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Purpose: We propose a deep learning-based approach to breast mass classification in sonography
and compare it with the assessment of four experienced radiologists employing breast imaging
reporting and data system 4th edition lexicon and assessment protocol.
Methods: Several transfer learning techniques are employed to develop classifiers based on a set of
882 ultrasound images of breast masses. Additionally, we introduce the concept of a matching layer.
The aim of this layer is to rescale pixel intensities of the grayscale ultrasound images and convert
those images to red, green, blue (RGB) to more efficiently utilize the discriminative power of the
convolutional neural network pretrained on the ImageNet dataset. We present how this conversion
can be determined during fine-tuning using back-propagation. Next, we compare the performance of
the transfer learning techniques with and without the color conversion. To show the usefulness of our
approach, we additionally evaluate it using two publicly available datasets.
Results: Color conversion increased the areas under the receiver operating curve for each transfer
learning method. For the better-performing approach utilizing the fine-tuning and the matching layer,
the area under the curve was equal to 0.936 on a test set of 150 cases. The areas under the curves for
the radiologists reading the same set of cases ranged from 0.806 to 0.882. In the case of the two sepa-
rate datasets, utilizing the proposed approach we achieved areas under the curve of around 0.890.
Conclusions: The concept of the matching layer is generalizable and can be used to improve the
overall performance of the transfer learning techniques using deep convolutional neural networks.
When fully developed as a clinical tool, the methods proposed in this paper have the potential to help
radiologists with breast mass classification in ultrasound. © 2018 American Association of Physicists
in Medicine [https://doi.org/10.1002/mp.13361]

Key words: BI-RADS, breast mass classification, convolutional neural networks, transfer learning,
ultrasound imaging

1. INTRODUCTION

Breast cancer is one of the most common cancers in Ameri-
can women.1 Ultrasound (US) imaging is the most common
adjunct imaging modality used to evaluate mammographic
findings, palpable masses and to guide biopsy. Breast US is
also the primary imaging modality in the evaluation of breast
complaints in women under the age of 30. In comparison to
other imaging modalities, US is relatively low cost, readily
available and can accurately differentiate cysts vs masses.
However, accurate diagnosis with US requires experienced
and trained radiologists to evaluate cystic and solid breast

masses. To support the radiologists and standardize the
reporting process, the breast imaging reporting and data sys-
tem (BI-RADS) was developed by the American College of
Radiology (ACR).2 BI-RADS lexicon characterizes US mass
features based on shape, margins, orientation, echo patterns
and posterior acoustic features. BI-RADS also provides
assessment categories and recommendations as well as guid-
ance on reporting. Although BI-RADS standardizes the
reporting, the assessment of mass features is still subjective
and depends on radiologist’s experience and training. There
is increased interest in potential use of US for screening, par-
ticularly in women with dense breast tissue. Screening breast
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US can detect additional mammographically occult cancers
but it has a low positive predictive value of about 8% leading
to increased number of unnecessary biopsies and higher rate
of short-term follow-up.3,4 To further help the radiologists
correctly and objectively assess breast masses, various com-
puter-aided diagnosis (CADx) systems have been pro-
posed.5,6 These systems process US images to provide
as output the probability that the examined masses are
malignant.

CADx pipeline commonly includes four steps: image pre-
processing, mass segmentation, feature extraction, and classi-
fication. The performance of a CADx system is related to
applied features that are usually engineered by employing
expert knowledge. The usefulness of the hand-selected fea-
tures is reported to be that morphological features are the
most effective for breast mass classification.6 More angular
and indistinct margins are expected in the case of malignant
masses, so the aim of the morphological features is to assess
mass shape and margin. Various morphological features were
inspired by the BI-RADS descriptors and aim to computerize
BI-RADS-related features. The morphological features were
successfully employed to discriminate breast masses in sev-
eral studies.6–16 However, efficiency of morphological fea-
tures may depend on image preprocessing, US scanner, the
specific view of the mass and applied segmentation
algorithm.17,18

Deep learning methods utilizing convolutional neural net-
works (CNNs) are gaining momentum in medical image anal-
ysis. CNNs for classification process an input image using
different network layers to provide as output the probability
that the examined image contains particular pathology. Due
to limited medical datasets, it is usually more efficient to use
transfer learning and adjust a pretrained deep model to
address the classification problem of interest. Transfer learn-
ing methods were employed for breast mass classification
and segmentation in several studies.19–25 Additionally, deep
learning was used to detect breast lesions26 and differentiate
breast masses with shear-wave elastography.27 The better-
performing pretrained deep learning models have been devel-
oped using RGB color images.28–31 However, medical
images, including US images, are commonly grayscale,
which raises question about how to efficiently utilize the
discriminative power of a pretrained model. In order to use a
pretrained model, the most widely used approach is to dupli-
cate the grayscale intensities across all color channels.19–22,25

Another approach is to modify the convolutional layers of a
pretrained model, for example it is possible to convert the
RGB images originally employed to develop the model to
grayscale and use them to modify the model.21 The second
approach, however, may not lead to better classification per-
formance.21 Modification of the first layers influences deeper
layers in a network and does not necessarily improve the over-
all performance.

In this work, we propose how to more efficiently utilize
the color-dependent representational capacity of a deep CNN
to improve breast mass classification in US images. Instead
of using duplicated grayscale images as input or modifying

first convolutional layers, we introduce the concept of a
matching layer (ML). This additional layer is added before
the original input layer of the pretrained CNN to convert
grayscale US images to RGB. We show that this transforma-
tion can be efficiently learned during fine-tuning using the
back-propagation algorithm. Next, we show that our approach
leads to improved performance. Additionally, the usefulness
of our approach to classification is depicted using two pub-
licly available datasets of breast mass US images. To show
the potential clinical value of the employed methods, our best
performing classifier is compared with the performance of
four experienced radiologists utilizing BI-RADS lexicon cat-
egories for overall breast mass assessment.

This manuscript is organized in the following way. First,
we describe the datasets employed in this study. Then, trans-
fer learning methods utilizing deep CNNs are detailed and
we describe how these methods were applied to address the
problem of the breast mass classification. Next, we describe
how the grayscale US images were converted to RGB via the
ML. Results are presented and we discuss the advantages and
the disadvantages of the applied methods.

2. MATERIALS AND METHODS

2.A. Datasets

The main dataset employed in this study contained 882
US images of unique breast masses, one mass per patient,
consisting of 678 benign and 204 malignant lesions. The
dataset was divided into training, validation, and test sets.
The training set contained images of 582 breast masses (23%
malignant) while the validation and the test sets both con-
tained 150 masses each (23% malignant). In the case of the
benign masses, the three sets contained similar number of
fibroadenomas (42%), simple (26%), and complicated cysts
(9%) as determined by one radiologist in the study. From a
total of 14 malignant histological findings, the following were
included: 29% invasive ductal carcinoma, 21% invasive lobu-
lar carcinoma, 21% intraductal carcinoma, 11% ductal carci-
noma in situ (all types), 10% invasive and in situ carcinoma,
and 20% other malignancies. The proportion of the five dom-
inant findings was maintained in each dataset (training, vali-
dation, and test). The distribution of mass types closely
corresponded to the 5-yr average mix of cases (<2% differ-
ences) at the Moores Cancer Center, University of California,
San Diego. DICOM B-mode images (8 bit) were retrieved
retrospectively in chronological order from institutional
archive under approval by the Institutional Review Board and
privacy compliance. Following BI-RADS criteria, cases were
included if a breast mass was identified in at least two views
sonographically, with only one image used. Biopsy was per-
formed in 65% and the remainder had benign clinical follow-
up of at least 2 yr. Exams with no mass present (BI-RADS
1), inconclusive pathology results, significant artifacts or
known cancers were excluded, but none were specifically
included or excluded for race, ethnic background, or health
status. Self-reported racial/ethnic descriptions were White

Medical Physics, 46 (2), February 2019

747 Byra et al.: Breast mass classification with deep learning 747



(69%), Asian/Pacific Islander (12%), Hispanic (7%), Black
(5%), Native American/Eskimo (<1%), Other (3%), and not
reported (4%). Age ranged from 18 to 90 yr (mean 51 � 15).
Mass size ranged from 2.5 to 98 mm2 (mean 12.8 �
9.3 mm2). Sonography was performed at an ACR accredited
center following standard clinical protocol with one of three
scanners: Siemens Acuson (59%), GE L9 (21%), and ATL-
HDI (20%). The BI-RADS category was assigned to each
mass in the test set independently by four senior subspecialty
radiologists, reviewing the cases in random order in two ses-
sions using a standard hard-copy BI-RADS classification
form that includes final assessment category, descriptors, and
recommendations for follow-up interval or biopsy. The radi-
ologists were not aware of the confirmed findings for any
case.

To show the usefulness of the methods proposed in this
paper, we also employed two publicly available breast mass
datasets.26,32 The first one, named UDIAT, consists of 163
B-mode images of breast masses (53 malignant and 110
benign) collected using Siemens ACUSON scanner from the
UDIAT Diagnostic Centre of the Parc Tauli Corporation,
Sabadell (Spain). This dataset was used by the authors to
develop deep learning-based algorithms for the breast mass
detection26 and segmentation.22 The second dataset, named
Open Access Series of Breast Ultrasonic Data (OASBUD),
consists of raw ultrasonic echoes (before B-mode image
reconstruction) acquired from 52 malignant and 48 benign
masses with the Ultrasonix SonixTouch Research scanner
from patients of the Oncology Institute in Warsaw (Poland).
For each mass, two perpendicular scans were recorded. The
OASBUD was originally used to assess the statistical proper-
ties of backscattered ultrasound echoes in breast tissue33,34

and to differentiate breast masses using transfer learning with
CNNs.20 Detailed descriptions of both datasets can be found
in the original papers.26,32

2.B. Transfer learning

In this study, we used the VGG19 neural network publicly
available in TensorFlow.29,35 The CNN was pretrained on the
ImageNet dataset that contains over 1.2 million RGB images
corresponding to 1000 classes.28 The model includes five
large blocks of sequentially stacked convolutional layers fol-
lowed by a block of fully connected (FC) layers. Convolu-
tional layers extract different information from images. The
first layers include edge and blob detectors while the deeper
layers include ImageNet class-related features. This CNN
was reported to be useful for various medical image analysis
tasks,36 including breast mass classification,19,20 so it was
selected for this study to enable comparison to other’s results.

We employed two approaches to neural transfer learning.37

The first utilized the pretrained model as a fixed feature
extractor. In this case, the model architecture was not modi-
fied. The aim of the second approach was to fine-tune the
CNN using the new dataset, in our case breast sonograms. In
order to perform fine-tuning, the CNN architecture is usually
modified, the last layers of the network are replaced with

custom FC layers. Next, the back-propagation algorithm is
used to adjust the model to the new classification problem.

The main dataset was augmented in order to improve
training and provide more diverse images to the network.
First, each US image of a breast mass was median filtered
and cropped with a fixed exterior margin of 30 pixels using
the region of interest (ROI) provided by the radiologist and
resized to the default VGG19 image size of 224 9 244.
Additionally, the images were flipped and shifted by 15 pixels
horizontally. Image shift was applied before cropping. Due to
the augmentation, the number of images in each set increased
six times. We decided not to perform image rotation or shift
in longitudinal direction, as this would alter some of the
known attributes of breast masses such as posterior shadow-
ing and enhancement, potentially decreasing classification
performance.38 Example images are presented in Fig. 1. The
B-mode images from the UDIAT dataset were preprocessed
and augmented in a similar way as in the case of our dataset.
Raw ultrasonic echoes from the OASBUD dataset were used
to reconstruct B-mode images following the scheme proposed
in the original paper.32 Echo amplitude was computed with
the Hilbert transform and logarithmically compressed to
reconstruct the B-mode image. Next, the data were prepro-
cessed and augmented as in the case of the other datasets.

2.B.1. Neural feature extraction

We implemented two efficient neural feature extraction
methods employed in a recent paper.19 First, features for clas-
sification were extracted from each of five max pooling (MP)
layers of the original VGG19 model.37 Next, features corre-
sponding to each block were averaged along spatial dimen-
sions and normalized using l2 norm. Features vectors
corresponding to each block were then combined to form the
final MP feature vector. Second, we additionally used the first
FC layer to extract features. For both methods, all zero vari-
ance features in respect to the training set were discarded. For
classification, we employed the support vector machine
(SVM) algorithm.39 In our study, we applied two different
approaches to model development. The main dataset was
divided into training, validation, and test sets. Training and
validation sets were used to determine the best performing
hyper-parameters and the optimal kernel of the SVM classi-
fier via the grid search algorithm. For the C and c parameters
of the SVM algorithm, the grid included parameters in range
of [0.00001, 0.0001, . . ., 1, 10] and [1, 5, . . ., 100]. The
parameter grid also included the kernels, namely the linear
and radial basis function kernels. Next, the best performing
model was evaluated on the test set. However, the UDIAT
and OASBUD datasets are too small to divide them into three
separate sets in a convenient way. Therefore, we applied ten-
fold cross-validation (case-based) to evaluate the classifica-
tion. Within each fold, additional fivefold cross-validation
was used to find optimal hyper-parameters of the SVM classi-
fiers. To address the problem of class imbalance, we
employed class weights inversely proportional to class fre-
quencies in the training set. The SVM classifiers were
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developed and evaluated using the augmented datasets. To
determine a posteriori probability that a mass in the test set is
malignant, we averaged the probabilities calculated for each
image of this particular mass. Next, to assess the classifica-
tion performance we determined the receiver operating char-
acteristic (ROC) and calculated the area under the ROC curve
(AUC). Sensitivity, specificity, and accuracy of the better-per-
forming algorithms were calculated using the ROC curve for
the point on the curve that was the closest to (0, 1).40 Welch’s
t-test at significance level of 0.001 was used to determine
whether there is a difference in AUC values. All calculations
were performed in Python.

2.B.2. Fine-tuning

The architecture of the original VGG19 model was modi-
fied in order to perform fine-tuning. Unfortunately, the UDIAT
and OASBUD datasets were too small to efficiently fine-tune
the VGG19 model, therefore fine-tuning was employed only in
the case of the main dataset. The way to modify the architec-
ture was determined using the validation set. The original FC
layers, developed for the ImageNet classes, were replaced with
a FC layer with 4096 units followed by a FC layer with 256
units and a single unit employing sigmoid activation function
suitable for binary classification (in this case, benign or malig-
nant). For the first two FC layers, we used a rectifier activation
functions. Initial weights of the layers were set using the
Xavier uniform initializer. With the use of the validation data-
set, we found that the highest performance can be obtained if
the first four convolutional blocks are frozen and only the fifth
block and the fully connected layers are fine-tuned. We also
found that the fine-tuning of the first convolutional block does
not improve the classification performance. To fine-tune the
VGG19 neural network, we used the mini-batch stochastic gra-
dient descent with Nesterov update. The learning rate was ini-
tially set to 0.001 and was decreased by 0.00001 per epoch up

to 0.00001. The momentum and the batch size were set to 0.9
and 40, respectively. The binary cross-entropy loss was
employed with weights inversely proportional to class frequen-
cies in the training set. To reduce over-fitting, we applied drop-
out with 80% dropout probability to the first fully connected
layer. The experiments were performed on a computer
equipped with a GeForce GTX 1080 Ti graphics card. The
AUC value on the validation set was monitored during the
training. As in the case of the SVM algorithm, we selected
the model that maximized the AUC value on the validation set.

2.C. Matching layer

Recently proposed CNN-based breast mass classification
approaches employed grayscale US images as input to the
pretrained models.19–22 In this paper, we propose to adjust the
grayscale US images to the pretrained model instead of dupli-
cating grayscale images across the channels or modifying the
first convolutional layer of the CNN. By performing this
transformation, we aim to utilize more efficiently the repre-
sentational capacity of the deep model. For this task, we use
a ML that transforms the input grayscale images to RGB
images via a linear transformation:

Iout ¼ a~Iin þ b~

where Iin is the grayscale image, Iout is the output RGB
image, a~ and b~ are the transformation parameters that shall be
determined during training. This transformation is a one-
dimensional (1D) convolution with a bias term. One-dimen-
sional convolutions were employed, for example, by the
authors of the GoogleLeNet CNN to reduce the dimensional-
ity of the input data.31 In our case, we use a 1D convolution
layer to artificially increase the dimensions of the input
images and ideally perform color conversion from gray level
images to RGB. Figure 2 depicts the modified VGG19 archi-
tecture that includes the ML layer in the front. In this study,

FIG. 1. (a) Benign and (b) malignant ultrasound images from the main dataset after the preprocessing.
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we determined the parameters of the ML during fine-tuning
using the back-propagation algorithm in a way that minimizes
the loss function.

3. RESULTS

First, we used the grayscale images to perform classifica-
tion of the B-mode images from the main dataset following
the standard approach.19,20,22,25 For each US image, the gray
level intensities were copied to RGB channels and the
VGG19 CNN was tuned. The highest AUC value on the vali-
dation set, equal to 0.921, was obtained after 16th epoch. The
corresponding AUC value on the test set was equal to 0.895.
Next, we extracted the MP and FC features using the original
VGG19 model and used those features to train the SVM clas-
sifiers. The validation set was employed to select the best
hyper-parameters. For both feature sets, we obtained similar
AUC values equal to 0.849 on the test set. The classification
performance is depicted in Table I and the ROC curves are
shown in Fig. 3.

Next, we fine-tuned the VGG19 CNN combined with the
ML using the back-propagation algorithm. The highest AUC
value on the validation set, equal to 0.961, was obtained after
7th epoch and corresponded to AUC value of 0.936 on the
test set, see Table II and Fig. 4. To visualize how the ML
works, we converted two grayscale US images into RGB

images with results depicted in Fig. 5. Following the conver-
sion, the image was dominated by light blue and yellow
colors.

The converted RGB US images were utilized to extract the
MP and FC features using the original VGG19 model (not
fine-tuned). Again, the validation set was employed to find
the best performing hyper-parameters for the SVM classifiers.
For the RGB images, we obtained higher AUC values on the
validation and the test set, equal to 0.889 and 0.873 for the
MP and FC features, respectively. Color conversion improved
the classification performance. In comparison to gray US
images, the AUC values significantly increased by around
0.04 (P < 0.001), see Table I. The ROC curves calculated for
the classifiers developed using the ML layer are depicted in
Fig. 4.

In the next step, we extracted the MP and FC features from
the VGG19 model using the B-mode images from the UDIAT
and OASBUD datasets. For each US image, the gray level
intensities were copied to RGB channels. In the case of the
UDIAT dataset, we obtained AUC values of 0.858 and 0.849
for the MP and FC features, respectively. For the OASBUD
dataset, the corresponding AUC values for the MP and FC
features were equal to 0.819 and 0.791, respectively. Unfortu-
nately, due to small sizes of these datasets we were not able
to perform fine-tuning in an efficient way, so we employed
the ML developed using the main dataset. As in the case of

FIG. 2. The modified architecture of the VGG19 CNN, gray colors indicate the trainable layers. We propose to add a ML in front of the pretrained model to
transform the grayscale US images to RGB to utilize more efficiently the representation capacity of the deep model.

TABLE I. Classification performance of the models developed without the ML for our dataset. The standard deviations of the parameters were calculated using
bootstrap.

Method AUC Accuracy Sensitivity Specificity

Fine-tuning 0.895 � 0.031 0.860 � 0.024 0.848 � 0.056 0.863 � 0.026

MP features 0.849 � 0.036 0.793 � 0.036 0.757 � 0.054 0.803 � 0.048

FC features 0.849 � 0.036 0.800 � 0.038 0.757 � 0.054 0.812 � 0.046

Fine-tuning, ML 0.936 � 0.019 0.887 � 0.028 0.848 � 0.039 0.897 � 0.035

MP features, ML 0.889 � 0.029 0.860 � 0.044 0.757 � 0.058 0.889 � 0.062

FC features, ML 0.873 � 0.036 0.753 � 0.044 0.879 � 0.058 0.718 � 0.053
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our dataset, all B-mode images from the UDIAT and OAS-
BUD datasets were converted to RGB using the ML and uti-
lized to extract the FC and the ML features. The same cross-
validation folds were used to evaluate the performance.
Results showed that due to the color conversion the classifi-
cation performance increased. For the UDIAT dataset, the
AUC values for the MP and FC features increased to 0.873
and 0.893, respectively. In the case of the OASBUD, the
AUC values were equal to 0.831 and 0.881 for the MP and
FC features, respectively. The ML improved significantly the
AUC values (P < 0.001) in the case of the FC features (both
datasets). However, for the classifiers trained using the MP
features the improvement was too small to provide statisti-
cally significant difference. Results are depicted in Table II.
Figure 6 shows how the ML converts the B-images from the
UDIAT and OASBUD datasets to RGB.

Four radiologists participated in our study. Table III shows
the distribution of the BI-RADS categories for the masses in
the test set. The Fleiss’ kappa was equal to 0.41 indicating
moderate agreement of the radiologists in BI-RADS category
final assessment. Table IV presents the classification perfor-
mance of the radiologists employing the BI-RADS cate-
gories. The AUC values ranged between 0.806 and 0.882
with mean of 0.849. The AUC value for the better-performing
CNN with ML was significantly higher than the highest AUC
value for the radiologists, 0.936 vs 0.882 (P < 0.001).
Accuracy, sensitivity, and specificity were determined for the
BI-RADS category 3 (probably benign) used as the benign
cutoff. In this case, the sensitivity of the radiologists was
excellent (mean 0.992), but the specificity was lower (mean
0.412), indicating an expected bias toward not missing a posi-
tive mass. To additionally compare the assessment of the radi-
ologists with our better-performing method, we employed the
following procedure. First, majority voting was applied to
assign a single BI-RADS category to each breast mass. Ties
were handled by assigning the higher BI-RADS category.
Second, we investigated the relation between the output of
the network (a posteriori probability of malignancy) and the
BI-RADS category (after voting) assigned to each mass.
Figure 7 shows that the probability of malignancy increases
with the BI-RADS category, as expected. To confirm this
observation, the Mann–Whitney statistical tests with

FIG. 3. The ROC curves for the CNN-based classification without the ML in
the case of the main dataset. [Color figure can be viewed at wileyonlinelibra
ry.com]

TABLE II. Classification performance of the models developed with and without the ML in the case of the UDIAT and OASBUD datasets. The standard devia-
tions of the parameters were calculated using bootstrap.

Dataset Method AUC Accuracy Sensitivity Specificity

UDIAT MP features 0.858 � 0.029 0.853 � 0.024 0.796 � 0.043 0.880 � 0.027

FC features 0.849 � 0.031 0.822 � 0.037 0.759 � 0.043 0.853 � 0.053

MP features, ML 0.873 � 0.027 0.840 � 0.023 0.833 � 0.037 0.844 � 0.027

FC features, ML 0.893 � 0.030 0.840 � 0.024 0.851 � 0.042 0.834 � 0.030

OASBUD MP features 0.819 � 0.030 0.760 � 0.029 0.692 � 0.057 0.833 � 0.057

FC features 0.791 � 0.035 0.750 � 0.031 0.750 � 0.044 0.750 � 0.050

MP features, ML 0.831 � 0.031 0.760 � 0.031 0.762 � 0.059 0.750 � 0.061

FC features, ML 0.881 � 0.023 0.830 � 0.026 0.807 � 0.039 0.854 � 0.036

FIG. 4. The ROC curves for the CNN-based classification with the ML in
the case of the main dataset. [Color figure can be viewed at wileyonlinelibra
ry.com]
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Bonferroni correction were applied. Results show that four
groups are statistically different (P < 0.05), expect for the
BI-RADS categories 2 and 3 (P = 0.22). These two groups
contained only benign lesions for which the network assigned
small probabilities of malignancy.

To illustrate the examples that were difficult for our better-
performing model to classify (fine-tuned VGG19 model with
the ML), we extracted from the test set the images of malig-
nant and benign breast masses that were assessed with the
highest and the lowest confidence level for each class, these
are shown in Fig. 8. For example, Fig. 8(b) shows a benign
mass that was assessed with the highest confidence of being
malignant by the classifier. For this mass, the radiologists
assigned BI-RADS categories 4, 4, 4 and 5, which indicates
that according to the radiologists this mass was suspicious for
malignancy. Figure 8(d) depicts a malignant mass that was
assessed with the lowest confidence of being malignant by
the classifier. All radiologists assigned BI-RADS category 5
to this mass. The oval shape, moderate posterior enhance-
ment and fairly uniform anechoic pattern of this mass might
be the reason why the model performed worse in this case.

4. DISCUSSION

Our study demonstrates potential usefulness of a deep
CNN-based approach for breast mass classification in US
images on three different datasets. In the case of the main
dataset, we evaluated three transfer learning methods and
achieved good results with each of them. The highest AUC
value of 0.936 was achieved for the fine-tuned VGG19 model
combined with the ML. Using the MP and FC features, we
obtained AUCs ranged from 0.849 to 0.889. In the case of
the other datasets the AUC values ranged from 0.791 to
0.893. Although we were not able to fine-tune the model
using the smaller datasets, we still obtained similar classifica-
tion performance using the ML and FC features as in the case
of the main dataset. For the UDIAT dataset, the performance
was almost the same, while for the OASBUD dataset the
AUC values were lower by about 0.03 (without the ML). All
these results are comparable with the results reported in pre-
vious papers,19,20,25 where the AUC values of around 0.85
were obtained. In one of the studies, the GoogleLeNet was
fine-tuned to classify breast masses in US images.21 The
authors achieved high AUC value of 0.96. However, the
authors used a large set of over 7000 US images to develop
the model. In our case, we used a set of 882 breast mass
images to develop the model, which may explain the differ-
ence in AUC values. Supposedly, with a larger dataset it is
possible to fine-tune the model in a more efficient way.

In our study, fine-tuning proved to be more efficient
than the SVM algorithm utilizing directly extracted CNN
features; we obtained higher AUC values by around 0.04
for the main dataset. The better performance may be par-
tially explained by the fact that we fine-tuned the last con-
volutional block of the VGG19 model. The usefulness of
the convolutional blocks of the VGG19 CNN for breast
mass classification was evaluated separately in one of the
previous papers.20 The performance of the last 5th convolu-
tional block was lower than in the case of the 4th block,
which suggests that the 5th block is specifically related to
recognition of the ImageNet objects. The approach employ-
ing fine-tuning, however, is more challenging and

(a) (b)

(c) (d)

FIG. 5. Conversion of grayscale US images from our dataset to RGB using
the ML, (a) a benign lesion image and (b) its conversion, (c) a malignant
lesion image and (d) its conversion. By using the color conversion, it was
possible to more efficiently use the CNN model pretrained on RGB images.
[Color figure can be viewed at wileyonlinelibrary.com]

(a) (b)

(c) (d)

FIG. 6. (a) Image from the UDIAT dataset and (b) its conversion to RGB, (c)
image from the OASBUD and (d) its conversion to RGB. By using the color
conversion, it was possible to more efficiently use the CNN model pretrained
on RGB images. [Color figure can be viewed at wileyonlinelibrary.com]
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troublesome to develop. It requires to replace the FC layers
of the original CNN with custom layers and determining
which layers of the original network should be trainable
during the fine-tuning. Moreover, the learning rate and
other hyper-parameters have to be correctly selected to yield
good classification performance on the validation set. Iterat-
ing over methods of model development is time-consuming
and may not yield good results at first. Moreover, in the
case of a small dataset, the fine-tuning might not be effi-
cient and it is more reasonable to utilize the FC or MP fea-
tures.

The concept of the color conversion has been widely
employed in the image analysis field.41 Usually, a type of
color conversion is used before image segmentation.42,43 In
the case of deep learning, color conversion was employed in
deep colorization44 or neural style transfer.45 Our study
shows that color distribution appears to be an important fac-
tor and that it should be taken into account to more efficiently
use transfer learning with pretrained deep models. By utiliz-
ing the ML, we were able to obtain better classification per-
formance. The first layers of the pretrained network
commonly include color blob detectors. Modifying these lay-
ers may not necessarily lead to better performance, because
those layers are somehow connected with the deeper layers in
the network. With the color conversion, it was possible to
more efficiently use the pretrained CNN. This advantage is

clearly depicted in the case of the MP and FC features
extracted from all datasets. The ML developed using the main
dataset proved to work with other datasets as well. This shows
the universality of our approach. For example, in the case of
the FC features extracted using the OASBUD dataset due to
the color conversion the AUC value increased from 0.791 to
0.881. Moreover, the color conversion enabled us to more
efficiently fine-tune the VGG19 CNN. In this work, we used
linear transformations to convert grayscale US images to
RGB. Regular image preprocessing required in the case of
the VGG19 network could be performed using only the bias
term b~. We decided to additionally employ the scaling

TABLE III. Distribution of the BI-RADS categories for the test set, Fleiss’
kappa was equal to 0.41.

BI-RADS

2 3 4 5

Radiologist 1

Benign 44 15 57 1

Malignant 0 1 23 9

Radiologist 2

Benign 37 13 64 3

Malignant 0 0 16 17

Radiologist 3

Benign 41 11 61 4

Malignant 0 0 12 21

Radiologist 4

Benign 19 13 60 25

Malignant 0 0 3 30

TABLE IV. Performance of the radiologists employing BI-RADS for the
benign cutoff set to BI-RADS 3.

AUC Accuracy Sensitivity Specificity

Radiologist 1 0.806 � 0.028 0.607 0.967 0.504

Radiologist 2 0.848 � 0.028 0.553 1 0.427

Radiologist 3 0.882 � 0.026 0.567 1 0.444

Radiologist 4 0.860 � 0.027 0.433 1 0.273

Mean 0.849 0.540 0.992 0.412

FIG. 7. Relation between the output of the CNN with the ML and the average
BI-RADS category assigned to each breast mass by the radiologists.

(a) (b)

(c) (d)

FIG. 8. Benign masses assessed by the fine-tuned model as malignant with
(a) the lowest (a posteriori probability of 0.98, BI-RADS: 2, 2, 2, 2) and (b)
the highest confidence level (a posteriori probability of 0, BI-RADS 4, 4, 4,
5), and malignant masses assessed as malignant with (c) the highest (a poste-
riori probability of 1, BI-RADS: 4, 5, 5, 5) and (d) the lowest confidence
level (a posteriori probability of 0.33, BI-RADS 5, 5, 5, 5).
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parameter a~ for several reasons. First, color inversion in par-
ticular channels may improve the performance. Second, the
area of mass in US image is commonly hypoechoic or ane-
choic while the surrounding tissue is significantly brighter.
For the network to perform well, it might be useful to rescale
this relation and for example decrease this difference in
brightness levels. The proposed approach, however, is general
and not limited to grayscale images or to US, so it can be
applied to RGB images as well. Moreover, it is possible to
use other transformations including nonlinear ones, which
could be useful for processing images from different medical
modalities. The advantage of our approach is that the transfor-
mation is determined during fine-tuning automatically. In
some sense, our approach can be perceived as adding an
additional neural network in front of the pretrained one. The
main issue is that the transformation may change the range of
intensities to one outside [0, 255] making the transformed
image difficult or impossible to visualize.

The CNN-based methods developed using the main
dataset achieved results comparable to or higher than the
AUC obtained by the radiologists. Our best performing
approach showed an AUC value that was higher by 0.04
to 0.13 than the range of AUCs calculated for the radiolo-
gists. These results demonstrate potential clinical useful-
ness of the developed classifiers. However, it is important
to recognize that diagnostic breast US is commonly used
to determine whether and where to perform the biopsy
rather than to determine if a lesion is benign or malignant.
In order to avoid missing a potential malignancy, radiolo-
gists achieve very high sensitivity at the expense of lower
specificity.34 The better classifier in this study achieved
higher specificity (0.90) but lower sensitivity (0.85) than
all of the radiologists. However, according to the ROC
curve in Fig. 4, at the sensitivity of 1.0 our better per-
forming CNN achieves higher specificity of 0.65 than the
radiologists (0.3–0.5). We also showed that the output of
the better-performing model (a posteriori probability of
malignancy) is related to the BI-RADS category. This,
however, was expected since both measures aim to assess
the level of malignancy.

To more thoroughly evaluate the classifier utility in a clini-
cal environment, it will be desirable to employ the CNN as a
decision tool with the radiologist “in the loop.” For a particu-
lar mass, the CNN result may be overridden by the interpret-
ing radiologist in the final assessment. The current results do
not describe a complete medical device ready for clinical use
but they may provide necessary information to properly
design and study such a tool. In our approach, the radiologists
identify the mass and select an ROI, hence requiring interac-
tion by the radiologist. It remains to be seen if this can be
done efficiently or semiautomatically without impacting
workflow, and if it is useful for the radiologist with difficult
cases where accurate assessment of the type of breast mass is
desired. In future, it would be also interesting to investigate
whether the CNNs can be used to classify malignant and
benign breast mass subtypes.

5. CONCLUSION

In this study, we utilized the VGG19 CNN for breast mass
classification and introduced the concept of the matching
layer, a layer that is used to convert gray scale ultrasound
images to RGB. We demonstrated that with the ML it was
possible to perform more efficient classification than in the
case of duplicating grayscale US images across the RGB
channels. The concept of the ML is general and can be
applied to various problems to enhance CNN-based transfer
learning techniques. The AUC obtained for our better-per-
forming classifier was higher than that of four expert radiolo-
gists who utilized BI-RADS lexicon and categories. Even at
sensitivity of 1.0, the classifier achieved higher specificity in
comparison to the radiologists. In future, we are going to per-
form additional studies to determine the clinical usefulness of
the employed methods.
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