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Abstract 40 

Metastatic castration-resistant prostate cancer (mCRPC) is a lethal disease that resists therapy targeting 41 

androgen signaling, the primary driver of prostate cancer. mCRPC resists androgen receptor (AR) inhibitors 42 

by amplifying AR signaling or by evolving into therapy-resistant subtypes that do not depend on AR. 43 

Elucidation of the epigenetic underpinnings of these subtypes could provide important insights into the 44 

drivers of therapy resistance. In this study, we produced chromatin accessibility maps linked to the binding 45 

of lineage-specific transcription factors (TF) by performing ATAC sequencing on 70 mCRPC tissue 46 

biopsies integrated with transcriptome and whole genome sequencing. mCRPC had a distinct global 47 

chromatin accessibility profile linked to AR function. Analysis of TF occupancy across accessible 48 

chromatin revealed 203 TFs associated with mCRPC subtypes. Notably, ZNF263 was identified as a 49 

putative prostate cancer TF with a significant impact on gene activity in the double-negative (AR- 50 

neuroendocrine-) subtype, potentially activating MYC targets. Overall, this analysis of chromatin 51 

accessibility in mCRPC provides valuable insights into epigenetic changes that occur during progression 52 

to mCRPC. 53 

Significance 54 

Integration of a large cohort of transcriptome, whole genome, and ATAC-sequencing characterizes the 55 

chromatin accessibility changes in advanced prostate cancer and identifies therapy-resistant prostate cancer 56 

subtype-specific transcription factors that modulate oncogenic programs.  57 
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Introduction 58 

Prostate cancer (PCa) is the second leading cause of cancer-related deaths among men (1). Although PCa 59 

is initially responsive to androgen deprivation therapy (ADT), many patients develop resistance and 60 

progress to metastatic castrate-resistant prostate cancer (mCRPC). Targeted systemic therapies with 61 

second-generation AR-signaling inhibitors (ARSIs), such as abiraterone or enzalutamide, prolong survival 62 

and are the standard of care for mCRPC (2–4).  63 

Tumors can develop resistance against ADT and/or ARSI through several distinct mechanisms (5). In most 64 

mCRPC, ARSI resistance is achieved through genetic changes that increase AR-signaling (6). Up to 20% 65 

of mCRPCs lose complete AR dependence and acquire a new cellular phenotype known as treatment-66 

emergent small-cell neuroendocrine (NE) prostate cancer (t-SCNC) or neuroendocrine prostate cancer 67 

(NEPC). This AR-NE+ subtype is associated with worse clinical outcomes (7,8). Additional treatment-68 

associated subtypes have been observed, including a double negative subtype (AR-NE-) that bypasses AR 69 

dependence through FGF/MAPK signaling (9,10) and a double positive subtype (AR+NE+) that gains NE 70 

features while maintaining AR activity (5). A better understanding of these mCRPC subtypes is foundational 71 

for the development of new approaches to overcome resistance. 72 

While AR amplification is typical in AR-dependent mCRPCs (11–13) and t-SCNC often harbors TP53, 73 

RB1, and PTEN loss (14), other subtypes have no known characteristic genomic alterations. Emerging 74 

evidence suggests that epigenetic mechanisms are associated with PCa progression and drug resistance 75 

(7,15–17). Specifically, lineage plasticity plays an important role in the development of ARSI resistance 76 

(10,18). It has been increasingly recognized that the complex interplay of epigenetic modifications 77 

including altered chromatin-binding patterns of transcription factors (TFs), such as AR and FOXA1, regulate 78 

downstream gene activity thereby driving PCa progression (19). Therefore, understanding the chromatin-79 

binding patterns of TFs that are altered in PCa is crucial for the development of effective therapeutic 80 

strategies. 81 

The Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) assay has proven to be a 82 

very efficient and general epigenetic assay that yields high-quality chromatin signals from small quantities 83 

of tissue (20,21). ATAC-seq quantifies chromatin accessibility using transposase enzymes that insert 84 

sequencing adapters at accessible chromatin sites. Prior studies (15,21,22) of PCa have mostly used cell 85 

line and organoid models, patient-derived xenografts (PDX), or small numbers of tumor tissue biopsies. 86 

The Cancer Genome Atlas (TCGA) study performed ATAC-seq on multiple cancer types including 26 87 

localized PCa tumors and revealed cancer-type-specific enrichment of TF binding elements in accessible 88 

chromatin regions (21). More recently, using ATAC-seq on CRPC organoids, PDX, and cell lines, Tang et 89 

al. (22) identified four mCRPC subtypes and predicted the key TF of each subtype. To the best of our 90 

knowledge, the characterization of chromatin accessibility in clinical mCRPC biopsy tissue samples using 91 

ATAC-seq has not been conducted to date. 92 

Herein, we describe the first-in-field ATAC-seq study conducted in the largest cohort (n=70) of mCRPC 93 

tissue biopsies, to date, from the Stand Up 2 Cancer - Prostate Cancer Foundation West Coast Prostate 94 

Cancer Dream Team (WCDT) cohort. Using comprehensive integration of ATAC-seq and RNA-seq from 95 

matched tumor samples, we interrogated the changes in chromatin accessibility around regulatory sites to 96 

reveal transcriptional regulation associated with mCRPC subtypes. We used computational approaches to 97 

produce an exhaustive catalog of TFs that are actively occupied in mCRPC and the transcriptional programs 98 
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they are predicted to regulate. Finally, we exemplified the use of these new data by characterizing ZNF263, 99 

a TF previously not associated with PCa biology. 100 

Materials and Methods 101 

Patients and samples  102 

Human studies were approved and overseen by the University of California San Francisco Institutional 103 

Review Board. All individuals provided written informed consent to obtain fresh tumor biopsies and to 104 

perform comprehensive molecular profiling of tumor and germline samples. Fresh-frozen metastatic 105 

castration-resistant tissue biopsy samples (n=75) from various anatomic locations representing 69 unique 106 

patients (Supplementary Figure S1 and Supplementary Table S1) were collected through a multi-107 

institutional image-guided prospective biopsy trial (NCT02432001) and DNA was extracted as previously 108 

described (12,16,17). 109 

ATAC-seq library preparation and high-throughput sequencing  110 

The ATAC-seq library preparation was carried out as described in the published method papers by 111 

Buenrostro et al. (20)  and Corces et al. (23). Briefly, upon thaw, 30 µl of PBS + protease inhibitor was 112 

added onto the slide containing the tissue section and subsequently scraped into a 2 ml tube containing 100 113 

µl of cold ATAC-Resuspension Buffer (RSB; 0.1% NP40, 0.1% Tween-20, and 0.01% Digitonin) using 114 

the tip of a scalpel blade. The sample was incubated on ice for 15 minutes intermittently mixing every 5 115 

minutes. After 15 minutes, 1 ml of cold PBS + 0.1% Tween-20 was added into the tube and mixed by 116 

inversion, followed by centrifugation at 500 x g for 10 minutes at 4°C. After centrifugation, the supernatant 117 

was aspirated, avoiding the pellet containing the cell nuclei in the process. 50 µl of transposition mix [1X: 118 

25 µl of 2X TD buffer (20mM Tris-HCl pH 7.6, 10 mM MgCl2, 20% dimethyl formamide), 2.5 µl of 119 

transposase, 16.5 µl PBS, 0.5 µl 1% Digitonin, 0.5 µl 10% Tween-20, 5 µl water] was added to the nuclei 120 

for resuspension. The reaction was then incubated at 37°C for 30 minutes in a thermomixer with 1000 RPM 121 

mixing. After the transposition reaction, the samples were purified using the Qiagen MinElute PCR 122 

Purification Kit. Upon elution of the DNA, ATAC-seq libraries were prepared. To minimize PCR biases 123 

and duplicates, library preparation was conducted on a real-time qPCR machine, where each sample was 124 

pulled off the machine mid-exponential phase. The resulting ATAC-seq libraries were size-selected with 125 

Ampure XP beads (Beckman Coulter) for 240-360 bp fragments. Upon successful amplification, an aliquot 126 

of the libraries was used for qPCR to calculate the fold enrichment of two accessible chromatin regions 127 

over two inaccessible chromatin regions for quality control (i.e. at least 10-fold enrichment). Samples that 128 

passed quality control were sequenced on the Illumina NovaSeq 6000 sequencing system.  129 

POS (Accessible) 130 

GAPDH (F) 5’-GCCAATCTCAGTCCCTTCCC-3’, (R) 5’-TAGTAGCCGGGCCCTACTTT-3’ 131 

KAT6B (F) 5’-GAAGAGGCGGACCCAGCGGT-3’, (R) 5’-TTCCTGCCGGTCATCTCGCTT-3’ 132 

 133 

NEG (Closed) 134 

SLC22A3 (F) 5’-GGAGAGGGTGGACAGATTGA-3’, (R) 5’-TCAGCCTTGCTGCTACAGTG-3’ 135 

QML_93 (F) 5’-CACTGGTTGTCTTTGCAGGA-3’, (R) 5’-CCTGGGTCATATTGGGACAC-3’ 136 

 137 

ATAC-seq data processing  138 

The ATAC-seq paired-end fastq data was first trimmed to remove the Illumina Nextera adapter sequence 139 

using Cutadapt v2.6 (24) with the “-q 10 -m 20” option (Supplementary Figure S2). After adapter 140 
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trimming, FASTQC v0.11.8 (25) was used to evaluate the sequence trimming as well as overall sequence 141 

quality. Bowtie2 v2.3.5.1 (26) was then used to align the ATAC-seq reads against the Human reference 142 

genome build hg38 using the “--very-sensitive” option. The uniquely mapped reads were obtained in SAM 143 

format. Samtools v1.9 (27) was used to convert SAM to BAM file as well as sort the BAM file. Picard tool 144 

(https://broadinstitute.github.io/picard) was then used to flag duplicate reads using the MarkDuplicates 145 

function with the “REMOVE_DUPLICATES=true” option. The resulting BAM file reads position was 146 

then corrected by a constant offset to the read start (positive-stranded +4 bp, negative-stranded -5 bp) using 147 

deepTools2 v3.3.2 (28) with the “alignmentSieve –ATACshift” option. This resulted in the final aligned, 148 

de-duplicated BAM file that was used in downstream analyses. 149 

ATAC-seq peak calling was performed using MACS2 v2.2.5 (29) to obtain narrow peaks with “callpeak -150 

f BAMPE -g hs -qvalue 0.05 --nomodel -B --keep-dup all --call-summits” option. The resulting peaks that 151 

mapped to the mitochondrial genome or genomic regions listed in the ENCODE hg38 blacklist 152 

(ENCSR636HFF) or peaks that extend beyond the ends of chromosomes were filtered out. The ATAC-seq 153 

peaks were annotated with the nearest gene and genomic region where the peak is located using ChIPseeker 154 

(30) R-package based on hg38 GENCODE v28 annotations. Possible peak annotations are promoter (±3kb 155 

from TSS), exon, 5'UTR, 3'UTR, intron, and distal intergenic. 156 

ATAC-seq quality control  157 

Quality metrics such as Fraction of reads in peak (FRiP) score and fragment length distribution were 158 

calculated as described in Corces et al. (21) and Transcription Start Site (TSS) enrichment score was 159 

calculated using ATACseqQC version 1.18.1 (31). To ensure the quality of our ATAC-seq dataset, we 160 

considered the samples that met the following criteria.  161 

(𝐹𝑅𝑖𝑃 𝑠𝑐𝑜𝑟𝑒 > 0.05) 𝑂𝑅 (𝑇𝑆𝑆 𝐸𝑛𝑟𝑖𝑐ℎ 𝑠𝑐𝑜𝑟𝑒 > 8) 𝑂𝑅 (𝐴𝑇𝐴𝐶𝑠𝑒𝑞 𝑃𝑒𝑎𝑘 𝑐𝑜𝑢𝑛𝑡𝑠 > 15000)   162 

Five mCRPC samples that failed to satisfy the above criteria were discarded from this study. This resulted 163 

in the final set of 70 samples representing 65 unique patients that were used throughout the study. 164 

Consensus ATAC-seq peaks  165 

Non-overlapping unique ATAC-seq narrow peaks regions were obtained from the samples analyzed. Those 166 

non-overlapping unique peak regions present in at least two samples were considered consensus peaks. 167 

Sequencing reads mapped to the consensus peak regions were counted using the “featurecount” function 168 

within Rsubread(32) R-package with the “isPairedEnd=TRUE, countMultiMappingReads=FALSE, 169 

maxFragLength=100, autosort=TRUE” option. The read counts of the consensus peaks were normalized 170 

with the reciprocal of the size factor and variance-stabilized transform method available in the DESeq2(33) 171 

R-package. We note that ATAC-seq peak lengths are highly variable, and so are the lengths of consensus 172 

ATAC-seq peaks. Importantly, ATAC-seq read counts tend to be higher for longer peaks which are not 173 

corrected using DESeq2. To ensure accurate comparisons of the ATAC-seq peaks, throughout the study 174 

comparison is always made between ATAC-seq peaks of the same lengths and never between two peaks of 175 

unequal lengths. 176 

The ATAC-seq data (read count profiles) of mCRPC samples from our study were combined with those 177 

from Tang et al.(22). and adjusted for potential batch effects using the “ComBat” function from the “sva” 178 

R-package. Additionally, we attempted to correct potential batch effects in a larger dataset that combined 179 

ATAC-seq profiles of benign prostate, localized PCa, mCRPC adenocarcinoma, and t-SCNC/NEPC from 180 

different datasets. However, this correction was not possible because some sample phenotypes (covariates) 181 

were inseparable from the dataset (batch) they came from. 182 
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Differential ATAC-seq and RNA-seq analysis  183 

Differential ATAC-seq and RNA-seq analysis for two groups comparison was conducted using the DESeq2 184 

(33) R-package. The normalized read counts of the consensus peaks were used in the case of the ATAC-185 

seq data. Peaks/genes with Benjamini-Hochberg adjusted 𝑝𝑣𝑎𝑙𝑢𝑒 ≤ 0.01 and |𝑙𝑜𝑔2 𝑓𝑜𝑙𝑐ℎ𝑎𝑛𝑔𝑒|  ≥ 1 were 186 

considered statistically significant. For multiple group (3 or more) comparisons of the ATAC-seq dataset, 187 

we used the Kruskal-Wallis test and the peaks with 𝑝𝑣𝑎𝑙𝑢𝑒 ≤ 0.001 were considered statistically 188 

significant. 189 

Pathway enrichment analysis  190 

To test the association of signaling pathways enriched in the accessible chromatin regions (ATAC-seq 191 

peaks), we performed GREAT (34) enrichment analysis using rGREAT R-package. In the case of 192 

enrichment analysis of a list of genes, we used a hypergeometric test–based overrepresentation analysis. 193 

We used the set of signaling pathways genesets in the Reactome, Hallmark pathway, and GO-Biological 194 

Process present in Molecular Signature Database (MSigDB) (35) v7.5.1. 195 

Calculation of AR and NE score 196 

The “singscore” (36) R-package was used to calculate AR and NE scores for each mCRPC sample. The 197 

NE score was calculated using the NE genes reported by Beltran et al. (7) and the AR score was calculated 198 

using the gene expression profile of the “HALLMARK_ANDROGEN_RESPONSE” geneset from 199 

MSigDB (Supplementary Table S2).  200 

Transcription factor footprinting  201 

TF footprints were analyzed using Transcription factor Occupancy prediction By Investigation of ATAC-202 

seq Signal (TOBIAS (37)) version 0.12.11. For TF footprinting analysis, we omitted the step of shifting the 203 

position of aligned reads in the BAM file in our ATAC-seq data processing pipeline (Supplementary 204 

Figure S2) as this step was already incorporated within the TOBIAS. We called these BAM files and 205 

resulting ATAC-seq peaks, “unshifted”. The input data for TOBIAS were prepared as follows. The 206 

unshifted ATAC-seq BAM files of all samples within a subtype were merged using the “MergeSamFiles” 207 

(Picard) function. A consensus non-overlapping set of unshifted ATAC-seq peaks present in at least two 208 

samples in the subtype was generated. A comprehensive list of 541 unique human TFs was compiled by 209 

combining TFs from the JASPAR (38) CORE database and refined AR binding motifs (Full Site, Half Site, 210 

Lenient Site, and Extended Site) from Wilson et al. (39). 211 

First, the insertion bias of the Tn5 transposase was corrected using the “ATACorrect” function taking the 212 

merged unshifted ATAC-seq BAM files and the merged unshifted ATAC-seq peak regions as inputs. The 213 

resulting bigWig files were assigned footprinting scores across all accessible chromatin regions using the 214 

function “ScoreBigwig”. Finally, the scored footprints were matched to the curated list of TF motifs 215 

described above, then differential scores for each motif were determined for each subtype comparison using 216 

the function “BINDetect” with parameters “--motif-pvalue 0.0001; --bound-pvalue 0.001”. TOBIAS 217 

categorizes every predicted TF binding site (for each TF motif) into bound and unbound states based on a 218 

score threshold per subtype compared. The threshold was set at the level of significance (bound p-219 

value=0.001) of a normal distribution fit to the background distribution of scores. 220 

By utilizing this method, we conducted an analysis of differential TF footprinting. This involved comparing 221 

the TF footprints of each mCRPC transcriptional subtype against the others. As a result, we made four 222 

comparisons for each subtype, leading to a total of ten comparisons. From each comparison, the subtype-223 

associated TF hits were prioritized based on their differential binding score (s≥|0.1|) and associated q-value 224 
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(top 80% percentile of -log10(q-value)). The pairwise differential TF footprint comparison results between 225 

mCRPC subtypes were further filtered using their gene expression profiles. TFs not expressed (or with 226 

negligible expression level) in relevant subtypes were omitted. These results were visualized in the form of 227 

a circularized heatmap. To generate the heatmap, we computed the TF occupancy phenotype score for each 228 

mCRPC subtype which is determined by the product of the absolute value of the TF binding score and the 229 

absolute value of -log10(qvalue) linked to that specific motif. If a TF is not enriched in a particular subtype, 230 

its score is set to 0. 231 

For every mCRPC sample, TF footprinting analysis was also conducted in a single sample mode. For this, 232 

all TOBIAS TF footprinting functions “ATACorrect”, “ScoreBigwig”, and “BINDetect” were executed 233 

using identical parameters to that of the subtype-level analysis except that only one condition (i.e. respective 234 

mCRPC sample) was used in “BINDetect”. 235 

Evaluation of the accuracy of TF footprint sites 236 

To assess the accuracy of TOBIAS in predicting TF footprint sites, we compared its predictions with the 237 

TF-binding sites predicted by ChIP-seq. We utilized publicly available ChIP-seq data for AR, FOXA1, and 238 

HOXB13 measured in mCRPC from Pomerantz et al. (15). The ChIP-seq TF-binding sites were considered 239 

as the reference or the ground truth. The objective was to determine if TF footprints derived from ATAC-240 

seq peak regions could accurately capture the ChIP-seq predicted TF-binding regions. 241 

Since, the ChIP-seq experiment on mCRPC was limited to AR, FOXA1, and HOXB13, we restricted our TF 242 

footprints evaluation experiment to these three TFs. First, we ran TOBIAS on our ATAC-seq samples using 243 

different “--bound-pvalue” (0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001) in the “BINDetect” function. 244 

The p-value threshold varies the bound/unbound status assignment for the predicted TF footprint sites. Each 245 

run of TOBIAS using different p-value thresholds resulted in a different set of TF footprint sites. These TF 246 

footprint sites were compared against those observed in the ChIP-seq TF-binding sites. Overlap of at least 247 

1bp between the motif sites from ChIP-seq and ATAC-seq was considered a hit. For each experiment, we 248 

computed the predictions' true positive rate (TPR) and false positive rate (FPR). We then generated receiver 249 

operating characteristic (ROC) curves and calculated the area under the ROC curve (AUC). We repeated 250 

this analysis for every subtype of mCRPC. 251 

Reconstruction of TF-target gene regulatory network 252 

The reconstruction of the TF-target gene regulatory network comprises two major steps. (1) Prediction of 253 

TF footprints in accessible chromatin using ATAC-seq (linking TF-peaks as described above) and (2) 254 

associating ATAC-seq peaks that may potentially regulate expression of individual genes (linking peak-255 

gene). Finally, the TF-peak and peak-gene association results were combined to obtain the TF-gene 256 

association.  257 

Peak-to-gene linking predictions: We used a correlation-based approach to predict potentially causal links 258 

between ATAC-seq peaks and gene expression. First, the mCRPC RNA-seq gene expression analysis was 259 

restricted to protein-coding genes and filtered out genes not expressed (TPM=0) in more than 25% of all 260 

samples. The ATAC-seq peaks were restricted to those with evidence of TF footprints of at least one out of 261 

541 TFs measured. Our analysis was further restricted to measure cis-interaction (peak-gene association 262 

within the same chromosome). A pairwise Spearman’s correlation was measured between every 263 

combination of cis-interacting peak-gene pairs across all mCRPC samples. A permutation experiment was 264 

performed to evaluate the robustness of our peak-to-gene correlation (see below). The majority of the 265 

pairwise peak-gene pairs were random correlations. This warranted an unbiased statistical approach to 266 
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identify strong correlated or anti-correlated peak-gene pairs. Thus, to identify the most confident set of 267 

peak-gene interaction pairs, we interrogated the enrichment of H3K27ac marks on the peak-gene pairs.  We 268 

used three sets of parameters to scrutinize the peak-gene interaction pairs: Spearman’s correlation 269 

coefficient (R), the p-value of peak-gene interaction pairs through the permutation experiment, and the 270 

distance of the peak to TSS. We used several combinations of values of these three parameters. The peak-271 

gene interaction pairs generated using the parameters, 𝑅 ≥ |0.4|, 𝑝𝑣𝑎𝑙𝑢𝑒 ≤ 0.05, and 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑇𝑆𝑆 ≤272 

500𝑘𝑏 had the highest enrichment of H3K27ac peaks. Thus, we used these parameters to prune off weak 273 

peak-gene links.  274 

Permutation experiment: The gene labels of the RNA-seq gene expression data were randomly permuted, 275 

and the pairwise peak-gene Spearman’s correlation was measured across all mCRPC samples. This process 276 

was repeated 1000 different times. Using the density distribution of all permuted Spearman’s correlation 277 

coefficients, we calculated p-values for each peak-gene interaction pair. 278 

Reconstruction of the mCRPC subtype-specific regulatory network: For each mCRPC subtype, we 279 

extracted TF associated with the subtype and genes linked to the subtype associated ATAC-seq peaks. This 280 

resulted in the TF-target gene links associated with the mCRPC subtype. 281 

Inferring the effects of ZNF263 binding on transcription of downstream target genes  282 

To investigate how ZNF263 binding influences the expression of the nearest gene in mCRPC, we evaluated 283 

the changes in gene expression levels that occurred when ZNF263 was present or absent in the gene’s 284 

promoter region. To conduct this analysis, we performed TF footprinting on individual mCRPC samples. 285 

For each gene, we grouped the 70 mCRPC samples based on whether ZNF263 was present or absent in the 286 

promoter region of the gene. Genes with at least two samples in each group and at least one sample with 287 

expression level log2 TPM > 5 were included for further analysis. Then we performed the Wilcoxon rank 288 

sum test and measured the foldchange in the gene expression levels between the two groups. Genes with 289 

Benjamini-Hochberg adjusted 𝑝𝑣𝑎𝑙𝑢𝑒 ≤ 0.05 and |𝑙𝑜𝑔2 𝑓𝑜𝑙𝑐ℎ𝑎𝑛𝑔𝑒|  ≥ 1 were considered as statistically 290 

significant. The above analysis was also repeated using samples within each subtype (AR+NE-, ARlowNE-291 

, and AR-NE-). We note that due to limited samples in AR-NE+, AR-NE-, and AR+NE- subtypes, none of 292 

the genes were statistically significant. 293 

Tumor Purity Estimation 294 

Tumor purity of the mCRPC samples used in this study was calculated using PURPLE tool 295 

(https://github.com/hartwigmedical/hmftools) based on WGS profiles of the corresponding tumor samples. 296 

In brief, PURPLE combines B-allele frequency (BAF), read depth ratios, somatic variants, and structural 297 

variants to estimate the purity of a tumor sample.  298 

Data Availability 299 

The ATAC sequencing data generated in this study are available from the European Genome-Phenome 300 

Archive (EGA) under the accession number EGAS00001006698. The RNA sequencing from the same 301 

tumors is available under the accession numbers EGAD00001008487, EGAD00001008991, and 302 

EGAD00001009065. 303 

The RNA-seq data from the WCDT mCRPC cohort was aligned with STAR and quantified at the gene 304 

level for Gencode v28 transcripts as previously described(16). The raw RNA-seq fastq files from PAIR 305 

(40) cohort (GSE115414) and CPCG (41) cohort (EGAD00001004424) were processed and analyzed as 306 

described above. The mRNA expression data of non-diseased tissues was obtained from the GTEx portal 307 

(https://www.gtexportal.org/). 308 
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The publicly available ATAC-seq data used in this study were obtained from Pomerantz et al. (15) 309 

(Sequence Read Archive (SRA) BioProject accession number PRJNA540151), Cejas et al. (42) 310 

(PRJNA691927) and Tang et al. (22) (PRJNA818767). The aligned BAM files from the TCGA localized 311 

PCa ATAC-seq data Corces et al. (21) were obtained from the NIH Genomic Data Commons portal 312 

(https://portal.gdc.cancer.gov/). These ATAC-seq data were processed and analyzed using the same ATAC-313 

seq data processing pipeline described above. 314 

mCRPC PDX ChIP-seq data for AR, FOXA1, HOXB13, and H3K27ac were obtained from Pomerantz et al. 315 

(15) Briefly, Raw ChIP-seq data were downloaded from SRA (PRJNA540151). Reads with base quality 316 

scores over 30 across all bases were aligned using bwa-mem v0.7.17 to build hg38. The aligned reads were 317 

deduplicated and peaks were called using MACS2 v.2.2.5, with an FDR threshold of 0.01. Peaks in 318 

ENCODE hg38 blacklist (ENCSR636HFF) were excluded and only peaks that were enriched at least ten-319 

fold over background were kept for further analysis. 320 

The ZNF263 ChIP-seq peak genomic regions were obtained from Imbeault et al. (43) (GSE78099), Frietze 321 

et al. (44) (GSE19235), and Pope et al. (45) (GSE31477) and MYC ChIP-seq peak genomic regions from 322 

Barfeld et al. (46) (GSE73994), See et al. (47) (GSE164777), and Guo et al. (48) (GSE157105). The ChIP-323 

seq peak regions were uplifted to hg38 before comparing against the TF footprint regions from mCRPC 324 

samples. Further, ChIP-seq profiles of 157 TFs were downloaded from the ChIP-Atlas database (49). 325 

Code Availability 326 

Code used in this manuscript is available at https://github.com/DavidQuigley/WCDT_ATAC_mCRPC 327 

Results 328 

A prospective multi-institution Institutional Review Board-approved study (NCT02432001) obtained fresh-329 

frozen core biopsies of metastases from patients with mCRPC as described previously (12,16,17). To create 330 

a rigorous atlas of accessible regulatory DNA elements active in metastatic prostate cancer, we performed 331 

ATAC-seq on 70 mCRPC tissue biopsies obtained from various anatomic locations representing 65 unique 332 

patients (Supplementary Figure S1 and Supplementary Table S1). The ATAC-seq data was processed 333 

using an in-house pipeline (Methods and Supplementary Figure S2). The sequencing was performed to 334 

remarkably high depth, 204-411 million reads (mean 308 million) (Supplementary Figure S3a). This 335 

resulted in an average of 81,215 (range 22,497-157,071) ATAC-seq peaks per sample marking accessible 336 

chromatin regions. We inspected our ATAC-seq dataset using quality control metrics such as the fraction 337 

of reads in peak (FRiP) and transcription start site (TSS) enrichment score. Sample sequencing depth was 338 

not significantly correlated with the number of peaks detected or any quality metrics. The number of peaks 339 

in the sample was significantly correlated with the sample FRiP score (Spearman’s correlation coefficient, 340 

R=0.79, p-value=5.8x10-16) (Supplementary Figure S3b-d). Tumors with higher estimated purity had 341 

higher FRiP scores (R=0.4, p-value=4.4x10-5) (Supplementary Figure S3e) suggesting that the tumor 342 

content in the tissue sample influenced the ATAC-seq sample quality. ATAC-seq peaks have previously 343 

been reported to occur most frequently in intronic and distal intergenic regions followed by gene promoter 344 

regions, to be enriched at the TSS, and to demonstrate read fragment size periodicity correlated to the 345 

integer multiples of the nucleosome (20,21). Our ATAC-seq data were consistent with those reports 346 

(Supplementary Figure S3a, S3f-g). These findings confirmed the high quality of our ATAC-seq data, 347 

consistent with the reports from other groups (20,21). 348 
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Chromatin accessibility changes during prostate cancer progression affect stage-specific 349 

regulatory elements 350 

To define how chromatin accessibility is altered during prostate cancer progression, we compared the 351 

ATAC-seq profile of our mCRPC samples with publicly available ATAC-seq datasets of benign prostate 352 

(15) (n=4), localized PCa (21) (n=26), and NE PDX models (42) (n=6 with replicates). The ATAC-seq 353 

quality metrics, including the FRiP scores, of our mCRPC samples were comparable to the publicly 354 

available datasets (Supplementary Figure S4). We first created a consolidated dataset of ATAC-seq peaks 355 

by merging the complete dataset. This produced a non-overlapping set of 348,799 consensus genomic 356 

regions that were accessible in at least two samples. To test whether this analysis would show systematic 357 

differences in ATAC-seq profiles corresponding to tumor stage, we performed principal component 358 

analysis (PCA) using the normalized read counts of consensus-accessible regions. Our analysis revealed 359 

that mCRPC had distinct chromatin accessibility profiles compared to localized PCa and benign prostate 360 

tissue (Figure 1a and Supplementary Figure S5). Importantly, among the mCRPC cohort, t-SCNC/NEPC 361 

samples were found to have distinct chromatin accessibility profiles. Corroborating with the prior 362 

observations (15–17), benign prostate and localized PCa had similar chromatin accessibility profiles. A 363 

comparison of the accessible chromatin regions identified that mCRPC had the highest number of genomic 364 

regions with accessible chromatin conformation (Figure 1b). This corresponds to our knowledge of the 365 

genome-wide loss of methylation in mCRPC (16,17) and the observation that increased AR expression 366 

results in genome-wide chromatin relaxation (50). Accessible ATAC-seq peaks were extensively shared 367 

across localized PCa, mCRPC, and t-SCNC/NEPC samples (Figure 1b) and were enriched in genes 368 

involved in DNA damage repair, apoptosis, and immune system signaling processes (Supplementary 369 

Figure S6).  370 

Chromatin accessibility is known to significantly affect the transcription of nearby genes (21). We noted 371 

there was a robust correlation between the chromatin accessibility of a gene’s promoter and the expression 372 

of its corresponding gene (mean Spearman’s correlation coefficient, R=0.4) (Supplementary Figure S7a-373 

b). We found that the differentially expressed genes that were expressed at higher levels were more likely 374 

to have accessible chromatin nearby suggesting that changes in chromatin accessibility can contribute to 375 

differences in gene expression (Supplementary Figure S7c). Motivated by this finding, to identify 376 

chromatin variants, the regions of the genome that differ in chromatin accessibility (i.e., differentially 377 

accessible ATAC-seq peaks), between various stages of PCa progression, we performed a differential 378 

accessibility analysis comparing each stage. We further annotated these peaks with the nearest gene and 379 

genomic region where the peak is located (Methods). We identified 76,311 (21.9%) peaks that exhibit a 380 

significant change in accessibility in at least one stage (Figure 1c). The majority of these peaks were 381 

exclusively detected in mCRPC including the t-SCNC samples (Figure 1b-c). These peaks included 382 

promoters of prostate cancer-relevant genes such as AR, but most chromatin variants were observed in 383 

introns and distal intergenic regions rather than in promoters (Figure 1d). ATAC-seq peaks in distal 384 

intergenic regions of genes such as AR, CHGA, DNMT3A, and PIK3R1 were exclusively detected in 385 

mCRPC samples. To assess whether chromatin variants were more likely to harbor regulatory DNA, we 386 

intersected these regions with measures of H3K27ac, a histone mark associated with active enhancers, in 387 

mCRPC (15). We observed increased chromatin accessibility of intergenic regions, introns, and promoters 388 

within regions of the H3K27ac signal (Figure 1e). We predicted the gene pathways activated by these 389 

chromatin variants using the GREAT enrichment tool (34) and found that the chromatin regions exclusively 390 

accessible in mCRPC-adeno were enriched in the AR signaling pathway, cell migration, and prostate 391 
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development processes (Figure 1f). Accessible chromatin regions in t-SCNC samples were enriched in 392 

neuronal development and differentiation processes. Similarly, chromatin regions accessible in localized 393 

PCa were enriched in lipid biosynthetic and metabolic processes and changes in cytoskeleton organization. 394 

These results imply that the chromatin variants associated with tumor progression potentially deregulate 395 

the oncogenic signaling required for malignant transformation. 396 

Chromatin accessibility in mCRPC is associated with subtypes linked to androgen signaling 397 

To investigate the global patterns of chromatin accessibility in mCRPC, we performed unsupervised 398 

hierarchical clustering on ATAC-seq profiles from 70 mCRPC samples. This was achieved by applying 399 

pairwise Spearman’s correlation to the normalized read counts of consensus accessible peaks. Our analysis 400 

revealed three distinct clusters of mCRPC samples (Figure 2a and Supplementary Figure S8). These 401 

clusters were not associated with metastatic tissue sites or alterations of driver genes such as PTEN, or RB1. 402 

Cluster assignments were, however, correlated with tumor AR-pathway and NE scores assessed by gene 403 

expression signature analysis (Methods, Figure 2b-c, and Supplementary Table S2). Tumors in cluster 404 

3 had significantly higher AR scores and lower NE scores (Wilcoxon rank sum test p-value: 3x10-8 and 405 

4x10-4), while tumors in cluster 1 had low AR scores but high NE scores (p-value: 6.8x10-5 and 5x10-4). 406 

Furthermore, leveraging AR and NEPC gene signatures from Labrecque et al. (5), we recently stratified our 407 

mCRPC samples into 5 subtypes (AR+NE, ARlowNE-, AR+NE+, AR-NE+, and AR-NE-) based on their 408 

RNA-seq gene expression profiles (51). Out of 70 mCRPCs analyzed in this study, 26 tumors were 409 

classified as AR+NE-, 32 tumors as ARlowNE-, 2 tumors as AR+NE+, 4 tumors as AR-NE+, and 6 tumors 410 

as AR-NE- (Supplementary Table S1). Cluster 1 was associated with the AR-NE+ subtype (Fisher’s Exact 411 

Test p-value=0.003) whereas cluster 3 was associated with AR+NE- subtype (p-value=0.005). Cluster 2 412 

had mixed sample phenotypes, with almost 58% of the samples in the group associated with ARlowNE- 413 

subtypes and 25% of the samples associated with AR+NE- subtype. We further observed that clusters 2 414 

and 3 each contained two sub-clusters designated as 2A and 2B, and 3A and 3B respectively. These sub-415 

clusters were primarily distinguished by variations at the tissue level. Notably, both sub-clusters 2B (p-416 

value=0.002) and 3A (p-value=0.002) were enriched with bone metastatic tissue biopsies. A recent study 417 

of chromatin availability in cell lines and organoid models by Tang et al. (22) reported the existence of four 418 

ATAC-seq subtypes of CRPC: CRPC-AR, CRPC-NE, CRPC-WNT, and stem cell-like (CRPC-SCL) 419 

subtypes. To compare these subtypes with our cohort of mCRPC samples, we analyzed ATAC-seq data 420 

from both studies together. Unsupervised hierarchical clustering of ATAC-seq profiles showed that the 421 

majority of samples in CRPC-AR and AR+NE- subtypes were a part of the same cluster (Supplementary 422 

Figure S9). Similarly, samples in CRPC-NE and CRPC-WNT subtypes clustered together with the AR-423 

NE+ subtype. Samples in the CRPC-SCL subtype were clustered with ARlowNE- and AR-NE- subtypes. 424 

These results indicate that the chromatin accessibility in our mCRPC data was linked most strongly with 425 

mCRPC transcriptional subtypes.  426 

mCRPC transcriptional subtypes are associated with chromatin variants of prostate cancer 427 

signaling pathways 428 

After establishing that androgen signaling was significantly associated with chromatin accessibility status 429 

genome-wide, we performed a supervised analysis to identify chromatin loci whose accessibility status was 430 

correlated with the five mCRPC transcriptional subtypes from Labrecque et al. (5). This analysis was 431 

motivated by our observation that chromatin accessibility proximal to the genes that defined mCRPC 432 

transcriptional subtype signatures were correlated with gene expression of the corresponding gene 433 
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(Supplementary Figure S10). Moreover, there was no significant difference between the numbers of peaks 434 

and FRiP score among the mCRPC transcriptional subtypes (Supplementary Figure S11). 435 

We, therefore, tested for differential chromatin accessibility across the five mCRPC subtypes. This analysis 436 

identified 6704 ATAC-seq peaks with significant differences in accessibility across all samples in each of 437 

the subtypes (Supplementary Table S3). AR+NE- tumors most frequently harbored increased 438 

accessibility, followed by ARlowNE- tumors (Figure 3a), in PCa-associated genes such as AR, KLK3, 439 

FOXA1, NKX3-1, SPOP, ZBTB16, and NCOA2. Similarly, regions around several epigenetic drivers of 440 

prostate cancer such as ARID1A, SMARCA1, KMT2D, and KDM6A were more accessible in AR+NE- and 441 

ARlowNE- tumors compared to the remaining subtypes. Interestingly, most chromatin variants between the 442 

mCRPC subtypes were annotated distal to the TSSs (i.e. distal intergenic peaks); about 75% of chromatin 443 

variants were located more than 3kb from TSS (Supplementary Figure S12a). These regions may 444 

represent enhancer regions active in specific subtypes of the disease. One such example was a distal 445 

accessible region upstream of the AR that we and others have previously identified as a driver of ADT and 446 

ARSI resistance in AR-positive disease (12,13). We additionally identified chromatin variants in distal 447 

regions near NKX3-1 in AR+NE- and ARlowNE- subtypes, and GPR37L1 in AR+NE- subtype as compared 448 

to the remaining subtypes (Figure 3b). GPR37L1 encodes for a G protein-coupled receptor protein almost 449 

exclusively expressed in the nervous system, and studies in murine models have suggested it to have a 450 

neuroprotective function (52). AR and NKX3-1 mRNA were expressed in AR+NE- and ARlowNE- subtypes 451 

and GPR37L1 mRNA was highly expressed in AR-NE+ subtypes (Supplementary Figure S12b-d). 452 

Moreover, these chromatin variants in AR, NKX3-1, and GPR37L1 were correlated with their corresponding 453 

gene expression (Supplementary Figure S12e-g). 454 

To gain insight into the functional role of accessible chromatin, we extracted the chromatin variants across 455 

all mCRPC transcriptional subtypes that mapped to the promoter, intron, and distal intergenic regions 456 

(Figure 3c). Chromatin variants in the promoter, intron, and distal intergenic regions were enriched for the 457 

Hallmark Androgen Response pathway (Figure 3d-f). Chromatin regions mapped to intron and intergenic 458 

were also enriched in oncogenic and proliferative signaling pathways. This underscores the functional 459 

importance of intronic and distal intergenic chromatin variants in potentially modulating the epigenetic 460 

landscape of mCRPC transcriptional subtypes. 461 

mCRPC transcriptional subtypes are defined by DNA accessibility-guided patterns of 462 

transcription factor regulation 463 

Following our observation that the regulatory elements are enriched in the accessible chromatin region in 464 

mCRPC, we built a comprehensive catalog of transcription factors (TF) occupancy across mCRPC 465 

transcriptional subtypes. TF binding to chromatin prevents Tn5 cleavage within the binding site and 466 

generates depletion in ATAC-seq coverage known as “TF footprints” (53). We interrogated TF footprint 467 

signals in the accessible chromatin of mCRPCs using the TOBIAS (37) software tool.  First, to evaluate the 468 

reliability of the predicted TF footprints, we compared the AR, FOXA1, and HOXB13 footprints predicted 469 

in our mCRPC samples against the respective ChIP-seq binding sites observed in mCRPC PDX samples 470 

obtained from Pomerantz et al. (15) (Methods). Our analysis found that TOBIAS-predicted TF footprint 471 

sites were correlated to experimentally observed ChIP-seq binding sites (Supplementary Figure S13a-f). 472 

For each TF, TOBIAS classifies every predicted TF binding site as a bound or unbound state based on a 473 

user-defined footprint score threshold (Methods). The bound TF footprint sites were observed to have a 474 

depleted ATAC-seq accessibility signal as compared to the unbound sites (Figure 4a-b). Moreover, a 475 
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significant proportion (82-96%) of the predicted TF-bound footprint sites were found to coincide with the 476 

regions identified by ChIP-seq peaks as compared to the unbound sites (Supplementary Figure S13g-i). 477 

This suggests that our predictions of TF footprints are strong and reliable. 478 

Next, we performed an unbiased genome-wide active TF occupancy analysis using 541 human TFs 479 

(Supplementary Figure S14) from the JASPAR (54) database and examined their association with 480 

different mCRPC transcriptional subtypes. We performed an unbiased differential TF footprint occupancy 481 

analysis comparing each mCRPC transcriptional subtype to the other (Figure 4c-d and Supplementary 482 

Figure S15). Subtype-associated TF hits were prioritized based on their differential binding score and 483 

associated probability score (Methods and Supplementary Table S4). For example, AR, FOXA1, 484 

HOXB13, and NR3C1 were identified to have differential TF footprint occupancy in AR+NE- compared to 485 

AR-NE+ or AR-NE- subtypes (Figure 4c-d and Supplementary Table S4). Similarly, TFs such as ASCL1, 486 

NEUROD1, SNAI2, ID4, and NKX3-2 were identified to have differential TF footprint occupancy in AR-487 

NE+ compared to AR+NE- subtype. AR-NE- tumors were enriched for high TF footprint occupancy of 488 

SP1, SP2, ZNF263, and KLF5 (Figure 4d).  489 

We aggregated the results of significantly differential occupied TFs from all ten pairwise comparisons 490 

between the mCRPC subtypes and identified 203 TFs enriched in distinct mCRPC subtypes (Figure 4e and 491 

Supplementary Table S5). To further validate our predictions through computational analysis, we 492 

compared our predicted TF footprints to publicly available data on binding sites for 120 TFs obtained using 493 

ChIP-seq (Supplementary Figure S16). Our analysis revealed that for 94 of these factors, at least 25% of 494 

our predicted footprint locations overlapped with the ChIP-seq binding sites. For TFs known to be 495 

associated with prostate cancer, such as FOXA1, AR, ERG, HOXB13, NR3C1, ASCL1, and GATA2, the 496 

overlap between our predicted footprints and the ChIP-seq data was even greater, with over 80% 497 

concordance.  498 

We observed that TFs such as AR, FOXA1, HOXB13, GATA2, SP1, SP2, and KLF5 were enriched in 499 

multiple subtypes. Eighty-four TFs were associated with both AR+NE- and ARlowNE- subtypes indicating 500 

similarity in gene transcription regulation between these two subtypes. About 80% (20 of 25) of AR-NE- 501 

TFs were also associated with the ARlowNE- subtype corroborating previous (5) observations of 502 

transcriptomic similarity between ARlowNE- and AR-NE-. Interestingly, each subtype of mCRPC shows a 503 

distinct affinity towards certain subtype-specific TFs. For example, a large set of 49 TFs, comprising 504 

ASCL1, NEUROD1, NKX3-2, and POU3F2 was found to be exclusively associated with the AR-NE+ 505 

subtype. ASCL1 is a pro-neural TF that acts as a driver of the neuronal transcriptional program to support 506 

treatment resistance in the AR-NE+ subtype (42,55). Similarly, POU3F2 is a neural TF that is directly 507 

suppressed by AR and mediates NE differentiation and treatment resistance in the AR-NE+ subtype (56). 508 

NEUROD1 is a neuronal TF associated with neuronal development in both NEPC and small-cell lung 509 

cancer (SCLC) (42). Our results provide a unique opportunity to comprehensively interrogate several TFs 510 

associated with mCRPCs. 511 

Knowing where TFs bind on the genome is important because it can provide valuable insights into the gene 512 

expression regulatory mechanisms. Therefore, we examined the locations of all predicted TF footprints in 513 

the genome. We observed that in all TFs, the footprints were identified in both the promoter and distal to 514 

the promoter regions of the nearest gene (Supplementary Figure S17). In 72% (147 of 203) of the TFs, 515 

the majority of the footprints were observed at a distance of more than 3kb from the nearest gene, whereas, 516 

in the remaining 28% (56 of 203) of the TFs, the footprints were observed within the promoter region (i.e., 517 

TSS±3kb). Intriguingly, we found that all TFs associated with AR-NE- were preferentially localized in the 518 
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promoter region. This finding was corroborated by analyzing independent publicly available ChIP-seq 519 

profiles of TFs associated with the AR-NE- subtype (Supplementary Figure S18). Since the promoters in 520 

humans are enriched for the CpG dinucleotide, TFs such as SP1, NRF1, ETS, and many C2H2 zinc finger 521 

proteins including KLF-family proteins and ZNF263 are known to preferentially bind proximal promoter 522 

DNA sequences (44,57). Thus, ATAC-seq-based TF footprinting allows us to examine the preferred 523 

binding regions of a vast number of TFs. 524 

Identification of the influential transcription factors in mCRPC transcriptional subtypes  525 

To identify the functional impact of mCRPC subtype-specific TF binding patterns, we constructed unbiased 526 

gene expression networks associated with each TF binding event. We integrated ATAC-seq and matched 527 

RNA-seq data from our mCRPC cohort to comprehensively identify correlated or anti-correlated genome-528 

wide cis-interacting peak-gene pairs (Methods and Supplementary Figure S19). We identified a set of 529 

37,865 robust peak-gene pairs (36,616 correlated and 1,249 anti-correlated pairs) consisting of 23,089 530 

unique peaks and 7,710 unique genes (Supplementary Figure S20a-c). On average, 1.64 (min=1, max=29) 531 

genes were associated with a peak (Supplementary Figure S20d). Approximately 98% of peaks were 532 

correlated with 5 genes or less and 66% of peaks were associated with only 1 gene. Similarly, on average, 533 

5 (min=1, max=108) peaks were associated with a gene (Supplementary Figure S20e). About 76% of 534 

genes were associated with at most 5 peaks and 35% of genes were associated with only 1 peak. Most 535 

correlated peaks were proximal to the TSS region of a gene, as compared to its distal region 536 

(Supplementary Figure S20f). These mCRPC TF network characteristics are consistent with the results 537 

obtained from TF networks derived from ATAC-seq in various types of cancer(21,22). We further 538 

integrated the TF footprint sites identified in the accessible peak to the genes correlated with the peak to 539 

construct a TF-target gene regulatory network and identify the target genes of TFs. Restricting our analysis 540 

to the 203 mCRPC-associated TFs, the regulatory network represented 22,608 unique peaks and 7,632 541 

unique genes. Based on the ATAC-seq peaks observed in individual mCRPC subtypes and the associated 542 

TFs, we derived the mCRPC subtype-specific regulatory network.  543 

Taking advantage of these dense regulatory networks, we assessed if we could identify influential TFs 544 

potentially regulating the transcriptional programs and driving the mCRPC subtypes. We hypothesized that 545 

highly influential TFs regulate the transcriptional activity of a large fraction of the downstream target genes. 546 

Thus, we computed the node degree of the TFs in mCRPC subtype-specific regulatory networks (Figure 5 547 

and Supplementary Table S6). We found that several of our top-influential TF hits were well-established 548 

drivers of PCa. FOXA1 and several FOX-family TFs including FOXC2, AR, HOXB13, GRHL2, and SRY 549 

were predicted as the top influential TFs in the AR+NE- subtype. FOXA1 and AR are well-established as 550 

drivers of mCRPC (11,12,16,17,58,59). The top influential TFs in the AR-NE+ subtype such as ASCL1 551 

(42,55), NEUROD1 (42), ZEB1 (60), TCF4 (61), and SNAI2 (62) are known to promote neuroendocrine 552 

differentiation in PCa. The AR+NE+ subtype was enriched with influential TFs found in both AR+ and 553 

NE+ subtypes. The Stripe family (63) of TFs including SP1, SP2, and KLF5 (64) were predicted to drive 554 

both ARlowNE- and AR-NE- subtypes. This suggests that our analysis nominated consistent TFs hits 555 

associated with PCa. Furthermore, this analysis identified several influential TFs that were not previously 556 

linked to PCa, including ZNF263 and RREB1 in AR-NE- subtype, ZNF384 and CDX1 in AR+NE- subtype, 557 

and BACH2 and ZBTB18 in the AR-NE+ subtype. To explore the regulatory impact of the hits identified 558 

through TF footprinting analysis on their target genes, we opted to investigate ZNF263 since it has not been 559 

studied in the context of mCRPC.  560 
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ZNF263 regulates the MYC signaling pathway in mCRPC 561 

ZNF263 has been implicated in modulating oncogenic signaling in cancers. For example, ZNF263 is the 562 

most significant TF bound to the endoplasmic reticulum stress-specific super-enhancer and is highly 563 

expressed in hepatocellular carcinoma (HCC) (65). ZNF263 knockdown in HCC cell lines leads to reduced 564 

proliferation, apoptosis resistance, and chemoresistance (65). ZNF263 enhances EGFR signaling and the 565 

progression of glioblastoma (66). Despite having a KRAB domain that typically facilitates transcriptional 566 

repression, ZNF263 can exert both positive and negative impacts on the transcriptional regulation of the 567 

genes it targets (44). However, ZNF263 has not been studied in the context of prostate cancer.  568 

First, to establish the relevance of ZNF263 in prostate cancer, we interrogated its mRNA expression in 569 

several publicly available datasets. Our analysis of gene expression profiles of non-diseased tissues 570 

indicated that ZNF263 is highly expressed in prostate tissues (Supplementary Figure 21a). Moreover, we 571 

found elevated expression levels of ZNF263 in mCRPC as compared to both benign prostate and localized 572 

PCa tissue (Supplementary Figure 21b-c). Notably, ZNF263 was expressed in all mCRPC subtypes and 573 

there was no difference in expression levels between the subtypes (Supplementary Figure 21d). Next, to 574 

inspect the reproducibility of our predicted ZNF263 footprint sites, we compared predicted binding sites in 575 

mCRPC to previously published ZNF263 ChIP-seq profiles measured on human embryonic stem cells and 576 

erythroblast cells. We hypothesized that although some ZNF263 binding sites would be unique to mCRPC, 577 

many binding sites would be invariant among cell types, and demonstrating non-random enrichment for 578 

experimentally identified binding sites would support the validity of our computational analysis. Indeed, 579 

we found that 6-16% of ZNF263 bound footprint sites were also observed in the ChIP-seq peaks 580 

(hypergeometric test p-value < 2.2X10-16) (Supplementary Figure S22a). Importantly, sites where we 581 

predicted TF binding in mCRPC had a greater degree of overlap with the ChIP-seq peaks than sites 582 

predicted to be unbound in mCRPC, supporting the robustness of our footprint predictions.  583 

To identify targets of ZNF263 transcriptional regulation in mCRPC, we assessed variation in gene 584 

expression levels in the presence or absence of ZNF263 binding. As described in the previous section, since 585 

ZNF263 has a strong affinity for binding to the promoter region (Supplementary Figure S17 and S18), 586 

we focused our analysis on ZNF263 footprints identified in this region. For each gene, we grouped the 587 

mCRPC samples based on whether ZNF263 was present or absent in the promoter region of the gene. Then 588 

we measured the foldchange in the gene expression levels between the two groups. A significant increase 589 

in gene expression levels was observed for most genes when ZNF263 was bound to their promoter region 590 

(Figure 6a). We conducted an unbiased enrichment analysis to identify common functions of genes whose 591 

expression increased when ZNF263 was bound and identified enrichment in the MYC signaling pathways 592 

(Supplementary Figure S22b). Conducting the same analysis on individual mCRPC transcriptional 593 

subtypes produced comparable findings to the analysis that included all samples (Supplementary Figure 594 

S22c-d). We observed that ZNF263 footprints were prevalent in all mCRPC subtypes. However, when 595 

compared to other subtypes, the AR-NE- subtype exhibited a higher occupancy of ZNF263 footprints 596 

(Supplementary Figure S22e). Interestingly, the target genes of ZNF263 including MYC targets were 597 

expressed in AR-NE- subtype as well as many other samples from different other mCRPC subtypes 598 

(Supplementary Figure S23). These results suggest that ZNF263 potentially acts as an activator of gene 599 

expression in all mCRPC subtypes. 600 
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Next, to further strengthen our findings, we tested the enrichment of ZNF263 target genes obtained using 601 

TF network analysis. Indeed, MYC signaling was the top-most enriched pathway followed by several other 602 

proliferation and oncogenic signaling pathways (Figure 6b and Supplementary Figure S24a). Conducting 603 

the same TF network analysis for MYC revealed that the genes predicted to be up-regulated when MYC is 604 

bound significantly overlap with genes targeted by ZNF263 (Figure 6c). We also investigated genes that 605 

are regulated by both ZNF263 and MYC. Interestingly, the top enriched pathways were those involved in 606 

MYC and androgen response signaling (Supplementary Figure S24b). The evidence presented above 607 

suggests that ZNF263 potentially influences the activity of MYC target genes. 608 

Further, we inspected the ZNF263 footprints and their association with that of MYC. Despite having a 609 

different motif sequence than that of MYC (Supplementary Figure S24c), approximately 0.35% of all 610 

ZNF263 footprint sites overlap with the footprints of MYC and 2.75% of all MYC footprints overlap with 611 

that of ZNF263 (Figure 6d). We further excluded these overlapping footprint regions and measured the 612 

distance between the remaining ZNF263 and its nearest MYC binding site. We found MYC-occupied regions 613 

near ZNF263 binding sites more often in the AR-NE- subtype as compared to the rest of the mCRPC 614 

transcriptional subtypes (Supplementary Figure S24d). Furthermore, we evaluated if ZNF263 footprints 615 

predicted using ATAC-seq overlap with MYC ChIP-seq predicted binding sites. For this, we leveraged 616 

publicly available MYC ChIP-seq profiles measured on different prostate cancer and osteosarcoma cell 617 

lines. We found that about 15-20% of ZNF263 bound footprint sites overlap with the MYC ChIP-seq 618 

predicted binding sites (hypergeometric test p-value < 2.2X10-16) (Supplementary Figure S24e). Thus, 619 

implying that MYC binds near the binding sites of ZNF263. 620 

We next tested the hypothesis that ZNF263 is a co-activator of MYC transcriptional targets in mCRPC. 621 

ZNF263 was predicted to bind more gene promoter sites than MYC in AR+ and AR- subtypes 622 

(Supplementary Figure S24f). We tested whether MYC targets were differentially expressed when both 623 

ZNF263 and MYC were bound in the promoter region, in comparison with ZNF263 alone or neither protein. 624 

Supporting our hypothesis, the presence of ZNF263 binding increased the expression level of these genes 625 

(Figure 6e), and the concomitant binding of ZNF263 and MYC further increased the expression level of 626 

MYC target genes (Figure 6f). These observations are consistent with a model that ZNF263 collaborates 627 

with MYC to activate MYC targets in mCRPC. 628 

Discussion 629 

The prolonged usage of ADT and/or ARSI in advanced prostate cancer leads to the emergence of a diverse 630 

spectrum of mCRPC subtypes. While there are emerging genomic and transcriptomic distinctions between 631 

the mCRPC subtypes, information regarding the variations in the epigenomic regulatory landscape between 632 

the subtypes is scarce. In this study, we present a comprehensive characterization of the chromatin 633 

accessibility of mCRPC using integrated analysis of ATAC-seq and RNA-seq from matched samples. 634 

Earlier studies (15,21,22) on mCRPC predominantly depended on cell lines, organoids, PDXs, or a limited 635 

number of mCRPC tissue biopsies. To date, our study represents the largest group of mCRPC tissue 636 

biopsies that have been characterized using ATAC-seq. Here, we show that chromatin accessibility 637 

increases during PCa progression to mCRPC. Importantly, we found mCRPC to have unique chromatin 638 

accessibility profiles compared to localized PCa and benign prostate. AR signaling is the major driver of 639 

mCRPC(11–13,16,17)  and our investigation indicated that the functional activity of AR predominantly 640 

governs the chromatin accessibility patterns in mCRPC. The ATAC-seq profile of our mCRPC cohort 641 
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closely recapitulates the chromatin accessibility heterogeneity in the advanced PCa patient population. 642 

Furthermore, the subtypes Tang et al. (22) identified through the analysis of ATAC-seq profiles in CRPC 643 

cell lines, organoid, and PDX models were similar to the mCRPC subtypes reported in our study. 644 

Particularly noteworthy was the finding that the CRPC-WNT and CRPC-SCL subtypes predominantly 645 

represented AR- subtypes. 646 

This study evaluated differences in chromatin accessibility across 5 mCRPC subtypes. Among these 647 

subtypes, AR+NE- and AR-NE+ (t-SCNC/NEPC) subtypes have been extensively studied and well 648 

characterized, while ARlowNE-, AR+NE+, and AR-NE- subtypes remain relatively less explored. By 649 

integrating ATAC-seq and RNA-seq of matched tumors, we established a correlation between the 650 

accessibility of a regulatory element to the expression levels of predicted target genes. We then conducted 651 

a thorough analysis of TF occupancy signals across the entire accessible genomic regions, leading us to 652 

identify 203 TFs that are linked to specific mCRPC subtypes. Some TFs are uniquely enriched in a certain 653 

mCRPC subtype whereas others are common to multiple subtypes. We found that a variety of TFs were 654 

associated with the t-SCNC phenotype. Furthermore, we found that ARlowNE- and AR-NE- have many 655 

common TFs, which further supports the previous (5) findings suggesting that these subtypes share common 656 

signaling pathways. We observed the presence of numerous TFs associated with AR+NE- in both ARlowNE- 657 

and AR+NE+ subtypes. Additionally, the AR+NE+ subtype displayed enrichment of several NE-related 658 

TFs. Thus, our analysis suggests that ARlowNE-, AR+NE+, and AR-NE- subtypes might potentially be an 659 

intermediate phenotype between the more extreme AR+NE- and AR-NE+ subtypes. A recent study (5) has 660 

reported the existence of multiple mCRPC subtypes within the same metastatic site of a patient supporting 661 

mCRPC disease continuum hypothesis. These diverse spectra of mCRPC subtypes are believed to emerge 662 

from intertumoral heterogeneity and treatment-induced selective pressures that can change the phenotypic 663 

and molecular landscapes of mCRPC (5). This mandates a detailed study interrogating the molecular 664 

mechanisms driving these rare intermediate mCRPC subtypes and their clinical outcome for better 665 

management of mCRPC.  666 

Our analysis identified both established mCRPC-associated TFs as well as TFs that are relatively under-667 

studied in the context of PCa. Our interest in investigating ZNF263 was driven by several studies linking 668 

the altered activity of ZNF263 to oncogenic processes and chemotherapy resistance in different cancers 669 

(65,66). To the best of our knowledge, the role of ZNF263 in prostate cancer has not been studied to date. 670 

Here, we demonstrate that ZNF263 has a considerable influence on modulating the gene expression in 671 

mCRPC and may collaborate with MYC in these tumors. Thus, the integration of ATAC-seq and RNA-seq 672 

data in our work demonstrates the ability to investigate the effects of TF binding on the activity of their 673 

downstream target genes.  674 

Our comprehension of gene expression regulation relies heavily on understanding TF binding to regulatory 675 

elements (21). Traditionally, ChIP-seq has been the standard method for identifying TF binding sites, but 676 

more recently, ATAC-seq has emerged as a promising alternative (20,67). Unlike ChIP-seq, which requires 677 

specific antibodies targeting individual TFs, ATAC-seq enables comprehensive genome-wide profiling of 678 

footprints of all known TFs within the accessible chromatin regions. Thus, ATAC-seq TF footprint 679 

prediction holds promise as a method to screen the genome-wide binding of an extensive range of TFs in a 680 

single analysis framework to gain a comprehensive understanding of gene regulation and further reconstruct 681 

subtype-specific regulatory networks.   682 



18 

 

Transcription factors are alluring as therapeutic targets because they are master regulators of large gene 683 

networks that affect disease outcomes. Although TFs are conventionally considered difficult-to-drug 684 

proteins, promising technologies such as PROTAC (68) have enabled the targeted degradation of desired 685 

proteins, including TFs. Direct (PROTAC) or indirect inhibition of several TFs is currently being 686 

investigated in clinical trials (69). ATAC-seq TF footprinting can aid in the identification of potential 687 

therapeutic targets by providing information on the regulatory regions of genes that are accessible to TF 688 

binding. 689 

In summary, this study characterizes the changes in chromatin accessibility in advanced PCa. Our results 690 

illustrate the importance of studying chromatin shifts at regulatory regions to determine TFs actively 691 

occupied in the region, and how they modulate transcriptional programs associated with oncogenic and 692 

tumor-suppressive functions. Overall, our findings provide valuable insights into epigenetic changes that 693 

occur during mCRPC progression.    694 
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Figure Legends 946 

Figure 1. Chromatin accessibility changes during prostate cancer progression affect stage-specific 947 

regulatory elements. (a) Principal component analysis (PCA) of the ATAC-seq profiles comparing different 948 

stages of prostate cancer including benign prostate, localized prostate cancer (PCa), mCRPC Adeno, and 949 

mCRPC t-SCNC. The normalized read counts of these consensus-accessible regions were used for the PCA 950 

analysis. Each dot in the plot represents an individual sample. (b) An alluvial plot demonstrating changes 951 

in accessible chromatin regions in various stages of prostate cancer. Each bar corresponds to a distinct PCa 952 

stage, with the orange and white sections indicating accessible and inaccessible chromatin regions, 953 

respectively. The shaded areas connecting the bars represent changes in the accessibility of these 954 

chromatin regions. The pink and blue shaded regions respectively represent accessible and inaccessible 955 

chromatin regions in mCRPC Adeno. (c) Heatmap representation of the chromatin between different 956 

stages. The rows are segregated by the chromatin variants in each stage. (d) The percentage of chromatin 957 

variants in mCRPC Adeno. The ATAC-seq peaks are grouped by the genomic regions (promoter, intron, 958 

or distal intergenic) to which they are mapped. (e) ATAC-seq profile plot illustrating potential regulatory 959 

regions in chromatin variants in mCRPC Adeno. The profile plot represents the overlapping region 960 

between the chromatin variants and publicly available H3K27ac ChIP-seq data from mCRPC PDX. (f) 961 

Enrichment of chromatin regions exclusively accessible in localized PCa, mCRPC Adeno, or mCRPC t-962 

SCNC against GO Biological Processes. 963 

Figure 2. Chromatin accessibility in mCRPC is associated with subtypes linked to androgen 964 

signaling. (a) Unsupervised hierarchical clustering of pairwise sample Spearman’s correlation based on 965 

the normalized read counts of consensus ATAC-seq peaks of mCRPC. (b-c) Distribution of (b) androgen 966 

receptor (AR) pathway score, (c) neuroendocrine (NE) score calculated based on RNA-seq gene expression 967 

profiles of mCRPCs classified into individual clusters in Figure 2a. Statistically significant Wilcoxon rank 968 

sum test p-values between the clusters are indicated in the plot. 969 

Figure 3. mCRPC transcriptional subtypes are associated with chromatin variants of prostate 970 

cancer signaling pathways. (a) Heatmap of chromatin variants between mCRPC transcriptional subtypes. 971 

(b) ATAC-seq peaks around AR, NKX3-1, and GPR37L1 gene regions. The highlighted vertical strip 972 

illustrates the presence of ATAC-seq peaks at the enhancer region. (c) Heatmap representation of the 973 

chromatin variants between mCRPC transcriptional subtypes. The rows are segregated by the differential 974 

regions mapped to gene promoter, intron, or distal intergenic regions. (d-f) Hallmark pathways enrichment 975 

of chromatin variants between the mCRPC transcriptional subtypes mapped to (d) promoter, (e) intron, and 976 

(f) distal intergenic regions identified using GREAT enrichment analysis (see Methods section). 977 

Figure 4. mCRPC transcriptional subtypes are defined by DNA accessibility-guided patterns of 978 

transcription factor regulation. (a-b) ATAC-seq TF (AR and HOXB13) footprints signal difference 979 

between TF-bound and unbound sites. (c-d) Volcano plot of differential TF footprint occupancy analysis 980 

comparing the (c) AR+NE- and AR-NE+ subtypes and (d) AR+NE- and AR-NE- subtypes. Each dot in the 981 

plot represents a TF motif. The colored dots indicate a significantly differentially bound TF motif. (Data 982 

available as Supplementary Table S4) (e) Heatmap of genome-wide active TF occupancy, determined by TF 983 

footprints, associated with different mCRPC transcriptional subtypes. Each rim of the circular heatmap 984 

represents an individual mCRPC transcriptional subtype and the sector represents TF. The darker color 985 

shade indicates the strong association of the TF with the respective mCRPC subtype. See the Methods 986 
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section for details on TF occupancy phenotype score calculation. 987 

Figure 5. Identification of the influential transcription factors driving mCRPC transcriptional 988 

subtypes. We hypothesized that highly active TF regulate (or influence) gene expression activity of a large 989 

fraction of target genes. The plot indicates the top influential mCRPC transcriptional subtype-associated TFs 990 

ranked by the number of target genes (based on gene expression) they influence. 991 

Figure 6. ZNF263 activates MYC signaling targets. (a) The volcano plot depicts the genes that undergo 992 

activation or repression upon ZNF263 binding to their specific promoter region. Each gene is represented 993 

by a dot, and the difference in gene expression between samples with and without ZNF263 in the promoter 994 

region was measured as fold change. Additionally, the statistical significance of the difference was 995 

evaluated using the Wilcoxon rank sum test to calculate the p-value between the two groups. (b) Over-996 

representation analysis of the predicted ZNF263 target genes against the Hallmark pathways. (c) Percentage 997 

of the predicted target genes of MYC that overlap with those of TFs associated with AR-NE- subtype. The 998 

overlap of the respective TF target genes with genes in the Hallmark MYC targets geneset is illustrated as 999 

the red line. (d) Heatmap of overlapping ZNF263 and MYC footprint sites. The red color highlights the 1000 

direct overlap between ZNF263 and MYC footprints. (e) Volcano plot showing the genes that are activated 1001 

when ZNF263 binds to the promoter region compared to genes that are activated with both ZNF263 and MYC 1002 

are not bound to the promoter region. (f) Box plot of gene expression foldchange when different 1003 

combinations of ZNF263 and MYC bind to the promoter as compared to when both ZNF263 and MYC are 1004 

simultaneously absent in the promoter. Each dot represents a gene in Hallmark MYC targets geneset. 1005 
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