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P U B L I C  H E A LT H

Examining air pollution exposure dynamics in 
disadvantaged communities through 
high-resolution mapping
Jason G. Su1*, Shadi Aslebagh1, Vy Vuong2, Eahsan Shahriary1, Emma Yakutis1, Emma Sage1, 
Rebecca Haile1, John Balmes3, Michael Jerrett4, Meredith Barrett2,5

This study bridges gaps in air pollution research by examining exposure dynamics in disadvantaged communities. 
Using cutting-edge machine learning and massive data processing, we produced high-resolution (100 meters) 
daily air pollution maps for nitrogen dioxide (NO2), fine particulate matter (PM2.5), and ozone (O3) across California 
for 2012–2019. Our findings revealed opposite spatial patterns of NO2 and PM2.5 to that of O3. We also identified 
consistent, higher pollutant exposure for disadvantaged communities from 2012 to 2019, although the most 
disadvantaged communities saw the largest NO2 and PM2.5 reductions and the advantaged neighborhoods expe-
rienced greatest rising O3 concentrations. Further, day-to-day exposure variations decreased for NO2 and O3. The 
disparity in NO2 exposure decreased, while it persisted for O3. In addition, PM2.5 showed increased day-to-day 
variations across all communities due to the increase in wildfire frequency and intensity, particularly affecting 
advantaged suburban and rural communities.

INTRODUCTION
Environmental justice research has shed light on the disproportion-
ate air pollution burdens carried by disadvantaged communities, yet 
a critical gap persists. Prior investigations, for the most part, have 
operated within broad timeframes, often focusing on annual assess-
ments (1). These examinations typically relied on summarizations 
lacking small-area variations (e.g., >5 km) and drew from the lim-
ited data provided by widely spaced regulatory monitoring stations 
(2). Consequently, the fine-grained, day-to-day fluctuations in 
pollutant concentrations affecting disadvantaged communities have 
remained largely undetected. Disadvantaged communities are often 
situated near manufacturing and industrial facilities that emit a sub-
stantial amount of pollutants into the air (3–5). Disadvantaged com-
munities may also be adjacent to major roadways and transportation 
routes that contribute to elevated levels of vehicular emissions (6–8). 
These systemic issues contribute to higher levels of air pollution ex-
posure, which can lead to adverse health outcomes for the residents 
of these communities (9–11). However, many studies, especially 
those modeling daily exposures through remote sensing data (e.g., 
high-resolution aerosol optical depth data of 1-km resolution) or 
dispersion modeling techniques (typically in the range of 1 to 10 km), 
cannot distinguish their specific exposure from those living in less 
polluted areas due to limitations in spatial resolution and data avail-
ability (12).

Land use, land cover, meteorological conditions, elevation, and 
other factors influence air pollution concentrations. Previous expo-
sure assessments have primarily relied upon air pollutant concentra-
tions measured from the nearest regulatory monitoring sites, which 
are sparsely distributed and reflect the background concentrations 
of a region. Using the nearest regulatory site as proxy for exposure 
assumes the monitoring site and community share the same land 

use and land cover. Regulatory monitoring data sometimes are used 
as inputs for air pollution exposure assessments through techniques 
such as kriging or inverse distance weighting (13). Those techniques 
used regulatory sites for exposure assessment; however, they still as-
sumed the same land use and land cover information of the com-
munity as those of regulatory sites. Relying solely on regulatory 
monitoring data for exposure proxy may complicate the exploration 
of exposure disparities, as the resolution of the data may be insuffi-
cient to adequately inform such disparities, particularly regarding 
differences in exposure and land use between disadvantaged and 
advantaged communities.

Integrating land use regression (LUR) modeling into exposure 
assessments presents a promising avenue for addressing this chal-
lenge. LUR modeling applies land use, land cover, and other related 
information to model pollutant concentrations measured at moni-
toring sites (14, 15). LUR modeling advances exposure assessment 
by using factors that affect a community’s pollutant concentrations. 
LUR is typically used to model pollutant concentrations at the city 
or metropolitan level, and it can achieve high spatial resolution, 
such as 30 m, which is especially true for annual LUR models and 
surfaces. Traditional LUR models, however, suffer from overfitting 
when the data are used for model construction and performance 
assessment (16).

Daily air pollution models are important for identifying health 
effects due to short-term air pollution exposures and are largely de-
veloped through machine learning algorithms. For example, the 
random forest modeling technique has been increasingly used to 
model daily air pollutant concentrations with remote sensing data 
(17–21). These algorithms can deal with model overfit, multicol-
linearity among predictors, and potential nonlinear associations be-
tween a predictor and air pollutant concentrations. However, they 
cannot remove potential redundant or statistically nonsignificant 
predictors in the modeling process. With hundreds and sometimes 
thousands of potential predictors, a machine learning algorithm 
might generate results that are hard to interpret. In addition, they 
are less adept at modeling high spatial resolution. Last, most annual 
and daily LUR models use only one type of monitoring data: 1) 
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regulatory monitoring, 2) fixed site saturation monitoring, or 3) 
mobile low-cost sensor monitoring. Integrating all three sources 
into a single modeling framework has yet to be seen in the literature.

We aimed to address these previous limitations by generating a 
comprehensive dataset for modeling air pollution exposure, incor-
porating terabytes of data from all three monitoring sources, includ-
ing Google Streetcar data, to develop models that would predict 
daily surfaces at a high spatiotemporal resolution, accounting for 
hundreds of unique community-level covariates. We focused on 
three criteria air pollutants for which National Ambient Air Quality 
Standards are established—nitrogen dioxide (NO2), fine particulate 
matter with aerodynamic diameter  ≤2.5 μm (PM2.5), and ozone 
(O3)—all of which have demonstrated impacts on health (22–28). 
We targeted the state of California, the nation’s most populous state 
and one-seventh of the U.S. economy and evaluated trends over 
time (2012 to 2019). The high spatiotemporal air pollution surfaces 
allowed us to identify disparities by neighborhood disadvantage 
status, race-ethnicity, geographic location, and over time across 
California.

Overall, this study pioneers a previously unidentified approach 
by developing high spatiotemporal resolution daily air pollution 
surfaces (100 m), enabling a granular examination of the nuanced 
exposure disparities for disadvantaged communities, even as overall 
air pollution concentrations decrease. Our research aims to identify 
and understand environmental injustices, particularly how air 
pollution exposure trends differ between disadvantaged and advan-
taged communities. We hypothesize that targeted policy interven-
tions focused on mitigating industrial and transportation-related 
emissions and enhancing air quality have predominantly benefited 
residents in marginalized neighborhoods. Despite observed overall 
air quality improvements, we aim to determine whether disparities 
persist, with disadvantaged communities continuing to experience 
higher exposure levels. This study will provide critical insights and 
methodological advancements necessary to identify air pollution 
exposure disparities, guiding future policy decisions as data avail-
ability increases.

RESULTS
Pollutant model development
For the NO2 model, the total number of predictors and associated 
buffered distance statistics (covariates) was 2157, which was re-
duced to 140 via data reduction. The model had an adjusted R2 
of 79.6% (table S1). We highlight four predictors based on their 
significance and strong association with air pollution concentra-
tions, as determined through correlation analysis. They included 
vehicle kilometers traveled (VKT), percentage of impervious sur-
face, hectare of high-intensity developed land cover, and hectare of 
forest trees. Specifically, these predictors have demonstrated correla-
tion coefficients greater than 0.15, indicating a substantial relation-
ship with measured pollutant concentrations. Moreover, these 
predictors align with the variables traditionally used in LUR model-
ing, which aims to capture spatial variations in air pollution concen-
trations based on land use, land cover, and other relevant factors. 
By showcasing these predictors, we aim to illustrate their distance 
decay correlation with measured concentrations, providing insight 
into their influence on local air quality patterns. The buffer distance 
statistics in Fig. 1 for a predictor ranged from 50 to 5 km at an inter-
val of 50 m, except for VKT that ranged from 50 to 2 km. The curves 

Fig. 1. The distance decay curves of correlation with air pollutants for selected 
predictors. The three pollutants include (A) nitrogen dioxide (NO2), (B) fine par-
ticulate matter (PM2.5), and (C) ozone (O3). The buffer distance statistics for a pre-
dictor ranged from 50 m to 5 km at an interval of 50 m, except for VKT that ranged 
from 50 m to 2 km. The curves represent how the strength of correlation be-
tween each predictor and the respective air pollutant changes with increasing 
distance from the pollution source. This analysis provides insights into the spa-
tial relationships and influences of various predictors on air quality across dif-
ferent distances.
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represent how the strength of correlation between each predictor 
and the respective air pollutant changes with increasing distance 
from the pollution source. This analysis provides insights into the 
spatial relationships and influences of various predictors on air 
quality across different distances. VKT had the highest impact on 
NO2 concentrations, peaking at 100 m within a roadway and declin-
ing to the lowest at 700 m before rising again at the 2000-m buffer 
(Fig. 1A). Percent impervious surface and high-intensity developed 
land were also positively associated with NO2, with a rapid increase 
within the first 200 m and then gradually increasing to the 5000-m 
buffer. By contrast, forests/trees, shrublands, water, wetlands, devel-
oped open space, and residential land use were all negatively associ-
ated with NO2 concentrations (as a sink or lack of emissions). 
Temporally, winter months were associated with higher concentra-
tions and weekend days with lower concentrations. Figure S2 displays 
daily (01 January), monthly (January), and annual NO2 surfaces for 
2012 across California.

For the PM2.5 model, the total number of predictors and associ-
ated buffered distance statistics was 2159, reduced to 145 via data 
reduction. The model had an adjusted R2 of 65.3% (table S2). Predic-
tors in the model had similar directions of association as seen in the 
NO2 model, including VKT, percent impervious surface, intensely 
developed land cover, and forests/trees (negative), but the strength 
of the relationship between our predictors and observed PM2.5 
concentrations, represented by correlation coefficients, were much 
smaller (Fig.  1B). Figure  S3 displays daily (01 January), monthly 
(January), and annual PM2.5 surfaces for 2012 across California.

For the O3 model, the total number of predictors and associated 
buffer statistics was 2157, reduced to 126 via data reduction. The 
final O3 model had a prediction power of 93.6% (adjusted R2), with 
its predictors largely showing opposite directions of association 
compared to those for NO2 and PM2.5 (table  S3 and Fig.  1C). 
Figure S4 displays daily (01 January), monthly (January), and an-
nual O3 surfaces for 2012 across California.

Air pollution exposure disparities
Disparities in air pollution exposure by disadvantage status
We examined mean annual air pollution concentrations across 
California’s disadvantaged and advantaged census tracts (referred to 
as communities hereafter), as defined by the CalEnviroScreen (29) 
cumulative score (≥75th percentile for disadvantaged versus ≤25th 
percentile for advantaged). In 2012, disadvantaged communities 
demonstrated substantially higher mean annual concentrations for 
all three pollutants versus the least disadvantaged communities, 
respectively: 12.50 versus 7.36 parts per billion (ppb) for NO2, 11.92 
versus 8.47 μg/m3 for PM2.5, and 34.45 versus 34.01 ppb for O3 
(all P < 0.05). This trend was maintained through 2019, with 10.39 
versus 6.06 ppb for NO2, 10.75 versus 7.49 μg/m3 for PM2.5, and 
34.84 versus 34.74 ppb for O3 for most disadvantaged versus least 
disadvantaged. The differences were statistically significant for all 
years (P < 0.05), except for O3 in 2019 (P = 0.31).
Disparities in air pollution exposure by geographic location
We mapped air pollution exposure disparities for California’s four 
major metropolitan areas: San Francisco Bay Area (SF Bay), Los Angeles 
Metropolitan area (LA Metro), Sacramento, and Fresno (Fig. 2), and 
examined the communities in which the highest air pollution expo-
sure occurred (defined as ≥75th percentile for each pollutant at an-
nual concentration). For NO2 (left column), the LA Metro had the 
highest concentrations in the state, with 78.7% of disadvantaged 

communities and 17.1% of advantaged communities experiencing 
high concentrations (i.e., more than 75th percentile of NO2 concen-
trations). The highest concentrations in LA were seen in central 
traffic corridors, coincident with most disadvantaged communities. 
In the SF Bay, the West Oakland community showed the highest 
concentrations. Overall, 6.2% of disadvantaged communities in SF 
Bay had high concentrations, while no advantaged communities 
demonstrated such concentrations (table S4). Both Sacramento and 
Fresno showed relatively lower concentrations of NO2 concentra-
tions; however, disparities in exposure by disadvantage still existed 
(e.g., 4.0 and 0.1% disadvantaged communities, respectively, in 
Sacramento and Fresno, for high concentrations but with 0.0% for 
their advantaged communities). Statewide, higher proportions of 
disadvantaged communities had higher NO2 concentrations in all 
metropolitan areas.

For PM2.5, the LA Metro had the highest concentrations in the 
State, with 70.4% of disadvantaged communities and 5.0% of advan-
taged communities having high concentrations (table S4). The highest 

Fig. 2. Annual mean concentrations of nitrogen dioxide (NO2), fine particulate 
matter (PM2.5), and ozone (O3), categorized by percentile (with that more than 
75% as high pollutant concentrations), for four major metropolitan areas in 
California: San Francisco Bay Area, Los Angeles metropolitan area, Sacramento, 
and Fresno metros. The crosshatching indicates areas of the most disadvantaged 
communities.
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concentrations were found along traffic corridors where the most 
disadvantaged communities reside (Fig.  2, middle). Fresno also 
experienced high concentrations, with 67.3% of disadvantaged 
communities and 61.9% of advantaged communities having high 
concentrations. Central Fresno experienced the highest concentra-
tions. For Sacramento, 62.0% of disadvantaged communities had 
high concentrations, and the central part of Sacramento overlapped 
with the disadvantaged communities. In the SF Bay, 6.2% of dis-
advantaged communities and 1.3% of advantaged communities 
experienced high concentrations, with the most disadvantaged 
communities mainly distributed in the northern part of the region. 
Like NO2, higher proportions of disadvantaged communities had 
high PM2.5 concentrations in all metropolitan areas.

For O3 (Fig.  2, right), spatial distributions showed opposite 
patterns of NO2 and PM2.5, with generally higher concentrations 
found at the outskirts of the four metropolitan areas. For LA Metro, 
16.0% of disadvantaged and 25.1% of advantaged communities had 
high concentrations (fig. S4). These numbers were similar to Fresno, 
with 16.4 and 23.8% of disadvantaged and advantaged communities 
experiencing high concentrations, respectively. For both LA Metro 
and Fresno, higher proportions of advantaged communities had 
higher concentrations than disadvantaged communities. By com-
parison, the SF Bay and Sacramento areas had relatively low concen-
trations, and their concentrations were still lower in urban cores 
compared to surrounding regions (Fig. 2).
Disparities in air pollution exposure by race-ethnicity
The median CalEnviroScreen scores for the most and least disad-
vantaged communities were 49.7 and 9.8, respectively. The corre-
sponding race-ethnicity compositions of white and Hispanic were 
9.6 and 68.6% for the most disadvantaged tracts and 66.8 and 12.4% 
for the least disadvantaged tracts, respectively. African Americans 
and Asian Americans had relatively low percentages in population 
composition across the state but still showed higher percentages 
of African Americans and lower percentages of Asian Americans in 
the most disadvantaged group (4.2 and 4.9%) compared to the most 
advantaged group (1.3 and 9.2%).

Figure  3 shows race-ethnicity associations with air pollution 
exposure at a community level, separately for O3, PM2.5, and NO2, in 
three multivariable models. For the NO2 model, results largely 
showed that communities with a higher composition of Hispanic, 
African American, and Asian Americans were associated with high-
er NO2 versus communities with higher white composition. PM2.5 
demonstrated similar trends, with less-white communities experi-
encing higher exposure to PM2.5, but the estimated differences be-
tween white and non-white were not as large as with NO2.

Conversely, these relationships were reversed for O3: Communi-
ties with higher white compositions were associated with higher 
concentrations of O3. Associations were slightly lower for commu-
nities with higher Hispanic compositions but much lower for 
communities with higher African American and Asian American 
composition.
Air pollution exposure disparity trends
For NO2 and PM2.5, concentrations decreased from 2012 to 2019 for 
all communities in California. On average, NO2 decreased by 2.11 
(16.9%) and 1.30 ppb (17.7%), for disadvantaged and advantaged 
communities. PM2.5 decreased by 1.17 (9.8%) and 0.98 μg m−3 
(11.6%), for disadvantaged and advantaged communities, respec-
tively. By contrast, for disadvantaged and advantaged communi-
ties, O3 increased by 0.39 (1.1%) and 0.73 ppb (2.1%). We modeled 

interactions between year and cumulative census tract disadvantage 
categories [disadvantaged (75th to 100th percentile), medium (26th 
to 74th percentile), and advantaged (1st to 25th percentile score)], 
identifying their associations with air pollution exposure at a com-
munity level. Figure 4 displays trends of mean annual air pollution 
concentrations for NO2, PM2.5, and O3 for the most, medium, and 
least disadvantaged communities. The most disadvantaged commu-
nities saw a steeper decline in NO2 and PM2.5 concentrations during 
this period compared with the least disadvantaged communities 
(−0.29 versus −0.21 slope for NO2, −0.12 versus −0.1 for PM2.5). 
Conversely, we found that O3 increased for all levels of disadvantage 
from 2012 to 2019, but advantaged communities had the greatest 
increase (+0.11 versus 0.09 slope). For all three pollutants, we found 
that disparities in air pollution exposure decreased from 2012 to 
2019 (Fig. 4).
Air pollution exposure day-to-day fluctuations
Figure 5 displays trends of day-to-day fluctuations from 2012 to 
2019 for NO2, PM2.5, and O3 for the most, medium, and least 
disadvantaged communities. Day-to-day exposure fluctuations 
decreased for NO2 (Fig. 5A) and O3 (Fig. 5C) for all communities, 
indicating more stable air quality over time. The reduction in expo-
sure variations led to a decrease in the disparity of exposure fluc-
tuations for NO2 (slopes of −0.081 and −0.048 with P < 0.001 for 
disadvantaged versus advantaged). The reduction in exposure fluc-
tuations remained similar for all communities for O3 (slopes of 
−0.043 and −0.044 with P = 0.85 for disadvantaged versus advan-
taged). This implies that all communities maintained stable air 
quality despite vulnerable communities still having the highest air 
pollution exposure variations. The day-to-day exposure fluctuations of 
PM2.5 (Fig. 5B) increased across all communities indicate a greater 

Fig. 3. The multivariate associations of race-ethnicity composition, defined by 
the percentage of each community population, with air pollution concentra-
tions, respectively, for nitrogen dioxide, NO2 (blue), fine particulate matter, 
PM2.5 (green), and ozone, O3 (red). 
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Fig. 4. Mean annual air pollution concentration trends for most disadvantaged (red), least disadvantaged (blue), and moderate disadvantaged (green) com-
munities from 2012 to 2019. The trends illustrate variations in mean annual air pollutant concentrations of (A) nitrogen dioxide (NO2), (B) fine particulate matter (PM2.5), 
and (C) ozone (O3) across different levels of community disadvantage. Numbers presented on the figures are slopes and associated 95% confidence intervals.
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Fig. 5. Day-to-day exposure fluctuations for most disadvantaged (red), least disadvantaged (blue), and moderate disadvantaged (green) communities from 
2012 to 2019. The graph illustrates the variations in daily exposures within a year for the air pollutants (A) nitrogen dioxide (NO2), (B) fine particulate matter (PM2.5) and 
(C) ozone (O3) over the eight year time period across different levels of community disadvantage.
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volatility in air quality conditions; we attributed this to the increased 
frequency and intensity of wildfires experienced from 2012 to 
2019 (30).

To confirm the increasing daily variations of PM2.5 concentra-
tions despite an overall decrease in PM2.5 from 2012 to 2019, we 
conducted a comprehensive analysis and detailed it in the Supple-
mentary Materials. The analysis, focusing on wildfire occurrences in 
California throughout 2018, highlights a significant relationship be-
tween wildfire events and ambient PM2.5 concentrations. The ob-
served effects demonstrate statistical significance across various 
analyses, indicating a substantial impact of wildfires on heightened 
PM2.5 concentrations. These findings support our assertion of in-
creased day-to-day fluctuations in air quality attributed to wildfires.

DISCUSSION
Regulatory actions and technology advances over the past decade 
have led to a decrease in air pollutant concentrations (31–33). The 
improved environmental conditions have provided opportunities 
for enhancing air pollution modeling and identifying exposure dis-
parities. In this study, we used extensive datasets spanning 2012 to 
2019, including three air pollution monitoring sources and multiple 
other data sources, including traffic data, remotely sensed pollut-
ants, weather information, vegetation indices, land use and land 
cover data, and different geographic features. These datasets enabled 
us to generate precise and detailed air pollution surfaces for California, 
surpassing any previous estimates. These surfaces were used to iden-
tify California’s air pollution exposure disparities at the community 
level (census tract) based on geography, race-ethnicity, socioeco-
nomic disadvantage, and temporal trends.

Focus on identification of small-area variations of 
pollutant concentrations
Our primary focus in LUR modeling was to identify small-area vari-
ations in pollutant concentrations at a fine spatial scale. It is impor-
tant to highlight that our study context differs from other studies, 
such as that of Di et al. (34). While Di et al. analyzed a large dataset 
covering the entire U.S. with a resolution of 1 km from 1928 moni-
toring stations, our study concentrated specifically on California, 
using 850 air quality monitoring stations for PM2.5. This difference 
in spatial resolution has significant implications for the ability to 
discern exposure disparities between disadvantaged and advantaged 
communities, a critical aspect of our research. Our adjusted R2 value 
of 65% reflects a substantial overall correlation of more than 80% 
between our predictors and pollutant concentrations, underscoring 
the robustness of our modeling framework. While different model-
ing approaches may yield higher R2 values, our focus remains on 
delivering insights into small-scale variations in air quality, rather 
than using dummy variables for climate regions to enhance model 
prediction power, aligning with the goals of our study.

Air pollution exposure disparities
Our findings revealed consistently higher mean annual concentra-
tions of NO2 and PM2.5 in disadvantaged communities compared to 
advantaged communities. Our O3 results tell a somewhat different 
story. While we observed that advantaged communities exhibited 
higher O3 concentrations in most metropolitan areas than disad-
vantaged communities, statewide statistics showed that 24.14% of 
disadvantaged communities and 19.92% of advantaged communities 

experienced high O3 concentrations. This pattern can be attributed 
to NOX titration, where ozone concentrations tend to be lower with-
in cities because of the reaction between ozone and NOX, leading to 
relatively higher ozone levels at the city margins. This phenomenon 
explains why the exposure patterns for ozone differ from those of 
NO2 and PM2.5. These results are consistent with previous research 
(35, 36), albeit our community-level analysis offers a more refined 
understanding compared to studies based on coarser geographic 
scales, such as zip codes. Furthermore, we found that communities 
with a higher proportion of minority populations were exposed to 
elevated concentrations of NO2 and PM2.5 compared to predomi-
nantly white communities, which aligns with existing literature 
(6, 37, 38). Our study revealed that disadvantaged communities are 
consistently exposed to higher air pollution concentrations than 
advantaged communities. Disadvantaged communities are often 
located near industrial facilities and manufacturing plants (3–5), 
major roadways (6–8), and other sources of pollution, leading to 
higher concentrations in nearby areas. They may have fewer parks 
and green spaces to help trap pollutants in the area and lead to high-
er exposure levels for residents (39, 40). The high levels of air pollu-
tion exposure have serious health consequences, including increased 
risk of respiratory (41, 42) and cardiovascular diseases (43–45) and 
even premature death (46, 47). Poor health due to air pollution can 
lead to increased health care costs (48, 49) and reduced workforce 
productivity (49, 50) in disadvantaged communities.

For day-to-day fluctuations, the reduction in exposure variations 
led to a decrease in the disparity of exposure fluctuations for NO2, 
indicating that vulnerable communities experienced more consis-
tent air quality despite still having the highest air pollution exposure 
and variations. The day-to-day exposure fluctuations of PM2.5 in-
crease across all communities is correlated with the increased fre-
quency and intensity of wildfires experienced in recent years. The 
advantaged communities exhibited both elevated PM2.5 exposure 
variations and experienced a further surge in day-to-day fluctua-
tions during the 2012–2019 period, very likely because of their 
predominant residence in suburban and rural regions, where the 
impacts of wildfires were most pronounced.

The research reveals a decrease in overall pollution concentra-
tions, yet persistent disparities in exposure remain prevalent in 
disadvantaged communities. Urgent efforts, including regulatory 
measures, are essential to minimize pollution discrepancies in mar-
ginalized areas and ensure equitable exposure to clean air. The regu-
latory policies and interventions should be implemented at all levels 
of government, including local, regional, and national, aimed at ad-
dressing air pollution disparities. While exposure disparities often 
result from systemic injustices, regulatory measures can play a cru-
cial role in mitigating these discrepancies by enforcing pollution 
controls, implementing stricter emission standards, and promoting 
environmental justice initiatives. These measures may include but 
are not limited to zoning regulations, emission regulations for in-
dustrial facilities, vehicle emission standards, and environmental 
justice policies aimed at protecting vulnerable communities.

The study highlights the correlation between increased frequency 
and intensity of wildfires and heightened day-to-day exposure varia-
tions in specific regions. Although we only used 1 year of data to 
conduct our analysis, our hypothesis of this trend for recent years is 
supported by literature. Recent years have seen a marked increase in 
the frequency and intensity of wildfires in California, driven by a 
combination of climate change, extended dry seasons, and increased 
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fuel loads. Wildfire frequency refers to the number of distinct wild-
fire events, at least 100 acres in timber or 300 acres in grasslands to 
be counted, per year or per fire season within a given geographic 
region. Intensity, in this context, refers to the severity and destruc-
tiveness of wildfires, often measured by the acreage burned and the 
energy released during the fires. The California Department of 
Forestry and Fire Protection (Cal Fire) has documented this trend, 
noting that the 2020 wildfire season was one of the most severe on 
record, with nearly 4.3 million acres burned and five of the six larg-
est fires in California’s history occurring that year (51). Williams 
et al. (52) examined the direct impacts of human-induced climate 
change on wildfire behavior, providing evidence of increased fire 
frequency and intensity. Similarly, Goss et  al. (53) discussed how 
climate change has amplified extreme autumn wildfire conditions, 
making such events more frequent and severe. Keeley and Syphard 
(54) reviewed historical wildfire ignition sources, demonstrating an 
upward trend in wildfire occurrences. Westerling’s (55) projections 
for California’s Fourth Climate Change Assessment further support 
these findings, indicating substantial increases in wildfire frequency 
and intensity under warming climate scenarios. The comprehensive 
annual reports from Cal Fire (56) underscore the increasing acreage 
burned and the growing severity of wildfires in recent seasons, reinforc-
ing the critical impact of these environmental changes on California’s 
wildfire dynamics. Proactive strategies are needed to mitigate the 
impact of natural disasters on air quality, emphasizing the impor-
tance of comprehensive approaches to safeguard communities from 
environmental challenges. To accurately identify the day-to-day im-
pacts of wildfires, we recommend a temporal resolution of daily or 
sub-daily data and a spatial resolution finer than 1 km. Resolutions 
coarser than 5 km would significantly dilute the wildfire impact due 
to the smoothing effect within such large pixels.

It is confirmed not only by this research but also by other studies 
(57–59) that the unequal distribution of air pollution exacerbates 
health disparities, perpetuating environmental injustice. The disad-
vantaged communities, being in close proximity to air pollution 
emissions sources, have likely experienced notable improvements in 
air quality, thus benefiting most from the regulatory efforts aimed at 
reducing air pollution (60). These improvements underscore the 
progress made toward environmental justice due to these regulatory 
actions. However, environmental injustice will persist until compre-
hensive policies are fully implemented at both local and national 
levels to address systemic disparities in exposure to air pollution.

Limitations
Despite generating terabytes of high spatiotemporal resolution data 
for our exposure assessment (30 m for modeling and 100 m for sur-
face generation), we did not account for diurnal variations due to 
the substantial computational power and storage space required. 
This limitation could be addressed when computer clusters with 
extensive storage space become more widely accessible.

The study used data from 2012 to 2019. Therefore, the observed 
trends may not fully capture recent changes or emerging patterns in 
air pollution exposure disparities, such as the impact of COVID-19 
on traffic, industrial operations, and other activities that could have 
influenced concentrations in more recent years. The findings should 
be interpreted within the context of the studied time frame.

In defining advantaged and disadvantaged communities, we 
relied on CalEnviroScreen cumulative scores. CalEnviroScreen as-
signs equal weights to all environmental factors when determining 

the final cumulative score, which may have misclassified some 
communities as disadvantaged. Translating these findings into ac-
tionable policies or interventions to address environmental expo-
sure disparities in disadvantaged communities requires careful 
consideration of additional factors, including socioeconomic factors, 
community-specific characteristics, and stakeholder engagement.

While our LUR modeling approach offers valuable insights into 
small-area variations in pollutant concentrations, it is essential to 
acknowledge certain limitations. The relatively low adjusted R2 
value for PM2.5, particularly when compared to other models like 
Di et al. (34), prompts consideration of these limitations. One pri-
mary constraint lies in the spatial resolution of our dataset, which, 
focused solely on California, may not capture the broader variability 
present across the entire U.S. In addition, our selection of predic-
tors, while historically significant and directionally associated with 
measured concentrations, may not encompass all relevant factors 
influencing PM2.5 concentrations. Furthermore, the inability of our 
LUR models to effectively handle hundreds of predictors with po-
tential collinearity may contribute to the observed R2 values. We 
have been limiting our final number of predictors to less than 20 in 
our historical LUR modeling. Despite these limitations, our model-
ing framework remains robust, offering substantial insights into 
pollutant concentration variations at small-area variations.

Outlook
Regulations and technological improvements such as vehicle emis-
sions control, stricter standards for refineries and factories, and in-
creased use of clean power generation have contributed to a steady 
decline in criteria air pollutants in California (61), as confirmed by 
this research. Concentrations of NO2 and PM2.5 were estimated to 
have decreased from 2012 to 2019 across all communities, with the 
most notable reductions observed in the disadvantaged communi-
ties. However, O3 concentrations increased in all communities dur-
ing the same period, with the largest increase observed in advantaged 
communities. This finding aligns with the understanding that NO2 
and PM2.5 are negatively associated with O3 concentrations due to 
photochemical reactions (62–64).

Environmental justice advocates and policymakers argue that 
disadvantaged communities face a disproportionate burden from 
environmental hazards (65). However, quantitative assessments of 
environmental justice, particularly comprehensive comparisons be-
tween communities, are still relatively rare in the literature (66, 67). 
Most existing air pollution models and surfaces have limited spatial 
resolution, which hinders effective differentiation of air pollution 
exposure between disadvantaged and advantaged communities. By 
using high spatiotemporal resolution models and surfaces devel-
oped in this study, we were able to compare air pollution exposure 
disparities between disadvantaged and advantaged communities by 
overlaying air pollution surfaces with CalEnviroScreen disadvan-
tage status. In addition, we identified regions of highest air pollution 
concerns throughout California, as well as local concerns within 
metropolitan regions. We further identified disparities in air pollu-
tion exposure based on race-ethnicity and examined the temporal 
trends (overall exposure and day-to-day fluctuations) in air pollu-
tion exposure for disadvantaged and advantaged communities. The 
study contributes valuable insights into air pollution exposure dis-
parities and underscores the importance of integrating multiple data 
sources and advanced modeling techniques to enhance our under-
standing of the complex relationship between air pollution, health, 
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and disparities. These findings provide policymakers with an effec-
tive tool to identify and implement interventions to reduce air pol-
lution exposure disparities in disadvantaged communities.

MATERIALS AND METHODS
Our study used a comprehensive methodology to develop high-
resolution air pollution models and surfaces for NO2, PM2.5, and O3 
across California from 2012 to 2019. We integrated diverse data 
sources and used various scripting languages to process and analyze 
extensive datasets.

We processed daily traffic data from California highways and 
parcel-level land use data from 58 counties using R scripting, which 
enabled the derivation of daily traffic surfaces and incorporation of 
detailed land use information into our modeling approach. In addi-
tion, Google Earth Engine (JavaScript) was used to process land 
cover data, vegetation indices, impervious surfaces, meteorological 
conditions, and aerosol optical depth data, providing critical spatial 
predictors at high resolution.

Our study integrated daily air quality measurements from regula-
tory monitoring stations, fixed-site saturation monitoring in specific 
counties, and Google Streetcar mobile monitoring across different 
regions into a unified modeling framework. This diverse dataset 
facilitated the development of daily LUR models using the D/S/A 
machine learning algorithm (68, 69). During the modeling process, 
we aimed for fine spatial resolution (30 m) while managing multi-
collinearity and limiting predictor complexity for enhanced inter-
pretability.

Spatial and temporal disparities in air pollution exposure were 
analyzed at the community level, defining disadvantaged and advan-
taged communities based on CalEnviroScreen scores (29). T tests 
were conducted to compare air pollution exposure between these 
community types. Linear models were used to explore connections 
between demographic factors and air pollution levels, focusing 
separately on NO2, PM2.5, and O3. Furthermore, we investigated the 
impact of wildfire events on PM2.5 concentrations during 2018, 
using wildfire occurrence data from Cal Fire and using statistical 
techniques to assess the relationship between wildfire events and 
ambient PM2.5 concentrations using regulatory air quality moni-
tors across California.

For more detailed information on our methodologies and analy-
ses, please refer to the Supplementary Materials accompanying 
this manuscript. This supplementary content provides additional 
insights into our study approach.

Supplementary Materials
This PDF file includes:
Supplementary Text
Figs. S1 to S4
Tables S1 to S5
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