Find κ ∈ (0, 1) such that ε = (1 + κ)(7.44 + 0.392

(1−κ)2 )− 1

2: pivot←
⌈
4.03

(
1 + 1

κ

)2⌉
3: hiThresh←

⌈
1 +
√

2(1 + κ)pivot
⌉
; loThresh←

⌊
1√

2(1+κ)
pivot

⌋
4: i← 0
5: while i < n do
6: i← i+ 1
7: Choose h at random from Hxor(|S|, i)
8: Choose α at random from {0, 1}i
9: Y ← BSAT(F ∧ (h(S) = α), 61, S)

10: if 1 ≤ |Y | ≤ 60 then
11: return (round (log |Y |+ i+ log 1.8− log pivot) , loThresh, hiThresh)

12: return ⊥

Algorithm 2 GenerateSamples(F, S, hashBits, loThresh,hiThresh)

1: Pick an order V of the values {hashBits− 2,hashBits− 1,hashBits}
2: for i ∈ V do
3: Choose h at random from Hxor(|S|, i)
4: Choose α at random from {0, 1}i
5: Y ← BSAT(F ∧ (h(S) = α), hiThresh, S)
6: if (loThresh ≤ |Y | < hiThresh) then
7: return loThresh distinct random elements of Y
8: return ⊥

UniGen2 is an algorithmic framework that operates in two stages: the first
stage, EstimateParameters (Algorithm 1), performs low-overhead one-time pre-
processing for a given F , S, and ε to compute numerical parameters ‘hashBits’,
‘loThresh’, and ‘hiThresh’. The quantity hashBits controls how many cells RF↓S
will be partitioned into, while loThresh and hiThresh delineate the range of ac-
ceptable sizes for a cell. In the second stage, GenerateSamples (Algorithm 2) uses
these parameters to generate loThresh samples. If more samples are required,
GenerateSamples is simply called again with the same parameters. Theorem 3
below shows that invoking GenerateSamples multiple times does not cause the
loss of any theoretical guarantees. We now explain the operation of the two
subroutines in detail.

Lines 1–3 of EstimateParameters compute numerical parameters based on
the tolerance ε which are used by GenerateSamples. The variable ‘pivot’ can be
thought of as the ideal cell size we are aiming for, while as mentioned above
‘loThresh’ and ‘hiThresh’ define the allowed size range around this ideal. For
simplicity of exposition, we assume that |RF↓S | > max(60,hiThresh). If not,



there are very few solutions and we can do uniform sampling by enumerating all
of them as in UniGen [6].

Lines 4–11 of EstimateParameters compute ‘hashBits’, an estimate of the num-
ber of hash functions required so that the corresponding partition of RF↓S (into
2hashBits cells) has cells of the desired size. This is done along the same lines
as in UniGen, which used an approximate model counter such as ApproxMC [5].
The procedure invokes a SAT solver through the function BSAT(φ,m, S). This
returns a set, consisting of models of the formula φ which all differ on the set of
variables S, that has size m. If there is no such set of size m, the function returns
a maximal set. If the estimation procedure fails, EstimateParameters returns ⊥
on line 12. In practice, it would be called repeatedly until it succeeds. Theorem 1
below shows that on average few repetitions are needed for EstimateParameters
to succeed, and this is borne out in practice.

The second stage of UniGen2, GenerateSamples, begins on lines 1–2 by picking
a hash count i close to hashBits, then selecting a random hash function from
the family Hxor(|S|, i) on line 3. On line 4 we pick a random output value α, so
that the constraint h(S) = α picks out a random cell. Then, on line 5 we invoke
BSAT on F with this additional constraint, obtaining at most hiThresh elements
Y of the cell. If |Y | < hiThresh then we have enumerated every element of RF↓S
in the cell, and if |Y | ≥ loThresh the cell is large enough for us to get a good
sample. So if loThresh ≤ |Y | < hiThresh, we randomly select loThresh elements
of Y and return them on line 7.

If the number of elements of RF↓S in the chosen cell is too large or too small,
we choose a new hash count on line 2. Note that line 1 can pick an arbitrary
order for the three hash counts to be tried, since our analysis of UniGen2 does
not depend on the order. This allows us to use an optimization where if we run
GenerateSamples multiple times, we choose an order which starts with the value
of i that was successful in the previous invocation of GenerateSamples. Since
hashBits is only an estimate of the correct value for i, in many benchmarks on
which we experimented, UniGen2 initially failed to generate a cell of the right size
with i = hashBits−2, but then succeeded with i = hashBits−1. In such scenarios,
beginning with i = hashBits−1 in subsequent iterations saves considerable time.
This heuristic is similar in spirit to “leapfrogging” in ApproxMC [5] and UniWit
[4], but does not compromise the theoretical guarantees of UniGen2 in any way.

If all three hash values tried on line 2 fail to generate a correctly-sized cell,
GenerateSamples fails and returns ⊥ on line 8. Theorem 1 below shows that this
happens with probability at most 0.38. Otherwise, UniGen2 completes by return-
ing loThresh samples.

Parallelization of UniGen2
As described above, UniGen2 operates in two stages: EstimateParameters is ini-
tially called to do one-time preprocessing, and then GenerateSamples is called to
do the actual sampling. To generateN samples, we can invoke EstimateParameters
once, and then GenerateSamples N/loThresh times, since each of the latter calls
generates loThresh samples (unless it fails). Furthermore, each invocation of



GenerateSamples is completely independent of the others. Thus if we have k pro-
cessor cores, we can just perform N/(k ·loThresh) invocations of GenerateSamples
on each. There is no need for any inter-thread communication: the “leapfrogging”
heuristic for choosing the order on line 1 can simply be done on a per-thread ba-
sis. This gives us a linear speedup in the number of cores k, since the per-thread
work (excluding the initial preprocessing) is proportional to 1/k. Furthermore,
Theorem 3 below shows that assuming each thread has its own source of ran-
domness, performing multiple invocations of GenerateSamples in parallel does
not alter its guarantees of uniformity. This means that UniGen2 can scale to
an arbitrary number of processor cores as more samples are desired, while not
sacrificing any theoretical guarantees.

5 Analysis

In this section, we present a theoretical analysis of the uniformity, effectiveness
in discovering bugs, and runtime performance of UniGen2. For lack of space,
we defer all proofs to the full version. For technical reasons, we assume that
ε > 6.84. Our first result bounds the failure probabilities of EstimateParameters
and GenerateSamples.

Theorem 1. EstimateParameters and GenerateSamples return ⊥ with probabili-
ties at most 0.009 and 0.38 respectively.

Next we show that a single invocation of GenerateSamples provides guarantees
nearly as strong as those of an almost-uniform generator.

Theorem 2. For given F , S, and ε, let L be the set of samples generated using
UniGen2 with a single call to GenerateSamples. Then for each y ∈ RF↓S, we have

loThresh

(1 + ε)|RF↓S |
≤ Pr[y ∈ L] ≤ 1.02 · (1 + ε)

loThresh

|RF↓S |
.

Now we demonstrate that these guarantees extend to the case when GenerateSamples
is called multiple times, sequentially or in parallel.

Theorem 3. For given F , S, and ε, and for hashBits, loThresh, and hiThresh
as estimated by EstimateParameters, let GenerateSamples be called N times with
these parameters in an arbitrary parallel or sequential interleaving. Let Ey,i de-
note the event that y ∈ RF↓S is generated in the ith call to GenerateSamples. Then

the events Ey,i are (l, u)-a.a.d. with l = loThresh
(1+ε)|RF↓S | and u = 1.02·(1+ε)loThresh

|RF↓S | .

Next we show that the above result establishes very strong guarantees on the
effectiveness of UniGen2 in discovering bugs in the CRV context. In this context,
the objective of uniform generation is to maximize the probability of discovering
a bug by using a diverse set of samples. Let us denote the fraction of stimuli
that trigger a bug by f , i.e. if B is the set of stimuli that trigger a bug, then
f = |B|/|RF↓S |. Furthermore, if N is the desired number of stimuli we wish to



generate, we want to minimize the failure probability, i.e. the probability that
the N randomly generated stimuli fail to intersect the set B. If the stimuli are
generated uniformly, the failure probability is (1− f)N . Using binomial expan-
sion, the failure probability can be shown to decrease exponentially in N , with
decay rate of f (henceforth denoted as failure decay rate). We can evaluate the
effectiveness of a stimulus-generation method by comparing the failure decay
rate it achieves to that of a uniform generator. Alternatively, given some δ > 0,
we can ask how many samples are needed to ensure that the failure probability
is at most δ. Normalizing by the number of samples needed by an ideal uni-
form generator gives the relative number of samples needed to find a bug. Our
next theorem shows that UniGen2 is as effective as an almost-uniform generator
according to both of these metrics but needs many fewer SAT calls.

Theorem 4. Given F , S, ε, and B ⊆ RF↓S, let f = |B|/|RF↓S | < 0.8, ν =
1
2 (1 + ε)f , and ν̂ = 1.02 · loThresh · ν < 1. Then we have the following bounds:

generator type uniform UniGen UniGen2

failure decay rate f f
1+ε

(1− ν̂) f
1+ε

relative # of samples needed 1 (1 + ν)(1 + ε) 1+ν̂
1−ν̂ (1 + ε)

relative expected # of SAT calls 1 3·hiThresh(1+ν)(1+ε)
0.52

3·hiThresh
0.62·loThresh

1+ν̂
1−ν̂ (1 + ε)

If 8.09 ≤ ε ≤ 242 and f ≤ 1/1000, then UniGen2 uses fewer SAT calls than
UniGen on average.

Thus under reasonable conditions such as occur in industrial applications, UniGen2
is more efficient than UniGen at finding bugs. We illustrate the significance of
this improvement with an example. Suppose 1 in 104 inputs causes a bug. Then
to find a bug with probability 1/2, we would need approximately 6.93 · 103

uniformly generated samples. To achieve the same target, we would need ap-
proximately 1.17 · 105 samples from an almost-uniform generator like UniGen,
and approximately 1.20 · 105 samples from UniGen2, using a tolerance (ε) of 16
in both cases. However, since UniGen2 picks multiple samples from each cell, it
needs fewer SAT calls. In fact, the expected number of calls made by UniGen2
is only 3.38 · 106, compared to 4.35 · 107 for UniGen – an order of magnitude
difference! Therefore, UniGen2 provides as strong guarantees as UniGen in terms
of its ability to discover bugs in CRV, while requiring far fewer SAT calls.

Finally, since the ratio of hiThresh to loThresh can be bounded above, the
average number of SAT calls per generated sample in UniGen2 can be bounded
by a constant.

Theorem 5. There exists a fixed constant λ = 40 such that for every F , S, and
ε, the expected number of SAT queries made by UniGen2 per generated sample is
at most λ.

In contrast, the number of SAT calls per generated sample in UniGen is propor-
tional to hiThresh and thus to ε−2. An upper bound on the expected number
of SAT queries makes it possible for UniGen2 to approach the performance of



heuristic methods like random seeding of SAT solvers, which make only one SAT
query per generated sample (but fail to provide any theoretical guarantees).

6 Evaluation

To evaluate the performance of UniGen2, we built a prototype implementation
in C++ that employs the solver CryptoMiniSAT [1] to handle CNF-SAT aug-
mented with XORs efficiently 6. We conducted an extensive set of experiments
on diverse public domain benchmarks, seeking to answer the following questions:

1. How does UniGen2’s runtime performance compare to that of UniGen, a state-
of-the-art almost-uniform SAT sampler?

2. How does the performance of parallel UniGen2 scale with the # of cores?
3. How does the distribution of samples generated by UniGen2 compare with

the ideal distribution?
4. Does parallelization affect the uniformity of the distribution of the samples?

Our experiments showed that UniGen2 outperforms UniGen by a factor of about
20× in terms of runtime. The distribution generated by UniGen2 is statistically
indistinguishable from that generated by an ideal uniform sampler. Finally, the
runtime performance of parallel UniGen2 scales linearly with the number of cores,
while its output distribution continues to remain uniform.

6.1 Experimental Setup

We conducted experiments on a heterogeneous set of benchmarks used in earlier
related work [6]. The benchmarks consisted of ISCAS89 circuits augmented with
parity conditions on randomly chosen subsets of outputs and next-state variables,
constraints arising in bounded model checking, bit-blasted versions of SMTLib
benchmarks, and problems arising from automated program synthesis. For each
benchmark, the sampling set S was either taken to be the independent support
of the formula or was provided by the corresponding source. Experiments were
conducted on a total of 200+ benchmarks. We present results for only a subset of
representative benchmarks here. A detailed list of all the benchmarks is available
in the Appendix.

For purposes of comparison, we also ran experiments with UniGen [6], a state-
of-the-art almost-uniform SAT witness generator. We employed the Mersenne
Twister to generate pseudo-random numbers, and each thread was seeded in-
dependently using the C++ class random device. Both tools used an overall
timeout of 20 hours, and a BSAT timeout of 2500 seconds. All experiments used
ε = 16, corresponding to loThresh = 11 and hiThresh = 64. The experiments
were conducted on a high-performance computer cluster, where each node had
a 12-core, 2.83 GHz Intel Xeon processor, with 4GB of main memory per core.

6 The tool (with source code) is available at http://www.cs.rice.edu/CS/

Verification/Projects/UniGen/

http://www.cs.rice.edu/CS/Verification/Projects/UniGen/
http://www.cs.rice.edu/CS/Verification/Projects/UniGen/


6.2 Results

Runtime performance
We compared the runtime performance of UniGen2 with that of UniGen for

all our benchmarks. For each benchmark, we generated between 1000 and 10000
samples (depending on the size of the benchmark) and computed the average
time taken to generate a sample on a single core. The results of these experiments
for a representative subset of benchmarks are shown in Table 1. The columns
in this table give the benchmark name, the number of variables and clauses,
the size of the sampling set, the success probability of UniGen2, and finally the
average runtime per sample for both UniGen2 and UniGen in seconds. The success
probability of UniGen2 was computed as the fraction of calls to GenerateSamples
that successfully generated samples.

UniGen2 UniGen

Benchmark #vars #clas |S|
Succ.
Prob Runtime(s) Runtime(s)

s1238a 3 2 686 1850 32 1.0 0.3 7.17
s1196a 3 2 690 1805 32 1.0 0.23 4.54
s832a 15 7 693 2017 23 1.0 0.04 0.51
case 1 b12 2 827 2725 45 1.0 0.24 6.77
squaring16 1627 5835 72 1.0 4.16 79.12
squaring7 1628 5837 72 1.0 0.79 21.98

doublyLinkedList 6890 26918 37 1.0 0.04 1.23
LoginService2 11511 41411 36 1.0 0.05 0.55

Sort 12125 49611 52 1.0 4.15 82.8
20 15475 60994 51 1.0 19.08 270.78

enqueue 16466 58515 42 1.0 0.87 14.67
Karatsuba 19594 82417 41 1.0 5.86 80.29
lltraversal 39912 167842 23 1.0 0.18 4.86
llreverse 63797 257657 25 1.0 0.73 7.59

diagStencil new 94607 2838579 78 1.0 3.53 60.18
tutorial3 486193 2598178 31 1.0 58.41 805.33

demo2 new 777009 3649893 45 1.0 3.47 40.33

Table 1. Runtime performance comparison of UniGen2 and UniGen (on a single core).

Table 1 clearly shows that UniGen2 significantly outperforms UniGen on all
types of benchmarks, even when run on a single core. Over the entire set of 200+
benchmarks, UniGen2’s runtime performance was about 20× better than that of
UniGen on average (using the geometric mean). The observed performance gain
can be attributed to two factors. First, UniGen2 generates loThresh (11 in our
experiments) samples from every cell instead of just 1 in the case of UniGen. This
provides a speedup of about 10×. Second, as explained in Section 4, UniGen2
uses “leapfrogging” to optimize the order in which the values of i in line 2 of
Algorithm 2 are chosen. In contrast, UniGen uses a fixed order. This provides an
additional average speedup of 2× in our experiments. Note also that the success
probability of UniGen2 is consistently very close to 1 across the entire set of
benchmarks.
Parallel speedup

To measure the effect of parallelization on runtime performance, we ran the
parallel version of UniGen2 with 1 to 12 processor cores on our benchmarks.
In each experiment with C cores, we generated 2500 samples per core, and



computed the C-core resource usage as the ratio of the average individual core
runtime to the total number of samples (i.e. C×2500). We averaged our compu-
tations over 7 identical runs. The speedup for C cores was then computed as the
ratio of 1-core resource usage to C-core resource usage. Figure 1 shows how the
speedup varies with the number of cores for a subset of our benchmarks. The
figure illustrates that parallel UniGen2 generally scales almost linearly with the
number of processor cores.

To obtain an estimate of how close UniGen2’s performance is to real-world
requirements (roughly 10× slowdown compared to a simple SAT call), we mea-
sured the slowdown of UniGen2 (and UniGen) running on a single core relative
to a simple SAT call on the input formula. The (geometric) mean slowdown
for UniGen2 turned out to be 21 compared to 470 for UniGen. This shows that
UniGen2 running in parallel on 2–4 cores comes close to matching the require-
ments of CRV in industrial practice.
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Fig. 1. Effect of parallelization on the runtime performance of UniGen2.

Uniformity comparison

To measure the quality of the distribution generated by UniGen2 and parallel
UniGen2 in practice, we implemented an ideal sampler, henceforth denoted as
IS. Given a formula F , the sampler IS first enumerates all witnesses in RF↓S ,
and then picks an element of RF↓S uniformly at random. We compared the dis-
tribution generated by IS with that generated by UniGen2 run sequentially, and
with that generated by UniGen2 run in parallel on 12 cores. In the last case,
the samples generated by all the cores were aggregated before comparing the
distributions. We had to restrict the experiments for comparing distributions to
a small subset of our benchmarks, specifically those which had less than 100, 000
solutions. We generated a large number N (≥ 4×106) of samples for each bench-
mark using each of IS, sequential UniGen2, and parallel UniGen2. Since we chose
N much larger than |RF↓S |, all witnesses occurred multiple times in the list of
samples. We then computed the frequency of generation of individual witnesses,
and grouped witnesses appearing the same number of times together. Plotting
the distribution of frequencies — that is, plotting points (x, y) to indicate that



each of x distinct witnesses were generated y times — gives a convenient way to
visualize the distribution of the samples. Figure 2 depicts this for one represen-
tative benchmark (case110, with 16,384 solutions). It is clear from Figure 2 that

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 180  200  220  240  260  280  300

O
cc

u
rr

e
n
ce

s

Solution Count

Ideal
ScalGen

ParaScalGen

Fig. 2. Uniformity comparison between an ideal sampler (IS), UniGen2, and parallel
UniGen2. Results from benchmark ‘case110’ with N = 4 · 106.

the distribution generated by UniGen2 is practically indistinguishable from that
of IS. Furthermore, the quality of the distribution is not affected by paralleliza-
tion. Similar observations also hold for the other benchmarks for which we were
able to enumerate all solutions. For the example shown in Fig. 2, the Jensen-
Shannon distance between the distributions from sequential UniGen2 and IS is
0.049, while the corresponding figure for parallel UniGen2 and IS is 0.052. These
small Jensen-Shannon distances make the distribution of UniGen2 (whether se-
quential or parallel) indistinguishable from that of IS (See Section IV(C) of [13]).

7 Conclusion

Constrained-random simulation has been the workhorse of functional verification
for the past few decades. In this paper, we introduced a new algorithm, UniGen2,
that outperforms state-of-the-art techniques by a factor of about 20×. UniGen2
trades off independence of samples for speed while still providing strong guar-
antees of discovering bugs with high probability. Furthermore, we showed that
the parallel version of UniGen2 achieves a linear speedup with increasing num-
ber of cores. This suggests a new paradigm for constrained-random verification,
wherein we can obtain the required runtime performance through parallelization
without losing guarantees of effectiveness in finding bugs.
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APPENDIX

In this section, we first provide an extended version of Table 1 in Section A.
Section B then provides detailed proofs for the theorems stated in Section 5.

A Detailed Experimental Results

Table 2: Extended Runtime performance comparison of UniGen2
and UniGen (on a single core)

UniGen2 UniGen

Benchmark #vars #clas |S|
Succ.
Prob Runtime(s) Runtime(s)

109 new 60 55 36 1.0 0.14 19.35
32 new 60 49 38 1.0 0.12 22.66
70 new 62 49 40 1.0 0.13 16.34
29 new 69 55 45 1.0 0.12 6.05
case100 72 178 24 1.0 0.01 0.2
case101 72 178 24 1.0 0.01 0.2
10 new 103 135 46 1.0 0.14 2.18
case47 118 328 28 1.0 0.01 0.08
case124 133 386 31 1.0 0.12 3.43
case55 149 442 26 1.0 0.01 0.15
case8 160 525 26 1.0 0.04 0.96

lltraversal new 163 359 41 1.0 0.19 9.73
case105 170 407 59 1.0 0.3 7.07
case5 176 518 36 1.0 0.65 5.09

treemin new 177 451 29 1.0 0.12 2.55
s344 3 2 197 464 24 1.0 0.12 1.38
s349 3 2 198 469 24 1.0 0.12 1.46
case201 200 544 45 1.0 0.17 5.46
case202 200 544 45 1.0 0.18 5.44
case56 202 722 23 1.0 0.01 0.17
case54 203 725 23 1.0 0.01 0.17
case106 204 509 60 1.0 0.35 8.61
19 new 211 594 48 1.0 0.11 6.76
case133 211 615 42 0.98 136.04 1330.62
case136 211 615 42 0.98 128.91 1710.95
case203 214 580 49 1.0 0.13 5.22
case205 214 580 49 1.0 0.13 5.24
case204 214 580 49 1.0 0.13 5.23

tree delete3 new 215 521 44 0.99 0.27 2.81
s344 7 4 215 540 24 1.0 0.2 1.66

Continued on next page



UniGen2 UniGen

Benchmark #vars #clas |S|
Succ.
Prob Runtime(s) Runtime(s)

s349 7 4 216 545 24 1.0 0.2 1.58
case146 219 558 64 1.0 24.22 386.47
case145 219 558 64 1.0 17.49 478.73
case132 236 708 41 1.0 0.14 2.04
case135 236 708 41 1.0 0.15 2.02

case 1 b14 1 238 681 45 1.0 0.16 5.47
case 2 b14 1 238 681 45 1.0 0.15 5.28
case 3 b14 1 238 681 45 1.0 0.18 5.26

case109 241 915 31 1.0 0.03 0.39
case14 247 649 67 1.0 108.11 2675.16

s382 3 2 263 635 24 1.0 0.04 0.41
case123 267 980 34 1.0 0.4 5.22
case119 267 787 59 1.0 1.21 39.86

case 1 b14 2 270 805 43 1.0 0.17 5.38
case 2 b14 2 270 805 43 1.0 0.16 5.34
case 3 b14 2 270 805 43 1.0 0.18 5.59

case9 279 753 67 1.0 91.03 4632.83
s382 7 4 281 711 24 1.0 0.04 0.47
case61 282 753 66 1.0 103.77 1964.81

s344 15 7 284 824 24 1.0 0.08 1.27
case120 284 851 61 1.0 4.18 198.08

s349 15 7 285 829 24 1.0 0.09 1.23
case57 288 1158 32 1.0 0.85 4.88

s444 3 2 290 712 24 1.0 0.04 0.4
case121 291 975 48 1.0 0.17 5.5
case62 291 1165 33 1.0 0.21 5.59

s420 3 2 294 694 34 1.0 0.36 7.38
s420 new1 3 2 294 694 34 1.0 0.35 7.41
s420 new 3 2 294 694 34 1.0 0.24 6.2

case3 294 1110 26 1.0 0.04 0.84
case2 296 1116 26 1.0 0.05 0.83

s510 3 2 298 768 25 1.0 0.1 1.27
case126 302 1129 34 1.0 0.24 4.88

case 1 b14 3 304 941 40 1.0 0.18 5.61
case 2 b14 3 304 941 40 1.0 0.18 5.62
case 3 b14 3 304 941 40 1.0 0.18 5.76

s444 7 4 308 788 24 0.99 0.13 1.28
s420 new1 7 4 312 770 34 1.0 0.22 5.79
s420 new 7 4 312 770 34 1.0 0.17 5.81

s420 7 4 312 770 34 1.0 0.24 5.79

Continued on next page



UniGen2 UniGen

Benchmark #vars #clas |S|
Succ.
Prob Runtime(s) Runtime(s)

case122 314 1258 27 1.0 0.07 1.46
s510 7 4 316 844 25 1.0 0.1 1.21

case6 329 996 52 1.0 0.2 6.96
case 0 b11 1 340 1026 48 1.0 0.21 6.06
case 1 b11 1 340 1026 48 1.0 0.23 6.16

s510 15 7 340 948 25 1.0 0.09 1.23
s382 15 7 350 995 24 1.0 0.14 1.41

s420 new 15 7 351 934 34 1.0 0.16 5.31
s526 3 2 365 943 24 1.0 0.04 0.87
s420 15 7 366 994 34 1.0 0.18 5.3

s420 new1 15 7 366 994 34 1.0 0.19 5.37
s526a 3 2 366 944 24 1.0 0.06 0.6
s444 15 7 377 1072 24 1.0 0.06 0.84
s526 7 4 383 1019 24 1.0 0.09 0.86
77 new 384 2171 44 1.0 0.12 26.92

s526a 7 4 384 1020 24 1.0 0.08 0.98
case125 393 1555 35 1.0 0.44 6.48
case35 400 1414 46 1.0 0.27 8.88
case34 409 1597 39 1.0 0.2 5.78
case143 427 1592 48 1.0 0.2 5.24

case 0 b12 1 427 1385 37 1.0 0.17 4.41
case 2 b12 1 427 1385 37 1.0 0.18 4.39
case 1 b12 1 427 1385 37 1.0 0.19 4.57

case115 428 1851 28 1.0 0.11 2.44
case114 428 1851 28 1.0 0.1 2.43
case131 432 1830 36 1.0 0.26 2.97
case116 438 1881 28 1.0 0.09 2.4

s526 15 7 452 1303 24 1.0 0.07 1.4
s526a 15 7 453 1304 24 1.0 0.07 1.37

isolateRightmost new 483 1498 64 1.0 0.28 18.56
squaring51 496 1947 42 1.0 0.13 2.86
squaring50 500 1965 42 1.0 0.14 2.86
s953a 3 2 515 1297 45 1.0 0.67 11.6
s953a 7 4 533 1373 45 1.0 22.42 1303.7
s953a 15 7 602 1657 45 1.0 0.49 10.64
s820a 7 4 616 1703 23 1.0 0.01 0.15
s832a 7 4 624 1733 23 1.0 0.01 0.12
s820a 15 7 685 1987 23 1.0 0.01 0.11
s1238a 3 2 686 1850 32 1.0 0.3 7.17
s1196a 3 2 690 1805 32 1.0 0.23 4.54

Continued on next page



UniGen2 UniGen

Benchmark #vars #clas |S|
Succ.
Prob Runtime(s) Runtime(s)

s832a 15 7 693 2017 23 1.0 0.04 0.51
squaring24 695 2193 61 1.0 0.29 6.98
squaring22 695 2193 61 1.0 0.28 6.89
squaring20 696 2198 61 1.0 0.29 6.96
squaring21 697 2203 61 1.0 0.27 6.78
s1238a 7 4 704 1926 32 1.0 0.23 3.11
s1196a 7 4 708 1881 32 1.0 0.29 3.3
squaring23 710 2268 61 1.0 0.28 7.05

GuidanceService2 715 2181 27 1.0 0.02 0.34
s1238a 15 7 773 2210 32 1.0 0.21 3.55
s1196a 15 7 777 2165 32 1.0 0.18 4.87
tree delete3 795 2734 32 1.0 0.2 3.64
case 0 b12 2 827 2725 45 1.0 0.25 6.74
case 2 b12 2 827 2725 45 1.0 0.24 6.72
case 1 b12 2 827 2725 45 1.0 0.24 6.77
squaring27 837 2901 61 1.0 0.36 6.39
squaring25 846 2947 61 1.0 0.35 6.66
squaring3 885 2809 72 1.0 0.58 15.94
squaring2 885 2809 72 1.0 0.6 17.15
squaring6 885 2809 72 1.0 0.76 15.81
squaring5 885 2809 72 1.0 0.58 15.49
squaring1 891 2839 72 1.0 0.69 16.0
squaring4 891 2839 72 1.0 0.66 15.49
squaring26 894 3187 61 1.0 0.4 6.92
squaring11 966 3213 72 1.0 0.85 18.53

GuidanceService 988 3088 27 1.0 0.02 0.23
squaring30 1031 3693 61 1.0 0.55 15.3
squaring28 1060 3839 61 1.0 0.46 15.67

llreverse new 1096 4217 47 1.0 0.18 10.1
squaring10 1099 3632 72 1.0 0.73 20.65
squaring8 1101 3642 72 1.0 0.76 19.64
squaring29 1141 4248 61 1.0 0.65 19.42

79 new 1217 4034 40 1.0 2.93 21.24
IssueServiceImpl 1393 4319 30 1.0 0.01 0.1

squaring9 1434 5028 72 1.0 1.03 20.35
squaring14 1458 5009 72 1.0 2.62 48.73

10 1494 2215 46 1.0 0.33 85.45
squaring12 1507 5210 72 1.0 3.25 62.44

27 1509 2707 32 1.0 0.22 6.37
squaring16 1627 5835 72 1.0 4.16 79.12

Continued on next page



UniGen2 UniGen

Benchmark #vars #clas |S|
Succ.
Prob Runtime(s) Runtime(s)

squaring7 1628 5837 72 1.0 0.79 21.98
PhaseService 1686 5655 27 1.0 0.01 0.18

27 new 1792 6717 32 1.0 0.38 13.45
ActivityService 1837 5968 27 1.0 0.01 0.17

55 new 1874 8384 46 1.0 3.05 146.83
IterationService 1896 6732 27 1.0 0.01 0.23
ActivityService2 1952 6867 27 1.0 0.01 0.19

aig insertion1 2296 9326 60 1.0 0.18 3.57
111 2348 5479 36 1.0 0.48 15.79

ConcreteActivityService 2481 9011 28 1.0 0.02 0.36
53 2586 10747 32 1.0 0.26 6.96

aig insertion2 2592 10156 60 1.0 0.18 3.54
55 3128 12145 46 1.0 31.11 178.17

ProjectService3 3175 11019 55 1.0 0.68 17.32
NotificationServiceImpl2 3540 13425 36 1.0 0.12 1.34

109 3565 14012 36 1.0 0.88 12.99
51 3708 14594 38 1.0 0.52 18.77
32 3834 13594 38 1.0 0.47 19.39
70 4670 15864 40 1.0 0.78 24.58

ProcessBean 4768 14458 64 1.0 0.8 32.2
56 4842 17828 38 1.0 0.61 15.98
35 4915 10547 52 1.0 1.33 65.12
80 4969 17060 48 1.0 0.98 181.87

tree delete 5758 22105 30 1.0 0.02 0.35
7 6683 24816 50 1.0 1.69 160.65

doublyLinkedList 6890 26918 37 1.0 0.04 1.23
19 6993 23867 48 1.0 3.34 52.28

LoginService 8200 26689 34 1.0 0.08 0.9
29 8866 31557 45 1.0 8.19 100.46
17 10090 27056 45 1.0 35.0 526.58

parity new 10137 44830 50 1.0 4.09 41.08
81 10775 38006 51 1.0 15.19 285.7

LoginService2 11511 41411 36 1.0 0.05 0.55
Sort 12125 49611 52 1.0 4.15 82.8
77 14535 27573 44 1.0 11.33 38.54
20 15475 60994 51 1.0 19.08 270.78

enqueue 16466 58515 42 1.0 0.87 14.67
Karatsuba 19594 82417 41 1.0 5.86 80.29
lltraversal 39912 167842 23 1.0 0.18 4.86
LLReverse 63797 257657 25 1.0 0.73 7.59

Continued on next page



UniGen2 UniGen

Benchmark #vars #clas |S|
Succ.
Prob Runtime(s) Runtime(s)

diagStencil new 94607 2838579 78 1.0 3.53 60.18
demo4 new 381129 1801463 45 1.0 4.01 74.68

tutorial3 486193 2598178 31 1.0 58.41 805.33
demo2 new 777009 3649893 45 1.0 3.47 40.33
demo3 new 865935 3509158 45 1.0 6.36 87.12

B Detailed Proofs

In this section, we provide proofs of the various theorems stated previously.
Section B.1 presents proofs of our main results, Theorems 1–5. We also include
a result (Theorem 6) bounding the probability of a particular witness being
generated by UniGen2, which we omitted above for lack of space. These proofs
depend on a number of lemmas about GenerateSamples and EstimateParameters,
presented in Sections B.2 and B.3 respectively.

B.1 Analysis of UniGen2

Theorem 1. EstimateParameters and GenerateSamples return ⊥ with probabili-
ties at most 0.009 and 0.38 respectively.

Proof. By Lemmas 14 and 11 below respectively.

Theorem 2. For given F , S, and ε, let L be the set of samples generated using
UniGen2 with a single call to GenerateSamples. Then for each y ∈ RF↓S, we have

loThresh

(1 + ε)|RF↓S |
≤ Pr[y ∈ L] ≤ 1.02 · (1 + ε)

loThresh

|RF↓S |
.

Proof. By Lemma 10 below.

Theorem 3. For given F , S, and ε, and for hashBits, loThresh, and hiThresh
as estimated by EstimateParameters, let GenerateSamples be called N times with
these parameters in an arbitrary parallel or sequential interleaving. Let Ey,i de-
note the event that y ∈ RF↓S is generated in the ith call to GenerateSamples. Then

the events Ey,i are (l, u)-a.a.d. with l = loThresh
(1+ε)|RF↓S | and u = 1.02·(1+ε)loThresh

|RF↓S | .

Proof. Different invocations of GenerateSamples use independent randomness for
the choices on lines 3, 4, and 7. Therefore the only part of GenerateSamples which
can be affected by earlier invocations is the ordering heuristic used on line 1. But
Lemma 10 shows that the probability that GenerateSamples returns a particular
witness is between l and u regardless of the order used. Therefore l ≤ Pr[Ey,i] ≤ u
even if conditioned on the results of previous invocations, and so the events Ey,i
are (l, u)-a.a.d..



In the following results, given F , S, ε, and B ⊆ RF↓S , we define f =
|B|/|RF↓S |, ν = 1

2 (1 + ε)f , and ν̂ = 1.02 · loThresh · ν. We also denote the
number of independent uniform samples from RF↓S needed to hit B with prob-
ability at least δ by Nideal(|B|, δ).

Theorem 4. Given F , S, ε, B, f , ν, and ν̂ as above, assume f < 0.8 and
ν̂ < 1. Then we have the following bounds:

generator type uniform UniGen UniGen2

failure decay rate f f
1+ε

(1− ν̂) f
1+ε

relative # of samples needed 1 (1 + ν)(1 + ε) 1+ν̂
1−ν̂ (1 + ε)

relative expected # of SAT calls 1 3·hiThresh(1+ν)(1+ε)
0.52

3·hiThresh
0.62·loThresh

1+ν̂
1−ν̂ (1 + ε)

If 8.09 ≤ ε ≤ 242 and f ≤ 1/1000, then UniGen2 uses fewer SAT calls than
UniGen on average.

Proof. The failure decay rates and relative numbers of samples needed for UniGen
and UniGen2 are from Lemmas 2 and 3 below respectively.

Both UniGen and GenerateSamples make at most hiThresh SAT calls per
iteration of their loops, and iterate at most 3 times (see [6] for UniGen). Since
UniGen succeeds with probability at least 0.52 (by Theorem 1 of [6]), the expected
number of SAT calls it makes per generated sample is at most 3·hiThresh

0.52 . Since
GenerateSamples succeeds with probability at least 0.62 (by Theorem 1), and
generates loThresh samples when it does, its expected number of SAT calls per
sample is at most 3·hiThresh

0.62·loThresh .
Finally, the last statement can be checked by numerical computation, noting

that under the given conditions we have loThresh ≥ 6.

Lemma 1. Given F , S, B, f < 0.8, and ν as above, and 0 < δ ≤ 1, we have

Nideal(|B|, δ) ≥
ln(1/δ)

f(1 + ν)
.

Proof. First observe that for any x ∈ [0, 1),

ln(1−x) = −x−
∞∑
i=2

xi

i
≥ −x−x

2

2

∞∑
i=0

xi ≥ −x− x2

2(1− x)
= −x

(
1 +

x

2(1− x)

)
.

Now since (1− f)Nideal(|B|,δ) = δ, we have

Nideal(|B|,δ) =
ln δ

ln (1− f)
≥ ln(1/δ)

f
(

1 + f
2(1−f)

) .
Therefore we obtain the desired result by noting that since ε > 6.84, we have

ν =
1

2
(1 + ε)f > 3.42f ≥ f

2(1− 0.8)
≥ f

2(1− f)
.



Lemma 2. Given F , S, ε, B, f < 0.8, and ν as above, let an almost-uniform
generator Gau(F, ε, S) generate N independent samples in a list L. Then

1. Pr[B ∩ L 6= ∅] ≥ 1− exp
[
−N

(
f

1+ε

)]
.

2. For 0 < δ ≤ 1, if N ≥ (1+ν)(1+ε)Nideal(|B|, δ), then Pr[B∩L 6= ∅] ≥ 1−δ.

Proof. Index the elements of L as (yi)1≤i≤|L|. For any b ∈ B, define pb = Pr[yi =
b], where the value is the same for all i ∈ {1, . . . , |L|}, and put P =

∑
b∈B pb. By

the definition of an almost-uniform generator, we have 1/((1 + ε)|RF↓S |) ≤ pb ≤
(1 + ε)/|RF↓S |. Therefore, |B|/(|RF↓S |(1 + ε)) ≤ P ≤ |B|(1 + ε)/|RF↓S |. So

Pr[L ∩B 6= ∅] ≥1− (1− P )
N

≥1− exp (−NP )

≥1− exp

(
− N |B|

(1 + ε)|RF↓S |

)
.

This proves the first part of the theorem.

Now if N ≥ (1 + ε)(1 + ν)Nideal, using the bound on Nideal from Lemma 1
and the fact that P ≥ f

1+ε gives

Pr[B ∩ L = ∅] ≤(1− P )N

≤ exp [ln(1− P ) ·N ]

≤ exp [ln(1− P ) · (1 + ν)(1 + ε)Nideal]

≤ exp

[
ln(1− P ) · (1 + ν)(1 + ε)

f(1 + ν)
· ln(1/δ)

]
≤ exp

[
ln(1− P )

P
· ln(1/δ)

]
≤ exp [−1 · ln(1/δ)]

≤δ

where we have used the fact that ln(1− x) ≤ −x for x ∈ [0, 1).

Lemma 3. Given F , S, ε, B, f < 0.8, and ν̂ < 1 as above, let UniGen2 generate
N samples in a list L (by running GenerateSamples N/loThresh times). Then

1. Pr[B ∩ L 6= ∅] ≥ 1− exp
[
−N (1− ν̂)

(
f

1+ε

)]
.

2. For 0 < δ ≤ 1, if N ≥ 1+ν̂
1−ν̂ (1 + ε)Nideal(|B|, δ) then Pr[B ∩ L 6= ∅] ≥ 1− δ.

Proof. Let R be the set returned by an invocation of GenerateSamples, and
r1, . . . , rloThresh be the elements of R. For any b ∈ B, define pb = Pr[ri = b],
where the value is the same for all i ∈ {1, . . . , loThresh}, and P =

∑
b∈B pb.



Now we have

Pr[R ∩B 6= ∅] ≥Pr[{r1, . . . , rloThresh} ∩B 6= ∅]

≥loThresh · Pr[r1 ∈ B]−
(

loThresh

2

)
· Pr[r1, r2 ∈ B]

=loThresh · P −
(

loThresh

2

)∑
b∈B

∑
b′∈B\{b}

pbpb′ (by pairwise independence)

=loThresh · P −
(

loThresh

2

)∑
b∈B

pb(P − pb)

≥loThresh · P −
(

loThresh

2

)∑
b∈B

pbP

≥loThresh · P ·
(

1− loThresh · P
2

)
.

Now since 1/((1 + ε)|RF↓S |) ≤ pb ≤ 1.02(1 + ε)/|RF↓S | by Theorem 3, we have
f/(1 + ε) ≤ P ≤ 1.02f(1 + ε). So

Pr[R∩B 6= ∅] ≥ loThresh·P ·
(

1− loThresh · 1.02f(1 + ε)

2

)
= (1−ν̂)·loThresh·P.

Now by Theorem 3 this holds even when conditioned on the results of prior calls
to GenerateSamples, so

Pr[L ∩B 6= ∅] ≥1− (1− (1− ν̂) · loThresh · P )
N/loThresh

≥1− exp (−(1− ν̂) ·NP )

≥1− exp

[
−N(1− ν̂)

(
f

1 + ε

)]
.

This proves the first part of the theorem. Now since ν̂ ≥ ν, Lemma 1 shows that

Nideal(|B|, δ) ≥
ln(1/δ)

f(1 + ν̂)
.

Therefore if N ≥ 1+ν̂
1−ν̂ (1 + ε)Nideal, from above we have

Pr[L ∩B = ∅] ≤ exp

[
−N(1− ν̂)

(
f

1 + ε

)]
≤ exp

[
−
(

1 + ν̂

1− ν̂

)
(1 + ε)Nideal · (1− ν̂)

(
f

1 + ε

)]
= exp (−f(1 + ν̂) ·Nideal)

≤ exp [−1 · ln(1/δ)]

≤δ.



Theorem 5. There exists a fixed constant λ = 40 such that for every F , S, and
ε, the expected number of SAT queries made by UniGen2 per generated sample is
at most λ.

Proof. A successful invocation of GenerateSamples produces loThresh samples
and makes at most 3 · hiThresh SAT queries (at most hiThresh for each call to
BSAT). Since by Lemma 1 GenerateSamples succeeds with probability at least
0.62, the expected number of SAT queries per generated sample is at most (3 ·
hiThresh)/(0.62 · loThresh). Optimization shows that hiThresh/loThresh < 8.2,
so the expected number of queries per sample is less than 40.

Finally, we give a theorem left out of Section 5 for lack of space, bounding the
probability of generating a given witness with multiple calls to GenerateSamples.

Theorem 6. Given F , S, and ε as above, let UniGen2 generate N samples in a
list L (by running GenerateSamples N/loThresh times). Then for each y ∈ RF↓S,

0.93 ·N
(1 + ε)|RF↓S |

≤ Pr[y ∈ L] ≤ 1.02(1 + ε)
N

|RF↓S |
.

Proof. By Theorem 3, ifR is the set returned by a single invocation of GenerateSamples
we have

loThresh

(1 + ε)|RF↓S |
≤ Pr[y ∈ R] ≤ 1.02 · loThresh(1 + ε)

|RF↓S |

regardless of the results of any prior invocations. Therefore

Pr[y ∈ L] = 1− Pr[y 6∈ L] ≥ 1−
(

1− loThresh

(1 + ε)|RF↓S |

)N/loThresh

.

Now noting that

loThresh

(1 + ε)|RF↓S |
· N

loThresh
=

N

(1 + ε)|RF↓S |
≤ 1

7.84
,

applying the binomial theorem and observing that the sum of the cubic and
higher order terms is positive, we have

Pr[y ∈ L] ≥ N

(1 + ε)|RF↓S |

(
1− 1

2! · 7.84

)
=

0.93 ·N
(1 + ε)|RF↓S |

.

For the upper bound, a similar argument shows that

Pr[y ∈ L] ≤ 1−
(

1− 1.02(1 + ε)loThresh

|RF↓S |

)N/loThresh

≤ 1.02(1 + ε)N

|RF↓S |
.



B.2 Analysis of GenerateSamples

Throughout this section, we use the notations RF↓S and RF↓S,h,α introduced
in Section 2. We denote by Uy the event that witness y ∈ RF↓S is output by
GenerateSamples when called with the parameters calculated by EstimateParameters
on inputs F , S, and ε. We are interested in providing lower and upper bounds
for Pr[Uy]. The proofs presented here follow the structure of the proofs in [6].

We make use of the following fact from probability theory.

Lemma 4. Let E1, E2, . . . , En be a sequence of events returning values in {0, 1},
where event Ei is performed only after all events Ej for j < i return 0. Let E
be the event that at least one Ei returns 1. Then maxi Pr[Ei = 1] ≤ Pr[E] ≤∑n
i Pr[Ei = 1].

Proof. Let E denote the complement of E, i.e. the event that every Ei returns
0. Then we have Pr[E] =

∏n
i=1 Pr[Ei = 0 | ∀j < i,Ej = 0] ≤ mini Pr[Ei = 0].

Therefore, Pr[E] ≥ 1−mini Pr[Ei = 0] = maxi Pr[Ei = 1]. The upper bound on
Pr[E] is the union bound.

The following result about Chernoff-Hoeffding bounds, proved in [5], plays
an important role in the analysis of UniGen2.

Lemma 5. Let Γ be the sum of r-wise independent random variables, each of
which is confined to the interval [0, 1], and suppose E[Γ ] = µ. For 0 < β ≤ 1, if
2 ≤ r ≤ 3 ≤

⌊
β2µe−1/2

⌋
, then Pr [ |Γ − µ| ≥ βµ ] ≤ e−3/2.

Let us denote round(log(|RF↓S | − 1) − log pivot) by m, where ‘pivot’ is the
quantity computed on line 2 of EstimateParameters. The expression used for
computing pivot ensures that pivot ≥ 17. Also, as mentioned in Section 4, for
simplicity we assume that |RF↓S | > max(60,hiThresh) (in practice this can
be checked by simply enumerating up to max(60,hiThresh) witnesses). Finally,
note that the expression for computing κ on line 1 of EstimateParameters requires
ε ≥ 6.84 in order to ensure that κ ∈ [0, 1) can always be found.

The next lemma provides a lower bound on the probability of generation

of a witness. Let wi,y,α denote the probability Pr
[

pivot√
2(1+κ)

≤ |RF↓S,h,α| ≤ 1+
√

2(1 + κ)pivot and h(y) = α : h
R←− Hxor(n, i)

]
. The proof of the lemma also

provides a lower bound on wm,y,α. Let pi,y denote the probability that GenerateSamples
returns on line 7 with a particular value of i and with y in RF↓S,h,α, where
α ∈ {0, 1}i is the value chosen on line 4. Also let fm = Pr[q− 2 ≤ m ≤ q], where
q is shorthand for the quantity hashBits computed by EstimateParameters.

Lemma 6. Regardless of the order chosen on line 1 of GenerateSamples, we
have loThresh

hiThresh · fm · pm,y ≤ Pr[Uy] ≤ loThresh
|Y |

∑q
i=q−2 pi,y for each y ∈ RF↓S.

Proof. By Lemma 4, it follows that Pr[Uy] ≥ loThresh
|Y | maxipi,y ≥ loThresh

hiThresh · pm,y ·
fm. Lemma 4 also implies the upper bound, since |Y | ≥ loThresh.



All subsequent results in this section will bound Pr[Uy] using Lemma 6, so
they also hold regardless of the order of hash counts. For notational simplicity
we do not always mention this fact in the lemma statements.

Lemma 7. For every y ∈ RF↓S, Pr[Uy] ≥ 0.8(1−e−3/2)
2(1.05+κ)(|RF↓S |−1)

Proof. From Lemma 6, we have Pr[Uy] ≥ loThresh
hiThresh ·fm ·pm,y. Therefore, Pr[Uy] ≥

loThresh
1+
√
2(1+κ)pivot

· pm,y · fm. By Lemma 16, fm > 0.8. The proof is now completed

by showing pm,y ≥ 1
2m (1 − e−3/2). This gives Pr[Uy] ≥ 0.8(1−e−3/2)loThresh

(1+
√
2(1+κ)pivot)2m

≥
0.8(1−e−3/2)loThresh
2(1.05+κ)(|RF↓S |−1) . The last inequality uses the observation that 1/(

√
2·pivot) ≤

0.05 and 1√
2

|RF↓S |−1
2m ≤ pivot ≤

√
2
|RF↓S |−1

2m .

To calculate pm,y, we first note that since y ∈ RF↓S , the requirement “y ∈
RF↓S,h,α” reduces to “y ∈ h−1(α)”. For α ∈ {0, 1}n, we define wm,y,α as

Pr
[

pivot√
2(1+κ)

≤ |RF↓S,h,α| ≤ 1+
√

2(1 + κ) pivot and h(y) = α : h
R←− Hxor(n,m)

]
.

Therefore, pm,y = Σα∈{0,1}m (wm,y,α · 2−m). The proof is now completed by

showing that wm,y,α ≥ (1− e−3/2)/2m for every α ∈ {0, 1}m and y ∈ {0, 1}n.
Towards this end, let us first fix a random y. Now we define an indicator

variable γz,α for every z ∈ RF↓S\{y} such that γz,α = 1 if h(z) = α, and γz,α = 0
otherwise. Let us fix α and choose h uniformly at random from Hxor(n,m).
The random choice of h induces a probability distribution on γz,α such that
E[γz,α] = Pr[γz,α = 1] = 2−m. Since we have fixed y, and since hash functions
chosen from Hxor(n,m) are 3-wise independent, it follows that for every distinct
za, zb ∈ RF↓S \ {y}, the random variables γza,α, γzb,α are 2-wise independent.
Let Γα =

∑
z∈RF↓S\{y} γz,α and µα = E[Γα]. Clearly, Γα = |RF↓S,h,α| − 1

and µα =
∑
z∈RF↓S\{y} E[γz,α] =

|RF↓S |−1
2m . Also, Pr[ pivot√

2(1+κ)
≤ |RF↓S,h,α| ≤

1 +
√

2(1 + κ)pivot] = Pr[ pivot√
2(1+κ)

− 1 ≤ |RF↓S,h,α| − 1 ≤
√

2(1 + κ)pivot]

≥ Pr[ pivot√
2(1+κ)

≤ |RF↓S,h,α|−1 ≤
√

2(1+κ)pivot]. Using the expression for pivot,

we get 2 ≤ be−1/2(1+1/ε)2· |RF↓S |−12m c. Therefore using Lemma 5 and substituting

pivot = (|RF↓S |−1)/2m, we get Pr[ pivot√
2(1+κ)

≤ |RF↓S,h,α|−1 ≤
√

2(1+κ)pivot] ≥
1− e−3/2. Therefore, Pr[ pivot√

2(1+κ)
≤ |RF↓S,h,α| ≤ 1 +

√
2(1 +κ)pivot] ≥ 1− e−3/2

Since h is chosen at random from Hxor(n,m), we also have Pr[h(y) = α] = 1/2m.
It follows that wm,y,α ≥ (1− e−3/2)/2m.

The next lemma provides an upper bound on wi,y,α and pi,y.

Lemma 8. For i < m−1, both wi,y,α and pi,y are bounded above by 1
|RF↓S |−1

1

(1− 2(1+κ)

2m−i )
2 .

Proof. We will use the terminology introduced in the proof of Lemma 7. Clearly,

µα =
|RF↓S |−1

2i . Since each γz,α is a 0-1 variable, V [γz,α] ≤ E [γz,α]. Therefore,
σ2
z,α ≤

∑
z 6=y,z∈RF↓S E [γz,α] ≤

∑
z∈RF↓S E [γz,α] = E [Γα] = 2−i(|RF↓S | − 1).

So Pr[ pivot√
2(1+κ)

≤ |RF↓S,h,α| ≤ 1 + (1 + κ)
√

2 pivot] ≤ Pr[|RF↓S,h,α| − 1 ≤ (1 +



κ)
√

2 pivot] ≤ Pr[|RF↓S,h,α|− 1 ≤ 2(1 +κ)
|RF↓S |−1

2m ]. From Chebyshev’s inequal-
ity, we know that Pr [|Γα − µz,α| ≥ λσz,α] ≤ 1/λ2 for every κ > 0. By choosing

λ = (1− 2(1+κ)
2m−i )

µz,α
σz,α

(note that λ > 0 for i < m−1), we have Pr[|RF↓S,h,α|−1 ≤

(1 + κ)2
|RF↓S |−1

2m ] ≤ Pr
[
|(|RF↓S,h,α| − 1)− |RF↓S |−12i | ≥ (1− 2(1+κ)

2m−i )
|RF↓S |−1

2i

]
≤ 1

(1− 2(1+κ)

2m−i )
2 · 2i

|RF↓S |−1 . Since h is chosen at random from Hxor(n,m), we also

have Pr[h(y) = α] = 1/2i. It follows that wi,y,α ≤ 1
|RF↓S |−1

1

(1− 2(1+κ)

2m−i )
2 . The

bound for pi,y is easily obtained by noting that pi,y = Σα∈{0,1}i
(
wi,y,α · 2−i

)
.

This allows us to give an upper bound for Pr[Uy].

Lemma 9. For every y ∈ RF↓S, Pr[Uy] ≤ 1+κ
|RF↓S |−1 (7.55 + 0.29

(1−κ)2 ).

Proof. We will use the terminology introduced in the proof of Lemma 7. The

proof below uses the inequality 2m ·pivot ≥ |RF↓S |−1√
2

at several points. Note also

that by Lemma 6, Pr[Uy] ≤
∑q
i=q−2

loThresh
|Y | pi,y ≤

√
2(1+κ)loThresh

pivot

∑q
i=q−2 pi,y.

We can sub-divide the calculation of Pr[Uy] into three cases based on the range
of the values m can take.
Case 1 : q − 2 ≤ m ≤ q.
Now there are three values that m can take.

1. m = q − 2. We know that pi,y ≤ Pr[h(y) = α] = 1
2i . Therefore, Pr[Uy|m =

q − 2] ≤
√
2(1+κ)loThresh

pivot · 1
2q−2

7
4 . Substituting the value of pivot and m, we

get Pr[Uy|m = q − 2] ≤ 7(1+κ)loThresh
2(|RF↓S |−1) .

2. m = q − 1. For i ∈ [q − 2, q], we have pi,y ≤ Pr[h(y) = α] = 1
2i . Pr[Uy|m =

q − 1] ≤
√
2(1+κ)loThresh

pivot · 1
2q−2

7
2 . Substituting the value of pivot and m, we

get Pr[Uy|m = q − 2] ≤ 7(1+κ)loThresh
|RF↓S |−1 .

3. m = q. For i ∈ [q − 1, q], we have pi,y ≤ Pr[h(y) = α] = 1
2i . Using Lemma 8,

we get pq−2,y ≤ 1
|RF↓S |−1

(
1

(1− 1+κ
2 )

2

)
. Therefore we have

Pr[Uy|m = q] ≤
√

2(1 + κ)loThresh

pivot

[
1

|RF↓S | − 1

(
1(

1− 1+κ
2

)2
)

+
3

2q

]
.

Noting that pivot ≥ 17 and κ ≤ 1, Pr[Uy|m = q] ≤ (1+κ)loThresh
|RF↓S |−1 (6 + 0.333

(1−κ)2 ).

Pr[Uy|q − 2 ≤ m ≤ q] ≤ maxi(Pr[Uy|m = i]). Therefore, Pr[Uy|q − 2 ≤ m ≤ q] ≤
Pr[Uy|m = q] ≤ (1+κ)loThresh

|RF↓S |−1 (6.667 + 0.333
(1−κ)2 ).

Case 2 : m < q− 2. Pr[Uy|m < q− 3] ≤
√
2(1+κ)
pivot ·

1
2q−3

7
4 . Substituting the value

of pivot and maximizing m = q + 3, we get Pr[Uy|m < q − 2] ≤ 7(1+κ)loThresh
4(|RF↓S |−1) .



Case 3 : m > q. By Lemma 8, we have Pr[Uy|m > q] ≤ Pr[Uy|m = q + 1] =√
2(1+κ)loThresh

pivot ( 2
2m + 1

|RF↓S |−1 (
∑q−1
i=q−2

1

1− 2(1+κ)

2m−i
)). Noting that pivot ≥ 17 and

expanding the summation,

Pr[Uy|m > q] ≤ (1 + κ)loThresh

|RF↓S | − 1

(
4 +

√
2

17

(
1

(1− 2(1+κ)
23 )2

+
1

(1− 2(1+κ)
22 )2

))
.

Using κ < 1 for the first term, Pr[Uy|m > q] ≤ (1+κ)loThresh
|RF↓S |−1 (4.333 + 0.333

(1−κ)2 ).

Summing up all the above cases, Pr[Uy] = Pr[Uy|m < q − 2] × Pr[m <
q − 2] + Pr[Uy|q − 2 ≤ m ≤ q]× Pr[q − 2 ≤ m ≤ q] + Pr[Uy|m > q]× Pr[m > q].
From Lemma 16, we have Pr[m < q − 2] + Pr[m > q] ≤ 0.177. From the results
above, we see that Pr[Uy|m < q − 2] ≤ Pr[Uy|m > q]. Therefore, Pr[Uy|m <
q − 2] × Pr[m < q − 2] + Pr[Uy|m > q] × Pr[m > q] ≤ 0.177 × Pr[Uy|m > q]. So

plugging in the expressions above gives Pr[Uy] ≤ (1+κ)loThresh
|RF↓S |−1 (7.44 + 0.392

(1−κ)2 ).

Combining Lemmas 7 and 9, the following lemma is obtained.

Lemma 10. Regardless of the order chosen on line 1 of GenerateSamples, for
every y ∈ RF↓S and ε > 6.84 we have

loThresh

(1 + ε)|RF↓S |
≤ Pr[Uy] ≤ 1.02(1 + ε)

loThresh

|RF↓S |
.

Proof. The proof is completed by using Lemmas 7 and 9 and substituting (1 +
ε) = (1 + κ)(7.44 + 0.392

(1−κ)2 ). To arrive at the results, we use the inequality
2(1.05+κ)

0.8(1−e−3/2)
≤ (1+κ)(7.44+ 0.392

(1−κ)2 ). Furthermore, we use loThresh
(1+ε)|RF↓S | <

loThresh
(1+ε)(|RF↓S |−1) .

Also, since we assume |RF↓S | − 1 ≥ 60, we have (1+ε)loThresh
|RF↓S |−1 < 1.02(1+ε)loThresh

|RF↓S | .

Lemma 11. GenerateSamples succeeds (i.e. does not return ⊥) with probability
at least 0.62.

Proof. As mentioned above, we are assuming |RF↓S | > 1 +
√

2(1 + κ)pivot.
Let Psucc denote the probability that GenerateSamples succeeds. Let pi with
q − 2 ≤ i ≤ q denote the conditional probability that the condition on line 6
of GenerateSamples evaluates to true with pivot√

2(1+κ)
≤ |RF↓S,h,α| ≤ 1 +

√
2(1 +

κ)pivot, given that |RF↓S | > 1 +
√

2(1 + κ)pivot. Let fm = Pr[q − 2 ≤ m ≤ q].
Therefore as shown in Lemma 6, Psucc ≥ pmfm ≥ 0.8pm. The theorem is now
proved by using Lemma 5 to show that pm ≥ 1− e−3/2 ≥ 0.77.

For every y ∈ {0, 1}n and for every α ∈ {0, 1}m, define an indicator variable
νy,α as follows: νy,α = 1 if h(y) = α, and νy,α = 0 otherwise. Let us fix α and
y and choose h uniformly at random from Hxor(n,m). The random choice of h
induces a probability distribution on νy,α, such that Pr[νy,α = 1] = Pr[h(y) =
α] = 2−m and E[νy,α] = Pr[νy,α = 1] = 2−m. In addition 3-wise independence of
hash functions chosen from Hxor(n,m) implies that for every distinct ya, yb, yc ∈
RF↓S , the random variables νya,α, νyb,α and νyc,α are 3-wise independent.



Let Γα =
∑
y∈RF↓S νy,α and µα = E [Γα]. Clearly, Γα = |RF↓S,h,α| and µα =∑

y∈RF↓S E [νy,α] = 2−m|RF↓S |. Since |RF↓S | > pivot and i − l > 0, using the

expression for pivot we get 3 ≤
⌊
e−1/2(1 + 1

κ )−2 · |RF↓S |2m

⌋
. Therefore, by Lemma

5, Pr
[
|RF↓S |

2m .
(

1− κ
1+κ

)
≤ |RF↓S,h,α| ≤ (1 + κ)

|RF↓S |
2m

]
> 1−e−3/2. Simplifying

and noting that κ
1+κ < κ for all κ > 0, we obtain Pr

[
(1 + κ)−1 · |RF↓S |2m ≤ |RF↓S,h,α|

≤ (1 + κ) · |RF↓S |2m

]
> 1 − e−3/2. Also, pivot√

2(1+κ)
≤ 1

1+κ
|RF↓S |−1

2m ≤ |RF↓S |
(1+κ)2m and

1 +
√

2(1 + κ)pivot ≥ 1 +
(1+κ)(|RF↓S |−1)

2m ≥ (1+κ)|RF↓S |
2m . Therefore, pm =

Pr[ pivot√
2(1+κ)

≤ |RF↓S,h,α| ≤ 1+
√

2(1+κ)pivot] ≥ Pr
[
(1 + κ)−1 · |RF↓S |2m ≤ |RF↓S,h,α|

≤ (1 + κ) · |RF↓S |2m

]
≥ 1− e−3/2.

B.3 Analysis of EstimateParameters

In this section we define ` = log(60) − 1 and µ = E[|RF |S,h,α|] = 2−i|RF↓S |.
Putting HC(x) = round(log x + log 1.8 − log pivot), we show that the value
hashBits computed by EstimateParameters is a good estimate of HC(|RF↓S |)
with high probability.

The following property of pairwise independent hash functions is the main
tool in our analysis.

Lemma 12. With h and α chosen as in EstimateParameters, for each γ > 0 we
have

Pr[(1− γ)µ ≤ |RF |S,h,α| ≤ (1 + γ)µ] ≥ 1− 1

γ2µ
.

Proof. By pairwise independence, the variance of |RF |S,h,α| is at most µ. The
result then follows from Chebyshev’s inequality.

Lemma 13. Let EstimateParameters return a hashBits value of c, with i being
the final value of its loop counter. Then

Pr
[
HC((1.8)−1 · |RF↓S |) ≤ c ≤ HC(1.8 · |RF↓S |)

∣∣∣ c 6= ⊥ and i+ ` ≤ log2 |RF↓S |
]
≥ 0.831.

Proof. Since c 6= ⊥, by line 11 of the pseudocode we have c = HC(2i ·|RF |S,h,α|),
where α, i and h denote (with abuse of notation) the values of the corresponding
variables in the final iteration of the loop. As mentioned above, we are assuming
that |RF↓S | > 60. Since i + ` ≤ log2 |RF↓S |, we have µ = 2−i|RF↓S | ≥ 2` = 30.
Applying Lemma 12 with γ = 0.8/(1 + 0.8) < 0.8, we obtain

Pr[(1.8)−1 · 2−i|RF↓S | ≤ |RF |S,h,α| ≤ (1.8) · 2−i|RF↓S |] ≥ 1− 5.0625

µ
≥ 0.831.

Lemma 14. Given |RF↓S | > 60, the probability that EstimateParameters returns
non-⊥ with i+ ` ≤ log2 |RF↓S |, is at least 0.991.



Proof. Let us denote log2 |RF↓S |−` = log2 |RF↓S |−(blog2(60)c−1) by m. Since
|RF↓S | > 60 as noted above and |RF↓S | ≤ 2n, we have ` < m+` ≤ n. Let pi (` ≤
i ≤ n) denote the conditional probability that EstimateParameters terminates in
iteration i of its loop with 1 ≤ |RF |S,h,α| ≤ 60, given |RF↓S | > 60. Since the
choice of h and α in each iteration of the loop are independent of those in
previous iterations, the conditional probability that EstimateParameters returns
non-⊥ with i ≤ log2 |RF↓S | = m + l, given |RF↓S | > 60, is p` + (1 − p`)p`+1 +
· · ·+(1−p`)(1−p`+1) · · · (1−pm+`−1)pm+`. Let us denote this sum by P . Thus,

P = p` +
∑m+`
i=`+1

∏i−1
k=`(1 − pk)pi ≥

(
p` +

∑m+`−1
i=`+1

∏i−1
k=`(1− pk)pi

)
pm+` +∏m+`−1

s=` (1−ps)pm+` = pm+`. The lemma is now proved by showing that pm+` ≥
0.991. Applying Lemma 12 with γ = 1− 1/30 and i = m = log2 |RF↓S | − `, and
noting that µ = 2−i|RF↓S | = 2` = 30, we have Pr[1 ≤ |RF |S,h,α| ≤ 59] ≥ 0.991.

Now we can establish that EstimateParameters provides a good estimate of
HC(|RF↓S |).

Lemma 15. With hashBits computed by EstimateParameters, we have

Pr
[
c 6= ⊥ and HC((1.8)−1 · |RF↓S |) ≤ hashBits ≤ HC((1.8) · |RF↓S |)

]
> 0.823.

Proof. Combine Lemmas 13 and 14, getting an overall success probability of at
least 0.831 · 0.991 > 0.823.

This in turn means that hashBits is a good estimate of the quantity m used
in the analysis of GenerateSamples.

Lemma 16. Let m = round(log(|RF↓S | − 1) − log pivot) be defined as in Sec-
tion B.2. For the value hashBits computed by EstimateParameters, we have

Pr[hashBits− 2 ≤ m ≤ hashBits] > 0.823.

Proof. Straightforward computation from Lemma 15, noting that |RF↓S | > 60.
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