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ABSTRACT OF THE DISSERTATION

Computational Methods for Comparative Genomic
and Epigenomic Annotations across

Multiple Species

by

Adriana Cristina Arneson
Doctor of Philosophy in Bioinformatics
University of California, Los Angeles, 2019

Professor Jason Ernst, Chair

In recent years Genome Wide Association Studies (GWAS) and large-scale whole genome
sequencing case-control studies have led to the identification of a wealth of phenotype-
associated and rare genetic variants. Interpreting the biological significance of these variants
has been a significant challenge, especially since a large majority of their genomic locations fall
within non-protein coding genomic regions. Here we present a computational method,
ConsHMM, for annotating the genome at single-nucleotide resolution into a set of conservation
states learned from the combinatorial and spatial patterns of species aligning and matching a
reference genome in a multiple-sequence alignment. Conservation states have specific
enrichments for orthogonal biological annotations and can be used for interpreting genetic
variants. We provide here a comprehensive resource of conservation state annotations, the

ConsHMM atlas, comprised of models and annotations for eight different organisms based on



several multiple-sequence alignments. At the epigenomic level, modifications such as DNA
methylation have emerged as useful biomarkers for several phenotypes, but a large majority of
these phenotypes have been studied predominantly in human samples. Leveraging sequence
conservation among genomes, we have designed a methylation array that can query DNA
methylation of many different mammals, and therefore facilitate cross species epigenetic
studies. The array has been produced and used to profile 8730 samples from 145 different
mammals. In summary, this work takes a comparative genomics based approach to expanding

the available genomic and epigenomic annotations of multiple species.
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Chapter 1.  Introduction

Comparative genomic approaches have long been at the core of efforts for annotating
genomes and interpreting the biological function of DNA sequences'. These efforts have
become increasingly important in recent years, as the flourishing of GWAS and large-scale
whole genome sequencing case-control studies has led to an accumulation of documented
phenotype-associated and rare variants, whose mechanistic role is poorly understood?® In
particular, in non-protein coding regions of the genome, where the amino acid code is not
applicable, variant interpretation becomes challenging. Methods based on comparative
genomics use comparisons either between genomes of different species to identify regions
where mutations are less likely to happen than would be expected based on models of neutral
evolution *7’. Such methods can be applied genome-wide and produce a single nucleotide
annotation of the importance of each base in a genome. Epigenomic annotations have been
another source of genome interpretation, particularly in recent years, when consortiums such as
Roadmap Epigenomics and ENCODE have accumulated a wealth of epigenomic datasets
assays across cells and tissue types®®. In particular the epigenetic modifications of DNA
methylation has emerged as an important biomarker for several phenotypes, such as cancer
status and biological age'®"". However, these biomarkers have been primarily studies in human
samples, and a robust platform for studying epigenetic modifications across species is still
lacking. Here, | present a set of computational comparative genomics methods that leverage
sequence conservation to create biologically meaningful annotations of genomes and to create

a methylation array for cross-species epigenomic studies.

In Chapter 2 we present a comparative genomics whole genome annotation approach,
ConsHMM, which applies a multivariate hidden Markov model to learn de novo ‘conservation

states’ based on the combinatorial and spatial patterns of which species align to and match a

1



reference genome in a multiple species DNA sequence alignment. Unlike existing methods,
ConsHMM takes a data-driven, unbiased approach that does not make any assumption about a
neutral rate of evolution or an underlying phylogeny. We applied ConsHMM to a 100-way
vertebrate sequence alignment to annotate the human genome at single nucleotide resolution
into 100 conservation states. These states have distinct enrichments for other genomic
information including gene annotations, chromatin states, repeat families, and bases prioritized
by various variant prioritization scores. Constrained elements have distinct heritability
partitioning enrichments depending on their conservation state assignment. ConsHMM

conservation states are a resource for analyzing genomes and genetic variants.

In Chapter 3 we apply ConsHMM to produce 21 additional genome annotations
covering human and seven other organisms for a variety of multi-species alignments.
Additionally, we have extended ConsHMM to generate allele specific annotations, which we
used to produce conservation state annotations for every possible single nucleotide mutation in
the human genome. Finally, we provide a web interface to interactively visualize parameters
and annotation enrichments for ConsHMM models. These annotations and visualizations
comprise the ConsHMM Atlas, which we expect will be a valuable resource for analyzing a

variety of major genomes and genetic variation.

In Chapter 4 we present the development of a mammalian methylation array that can be
used to profile DNA methylation in several mammals. The mammalian array can facilitate
comparative epigenomic analyses, as it is based on a set of human CpGs falling in conserved
regions, for which we engineered probes that can accurately profile the same CpG in other
species. We applied the array to a set of 8730 samples from 145 different species. Here we
present an analysis of the array data from 10 mammals with more than 200 samples for each

species. We find that the methylation signature of each sample encodes both the species and



tissue of origin information. We anticipate the array will be used for a multitude of comparative

epigenomic studies.

Chapter 2. Systematic Discovery of Conservation States for Single-Nucleotide

Annotation of the Human Genome
2.1 Introduction

The large majority of phenotype-associated variants implicated by genome-wide
association studies (GWAS) are non-coding'. Identifying and interpreting causal non-coding
variants is an important challenge'®. Mapping of epigenomic data across different cell and tissue
types has been one approach for annotating and interpreting the non-coding regions of
genomes®®'. Using comparative genomics data to identify regions of evolutionary constraint
has been a complementary approach for these purposes®>'°.

In addition to providing evolutionary information, comparative genomics data has the
advantage of providing information at single-nucleotide resolution. Furthermore, it is cell type
agnostic and thus informative even when the relevant cell or tissue type has not been
experimentally profiled®'®. The most commonly used representations of this information are
univariate scores and binary elements of evolutionary constraint, which are called based on a
multiple species DNA sequence alignment and assumed models of evolution and

selection®*8"17

. Supporting the importance of these annotations, heritability analyses have
recently implicated evolutionary constrained elements as one of the annotations most enriched
for phenotype associated variants'®. These scores and elements have also been highly
informative features to integrative methods for prioritizing pathogenic variants'®??. Further
improvements to pathogenic coding variant prioritization scores have been made by also using

features defined directly from a multiple sequence alignment®.



While useful, the representation of comparative genomics information into univariate
scores or binary elements is limited in the amount of information it can convey about the
underlying multiple sequence alignment at a specific base. This limitation has become more
pronounced given the large number of species now available in multi-species alignments such
as a 100-way alignment to the human genome®. Approaches have been developed to
associate constrained elements, regions, or individual bases with specific branches in a

phylogenetic tree®’

. While also useful, such directed approaches are biased to only
representing certain types of patterns present in an alignment. An alternative approach learned
patterns of different classes of mutations between human and only one non-human genome®,
and was only applicable at a broad region level.

Analogous to the many sequenced genomes available for comparative analysis, many
different epigenomic datasets are available for annotating genomes. Approaches that define
‘chromatin states’ based on combinatorial and spatial patterns in these datasets have effectively

14,33-

summarized the information in them to provide de novo genome annotations % Inspired by
the success of these approaches, here we develop a method, ConsHMM, that extends the
ChromHMM?** method to systematically annotate genomes into ‘conservation states’ at single
nucleotide resolution given a multiple species DNA sequence alignment. ConsHMM takes a
relatively unbiased and flexible modeling approach that does not explicitly assume a specific
phylogenetic relationship between species.

We applied ConsHMM to assign a conservation state to each nucleotide of the human
genome. The states capture distinct enrichments for other genomic annotations such as gene
annotations, CpG islands, repeat families, chromatin states, genetic variation, and bases
prioritized by variant prioritization scores. The ConsHMM conservation state annotations are a

resource for interpreting genomes and potential disease-associated variation, which

complement both existing conservation and epigenomic-based annotations.



2.2 Results

Annotating the human genome into conservation states

We developed an approach, ConsHMM, to annotate a genome into conservation states
at single nucleotide resolution based on a multiple species DNA sequence alignment (Figure
2.1a, Methods). At each position in a reference genome, ConsHMM encodes one of three
observations for each non-reference species in the alignment: aligns with a nucleotide present
that is the same as the reference genome, different than the reference genome, or does not
have a nucleotide present at that position. ConsHMM then probabilistically models the
combinatorial and spatial patterns in these observations using a multivariate hidden Markov
model (HMM). In each state of the HMM, ConsHMM assumes that the probability of observing a
specific combination of observations is determined by a product of independent multinomial
random variables. The parameter values will generally differ between states, and ConsHMM
learns them from the input. After the model is learned, ConsHMM assigns each nucleotide in the
reference genome to the state that had the maximum posterior probability of generating the
observations.

We applied ConsHMM to a 100-way Multiz vertebrate alignment with the human genome
as the reference genome®**. We focused our analysis here on a model learned using 100
states to balance recovery of additional biological features and model tractability (Figures 2.2-
2.10, Methods). We verified that ConsHMM’s transition parameters have a smoothing effect,
which is consistent with applications of HMMs for constrained element detection®'’, as the
number of segments increased from 889 million to 1.06 billion when using an equivalent model
without transition information, though most state assignments to individual bases were the same
(Figure 2.11, Methods). We illustrate ConsHMM conservation state annotations at two loci,

which shows that bases with similar existing constraint annotations can have different



conservation state assignments corresponding to very different underlying alignment patterns

(Figures 2.2b, 2.12).

Major groups of conservation states

Hierarchically clustering the conservation states revealed eight notable subsets of states
(Figures 2.2a, 2.6, Supplementary Data 1, Methods). The first subset was a single state
(state 1) that showed high align and match probabilities through essentially all the vertebrates.
The second subset showed relatively high align and match probabilities for all mammals and
some non-mammalian vertebrates (states 2-4). The third subset showed relatively high align
and match probabilities for most if not all mammals, but not non-mammalian vertebrates (states
5-22). The fourth subset showed high align probabilities for many mammalian species, but had
low align probabilities for notable mammals such as mouse and rat for many of the states in the
group (states 23-46). The lower mouse and rat probabilities relative to mammals that diverged
earlier is consistent with increased substitution rates for mouse and rat’. The fifth subset
showed high align probabilities for many mammalian species, but did not show high match
probabilities (states 47-63). The sixth subset showed high align probabilities for most primates,
but not for other species (states 64-89). The seventh subset showed high align probabilities for
at most a subset of primates (states 90-99). The final subset was a single state (state 100) that
showed high align and match probabilities for most primates and non-mammalian vertebrates,
but low probabilities for non-primate mammals, consistent with a previous observation about the

association of non-mammalian vertebrates with likely alignment artifacts®’.

Conservation states positional enrichments
Conservation states showed strong and distinct positional enrichments relative to

annotated gene features including transcription start sites (TSS), transcription end sites (TES),



and exon start and end sites, for both protein coding genes and pseudogenes. Within 20 base
pairs (bp) of exon starts of protein coding genes, seven states (states 1-4, 7, 28, and 54) had at
least 13-fold enrichment for some position, which also held for exons in specific coding phases
(Figures 2.13a, 2.14a-c). These states were the only states that had a majority of positions
aligning for at least some non-mammalian vertebrates, while still having a majority of positions
aligning for all primates (Figure 2.2a, Supplementary Data 1). Within exons, states 1 showed
the strongest enrichment, consistent with its high matching probabilities through all vertebrates
(Figures 2.2b, 2.13a,b, 2.14a-e). State 1 also had >40-fold enrichment at each of the three
nucleotides immediately upstream of exon starts and six nucleotides downstream of exon ends
(Figures 2.13b, 2.14c), corresponding to positions of the canonical 3’ and 5 splice site
sequences respectively, and consistent with their high conservation throughout vertebrates®.
Downstream of the start of protein-coding exons, the enrichment profile for state 1 showed a 3-
bp oscillation period, with a dip of enrichment at codon wobble positions. States 3 and 54
showed an inverse oscillation pattern, consistent with the states’ high align probabilities through
many vertebrates and lower match probabilities (Figures 2.13a, 2.14a-c).

Around the TSS of protein coding genes, state 28, which had moderate align and match
probabilities for most vertebrates, had the maximum enrichment (>30-fold) (Fig. 2.13c).
Consistent with this enrichment, state 28 also had a 32-fold enrichment for CpG islands.
However, state 28 was also 20-fold enriched for CpG islands >2kb away from any TSS of
protein coding genes and 10-fold enriched for TSS of protein coding genes >2kb away from a
CpG island. This suggests that both of these features are contributing to the association or the
presence of unannotated TSS overlapping CpG islands®®. Relative to TES of protein coding
genes, enrichment of state 2, which had high align and match probabilities for almost all

vertebrates except for fish, peaked at almost 12-fold (Figure 2.14f).



Relative to pseudogene exon starts and ends, states 100 and 82, both associated with
alignability to distal vertebrates without many mammals closer to human (Figure 2.2b,
Supplementary Data 1), had enrichments peaking at greater than 100 and 38-fold respectively
(Figure 2.14g,h). States 100 and 82 also showed the greatest enrichment relative to TSS of
pseudogenes peaking at 184 and 68-fold respectively (Fig. 2.13d) and for TES of pseudogenes
peaking at 199 and 61-fold respectively (Figure 2.14i).

Conservation states also had different positional enrichments relative to instances of
regulatory motifs, with the enrichment varying at single nucleotide resolution (Figure 2.13e,f,
Methods)*. For example, states 2 and 5 reached 1.8-fold enrichments at some nucleotides in
the POUSF1 and STAT motifs respectively, but had lower enrichments (1.4-1.5) at other
nucleotides with lower information content. States 55-57, which had high align probabilities for
most mammals and low match probabilities even for most primates, peaked in enrichment at the
CG dinucleotide in the center of the STAT motif, consistent with their genome-wide CG

dinucleotides enrichments (Figures 2.13e, 2.15).

Conservation state enrichments for different gene classes

We next investigated conservation states enrichments for different gene classes. For
each state, we determined the top 5% of gene promoter regions overlapping the state, which
controls for different state preferences in general for promoters. For those corresponding genes,
we evaluated Gene Ontology (GO) enrichments, which revealed distinct enrichment patterns
(Figures 2.16b, 2.17, Methods). For example, states 1-3, which all had high alignability through
at least birds, had substantial differences in their gene preferences. Out of these states, state 1
and state 3, which had high matching through all vertebrates and mainly mammals respectively,
were the only ones enriched for nucleosomes (p<10™'; 10.5-fold) and sensory perception of

smell genes (p<107%; 15.5-fold) respectively. State 2, which had high match probabilities



through all vertebrates except fish, was the state most enriched for cellular developmental
processes (p<10™’; 1.8-fold), which were not enriched in state 3. States with overall lower align
or match probabilities also had notable enrichments. For example, state 89, which had
moderate alignability for most non-primate mammals, but low matching even for primates, was
the state most enriched for antigen binding (p<10"*; 6.7-fold) consistent with antigen binding

being associated with many species, but fast evolving*'.

Conservation state enrichments for repeat elements

The conservation state enrichments for bases in repeat elements ranged widely from 2-
fold enrichment to 133-fold depletion (Figures 2.2b, 2.10)***?. Of the 25 states in which only
primate species had a majority of positions aligning, all but states 89 and 96 had an enrichment
of 1.55 or greater for repeat elements, while the other 75 states all had a lower enrichment or
were depleted (Supplementary Data 1). Neither state 89 nor 96 enriched for repeat elements.
As noted above, state 89 is associated with fast evolving bases shared with some non-primate
mammals, while state 96 is associated with assembly gaps (Figure 2.10).

Individual conservation states had distinct enrichments for different repeat classes
(Figure 2.18). For instance, different states had maximal enrichments for the DNA, LINE, LTR,
and SINE repeat classes (Figure 2.16d). State 74, which had high align and match probabilities
for all primates, had the maximal enrichment of 5.6-fold for DNA repeats, while the enrichment
for the other three classes were between 1.0 and 1.8-fold. State 86, which lacked alignability of
a subset of primates, had the maximal of 3.0-fold enrichment for LINE repeats, while the
enrichment for the other classes were between 0.6 and 1.6-fold. States 76 and 77 had maximal
enrichments of 3.3 and 4.5-fold for LTR and SINE respectively compared to 1.1 and 2.1-fold for
SINE and LTR respectively. States 76 and 77 both had high align probabilities through primates

up to and including squirrel monkey, with the exception that state 77 lacked alignability to gorilla.



Despite these subtle differences in alignment probabilities, these states had substantial

differences in their repeat enrichments.

Relationship of conservation states to chromatin states

To understand the relationship of conservation states to chromatin states we determined
the median enrichment of each conservation state for 25-chromatin states defined across 127
samples using imputed data®*® (Figures 2.16a, 2.19). Eleven conservation states were
maximally enriched for at least one of the chromatin states. Conservation state 28 had the
greatest enrichment for any chromatin state, with a 35-fold enrichment for an active promoter
chromatin state, and was maximally enriched for four other promoter associated chromatin
states. Conservation state 1 was maximally enriched (3.8 to 8.7-fold) for five chromatin states
associated with transcribed and exonic regions*®, consistent with its maximal enrichment for
annotated exons. Conservation state 2 was maximally enriched (3.1 to 4.7-fold) for five
enhancer associated chromatin states, while conservation state 5 had high enrichments for
these states and was maximally enriched (2.5-fold) for a chromatin state primarily associated
with just signal of DNase | hypersensitive sites (DHS). These chromatin state enrichments

highlight the multi-dimensional information that conservation states capture.

Conservation states and cell type specific DHS

We next investigated whether different conservation states capture distinct enrichment
patterns for DHS across cell and tissue types. We analyzed DHS from the 53 samples
considered above for which maps of experimentally observed DHS were available®. We
hierarchically clustered the row normalized enrichment patterns of the 21 conservation states
that exhibited at least 2-fold enrichment in one or more samples, revealing two major clusters of

states (Figure 2.16c). One major cluster contained 14 states, with ten of the states having
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maximum enrichment for a fetal sample and the remaining four states having maximum
enrichment for the cell type Human Umbilical Vein Endothelial Cells (HUVEC). The second
major cluster consisted of seven states, all of which were enriched for CpG islands (Figures
2.2b, 2.10). The samples for which DHS had the greatest enrichments for states in this cluster
also had the greatest enrichment for CpG islands (Figure 2.16¢c, Methods), but were

biologically diverse in the type of cell or tissue and could potentially reflect technical differences.

Conservation states’ relationship to constraint annotations

We next investigated the relationship of the conservation state annotations with
constrained element sets from four methods (GERP++, SiPhy-omega, SiPhy-pi, and
PhastCons) and univariate scores of evolutionary constraint from three methods (GERP++,
PhastCons, and PhyloP). The PhastCons and PhyloP constraint annotations were defined on
the same alignment as the conservation states. The available GERP++, SiPhy-omega, and
SiPhy-pi constraint annotations were defined from different versions of Multiz alignments and
only considered mammals.

States 1-5 all had >9.0-fold enrichment for each constrained element set and high mean
constraint scores consistent with their high matching probabilities across all mammals (Figures
2.2b, 2.20). States 54 and 100 also had >6.0-fold enrichment for at least one constrained
element set. State 100, which had high aligning and matching primarily in non-mammalian
vertebrates, had 15-fold enrichment for PhastCons elements and high mean PhastCons and
PhyloP scores, consistent with these scores being defined using non-mammalian vertebrates.
State 54, which had high alignability through most vertebrates and low matching outside
primates, enriched 4 to 7-fold for the constrained element sets, but did not show high mean
base-wise scores particularly for the GERP++ and PhyloP scores, consistent with its

enrichments for codon wobble positions. More generally, constrained element sets, except for
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PhastCons, did not show biologically relevant variation at single nucleotide resolution in their
enrichments around regulatory motifs and exon start and ends as the conservation state
annotations did (Figures 2.13a,e,f, 2.21).

We compared biologically relevant information in conservation state and constraint
annotations using established genome annotations. We evaluated their ability to recover
annotated TSS, TES, and exon starts and ends separately for protein coding and pseudogenes
(Figure 2.22a-c, 2.23). In almost all cases the conservation states provided greater information
for recovering annotated gene features. The only exceptions were that PhyloP scores had
higher precision at low recall levels for protein coding exon starts and ends, and that SiPhy-pi
elements had slightly higher precision for TSS of protein coding genes at their one recall point.

We also evaluated recovering bases covered by DHS (Figures 2.24-25, Methods).
When comparing DHS recovery from 53 samples in aggregate, the conservation states had
greater precision at the same recall level than all the constraint scores and PhastCons
elements, both genome-wide and for non-exonic bases. The precision for GERP++, SiPhy-pi
and SiPhy-omega elements was higher at their single recall point (Figure 2.24). Similar results
were seen for regions distal to TSS, except for some scores at low recall levels in the non-
exonic comparison. The higher precision for GERP++, SiPhy-pi and SiPhy-omega elements in
the aggregate evaluation over constraint scores, PhastCons elements, and conservation states
might be related to the coarser resolution at which they were defined and also did not hold for all
cell types (Figures 2.21, 2.25).

Conservation states also had complementary information about DHS to constrained
elements, as constrained element enrichments for DHS varied substantially depending on their
conservation state (Figures 2.22d, 2.26-27). For example, PhastCons elements bases in 35
states were depleted for Fetal Brain DHS in non-exonic regions, covering 10% of PhastCons

bases, while PhastCons elements bases in 12 states bases were enriched over 5-fold, covering

12



37% of PhastCons bases. Additionally, bases not in a constrained element in some states had
greater enrichments for DHS than bases in a constrained element in other states. Constrained
elements also offered additional information, as in most cases bases that were in a constrained
element in a given conservation state had greater enrichment for DHS than those that were not.

We also analyzed conservation state enrichments for previously defined subsets of
PhastCons constrained non-exonic elements (CNEEs) based on a directed phylogenetic
approach that assigned each element to a phylogenetic branch point of origin® (Figure 2.28a).
Bases in elements assigned to the Tetrapod clade branch point of origin had a 37-fold
enrichment for state 2, which had high aligning and matching through all vertebrates except fish,
but also 51-fold enrichment for state 100, associated with likely alignment artifacts,
demonstrating the heterogeneous nature of assignments from directed phylogenetic partitioning.
We also evaluated the subsets of CNEEs enrichment for CpG islands within non-exonic regions
(Figure 2.28c). The most enriched subset of CNEEs was 6.7-fold enriched covering 1.9% of
non-exonic CpG islands. In comparison, conservation state 28 had a 37.6-fold enrichment, while
covering 12.8% of such bases. A similar pattern of enrichments was observed when only
considering CNEEs overlapping a PhastCons element called on the same alignment as the
conservation states (Figures 2.28b,d). These results highlight that the conservation states

capture additional biological information compared to directed phylogenetic based approaches.

Conservation states enrichments for prioritized variants

Various scores have been proposed to prioritize variants, including based on inter- or
intra-species constraint or integration of diverse genomic annotations. However, a systematic
understanding of different types of bases these scores prioritize is generally lacking. To address
this, we analyzed conservation states’ genome-wide enrichments of top 1%, 5%, and 10%

prioritized bases by 12-different scores (CADD (v1.4), CDTS, DANN, Eigen, Eigen-PC,
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FATHMM-XF, FIRE, fitCons, GERP++, PhastCons, PhyloP, and REMM). We also analyzed the
enrichment specifically in non-coding regions for those scores and two non-coding only scores,
LINSIGHT and FunSeq2 (Figures 2.29a,b, 2.30-32)%0:19212244-50

Bases prioritized by most scores had strong enrichments for specific conservation
states. For example, state 1, which had high align and match probabilities across all
vertebrates, had a 77.2-fold enrichment for CADD top 1% prioritized bases genome-wide,
covering 46% of such bases. Despite the CADD score being based in part on many non-
conservation annotations, this enrichment was greater than that observed for any inter-species
constraint score. There was a general consistency in states with higher enrichment across the
various measures. For example, in top 1% bases for the genome-wide analysis, only 13 states
were among the top five most enriched by at least one of the 12 scores. Nine of these 13 states
(states 1-5, 7, 28, 54, 100) were in the top five for at least three scores. However, there were
also important enrichment differences between scores for these states, and in several cases a
single score prioritized other states.

There was substantial disagreement among the scores of the relative importance of
states 2 and 28, the most enhancer and promoter enriched states respectively, particularly in
non-coding regions. For example, state 2 was the second or third most enriched state (24.9 to
47.2-fold) for CADD, Eigen, FATHMM-XF, GERP++, LINSIGHT, PhastCons, PhyloP, and
REMM top 1% prioritized bases in non-coding regions. On the other hand, state 28 had lower
enrichments (0.3 to 6.2-fold) and was not one of the top five most enriched states for any of
those scores. In contrast, for CDTS, DANN, and Eigen-PC, state 28 was the first or second
most enriched state (7.6 to 18.6-fold), while state 2 had lower enrichments (0.8 to 2.1-fold) and
was not among the top five most enriched states.

There was a large disagreement in the state enrichments between variants prioritized by

DANN and CADD for both the current and original versions of CADD (Figures 2.31-33). This
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was despite DANN using the same framework as CADD except using a deep neural network*®.
Surprisingly, for top 1% non-coding variants, DANN showed a depletion for state 2, which had
high matching probabilities through all vertebrates except fish, while having over four-fold
enrichment for multiple states that showed high alignment or matching probabilities for only
subsets of primates.

There were also notable enrichment differences for other states for which the biological
importance was less apparent. For example, state 100, associated with likely alignment
artifacts, in the top 1% non-coding region analysis had enrichments in the range 14.7 to 34.5-
fold for FATHMM-XEF, fitCons, PhastCons and PhyloP prioritized bases, while the enrichment for
all other scores was at most 2.0-fold. Another example was state 54, which associated with
wobble position within codons, and had a 21.1 fold enrichment in the top 1% genome-wide
analysis for fitCons prioritized bases and was also the third most enriched state for CDTS,
Eigen-PC, and FIRE, while depleting for GERP++ and REMM prioritized bases. These results
highlight how the conservation states enable recognizing and characterizing distinct subsets of

nucleotides that are selectively captured by different variant prioritization scores.

Conservation states and human genetic variation

Previous analyses have found a depletion of human genetic variation in evolutionarily
constrained elements®. Consistent with that, the greatest depletion (3.3-fold) of common single
nucleotide polymorphisms (SNPs) is in state 1, the state most enriched for constrained
elements, while states 55-57 and 87-89 had the greatest enrichments for common SNPs (5 to 8-
fold). These six states all had high align, but low match probabilities for most primates and had
the greatest enrichment of CG dinucleotides (Figure 2.15). We observed similar patterns of
enrichments and depletions for variants identified from whole genome sequencingso, with their

magnitude increasing with minor allele frequency (Figure 2.34).
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States had opposite enrichment patterns for GWAS catalog variants®' relative to the
background of common SNPs (Figure 2.29c¢c,d). Using this background, state 1 was most
enriched for GWAS catalog variants, consistent with constrained elements enriching for GWAS
variants®. States 55-57 and 87-89 showed the greatest depletion, suggesting that a variant in
one of these states is less likely to be phenotypically associated.

We also applied the INSIGHT®? model to obtain its estimates of the density of positive
selection events and percentage of bases under selection within human populations in each
conservation state (Figure 2.35). States 54-57 and 87-89 all had substantial density for positive
selection event estimates. INSIGHT also estimated that 77% of states had more than 75%
bases under-selection, while 13% had less than 50% bases under selection. Similar estimates
held when restricting to bases in PhastCons elements and not in PhastCons elements (Figure
2.35). However, instead of a majority of states actually having a high percentage of bases under
selection, this likely reflects that there is a relatively direct relationship between human variation
information contained by the conservation states and INSIGHT’s use of such information to

quantify selection.

Conservation states and heritability partitioning

Previous analyses have suggested strong enrichments of constrained elements and
DHS for phenotype heritability'®*®. Given the differences in DHS enrichments of constrained
elements across conservation states, we investigated whether constrained elements in
conservation states most enriched for DHS had different phenotype heritability than those in
other states. Specifically, we ranked the conservation states in descending order of their median
enrichment within non-exonic bases for DHS from 123 experiments (Figure 2.2b, Methods)®.
We then partitioned bases in PhastCons elements into two almost equal size sets based on

whether they overlapped a top seven-ranked conservation state (states 1-5, 8, 28). We
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computed the heritability for the two sets for eight phenotypes in the context of baseline
annotations that include DHS'®. For seven of the phenotypes, bases in constrained elements
overlapping the top seven states had greater enrichment than those in the other states, often
substantially so (Fig. 2.29e). These results suggest possible additional value of conservation

states for isolating disease-associated variants.

2.3 Discussion

We introduced the ConsHMM method for genome annotation and used it to annotate the
human genome at single nucleotide resolution into one of 100 conservation states. ConsHMM
learns conservation states de novo using a multivariate HMM based on the combinatorial and
spatial patterns of which species align and match a reference genome in a multi-species DNA
sequence alignment. Conservation states had substantial enrichments for a wide range of other
genomic annotations, functional genomics data, and human variation data.

ConsHMM differs from other commonly used comparative genomics based annotation
approaches in several respects. One difference is that it takes an unsupervised approach that
does not explicitly use a phylogenetic tree in its modeling. This leads to relatively unbiased,
flexible and interpretable models. Despite not explicitly using a phylogenetic tree, many state
patterns discovered are consistent with commonly assumed phylogenetic relationships of the
species. While states’ parameters often decreased with divergence time from human, there
were some exceptions. Some of these exceptions corresponded to missing specific sub-clades
of species, particularly those with long branch lengths. For example, in some states mouse and
rat were absent, while more distally diverged mammals were present. Other states isolated
likely artifacts in alignments that heavily enriched for pseudogenes. A second difference is that
ConsHMM explicitly differentiates non-aligning bases from aligning non-matching bases, which

allowed it, for example, to identify states such as those associated with third codon positions. A
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third difference between the ConsHMM annotations and standard constraint measures is that
the ConsHMM annotations are defined directly relative to the variant present in the genome
being annotated. When applying ConsHMM to annotate the human genome, a mutation unique
to human would be expected to have a much larger effect on the ConsHMM annotations than a
mutation unique to a single other species. This would not in general be expected for constraint
measures that treat the target genome for annotation in the same way as other genomes in an
alignment. An interesting future direction would be to produce and analyze individual specific
ConsHMM annotations.

ConsHMM annotations are complementary to existing binary elements and scores of
evolutionary constraint based on phylogenetic modeling. Both bases within and outside of
constrained elements are heterogeneous in their assigned conservation states. ConsHMM
annotations provide additional information about the conservation patterns at each base. In
many cases, the conservation states had greater information than constraint scores or elements
for predicting external annotations. Notably, ConsHMM identified a conservation state strongly
enriched for TSS and CpG islands that was not well captured by phylogenetic modeling
approaches. For other annotations, such as DHS, the relative information depended on the
constrained element set or score being compared. Importantly, the DHS information provided by
the states was complementary to information in the constrained elements. Furthermore, we
observed that bases in constrained elements showed substantially different enrichments for
phenotype-associated heritability, depending on their conservation state. The conservation state
annotations also provide a useful framework for understanding the types of bases prioritized by
constraint scores or other types of variant prioritization scores, since the corresponding
conservation patterns are defined systematically in an unbiased way, at single nucleotide

resolution and capture a diverse set of biological features.
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ConsHMM is both inspired by, and provides complementary information to, ChromHMM.
While the annotations produced by two methods have fundamental differences, they also
exhibited substantial cross-enrichments. In general, conservation states have the advantages of
providing information at single nucleotide resolution and about bases active in cell types that
have not been experimentally profiled, while chromatin states have the advantage of directly
providing cell type specific information.

We expect many applications for the ConsHMM method and annotations. The
ConsHMM method can be readily applied to alignments to other reference species or
alignments by other methods®’. The ConsHMM annotations are a resource to interpret other
genomic datasets or variant prioritization scores. A possible avenue for future work would be to
integrate the conservation states with other genomic annotations to produce a variant
prioritization score. An effective strategy for that would need to be powered to retain the rich
information in the conservation state annotations, and would also need to be based on a
principle sufficiently independent from how the conservation states are defined to enable a
meaningful integration and prioritization. This work represents a step towards improving whole
genome annotations, including of non-coding regions and variants, which will be of continued

importance towards understanding disease.
24 Methods

Modeling conservation states with ConsHMM

ConsHMM takes as input an N-way multi-species sequence alignment to a designated
reference genome. For each base in the reference genome, i, ConsHMM encodes information
from the multiple species alignment into a vector, v;, of length N-1. An element of the vector, v;;,
corresponds to one of three possible observation for a non-reference species j at position i. The

three possible observations are: (1) the non-reference species aligns with a non-indel nucleotide
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symbol present matching the reference nucleotide, (2) the non-reference species aligns with a
non-indel nucleotide symbol present, but does not match the reference nucleotide, or (3) the
non-reference species does not align with a non-indel nucleotide symbol present.

ConsHMM assumes that these observations are generated from a multivariate HMM
where the emission parameters are assumed to be generated by a product of independent
multinomial random variables, corresponding to each non-reference species in the alignment.
Formally, the model is defined based on a fixed number of states K, and number of species in
the multiple sequence alignment N. For each state k (k = 1,...,K), non-reference species j (j =
1,...,N-1) and possible observation m (m = 1, 2, or 3 as described above), there is an emission
parameter: p,;» corresponding to the probability in state k for species j of having observation m.
For each possible observation m, let I,(v;j) = 1 if vi; = m, and 0 otherwise. Let b;, be a parameter
for the probability of transitioning from state t to state u. Let ¢ € € denote a chromosome, where
C is the set of all chromosomes in the reference genome of the multiple species alignment, and
let L. be the number of bases on chromosome c. Let a, (k = 1,...,K) be a parameter for the
probability of the first base on a chromosome being in state k. Let s; € S; be a hidden state
sequence on chromosome ¢ and S; be the set of all such possible state sequences. Let ¢,

denote position h on chromosome c. Let s, denote the hidden state at position ¢, for state

sequence S..

We learn a setting of the model parameters that aims to optimize

Lc Le N-1 3
| | | | | | | | | | Im(”ch,j)
P(Ula, bl p) - 2 ascl bSCi—1’SCi psch'j‘m
CEC ScES. i=2 h=1 j=1 m=1

Once a model is learned, each nucleotide is assigned to the state with maximum
posterior probability. To conduct the model learning and state assignments, ConsHMM calls an
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extended version of the ChromHMM?** software, originally designed to solve an analogous
problem of annotating a genome into chromatin states based on combinatorial and spatial
patterns of the presence of different chromatin marks. The modeling in ConsHMM differs from
the typical use of ChromHMM in three main respects: (1) the observation for each feature
comes from a three-way multinomial distribution as opposed to a Bernoulli distribution, (2) it is
applied at single nucleotide resolution as opposed to 200-bp resolution, (3) it is applied with
more features than ChromHMM models have used in the past. (2) and (3) raise scalability
issues in terms of time and memory, which we addressed in an updated version of ChromHMM
(see below).

To apply ChromHMM in the context of three-way multinomial distributions, ConsHMM
represents the three possible observations at position i for a species j with two binary variables,
y;j and z;, corresponding to aligning and matching the reference genome respectively. y; has the
value of 1 if the other species aligns to the reference with a non-indel nucleotide and 0
otherwise. z; has the value of 1 if the other species has the same nucleotide as the reference
sequence and has a value of 0 if the other species has a different nucleotide present than the
reference. In the case in which y;=0, there is no nucleotide to compare to the reference and that
value of the z; variable is considered missing (encoded with a ‘2’ for ChromHMM). If the value of
an observed variable is missing, ChromHMM excludes the Bernoulli random variable
corresponding to the observation from the emission distribution calculation at that position. For
each state k and species j, ChromHMM thus learns two parameters, fi; and gy,. fi; corresponds
to the probability that at a given position in state k, species j aligns to the reference genome with
a non-indel nucleotide, that is P(y;=1| s;=k). g«; corresponds to the probability that at a given
position in state k, species j matches the reference genome conditioned on species j aligning
with a non-indel nucleotide, that is P(z;;= 1| y;/=1 and s;=k). This representation is equivalent to

the three-way multinomial distribution, (px;1, pxj2 Pxj3) described above where py;s = P(yi=1,
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z;=1|s; = k), pj2 = P(yij=1, zi=0 | s; = k), and pg;3 = P(y;=0 | s; = k), since px;1 = fxj Xk, Pkj2 =

fk,j X (1-gk,/), and Pkj3= 71— fk,j.

Multiple species sequence alignment choice
ConsHMM can be applied to any multiple species sequence alignment which is available

in multiple alignment format (MAF) or which can be converted into this format. For the results
presented here we applied it to the 100-way Multiz vertebrate alignment with human (hg19) as
the reference genome?®**®.
Scaling-up ConsHMM to single base resolution

Since for our application ConsHMM needs to run ChromHMM at single base resolution (*-b
1’ flag) with 198 features after our binary encoding (2 for each non-human species in the 100-
way alignment), we had to address scalability issues in terms of both memory and time. To
address the memory issue we modified ChromHMM to support only loading in main memory
input for chromosomes it is actively processing, as previously ChromHMM would only support
loading all data into main memory upfront. This option can now be accessed in ChromHMM
through the ‘-lowmem’ flag. To reduce the time required we used 12-parallel processors (*-p 12’
flag) and we trained on a different random subset of the human genome on each iteration of the
Baum-Welch algorithm. We divided each chromosome into 200kb segments (with the exception
of the last segment of each chromosome which was less than this) in order to form random
subsets of the human genome. We modified ChromHMM to allow training for each iteration on a
randomly selected subset of 150 of these segments (‘-n 150’ flag), corresponding to 30MB per
iteration. We ran this for 200 iterations by adding the ‘-d -1’ flag, which removed one of
ChromHMM'’s default stopping criterion based on computed likelihood change on the sampled

data, since the likelihood is now expected to both increase and decrease between iterations as
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different segments are sampled. These new options were included in version 1.13 of
ChromHMM. The unique code to ConsHMM v1.0 is written in Python. The code of ConsHMM

shared with ChromHMM is written in Java and included with ConsHMM.

Generating genome-wide annotations

After ConsHMM learned a state model, we used it to segment and annotate the human
genome at base-pair resolution into conservation states. Each base in the human genome is
classified into the state with the highest posterior probability. ConsHMM does this by running the
MakeSegmentation command of ChromHMM. Due to computational constraints, the
segmentation could not be generated for entire chromosomes at once. Instead, we ran
MakeSegmentation on the same 200kb partitioning made for learning the model. We then
merged the resulting files together using ConsHMM’s mergeSegmentation.py command with
slice size parameter set to 200,000 (‘-s 200000’ flag) and the number of states parameter set to

100 (-n 100 flag’).

Computing enrichments for external annotations

All overlap enrichments for external annotations were computed using the ChromHMM
OverlapEnrichment command. OverlapEnrichment computes enrichments for an external
annotation in each state assuming a uniform background distribution. Specifically the fold

enrichment of a state for an external annotation is

% of external annotation bases falling in that state

% of genome falling in that state

Positional enrichments of states relative to an anchor point from an external annotation

were computed using the ChromHMM NeighborhoodEnrichment command at single base
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resolution (-b 1’ flag), single base spacing from the anchor point (‘-s 1’) and using the ‘-I' and ‘-r’
flags to specify the size of the region of interest around the anchor point. The ‘-lowmem’ flag
was also wused for computing the enrichments for OverlapEnrichment and

NeighborhoodEnrichment.

External data sources for enrichment analyses

The external annotations of repeat elements were obtained from the UCSC genome
browser RepeatMasker track®**2. We generated an annotation for whether a base overlapped
any repeat element, as well as separate annotations for bases falling in each class and family of
repeat elements. The gene annotations were obtained from GENCODE v19 for hg19**. CpG
island annotations were obtained from the UCSC genome browser. Annotations of SNPs with
>=1% minor allele frequency were obtained from the commonSNP147 track from the UCSC
genome browser, which is based on dbSNP build 147. GWAS catalog variants were obtained
from the NHGRI-EBI Catalog, accessed on Dec 5, 2016°'. For annotations of DNase |
Hypersensitive Sites (DHS) processed by the Roadmap Epigenomics Consortium, we used
Macs2 narrowPeak calls®. The Fetal Brain and HepG2 DHS used were of epigenome samples
E082 and E118 respectively. For the median non-exonic DHS enrichments and ranking of
states in the heritability partitioning analysis we used narrowPeak calls from the ENCODE
consortium®. In the cases where ENCODE provided more than one replicate for a cell or tissue
type, we used the first replicate.

PhyloP and PhastCons scores and constrained element calls were obtained from the
UCSC genome browser. Assembly gap annotations were obtained from the Gap track from the
UCSC genome browser. The context-dependent tolerance score (CDTS) used was that based

on a cohort of 7784 unrelated individuals, following the analyses in Ref. 47, which focused on
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this version of the score. The CDTS and variants from this cohort were both lifted from hg38 to

hg19 using the liftOver tool from the UCSC genome browser®.

Choice of number of states

We learned models with each number of states between 2 and 100 states. We set 100
as the maximum number of states we would consider for computational tractability and
maintaining a manageable number of states for analysis. The choice of a maximum of 100 also
corresponds to the number of species used and allows for the possibility of each state to cover
1% of the genome. We analyzed the Bayesian Information Criterion (BIC) for models with each
number of states between 2 and 100, and found that the BIC generally decreases as the
number of states increases in the range considered (Figure 2.3). The BIC was calculated using
the BIC_HMM function from the HMMpa R package®. Analyzing the 100-state model’s internal
confidence estimate of its state assignments also supported a larger number of states.
Specifically, for each state in the 100-state model we computed the average posterior
probability of that state at each base in the genome assigned to it, and confirmed consistently
high average posterior probability values in the range [0.92,1.00] with a median of 0.97 (Figure
2.3). The posterior probabilities were computed by running the MakeSegmentation command in
ChromHMM with the ‘-printposterior’ flag. We also investigated if additional states in models
with larger number of states were biologically relevant. Specifically, we computed enrichments
for various external annotations for models with each number of states between 2 and 100 to
determine if biologically relevant enrichments were only robustly observed in models with more
than a certain number of states. In the case of CpG islands, we observed that only models with
at least 87 states consistently obtained >15 fold enrichment and only models with at least 95
states consistently obtained >30 fold enrichment (Figure 2.4). We saw a similar pattern of

increasing enrichments for annotated TSS for models with large number of states. We therefore

25



decided to analyze the largest model, 100 states, that we were considering. We note that
annotations based on chromatin states used fewer number of states, but were also defined on

fewer features at a coarser resolution and had a less uniform genome coverage'*3**,

State clustering

We clustered the states based on the correlation of vectors containing the values f; and
fij Xgk; for each species j defined above. State clustering was performed using the hclust
hierarchical clustering function from the cba R package56. The leaves of the resulting
hierarchical tree were ordered according to the optimal leaf ordering algorithm®” implemented in
the order.optimal R function from the cba package. We then cut the tree such that the 8 major

groups of states were designated. The full tree is provided in Figure 2.6.

Genome segmentation using uniform transition probabilities

For analyzing the effect of the transition probabilities on the genome segmentation, we
created a separate model, which was the same model we used in the main analyses, except we
set all transition probabilities to 0.01, corresponding to each state having an equal probability of
transitioning to any state including itself. We then created a new genome segmentation by
running the MakeSegmentation command in ChromHMM with this new model. For each state,
we counted how many of the bases assigned to it in the original annotation were also assigned
to it in the annotation created with the uniform transitions, and divided this number by the
number of bases in the state in the original annotation. This calculation provided a fraction from
0 to 1. We also reported the number of segments produced by each model, where a segment is
defined to be one or more consecutive bases all assigned to the same state, such that any

immediately adjacent bases are assigned to a different state or states.
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GO enrichments

For each state and each protein-coding gene based on GENCODE, we computed the
number of bases in that state that are within +/- 2kb of the gene’s TSS. In the case of genes
with multiple annotated TSS, we used the outermost TSS. We then created a ranking of genes
for every state by sorting the genes in descending order of this number of bases. For each
state, we then created a set of 969 genes that represent the top 5% of genes in the state among
the 19,397 genes we considered. We performed a GO enrichment analysis (ontology and
annotations files from Nov. 24", 2016) for the top 5% genes in each state using the STEM
v1.3.10 software in batch mode with default options and the set of all genes considered as
background®. STEM computed an uncorrected p-value based on the hypergeometric
distribution for each term displayed in the figures summarizing the analysis. STEM also reported
corrected p-values for testing multiple GO terms for a single state based on randomization to

three significant digits, which was less than 0.001 for all p-values mentioned in the main text.

Transcription factor binding site motif enrichments

We computed the fold enrichment of the conservation states within 15 bases upstream
and downstream of the center point of the POU5SF1 and STAT known transcription factor-
binding site motifs*®. The enrichment was computed relative to the background regions of the
genome that were used to identify the motifs, which excluded repeat elements, coding
sequence, and 3’ untranslated regions (UTRs). We used the known1 version of the motifs for

both POU5SF1 and STAT.

Clustering of cell-type specific DHS enrichments
For the clustering of DHS analysis, we first computed the fold enrichments of all

conservation states for DHS for 53 samples processed by the Roadmap Epigenomics
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consortium®, of which 16 were originally generated by the ENCODE project consortium®. We
then selected the subset of states that had a fold enrichment of at least 2 in at least one sample,
leading to a subset of 21 conservation states. To more directly focus on each state’s relative
enrichments across samples, we log, transformed each enrichment value, and then normalized
the enrichments for each state by subtracting the mean enrichment across samples and dividing
by the standard deviation. We then hierarchically clustered the states based on the correlation
of their enrichments across samples and hierarchically clustered the samples based on their
correlations across states using the pheatmap R package®. We also computed for each sample
the fold enrichment of DHS bases for bases in CpG islands, as the ratio between the percent of

DHS bases in CpG islands and the percent of the genome falling in CpG islands.

Precision recall analysis for recovery of gene annotations

We randomly split the 200kb genome segments used for training the model and
segmentation into two halves corresponding to training and testing data. For each target set in
the precision-recall analyses, we ordered the ConsHMM states in decreasing order of their
enrichment for the target among the training set bases. We then used that ordering to iteratively
add the testing set bases in each state to form cumulative sets of bases predicted to be of the
target set, and computed the precision and recall for them. For each constraint score, we
computed the precision-recall curve for predicting the target set in the test data using two
methods. For the first method, we directly ordered bases in descending order of their assigned
score. For the second method, we split the sorted scores into 400 bins such that each bin
contains on average 0.25% of the genome, which was the size of the smallest state of the
ConsHMM model (0.25% of the genome in state 100). Specifically, we assigned all bases in the
genome where the score was not defined to one bin and then divided the remaining bases

uniformly among the 399 other bins based on their score. In some cases, score increments
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were at the boundary between two bins at their provided floating-point precision, or overlapped
multiple bins. In these cases, we uniformly split the target bases assigned to that score
increment into multiple bins proportionally to the overall percentage of the score increment
falling in each bin. We then treated the 400 bins as 400 states and followed the same procedure
described for the ConsHMM states. We also computed the precision and recall of bases in each

constrained element set for predicting the target set on the testing data.

Precision recall analysis for recovery of DHS

For the precision recall analysis for recovery of DHS analysis for a single cell type, we
followed the same procedure described above. We also separately evaluated recovery of DHS
bases when restricting the analysis to non-exonic regions. Additionally, both genome-wide and
within non-exonic regions, we evaluated the recovery of DHS bases when restricting the
analysis to bases distal to a TSS, defined as more than 2kb from a TSS. For the analysis of the
recovery of DHS aggregated across cell and tissue types we concatenated DHS from 53 cell or
tissue types processed by the Roadmap Epigenomics Consortium into one annotation in which
each combination of chromosome and cell or tissue type effectively becomes a new
chromosome. We then split the concatenated data into training and testing sets as described
above. We computed the enrichments of the ConsHMM states and scores split into bins as
detailed above, but multiplying the size of each state and bin by the number of DNase |
hypersensitivity data sets. The precision and recall values for the ConsHMM states, constraint
scores considered directly, constraint scores split into bins, and constrained element sets were

then computed on the testing data.

Enrichment analysis for phylogenetically partitioned CNEEs
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We lifted over the CNEEs from Ref. 22 from hg18 coordinates to hg19, using the liftOver
tool from the UCSC genome browser with default settings®*. These elements were previously
partitioned into subsets based on the inferred branch point of origin in a phylogenetic tree®. We
computed the enrichments of the conservation states for all the CNEEs and for each subset of
the CNEEs separately, using the OverlapEnrichment command from ChromHMM at single
nucleotide resolution (‘-b 1’ flag) and using the low memory option (‘-lowmem’). We also
computed analogous enrichments for CNEEs overlapping PhastCons elements called on the
same 100-way alignment that the conservation states were annotated based on. To compute
the enrichments of CNEEs for bases in CpG islands we created an annotation consisting of a
state for each CNEE subset and one additional state for bases not assigned to any CNEE. We
then ran the same OverlapEnrichment command as above to compute enrichments of CNEE
bases for non-exonic CpG islands, and non-exonic bases in general. The reported enrichment
of CpG islands is the ratio of these two enrichments, effectively computing an enrichment
relative to the non-exonic background. The set of non-exonic bases for the enrichment analysis

was generated by excluding all bases annotated as an exon in GENCODE v19.

Heritability partitioning analysis

The heritability partitioning was performed using the LD-score regression Idsc
software'®. We partitioned the PhastCons constrained elements into two halves based on a
ranking of the conservation states. We focused on the PhastCons constrained elements for this
analysis, since it was the only element set defined on the same alignments as the conservation
states. We focused on halves since the LD-score regression estimates can be unstable for
annotations covering too small of a percentage of the genome'. To determine the two halves
we ranked the conservation states in descending order of median fold-enrichment of non-exonic

bases for DHS from 123 experiments from the University of Washington ENCODE group®. We
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then divided bases in PhastCons elements between the top 7 ranked states (1-5, 8 and 28),
which contain 51.9% of bases in PhastCons elements, and the bottom 93 states, which contain
the other 48.1% of bases in PhastCons elements. We applied Idsc to these two sets for 8 traits
(age at menarche, body mass index (BMI), coronary artery disease, educational attainment,
height, low-density lipoprotein (LDL) levels, schizophrenia and smoking behavior), all of which
were previously considered in heritability partitioning analysis'®. We followed the procedure for
partitioning heritability as done in Ref. 15, including using the baseline annotation set and 500
base-pair windows around annotations to dampen the artificial inflation of heritability in
neighboring regions caused by linkage disequilibrium. The baseline annotation set contains a
range of annotations including DHS. For our analysis, we first removed the constrained element
set already included in the baseline annotation set, then added our two halves of PhastCons

elements and finally ran the Idsc software on the full set of annotations.

Enrichment analysis for variant prioritization scores

For each variant prioritization score included in the conservation state enrichment
analysis of prioritized bases, we extracted the top 1%, 5% and 10% of all the bases ranked by
each score, both genome-wide and just in non-coding regions. The non-coding regions were
defined as the intersection of where the LINSIGHT and FunSeqg2 scores provided a value, as
these two scores were only defined on non-coding regions. This intersection results in a set of
bases covering 90% of the genome that excludes coding regions in addition to other regions
filtered for technical reasons by either of the two methods®***. For each score we chose the
score threshold that gave us a size for the top set that was as close as possible to the target
percentage, which did not always exactly match the target percentage due to the precision of
the scores. If a score did not provide a value for a particular base being considered, then that

base was assigned to the lowest value of that score, but would still be counted when
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establishing the percentage thresholds. For the scores that provided separate score values for
alternate alleles at a certain position, we used the maximum of the values for all alleles. The
state enrichments were then computed using the OverlapEnrichment command from
ChromHMM at single base resolution (*-b 1’ flag) and with the low memory option (‘-lowmem’
flag). For the analysis restricted to non-coding regions, we also computed the enrichment of the
states for this background region using the same command. The enrichment for each score in a
state was then divided by the enrichment of the background region for the state. For the Eigen
and Eigen-PC scores we used version 1.1, for FunSeq2 we used version 2.1.6, and for CADD

we used both v1.0 and v1.4.

INSIGHT analysis
The INSIGHT®? package was used with parameters of 15% allele frequency threshold, 100
minimum neutral flanking sites and the optimizer method BFGS_DIRECT for the

OPT_METHOD flag.

Data availability
The ConsHMM conservation state annotations of hg19 are available at

https://doi.org/10.6084/m9.figshare.8162036.v1 and https://github.com/ernstlab/ConsHMM. The

input multiple species alignment for producing the conservation state annotations is available at

http://hgdownload.soe.ucsc.edu/goldenPath/hg19/multiz100way/. The following URLs contain

data sets that were used in the downstream analyses: 25-state chromatin state annotations:

http://compbio.mit.edu/roadmap; CADD score v1.0:

http://krishna.gs.washington.edu/download/CADD/v1.0/whole_genome SNVs.tsv.gz; CADD

score v1.4:

http://krishna.gs.washington.edu/download/CADD/v1.4/GRCh37/whole _genome SNVs.tsv.gz;
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CDTS score:

http://www.hli-opendata.com/noncoding/coord CDTS percentile N7794unrelated.txt.gz,

http://www.hli-opendata.com/noncoding/SNVusedForCDTScomputation N7794unrelated allelic

Frequency0.001truncated.txt.gz; CNEEs from Ref. 22:

http://www.stanford.edu/~lowec/data/threePeriods/hg19cnee.bed.gz; DANN score:

https://cbcl.ics.uci.edu/public_data/DANN/data/; EIGEN and Eigen-PC score:

https://xioniti01.u.hpc.mssm.edu/v1.1/; ENCODE DHS:

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeUwDnase/; FATHMM-

XF score: http://fathmm.biocompute.org.uk/fathmm-xf/; FIRE score:
https://sites.google.com/site/fireregulatoryvariation/; fitCons score:
http://compgen.cshl.edu/fitCons/Odownloads/tracks/i6/scores/; FunSeqg2 score:

http://org.gersteinlab.funseq.s3-website-us-east-

1.amazonaws.com/funseq2.1.2/hg19 NCscore funseq216.tsv.bgz; GENCODE v19:

https://www.gencodegenes.org/releases/19.html; GERP++ scores and constrained element

calls: http://mendel.stanford.edu/SidowLab/downloads/gerp/; GWAS catalog variants:

https://www.ebi.ac.uk/gwas/; LINSIGHT score:

http://compgen.cshl.edu/~yihuang/tracks/LINSIGHT.bw; Motif instances and background:

http://compbio.mit.edu/encode-motifs/; REMM score:

https://zenodo.org/record/1197579/files/ReMM.v0.3.1.tsv.gz; Roadmap Epigenomics DHS:

http://egg2.wustl.edu/roadmap/data/byFile Type/peaks/consolidated/narrowPeak/; SiPhy-omega

and SiPhy-pi constrained element calls (hg19 liftOver): https://www.broadinstitute.org/mammals-

models/29-mammals-project-supplementary-info

Code availability
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The ConsHMM software is available through https://github.com/ernstlab/ConsHMM. The

ChromHMM software used for enrichment analyses and on top of which ConsHMM s built is
available at http://www.biolchem.ucla.edu/labs/ernst/ChromHMM/. The STEM software used for
GO enrichment analysis is available at http://sb.cs.cmu.edu/stem/. The Idsc software used for
the heritability partitioning analysis is available at https://github.com/bulik/ldsc. The INSIGHT
software used for selection analyses is available at

http://compgen.cshl.edu/INSIGHT/downloads/INSIGHTpackage/.
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25 Figures
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Figure 2.1 lllustration of ConsHMM modeling approach.

(a) The input to ConsHMM is a multiple species alignment, which is illustrated for a toy example
of 6 species aligned to the human sequence. At each position and for each species ConsHMM
represents the information as one of three observations: (1) aligns with a non-indel nucleotide
matching the human sequence shown in blue, (2) aligns with a non-indel nucleotide not
matching the human sequence shown in yellow, or (3) does not align with a non-indel nucleotide
shown in gray. (b) lllustration of conservation state assignments at the locus chr22:25,024,640-
25,024,812 in hg19. Only states assigned to at least one nucleotide in the locus are shown.
Below the conservation state assignments is a color encoding of the input multiple species
alignment according to panel (a). The major clade of species as annotated on the UCSC
genome browser?’ are labeled and ordered based on divergence from human. Above the
conservation state assignments are PhastCons constrained elements and scores and PhlyoP
constraint scores. This figure and Figure 2.12 together illustrate that positions of nucleotides
that have the same status in terms of being in a constrained element or not or have similar
constraint scores can be assigned to different conservation states depending on the patterns in
the underlying multiple species alignment.
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Figure 2.2 Conservation state emission parameters learned by ConsHMM and enrichments for
other genomic annotations.

(a) Each row in the heatmap corresponds to a conservation state. For each state and species,
the left half of the heatmap gives the probability of aligning to the human sequence, which is
one minus the probability of the not aligning emission. Analogously, the right half of the heatmap
gives the probability of the matching emission. Each individual column corresponds to one
species with the individual names displayed in Figure 2.7. For both halves, species are grouped
by the major clades and ordered based on the hg19.100way.nh phylogenetic tree from the
UCSC genome browser, with species that diverged more recently shown closer to the left*’.The
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conservation states are ordered based on the results of applying hierarchical clustering and
optimal leaf ordering®. The states are divided into eight major groups based on cutting the
dendrogram of the clustering. The full dendrogram and an explanation of the group mnemonics
is available in Figure 2.6. The groups are indicated by color bars on the left hand side and a
white row between them. Transition parameters between states of the model can be found in
Figure 2.8. (b) The columns of the heatmap indicate the relative enrichments of conservation
states for external genomic annotations (Methods). For each column, the enrichments were
normalized to a [0,1] range by subtracting the minimum value of the column and dividing by the
range and colored based on the indicated scale on the right. Values for these enrichments and
additional enrichments can be found in Figure 2.10 and enrichments for individual repeat
classes and families can be found in Figure 2.18.

Bayesian Information Criterion (BIC) vs. Number of States
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Figure 2.3 BIC as a function of number of states in the model.

The BIC criterion computed for models with each number of states from 2 to 100. For this
criterion lower values correspond to preferred models.
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Figure 2.4 Average posterior probability of ConsHMM state assignments

The value listed for each state is the average posterior probability of that state for all bases in
the genome assigned to that state.
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Figure 2.5 Maximum CpG and TSS state enrichments as a function of number of states in the
model.

The figures show the maximum fold enrichment for (a) CpG islands and (b) TSS of any state in
a model as a function of the number of states in the model. The figure shows that states with
substantially higher enrichment for these annotations are only found consistently in models with
a large number of states. There were isolated cases of models with a moderate number of
states also exhibiting high enrichment. However, since similar enrichment levels were not
captured in models with similar numbers of states this suggest the possibility that other
biologically relevant states might be missing from these models.
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Group Description

State [Group Memonic
AM_allVert

High align and match frequency for all vertebrates

AM_nonMam

|
ﬁ

High align and matching for mammals and some
non-mammals

AM_Mam

High align and match for mammals

AM_SMam

High align and match for mammals, but missing
notable subsets

A_SMam

High align frequencies for mammals, but low match|
frequencies

AM_Prim

High align and match frequencies for primates

AM_SPrim

i

High align and match frequencies for a few
primates

Figure 2.6 Hierarchical clustering and grouping of conservation states.

The dendrogram on left displays a hierarchical clustering of the states based on the values in
Figure 2.2a, with the leaves ordered based on optimal leaf ordering®. The thick black line
indicates where the dendrogram was cut to form the eight major groups of conservation states,
each receiving a different color shown on right. To the right of the state numbers are state group
abbreviations from Figure 2.2a. To the right of the state labels is a high level description of the
general patterns of the parameters of the state groups. Notable enrichments associated with

specific states are summarized in Supplementary Data 1.
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Figure 2.7 Representation of the emission parameters

This is a more detailed view of the representation of the emission parameters shown in the
heatmap in Figure. 2.2a. In this figure the actual probabilities values and the individual species
names are also displayed.
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Figure 2.8 Conservation state model transition probabilities.

The figure displays the conservation state model transition probabilities. The values correspond
to the probability when in the state of the row to transition to the state of the column at the next
base. Probabilities are displayed multiplied by 100, rounded to the nearest integer and shaded
based on their value, with darker red corresponding to greater transition probabilities. Transition
probabilities along the diagonal show the probability of remaining in the state at a neighboring
position, which were often the highest values for some states. For states associated with low
matching probabilities relative to the alignment probabilities such as the A_SMam subgroup
(states 47-63) the probability of remaining in the same state was low. Transition probabilities to
stay in the same state were highest in some states only showing substantial alignability at most
within primates, thus the model can use spatial information through these transition probabilities
to better differentiate instances of states with relatively similar emission probabilities.
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Figure 2.9 Distribution of the genome in each state.

The graph displays the percent of the genome assigned to each conservation state. The median
state coverage was 0.76% of the genome. All states except state 96 were in the range of 0.25%
to 3.92% of the genome. State 96 was the largest state covering 8.86% of the genome and was
associated with assembly gaps (Figure 2.10).
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Figure 2.10 Conservation state enrichment values.

The first column displays the state number followed by the percentage of genome in each state,
and then the values of the fold enrichments represented in the heatmap in Figure 2.2b along
with additional columns for: enrichments for TES of protein coding genes, TES of pseudogenes,
coding sequence (CDS), untranslated regions (UTRs), and assembly gaps. The last row gives
the % of the genome covered by the annotation in each column. In the case of median non-
exonic DHS, the last row is the median genome coverage across the DNase | experiments.
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State Probability of
assignment | assignment to same
using | state using uniform
original transition
model probabilities

Figure 2.11 Comparison of state annotations from the learned model versus the learned model
except with uniform probabilities.

The first column shows the state IDs. The second column displays for each state the fraction of
bases annotated to the state using the learned model that were also assigned when using the
learned model except with uniform transition probabilities. For all states the majority of bases
were assigned to the same state when using the model with uniform transition probabilities with
the fraction ranging between 0.78 and 1.00.
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fuman WA, TTOGCCGAATTTTC TGGTTTCTTCTOCACTGACCCATCACAT TTT TGBGTCTCATGCTGTCTTTTCTCATTCAGAAMCTGTTCTATTTCTGOCCTGATGCTCTGCTCA TGCTCTGCTCATGCTGAC AGAGOCCTGGT
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Afrotheria

Fish

. Aligning and matching the human sequence
. Aligning but not matching the human sequence

Not aligning to the human sequence

Figure 2.12 lllustration of conservation state assignments at an additional locus.

Similar to Figure 2.2b, but illustrating the conservation state assignment at a different locus:
chr22:20,673,589-20,673,761. The top tracks are the DNA sequence, the PhyloP score,
PhastCons elements, and then PhastCons score. Below this set of tracks are the conservation
state assignments with only the states assigned to at least one nucleotide in the locus shown.
Below the conservation state assignments is a color encoding of the input multiple sequence
alignment. The major clade of species as annotated on the UCSC genome browser2 are
labeled and ordered based on divergence from human. The figure is an example of positions
with high constraint scores from PhyloP and PhastCons, while the multiple sequence alignment
lacks alignment to most mammals, which is suggestive of alignment artifacts. ConsHMM states
82 and 100 capture the pattern of non-mammalian vertebrates aligning and/or matching the
human genome, without most mammals. State 95 captures the pattern of all species having low
alignment and matching probabilities and relatively proximal to states with higher probabilities of
alignment and matching (Figures 2.7-8).
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Figure 2.13 Conservation state emission parameters learned by ConsHMM and enrichments for
other genomic annotations.

(a) Each row in the heatmap corresponds to a conservation state. For each state and species,
the left half of the heatmap gives the probability of aligning to the human sequence, which is
one minus the probability of the not aligning emission. Analogously, the right half of the heatmap
gives the probability of the matching emission. Each individual column corresponds to one
species with the individual names displayed in Figure 2.7. For both halves, species are grouped
by the major clades and ordered based on the hg19.100way.nh phylogenetic tree from the
UCSC genome browser, with species that diverged more recently shown closer to the left’’.The
conservation states are ordered based on the results of applying hierarchical clustering and
optimal leaf ordering®. The states are divided into eight major groups based on cutting the
dendrogram of the clustering. The full dendrogram and an explanation of the group mnemonics
is available in Figure 2.6. The groups are indicated by color bars on the left hand side and a
white row between them. Transition parameters between states of the model can be found in
Figure 2.8. (b) The columns of the heatmap indicate the relative enrichments of conservation
states for external genomic annotations (Methods). For each column, the enrichments were
normalized to a [0,1] range by subtracting the minimum value of the column and dividing by the
range and colored based on the indicated scale on the right. Values for these enrichments and
additional enrichments can be found in Figure 2.10 and enrichments for individual repeat
classes and families can be found in Figure 2.18.
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Figure 2.14 Additional conservation state positional enrichments.

The figure shows additional positional enrichment plots similar to what was shown in Fig. 3.
These additional enrichment plots include enrichments relative to start of exons of protein
coding genes for (a) phase 1 and (b) phase 2 exons, (c) all exons, and a zoomed out view of
enrichments relative to (d) the start and (e) end of all exons of protein coding genes. Also shown
are enrichment plots relative to (f) TES of protein coding genes, (g) start and (h) end of exons of
pseudogenes as well as (i) TES of pseudogenes. Enrichments were computed relative to a
genome-wide background. The subset of states included in the figure was composed of the
states that had at least a 3 fold enrichment at some position within +/-2kb from the anchor point.
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88
89

State Number
Figure 2.15 Enrichment of CG dinucleotides in the states.

The bar graph shows for each state its fold enrichment for CG dinucleotides. States 55-57 and
87-89 had the highest enrichments followed by states 28 and 54.
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Figure 2.16 Conservation states enrichment for chromatin states, GO terms, DHS and repeat
elements.

(a) Median fold enrichment of conservation states (rows) for one of 25 chromatin states from a
previously defined chromatin state model defined across 127 samples of diverse cell and tissue
types (columns)®. Only conservation states that had the maximum value for at least one
chromatin state are shown, and those values are boxed. See Figure 2.19 for the enrichments of
all conservation states. (b) —log10 p-value (uncorrected) of the conservation states (rows) for
the GO term (columns) where each conservation state is associated with its top 5% genes
based on promoter regions (Methods). Only GO terms which were the most significantly
enriched term for some conservation state among terms the state was maximally significant for
are shown, restricted to the top 10 terms based on the significance of the enrichment. Only
conservation states that had the most significant enrichment for one of the displayed GO terms
are shown, with the maximal enrichments boxed. The full set of conservation states with
additional GO terms are in Figure 2.17. (c) Relative enrichments of conservation states for DHS
across cell and tissue types. Only conservation states with at least a 2 fold enrichment in one
sample considered are shown. Enrichment values were log2 transformed and then row
normalized by subtracting the mean (right heatmap) and dividing by the standard deviation.
States and experiments were then hierarchically clustered and revealed two major clusters. In
the top cluster conservation states showed the greatest enrichment for experiments in which the
DHS also strongly enriched for CpG islands (top heatmap). In the bottom cluster conservation
states had the strongest relative preference for fetal related samples or HUVEC. (d) Fold
enrichment of conservation states with the maximal enrichment for LINE, SINE, LTR or DNA
repeats next to the state align probabilities for primates. These states all had low align
probabilities outside of primates, but their differences among primates corresponded to
substantial differences in repeat enrichments.?
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Figure 2.17 GO term enrichment p-values.

This figure is an extended version of Figure 2.16b, now showing —log10 p-values for GO term
enrichments for all states. The criteria for including a GO term were the same as in Figure
2.16b, except the top 10 term criterion was relaxed to include four additional terms. Values that
are boxed mark the top most significant enrichment for the term of the column.
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Figure 2.18 Conservation state enrichments for RepeatMasker classes and families of repeats.

The rows correspond to different conservation states and columns correspond to different
repeat classes or families. The first 16 columns are repeat classes, and the remaining are
repeat families. The values correspond to fold enrichment for the repeat class or family for the
conservation state. Values are shaded in a column specific manner. The last row gives the % of
the genome the repeat class or family covers.
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Figure 2.19 Conservation state enrichments for chromatin states.

This is an extended version of Fig. 4a. Each row corresponds to one of the conservation states.
Each column corresponds to one of 25 chromatin states from the Roadmap Epigenomics
imputation based chromatin state model defined across 127 samples of diverse cell and tissue
types®. The values reported are the median fold enrichment across the 127 samples of the
chromatin state for the conservation state. Values that are boxed were the maximum value of

the column.
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Figure 2.20 Conservation states enrichments for evolutionary constrained element calls and
average constraint scores.

(a) Each row corresponds to a conservation state and each column corresponds to a different
constrained element set. The values correspond to the fold enrichment for bases in a
constrained element set for the conservation state. The constrained element sets are from left to
right GERP++, PhastCons, SiPhy-omega, and SiPhy-pi. The bottom row gives the percentage
of the genome of each constrained element set. (b) Each row corresponds to a conservation
state and each column corresponds to a different score of constraint. The values correspond to
the average constraint score in the conservation state. The constraint scores are from left to
right: PhyloP8, PhastCons5, and GERP++.

54



a b C

1.8 ~-Phastcons elements = 20 ~~PhasiCons elemens
1 ~GERP
20 SiPhy-
~*-SiPhy-pi eler s
" 1.
g 8 8
8 - . © T
®15- » »
= c €
[ (9] ()
£ £ £
] s15 )
5101 5 5
he) o b}
£ 1.4 2
- PhastCons elements
| - GERP++ elements
5 SiPhy-omega elements 13
+ SiPhy-pi elements :
-20 -10 0 10 20 -10 0 10 -10 0 1
Distance from exon start of Distance from center of STAT Distance from center of POU5F1

protein-coding genes in phase 0

Figure 2.21 Positional enrichment of constrained element sets.

Analogous to what was shown for conservation states in Figure 2.13a,e,f, the graphs show the
positional fold enrichments of GERP++, PhastCons, SiPhy-omega and SiPhy-pi constrained
elements calls around (a) the start of exons of protein coding genes, (b) center of instances of a
STAT motif, and (c) center of instances of a POUSF1 motif. Of these only PhastCons element
calls are able to exhibit relevant single nucleotide enrichment variation, as was seen with the
conservation states.
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Figure 2.22 Relationship of conservation states with constrained elements and scores.

Precision-recall plots for recovery of (a) TSS of protein coding genes, (b) TES of protein coding
genes, and (c) the start of exons of protein coding genes. Recovery based on ordering
ConsHMM conservation states for their enrichment for the target set in the training data, then
cumulatively adding the states in that ranked order and evaluating on the test data is shown with
a series of blue dots (Methods). The first few conservation states added are labeled with their
state number. Recovery based on ranking from highest to lowest value of constraint scores is
shown with continuous lines. Recovery based on score partitioning into 400 bins and
subsequent ordering based on enrichment for the target set in the training data, then
cumulatively adding bins in that ranked order and evaluating on the test data is shown in a
series of dots of the same color as the continuous line corresponding to the score. Recovery of
target test bases by a constrained element set is shown with a single dot for each constrained
element set. See Figures 2.23-25 for plots based on additional targets. (d) The graph shows the
fold enrichment for Fetal Brain DHS® within the non-exonic portion of each conservation state,
separately for those bases in a PhastCons constrained element (pink) and bases not in such an
element (blue). Enrichments within constrained elements varied substantially depending on the
conservation state. For a given conservation state, bases in a constrained element had greater
enrichments than bases not in a constrained element, illustrating complementary information of
conservation states and constrained elements. See Figure 2.26 for graphs based on different
element sets or DHS data and Figure 2.27 for these enrichments plotted against the size of the
set.
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Figure 2.23 Precision-recall recovery of conservation states and constrained element and
scores for additional gene annotations.

Analogous precision-recall plots to those shown in Figure 2.22a-c, shown here for (a) ends of
exons of protein coding genes, (b) TSS of pseudogenes, (c) TES of pseudogenes, (d) start of
exons of pseudogenes, and (e) end of exons of pseudogenes. Precision-recall values were
computed using the same procedure as for Figure 2.22 (Methods). The first few conservation
states added are labeled.
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scores for a concatenation of DHS bases in 53 cell and tissue types.

Analogous precision-recall plots to those shown in Figure 2.22a-c and Figure 2.23 shown here
for DHS bases concatenated across experiments shown (a) without restriction and (b-d) with
the following restrictions for the target and background: (b) bases more than 2kb away from a

TSS, (c¢) non-exonic bases, (d) non-exonic bases more than 2kb away from a TSS.
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Figure 2.25 Precision-recall recovery of conservation states and constrained element and
scores for DHS in two cell types.

Analogous precision-recall plots to those shown in Figure 2.22a-c, 2.23 and 19 shown here for
(a) Fetal Brain DHS, (b) Fetal Brain DHS when restricting target and background to bases more
than 2kb away from a TSS, (c) Fetal Brain DHS when restricting target and background to non-
exonic bases of the genome, (d) Fetal Brain DHS when restricting target and background to
non-exonic bases of the genome that are more than 2kb away from a TSS, (e) HepG2 DHS, (f)
HepG2 DHS when restricting target and background to bases more than 2kb away from a TSS,
(g9) HepG2 when restricting target and background to non-exonic bases of the genome, (h)
HepG2 DHS when restricting target and background to non-exonic bases of the genome that
are more than 2kb away from a TSS.
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Figure 2.26 Enrichment for non-exonic DHS conditioned on conservation state and constrained
element sets.

Analogous graphs to Figure 2.22d, showing enrichments for bases in DHS in the non-exonic
portion of each conservation state conditioned on whether it is in a constrained element or not.
Enrichments are shown here for (a-c) bases in and out of GERP++ elements for (a) geometric
mean over 53 cell and tissue types, (b) HepG2 DHS, (c) Fetal Brain DHS; (d-f) bases in and out
of SiPhy-pi elements for (d) geometric mean over 53 cell and tissue types (e) HepG2 DHS, (f)
Fetal Brain DHS; (g-i) bases in and out of SiPhy-omega elements for (g) geometric mean over
53 cell and tissue types (h) HepG2 DHS, (i) Fetal Brain DHS; (j-k) bases in and out of
PhastCons elements for (j) geometric mean over 53 cell and tissue types (k) HepG2 DHS.
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Figure 2.27 Enrichment for non-exonic DHS conditioned on conservation state and constrained
element sets versus percent of non-exonic genome covered.

The enrichments in Figure 2.26a,d,9,j are shown here on the y-axis (geometric mean over 53
cell and tissue types), with the x-axis corresponding to the median percentage of the non-exonic
genome covered by the bases falling in each category across 53 cell and tissue types. The
coloring of a point corresponds to the coloring of states in Figure 2.2. The shape of a point
corresponds to whether it is inside or outside a constrained element set according to the legend
shown. Labeled points either have an enrichment >10 fold, cover >2.5% of the non-exonic
genome, or are subsets of states not in a constrained element set with an enrichment >2 fold.
The figure shows substantial variation of enrichments for bases both inside and outside of
constrained elements depending on the conservation state, including for subsets covering non-
negligible portions of the non-exonic genome. The constrained element sets used for each

panel are (a) GERP++ elements, (b) SiPhy-pi elements, (¢) SiPhy-omega elements, and (d)
PhastCons elements.
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Figure 2.28 Relationship between conservation states and CNEEs from Ref. 9.
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The conservation state enrichments for (a) the set of CNEEs defined in Ref. 9 and (b) the
subset restricted to those that overlap PhastCons element bases called on the 100-way
alignment in which the conservation states were defined. The first column of each panel gives
the enrichment of all CNEEs included, followed by the enrichments of subset of CNEEs, based
on the branch of origin of the CNEE. The second through last columns are sorted in order of
distance of branch point to human. The last row gives the % of the genome covered by the
annotation in the column. (c,d) The enrichments within non-exonic regions of bases in CpG
islands of (c) the set of CNEEs defined in Ref. 9 and (d) the subset restricted to those that
overlap PhastCons element bases called on the 100-way alignment in which the conservation
states were defined. The first column of each panel gives the percentage of non-exonic bases
found in each subset, and the second columns gives the enrichment for bases within non-exonic

CpG islands. The last row gives the % of the non-exonic genome covered by the annotation in
the column.
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Figure 2.29 Conservation states’ association with human genetic variation.

(a) Fold enrichments of bases ranked in the top 1% of the non-coding genome by 14 variant
prioritization scores. Only states among the top five most enriched states for at least one score
are shown. The enrichment of the top five ranking states for each score is colored according to
their ranking. The table provides a summary of the align and match probabilities and notable
enrichments of each state. The 'Distal align' and 'Distal match' columns contain the species
most distal to human that has an alignment and matching probability in the state greater than
0.5, respectively. The 'Proximal not align' and 'Proximal not match' columns contain the species
closest to human that has an alignment and matching probability in the state lower than 0.5,
respectively. The species are colored by the major clades indicated below. An expanded
version including all states is available in Supplementary Data 1. (b) Enrichments of bases
ranked in the top 1% genome-wide by 12 variant prioritization scores. The criteria for selecting
states to display and coloring enrichments was the same as panel (a). Enrichments for
prioritized bases at additional thresholds and for all states both genome-wide and for the non-
coding genome are in Figures 2.30-32. (c) The log2 fold enrichment of each state for common
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SNPs (pink) and GWAS catalog variants relative to common SNPs (blue). (d) The
representation of state emission parameters from Figure 2.2a for the subset of states
highlighted in panel (c). (e) Heritability partitioning enrichments from the method of Ref. 15
applied on two disjoint subsets of bases in PhastCons elements, with eight phenotypes
previously analyzed with heritability partitioning in the context of a baseline annotation set
(Methods). The two sets are PhastCons elements overlapping one of the seven conservation
states showing the greatest enrichment for DHS in its non-exonic portion (states 1-5, 8, and 28)
covering 51.9% of PhastCons bases (pink) and bases in PhastCons elements overlapping the
remaining 93 states covering 48.1% of PhastCons bases (blue). Error bars represent standard
errors around the enrichment estimate using jackknife resampling.
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Figure 2.30 Enrichments of selected conservation states for bases prioritized by variant
prioritization scores.

Analogous figures to those shown in Figure 2.29a,b of conservation state enrichments of top
1% bases of variant prioritization scores except shown here for: (a) bases ranked in top 5%
genomewide, (b) bases ranked in the top 5% of the genome restricted to non-coding bases, (c)
bases ranked in the top 10% genome-wide, and (d) bases ranked in the top 10% of the genome
restricted to non-coding bases. Only states which were one of the five most enriched states by
at least one variant prioritization score are shown. Coloring of enrichments is based on the rank
of the state for the score as indicated in the color legend.
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Figure 2.31 Enrichment of all conservation states for top 1% of bases prioritized by variant
prioritization scores.

The figure displays for top 1% prioritized bases (a) genome-wide and (b) in non-coding regions
by variant prioritization scores the same enrichments as shown in Figure 2.29a,b except here
enrichments for all conservation states are shown and also included is the original version of the
CADD score in addition to v1.4. Coloring of enrichments is based on their value in a column
specific manner. The second columns gives the percentage of the background region used to
compute the enrichments falling in each state, which is for (a) the whole genome and for (b)
bases scored by both LINSIGHT and FunSeq2. The last line in both heatmaps gives the actual
percentage of the background set covered by each set of prioritized bases, which can differ
from 1.00% because of how ties were handled.
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a b Enrichments of top 5% ranked bases
Enrichments of top 5% ranked bases non-coding restricted
genome-wide
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Figure 2.32 Enrichment of all conservation states for top 5% of bases prioritized by variant
prioritization scores.

The figure displays for top 5% prioritized bases (a) genome-wide and (b) in non-coding regions
by variant prioritization scores the same enrichments as shown in Figure 2.30a,b except here
enrichments for all conservation states are shown and also included is the original version of the
CADD score in addition to v1.4. Coloring of enrichments is based on their value in a column
specific manner. The second columns gives the percentage of the background region used to
compute the enrichments falling in each state, which is for (a) the whole genome and for (b)
bases scored by both LINSIGHT and FunSeq2. The last line in both heatmaps gives the actual
percentage of the background set covered by each set of prioritized bases, which can differ
from 5.00% because of how ties were handled.
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a b Enrichments of top 10% ranked bases
Enrichments of top 10% ranked bases non-coding restricted
genome-wide
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Figure 2.33 Enrichment of all conservation states for top 10% of bases prioritized by variant
prioritization scores.

The figure displays for top 10% prioritized bases (a) genome-wide and (b) in non-coding regions
by variant prioritization scores the same enrichments as shown in 2.30c,d except here
enrichments for all conservation states are shown and also included is the original version of the
CADD score in addition to v1.4. Coloring of enrichments is based on their value in a column
specific manner. The second columns gives the percentage of the background region used to
compute the enrichments falling in each state, which is for (a) the whole genome and for (b)
bases scored by both LINSIGHT and FunSeq2. The last line in both heatmaps gives the actual
percentage of the background set covered by each set of prioritized bases, which can differ
from 10.00% because of how ties were handled.
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Figure 2.34 Conservation state enrichments for single nucleotide variants from Ref. 10.

Rows 1-100 corresponds to states, color coded based on their group, and the last line
represents the percentage of the genome covered by each annotation in the columns. The table
displays the log2 fold enrichments of all the single nucleotide variants from whole genome
sequencing data of 7794 unrelated individuals that were used to generate the context
dependent tolerance score. The variants are grouped into disjoint sets according to minor allele
frequency (MAF). Depletions are shown in shades of blue and enrichments in shades of red.
The large depletions in state 96 are due to the state capturing assembly gaps.
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Figure 2.35 Results of running the INSIGHT model.

(a-c) The estimated fraction of bases under selection (p) as estimated by the INSIGHT method
within (a) each conservation state, (b) each conservation state after removing bases in
PhastCons elements and (c) each state restricted only to bases in PhastCons elements. (d-f)
The estimated number of divergence events driven by positive selection per kilobase-pair
(E[Dp)/kbp) as estimated by the INSIGHT method within (d) each conservation state, (e) each
state after removing bases in PhastCons elements and (f) each state restricted only to bases in
PhastCons elements. States are colored according to their group as indicated on the right. Error
bars represent one standard error around each parameter estimate.
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Chapter 3. ConsHMM Atlas: conservation state annotations for major genomes and

human genetic variation
3.1 Introduction

We recently introduced the ConsHMM method® to annotate reference genomes at
single-nucleotide resolution into a number of different ‘conservation states’ based on the
combinatorial and spatial patterns of which species have a nucleotide aligning to and/or
matching the reference genome in a multi-species DNA sequence alignment. ConsHMM does
this using a multivariate hidden Markov model (HMM), building off the widely used ChromHMM
approach for modeling epigenomic data®, without making any explicit phylogenetic modeling
assumptions. Each nucleotide in the reference genome receives an annotation corresponding to
the state of the HMM with the maximum posterior probability.

ConsHMM annotations are complementary to previous whole genome comparative
genomic annotations, which have primarily focused on univariate scores or binary element calls
of constraint*’'%? We previously applied ConsHMM to annotate one reference genome,
human hg19, based on a 100-way vertebrate alignment®. The conservation states had diverse
and biologically meaningful enrichments for other genomic annotations, and were also able to
isolate putative artifacts in the underlying multiple sequence alignment, which can confound
other constraint annotations.

Here we report applying ConsHMM to produce an additional 21 genome annotations for
different reference genomes and based on different multi-species DNA sequence alignments. In
addition to human, seven other organisms are represented in these additional genome
annotations. Additionally, we have extended the ConsHMM software to also produce allele
specific annotations opposed to only position specific annotations based on the reference allele.

We have applied this to produce annotations for each possible single-nucleotide mutation for

70



every nucleotide in the human genome. To aid in the analysis of different ConsHMM models we
have created a web-interface for interactive visualization of model parameters and annotation
enrichments. These new annotations of the human genome and variation as well as model
organism genomes and visualization tool comprise the ConsHMM Atlas, which we expect to be

a valuable resource to community for analyzing various genomes and genetic variation.
3.2 New Approaches

ConsHMM annotations for additional organisms and multiple-sequence alignments

We generated an additional 21 ConsHMM genome annotations that in addition to human
genome include annotations for the mouse, rat, dog, zebrafish, fruit fly, C. elegans and S.
cervisiae genomes (Table 3.1, Supplementary Data 2). For some species we generated
multiple different genome annotations that corresponded to different sets of species in the multi-
species alignment, different alignment methods used to generate the alignment, or different
assemblies of the reference genome. All alignments we used were obtained from the UCSC
genome browser or Ensembl®*®. We applied ConsHMM as previously described®, except
setting the number of states for a model based on the number of species in the alignment
(Methods).

We highlight as an illustrative example of one of the new ConsHMM models that we
learned, the model based on the 60-way Multiz alignment of 59 vertebrates to the mouse mm10
genome (Figure 3.1a). In this model, which has 60 states, ConsHMM identified a number of
noteworthy states showing enrichment for other external genomic annotations (Figure 3.1b,
Supplementary Data 2). For example, a state that showed high aligning and matching
probabilities in all the species in the alignment, state 60, was the most enriched state for exons
(34.9 fold). A different state showed a pattern of moderate probabilities of aligning and matching

for almost all species, and showed strong enrichment for CpG islands (50.4 fold) and TSS (34
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fold). Another state, state 1, had high aligning probabilities only in distal species to mouse,
which is likely capturing alignment artifacts, though still had a 12 fold enrichment for PhastCons
constrained element calls. There were three other states (states 2, 3, and 13), which had similar
though weaker versions of the state 1 alignment pattern and also enriched for PhastCons
elements (3.8-6.4 fold). These different state patterns and corresponding enrichment were

similar to those found for a previously analyzed human conservation state annotations®.

Allele Specific ConsHMM annotations

Previously ConsHMM could only generate position specific conservation states based on
the allele present in the reference genome. As ConsHMM models the observation of whether
the nucleotide present in each other species matches the reference genome, an alternate allele
at a position could potentially lead to a very different conservation state assignment. Allele
specific annotations could thus be informative to studying genetic variation, but directly applying
ConsHMM for every observed variant would not be computationally practical.

To address this challenge we extended ConsHMM to be able to compute conservation
state assignments for any alternate allele with high accuracy under two assumptions. The first
assumption is that it is sufficient to assume an alternate allele would not cause changes to the
multi-species alignment except for the nucleotide present in the reference genome. The second
assumption is that it is sufficient to consider a small local window around each variant to derive
a state annotation opposed to segmenting 200kb at time as previously done®®. We empirically
verified this second assumption by considering a range of window sizes upstream and
downstream of a variant and showing that a window of size 21 (10 bases upstream and 10
bases downstream) obtained 99.6% agreement in the conservation state assignments
compared to applying ConsHMM as previously applied for a set of 40,000 common variants

(Methods, Figure 3.2).
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Using this extended version of ConsHMM we produce allele specific conservation state
annotations for each possible single nucleotide alternate allele for both the hg19 and hg38
human reference genomes based on ConsHMM models trained on 100-way vertebrate
alignments. To demonstrate the additional information in having allele specific conservation
state assignments beyond just the reference genome we consider the set of positions that were
assigned to a state in the human hg38 model associated with high probability of aligning
through mammals, but a high probability of matching in a only a few primates, state 36. We then
analyzed for different subsets of positions the frequency at which an alternate allele caused the
conservation state assignment to a very different state that had high probability of both aligning
and matching in many mammals, state 5 (Figure 3.3a). For only 0.8% of possible alternate
alleles for reference allele in state 36 did we see the conservation state assignment change to
state 5. Interestingly, we saw this percentage increase substantially for subsets of positions with
unique annotations. Among positions in Fetal Brain DNase | hypersensitive sites® the
percentage was 2% and for those in GERP++ constrained elements® it was 5% (Figure 3.3b).
The percentage increased to 7% for those annotated as both. The percentage increased even
further to 12% for previously annotated bases in human accelerated regions (HAR)®. Similar
percentages were found when using other sets of conserved elements and another Fetal Brain
DNase | hypersensitivity data set (Figure 3.4). These results highlight how allele specific
conservation state assignments provide additional information beyond the conservation state

assignment from the reference allele.

Web-interface for visualization of parameters and annotation enrichments of ConsHMM
models
We created a web interface built on an R shiny app in which one can browse a representation of

emission parameters of ConsHMM models and annotation enrichments:
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https://ernstlab.shinyapps.io/conshmm (Figure 3.5). Users can access the models trained on
each of the reference genomes and multiple sequence alignments listed in Table 3.1. The app
generates an interactive heatmap containing for each state and species the model probability
for that species aligning the reference genome and also the probability of having a nucleotide
matching the human reference. The interface allows a user to select a subset of states and/or
species in the alignment to display, for ease of visualization. Lastly, the interface allows users to
display precomputed enrichments of states for external annotations. These include enrichments
for existing annotations of gene bodies, exons, transcription start and end sites, and the

PhastCons elements called on the same alignment, when available.

3.3 Methods
Data and code availability
The Ensembl multiple sequence alignments were downloaded from

ftp://ftp.ensembl.org/pub/release-97/maf/ensembl-compara/ and

ftp://ftp.ensembl.org/pub/release-75/maf/ensembl-compara/~". The UCSC multiple sequence

alignments listed in Table 3.1 were downloaded from

https://hgdownload.soe.ucsc.edu/downloads.html™. The Ensembl multiple sequence alignments

listed in Table 3.1 were downloaded from ftp://ftp.ensembl.org/pub/release-97/maf/ensembl-

compara/ and ftp://ftp.ensembl.org/pub/release-75/emf/lensembl-compara/?®.

SiPhy-omega, SiPhy-pi constrained element calls, and HAR calls were downloaded from

https://www.broadinstitute.org/mammals-models/29-mammals-project-supplementary-info

Fetal Brain DNase | Hypersensitivity Sites were downloaded from

http://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/narrowPeak/".
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PhastCons constrained element calls, RefSeq and CpG Island annotations and dbSNP v150
variants were obtained from the UCSC genome browser. The ConsHMM model parameters and
the corresponding genomic segmentations and annotations are available at

http://www.biolchem.ucla.edu/labs/ernst/ConsHMMAtlas. The allele specific state annotations
for the human genome can also be found at the same URL. The ConsHMM software is

available at https://github.com/ernstlab/ConsHMM.

Learning ConsHMM annotations for reference genomes

We used ConsHMM v1.0 as described in Arneson and Ernst (2019) to learn the models
parameters, to generate the segmentation and annotation of the reference genomes, and to
compute the enrichments for external annotations. We used the same parameters except the
number of states parameters. The number of states we used for each alignment depended on
the number of species in the alignment. Specifically, if the alignment had more than 50 species,
then the number of states was equivalent to the number of species in the alignment; if the
alignment had between 25 and 49 species, then the number of states was set to 50; if the
alignment had less than 25 species, then the number of states was set to 25. This set of rules
allows for the number of states to be dependent on the number of species in the alignment,
while also ensuring a sufficient, but not excessive, number of states for alignments with smaller

number of species.

Creating allele-specific ConsHMM annotations

To generate allele specific ConsHMM annotations we used ConsHMM v1.1, containing
the new updatelnitialParams and ReassignVariantState commands and ChromHMM v1.20. The
updatelnitialParams takes as input the parameters of a ConsHMM model and a genome wide

segmentation, and outputs an updated parameter set where the initial state parameters are
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replaced by the genome wide frequency of each state in the segmentation, to better reflect the
state assignment prior for a variant at any position in the genome. The ReassignVariantState
command takes as input the ConsHMM model outputted by updatelnitialParams, a file
containing the multiple alignment on which the model is based, and a parameter W. The initial
state parameters were obtained using the updatelnitialparam command. The file containing the
multiple alignment is in a format processed by the parseMAF command of ConsHMM. The
parameter W indicates W flanking bases upstream and also W bases downstream of the allele.
We note that since ConsHMM uses an HMM the state assignment at a position of
interest can depend on the observations at neighboring positions. We investigated the effect of
different choices of W by first sampling a set of 40,000 common variants from dbSNP®® that are
further than 200kb apart, the segment size previously used with ConsHMM for genome
segmentations, and applying ConsHMM with the alternate allele for those common variants®.
We did this with the ConsHMM model for hg38 based on the 100-way vertebrate alignment. We
then compared the agreement in the conservation state assignment when we apply
ReassignVariantState with values of W between 1 and 10 and found that the agreement
between the procedures plateaued at 99.6%. The final allele-specific annotations were
generated using W = 10, for each possible nucleotide as the reference at the base in the center
of the window. For variants in which the flanking region extends past the beginning or end of
chromosomes, the missing bases upstream or downstream of the position of interest were
marked as positions where the multiple sequence alignment is empty, which ConsHMM

encodes as positions where no species align to the reference species.
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3.4 Tables
Organism Target assembly
C. elegans cell
D. melanogaster dmé6
Human Hg38/GRCh38
Human Hg38/GRCh38
Human Hg19/GRCh37
Human Hg19/GRCh37
Human Hg38/GRCh38
Human Hg38/GRCh37
Human Hg38/GRCh37
Mouse mm10/GRCmM38
Mouse mm10/GRCm38
Mouse mm10/GRCm38
Mouse mm10/GRCmM38
Rat rn6/Rnor_6.0
Rat rn6/Rnor_6.0
Rat rn6/Rnor_6.0
Rat rn6/Rnor_6.0
Zebrafish Zv9/DanRer7
Zebrafish Zv9/DanRer7
Zebrafish GRCz11/DanRer11
S. cerevisiae sacCer3

Dog

canFam3/CanFam3.1

Browser

ucsc

ucsc

ucsc

ucsc

Ensembl Release 75
Ensembl Release 75
Ensembl Release 97
Ensembl Release 97
Ensembl Release 97
ucsc

Ensembl Release 97
Ensembl Release 97
Ensembl Release 97
ucsc

Ensembl Release 97
Ensembl Release 97
Ensembl Release 97
ucsc

Ensembl Release 75
Ensembl Release 97
ucsc

Ensembl Release 97

Alignment Method
Multiz

Multiz

Multiz

Multiz

PECAN
EPO_LOW_COVERAGE
PECAN

EPO
EPO_LOW_COVERAGE
Multiz

PECAN

EPO
EPO_LOW_COVERAGE
Multiz

PECAN

EPO
EPO_LOW_COVERAGE
Multiz
EPO_LOW_COVERAGE
EPO

Multiz

EPO

Alignment

25 nematode genomes with C. elegans
26 insects with D. melanogaster

99 vertebrate genomes with human
30 mammalian (27 primate) genomes with human
21 amniota vertebrates

37 eutherian mammals

54 amniota vertebrates

38 mammals

91 eutherian mammals

59 vertebrate genomes with mouse
54 amniota vertebrates

38 mammals

91 eutherian mammals

19 vertebrate genomes with rat

54 amniota vertebrates

38 mammals

91 eutherian mammals

7 genomes with zebrafish

10 teleost fish

Ensembl 97 - 25 fish

6 yeast species to S. cerevisiae

38 mammals

Table 3.1 List of organisms and respective multiple sequence alignments.

The ‘Organism’ column contains the species used as the reference in the multiple sequence

alignment. The ‘Target assembly’ column contains the genome draft version used for each

organism. The ‘Browser’ column contains the genome browser from where the multiple

sequence alignment was downloaded. The ‘Alignment method’ column contains the name of the

multiple sequence alignment method used to generate the alignment. The ‘Alignment’ column

contains a summary of the species in the multiple sequence alignment.
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Align probablities Match probabilities
L

Figure 3.1 Conservation state emission parameters of a ConsHMM model based on a 60-way
alignment of vertebrates to mouse and enrichments for other genomic annotations.

(a) The rows of the heatmap correspond to conservation states and the columns of the heatmap
correspond to species. For each state and species, the left half of the heatmap contains the
probability of that species aligning to the mouse sequence (one minus the probability of not
aligning). The right half of the heatmap contains the probability of a species matching the mouse
sequence. Species are ordered by phylogenetic distance to mouse and grouped by major
clades. States are ordered by ConsHMM hierarchical clustering. (b) The columns of the
heatmap indicate the relative enrichments of conservation states for CpG Islands, PhastCons
elements, RefSeq exons, genes, transcription start and end sites. (Methods). The relative
enrichments were calculated by subtracting the minimum value of the column from each
enrichment and dividing by the range of the column. Supplementary Data 2 the values of these
enrichments.
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State assignments recovered

0 1 2 3 7 8 9 10

4 5 6
Number of flanking bases

Figure 3.2 The agreement between state assignments using the segmentation of a local
window centered around a variant and the segmentation of 200kb segments in the entire

genome.

The x-axis represents the number of bases upstream and the number of bases downstream of
the variant of interest used. The y-axis represents the percentage of the 40,000 variants tested
for which the alternate allele gets assigned to the same state with the two approaches. This
comparison was performed for the 100 state ConsHMM model trained on a 100-way multiple
sequence alignment of 99 other species to the hg38 human genome.
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Figure 3.3 Characteristics of genetic variants leading to a change from state 36 to state 5 from
the reference to alternate allele.

(a) Emission parameters of states 5 and 36 from a 100 state model based on a 100-way
vertebrate alignment to the hg38 human genome. The heatmap is structured in the same way
as the heatmap in Figure 3.1. (b) The ‘Genome’ category shows the frequency of observing the
state assignment change to state 5 out of all possible alternate alleles for variants whose
reference allele is in state 36. The rest of the columns shows the same frequency computed
when restricting variants to those positioned in a Fetal Brain DNase peaks, GERP++ elements,
the intersection of Fetal Brain DNase peaks and GERP++ elements and human accelerated
regions. Error bars represent a 95% binomial confidence interval computed using a normal
approximation of the error around the estimate.
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Figure 3.4 Extended characteristics of genetic variants leading to a change from state 36 to
state 5 from the reference to alternate allele.

The frequencies in this plot were calculated analogously to the frequencies in Figure 3.3. Two
Fetal Brain DNase | Hypersensitivity assays were used (Roadmap identifiers EO81 and E082)
and four different sets of conserved elements were used (GERP++, PhastCons, SiPhy-Pi,
SiPhy-omega). Two sets of PhastCons elements were included: the elements called on the 100-
way multiple sequence alignment of 99 vertebrates to the hg38 human genome, and the
elements called on the 100-way multiple sequence alignment of 99 vertebrates to the hg19

human genome, which were lifted over to hg38.
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Select genome assembly
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Select multiple alignment
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Generate figures
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Figure 3.5 Screenshot of the ConsHMM R Shiny App.

The screenshot captures a representation of the emission probabilities of a 50 state model
based on a 26-way alignment of nematodes with C. elegans. The dropdown menu at the top of
the webpage allows users to select a different reference organism, genome and multiple
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sequence alignment for which to generate the same heatmap. Each row in the heatmap
corresponds to a state and each column corresponds to a species. The rows are sorted by
ConsHMM hierarchical clustering, and the columns are sorted by phylogenetic distance to the
reference genome in the alignment. The left half of the heatmap contains the probability of a
species aligning the reference genome in the alignment. The right half of the heatmap contains
the probability of a species matching the reference genome in the alignment. The checkboxes in
the ‘state selection’ area of the app allow users to subset the heatmap to certain states of
interest. The app also provides heatmaps summarizing important biological enrichments of each
state.
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Chapter 4. Design of a mammalian methylation array for cross-species epigenetic

studies
4.1 Introduction

DNA methylation by the attachment of a methyl group to cytosines is one of the most
widely studied epigenetic modifications in vertebrates, due to its implications in regulating gene
expression across many biological processes®®®’.

The two most widely used technologies for obtaining DNA methylation levels are bisulfite
sequencing®® and microarray based methylation chips®. Whole genome bisulfite sequencing is
an expensive assay, causing reduced representation bisulfite sequencing (RRBS) to become
the prevalent sequencing approach. RRBS effectively queries only a small number of
nucleotides on the genome but still provides a genome wide methylation profile. However, the
sequencing depth required for robust RRBS measurements drives up costs. Due to this, for
human samples, array chips containing an increasing number of probes have been the most
reliable and widely used technology’.

The first human methylation chip (lllumina Infinium 27K) was introduced over ten years
ago’' but no analogous chip has been presented for other species. This delay may reflect the
fact that it was not economical to design a methylation chip for non-human species. Even if
costs were no impediment, the development of species-specific arrays could hinder cross
species comparisons as the measurement platforms would be different.

As mammalian genomes tend to have a lot of similarities, we sought to create an array
that can measure DNA methylation in many mammalian species by leveraging cross-species
sequence similarities. To accomplish this, we developed an algorithm, Conserved Methylation
Array Probe Selector (CMAPS) that takes as input a set of probes that could target a human

CpG site and a multiple sequence alignment of other species to the human genome, and
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selects a set of probes sequences which can be used to query methylation in many mammals
by the addition of degenerate bases. Using these sequences we have created a methylation
array containing 38,000 probes, which has been used to profile DNA methylation in 8730
samples across 145 species. We show that the methylation signature of each sample contains
information about both the species and tissue of origin and discuss a set of epigenetic questions

which can be answered using CMAPS and the mammalian array.

4.2 Design

Mammalian array overview

Current methylation array technology produced by lllumina Inc. can contain two types of
probes: Infinium | and Infinium I, with the latter being newer technology requiring only one silica
bead to query the methylation of a CpG, while the former requires two beads. Two variations of
each of the two types of probes can be designed for each CpG, depending on whether the
probe is designed on the forward or reverse genomic strand, for a total of four total probe
options for each CpG. The probes allow for up to three degenerate bases, which are positions
that can be designed to tolerate variation in the sequence being interrogated. The number of
degenerate bases tolerated is a function of a proprietary design score computed by Illumina,
and the number of underlying CpGs in the case of Infinium 2 probes, since degenerate bases
are used to account for possible differences in methylation status when multiple CpGs occur
within an Infinium 2 probe.

Here we present the CMAPS algorithm, which uses the degenerate base technology to
adapt probe sequences that can query human CpGs, so that the probes can now tolerate
mutations and hybridize to DNA from other species as well. The CMAPS algorithm finds a
specific set of degenerate bases for a human probe by analyzing a multiple sequence alignment

of other genomes to the human genome. For the purposes of this project, CMAPS was applied
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to the subset of 50 mammals within a 100-way alignment of 99 vertebrate genomes with human
genome from the UCSC Genome Browser®’. However, the algorithm can take as input any
multiple sequence alignment with any reference genome and a parameter denoting how many
degenerate bases can be introduced in each probe, and provide conserved probes and
degenerate base selections.

For each CpG site, CMAPS selects those species in which the CpG is conserved and for
which the difference between the sequence targeting the CpG in the human genome and the
species’ genome is within a number of mismatches that can be covered by degenerate bases.
(Figure 4.1a, Methods). For each CpG site in the human genome we selected the Infinium 1
probe out of the two options (upstream or downstream of the CpG) that covered the most
species based on the CMAPS algorithm, and analogously for Infinium 2. We first included all
Infinium 2 probes that were targeting the mm10 mouse genome, such that the chip maximizes
utility for one of the most widely used model organisms. We then sorted the CpG sites in
descending order of the number of species covered with the Infinium 2 probe, and added an
additional 17,000 probes that were not already selected due to targeting mm10, for a total of
53,000 probes. We then ranked the probes on the lllumina EPIC array in descending order of
the number of species they can target using the degenerate bases picked by the CMAPS
algorithm, and selected an additional 3,000 probes that had not already been picked based on
the earlier criteria. Including probes on the EPIC array can allow testing of the array by
comparing probe behavior on the mammalian versus EPIC array. Lastly, we sorted the CpG
sites in descending order of number of species they can target and picked the top 4,000
Infinium 1 probes that targeted CpG sites that had not already been included. The Infinium 1
probes were selected to allow us to query CpG dense regions such as CpG islands, as the
underlying CpG count of an Infinium 1 probe does not count against the number of SNVs

permitted. This resulted in a set of 60,000 probes (Figure 4.1b).
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A probe sequence targeting a certain CpG can map to multiple locations in a genome,
which could result in a confounded signal coming from multiple CpG sites. This issue can be
compounded by the fact that each of our probes can have up to 2*(# of degenerate bases)
versions due to the degenerate base design. For 16 high quality genomes we computed for
each probe how many of its versions map uniquely in that genome. We then filtered probes
down by asking that all versions of a probe have to map uniquely in at least 80% of the species
they were designed to target out of the 16 tested genomes, unless the probe targets at least 40
species, in which case the mapping criterion was discarded. This reduced the set of working
probes to 35,988 probes. Two thousands additional probes were selected based on their utility
for human biomarker studies. These CpGs, which were previously implemented in human
lllumina Infinium arrays (EPIC, 450K, 27K), were selected due to their relevance for estimating

age, blood cell counts, or the proportion of neurons in brain tissue.

4.3 Results

Properties of the custom chip

Not all probes on the array are expected to work for all species, but rather each probe is
designed to cover a certain subset of species, such that overall all species have a high number
of probes. Out of the 62 mammalian species considered by CMAPS from a multiple sequence
alignment, 46 of them have CpSs that are targeted by more than 10,000 probes on the array,
and 36 have CpGs that are targeted by more than 20,000 probes (Table 4.1).

Although the probes were selected based on sequence conservation criteria, we verified
that the CpGs targeted by the final probe set are a representative set of the all CpGs in the
human genome with respect to presence in CpG islands and average methylation level across
tissues. We found that the distribution of CpG island density of islands containing a probe on the

array contains less dense islands than the genome wide distribution, but that the shift from the
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genome wide distribution is not large (Figure 4.1c). We also found that the probes on the array
can target CpGs across a large range of fractional methylation levels., based on the analysis of
fractional methylation called from whole genome bisulfite sequencing data across 37 tissues®.

(Figure 4.1d).

Calibration Studies

To confirm that the array is able to accurately profile methylation across different
species, we created a set of DNA samples from human, mouse and rat which were engineered
such that the fractional methylation at all CpG sites in their genomes is 0%, 25%, 50%, 75% and
100% (Methods). We profiled all these samples using the mammalian array. The distribution of
the intensity of the probes in each human sample is centered around the known fractional
methylation of the sample (Figure 4.2a). However, as expected, the distributions in the mouse
and rat samples of all the probes show different patterns in these two species compared to the
human samples, because many probes in the design of our array do not map to these genomes
(Figure 4.2b-c). To confirm the accuracy of our design, for each species we removed the
probes that do not map to that genome from the analysis, and normalized the array data using
the SeSaMe package. After this procedure, the distribution of probe intensity in each sample
becomes similar to those of the human samples, validating that the probes on the array behave

as expected (Figure 4.2d-f).

DNA methylation signal encodes species and tissue type

DNA samples from 10 mammalian species (human, vervet monkey, olive baboon, mouse,
horse, sheep, dog, pig, naked mole rat, killer whale), with more than 200 samples for each
species, were processed using the mammalian array (Table 4.2). In this analysis, we focused

our attention on the probes that can be mapped uniquely to the genomes of each of these
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species (Methods). In a tSNE representation, we find that samples of the same species
predominantly cluster together (Figure 4.3a), and that samples of the same tissue also tend to
cluster together (Figure 4.3b). Interestingly, these two sources of variance seem to be
orthogonal. For example, in one instance, mouse samples separate into several different
clusters, each belonging to a different tissue. In another instance, blood samples separate into
several different clusters, each belonging to a different species. We also find that a lot of the

clusters exhibit some symmetry, which is explained by sex differences (Figure 4.3c).
4.4 Methods

Conserved Methylation Array Probe Selector (CMAPS)

The CMAPS algorithm was applied to the Multiz alignment of 99 vertebrates with the hg19
human genome downloaded from the UCSC Genome Browser.?* For the purpose of this chip,
only the 62 mammalian species in this alignment were considered. The design scores for each
CpG in the human genome and each possible type of probe at each location were provided by
lllumina and taken as input by CMAPS. For each CG site in the human genome, we computed
the maximum number of species that could be targeted by each of the four different possible
probe designs in human, considering each possible placing of the maximum number of tolerated
mutations. For each probe option we tried all possibilities for placing the maximum number of
potential variants, and greedily chose the allele that covers the most species at a particular
position. More specifically, the algorithm for selecting the number of species covered by a probe

is explain in pseudocode below:
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The function get_max_species makes a greedy choice for the nucleotide at a certain SNV by
picking whichever nucleotide is contained by the majority of non-human species in the
alignment at that position.
function get_optimal_nucleotide(SNV_pos, multiple_sequence_alignment):
max_species = 1
for X in {A, C, T, G} \ {human nucleotide at SNV_pos}
count_species = number of species with X at SNV_pos in the
multiple_sequence_alignment
if count_species > max_species:
max_species = count_species
optimal_nucleotide = X

return optimal_nucleotide

In the pseudocode below, SNV _set iterates over all possible positions of SNVs in a particular
probe, given the design score and probe type constraints.
cur_max_species = 1
for SNV _set in all positions in probe:

alt_nucleotide_list =[]

for SNV_pos in SNV_set:

alt_nucleotide_list.append(get_max_species(SNV_pos,

multiple_sequence_alignment))

num_species = number of species fully matching human given SNV _set and
alt_nucleotide_list

if num_species > cur_max_species:

CuUr_max_species = num_species
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final_SNV_set = SNV_set

Since the get_max_species function makes greedy choices this may not be the true maximal
subset of species for a probe, but this method is relatively computationally inexpensive and

produced satisfactory species coverage for our purposes.

Mapping probes to genomic coordinates

We downloaded fasta sequence files for completely sequenced genomes from three public
repositories (UCSC, Ensembl, and NCBI). We included only the most recent draft of each
species’ genome. In instances where the same genome draft for a species was available from
multiple sources, we retrieved only one according via this preferential ordering: Ensembl over
UCSC over NCBI. A complete list of all the genomes used, the public repository they were
downloaded from, and the access date can be found in Supplementary Data 3.

After downloading these sequence files, where necessary, we concatenated multiple
chromosome or sequence fragment files into a single fasta file for each species. We utilized the

BSBolt software package from https://github.com/NuttyLogic/BSBolt

to perform the alignments. For each species’ genome sequence, BSBolt creates an ‘in silico’
bisulfite-treated version of the genome. As many of the currently available genomes are in a
low quality assembly state (e.g. thousands of contigs or scaffolds), we used the utility
“Threader” (which can be found in BSBolt’s forebear BSseeker2’? as a standalone executable)
to reformat these fasta files into concatenated and padded pseudo-chromosomes.

The set of nucleotide sequences of the designed probes, which includes degenerate base
positions, was explicitly expanded into a larger set of nucleotide sequence representing every
possible combination of those degenerate bases. For Infinium | probes, which have both a

methylated and an unmethylated version of the probe sequence, only the methylated version
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was used as BSBolt’s version of the genome treats all CG sites as methylated. Thus, the initial
37550 probe sequences resulted in a set of 184,352 sequences to be aligned against the
various species genomes. We then ran BSBolt with parameters Align -M 0 —-DB [path to
bisulfite-treated genome] -BT2 bowtie2 -BT2-p 4 -BT2-k 8 -BT2-L 20 -F1 [Probe Sequence File]
—O [Alignment Output File] —S to align the enlarged set of probe sequences to each prepared
genome.

As we were not interested in the final BSBolt style output, we made a small modification to the
code to retain its temporary output of alignment results in sam format. From these files, we
collected only alignments where the entire length of the probe perfectly matched to the genome
sequence (i.e. the CIGAR string ‘50M’ and flag XM=0"). Then, for each genome we collapsed
all the sequence variant alignments for each probelD down to a list of loci for that genome and
for that probe. We report probes whose variants only mapped to one unique locus in a particular
genome in Supplementary Data 4. We report the full list of loci for each probe, including the

ones with unique mappings in Supplementary Data 5.

Dimensionality reduction of samples from 10 mammalian species

We normalized the probes within each sample using the SeSaMe R package’. We then
performed Principal Component Analysis using the prcomp R function. We computed the
variance explained by each principal component (PC), and found that the top 23 PCs amounts
to 80% of the total variance in the data. We then peformed tSNE dimensionality reduction with

default parameters from the Rtsne R package, substituting the 23 PCs as features.
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4.5 Tables

Species No. CpGs Species No. CpGs Species No. CpGs Species No. CpGs Species No. CpGs
Aardvark 20549 Cow 24817 Guinea pig 18931 Pika 16512 Weddell seal 25716
Crab-eating White
Alpaca 24455 macaque 32629 Hedgehog 14924 Platypus 4867 rhinoceros 24888
. David's myotis -
Armadillo 19462 bat 19441 Horse 23823 Prairie vole 18536
Bactrian camel 23058 Dog 25305 Killer whale 24170 Rabbit 19492
Big brown bat 20555 Dolphin 23396 Less?erri%pt'a" 16851 Rat 18440
Black flying-fox 23546 Domestic goat 23913 Manatee 19960 Rhesus 31134
Brush-tailed rat 19180 Elephant 19584 Marmoset 27075 Sheep 24652
Bushbaby 23249 Ferret 25384 Megabat 21250 Shrew 16776
Cape elephant . . .
shrew 18125 Gibbon 30196 Microbat 19984 Squirrel 24393
Capemifl)elden 18673 Golden hamster 18699 Mouse 22231 Squirrel monkey 28045
Cat 25252 Gorilla 32157 Naked mole-rat 19856 Star-nosed mole 21577
Chimp 32809 Green monkey 32375 Opossum 8160 Tasmanian devil 7962
Chinchilla 21020 Green monkey 32189 Orangutan 30812 Tenrec 14521
Chinese hamster 18615 Cow 24817 Pacific walrus 26570 Tibetan antelope 24011
Chinese tree Crab-eating .
shrew 22903 macaque 32629 Pig 22880 Wallaby 6032

Table 4.1 Expected number of CpGs targeted by probes on the mammalian array for 62
mammalian species.

The species in the table are the 61 mammalian species present in the 100-way Multiz alignment
of 99 vertebrates to the human genome®, which were considered by the CMAPS algorithm. A
CpG is counted for a certain species if the choice of degenerate bases by the CMAPS algorithm

lead to sequence identity for that species’ genome.
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Species common name

Species latin name

Number of samples

Human Homo sapiens 1781
Mouse Mus musculus 1425
Dog Canis lupus familiaris 577
Sheep Ovis aries 432
Olive baboon Papio hamadryas 336
Horse Equus caballus 336
Naked mole-rat Heterocephalus glaber 261
Vervet monkey Chlorocebus aethiops sabaeus 243
Pig Sus scrofa domesticus 243
Killer whale Orcinus orca 214

Table 4.2 Summary of data set processed using mammalian array for which more than 200

samples were available.
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4.6 Figures
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Figure 4.1 Overview of mammalian array design process and resulting distribution of genomic
characteristics.

(a) Toy example of multiple sequence alignment at a CpG site considered by the CMAPS
algorithm. The orange coloring highlights the CpG being targeted. Positions where other
species have alignment that matches the human sequence are in dark blue; positions where
other species have alignment that does not match the human sequence are in neon yellow;
positions where other species have no alignment are in grey. (b) Flowchart detailing the
selection of probes on the array by the CMAPS algorithm. (¢) Distribution of CpG island density
overlapping a probe on the mammalian array (blue) and all CpG islands in the human genome
(red). (d) Distribution of average fractional methylation across 37 cell and tissue types at CpG
sites on the array (blue) and all sites in the genome (red).
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Figure 4.2 Distribution of probe intensities within sample, colored by the expected percentage

of methylation at each site.

(a-c) Distribution of probe intensity of all probes on the array before normalization for (a) human
samples, (b) mouse samples, and (c) rat samples. (d-f) Distribution of probe intensity after
normalization and restricting probes to those that map to (d) the human genome in human

samples, (e) the mouse genome in mouse samples, and (f) the rat genome in rat samples.
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Figure 4.3 tSNE representation of samples profiled with the mammalian methylation array.

Each subpanel represents the same data points, colored by (a) species, (b) tissue and (c) sex.
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Figure 4.4 Cumulative variance explained by principal components.

The amount of variance explained rises sharply with the first components and then plateaus.
80% of the variance is explained by the top 23 components.
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