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ABSTRACT OF THE DISSERTATION
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by
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Doctor of Philosophy, Graduate Program in Mathematics
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Dr. Michel Lapidus, Chairperson

Many important physical processes can be described by differential equations. The

solutions of such equations are often formulated in terms of operators on smooth manifolds.

A natural question is to determine whether differential structures defined on fractals can

be realized as a metric limit of differential structures on their approximating finite graphs.

One of the fundamental tools of noncommutative geometry is Alain Connes’ spectral triple.

Because spectral triples generalize differential structure, they open up promising avenues

for extending analytic methods from mathematical physics to fractal spaces. The Gromov-

Hausdorff distance is an important tool of Riemannian geometry and building on the earlier

work of Marc Rieffel, Frederic Latremoliere introduced a generalization of the Gromov-

Hausdorff distance that was recently extended to spectral triples. The class of piecewise

C1-fractal curves was first characterized by Michel Lapidus and Jonathan Sarhad as a

generalized setting for the spectral triple construction developed by Christensen, Ivan, and

Lapidus in the context of the Sierpinski gasket. We provide an analytic framework for the

metric approximation of the Lapidus-Sarhad spectral triple on a piecewise C1-fractal curve
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by spectral triples defined on an approximating sequence of finite graphs which exhibit

properties motivated by the setting of the Sierpinski gasket.
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Chapter 1

Introduction

Classical geometry relies on curves and surfaces that appear locally Euclidean. In

contrast, fractals are infinite objects often characterized by self-similarity– the repetition

of a base pattern across a boundless set of scales. Mandelbrot coined the term ”fractal”

to describe rough or fragmented geometric shapes or processes. More than a century ago,

curves now classified as fractals were generated by mathematicians as examples of objects

that exhibit pathological geometric behavior. Such examples include the Weierstrass func-

tion, the Sierpinski gasket, and the Koch curve. Scientists have successfully modified fractal

patterns to model many diverse natural phenomena such as the bronchial tubes of a lung,

the canopy of a tree, the network of blood vessels in the human body, the pathway of a

lightning bolt, and the distribution of noise in data transmission over a communications

channel [26, 27]. Because fractal structure in nature has self-similarity over an extended

but finite scale range, advancement in the theory of finite approximations of fractals can

lead to a better understanding of how fractal structures arise and evolve in nature.
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Many important physical processes can be described by differential equations. The

solutions of such equations are often formulated in terms of operators on smooth manifolds.

One motivation for the development of analysis on fractals is the extension of these methods

from mathematical physics to fractal spaces. Many fractal curves can be approximated by

simpler structures like finite graphs. A natural question, and the goal of this doctoral thesis

project, as well as the subject of a collaboration with my PhD advisor, Michel Lapidus, and

Frédéric Latrémolière, is to determine whether differential structures defined on fractals can

be realized as a metric limit of differential structures on their approximating finite graphs

[41]. Such an advancement would set the stage for the definition of operators on fractals that

suitably generalize their classical counterparts and grant access to analysis via differentiable

methods.

The emergence of architectures in information theory and signal processing at the

quantum scale necessitates theoretical advances in both fractal geometry and noncommu-

tative geometry [40] [16]. At every level of detection, the length of gaps between noise in a

signal transmission is fractal [27]. At the quantum mechanical level, the order of measure-

ment affects the outcome, and as a consequence, coordinates, which completely determine

a system in classical geometry, do not commute. In particular, development of a non-

commutative fractal geometry would enhance the capability of mathematicians to describe

important physical spaces. Many important advancements in the definition and study of

noncommutative fractal geometry are due to the efforts of Michel Lapidus, some of which

are in collaboration [11, 17, 18, 41, 19]. This doctoral thesis project, which owes its concep-
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tion, evolution, and fruitful resolution to his direction, increases the range of tools from

noncommutative geometry which can be used to describe and understand fractals.

At the quantum scale, the wave function of a particle, but not its path in space,

can be studied. Riemannian methods often rely on smooth paths to encode the geometry

of a space. Noncommutative geometry generalizes analysis on manifolds by replacing this

requirement with operator algebraic data. From this perspective, the topology of a space X

determines, and is determined by, the C˚-algebra CpXq. When X is a compact Hausdorff

space, CpXq is a C˚-algebra. The space of bounded linear operators on a Hilbert space is

another fundamental example of a C˚-algebra. Gelfand, Naimark, and Segal discovered that

the category of unital commutative C–algebras is dual to that of compact Hausdorff spaces.

Classical spaces correspond to commutative C˚-algebras, and noncommutative spaces to

noncommutative C˚-algebras.

Much of the foundation of noncommutative geometry comes from Alain Connes’

efforts to adapt classical tools from topology and Riemannian geometry to the operator alge-

braic setting. Connes formalized the operator algebraic elements essential to his approach

in the definition of a spectral triple (see Definition 9). Because spectral triples general-

ize differential structure, they open up promising avenues for extending analytic methods

from mathematical physics to fractal spaces [17, 18]. Since spaces that do not have paths

or smooth structure often still admit many kinds of functions, fractals and Riemannian

manifolds can be studied on the same rigorous footing when viewed as noncommutative

spaces.
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Noncommutative geometry can be used to give a rigorous functional analytic

framework for models in high energy physics [4, 7, 21, 35, 36]. These same “point-free”

techniques have also been used to study the geometry of classically pathological spaces like

fractals. Michel Lapidus established a research program to stimulate advancement in non-

commutative fractal geometry, where methods from noncommutative geometry are used to

study fractals as generalized manifolds [17, 18]. Since the geodesic distance encodes the

geometry of a manifold, recovery of this intrinsic metric is crucial to the development of

analysis on fractals. Lapidus and his collaborators have built spectral triples that all re-

cover the geodesic distance and in some instances also the Minkowski and complex fractal

dimensions of the space [11, 19].

The Sierpinski gasket belongs to a class of fractal curves that can be suitably

approximated by finite graphs. The Sierpinski gasket is also an important test case for

much work in analysis on fractals. Michel Lapidus, together with Erik Christensen and

Cristina Ivan, developed a spectral triple for the Sierpinski gasket that recovers the Haus-

dorff dimension, the geodesic metric, and the log2 3-dimensional Hausdorff measure [11].

The aforementioned class of fractals– that is, piecewise C1-fractal curves– was first char-

acterized by Michel Lapidus and Jonathan Sarhad as a generalized setting for the spectral

triple construction developed by Christensen, Ivan, and Lapidus in the context of the Sier-

pinski gasket [19]. My collaboration in [41] with Lapidus and Latrémolière provides an

analytic framework for the metric approximation of the Lapidus-Sarhad spectral triple on
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a piecewise C1-fractal curve by spectral triples defined on an approximating sequence of

finite graphs which exhibit properties motivated by the setting of the Sierpinski gasket.

The class of piecewise C1-fractal curves also includes the harmonic gasket, which

is a self-affine set that is homeomorphic to the Sierpinski gasket and path-connected via C1

curves. Via the efforts of Jun Kigami and Shigeo Kusuoka, there exists a fractal version of

Riemannian geometry in the setting of the harmonic gasket – more precisely, formulas for

energy and geodesic distance involving measurable analogs to Riemannian metric, Rieman-

nian gradient, and Riemannian volume [15]. In contrast, paths on the Sierpinski gasket are

only piecewise C1. Intrinsic metrics like the geodesic distance on a space play an important

role in Riemannian geometry. The Lapidus-Sarhad spectral triple recovers the geodesic

distance on a piecewise C1-fractal curve [19]. Because the Sierpinski gasket cannot even be

viewed as a classical manifold in the topological sense, the ability of the Lapidus-Sarhad

spectral triple to recover the geodesic metric in this and broader settings is an important

advancement in the development of generalized notions of manifolds that include fractal

spaces.

A piecewise C1-fractal curve can be written as the closure of a countable union of

parameterized curves. Hence different subsequences of a parameterization define different

sequences of finite graph approximations. The Lapidus-Sarhad spectral triple on a piece-

wise C1-fractal curve is a countable direct sum of spectral triples where each summand

corresponds to a curve in the fractal. The Gromov-Hausdorff distance is an important tool

of Riemannian geometry, and building on the earlier work of Marc Rieffel, Frédéric La-

tremoliere introduced a generalization of the Gromov-Hausdorff distance that was recently
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extended to spectral triples in a form called the spectral propinquity [20, 23]. Our work

determines conditions under which finite subsets of these summands yield spectral triples

that approximate a spectral triple on the piecewise C1-fractal curve, thereby facilitating

metric approximation of these spectral triples and their underlying noncommutative geo-

metric structures by the spectral propinquity. My thesis describes these conditions in the

definition of an approximation sequence for a piecewise C1-fractal curve (see Definition 5).

My thesis also shows that these finite direct sums of spectral triples recover the geodesic

distance for the corresponding finite graph in an approximation sequence for a piecewise

C1-fractal curve (see Theorem 27).

The Lapidus-Sarhad spectral triple and the approximating spectral triples de-

scribed above are all distinguished in that they each recover the geodesic distances on their

respective spaces. Intrinsic metrics like the geodesic distance on a space play an important

role in Riemannian geometry. The application of the spectral propinquity in this setting

not only respects the convergence of the coinciding classical structures but also adds new

information by metrizing a notion of closeness for spectral triples also supported on the

same spaces. The spectral propinquity can be viewed as an extension of Hausdorff distance

up to the level of spectral triples. Chapter 2 begins with an exposition of Hausdorff distance

as a tool for describing fractality. Lapidus and Sarhad’s formulation of piecewise C1-fractal

curves is introduced. This framework is enhanced with the notion of an approximation se-

quence. The Gromov-Hausdorff distance is given as both a classical analogue for the basis

of the spectral propinquity metric and a means to describe geodesic metric structure for

piecewise C1-fractal curves. Chapter 3 is a development of some themes in noncommuta-
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tive fractal geometry and falls within the much wider scope of Michel Lapidus’ research

program where that subject is established. With the aim of understanding fractality, this

account details the metric perspective in the sense of Rieffel, as well as the Riemannian

angle advanced by Connes. As a metric on spectral triples of a certain class, Latremoliere’s

spectral propinquity is introduced as a tool for studying spectral triples on fractals. Chap-

ter 4 applies the elements of noncommutative fractal geometry given in Chapter 3 to the

metric approximation of Lapidus-Sarhad spectral triples on piecewise C1-fractal curves. In

service of this goal, metric approximation of each of several underlying noncommutative

structures is obtained. The properties encoded in the notion of an approximation sequence

play a major role in multiple estimates. Chapter 5 concludes with the description of several

directions in noncommutative fractal geometry for current and future investigations.
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Chapter 2

Hausdorff Distance, Iterated

Function Systems, and Fractals

A crumpled sheet of paper looks like a plane when viewed close enough. A tangled

piece of string likewise seems like a straight line at a precise enough level of detail. Classical

geometry relies on curves and surfaces that appear locally flat at large enough levels of

magnification. Fractals often appear pathological in this setting.

A fractal can sometimes be precisely described as the limit of the infinite iteration

of a simple rule applied to a space. Mathematicians have identified special properties

with which to define such iterated functions and the settings in which they give rise to

fractals. Many fractal curves which can be characterized in this way also satisfy the criteria

codified by Lapidus and Sarhad in the definition of a piecewise C1-fractal curve. Important

examples of such fractals include the Sierpinski gasket and the harmonic gasket. The class

of piecewise C1-fractal curve is broader than the usual framework through which these

8



fractals are viewed, thereby making possible the description of more complicated examples

of fractality.

2.1 Hausdorff Distance

Fractal curves like the Sierpinski gasket can be viewed as subsets of R2. When

equipped with the Euclidean distance d, pR2, dq is a metric space. Sets in a metric space

can be compared using the Hausdorff distance. To define the Hausdorff distance for sets in

pR2, dq, let A be a subset of R2 and r be some real number greater than 0. Then the open

r-neighborhood around A is

NrpAq “ ty : dpx, yq ă r,@x P Au.

Definition 1. Let A,B be subsets of a metric space. The Hausdorff distance between A

and B is

HausdpA,Bq “ inftr ą 0, B Ď NrpAq, A Ď NrpBqu.

Many fractals can be viewed as an increasing union of sets with a simpler structure.

In the case of piecewise C1-fractal curves, these sets will be supplied by finite graphs. These

fractal curves have finite approximations in the Hausdorff distance by such graphs. Both

kinds of sets are also compact metric spaces when equipped with their respective geodesic

distances. An extension of the Hausdorff distance can be applied to the consideration of

convergence for such spaces.

The Hausdorff distance can be used to define a metric on the subsets of a metric

space. Trivial Hausdorff distance between two subsets of a metric space implies one set is
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dense in the other. This metric is an extended pseudo-metric if no qualifications are put on

these subsets. For instance, the Hausdorff distance between a point and a line as subsets of

pR2, dq is infinite. In contrast, the Hausdorff distance between any two non-empty, compact

subsets of pR2, dq is finite. More precisely, let pX, dq be a metric space. Denote the set of

non-empty compact subsets of X by HpXq. When equipped with the Euclidean distance d,

pR2, dq is a complete metric space. Consequently, pHpR2q,Hausdq is also a complete metric

space [12].

2.2 Iterated Function Systems

Some fractals can be represented as limits of Cauchy sequences in pHpR2q, dHq.

To construct such sequences in a more general setting, let pX, dq denote a metric space.

Definition 2. A map T : X Ñ X is called a contraction mapping if there exists k P p0, 1q

such that for all x and y in X,

dpT pxq, T pyqq ď k dpx, yq.

An iterated function system (IFS) is a finite collection of contraction mappings tTsu
m
s“1

from the space X to itself.

In fact, iterated functions systems exhibit an important property when they are

defined on a complete metric space.

Theorem 1. [12] Suppose pX, dq is a complete metric space. Let tFsu
m
s“1 be an iterated

function system in pX, dq. Set F : HpXq Ñ HpXq equal to

F pAq :“
m
ď

s“1

FspAq.

10



Figure 2.1: Finite Graph Approximations of the Sierpinski Gasket

Then F admits a unique fixed point. In other words, there exists a unique non-empty

compact subset of X that is invariant for tFsu
m
s“1.

Many important fractals can be realized as the unique fixed point of an iterated

function system on a complete metric space. In particular, tFnpAqunPN is a Cauchy sequence

when A and F are defined as in the above theorem. Fractal curves like the Sierpinski gasket

can be represented as the unique fixed point of such a Cauchy sequence. For the case of the

Sierpinski gasket, the unit equilateral triangle is a finite subgraph. In fact, this fractal can

be approximated in the Hausdorff distance by the finite iterates of an affine transformation

applied to a unit equilateral triangle. The properties exhibited by this approximating

sequence of finite graphs will later be generalized to the setting of piecewise C1-fractal

curves in the notion of an approximation sequence for such fractals.

The Sierpinski gasket is both a classical example of a nowhere differentiable planar

curve and an important test case for the theory of analysis on fractals. Let p1, p2, and p3

each represent a vertex in a unit equilateral triangle and

Fspxq :“
1

2
px´ psq ` ps

11



for s P t1, 2, 3u. Analytically, the Sierpinski gasket, SG, can be defined as the unique

nonempty compact subset of R2 such that

SG “

3
ď

s“1

FspSGq.

The system of contraction mappings defined above can also be used to obtain finite graph

approximations of SG. Let SG0 signify the initial unit equilateral triangle, n any positive

integer, t “ pt1, ¨ ¨ ¨ , tkq a word of length |t| “ k letters in t1, 2, 3u for 1 ď i ď k, Ftpxq “

Ftk ˝ ¨ ¨ ¨ ˝ Ft1pxq, and

SGn :“
ď

|t|ďn

FtpSG0q.

Then tSGnuně0 is an increasing sequence of graphs and SG can also be viewed as the

closure of the limit of this sequence. Moreover, SG can be decomposed into n-cells – that

is,

SG “
ď

|t|“n

FtpSGq

with

č

|t|“n

FtpSG0q “
ď

|t|“n

Ftptp1, p2, p3uq “ Vn,

where Vn denotes the vertices in the level n approximation to SG, which will be denoted

by SGn. In analogy with Euclidean neighborhoods on a classical manifold, n-cells in SG

can be seen as graph neighborhoods on the fractal. Because the lengths of the edges in an

n-cell in SG are bounded by 2´n, arbitrarily small regions of the fractal can be considered.

Similarly,

V˚ :“
ď

ně0

Vn

is dense in SG and coincides with the vertices of SG. Fractals like SG carry an intrinsic

metric and are examples of compact length spaces [19]. More precisely,
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Figure 2.2: The Stretched Sierpinski Gasket

Definition 3. Let pM,dq be a compact metric space. The induced intrinsic metric

dI “ dIpx, yq is defined as the infimum of the d-induced lengths of (continuous) paths from

x to y. When there is no path from x to y, then dIpx, yq is defined to be infinite. If

dpx, yq “ dIpx, y) for all x and y in M , then pM,dq is called a compact length space and

the metric d is said to be intrinsic.

Although SG is not differentiable at its vertices, each point in V˚ can be connected

to each point in SG by a minimizing geodesic that is a countable concatenation of edges

in SG, hence piecewise rectifiable and C1 [19]. Because SG cannot even be viewed as a

classical manifold in the topological sense, the ability of the Lapidus-Sarhad spectral triple

to recover the geodesic metric in this and the wider setting of piecewise C1-fractal curves is

an important advancement in the development of analysis on fractals via noncommutative

geometry.

The Sierpinski gasket and the stretched Sierpinski gasket are both examples of

fractals that can each be viewed as the unique fixed point of some iterated function system.

13



To obtain the stretched Sierpinski gasket of parameter α, 0 ă α ă 1
3 , set p4 “ 1

2pp2 ` p3q,

p5 “ 1
2pp1 ` p3q, and p6 “ 1

2pp1 ` p2q. If Gα,i : R2 Ñ R2 is given by

Gα,ipxq :“
1 ´ α

2
px´ piq ` pi for i “ 1, 2, 3,

Gα,ipxq :“ Tipx´ piq ` pi for i “ 4, 5, 6,

where

T4 “
1

4

¨

˚

˚

˝

1 ´
?
3

´
?
3 3

˛

‹

‹

‚

, T5 “

¨

˚

˚

˝

1 0

0 0

˛

‹

‹

‚

, T6 “
1

4

¨

˚

˚

˝

1
?
3

?
3 3

˛

‹

‹

‚

,

then SGα can be written as the unique nonempty compact subset of pR2, dq such that

SGα “

6
ď

i“1

Gα,ipSGαq.

One way to obtain SGα from SG is by replacing each vertex, or branching point in

Vn, n ě 1, with an interval of length αp1´α
2 qn´1. The set of such intervals is dense in SGα

[30]. Recall that SG0 is a unit equilateral triangle with vertices at V0 “ tp1, p2, p3u. For

n “ 1, these intervals coincide with the images of SG0 under the contractive affine maps in

the iterated function system – that is, Gα,i for i “ 4, 5, 6. Let

ei :“ Gα,i`1pSG0q for i “ 1, 2, 3.

Then

I1 :“ te1, e2, e3u

is the set of intervals in SGα of length α. Each interval in I1 can be associated to a vertex in

V1 via this correspondence. To describe the remaining intervals, as well as other components

14



of SGα, only the contractive similarities in the iterated function system– that is, Gα,i for

i “ 1, 2, 3– are needed. As in the case of SG, given t in t1, 2, 3uk, Gα,tpxq is taken to be

Gα,tk ˝¨ ¨ ¨˝Gα,t1pxq. Thus for n ě 2, each interval of length αp1´α
2 qn´1 can now be described

by Gα,tpeiq for some t in t1, 2, 3un´1 and ei in I1. If

In :“ tGα,tpeq : |t| “ n´ 1, e P I1u

for n ě 2 and

I˚ :“
ď

ně1

In,

then

SGα “ I˚.

Patricia Alonso Ruiz and Uta Freiburg showed that SGα converges to SG for the

Hausdorff distance when α goes to zero [39]. Part of their argument relies on bounds for the

Hausdorff distance between the vertices of SGα and the set of vertices of SG. In contrast

to SG, the vertices of SGα are not dense in SGα. To describe the vertices of SGα, set W0

equal to V0,

Wn :“ tGα,tppq : |t| “ n, p P W0u,

and

W˚ :“
ď

ně0

Wn.

For n ě 1, each vertex in Wn can be viewed as the endpoint of an interval in In. In the case

of n “ 1, Gα,p3qpp2q and Gα,p2qpp3q are the endpoints of e1, Gα,p3qpp1q and Gα,p1qpp3q are the

endpoints of e2, and Gα,p2qpp1q and Gα,p1qpp2q are the endpoints of e3. As a consequence, q

15



αÓ0
ÝÝÝÝÝÝÝÝÝÑ

Figure 2.3: Hausdorff Convergence of the Stretched Sierpinski Gasket of Parameter α to
the Sierpinski Gasket for α Ñ 0

and r in Wn are the endpoints of the same interval e in In if there exists pi and pj in W0,

ek in I1, and t in t1, 2, 3un´1 such that

Gα,t ˝Gα,pjqppiq “ q,

Gα,t ˝Gα,piqppjq “ r,

and

Gα,tpekq “ e.

When α goes to zero, the length of e goes to zero. In particular,

|q ´ Ft ˝ Fpjqppiq| “ |Gα,pj,t1,¨¨¨ ,tn´1qppiq ´ Fpj,t1,¨¨¨ ,tn´1qppiq|
αÓ0

ÝÝÝÝÝÝÝÝÝÑ 0,

as does the difference between r and Fpi,t1,¨¨¨ ,tn´1qppjq. Since Fpj,t1,¨¨¨ ,tn´1qppiq and Fpi,t1,¨¨¨ ,tn´1qppjq

describe the same vertex in Vn, the edge in In described by Gα,pt1,¨¨¨ ,tn´1qpekq can be as-

sociated to this vertex when comparing SGα and SG using the Hausdorff distance. The

Hausdorff distance is therefore not only an important geometric tool for describing set-

tings in which fractality can arise and finite approximations for fractals, but also for metric

comparison between fractals.
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Figure 2.4: The Sierpinski Gasket and the Harmonic Sierpinski Gasket, [19]

2.3 Analysis on Fractals and Piecewise C1-Fractal Curves

The harmonic gasket, HG, is a self-affine fractal that is homeomorphic to SG. In

contrast, SG is self-similar. While paths in SG are piecewise C1, paths in HG are C1. Jun

Kigami combined a formulation of the geodesic metric on HG with Kusuoka’s measurable

generalization of Riemannian structure on SG [15]. Via these efforts, there exist formulas

for energy and geodesic distance on HG involving measurable analogues to Riemannian

metric, Riemannian gradient, and Riemannian volume. Since HG is obtained from SG

using the space of harmonic functions, HG can be viewed as SG in harmonic coordinates.

Like SG, HG is also an important fractal in the theory of analysis on fractals.

The theory of harmonic functions on SG is an important development in the

theory of analysis on fractals. As in the classical case, harmonic functions on SG are energy

minimizers. To define harmonic functions on SG, recall that SG can be viewed as the

closure of an increasing union of finite graphs. Each nth level approximation of SG from

this vantage point is composed of 3n equilateral triangles with sides of length 2´n. If f and

g are real-valued functions on SGn, then the energy on SGn is given by

Enpf, gq “ Σ
x„ny

pfpxq ´ fpyqqpgpxq ´ gpyqq,
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where x „n y signifies that x and y are connected by a single edge in SGn. An extension of

f to the vertices of SGn`1 that minimizes En`1pfq :“ En`1pf, fq is defined as the harmonic

extension of f to those vertices. A real-valued function f defined on the vertices of SGn

which, given its values on the vertices of SG0, minimizes Ekpfq for each k “ 1, 2, ..., n is

called a harmonic function.

Harmonic functions on SG play a critical role in the characterization of the Lapla-

cian on SG. A real-valued function defined on V0 can be uniquely extended to a real-valued

harmonic function on SGn for any n and hence to V˚. Since V˚ is dense in SG, the function

can also be extended to SG via continuity. If V0 is viewed as the boundary of SG, then,

in continued analogy with classical harmonic theory on a manifold, harmonic functions on

SG can be said to be uniquely determined by their boundary values. Working in this set-

ting, Kigami used the renormalized energy on SGn to define a Laplacian on SG and its

relationship with harmonic functions on SG [15]. More precisely, let

Epf, gq :“ lim
nÑ8

´5

3

¯n
Enpf, gq,

µ be a probability measure on SG, f P dompEq, and u P CpSGq. Note that g P dompEq

if Epg, gq ă 8. Consider ∆µ, the Laplacian on SG with respect to the measure µ, i.e.

∆µf “ u if

Epf, gq “ ´

ż

SG
ug dµ

for all g P dompEq. If f is harmonic, then f P domp∆µq and ∆µf “ 0. Conversely, if

f P domp∆µq and ∆µf “ 0, then f is harmonic. In particular, Kigami’s Laplacian on SG

is a well-developed example of a differential operator on a fractal that suitably generalizes

key properties from the Riemannian manifold setting.
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To construct a homeomorphism between SG and HG, let Rj , denote, for each

j ě 1, continuous injective functions to edges in SGn such that

Rj : r0, 1s Ñ the edges in the graph SG0 for j “ 1, 2, 3,

Rj : r0, 2´1s Ñ the edges in the graph SG1 for j “ 4, 5, ¨ ¨ ¨ , 12

Rj : r0, 2´2s Ñ the edges in the graph SG2 for j “ 13, 14, ¨ ¨ ¨ , 39

...

Rj : r0, 2´ns Ñ the edges in the graph SGn for j “ 1 `

n
ÿ

i“1

3i, 2 `

n
ÿ

i“1

3i, ¨ ¨ ¨ , 3n`1 `

n
ÿ

i“1

3i,

...

Suppose each Rj is parametrized by arclength. Each curve will be mapped toHG as follows.

Let tp1, p2, p3u denote the set of vertices of SG0 and V˚ that of SG. Note that V˚ is dense

in SG. For each j “ 1, 2, 3, let the function hj : V0 Ñ R3 be given by hjppkq “ δjpkq for

k “ 1, 2, 3. Extend hj harmonically to V˚ and by continuity to SG. Then Φ : SG Ñ R3 is

defined by

Φpxq “ 1?
2

¨

˚

˚

˚

˚

˚

˚

˝

¨

˚

˚

˚

˚

˚

˚

˝

h1pxq

h2pxq

h3pxq

˛

‹

‹

‹

‹

‹

‹

‚

´ 1
3

¨

˚

˚

˚

˚

˚

˚

˝

1

1

1

˛

‹

‹

‹

‹

‹

‹

‚

˛

‹

‹

‹

‹

‹

‹

‚

,

and

HG :“ ΦpSGq.

Set lj “ LpΦpRjqq. After a reparametrization,

ΦpRjq : r0, ljs Ñ HG
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for every j P N. Moreover,

HG “
ď

jě1

ΦpRjq.

The fact that Φ is a homeomorphism between SG and HG when both of these spaces is

equipped with the topology induced by the restriction of the Euclidean metric was also

shown by Kigami [15]. In particular,

HG “

3
ď

s“1

Φ ˝ Fs ˝ Φ´1pHGq.

A set of contractive affine maps tHsu
3
s“1 exists for which HG is the unique fixed point and

Φ ˝ Fs “ Hs ˝ Φ [15].

To build spectral triples on fractals, Lapidus and Sarhad identified a class of fractal

curves that includes both HG and SG. The verification that each fractal belongs to this

class is supplied by Proposition 2 and Proposition 3 of [19].

Definition 4 ([19]). A piecewise C1-fractal curve is a compact length space X Ď Rn that

satisfies the axioms below. Let Lpγq denote the length of the continuous curve γ parametrized

by its arclength.

Axiom 1. X “ R where R “
ď

jě1

Rj and Rj for each j P N is a rectifiable C1 curve with

LpRjq Ñ 0 as j Ñ 8.

Axiom 2. There exists a dense subset B Ă X such that for each p P B and q P X, one of the

minimizing geodesics from p to q can be given as a countable (or finite) concatenation of the R1
js.

The countable concatenation of Rj ’s mentioned in Axiom 2 is understood to begin

with p P B as the initial endpoint of some Rj . As a consequence, Axiom 2 implies that B
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is a subset of the collection of the endpoints of the Rj curves [19]. In particular, the set of

endpoints of the Rj curves in a parameterization of a piecewise C1-fractal curve is, as in

the case of V˚ in SG, also dense. When this collection of endpoints satisfies the additional

conditions detailed below, the Lapidus-Sarhad spectral triple on the piecewise C1-fractal

curve can be metrically approximated by spectral triples on finite graphs (see Theorem 32).

Definition 5. Let X be a piecewise C1-fractal curve with parameterization pRjqjPN. An

approximation sequence of X compatible with pRjqjPN is a strictly increasing function

B : N Ñ N such that, for every ϵ ą 0, there exists n P N such that if n ě N , and letting

‚ Xn “
ŤBpnq

j“1 Rj,

‚ Vn denote the set of the endpoints of the curves R1, ¨ ¨ ¨ , RBpnq,

‚ V˚ signify
Ť

ně0 Vn,

‚ dn be the geodesic distance on Xn,

the following properties hold:

(1) HausdnpVn, Xnq ă ϵ,

(2) the restriction of d8 to Vn ˆ Vn is dn.

The sequence of nth level approximations of SG given by tSGnunPN is an increasing

sequence of finite subgraphs of SG. The geometric properties exhibited by this sequence

and the notation used in their description supplied the prototype for the notion of an

approximation sequence for a piecewise C1-fractal curve.

Lemma 1. Let B : N Ñ N be given by Bpnq “
n
ř

j“0
3j`1. Then B defines an approximation

sequence of SG compatible with the parameterization pRjqjPN.
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Proof. Fix a choice of positive ϵ. Then there exists N P N such that 2´n ă ϵ

for all n ě N . Choose some such n. If Bpnq “
n
ř

j“0
3j`1, then SGn “

ŤBpnq

j“1 Rj coincides

with the nth level approximation of SG described earlier by
Ť

|t|ďn FtpSG0q. In particular,

each FtpSG0q is an equilateral triangle in SG with sides of length 2´|t|. When |t| ď n, the

vertices of such triangles belong to Vn. Since paths in SGn are composed of edges belonging

to such triangles, HausdnpVn, SGnq ă ϵ.

To determine the restriction of d8 to Vn ˆVn, recall that SGn can be decomposed

into n-cells – that is,

SGn “
ď

|t|“n

FtpSG0q.

Each n-cell is an equilateral triangle with sides of length 2´n. The set of vertices of all

such triangles in SGn coincides with Vn. If two n-cells intersect, they intersect only at a

vertex. Consequently, any path connecting points in distinct n-cells must pass through a

vertex of each of these n-cells. Let p and q be distinct points in Vn. If p and q belong to the

same n-cell, then they are also vertices of an edge belonging to an equilateral triangle with

sides of length 2´n. Hence d8pp, qq “ dnpp, qq “ 2´n. Next suppose that p and q belong to

distinct n-cells and that γ is a path in SG8 not contained in SGn. Then γ contains some

point c in SG8zSGn. Because

SG “
ď

|t|“n

FtpSGq,

c belongs to Ft1pSGq for some t1 P t1, 2, 3, un. Since Ft1pSGq lies in the convex hull of

Ft1pSG0q, γ must pass through two vertices of the triangle described by Ft1pSG0q. As

γ X Ft1pSGq is longer than the straight edge connecting these two vertices, γ cannot be a
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geodesic in SG. Therefore any geodesic in SG connecting points in Vn must also be a

geodesic in SGn. ■

The identification of an approximation sequence for a piecewise C1-fractal curve

given a particular parameterization requires some characterization of the geodesics in that

space. Since each Rj-curve is a straight line segment in pR2, d), it is the minimizing geodesic

in SG between its endpoints. For HG, each Φ ˝ Rj-curve corresponds to a harmonic edge.

As harmonic edges in HG are not straight line segments in pR2, dq, additional argument is

needed to show each Φ˝Rj-curve is the minimizing geodesic inHG between its endpoints. In

the proof of [19, Proposition 3], Lapidus and Sarhad provide such verification. Furthermore,

paths in SG when viewed with the parameterization tRjujPN can only enter or exit an n-cell

via the endpoints of such curves. As a consequence of the homeomorphism with SG, paths

in HG when viewed with the parameterization tΦ ˝ RjuR exhibit the same property. For

both SG and HG, it then suffices to consider geodesics within n-cells. These replacements

are made explicit in the demonstration that B is also an approximation sequence for HG

but compatible with the parameterization tΦ ˝RjujPN.

Lemma 2. Let B : N Ñ N be given by Bpnq “
n
ř

j“0
3j`1. Then B defines an approximation

sequence of HG compatible with the parameterization pΦ ˝RjqjPN.

Proof. Fix a choice of positive ϵ. Since HG is a piecewise C1-fractal curve, there

exists N 1 P N such that LpΦ ˝ Rjq ă ϵ for all j ě N 1. Choose some n ě N “ N 1 ` 1. If

Bpnq “
n
ř

j“0
3j`1, then

HGn “

Bpnq
ď

j“1

Φ ˝Rj “ ΦpSGnq “
ď

|t|“n

Φ ˝ FtpSG0q “

Bpnq
ď

j“Bpn´1q`1

Φ ˝Rj ,
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where

Bpn´ 1q ` 1 ą Bpn´ 1q ě BpN 1q ą N 1

implies LpΦ ˝ Rjq ă ϵ for all j ě Bpn ´ 1q ` 1. Furthermore, every point in HGn lies on

some Φ ˝Rj for Bpn´ 1q ` 1 ď j ď Bpnq. Hence HausdnpVn, HGnq ă ϵ.

Now consider the restriction of d8 to Vn ˆ Vn. As a consequence of the homeo-

morphism with SG, HGn can be decomposed into n-cells each described by Φ ˝ FtpSG0q

for some t P t1, 2, 3un. Each n-cell is determined by three Φ ˝ Rj-curves, each of which

intersects each other only at their endpoints. The homeomorphism with SG implies that if

two n-cells in HGn intersect, they intersect only at the endpoints of these Φ ˝ Rj-curves.

Every point in Vn is also an endpoint of one of these defining Φ ˝ Rj harmonic edges for

some n-cell. In particular, each n-cell in HGn contains three points in Vn. Consequently,

any path connecting points in distinct n-cells must pass through at least one of these points

in Vn for each of these n-cells. Let p and q be distinct points in Vn. If p and q belong to

the same n-cell, then they are also endpoints of one of the defining Φ ˝ Rj harmonic edges

for that cell. As shown in the proof of [19, Proposition 3], that Φ ˝Rj harmonic edge is the

minimizing geodesic in HG between p and q. Next suppose that p and q belong to distinct

n-cells and that γ is a path in HG8 not contained in HGn. Then γ contains some point c

in HG8zHGn. Because

HG “ ΦpSGq “
ď

|t|“n

Φ ˝ FtpSGq,

c belongs to Φ ˝ Ft1pSGq for some t1 P t1, 2, 3, un. Since Φ ˝ Ft1pSGqzΦFt1pSG0q lies in the

interior of Φ˝Ft1pSG0q, γ must pass through two of the points of Vn belonging to the n-cell

described by Φ ˝ Ft1pSG0q. In particular, γ X Ft1pSGq cannot coincide with the harmonic
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edge Φ ˝ Rj connecting these two points. As this Φ ˝ Rj-curve is the minimizing geodesic

in HG between these two points, γ is longer than any path connecting p and q which also

passes through Φ ˝ Ft1pSG0q but instead along one of its defining Φ ˝Rj curves. Therefore

any geodesic in HG connecting points in Vn must also be a geodesic in HGn. ■

Since HG is self-affine rather than self-similar, the lengths of Φ ˝Rj-curves which

coincide with harmonic edges in HGn may differ. This self-affine property leads to different

bounds on n than in the case of SGn to guarantee that HausdnpVn, HGnq is bounded by some

choice of positive ϵ. More importantly, neither self-similarlity nor self-affinity is required for

classification as a piecewise C1-fractal curve. Thus the framework afforded by this class of

parameterized curves makes possible the description of more general fractal behavior and

structures.

Both SG and HG are fundamental examples in the theory of analysis on fractals.

They are also each fractals that can be realized by an iterated function system. However,

not all such fractals qualify as piecewise C1-fractal curves. For instance, the stretched

Sierpinski gasket can be realized by an iterated function system but does not satisfy Axiom

2 in the criteria for a piecewise C1-fractal curve. Unlike SG and HG, the set of vertices of

SGα is not dense in SGα. As a potential model for heat and wave propagation in branching

media, the stretched Sierpinski gasket is a subject of active research for mathematicians

working in the theory of analysis on fractals [30]. Since SGα converges for the Hausdorff

distance to SG when α goes to zero, SGα would be a natural prototype for the definition of

a class of almost piecewise C1-fractal curves. Such an extension of the piecewise C1-fractal
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curve framework would be useful in the development of generalized manifolds that can be

a basis for analysis on many kinds of fractals.

2.4 Fractals, Geodesic Distance, and Gromov-Hausdorff Dis-

tance

The space of compact metric spaces can be equipped with a metric. Fractals that

are compact for a given metric belong to this space. As compact length spaces, piecewise

C1-fractal curves are compact metric spaces when equipped with the geodesic distance.

In particular, questions of approximation can be considered for their respective metric

structures. These metric structures can be shown to be induced by Lapidus-Sarhad spectral

triples. Metric approximations of these spectral triples will be obtained via an extension of

a noncommutative generalization of the following metric.

Definition 6. The Gromov-Hausdorff distance between two compact metric spaces

pX, dXq and pY, dY q is

GHp pX, dXq, pY, dY q q “ inf
TX :XÑZ, TY :Y ÑZ are isometries

HausdZ pTXpXq, TY pY qq.

The Gromov-Hausdorff distance between two compact metric spaces is always well-

defined. To see that a third metric space always exists which admits isometric embeddings

of two compact metric spaces, let pX, dXq and pY, dY q both signify non-empty compact
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metric spaces. Then X
š

Y becomes a metric space if equipped with

dX
š

Y pp, qq “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

dXpp, qq if p, q P X,

dY pp, qq if p, q P Y ,

maxt diampXq,diampY q u otherwise.

By construction, the canonical inclusions for X and Y into X
š

Y are isometries. Since

the isometric images of these maps are non-empty compact subsets of pX
š

Y, dX
š

Y q,

GHp pX, dXq, pY, dY q q is also always finite. Furthermore,

Theorem 2. [9, Theorem 7.3.30] The Gromov-Hausdorff distance defines a complete metric

on the space of isometry classes of compact metric spaces.

The geometry of a Riemannian manifold can be recovered from its geodesic dis-

tance [14, p.388]. A development of fractals in the context of generalized manifolds should

therefore be built with the metric structure determined by the geodesic distance. A natural

approach to such a goal would be to construct such generalizations on simpler spaces like

finite graphs and show that they approximate those on a fractal. Since Lapidus-Sarhad

spectral triples are defined on piecewise C1-fractal curves, this class of fractals can be

viewed as a type of fractal “manifold.” Finite subgraphs of piecewise C1-fractal curves are

also compact metric spaces when equipped with their respective geodesic distances. The

geodesic distance between two points in such a subgraph may differ from the geodesic dis-

tance when viewed as points in the piecewise C1-fractal curve. Therefore, a finite subgraph

of a piecewise C1-fractal endowed with the geodesic distance may not be a subset of the

piecewise C1-fractal curve endowed with the geodesic distance. In contrast, this finite sub-

graph equipped with the restriction of the Euclidean distance can be viewed as a subset
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of the piecewise C1-fractal curve equipped with the restriction of the Euclidean distance.

Recall the notation used in the definition of an approximation sequence for a piecewise

C1-fractal curve. The Hausdorff distance requirements outlined in that definition will be

used to show pX, d8q can be approximated in the Gromov-Hausdorff distance by pXn, dnq.

Classical compact metric spaces also have well-developed noncommutative analogues. This

same suite of geometric properties for the Hausdorff distance will additionally be a basis for

demonstrating the Lapidus-Sarhad spectral triple on X can likewise be approximated in a

quantum metric by spectral triples on finite graphs.
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Chapter 3

Tools from Noncommutative

Geometry

To build a framework for fractals that supports a suitable generalization of analysis

on manifolds, tools from noncommutative geometry will be used to capture the geometry of

a fractal. Fundamentally, a fractal cannot locally resemble Euclidean space. Through the

lens of noncommutative geometry, a fractal can be viewed via an algebra of functions on

that space. Since Riemannian manifolds and fractals both admit continuous functions, the

functional analytic perspective afforded by noncommutative geometry places both objects

on the same footing. Topological, metric, and differential structures will be defined and

studied for certain fractals using noncommutative notions first formulated by Connes, Ri-

effel, and Latremoliere. In particular, the selection of techniques detailed here can also be

viewed as building blocks for Lapidus’ program for the development of a noncommutative

fractal geometry.

29



3.1 C˚-Algebras

Since many fractals are compact Hausdorff spaces, topological properties of such

fractals can be recovered from algebraic properties of their spaces of continuous, complex-

valued functions. Classical Riemannian methods often rely on smooth paths to encode the

geometry of a space and noncommutative geometry generalizes analysis on manifolds by

replacing this requirement with operator theoretic data. Coordinates are given by functions

on the underlying space. Whether X is a fractal or a Riemannian manifold, CpXq, when

equipped appropriately, is a fundamental example of the following function space.

Definition 7. A C*-algebra A is a Banach algebra equipped with a map ˚ : A Ñ A that

for all λ P C and a, b P A satisfies

‚ pλpa` bqq˚ “ λpa˚ ` b˚q,

‚ pa˚q˚ “ a,

‚ pabq˚ “ b˚a˚.

This map is called the adjoint of A. Furthermore, all a P A satisfy the C˚-identity, that

is,

||aa˚||A “ ||a||2A.

A subalgebra B Ď A that is closed with respect to the norm and the adjoint of A is called

a C*-subalgebra of A. When A is unital, B Ď A is said to be a unital C*-subalgebra

when B contains the multiplicative identity of A.

If equipped with the supremum norm and given pointwise conjugation as the

adjoint operation, then every function in CpXq exhibits the C˚ identity whenX is a compact
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Hausdorff space. Moreover, the constant 1 function plays the role of the multiplicative

identity for CpXq in this setting and pointwise operations for functions are commutative.

Since functions in CpXq may be unbounded when X is a locally compact Hausdorff space,

restriction to functions in CpXq which vanish at infinity, or C0pXq, yields C˚-algebraic

structure that is commutative but not necessarily unital. In fact, CpXq and C0pXq coincide

if X is a compact Hausdorff space.

The complex numbers with complex conjugation as the adjoint and modulus as the

norm is another example of a unital commutative C˚-algebra. In particular, any multiplica-

tive linear functional, or character, on CpXq, respects the adjoint operation. Morphisms

between unital C˚-algebras are given by unital ˚-homomorphisms– that is, algebra ho-

momorphisms that are unit- and ˚-preserving. The study of C˚-algebras begins with the

following result for unital commutative C˚-algebras.

Theorem 3 (Gelfand-Naimark Theorem). Any unital commutative C˚-algebra A is ˚-

isomorphic to the C˚-algebra CpXq for some compact Hausdorff space X.

When equipped with the weak˚-topology, the space of characters on A, or Â,

supplies the compact Hausdorff space provided by the Gelfand-Naimark Theorem. The

topology of Â is a consequence of the Banach algebra structure of A [10, Theorem I.2.5,

Corollary I.2.6]. If δa denotes evaluation at a, then δa is a weak˚-continuous complex-valued

function on Â. The Gelfand transform of A, or ΓA : A Ñ CpÂq, which is given by

ΓApaq “ δa,

will be shown to be a ˚-isomorphism when A is a unital commutative C˚-algebra. The

commutativity condition also guarantees that Â is non-empty.
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Theorem-Definition 1. Let A be a unital C˚-algebra. For a P A, the spectrum of a is

given by

σpaq :“ suptλ P C : a´ λIA is not invertible u,

and the spectral radius by

rpaq :“ sup
λPσpaq

|λ|.

If a P A and a˚a = aa˚, then a is called normal and rpaq coincides with ||a||.

Proof. Since a C˚-algebra is also a Banach algebra,

rpaq “ lim
nÑ8

||an||
1
n

holds for any a P A [10, Proposition I.2.3]. Suppose first that a is self-adjoint. Then the

C˚-identity yields

||a2|| “ ||aa˚|| “ ||a||2,

hence induction gives

||a2
n

|| “ ||a||2
n

for every n ě 1. As a consequence,

rpaq “ lim
nÑ8

||a2
n

||
1
2n “ lim

nÑ8

´

||a||2
n

¯
1
2n

“ ||a||.

For the weaker assumption that a commutes with a˚, note that

paa˚q2 “ apa˚aqa˚ “ apaa˚qa˚ “ paaqpaaq˚ “ a2pa2q˚

implies

paa˚qn “ anpanq˚
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for every n ě 2, hence

rpaa˚q “ lim
nÑ8

´

||aa˚||n
¯

1
n

“ lim
nÑ8

´

||paa˚qn||

¯
1
n

“ lim
nÑ8

´

||anpanq˚||

¯
1
n

“ lim
nÑ8

´

||an||2
¯

1
n

“

´

lim
nÑ8

||an||
1
n

¯2
“ rpaq2.

Since aa˚ is always self-adjoint,

||a||2 “ ||aa˚|| “ rpaa˚q “ rpaq2.

where the first equality is again a consequence of the C˚-identity. ■

Corollary 1. If A is a unital commutative C˚-algebra, then Â is non-empty.

Proof. In a unital commutative C˚-algebra, every element commutes with its

adjoint. Thus rpaq “ ||a|| for every a P A. Since multiplicative linear functionals are

nonzero, fix some nonzero choice of a P A. Then

tλ P C : a´ λIA is not invertible u “ tφpaq : φ P Âu

as a consequence of the unital commutative Banach algebra structure of A [10, Corollary

I.2.8]. In particular, there exists φ P Â such that |φpaq| “ rpaq “ ||a|| ‰ 0. ■

The algebra of nˆ n complex matrices, or MnpCq, when given the operator norm

and the conjugate transpose as the adjoint, is a unital noncommutative C˚-algebra. More

precisely, the multiplicative identity of MnpCq is the n-dimensional identity matrix In. To

see that {MnpCq is empty, let eij denote the matrix with 1 for the ij-entry and 0 otherwise.

If i ‰ j, then peijq
2 “ 0 for i ‰ j, hence φpeijqijq “ φppeijq

2q “ 0 for all φ P {MnpCq. Since

eii “ eijeji for such matrices, φpeiiq “ 0 for all φ P {MnpCq and i “ 1, 2, ¨ ¨ ¨ , n. However,
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φpaq “ φpaInq “ φpaqφpInq for all φ P {MnpCq and a P MnpCq implies

1 “ φpInq “ φpe11q ` ¨ ¨ ¨ ` ¨ ¨ ¨φpennq “ 0,

which is a contradiction. Thus a noncommutative C˚-algebra may have no characters.

Whether a C˚-algebra is commutative or noncommutative, the C˚-identity encodes

the norm in the adjoint. Algebraic properties of ˚-homomorphisms can therefore induce

analytical properties for such maps.

Theorem 4. Let A and B be unital C˚-algebras. If π : A Ñ B is a unital ˚-homomorphism,

then π is contractive, hence continuous. Moreover, π is an isometry when π is an injective

˚-homomorphism.

Proof. For a P A and λ P C, πpa ´ λ1Aq “ πpaq ´ λ1B is invertible if π ´ λ1A is

invertible. Therefore

||πpaq||2B “ ||πpaqπpaq˚||B “ rpπpaqπpaq˚q ď rpaa˚q “ ||aa˚||A “ ||a||2A,

where the first and last equalities follow from the C˚-identity, the second and penultimate

equalities from the previous theorem, and the inequality from the definition of the spectral

radius of an element. If π is also injective, then π´1 : πpAq Ñ A is also a ˚-homomorphism,

hence contractive. More precisely,

||a||A “ ||π´1pπpaqq||A ď ||πpaq||B.

Therefore π injective implies π is an isometry between A and πpAq. ■

The Gelfand transform of a commutative C˚-algebra is a ˚-homomorphism of A

into CpÂq [10, Theorem I.3.1]. The surjectivity aspect of the fact that this map is also a
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˚-isomorphism between these two spaces in the unital setting follows from the consequent

continuity of ΓA, whereas the injectivity will be shown to rely on the condition that A is

commutative.

Proof. (of the Gelfand-Naimark Theorem) To apply the Stone-Weierstrass Theorem [8,

Chapter IV, Theorem 8.1], note that arguments analgalous to those applied earlier in the

setting of MnpCq may be used to show φp1Aq evaluates to 1 for all φ P Â. Thus ΓA takes

1A to the constant 1 function on Â. The Banach algebra structure of A guarantees that

it is complete with respect to its norm. Since ΓA is a unital ˚-homomorphism from A

into CpÂq and hence a continuous map, ΓApAq Ď CpÂq is closed. More precisely, ΓApAq

is a unital C˚-subalgebra of CpÂq. If φ1 and φ2 are distinct characters on A, then φ1

and φ2 do not coincide on some a P A. Therefore ΓApAq separates the points of Â. As a

result, ΓApAq “ CpÂq. Next consider whether ΓA is injective. Suppose that a1 and a2 are

distinct elements of A. If ΓApa1q “ ΓApa2q, then δa1pφq “ δa2pφq for all φ P Â. Since A

is commutative, the previous Theorem-Definition and a result about unital commutative

Banach algebras used in the proof of its corollary give

||a1 ´ a2||A “ rpa1 ´ a2q “ supt|λ| : λ P C, pa1 ´ a2q ´ λIA is not invertible u

“ supt|φpa1 ´ a2q| : φ P Âu

“ ||ΓApa1 ´ a2q||8 “ ||ΓApa1q ´ ΓApa2q||8 “ 0,

or a1 ´ a2 “ 0, as desired. ■

In the setting of a compact Hausdorff space X, the Gelfand transform of X is a

homeomorphism of X to {CpXq [28, Theorem 2.1.15]. Furthermore, a homeomorphism be-

tween two compact Hausdorff spaces extends to a ˚-isomorphism between their associated
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C˚-algebras and vice versa [7, page 87]. Thus to identify a compact Hausdorff X such that

CpXq and a given unital commutative C˚-algebra A differ up to ˚-isomorphism, it suffices

to determine pA. In the case of C, φpλq “ φpλ ¨ 1q “ λφp1q “ λ for all λ P C and φ P pC.

In particular, pC is homeomorphic to the compact Hausdorff space X “ txu, hence CppCq

is ˚-isomorphic to Cptxuq. Because C is ˚-isomorphic to CppCq by the Gelfand-Naimark

Theorem, C is ˚-isomorphic to Cptxuq. More generally, the category of unital commutative

C˚-algebras with unital ˚-homomorphisms is dual to the category of compact Hausdorff

spaces with continuous maps and this correspondence is called Gelfand duality. Any home-

omorphism invariant of the compact Hausdorff X can therefore be reframed as an algebraic

invariant of the C˚-algebra CpXq. For example, X is a totally disconnected compact metric

space if and only if CpXq is a unital commutative approximately finite dimensional algebra

(see section 3 of this chapter for a definition). Since any totally disconnected compact met-

ric space is homeomorphic to a subset of the Cantor set, this fractal and its topology can

be canonically associated with such algebras. Furthermore, C˚-algebras within the frame-

work of Gelfand duality remain to be identified for other fractals like the Sierpinski gasket.

Such an investigation could therefore begin to form the basis for a classification program of

C˚-algebras on fractal spaces.

Given a Hilbert space H, the set of bounded linear operators from H to H, BpHq,

with pointwise defined addition and composition as multiplication, is an important example

of a noncommutative C˚-algebra. For any T in BpHq, the adjoint T ˚ is given by the unique

T ˚ in BpHq such that for all x and y in H, xTx, yyH “ xx, T ˚yyH . When equipped

with the operator norm, BpHq exhibits the C˚-identity as a consequence of the Cauchy-
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Schwartz Inequality and the submultiplicativity property of a Banach space norm. Another

example of noncommutative C˚-algebraic structure emerges in MnpCq when provided with

the operator norm and the conjugate transpose as the adjoint. If H is finite-dimensional,

then BpHq is ˚-isomorphic to MnpCq. Correspondingly,

Definition 8. A representation of a C˚-algebra A on a Hilbert space H is a ˚-homorphism,

π : A Ñ BpHq.

If π is also injective, then π is called faithful.

With this distinction in hand, the theory of noncommutative geometry builds upon the

following theorem.

Theorem 5 (Gelfand-Naimark-Segal Theorem). Every C˚-algebra A has a faithful repre-

sentation on a Hilbert space H as an operator norm-closed ˚-algebra of BpHq.

Noncommutative C˚-algebras can be formally viewed as duals to noncommutative

topologies or geometries. Commutative topologies or geometries correspond to commutative

C˚-algebras and many spaces that are considered well-behaved from the perspective of

Riemannian geometry fall into this category.

3.2 Spectral Triples

Alain Connes initiated a program to adapt classical tools from topology and Rie-

mannian geometry to the operator algebraic setting. For example, Connes showed that the
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geodesic distance on a compact spin Riemannian manifold M can be recovered from the

C˚-algebra CpMq, the Hilbert space H of L2-spinor fields, and a differential operator D

called the Dirac operator, via

dgpx, yq “ supt|fpxq ´ fpyq| : f P CpMq, ||rD, f s||BpHq ď 1u.

Since none of the arguments required for this result rely on the commutativity of CpMq, this

formula remains valid for noncommutative C˚-algebras. As a consequence, this noncom-

mutative formulation of intrinsic distance on M allows for consideration of other, possibly

noncommutative, C˚-algebras on M in the role of CpMq. Connes also discovered that the

pairing of the C˚-algebra with the Hilbert space yields only information about the dimen-

sion of M , as does knowledge of the Hilbert space in combination with that of the Dirac

operator. All three sources of operator theoretic data are therefore necessary to recover

the geometry of M . Connes formalized the essential operator algebraic elements needed

to build a noncommutative metric geometry beyond the prototypical setting of M in the

definition of a spectral triple. Following the convention in [11],

Definition 9. Let A be a unital C˚-algebra. An unbounded Fredholm module pH,Dq

over A consists of a Hilbert space H together with a unital representation π of A into BpHq

and an unbounded, self-adjoint operator D on H such that

(a) the set

ta P A for which rD,πpaqs is densely defined

and extends to a bounded operator on Hu
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is dense in A,

(b) the operator pI `D2q´1 is compact.

If the underlying representation π is faithful, then pA,H, Dq is called a spectral triple,

and D a Dirac operator.

While the choice of C˚-algebra A categorizes the space as commutative or noncom-

mutative and the Gelfand-Naimark-Segal Theorem guarantees the existence of a suitable

representation π on some Hilbert space H, the choice of Dirac operator D determines the

differential structure. If, given a in A, differentiation of a is viewed as formation of the op-

erator rD,πpaqs, then the dense set in A described in condition paq is analogous to the dense

set of C1 functions in CpXq. The compact resolvent condition ensures that the eigenvalues

of D exhibit properties that allow for the extraction of geometric information like measure

and dimension from spectral data. More precisely, an operator T P BpHq is compact if the

image of the unit ball of H under T has compact closure in the norm topology of H [5]. In

fact, the set of compact operators KpHq is a norm closed ideal in BpHq [31, p.107]. Many

uses of compact operators in noncommutative geometry rely on the following property.

Theorem 6 ([28, Theorem 1.4.11]). If T P BpHq is compact, then σpT q is countable and

each non-zero point of σpT q is an isolated point.
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For instance, the presence of a nonzero accumulation point in the spectrum of a Dirac

operator would be a necessary but not sufficient requirement for the following quantity to

be finite. As in [19],

Definition 10. Let pA,H,Dq be a spectral triple. If TrppI ` D2qq
´p
2 is finite for some

positive real number p, then the spectral triple is called p-summable or just finitely

summable. The number BSG, given by

BST “ inftp ą 0 : trpD2 ` Iq
´p
2 ,8u,

is called the spectral dimension of the spectral triple.

Since Hausdorff dimension is an important tool for detecting fractality, noncom-

mutative fractal geometers are especially interested in finding Dirac operators which encode

the Hausdorff dimensions of fractals in their asymptotics.

Because spectral triples generalize differential structure, they open up promising

avenues for extending analytic methods from mathematical physics to fractal spaces. The

Laplacian operator plays a critical role in the formulation of many important differential

equations such as those that model heat dissipation or wave propagation. The definition

of a Laplacian on a space requires the choice of a measure and a spectral triple induces a

measure via the operator algebraic tool called the Dixmier Trace and denoted by Trω (see

Chapter 4 in [7] for a precise definition). For the setting of a compact spin Riemannian

manifold M detailed at the beginning of this section, let v be the Riemannian volume

measure of M , d the dimension of M , and cpdq “ 2d´rd{2s πd{2 Γpd2 ` 1q. Connes showed

that for any f P CpMq,
ż

M
f dv “ cpdqTrωpπpfq|D|´dq.

40



More generally, a desired measure µ can be recovered via a spectral triple pA,H,Dq with

representation π when pA,H,Dq can be chosen so that the map Trωpπpfq|D|´sq, where

s is the spectral dimension, is a nontrivial positive linear functional on A that induces a

measure that differs from µ by a multiplicative constant. An example of a spectral triple

developed by Christensen, Ivan, and Lapidus which yields the log2 3-dimensional Hausdorff

measure on the Sierpinski gasket will be discussed in the next chapter.

Progress in noncommutative fractal geometry can lead to new insights about frac-

tality. In the originating setting of M , the Riemannian metric determines the Dirac opera-

tor and the removal of the spin structure eliminates this uniqueness. Since the metric of a

Riemannian manifold can be recovered from the geodesic distance, Connes’ reformulation

implies that a Dirac operator can under suitable conditions dictate a Riemannian metric.

As a consequence, Connes’ operator algebraic reframing of geodesic distance generated the

discovery that the Dirac operator defines the geometry of a Riemannian manifold. Devel-

opment of a noncommutative fractal geometry is therefore motivated by the exploration of

new ways to describe, understand, and even define fractals. The development of noncom-

mutative geometry due to Connes and outlined in this section can also be more precisely

described as noncommutative Riemannian geometry. Since compact Riemannian manifolds

can also be viewed as compact metric spaces, they can be examined using tools from metric

geometry. A theory that may be termed noncommutative metric geometry was developed

by Rieffel and is the subject of the next section. In analogy with the classical case and with

the aim of laying the foundation for new insights about fractality, methods from noncom-
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mutative metric geometry will also be applied in concert with those from noncommutative

Riemannian geometry to study piecewise C1-fractal curves.

3.3 Quantum Compact Metric Spaces

When a compact Hausdorff space X is also a compact metric space, {CpXq can

be equipped with a metric that encodes the metric on X. Piecewise C1-fractal curves are

compact metric spaces with respect to the geodesic distance. Via the work of Lapidus with

Christensen, Ivan, and Sarhad, the geodesic metric on such a fractal can also be captured

using the noncommutative differential structure of a spectral triple [11, 19]. Extending this

toolkit to include techniques from noncommutative metric geometry will allow for mean-

ingful metric approximation of piecewise C1-fractal curves as noncommutative Riemannian

manifolds.

To recover the metric structure of a compact metric space pX, dq from CpXq, set

Ld equal to the Lipschitz seminorm on CpXq associated to d- that is, for every f in CpXq,

Ldpfq “ sup
!

|fpxq ´ fpyq|

dpx, yq
: x, y P X,x ‰ y

)

.

For any φ1, φ2 P {CpXq, let mkLd
be defined by

mkLd
pφ1, φ2q “ supt|φ1pfq ´ φ2pfq| : f P dompLdq, Ldpfq ď 1u.

When {CpXq is endowed with mkLd
, the Gelfand transform of X becomes an isometry from

pX, dq onto p{CpXq,mkLd
q.

Theorem 7. If pX, dq is a compact metric space, then p{CpXq,mkLd
q is also a compact

metric space. In particular, pX, dq and p{CpXq,mkLd
q are isometric.

42



Proof. Fix a choice of p P X. For any q P Xztpu and f P CpXq such that

Ldpfq ď 1,

|δppfq ´ δqpfq| “ |fppq ´ fpqq| ď Ldpfq dpp, qq ď dpp, qq,

hence

mkLd
pδp, δqq ď dpp, qq.

To see that mkLd
pδp, δqq achieves this upper bound, observe that fppwq :“ dpp, wq P CpXq.

Given any distinct q, w P X, the triangle inequality yields

|dpp, wq ´ dpp, qq| ď dpq, wq.

In particular, Ldpfpq ď 1 and

|δppfpq ´ δqpfpq| “ |dpp, pq ´ dpp, qq| “ dpp, qq,

as desired. ■

Recall that without the condition of commutativity, pA may be empty. The following ele-

ments of a C˚-algebra are used to identify linear functionals suitable for the role of {CpXq

in the more general setting of unital C˚-algebras.

Definition 11. An element a of a C˚-algebra A is called positive if a is self-adjoint and

σpaq is contained in the non-negative real line r0,8q.

Every self-adjoint element in a C˚-algebra can be written as the difference of two

positive elements [10, Corollary I.4.2]. The self-adjoint elements of the C˚-algebras C are

the real numbers and the positive elements are the non-negative real numbers. Linear func-
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tionals that take positive elements to positive elements therefore preserve the self-adjoint

property.

Definition 12. A linear functional ψ on a C -algebra A is called positive if ψpaq is positive

in C whenever a is positive in A. A positive linear functional on a C˚-algebra that is also

of norm 1 is called a state.

States on a unital C˚-algebra can always be identified in the following way.

Theorem 8 ([28, Theorem 3.3.1, Corollary 3.3.4]). Let ψ be a linear functional on a unital

C˚-algebra A. Then ψ is a state if and only if ψ is bounded and ψp1Aq “ ||ψ|| “ 1.

If ψ is a unital representation of a unital C˚-algebra A on a Hilbert H and x is a

unit vector in H, then ψpaq :“ xπpaqx, xyH is a bounded linear functional on A as a conse-

quence of the Cauchy Schwartz Inequality, the contractive property of ˚-homomorphisms,

and the linearity of the inner product in the first component. In particular,

ψpaq ď ||πpaqx||H ď ||πpaq||BpHq ď ||a||A,

hence ||ψ|| ď 1. Since ψp1Aq “ 1, ψ is a state on A. For the unital commutative case, the

Riesz Representation Theorem gives a bijection between Borel probability measures on a

compact Hausdorff space X and states on CpXq [8, Theorem 5.7]. In fact, the Hahn-Banach

Theorem can be used to show that for every self-adjoint element a in a unital C˚-algebra

A, there exists a state ψ such that |ψpaq| “ ||a||A [5, Theorem 1.7.2]. Since bb˚ is always

self-adjoint given any b P A, states, unlike characters, on a C˚-algebra always exist. Because
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of the identification with probability measures when A is commutative, states can be viewed

as the noncommutative analogues of probability measures.

Definition 13. The state space of a C˚-algebra A, or SpAq, is the set of positive linear

functionals on A of norm 1.

As a consequence of the previous theorem, the state space of a unital C˚-algebra

is a subset of the dual space. When equipped with the weak˚-topology, the state space

exhibits the following properties.

Theorem 9. If A is a unital C˚-algebra, then SpAq is weak˚-compact and convex.

Proof. By the previous theorem and the definition of SpAq,

SpAq “ tψ P pA : ||ψ|| ď 1, ψp1Aq “ 1u

“ tψ P pA : ||ψ|| ď 1u X tδ1Apψq “ ψp1Aq “ 1u

“ tψ P pA : ||ψ|| ď 1u X δ´1
1A

pt1uq

To see that SpAq is weak˚-compact, note that the definition of the weak˚-topology guar-

antees that δ1A is continuous. Hence δ´1
1A

pt1uq is weak˚-closed. Since the Banach Alaoglu

Theorem gives that the unit ball in pA is weak˚-compact [8, Chapter 3, Theorem 3.1], SpAq

is weak˚-compact. To verify that SpAq is weak˚-convex, the previous theorem will again

be applied. For any ψ1, ψ2 P SpAq and α P r0, 1s, observe that αψ1 ` p1 ´ αqψ2 is likewise

a bounded linear functional that evaluates to 1 at 1A. The previous theorem implies

1 “ αψ1p1Aq ` p1 ´ αqψ2p1Aq “

´

αψ1 ` p1 ´ αqψ2

¯

p1Aq ď ||αψ1 ` p1 ´ αqψ2||

ď ||αψ1|| ` ||p1 ´ αqψ2|| “ |α|||ψ1|| ` |1 ´ α|||ψ2|| “ 1.
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Since ||αψ1 ` p1 ´ αqψ2|| is also 1, the previous theorem also gives that αψ1 ` p1 ´ αqψ2 is

in SpAq. ■

A state is called pure if is an extreme point of SpAq. The set of pure states on A

is denoted by P pAq. When A is also commutative and so ˚-isomorphic to CpXq for some

compact Hausdorff space X, P pAq coincides with the set of Dirac measures for each point

in X. Unlike Â sometimes in the general case, P pAq is never empty.

Theorem 10 (Krein-Milman). If S is a non-empty compact convex subset of a locally

convex space B, then the set of extreme points of S is non-empty and S is the closed convex

hull of the set of extreme points of S.

The two previous theorems together imply that SpAq is the weak˚-closure of convex

combinations of states in P pAq. A metric that metrizes the weak˚-topology on SpAq would

therefore allow for metric approximations of SpAq by finite sums in P pAq. The existence

of such a metric is one of Rieffel’s requirements for the quantum counterpart of a compact

metric space.

Definition 14 ([22]). Let A be a unital C˚-algebra. If L is a seminorm defined on a dense

subspace dompLq of sapAq such that

(a) ta P dompLq : Lpaq “ 0u “ R1A,

(b) L is lower semi-continuous with respect to || ¨ ||A,

(c) the Monge-Kantarovich distance associated to L, that is, the metric defined for

all φ,ψ in SpAq by

mkLpφ,ψq “ supt|φpaq ´ ψpaq| : a P dompLq, Lpaq ď 1u,
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metrizes the weak˚-topology on SpAq,

(d) for all a, b P dompLq,

max
!

L
´ab` ba

2

¯

, L
´ab´ ba

2i

¯)

ď Lpaq||b||A ` ||a||ALpbq,

then pA,Lq is called a quantum compact space and L a Lip-norm.

In the classical case where pCpXq, Ldq comes from the compact metric space pX, dq,

Ld vanishes precisely on scalar multiples of the identity and mkLd
induces the weak˚-

topology on the set of regular Borel probability measures. Because d can be recovered

in this setting from the restriction of mkLd
to P pAq, the Krein-Milman theorem gives a

means for extending d to the whole state space. Furthermore, Ld coincides with LmkLd
:

sapCpXqq Ñ Rě0 given by

LmkLd
pfq “ sup

!

|φpfq ´ ψpfq|

mkLd
pφ,ψq

: φ,ψ P SpCpXqq, φ ‰ ψ
)

.

Without the additional lower semi-contininuity condition of L on sapAq, LmkL ď L. In [33],

Rieffel determines that L coincides with LmkL when this semi-continuity property is also

present. While the Leibniz inequality connects the Lipschitz seminorm in the setting of

pCpXq, Ldq with the underlying multiplication of functions in that algebra, the analogue of

this inequality detailed in the last condition bounds the seminorm component of a quantum

compact metric space with the multiplicative structure of the C˚-algebra. For the general

setting beyond that of pCpXq, Ldq, Rieffel also identified alternate characterizations of Lip-

norms.

Theorem 11 ([29, 36, 33]). Let A be a unital C˚-algebra and L a seminorm on sapAq such

that L is lower semi-continuous with respect to || ¨ ||A, the set dompLq “ ta P sapAq : Lpaq ă
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8u is dense in sapAq, and ta P dompLq : Lpaq “ 0u “ R1A. The following are equivalent:

1. pA,Lq is a quantum compact metric space;

2. the metric mkL is bounded and there exists r P R such that r is positive and

the set

ta P sapAq : Lpaq ď 1, ||a||A ď ru

is totally bounded in A for || ¨ ||A;

3. the set

ta` R1A P sapAq{R1A : a P sapAq, Lpaq ď 1u

is totally bounded in sapAq{R for || ¨ ||sapAq{R;

4. there exists a state ψ P SpAq such that the set

ta P sapAq : Lpaq ď 1, ψpaq “ 0u

is totally bounded in A for || ¨ ||A;

5. for all ψ P SpAq the set

ta P sapAq : Lpaq ď 1, ψpaq “ 0u

is totally bounded in A for || ¨ ||A.

For pCpXq, Ldq, the self-adjoint elements are the real-valued functions. Recall the

definition of fp and the demonstration that Ldpfpq ď 1 from the first proof of this section.

Since fp P CpX,Rq and fppqq is nonzero for any q P X that is distinct from p, dompLdq
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separates the points of X. The denseness of dompLdq in CpX,Rq then follows from the

Stone-Weierstrass Theorem [8, Chapter IV, Theorem 8.1]. In both this example and the

general setting, any element a belonging to a C˚-algebra yields the self-adjoint elements

a`a˚

2 and a´a˚

2i . Continuous linear functionals which agree on a dense subspace of the set of

self-adjoint elements therefore agree on the whole C˚-algebra. Since dompLdq separates the

points of SpCpXqq and f P dompLdq implies Ld

´

f
maxt1,Ldpfqu

¯

ď 1, distance zero for mkLd

implies two states coincide. To see that mkLd
is bounded when d is bounded, let p denote

some fixed point in X and f a function in CpXq such that Ldpfq ď 1. Then for any distinct

φ and ψ in SpCpXqq,

|φpfq ´ ψpfq| “ |φpfq ´ fppqφp1CpXqq ` fppqψp1CpXqq ´ ψpfq|

“ |φpf ´ fppq1CpXqq ´ ψpf ´ fppq1CpXqq|

ď ||φ´ ψ|| ||f ´ fppq1CpXq||

ď p||φ|| ` ||ψ||q supt|fppq ´ fpqq| : q P Xu

ď 2Ldpfq diampXq

which is bounded when X is a compact metric space. Furthermore, the Arzela-Ascoli

Theorem guarantees that for any fixed choice of positive r, the set

tf P sapCpXqq : Ldpaq ď 1, ||f ||CpXq ď ru

is totally bounded in CpXq for || ¨ ||CpXq [8, Chapter VI, Theorem 3.8]. Hence the previous

theorem not only establishes that all algebras of Lipschitz functions over classical compact

metric spaces are quantum compact metric spaces, but also extends several of their key

properties to the noncommutative setting. Because of the role of the Arzela-Ascoli Theorem
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in the application of this theorem to the classical case, this set of equivalences can be viewed

as a noncommutative Arzela-Ascoli Theorem.

The space of quantum compact metric spaces contains finite-dimensional examples.

Recall that seminorms exhibit both homogeneity and subadditivity. Since a Lip-norm also

vanishes on scalar multiples of the identity for the C˚-algebra, the only seminorm that equips

C with quantum compact metric space structure is the zero seminorm. In fact, the following

seminorms always induce quantum compact metric space structure for finite-dimensional

C˚-algebras.

Theorem 12. If A is a unital finite-dimensional C˚-algebra and L is a lower semi-continuous

seminorm on sapAq with domain that is a dense, unital subspace of sapAq that vanishes only

on R1A, then pA,Lq is a quantum compact metric space. In particular, C‘C equipped with

the seminorm Qϵpw, zq “ 1
ϵ |z ´ w| is a quantum compact metric space for every ϵ ą 0.

Proof. Given a C˚-algebra A and a seminorm L with these properties, pA,Lq is

a quantum compact metric space if and only if the set

ta` R1A P sapAq{R1A : a P pLq, Lpaq ď 1u

is totally bounded in sapAq{R1A for || ¨ ||sapAq{R1A . Let L̃ denote the quotient seminorm of L

on sapAq{R1A and BL̃ the unit ball with respect to L̃. Because L vanishes only on R1A, L̃

is a norm on sapAq{R1A. Moreover, A finite-dimensional and dompLq a unital subspace of

sapAq implies sapAq{R1A equipped with || ¨ ||sapAq{R1A is a finite-dimensional normed vector

space. Equivalently, the unit ball in sapAq{R1A is compact with respect to || ¨ ||sapAq{R1A .

Since all norms on a finite-dimensional vector space are equivalent, BL̃ is compact, hence

totally bounded in sapAq{R1A for || ¨ ||sapAq{R1A .
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Now consider pC‘C, Qϵq for some fixed choice of positive ϵ. The C˚-algebra C‘C

is unital and finite-dimensional. The seminorm Qϵ vanishes on pw, zq if and only if z “ w,

that is, if and only if pw, zq is a scalar multiple of 1C‘C. Since sapC ‘ Cq coincides with

R ‘ R, the only self-adjoint elements of C ‘ C on which Qϵ vanishes are precisely R1C‘C.

Because the choice of positive ϵ was arbitrary, pC ‘ C, Qϵq is a quantum compact metric

space for every ϵ ą 0. ■

The theorem above is well-known in the folklore of the noncommutative metric geometry

community and Konrad Aguilar is gratefully acknowledged for the communication of this

result and its proof. The first part of the theorem can also be used to identify Lip-norms

for matrix algebras. Fix a choice of positive natural number n. The self-adjoint elements

of the full matrix algebra MnpCq are the nˆn matrices that are normal and have only real

eigenvalues. Let Trn denote the trace of a matrix in MnpCq, π1,n : C Ñ MnpCq the map

given by

π1,npcq “

»

—

—

—

—

—

—

—

—

—

—

–

c 0 ¨ ¨ ¨ 0 0

0 c ¨ ¨ ¨ 0 0

...
. . .

...

0 0 ¨ ¨ ¨ 0 c

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

and L the seminorm on MnpRq defined by

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
a´ π1,n

´ 1

n
Trnpaq

¯
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

MnpCq
.

In particular, π1,n

´

1
nTrnpaq

¯

P RIn for any a P sapMnpCqq. Moreover, ||a||MnpCq coincides

with rpaq for such matrices, hence dompLq is sapMnpCqq. Since || ¨ ||MnpCq vanishes only on

51



the zero matrix, L vanishes only on RIn. Let a and b signify matrices in dompLq. As shown

for the more general context considered in [2],

max
!

L
´ab` ba

2

¯

, L
´ab´ ba

2i

¯)

ď 2pLpaq||b||MnpCq ` ||a||MnpCqLpbqq.

Therefore pMnpCq, Lq is a said to be a (2, 0)-quasi-Leibniz quantum compact metric space.

Based on earlier work with Latremoliere in [2], Aguilar and Brooker demonstrated

in [1] that a seminorm like L is a (2, 0)-quasi-Leibniz Lip-norm for a full matrix algebra

because it is an instance of a particular kind of map from a C˚-algebra to one of its C˚-

subalgebras.

Definition 15. A conditional expectation Ep¨|Bq : A Ñ B onto B, where A is a C˚-

algebra and B is a C˚-subalgebra of A, is a linear positive map of norm 1 such that for all

b, c P B and a P A,

Epbac|Bq “ bEpa|Bqc.

By the Tomiyama Theorem [6, Theorem 1.5.10], a projection from a C˚-algebra

to a C˚-subalgebra that is contractive is also a conditional expectation. To see that

π1,n

´

1
nTrnpaq

¯

is a conditional expectation, recall that ˚-homomorphisms are contractive

and Trn is linear. Note that the range of π1,n

´

1
nTrnpaq

¯

is CIn. Because π1,n

´

1
nTrnpaq

¯

preserves the conjugate transpose operation and fixes matrices in CIn, this map is likewise a

conditional expectation. By construction, π1,n

´

1
nTrnpaq

¯

is, in addition, trace-preserving,

hence L is a (2, 0)-quasi-Leibniz Lip-norm also as a consequence of [1, Theorem 2.3, Lemma

2.7]. For the broader framework studied by Aguilar and Latremoliere in [2], (2, 0)-quasi-

Leibniz Lip-norms are constructed using conditional expectations on a class of C˚-algebras

that can be built from a sequence of finite-dimensional C˚-algebras.
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Definition 16. A C˚-algebra is called approximately finite dimensional or AF if it can

be written as the norm closure of an increasing union of finite-dimensional C˚-subalgebras

An. When A is unital, A0 must coincide with complex scalar multiples of 1A.

The conditional expectations defined on AF -algebras by Aguilar and Latremoliere

rely on the existence of a faithful tracial state. More precisely, a state ψ on a C˚-algebra A

is said to be tracial if for all a and b in A, ψpabq “ ψpbaq and faithful if ψpa˚aq “ 0 implies

a “ 0. An example of a faithful tracial state on MnpCq is 1
nTrn. In contrast, KpHq does

not admit a tracial state when H is infinite-dimensional [28, Remark 6.2.2]. If A is a unital

AF -algebra, then A has a faithful tracial state if its only norm-closed ideals are 0 and itself

[28, Theorem 6.1.3,Remark 6.2.3,Remark 6.2.4].

Theorem 13 ([2]). Let A be a unital AF -algebra for which there exists a faithful tracial

state λ, A0 the set of complex scalar multiples of 1A, and YnPNAn an increasing union of

finite-dimensional C˚-algebras such that A “ YnPNAn
||¨||A. Also, let En : A Ñ An be the

unique conditional expectation with λ ˝ En “ λ. Set pβnqnPN in p0,8qN, with limit 0 at

infinity. If, for all a P sapAq,

Lpaq :“ sup
!

||a´ Enpaq||A

βn
: n P N

)

,

then pA,Lq is a (2,0)-quasi-Leibniz quantum compact metric space.

Recall that through the lens of Gelfand duality, CpXq is ˚-isomorphic to a unital

commutative AF -algebra if and only if X is a totally disconnected compact metric space.

Unital AF -algebras like CpXq when X is the Cantor set have natural candidates for ap-

proximating finite-dimensional C˚-algebras. Distance zero for a metric on noncommutative
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structures associated to C˚-algebras that respects Gelfand duality should imply the two

underlying C˚-algebras are ˚-isomorphic. Such a metric exists for quantum compact metric

spaces.

3.4 The Dual Gromov-Hausdorff Propinquity Metric

When pX, dq is a piecewise C1-fractal curve equipped with its geodesic distance,

pX, dq can be written as a Gromov-Hausdorff distance limit of an increasing sequence of

finite graphs each equipped with their respective geodesic distances. As a consequence of

Theorem 11, each of these compact metric spaces can be associated to a quantum compact

metric space. As with classical compact metric spaces, the space of quantum compact

metric spaces can be equipped with a metric. Since this space contains finite-dimensional

examples and this metric is complete, the existence and identification of finite-dimensional

metric approximations for a given quantum compact metric space can be considered. The

definition of this metric requires a noncommutative analogue of isometry that takes into

account the additional structure given to the C˚-algebra by the Lip-norm.

Definition 17 ([20]). Let pAj , Ljq be a quantum compact metric space for j P t1, 2u. If

pA,Lq is a quantum compact metric space such that for each j P t1, 2u, there exists a

˚-epimorphism πj : A Ñ Aj such that for every a P dompLjq,

Ljpaq “ inftLpbq : πjpbq “ au,

then pA,L, π1, π2q is called a tunnel from pA1, L1q to pA2, L2q.
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The conditions formalized in the definition of a tunnel are sufficient to ensure that compo-

sition of every state in SpAjq with πj gives an isometry from pSpAjq,mkLj q onto its image

in pSpAq,mkLq [34]. A number can be assigned to each tunnel so that a metric comparison

of two quantum compact metric spaces can be obtained via the lenses of their respective

state spaces.

Definition 18 ([22]). Let τ “ pA,L, π1, π2q be a tunnel from pA1, L1q to pA2, L2q. The

extent of τ , χpτq, is given by

χpτq “ max
jPt1,2u

HausmkLtSpAq, tφ ˝ πj , φ P SpAjquu.

Definition 19 ([20, 22]). The dual Gromov-Hausdorff propinquity, or dual propin-

quity, between two quantum compact metric spaces pA1, L1q and pA2, L2q is given by

Λ˚ppA1, L1q, pA2, L2qq “ inftχpτq : τ is a tunnel from pA1, L1q to pA2, L2q u.

Recall that the ˚-operation encodes the norm of a C˚-algebra and the Lip-norm

determines a metric on the state space that metrizes the weak˚-topology. An appropriate

notion of equivalence between quantum compact metric spaces should therefore respect

both the ˚- and the Lip-norm structures.

Definition 20 ([21, 41]). Let pA1, L1q and pA2, L2q be quantum compact metric spaces. If

π : A1 Ñ A2 is a ˚-isomorphism such that L2 ˝ π “ L1, then π is called a full quantum

isometry.

Theorem 14 ([20]). The dual propinquity is a complete metric, up to full quantum isometry,

on the class of quantum compact metric spaces.
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Moreover, the Gromov-Hausdorff topology on compact metric spaces can be re-

covered from the dual propinquity topology.

Theorem 15 ([20]). If pX1, d1q and pX2, d2q are compact metric spaces, then

Λ˚p pCpX1q, Ld1q, pCpX2q, Ld2q q ď GHp pX1, d1q, pX2, d2q q.

Complete metric space structure makes measurement and approximation possible

on a set. Such ideas are essential for understanding how mathematical models can simulate

a physical system. Rieffel developed quantum compact metric spaces to give a mathemati-

cally formal framework for models found in quantum physics [35]. Examples of such models

include full matrix algebras and CpS2q, which is the commutative C˚-algebra of continuous,

complex-valued functions on the sphere. When enriched with the appropriate Lip-norms,

CpS2q has finite-dimensional approximations in the dual propinquity by full matrix alge-

bras [37]. Any unital AF -algebra for which there exists a faithful tracial state also can

be approximated in the dual propinquity by finite-dimensional C˚-algebras. The required

quantum compact metric space structures are constructed using the class of Lip-norms built

by Aguilar and Latrémolière for such an AF -algebra and described in the previous section

[2]. More importantly, Aguilar and Latremoliere’s results on finite-dimensional approxima-

tions of AF -algebras in the dual propinquity apply to CpXq when X is the Cantor set C

[2, 1]. Since C becomes a compact metric space if given the restriction of the Euclidean

distance, any approximation results for this space in the Gromov-Hausdorff distance can

also be used to build approximation results in the dual propinquity. Similarly,
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Theorem 16. Let X be a piecewise C1-fractal curve, with parameterization tRjujPN and

Bpnq an approximation sequence of X compatible with tRjujPN. Denote the geodesic distance

on X by d8 and the geodesic distance on Xn “
ŤBpnq

j“1 Rj by dn. Then

lim
nÑ8

Λ˚p pCpXq, Ld8
q, pCpXnq, Ldnq q “ 0.

Proof. Given any fixed choice of ϵ ą 0, the definition of approximation sequence

for a piecewise C1-fractal curve guarantees there exists N1 P N such that for n ą N1,

HausdnpVn, Xnq ă ϵ. Furthermore, GHp pVn, d8q, pVn, dnq q “ 0 because by assumption, the

restriction of d to Vn ˆ Vn is dn. Since V˚ is dense in pX, d8q and V˚ “
Ť

ně0 Vn, there

also exists N2 P N such that when n ą N2, Hausd8
pX,Vnq ă ϵ. Hence n ą maxtN1, N2u,

together with the previous theorem, yields

Λ˚p pCpXq, Ld8
q, pCpXnq, Ldnq q ď GHp pX, d8q, pXn, dnq q

ď GHp pX, d8q, pVn, d8q q `GHp pVn, d8q, pVn, dnq q

`GHp pVn, dnq, pXn, dnq q

ď Hausd8
pX,Vnq `GHp pVn, d8q, pVn, dnq q

` HausdnpVn, Xnq ă 2ϵ,

as desired. ■

Application of the dual propinquity and its extensions to the study of fractals

makes possible an enlarged understanding of these objects as noncommutative spaces. The

same C˚-algebra can support non-equivalent Lip-norms. As a consequence, quantum com-

pact metric space structures that are not fully quantum isometric can be defined on the

same C˚-algebra. In the case of C, CpCq can be equipped with the Lip-norm associated to
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a classical metric on this fractal. Aguilar and Lopez show in [3] that this Lip-norm differs

from the Lip-norm constructed as a consequence of Aguilar and Latremoliere’s work on

AF -algebras. They demonstrate that the corresponding Monge-Kantarovich metrics agree

on P pCpCqq but not on all of SpCpCqq. In particular, the enriched perspective of a fractal

through the lens of a state space exhibits promise in capturing key aspects of fractality

absent in purely point-based representations. For example, recall that the roughness, or

complexity, of a fractal can be encoded its Hausdorff dimension and this quantity is often

a non-integer quantity when associated to a fractal. Common approximations of fractals

have integer dimension and are based on a view of this fractal as a set of points. Hence

algebras of functions defined on finite approximations of fractals can lead to new insights

about how to capture fractality through approximations on simpler structures.

In the noncommutative setting of the Gromov-Hausdorff propinquity, not all Haus-

dorff distance equivalent sets for a fractal support unital C˚-algebraic structure. For in-

stance, V˚ and
Ť

ně1 SGn are both dense in SG. When each equipped with d8, both spaces

are isometric with pSG, d8q. Unlike C, V˚ is not compact. Consequently, CpV˚q is not a uni-

tal C˚-algebra. Furthermore, CpV˚q cannot be a component for a quantum compact metric

space for any Lip-norm. Thus the hypotheses of Theorem 15 do not apply as in the case

of Theorem 16. Recall that X is a totally disconnected compact metric space if and only if

CpXq is a unital commutative AF algebra. If CpV˚q and CpSGq were ˚-isomorphic as C˚-

algebras, then CpSGq could be represented as an AF -algebra. In particular, CpSGq could

be equipped with a Lip-norm L so that it is finitely approximable in the dual propinquity

via the work of Aguilar and Latremoliere [2]. Thus the topology of a fractal is encoded in its
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admissable quantum compact metric space structures. Investigations into these quantum

compact metric spaces could be the basis for new insights about the fractal. As a complete

metric on quantum compact metric spaces, the dual propinquity would be a useful tool in

such a study.

3.5 Spectral Propinquity

As the setting for the construction of Lapidus-Sarhad spectral triples, piecewise C1-

fractal curves can be viewed as a class of fractal-type “manifold.” Many important examples

of piecewise C1-fractal curves, such as the Sierpinski gasket, are Hausdorff distance limits

of increasing unions of finite graphs. An analytic framework for spectral triples will be

given that enables consideration of whether spectral triples on such fractals can also be

metrically approximated by spectral triples on approximating sets with simpler structures.

An understanding of such questions would set the stage in noncommutative geometry for

the definition of operators on fractals that suitably generalize their counterparts on classical

manifolds.

Spectral triples grant access to analysis on fractals via tools from noncommutative

Riemannian geometry. Methods from noncommutative metric geometry can also be applied

to the development of spectral triples on fractals when quantum compact metric space

structure is present.

Definition 21 ([23]). A metric spectral triple pA,H,Dq is a spectral triple such that the

Monge-Kantarovich metric associated to LD metrizes the weak˚-topology on SpAq.
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For a metric spectral triple, all components are at work in the definition of a metric on

the state space of the underlying C˚-algebra. Geometric information like measure and

dimension can be also extracted from a spectral triple using the data given by the spectrum

of the Dirac operator component. In particular, a metric on metric spectral triples should

encode equivalence that requires the induced quantum compact metric spaces to be fully

quantum isometric. Since unitarily equivalent operators share the same spectrum, such

equivalence should also include this condition for the Dirac operator components. To see

why the spectrum of an operator is invariant under conjugation with a unitary, suppose

pA1, H1, D1q and pA2, H2, D2q are spectral triples and there exists a unitary U : H1 Ñ H2

such that

UD1U
˚ “ D2.

Then for any λ P C,

D2 ´ λI “ UD1U
˚ ´ λI “ UD1U

˚ ´ λIUU˚ “ UpD1 ´ λIqU˚,

hence D2 ´ λI is invertible if and only if D1 ´ λI is invertible. In fact, Latrémolière’s

analytic framework for metric spectral triples detects both properties [23]. His metric on

metric spectral triples is therefore a natural choice for the study of metric approximations

of spectral triples on fractals.
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Ametric spectral triple supports a wealth of noncommutative geometric structures.

When a spectral triple induces a quantum compact metric space, it also carries a

‚ a Hilbert space with an extra norm defined on some dense

subspace, given by the the graph norm of the Dirac operator

‚ a ˚-representation of the quantum compact metric space on

the Hilbert space,

‚ a group action of R on the Hilbert space obtained by

exponentiating i times the Dirac operator.

A notion for convergence of metric spectral triples requires a form of convergence for each

of these elements. Convergence of quantum compact metric spaces will be given by the

dual propinquity. For Hilbert spaces with the graph norms of the Dirac operators of spec-

tral triples, convergence will be defined by the modular propinquity [24]. The metrical

propinquity will determine convergence of the ˚-representations in spectral triples [23]. By

including covariant quantities with those obtained from each of these propinquity metrics,

the spectral propinquity will quantify convergence of all of the corresponding noncommuta-

tive structures in addition to that of the actions of R on the Hilbert spaces obtained from

the Dirac operators [23].

3.5.1 Convergence of Modules

Module structures in noncommutative geometry give rise to quantum analogues of

vector bundles [41]. For a smooth manifold, a tangent space can be associated to each point.

The corresponding set of vectors belonging to all such tangent spaces defines the tangent
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bundle of a smooth manifold. In differential geometry, vector bundles generalize tangent

bundles. One module structure from noncommutative geometry that can be obtained from

a spectral triple comes from that of the Hilbert space.

Definition 22 ([6, 24]). A Hilbert module pM, x¨, ¨yM q over a C˚-algebra B, or Hilbert

B-module, is a a right B-module with a map

x¨, ¨yM :M ˆM Ñ B

such that

(1) x¨, ¨yM is linear in the second variable,

(2) for every ξ, η P M and b P B, xbξ, ηy “ xξ, ηyb,

(3) for every ξ, η P M , xξ, ηy “ xη, ξy˚,

(4) for every ξ P M , xξ, ξy ě 0,

(5) for every ξ P M , xξ, ξy “ 0 if and only if ξ “ 0,

(6) M is complete with respect to the norm given for every ξ P M by

||ξ||M “
a

||xξ, ξyM ||B.

Every Hilbert space is an example of a Hilbert module over C. This Hilbert C-

module can be endowed with the graph norm of the Dirac operator. When the spectral

triple is also a metric spectral triple, another module structure comes from the action of

the induced quantum compact metric space made possible by its ˚-representation on the

Hilbert space.

Definition 23 ([24, 25]). A metrical quantum vector bundle pM,DN,B,LB, A, LAq

is given by two quantum compact metric spaces pA,LAq and pB,LBq, a Hilbert B-module
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pM, x¨, ¨yM q which also carries a left A-module structure, and a norm DN defined on a dense

A-submodule, dom(DN), of M such that

‚ for every ξ P dompDNq, ||ξ||M ď DNpξq,

‚ tξ P M : DNpξq ď 1u is compact with respect to || ¨ ||M ,

‚ for every ω, η P M , the inner Leibniz inequality,

max
!

LB

´

xω, ηyM ` xω, ηy˚
M

2

¯

, LB

´

xω, ηyM ´ xω, ηy˚
M

2i

¯)

ď 2DNpωqDNpηq,

holds,

‚ for every a P dompLAq and ξ P dompDNq, the modular Leibniz inequality,

DNpaξq ď p||a||A ` LApaqqDNpξq,

holds.

The norm DN is called a D-norm. When pM,DN,C, 0, A, LAq is a metrical quantum vector

bundle, pM,DN,C, 0q is called a metrized quantum vector bundle.

As shown in [23], every metric spectral triple gives rise to a metrical quantum

vector bundle. To build a D-norm from the elements of a metric spectral triple pA,H,Dq,

begin with the domain of the Dirac operator. For every ξ P dompDq, let

DNpξq “ ||ξ||H ` ||Dξ||H .

Recall that pC, 0q is the only quantum compact metric space with the complex numbers as

the underlying C˚-algebra. Since H is a Hilbert space, one of the two required quantum
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compact metric spaces is supplied by pC, 0q. The Lip-norm of the second quantum compact

metric space is obtained from all three elements of the metric spectral triple. Set

dompLDq “ t a P sapAq, adompDq Ď dompDq, rD, as is bounded u,

and for every a P dompLDq, let

LDpaq “ || rD, as ||BpHq.

Then

qvbpA,H,Dq “ pH,DN,C, 0, A, LDq

denotes the metrical quantum vector bundle given by this construction. Furthermore,

pH,DN,C, 0q is a metrized quantum vector bundle.

Each quantum compact metric space component in a metrical quantum vector

bundle is a source of module structure. A notion of equivalence between metrical quantum

vector bundles will be built on a notion of morphism between Hilbert modules.

Definition 24 ([25]). Let A1 and A2 be unital C˚-algebras. A left module morphism

pΠ, πq from a left A1-moduleM1 to a left A2-moduleM2 is a unital ˚-morphism π : A1 Ñ A2

and a linear map Π :M1 Ñ M2 such that for every a P A and ω P M1,

Πpaωq “ πpaqΠpωq.

The module morphism pΠ, πq is said to be surjective when both Π and π are surjective

maps, and it is said to be an isomorphism when both Π and π are bijections.

A right module morphism is defined similarly.
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A Hilbert module morphism pΠ, πq from a Hilbert A1-module M1 to a Hilbert A2-module

M2 is a module morphism where for every ω, η P M1,

xΠpωq,ΠpηqyM2 “ xω, ηyM1 .

Convergence for metrical quantum vector bundles in this framework will require

convergence for the underlying metrized quantum vector bundles. Every metrized quan-

tum vector bundle has quantum compact metric space and Hilbert module components.

For metrized quantum vector bundles associated to metric spectral triples, the D-norm de-

pends on both the Hilbert space norm and the action of the Dirac operator on the Hilbert

space. In particular, the inner Leibniz inequality ties the Lip-norm to both structures. The

definition of a metric between metrized quantum vector bundles will extend that of the dual

propinquity metric between quantum compact metric spaces.

Definition 25 ([25]). Let pMj ,DNj , Bj , LBj q be a metrized quantum vector bundle for

j P t1, 2u. A modular tunnel pM, pΠ1, π1q, pΠ2, π2qq from pM1,DN1, B1, LB1q to pM2,DN2,

B2, LB2q is given by

‚ a metrized quantum vector bundle M “ pM,DN, B, LBq,

‚ a tunnel pB,LB, π1, π2q from pB1, LB1q to pB2, LB2q,

‚ surjective Hilbert module morphisms pΠj , πjq fromM over pB,LBq toMj over pBj , LBj q

such that for every ω P Mj,

DN jpωq “ inftDNpζq : Πjpζq “ ωu

for each j P t1, 2u.

65



TheD-norms for two metrized quantum vector bundles are encoded in the quotient

properties of the D-norm for the metrized quantum vector bundle component of a modular

tunnel between them. Verification of the inner Leibniz inequality for this quantum vector

bundle component would require consideration of both these D-norms. The elements of

permissable modular tunnels between two metrized quantum vector bundles, together with

the Hilbert module structures, are sufficient for full quantum isometry between the base

quantum compact metric spaces to imply agreement between the D-norms.

Definition 26 ([25]). Let µ “ pM, pΠ1, π1q, pΠ2, π2qq be a modular tunnel from pM1,DN1,

B1, LB1q to pM2,DN2, B2, LB2q with M “ pM,DN, B, LBq. The extent of µ, χpµq, is the

extent of the tunnel pB,LB, π1, π2q.

Definition 27 ([25]). The dual modular propinquity between two metrized quantum

vector bundles M1 “ pM1,DN1, B1, LB1q and M2 “ pM2,DN2, B2, LB2q is given by

Λ˚modpM1,M2q “ inftχpµq : µ is a modular tunnel from M1 to M2u.

Theorem 17 ([24, 25]). If pM1, DN1, A1, LA1q and pM2, DN2, A2, LA2q are two metrized

quantum vector bundles, then

Λ˚modppM1,DN1, B1, LB1q, pM2,DN2, B2, LB2qq “ 0

if and only if there exists a Hilbert module morphism pΠ, πq such that

‚ LA2 ˝ π “ LA1,

‚ DN2 ˝ Π “ DN1.

Moreover, the dual modular propinquity is a complete metric on the class of metrized quan-

tum vector bundles.
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Spectral triples can have additional modular structures with respect to their C˚-

algebra components. A representation for the C˚-algebra that sends elements of the C˚-

algebra to bounded left multiplication operators on the Hilbert space is one example of

how the Hilbert space can be viewed as a left module with respect to the C˚-algebra. For

metrical quantum vector bundles of the form qvbpA,H,Dq, the modular Leibniz inequality

relates the action of the C˚-algebra on the Hilbert space to the norm and the Lip-norm of

the induced quantum compact metric space, as well as to the Hilbert space norm and the

action of the Dirac operator on the Hilbert space.

Definition 28 ([25]). Let pMj ,DNj , Bj , LBj , Aj , LAj q be a metrical quantum vector bundle

for j P t1, 2u. A metrical tunnel pµ, τq from pM1,DN1, B1, LB1 , Aj , LA1q to pM2,DN2, B2,

LB2 , A2, LA2q is given by

‚ a modular tunnel µ “ pM, pΠ1, π1q, pΠ2, π2qq from pM1,DN1, B1, LB1q to pM2,DN2, B2,

LB2q with M “ pM,DN, B, LBq,

‚ a tunnel τ “ pA,LA, θ1, θ2q from pA1, LA1q to pA2, LA2q,

‚ a left A-module structure for M such that for every a P dompLAq and ω P dompDNq,

the modular Leibniz inequality, that is,

DNpaωq ď p||a||A ` LApaqqDNpωq,

holds,

‚ left module morphisms pθj ,Πjq from the left A-module M to the left Aj-module Mj

for each j P t1, 2u.
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More generally, a metrical quantum vector bundle carries the action of a quantum

compact space on a metrized quantum vector bundle. This quantum compact metric space

will often differ from the base quantum compact metric space for the metrized quantum

vector bundle. Every metrical tunnel between metrical quantum vector bundles is built on

a modular tunnel between the underlying metrized quantum vector bundles. Verification of

the inner Leibniz and modular Leibniz inequalities for the construction of a metrical tunnel

requires working with the Lip-norms for each quantum compact metric space. Equivalence

for metrical quantum vector bundles will rely on dual propinquity convergence for both sets

of quantum compact metric spaces. In particular, quantum compact metric space structure

grants access to an analytic framework for metrical quantum vector bundles.

Definition 29 ([25]). Let pµ, τq be a metrical tunnel from pM1,DN1, B1, LB1 , Aj , LA1q to

pM2,DN2, B2, LB2 , A2, LA2q. The extent of pµ, τq, χpµ, τq, is maxtχpµq, χpτqu.

Definition 30 ([25]). Given two metrical quantum vector bundles QVBj “ pMj ,DNj , Bj,

LBj , Aj , LAj q, j P t1, 2u, the metrical propinquity between QVB1 and QVB2 is

Λ˚metpQVB1,QVB2q “ inftχpµ, τq : pµ, τq is a metrical tunnel from QVB1 to QVB2u.

Theorem 18 ([25]). If QVB1 “ pM1,DN1, B1, LB1 , Aj , LA1q and QVB2 “ pM2,DN2, B2,

LB2 , A2, LA2q are metrical quantum vector bundles, then

Λ˚metpQVB1,QVB2q “ 0,

if and only if there exists

‚ a Hilbert module isomorphism pπ,Πq : pM1, x¨, ¨ypB1,LB1
qq Ñ pM2, x¨, ¨ypB2,LB2

qq such

that LB2 ˝ π “ LB1 and DN2 ˝ Π “ DN1,

68



‚ a ˚-isomorphism θ : A1 Ñ A2 such that LA2 ˝ θ “ LA1 and pθ,Πq is a module

morphism.

Moreover, the metrical propinquity is a complete metric on the class of metrical quantum

vector bundles.

The C˚-algebra in a metric spectral triple pA,H,Dq can always be equipped with

a Lip-norm via the construction described for qvbpA,H,Dq. In this context,

Theorem 19 ([23]). If pA1, H1, D1q and pA2, H2, D2q are metric spectral triples, then

Λ˚metppA1, H1, D1q, pA2, H2, D2qq “ 0 if and only if there exists a unitary U : H1 Ñ H2

and a *-isomorphism θ : A1 Ñ A2 such that

UD2
1U

˚ “ D2
2,

and for every a P A1 and ω P H2,

θpaqω “ pUaU˚qω.

Moreover, θ is also a full quantum isometry- that is, LD2 ˝ θ “ LD1.

To define a metric on metric spectral triples that detects the stronger condition

of unitary equivalence of the Dirac operators, the metrical propinquity will be extended to

include covariant quantities.
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3.5.2 Convergence of Spectral Triples

Since the Dirac operator in a spectral triple pA,H,Dq is a self-adjoint operator on

the Hilbert space, D can be used to construct a strongly continuous action of R on H by

unitary operators [31, Proposition 5.3.13]. More precisely, for every t P R,

Uptq “ exppitDq

is a unitary operator on H. For this family of operators, Ups ` tq “ UpsqUptq. Such

families of operators are often used in quantum mechanics to represent the time evolution

of a physical system. The final extension of the dual propinquity to metric spectral triples

quantifies “closeness” for such induced actions of R. This metric is a special case of a

covariant version of the propinquity called the covariant modular propinquity. In the broader

context addressed by that metric, maps on a certain class of monoids are used to define a

distance on that class [23, 41]. For metric spectral triples, this class of monoids reduces to

the single monoid R. The kinds of maps on R required for application of this metric are

each characterized by first setting a choice of ε ą 0. A pair of maps pς1, ς2q from R to R is

called an ε-iso-iso whenever for every j, k P t1, 2u and every x, y, z P

”

´ 1
ε ,

1
ε

ı

,

ˇ

ˇ

ˇ
|ςjpxq ` ςjpyq ´ z| ´ |px` yq ´ ςjpzq|

ˇ

ˇ

ˇ
ď ε

and ς1p0q “ ς2p0q “ 0. Such maps will be used to compare the dynamics of the Dirac

operators belonging to metric spectral triples.

As in the case of the metrical propinquity, a metric on metric spectral triples

will be built on tunnels between the underlying quantum compact metric spaces. Let

pA1, H1, D1q and pA2, H2, D2q be metric spectral triples. Suppose there exists a tunnel τ “
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pA,LD, θ1, θ2q from pA1, LD1q to pA2, LD2q and a modular tunnel µ “ pM, pΠ1, π1q, pΠ2, π2qq

from pH1,DN,C, 0q to pH2,DN2,C, 0q with M “ pM,DN, B, LBq such that pµ, τq is a met-

rical tunnel from qvbpA1, H1, D1q to qvbpA2, H2, D2q. If pς1, ς2q is an ε-iso-iso from R to

R for some ϵ ą 0, then an ϵ-covariant metrical tunnel is given by pµ, τ, ς1, ς2q. Moreover,

pµ, ς1, ς2q is an ε-covariant tunnel with an ε-covariant modular reach defined by

ρmppµ, ς1, ς2qq “ max
tj,kuPt1,2u

sup
ξPHj ,DNjpξqď1

inf
ξ1PHk,DNkpξ1qď1

sup
|t|ď 1

ε

sup
ωPM,DNpωqď1

ˇ

ˇ

ˇ
xUjptqξ,ΠjpωqyHj ´ xUkpςkptqqξ1,ΠkpωqyHk

ˇ

ˇ

ˇ
.

The ε-metrical magnitude of pµ, τ, ς1, ς2q combines consideration of ρmppµ, ς1, ς2qq with that

of χpµ, τq and is determined by

ϱppµ, τ, ς1, ς2q|εq “ max
!

χpτq, χpµq, ρmppµ, ς1, ς2qq

)

.

An additional condition will ensure that these quantities yield a metric rather than an ex-

tended metric on metric spectral triples.
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Definition 31 ([23]). The spectral propinquity between two metric spectral triples

pA1, H1, D1q and pA2, H2, D2q is given by

ΛspecppA1, H1, D1q, pA2, H2, D2qq

“ max
!

?
2

2
, inftε ą 0 : pµ, τq is a metrical tunnel from qvbpA1, H1, D1q to

qvbpA2, H2, D2q,

pµ, τ, ς1, ς2q is an ε-covariant metrical tunnel,

ϱppµ, τ, ς1, ς2q|εq ď εu
)

.

Theorem 20 ([23]). The spectral propinquity Λspec is a metric on the class of metric spectral

triples, up to the following coincidence property: for any metric spectral triples pA1, H1, D1q

and pA2, H2, D2q,

ΛspecppA1, H1, D1q, pA2, H2, D2qq “ 0

if and only if there exists a unitary map U : H1 Ñ H2 and a *-isomorphism θ : A1 Ñ A2

such that

UD1U
˚ “ D2,

and for every a P A1 and ω P H2,

θpaqω “ pUaU˚qω.

In particular, θ is a full quantum isometry from pA1, || rD1, π1p¨q s ||BpH1qq to

pA2, || rD2, π2p¨q s ||BpH2qq.
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The Lapidus-Sarhad spectral triple recovers the geodesic distance on a piecewise

C1-fractal curve [19]. Since the fractal equipped with this metric is a compact metric

space, the Lapidus-Sarhad spectral triple can be shown to be a metric spectral triple. Their

construction of this spectral triple relies on their piecewise C1-fractal curve framework.

The enrichment of this framework with the notion of an approximation sequence arose from

identification of conditions that make direct application of the spectral propinquity possible.

The application of the spectral propinquity to Lapidus-Sarhad spectral triples is a both a

test case for this metric and a stepping stone towards new definitions of differential operators

in noncommutative fractal geometry. Recall that the definition of a Laplacian on a space

requires the choice of a measure and a spectral triple induces a measure via the Dixmier

trace. An extension of the spectral propinquity to a setting that includes such operators

would lay the foundation for the construction new Laplacians on fractals, as well as new

ways to approximate more established Laplacians from the analysis on fractals literature

with Laplacians on finite graphs. Such understandings would contribute to progress in

the definition and study of a suitable notion of “fractal manifold.” In the process of such

development, new insights about Laplacians, differential structures, and fractality may be

discovered.
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Chapter 4

Metric Approximation of Spectral

Triples on Piecewise C1 Fractal

Curves

Piecewise C1-fractal curves naturally admit approximations in the Hausdorff dis-

tance by finite graphs. By definition, every piecewise C1-fractal curve contains a countable

set of parameterized curves that is dense in the fractal. Since this set of parameterized

curves can be ordered by decreasing arclength, there exists at least one enumeration of

these curves that respects this order. This enumeration can be used to define a sequence

of finite graphs. Via the Lapidus-Sarhad construction, a metric spectral triple will be built

for each finite graph. When such an enumeration exhibits the properties described in the

definition of an approximation sequence compatible with that parameterization of the frac-

tal curve, the corresponding sequence of metric spectral triples will be shown to converge in
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the spectral propinquity to a metric spectral triple on the piecewise C1-fractal curve. Such

convergence is an important step in the demonstration of the possibility of metric approx-

imation of spectral triples on fractal spaces by spectral triples on simpler approximating

spaces. Further study of the analytic framework used for such developments will advance

understanding in the definition and study of generalized manifolds that include fractals.

4.1 Lapidus-Sarhad Spectral Triples

A parameterization for a piecewise C1-fractal curve X is based on a sequence of

rectifiable C1 curves pRjqjPN. A Lapidus-Sarhad spectral triple is a direct sum of spectral

triples for each Rj-curve. Each of these spectral triples is built from spectral triples for

circles. To define a spectral triple for a circle in the complex plane centered at 0 and with

radius r ą 0, let

‚ ACr denote the algebra of complex continuous 2πr-periodic functions on the real line,

‚ Hr :“ L2pr´πr, πrs, p2πrq´1mq, where p2rq´1m is the normalized Lebesgue measure

on r´πr, πrs,

‚ DCr “ ´i ddx |spanpϕrkqkPZ with ϕrk “ expp ikxr q, k P Z,

‚ πCr the representation that sends elements of ACr to multiplication operators on Hr.

The sequence pϕrkqkPZ is an orthonormal basis for Hr. These functions are also the eigen-

functions of DCr . In particular, DCr is self-adjoint with

σpDCrq “

!k

r
: k P Z

)

.
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By the Spectral Mapping Theorem [8, Chapter VIII, Theorem 2.7] and [31, Theorem 3.3.8],

DCr has compact resolvent. If f P dompDCrq, then f is differentiable almost everywhere

and ||f 1||ACr is finite. In contrast, the period of the Weierstrass function can be adapted to

produce a function that is in ACr but not in dompDCrq. For any f P ACr and g P Hr with

continuous derivatives,

rDCr , πCrpfqs g “ πCr

´

´ i
df

dx

¯

g “ πCrpDCrfq g,

hence rDCr , πCrpfqs is a densely defined operator and extends to the bounded operator

πCrpDCrfq on Hr. The set of f P ACr with continuous derivatives can also be shown to be

dense in ACr. Specifically, the set of functions in ACr of the form Σnk“´ncke
ikx
r is dense in

ACr by the Stone-Weierstrass Theorem [8, Chapter IV, Theorem 8.1]. As a consequence,

the set

tf P ACr : rDCr , πCrpfqs is densely defined and extends to a bounded operator on Hru

is dense in ACr. Together with Hr and DCr , the circle algebra ACr with the representation

πCr forms a spectral triple. In [11], the spectral triple given by ST pCrq “ pACr, Hr, DCrq

is called the natural spectral triple for the circle algebra Cr.

Theorem 21. The natural spectral triple for the circle algebra ACr is a metric spectral

triple.

Proof. Verification that pACr, LACrq is a quantum compact metric spaces requires

first confirmation of certain properties for LACr . Since

LACrpfq “ || rDCr , πCrpfqs ||BpHrq “ ||πCrpDCrfq||BpHrq “ ||f 1||L8pr´πr,πrsq
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for all f P ACr, f P dompLACrq if and only if f is Lipschitz. Recall that the self-adjoint

elements of ACr are the real-valued functions. To see that Lipschitz functions are dense in

the set of real-valued continuous 2πr-periodic functions on the real line, note that this set

contains the constant functions. Let f denote the sawtooth function defined by distance to

the nearest odd integer multiple of πr. Given any two distinct real values, the period of f

can be adapted so that its values differ at these two points. The desired denseness condition

then follows as a consequence of the Stone-Weierstrass Theorem [8, Chapter IV, Theorem

8.1]. Moreover, the set of real-valued functions with trivial Lipchitz constant coincides with

the set of real-valued constant functions. Because the Arzela-Ascoli Theorem [8, Chapter

VI, Theorem 3.8] implies

ta P sapACrq : LACrpaq ď 1, ||a||ACr ď 1u

is totally bounded in ACr for || ¨ ||ACr , pACr, LACrq is a quantum compact metric space. ■

Furthermore,

Theorem 22 ([11, Theorem 2.4]). The metric induced by ST pCrq coincides with the

geodesic distance on Cr. More precisely, let dCr denote the geodesic distance on Cr. Then

dCrpx, yq “ supt|fpxq ´ fpyq| : f P ACr, ||rDCr , πCrpfqs||BpHrq ď 1u.

A parameterization for a piecewise C1-fractal curve is composed of countably many

rectifiable C1-curves. The Dirac operator belonging to a natural spectral triple for a circle

always has the number zero in its spectrum. If a direct sum of such spectral triples for each
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curve in this parameterization is taken, then the operator obtained from the direct sum

construction will not have compact resolvent. For each parameterized curve of length r, set

Dr “ DCr{π
`

1

2r
I.

Then

σpDrq “

!πp2k ` 1q

2r
: k P Z

)

,

the domains of definition for DCr{π
and Dr coincide, and for any f P ACr,

rDr, πCr{π
pfqs “ rDCr{π

, πCr{π
pfqs.

For each j P N, Rj : r0, ljs Ñ X is a continuous injective map with an image that is a curve

of length lj . Composition of this map with continuous functions on the interval r0, ljs yields

a homomorphism of CpXq onto Cpr0, ljsq. The corresponding continuous functions on the

interval r0, ljs can then be taken to continuous functions on the double interval r´lj , ljs via

an injective homomorphism. More precisely, for every f P CpXq and h P Hlj , let

πlj pfqhpxq :“ fpRjp|t|qqhpxq.

This representation of CpXq as bounded operators on Hlj can be used to build a faithful

representation of CpXq as bounded operators on
À

jPNHlj .

Theorem 23 ([11, 19]). Let X be a piecewise C1-fractal curve. Then X “
Ť

jě1Rj, where

Rj is a rectifiable C1 curve of length lj for each j P N. Set

‚ H8 :“
À

jPNHlj ,
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‚ D8 :“
À

jPNDlj ,

‚ π8 “
À

jPN πlj .

Then ST pXq :“ pCpXq, H8, D8q with representation π8 is a spectral triple for X.

A spectral triple defined on a piecewise C1-fractal curve X by this construction is

called a Lapidus-Sarhad spectral triple on X. Note that D8 is self-adjoint with

σpD8q “
ď

jPN

!

p2k ` 1qπ

2lj
: k P Z

)

.

In [19], Lapidus and Sarhad showed this spectral triple can be used to recover the geodesic

distance on X. The lemma on which this result relies can also be used to show ST pXq

induces quantum compact metric space structure.

Theorem 24. A Lapidus-Sarhad spectral triple on a piecewise C1-fractal curve is a metric

spectral triple.

Proof. Since a piecewise C1-fractal curve is also a compact length space, pX, d8q is

a compact metric space. As shown in the previous chapter, algebras of Lipschitz functions

over classical compact metric spaces are quantum compact metric spaces. In particular,

pCpXq, Ld8
q is a quantum compact metric space. Quantum compact metric space structure

for pCpXq, LD8
q will be shown to be a consequence of that of pCpXq, Ld8

q. In [19, Lemma

3.5], Lapidus and Sarhad show that for all f in dompD8q, ||π8pD8fq ||BpH8q “ Ld8
pfq.

Since pCpXq, Ld8
q is a quantum compact metric space, LD8

is a seminorm on sapAq such

that LD8
is lower semi-continuous with respect to || ¨ ||CpXq and tf P dompLD8

q : LD8
pfq “

0u “ R1CpXq. Because the derivative of every Lipschitz continuous function is essentially
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bounded, dompLd8
q Ď dompLD8

q. The set dompLD8
q “ tf P sapCpXqq : LD8

pfq ă 8u is

therefore likewise dense in sapCpXqq. Furthermore,

tf P sapCpXqq : LD8
pfq ď 1, φpfq “ 0u Ď tf P sapCpXqq : Ld8

pfq ď 1, φpfq “ 0u

is totally bounded in CpXq for || ¨ ||CpXq. Hence pCpXq, LD8
q is a quantum compact metric

space. As a consequence, ST pXq is a metric spectral triple. ■

In fact, Lapidus and Sarhad used [19, Lemma 3.5] to recover the geodesic distance on X

from ST pXq.

Theorem 25 ([19, Theorem 2]). The metric induced by ST pXq coincides with the geodesic

distance on X. More precisely,

d8px, yq “ supt|fpxq ´ fpyq| : f P CpSGq, ||rD8, π8pfqs||BpH8q ď 1u.

When X is the Sierpinski gasket, ST pXq is the spectral triple developed by Lapidus, Chris-

tensen, and Ivan. In fact, ST pSGq also recovers the Hausdorff dimension and the log2 3-

dimensional Hausdorff measure [11].

4.2 Metric Approximation of Quantum Compact Metric Spaces

Induced by Lapidus-Sarhad Spectral Triples

To build metric approximations in the spectral propinquity for a Lapidus-Sarhad

spectral triple on X, suppose there exists an approximation sequence Bpnq of X compatible
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with the parameterization pRjqjPN . The elements of a spectral triple on Xn can be given

by the corresponding finite subsets of summands in a Lapidus-Sarhad spectral triple on X:

‚ Hn “
ÀBpnq

j“1 Hlj ,

‚ Dn “
ÀBpnq

j“1 Dlj ,

‚ πn “
ÀBpnq

j“1 πlj .

For every n P N, Hn will be viewed as a subspace of H8 by identifying every η “

pη1, ¨ ¨ ¨ , ηj , ¨ ¨ ¨ , ηnq P Hn with

pηjqjPN “

$

’

’

’

’

&

’

’

’

’

%

ηj if j ď n,

0 otherwise.

Let ST pXnq denote the spectral triple on Xn defined by pCpXq, Hn, Dnq with representation

πn. A spectral triple of this construction on Xn will be called a Lapidus-Sarhad spectral

triple on Xn.

Theorem 26. Let X be a piecewise C1-fractal curve with parameterization pRjqjPN. If

there exists an approximation sequence Bpnq of X compatible with this parameterization,

then the Lapidus-Sarhad spectral triple on Xn is a metric spectral triple.

Proof. The following arguments are adapted from the Lapidus and Sarhad’s

proof of [19, Lemma 3.5]. Fix a choice of n P N. Note that since the geodesic distances

differ on X and Xn, the Lipchitz constant with respect to d8 of a function in CpXq may

differ from the Lipchitz constant with respect to dn of the restriction of that function

to Xn. In particular, ||π8pD8gq ||BpH8q “ Ld8
pgq for g in dompD8q does not imply

||πnpDng|Xnq ||BpHnq “ Ldnpg|Xnq.
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As in the case of pCpXq, Ld8
q, pXn, dnq is a compact metric space implies pCpXnq,

Ldnq is a quantum compact metric space. If LDn can be shown to coincide with Ldn on

dompLDnq, then the same reasoning from the previous theorem can be applied to conclude

that ST pXnq is a metric spectral triple. Suppose f is in dompDnq. Then

||πnpDnfq ||BpHnq “ sup
1ďjďBpnq

t ||πjpDjfq||BpHjq u “ sup
1ďjďBpnq

t ||f 1||L8pRjqu

ď sup
1ďjďBpnq

!

sup
p,qPRj

!

|fppq ´ fpqq|

dnpp, qq

) )

ď Ldnpfq.

To bound Ldnpfq, choose any distinct p and q in Xn. Any geodesic in Xn between p and q

passes through a sequence of vertices in Xn. Consecutive pairs of vertices in this sequence

are also pairs of endpoints for the same Rj curve. Pick a geodesic connecting p and q. Let

tpk, pk`1umk“1 be the sequence of pairs of endpoints between p and q in this geodesic and

tRjkumk“1 the corresponding sequence of Rj-curves. Let Rj0 denote the Rj-curve containing

p and Rjm`1 the Rj curve containing q. Then

|fppq ´ fpqq| ď |fppq ´ fpp1q| `

´

m
ÿ

k“1

|fppk`1q ´ fppkq|

¯

` |fpqq ´ fppm`1q|

ď dnpp, p1q||f 1||L8pRj0
q `

´

m
ÿ

k“1

dnppk`1, pkq||f 1||L8pRjk
q

¯

` dnpq, pm`1q||f 1||L8pRjm`1
q

“ dnpp, p1q ||πlj0 pDlj0
fq||BpHlj0

q `

´

m
ÿ

k“1

dnppk`1, pkq ||πljk pDljk
fq||BpHljk

q

¯

`dnpq, pm`1q ||πljm`1
pDljm`1

fq||BpHljm`1
q

ď ||πnpDnfq||BpHnq

´

dnpp, p1q `

´

m
ÿ

k“1

dnppk`1, pkq

¯

` dnpq, pm`1q

¯

“ ||πnpDnfq||BpHnq dpp, qq,
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hence

Ldnpfq ď ||πnpDnfq||BpHnq,

as desired. ■

In the proof of the above theorem, ||rDn, πnpDnfqs||BpHnq was shown to coincide with Ldn

on dompDnq. As in Lapidus and Sarhad’s proof of [19, Theorem 2] for the case of ST pXq,

this result can be used to recover the geodesic distance on Xn from ST pXnq.

Theorem 27 ([19, Theorem 2]). The metric induced by ST pXnq coincides with the geodesic

distance on Xn. More precisely,

dnpx, yq “ supt|fpxq ´ fpyq| : f P CpSGnq, ||rDn, πnpfqs||BpHnq ď 1u.

Proof. In the proof of the previous theorem, ||rDn, πnpfqs||BpHnq was shown to

coincide with Ldn on dompDnq. Thus for any f P CpSGnq such that ||rDn, πnpfqs||BpHnq ď 1,

|fpxq ´ fpyq|

dnpx, yq
ď Ldnpfq “ ||rDn, πnpfqs||BpHnq ď 1,

hence |fpxq ´ fpyq| ď dnpx, yq, hence

supt|fpxq ´ fpyq| : f P CpSGnq, ||rDn, πnpfqs||BpHnq ď 1u ď dnpx, yq.

To obtain the opposite inequality, note that fypxq :“ dnpx, yq is in dompDnq given any

choice of y P Xn. Then ||rDn, πnpfyqs||BpHnq “ Ldnpfyq “ 1 implies

dnpx, yq “ |dnpx, yq ´ dnpy, yq| “ |fypxq ´ fypyq|

ď supt|fpxq ´ fpyq| : f P CpSGnq, ||rDn, πnpfqs||BpHnq ď 1u.

■
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Recall that

lim
nÑ8

Λ˚p pCpXq, Ld8
q, pCpXnq, Ldnq q “ 0.

The quantum compact metric space induced by the Lapidus-Sarhad spectral triple on

X coincides with pCpXq, Ld8
q. Similarly, pCpXnq, LDnq is fully quantum isometric to

pCpXnq, Ldnq. Although construction of explicit tunnels is not needed to show dual propin-

quity convergence of
!

pCpXq, LDnq

)

nPN
to pCpXq, LDq, such tunnels are needed to show

spectral propinquity convergence of Lapidus-Sarhad spectral triples on Xn to the Lapidus-

Sarhad spectral triple on X. Calculation of the spectral propinquity requires calculation of

the metrical propinquity for the canonically associated metrical quantum vector bundles.

Metrical tunnels build on tunnels between underlying quantum compact metric spaces. Ver-

ification of the modular Leibniz inequality when building metrical tunnels requires checking

bounds involving Lip-norms belonging to tunnels between the underlying quantum com-

pact metric spaces. Since a Lip-norm must exhibit certain properties with respect to the

self-adjoint elements of the C˚-algebra component of a quantum compact metric space, the

McShane Extension Theorem will be used to obtain these needed conditions for C˚-algebras

of the same form as CpXq and CpXnq.

Theorem 28 (McShane Extension Theorem, [?, Theorem 1.33]). . Let X be a metric

space, let X0 be a nonempty subset of X, and let f0 be a Lipschitz function from X0 into

R. Then there is an extension f : X Ñ R which has the same Lipschitz constant. If f0 is

bounded, then ||f ||CpXq “ ||f0||CpX0q.
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One requirement for the Lip-norm belonging to a tunnel is that this seminorm have partic-

ular quotient properties for the ˚-epimorphism components of that tunnel. The McShane

Extension Theorem will play a role in that demonstration.

Theorem 29. Let X be a piecewise C1-fractal curve with parameterization pRjqjPN. If

there exists an approximation sequence Bpnq of X compatible with this parameterization,

then

Λ˚
nÑ8p pCpXq, LD8

q, pCpXnq, LDnq q “ 0.

Proof. Bounds on the dual propinquity between two quantum compact metric

spaces can be obtained via with the construction of tunnels between these two spaces. To

build tunnels between pCpXq, LD8
q and pCpXnq, LDnq, choose an ϵ ą 0. If f P CpXM q

for some M P N Y 8 and n ď M , let f |n denote the restriction of f to Vn. Since X is a

piecewise C1-fractal curve, there exists N1 P N such that if n ě N1, then

HausdnpXn, Vnq ă ϵ.

The existence of an approximation sequence Bpnq for X guarantees there exists N2 P N

such that if n ě N2, then

Hausd8
pX,Vnq ă ϵ.

One of the elements needed for the construction of a tunnel is a quantum compact metric
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space. Let N denote maxtN1, N2u. Fix some choice of n ě N and let An signify the unital

C˚-algebra CpXnq ‘ CpXq. Set Ln,β equal to the seminorm on An given by

Ln,βpf, gq “ max
!

LDnpfq, LD8
pgq,

1

β
|| g|n ´ f |n ||CpVnq

)

.

This seminorm will be shown to be a Lip-norm for An.

By construction, the seminorm Ln,β is defined on a dense subspace of sapAnq.

Furthermore, Ln,β vanishes on pf, gq P An if and only if

LDnpfq “ LD8
pgq “ || g|n ´ f |n ||CpVnq “ 0.

Since the desired behavior of Ln,β on An in the definition of a quantum compact metric

space is specified only on a dense subspace of sapAnq, it suffices to check these conditions

on CpXn,Rq ‘ CpX,Rq. Since pCpXnq, LDnq is a quantum compact metric space, the

only elements of sapCpXnqq on which Ln vanishes coincides with the set of real-valued

constant functions on Xn. Similarly, LD8
evaluates to zero precisely on R1CpXq. Moreover,

|| g|n´f |n ||CpVnq is zero only when f and g agree on Vn. In particular, Ln,β vanishes exactly

when f and g are constant functions on Xn and X that take on the same value in R. Thus

tpf, gq P dompLn,βq : Ln,βpf, gq “ 0u

is composed only of real-valued constant functions on An.

Next consider the semi-continuity condition for Ln,β. Note that LDn is lower

semi-continuous with respect to || ¨ ||CpXnq, as is L {D8
with respect to || ¨ ||CpXq, via the

quantum compact metric space structures of pCpXnq, LDnq and pCpXq, L {D8
q. Therefore,

LDn and LD8
are both lower semi-continuous with respect to || ¨ ||An . Because || f |n ||CpVnq

is bounded by ||f ||CpXnq for all f P CpXnq and || g|n ||CpVnq by ||g||CpXq for all g P CpXq,
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|| ¨ ||CpVnq is also lower semi-continuous with respect to || ¨ ||An . Hence Ln,β, as the point-wise

maximum of three functions all lower semi-continuous with respect to || ¨ ||An , is likewise

lower semi-continuous with respect to || ¨ ||An .

Given the verification of the previous two properties for Ln,β, the condition that

mkLn,β
metrizes the weak˚-topology on SpAnq is now equivalent to the existence of a state

ψ P SpAnq such that the set

Fψ,0 :“ tpf, gq P dompLn,βq : Ln,βpf, gq ď 1, ψpf, gq “ 0u

is totally bounded in An for || ¨ ||An . Let x0 be some point in Vn, ψx0 the linear functional

defined by evaluation at x0, and θn : An Ñ CpXnq the projection given by θnpf, gq “ f .

Then ψx0 ˝ θn is a state on An. Fix this choice of x0. To show that Fψx0˝θn,0 is totally

bounded in An for || ¨ ||An , a set containing Fψx0˝θn,0 will be shown to be totally bounded

in An for || ¨ ||An . To build such a set, first consider

Fnψx0 ,0
:“ tf P dompLDnq : LDnpfq ď 1, ψx0pfq “ 0u.

Since ψx0 is also in SpCpXnqq and pCpXnq, LDnq is a quantum compact metric space, Fnψx0 ,0

is totally bounded in CpXnq for || ¨ ||CpXnq. Next let θ8 : An Ñ CpXq be the projection

given by θ8pf, gq “ g and consider whether

G8
ψx0 ,β

:“ tg P dompLD8
q : LD8

pgq ď 1, |ψx0pgq| ď βu.

is also totally bounded in CpXnq for || ¨ ||CpXnq. Let G
8
ψx0 ,0

be defined similarly. Since ψx0 is

likewise in SpCpXqq and pCpXq, LD8
q is a quantum compact metric space, G8

ψx0 ,0
is totally

bounded in CpXq for || ¨ ||CpXq. Moreover, the lower semi-continuity of LD8
with respect to

||¨||CpXq implies that G8
ψx0 ,0

is also closed in ||¨||CpXq, hence compact. This compactness will
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be used to show compactness for G8
ψx0 ,β

in the same norm. Suppose tgnunPN is a sequence in

G8
ψx0 ,β

. Then tgnpx0qunPN is a bounded sequence in R. Such a sequence admits a convergent

subsequence. Let tgt1pnqpx0qunPN denote this convergent subsequence and b the limit of this

subsequence. Then b ď β, tgt1pnq ´ gt1pnqpx0qunPN is a sequence of functions in G8
ψx0 ,0

, and

G8
ψx0 ,0

compact in || ¨ ||CpXq implies tgt1pnq ´ gt1pnqpx0qunPN has a convergent subsequence

for that norm. If tgt2pt1pnqq ´ gt2pt1pnqqpx0qunPN denotes this convergent subsequence and h

the limit of this subsequence, then h vanishes at x0. In particular, hpxq ` b is in G8
ψx0 ,β

and

hpxq ` b is the limit of tgt2pt1pnqqunPN. As the choice of sequence in G8
ψx0 ,β

was arbitrary,

G8
ψx0 ,β

is compact for || ¨ ||CpXq. In consequence, Fnψx0 ,0
ˆ G8

ψx0 ,β
is totally bounded in An

for || ¨ ||An . To see that Fnψx0 ,0
is a subset of Fnψx0 ,0

ˆG8
ψx0 ,β

, note that Ln,βpf, gq ď 1 implies

LDnpfq ď 1, LD8
pgq ď 1 and || f |n ´ g|n ||CpVnq ď β. If fpx0q “ ψx0pfq “ 0, then

|ψx0pgq| “ |gpx0q| “ |fpx0q ´ gpx0q| ď || f |n ´ g|n ||CpVnq ď β.

Thus mkLn,β
metrizes the weak˚-topology on SpAnq.

The final requirement for Ln,β to qualify as a Lip-norm on An is that this seminorm

satisfy the Leibniz inequality with respect to || ¨ ||An . For all f1, f2 P CpXnq and g1, g2 P

CpXq,

Ln,βpf1f2, g1g2q “ max
!

LDnpf1f2q, LD8
pg1g2q,

1

β
|| f1f2|n ´ g1g2|n ||CpVnq

)

ď max
!

||f1||CpXnqLDnpf2q ` LDnpf1q||f2||CpXnq,

||g1||CpXqLD8
pg2q ` LD8

pg1q||g2||CpXq,
1

β
|| f1f2|n ´ g1g2|n ||CpVnq

)

ď max
!

||pf1, g1q||AnLn,βpf2, g2q ` Ln,βpf1, g1q||pf2, g2q||An ,

1
β || f1f2|n ´ f1g2|n ||CpVnq ` 1

β || f1g2|n ´ g1g2|n ||CpVnq

)
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ď max
!

||pf1, g1q||AnLn,βpf2, g2q ` Ln,βpf1, g1q||pf2, g2q||An ,

||f1||CpXnq
1
β || f2|n ´ g2|n ||CpVnq ` 1

β || f1|n ´ g1|n ||CpVnq||g2||CpXq

)

ď ||pf1, g1q||AnLn,βpf2, g2q ` Ln,βpf1, g1q||pf2, g2q||An .

In particular,

Ln,β

´

pf1, g1qpf2, g2q ´ pf2, g2qpf1, g1q

2i

¯

ď

ˇ

ˇ

ˇ

1

2i

ˇ

ˇ

ˇ

´

Ln,βpf1f2, g1g2q ` Ln,βpf2f1, g2g1q

¯

ď
1

2

´

||pf1, g1q||AnLn,βpf2, g2q ` Ln,βpf1, g1q||pf2, g2q||An

` ||pf2, g2q||AnLn,βpf1, g1q ` Ln,βpf2, g2q||pf1, g1q||An

¯

ď ||pf1, g1q||AnLn,βpf2, g2q ` Ln,βpf1, g1q||pf2, g2q||An .

Similarly, the same bound holds for Ln,β

´

pf1,g1qpf2,g2q`pf2,g2qpf1,g1q

2

¯

, hence

max
!

Ln,β

´

pf1, g1qpf2, g2q ` pf2, g2qpf1, g1q

2

¯

, Ln,β

´

pf1, g1qpf2, g2q ´ pf2, g2qpf1, g1q

2i

¯)

ď ||pf1, g1q||AnLn,βpf2, g2q ` Ln,βpf1, g1q||pf2, g2q||An ,

thereby completing the verification that pAn, Ln,βq is a quantum compact metric space.

The quotient properties of Ln,β for θn and θ8 will next be examined. As in the

definition of a Lip-norm, the desired quotient properties of θn and θ8 in the definition of a

tunnel are specified only on a dense subspace of sapAnq. Consequently, it suffices to check

these properties on CpXn,Rq ‘ CpX,Rq. To see that the quotient of Ln,β for θn is LDn ,

let f be some function in CpXn,Rq in the domain of LDn . Recall that for each n P N Y 8,

Ldn gives the same values as LDn on dompLDnq. Since Bpnq is an approximation sequence

of X, the restriction of d8 to Vn ˆ Vn is dn. As a consequence, LDnpfq “ Ldnpf |nq. By the

McShane Extension Theorem, there exists g P CpX,Rq such that g and f |n agree on Vn and
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Ld8
pgq “ Ldnpf |nq. In particular, LD8

pgq “ Ld8
pgq “ LDnpfq and || g|n ´ f |n ||CpVnq “ 0,

hence

LDnpfq “ inftLn,βph, kq : θnph, kq “ f u.

In the case of the quotient of Ln,β for θ8, similar arguments can be applied to any g P

CpX,Rq except with the application of the McShane Extension Theorem to g|n to yield

a function f P CpXn,Rq such that LDnpfq “ LD8
pgq and f agrees with g on Vn. As

projections are ˚-epimorphisms,

τn,β “ pAn, Ln,β, θn, θ8q

is a tunnel from pCpXnq, LDnq to pCpXq, LD8
q.

Various bounds from the dual propinquity literature can be applied to the extent

of tunnels of the same form as τn,β. For quantum compact metric spaces like pAn, Ln,βq

built from a direct sum construction,

χpτn,βq ď HausmkLn,β
pSpCpXnq ‘ CpXqq, copSpCpXnqq Y SpCpXqqq

`HausmkLn,β
pθ˚
npSpCpXnqq, θ˚

8pSpCpXqqq,

where copEq denotes the closure of the convex envelope of a set E Ď SpCpXnq ‘ CpXqq

[22]. Moreover, [20] gives that when the ˚-epimorphisms in tunnels with quantum compact

metric spaces like pAn, Ln,βq are projections to each of the summands,

HausmkLn,β
pSpCpXnq ‘ CpXqq, copSpCpXnqq Y SpCpXqqq “ 0.

To determine

HausmkLn,β
pθ˚
npSpCpXnqq, θ˚

8pSpCpXqqqq,
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begin by fixing some choice of φ in SpCpXqq. By the Krein-Milman Theorem, there exists

φ1 in SpCpXqq such thatmkLD8
pφ,φ1q ă β and φ1 “ Σli“1tiδxi for some l P N and xi P X for

1 ď i ď l. Because Hausd8
pX,Vnq ă ϵ, there exists v1, ¨ ¨ ¨ , vl P Vn such that d8pxi, viq ă ϵ

for 1 ď i ď l. In particular, φ2 “ Σli“1tjδvi is in both SpCpXnqq and SpCpXqq, hence for

all pf, gq in An with Ln,βpf, gq ď 1,

|φ ˝ θ8pf, gq ´ φ2 ˝ θnpf, gq| “ |φpgq ´ φ2pfq|

ď |φpgq ´ φ1pgq| ` |φ1pgq ´ φ2pgq| ` |φ2pgq ´ φ2pfq|

ă β ` |Σli“1tiδxipgq ´ Σli“1tiδvipgq| ` |Σli“1tiδvipgq ´ Σli“1tiδvipfq|

ď β ` Σli“1ti|gpviq ´ gpxiq| ` Σli“1ti|gpviq ´ fpviq|

ď β ` Σli“1tid8pxi, viq ` Σli“1ti|| g|n ´ f |n ||CpVnq

ă 2β ` ϵ,

where the second inequality follows from the conditions that mkLD8
pφ,φ1q ă β, the penulti-

mate inequality as consequences of LD8
pgq ď Ln,βpf, gq ď 1 and Ld8

pgq “ LD8
pgq, and the

last inequality because d8pxi, viq ă ϵ for 1 ď i ď l and 1
β || g|n ´ f |n ||CpVnq ď Ln,βpf, gq ď 1.

Similarly, the same bound can be achieved for an arbitrary ψ in SpCpXnqq with an approx-

imating ψ1 composed of Dirac measures on Xn and for which mkLDn
pψ,ψ1q ă β. In that

context, the bound HausdnpXn, Vnq ă ϵ implies the existence of v1, ¨ ¨ ¨ , vm P Vn such that

dnpxi, viq ă ϵ for 1 ď i ď m. This set of vertices can also be used to build a state ψ2 from

Dirac measures on Vn. Since LD8
pgq ď Ln,βpf, gq ď 1 and Ldnpfq “ LDnpfq, this bound on
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dnpxi, viq can likewise be applied to |ψ1pfq ´ ψ2pfq|. Thus χpτn,βq ă 2β ` ϵ. As the choice

of β ą 0 was arbitrary,

Λ˚p pCpXq, LD8
q, pCpXnq, LDnq q ď χpτn,βq ď ϵ

■

4.3 Metric Approximation of Metrical Quantum Vector Bun-

dles Associated to Lapidus-Sarhad Spectral Triples

Metrical tunnels are built from tunnels between their underlying quantum compact

metric spaces. For metrical tunnels between qvbpCpXq, H8, D8q and qvbpCpXnq, Hn, Dnq,

tunnels between pCpXq, LD8
q and pCpXnq, LDnq of the same construction as τn,β will be

used. Another component of these metrical tunnels will be given by tunnels of the following

form.

Lemma 3. Let πn : C‘C Ñ C denote projection to the first coordinate and π8 : C‘C Ñ C

projection to the second coordinate. Then for any fixed choice of ϵ ą 0, pC ‘ C, Qϵ, πn, π8q

is a tunnel between pC, 0q and pC, 0q. Moreover, χp pC ‘ C, Qϵ, πn, π8q q ď ϵ.

Proof. Fix a choice of ϵ ą 0. As shown in the previous chapter, pC ‘ C, Qϵq

is a quantum compact metric space. To see that the quotient of Qϵ for πn is 0, take any

pw0, w0q P C ‘ C. Then

0 “ p0qpw0q “ inftQϵpw, zq : πnpw, zq “ w0 u.
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Similar arguments can be applied to show that the quotient of Qϵ for π8 is also 0. As

projections are ˚-epimorphisms, pC ‘ C, Qϵ, πn, π8q is a tunnel between pC, 0q and pC, 0q.

To calculate the extent of pC ‘ C, Qϵ, πn, π8q, the state spaces of pC, 0q and pC ‘

C, Qϵq will each be characterized. Recall that positive linear functionals are bounded and

their norm coincides with their value at the identity. In the case of C, linear functionals are

also uniquely determined by their value at the identity. As a consequence, SpCq is composed

only of the identity function. For C‘C, linear functionals are uniquely determined by their

values at p1, 0q and p0, 1q, hence for every φ in SpC ‘ Cq,

1 “ φp1, 1q “ φp1, 0q ` φp0, 1q.

For every t in r0, 1s, let φt denote the state in SpC ‘ Cq that takes p1, 0q to t. Then

φtp0, 1q “ 1 ´ t. In particular, SpC ‘ Cq coincides with complex-valued functions on C ‘ C

in the set

tφtpw, zq “ tw ` p1 ´ tqz : t P r0, 1s u.

Let idC signify the identity function on C. The Hausdorff distance with respect to mkQϵ

between idC˝πn and SpC‘Cq can now be calculated. If pw, zq is in C‘C with Qϵpw, zq ď 1,
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then for every t in r0, 1s,

|φtpw, zq ´ idC ˝ πnpw, zq | “ |φtpw, zq ´ φ1pw, zq |

“ | ptw ` p1 ´ tqzq ´ pp1qw ` p1 ´ 1qzq |

“ | p1 ´ tqz ´ p1 ´ tqw |

“ p1 ´ tq |z ´ w|

ď p1 ´ tq ϵ

ď ϵ,

hence

HausmkQϵ
ptψ ˝ πn : ψ P SpCqu, SpC ‘ Cqq ď ϵ.

Similarly, the same conditions yield

|φtpw, zq ´ idC ˝ π8pw, zq | “ |φtpw, zq ´ φ0pw, zq | ď tϵ ď ϵ.

■

Ametrical quantum vector bundle carries Hilbert module structure via its metrized

quantum vector bundle component. For metrical quantum vector bundles associated to

metric spectral triples, that Hilbert module is always the Hilbert space from the metric

spectral triple. Hilbert spaces are Hilbert modules over the quantum compact metric space

pC, 0q. For the case of quantum vector bundles that arise from Lapidus-Sarhad spectral

triples, set for every n P N Y 8 and ξ P Hn,

DNnpξq “ ||ξ||Hn ` ||Dnξ||Hn .

The metrized quantum vector bundle belonging to qvbpCpXq, H8, D8q is pH8, DN8,C, 0q.

Metric approximation in the metrical propinquity for qvbpCpXq, H8, D8q requires metric
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approximation in the dual modular propinquity for pH8, DN8,C, 0q. Modular tunnels

between pH8, DN8,C, 0q and pHn, DNn,C, 0q will be built using the quantum compact

metric space pC‘C, Qϵq. The extent of these modular tunnels will therefore be determined

by the extent of tunnels of the same form as pC ‘ C, Qϵ, πn, π8q.

Lemma 4. Let X be a piecewise C1-fractal curve with parameterization pRjqjPN. If there

exists an approximation sequence Bpnq of X compatible with this parameterization, then

Λ˚mod
nÑ8p pH8, DN8,C, 0q, pHn, DNn,C, 0q q “ 0.

Proof. As in the calculation of the dual propinquity between two quantum com-

pact metric spaces, bounds on the dual modular propinquity between two metrized quantum

vector bundles can be obtained via the construction of modular tunnels between these two

spaces. To build modular tunnels between pH8, DN8,C, 0q and pHn, DNn,C, 0q, choose an

ϵ ą 0. Since X is a piecewise C1-fractal curve, there exists N P N such that if j ą BpNq,

lj ă
πϵ

2
.

One of the elements needed for the construction of a modular tunnel is a metrized quantum

vector bundle. Recall that Hn can be viewed as a subspace of H8 via the identification

described in the previous section. Fix some choice of n ě N . The Hilbert space Hn ‘ H8

will be viewed as a Hilbert module over the C˚-algebra C‘C with action defined for every

pw, zq in C ‘ C and for every pη, ξq in Hn ‘H8 by

pw, zq ¨ pη, ξq “ pwη, zξq

and inner product for every pη, ξq and pη1, ξ1q in Hn ‘H8 by

xpη, ξq, pη1, ξ1qyHn‘H8
“ pxη, η1yHn , xξ, ξ

1yH8
q.
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For the quantum compact metric space component of a metrized quantum vector bundle,

take pC ‘ C,Qϵq. Let DNn,ϵ : Hn ‘H8 Ñ R be given by

DNn,ϵpη, ξq “ max
!

DNnpηq, DN8pξq,
1

ϵ
||ξ ´ η||H8

)

.

This norm will be shown to be aD-norm for the Hilbert C‘C-module pHn‘H8, x¨, ¨yHn‘H8
q.

By construction, DNn,ϵ is defined on a dense subspace of Hn ‘ H8. Equipping

Hn ‘H8 with Hilbert module structure over C ‘ C yields for every pη, ξq P dompDNn,ϵq,

||pη, ξq||2Hn‘H8
“ || xpη, ξq, pη, ξqyHn‘H8

||C‘C

“ || pxη, ηyHn , xξ, ξyH8
q ||C‘C

“ max t ||η||2Hn
, ||ξ||2H8

u

ď max t pDNnpηqq2, pDN8pξqq2 u

ď pDNn,ϵpη, ξqq2.

Now consider the unit ball with respect to DNn,ϵ, that is,

BDNn,ϵ :“ tpη, ξq P Hn ‘H8 : DNn,ϵpη, ξq ď 1u

Ď tη P Hn : DNnpηq ď 1u ˆ tξ P H8 : DN8pξq ď 1u :“ BDNn ˆBDN8

The unit balls BDNn and BDN8
are each compact with respect to the Hilbert space norms for

their respective domains [23]. Moreover, seminorms are lower semi-continuous, as are graph

norms of Dirac operators. As the maximum of three lower semi-continuous functions, DNn,ϵ

is also lower semi-continuous. As a consequence, BDNn,ϵ is a closed subset of a compact set,

hence compact.
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The inner Leibniz inequality will next be checked. For every pη, ξq and pη1, ξ1q in

Hn ‘H8,

Qϵpxpη, ξq, pη1, ξ1qyHn‘H8
q “ Qϵppxη, η1yHn , xξ, ξ

1yH8
qq “

1

ϵ
|xξ, ξ1yH8

´ xη, η1yHn |

“
1

ϵ
|xξ, ξ1yH8

´ xη, η1yH8
| “

1

ϵ
|xξ, ξ1yH8

´ pxη1, ξy˚
H8

` xη1, η ´ ξy˚
H8

q|

“
1

ϵ
|xξ, ξ1yH8

´ xξ, η1yH8
` xξ ´ η, η1yH8

| “
1

ϵ
|xξ, ξ1 ´ η1yH8

` xξ ´ η, η1yH8
|

ď
1

ϵ
p|xξ, ξ1 ´ η1yH8

| ` |xξ ´ η, η1yH8
|q

ď
1

ϵ
||ξ||H8

||ξ1 ´ η1||H8
`

1

ϵ
||ξ ´ η||H8

||η1||H8

ď ||ξ||H8
DNn,ϵpη

1, ξ1q `DNn,ϵpη, ξq ||η1||Hn

ď DNn,ϵpη, ξqDNn,ϵpη
1, ξ1q `DNn,ϵpη, ξqDNn,ϵpη

1, ξ1q

“ 2DNn,ϵpη, ξqDNn,ϵpη
1, ξ1q.

In particular,

Qϵ

´xpη, ξq, pη1, ξ1qyHn‘H8
` xpη, ξq, pη1, ξ1qy˚

Hn‘H8

2

¯

ď
1

2

´

Qϵpxpη, ξq, pη1, ξ1qyHn‘H8
q `Qϵpxpη, ξq, pη1, ξ1qy˚

Hn‘H8
q

¯

ď
1

2

´

2DNn,ϵpη, ξqDNn,ϵpη
1, ξ1q `Qϵpxpη1, ξ1q, pη, ξqyHn‘H8

q

¯

ď
1

2

´

2DNn,ϵpη, ξqDNn,ϵpη
1, ξ1q ` 2DNn,ϵpη

1, ξ1qDNn,ϵpη, ξq

¯

“ 2DNn,ϵpη, ξqDNn,ϵpη
1, ξ1q.

Similarly, the same bound holds for Qϵ

´

xpη,ξq,pη1,ξ1qyHn‘H8 ´xpη,ξq,pη1,ξ1qy˚
Hn‘H8

2i

¯

. Therefore,

max
!

Qϵ

´xpη, ξq, pη1, ξ1qyHn‘H8
` xpη, ξq, pη1, ξ1qy˚

Hn‘H8

2

¯

,

Qϵ

´xpη, ξq, pη1, ξ1qyHn‘H8
´ xpη, ξq, pη1, ξ1qy˚

Hn‘H8

2i

¯)
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ď 2DNn,ϵpη, ξqDNn,ϵpη
1, ξ1q,

thereby completing the verification that pHn‘H8, DNn,ϵ,C‘C, Qϵq is a metrized quantum

vector bundle.

A modular tunnel also includes surjective module morphisms between Hilbert mod-

ule structures. To define such morphisms, take the projections Πn : Hn ‘ H8 Ñ Hn given

by Πnpη, ξq “ η and Π8 : Hn‘H8 Ñ H8 specified by Π8pη, ξq “ ξ. Let πn : C‘C Ñ C de-

note the projection πnpw, zq “ w, and π8 : C‘C Ñ C signify the projection π8pw, zq “ z.

By construction, pΠn,Πnq and pΠ8, π8q are surjective Hilbert module morphisms. More

precisely, πn and π8 are ˚-morphisms and Πn and Π8 are C-linear maps such that for every

pw, zq in C ‘ C and for every pη, ξq and pη1, ξ1q in Hn ‘H8,

Πnppw, zqpη, ξqq “ Πnpwη, zξq “ wη “ πnpw, zqΠnpη, ξq,

Π8ppw, zqpη, ξqq “ Π8pwη, zξq “ zξ “ π8pw, zqΠ8pη, ξq,

and

xΠnpη, ξq,Πnpη1, ξ1qyHn “ xη, η1yHn “ πnpxη, η1yHn , xξ, ξ
1yH8

q “ πnpxpη, ξq, pη1, ξ1qyHn‘H8
q,

xΠ8pη, ξq,Π8pη1, ξ1qyH8
“ xξ, ξ1yH8

“ π8pxη, η1yHn , xξ, ξ
1yH8

q “ π8pxpη, ξq, pη1, ξ1qyHn‘H8
q.

Thus pHn ‘ H8, x¨, ¨yHn‘H8
q, when viewed as a Hilbert module over C ‘ C, encodes the

Hilbert module structures of pHn, x¨, ¨yHnq and pH8, x¨, ¨yH8
q when each viewed as Hilbert

modules over C.

The quotient properties of DNn,ϵ for Πn and Π8 will next be examined. Consider

some choice of ξ “ pξjqjPN in H8 with ξ in the domain of DN8. With respect to the

orthonormal basis pϕ
lj{π
k qkPZ, each ξj can be written as ξj “

ř

kPZ
tj,k ϕ

lj{π
k with ptj,kqkPZ in
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ℓ2pZq for all j P N, hence

|| {D8ξ||2H8
“

ÿ

jPN
||Dljξj ||

2
Hlj

“
ÿ

jPN

ÿ

kPZ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
tj,k

p2k ` 1qπ

2lj
ϕ
lj{π
k

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

Hlj

“ π2
ÿ

jPN

ÿ

kPZ

1

l2j

ˇ

ˇ

ˇ
tj,k

ˇ

ˇ

ˇ

2´

k `
1

2

¯2
.

Recall that for j ą BpNq, lj ă πϵ
2 . This lower bound on j yields

|| {D8ξ||2H8
ě π2

ÿ

jąBpNq

ÿ

kPZ

1

l2j

ˇ

ˇ

ˇ
tj,k

ˇ

ˇ

ˇ

2´

k `
1

2

¯2

ą π2
ÿ

jąBpNq

ÿ

kPZ

4

π2ϵ2

ˇ

ˇ

ˇ
tj,k

ˇ

ˇ

ˇ

2´

k `
1

2

¯2
“

4

ϵ2

ÿ

jąBpNq

ÿ

kPZ

ˇ

ˇ

ˇ
tj,k

ˇ

ˇ

ˇ

2´

k `
1

2

¯2
.

Therefore,

ÿ

jąBpNq

||ξj ||
2
Hj

“
ÿ

jąBpNq

ÿ

kPZ
|tj,k|2 “ 4

ÿ

jąBpNq

ÿ

kPZ
|tj,k|2

1

4

ď 4
ÿ

jąBpNq

ÿ

kPZ
|tj,k|2

´

k `
1

2

¯2
ă pϵ||D8ξ||H8

q2.

To see that the quotient of DNn,ϵ for Π8 is DN8, take η as the orthogonal projection of ξ

to Hn. This choice of η gives

||ξ ´ η||2H8
“

ÿ

jąBpNq

||ξj ||
2
Hj

ă pϵ||D8ξ||H8
q2 ď pϵp||ξ||H8

` ||D8ξ||H8
qq2 “ pϵDN8pξqq2.

Since DNnpηq ď DN8pξq,

DN8pξq “ inftDNn,ϵppζ1, ζ2qq : Π8ppζ1, ζ2qq “ ξu.

In the case of the quotient of DNn,ϵ for Πn, let η be an arbitrary vector in Hn viewed as

a subspace of H8 and set ξ equal to η. Then ||ξ ´ η||H8
is zero, DN8pξq coincides with

DNnpηq, and as a consequence, DNn,ϵpη, ξq
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is DNnpηq. Thus the quotient of DNn,ϵ for Πn is DNn. Thus

µn,ϵ “ ppHn ‘H8, DNn,ϵ,C ‘ C, Qϵq, pΠn, πnq, pΠ8, π8qq

is a modular tunnel from pHn, DNn,C, 0q to pH8, DN8,C, 0q. Consequently,

Λ˚modppH8, DN8,C, 0q, pHn, DNn,C, 0q ď χpµn,ϵq “ χppC ‘ C, Qϵ, πn, π8qq ď ϵ.

■

For ϵ1 ą ϵ, note that pHn ‘ H8, DNn,ϵ,C ‘ C, Qϵ1q is also a modular tunnel between

pH8, DN8,C, 0q and pHn, DNn,C, 0q. If ϵ1 ă ϵ, then the penultimate inequality in the

verification of the inner Leibniz inequality is no longer valid. Since pHn ‘ H8, DNn,ϵ,C ‘

C, Qϵ1q cannot be a modular tunnel between pH8, DN8,C, 0q and pHn, DNn,C, 0q for ϵ1 ă ϵ,

the smallest possible extent for a modular tunnel of the same construction as µn,ϵ is ϵ.

Modular tunnels like µn,ϵ can be extended to metrical tunnels between qvbpCpXq, H8, D8q

and qvbpCpXnq, Hn, Dnq.

Theorem 30. Let X be a piecewise C1-fractal curve with parameterization pRjqjPN. If

there exists an approximation sequence Bpnq of X compatible with this parameterization,

then

Λ˚met
nÑ8p qvbpCpXq, H8, D8q, qvbpCpXnq, Hn, Dnq q “ 0.

Proof. As in the calculation of the dual propinquity between two quantum com-

pact metric spaces and the dual modular propinquity between two metrized quantum vector
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bundles, bounds on the metrical propinquity between two metrical quantum vector bun-

dles can be obtained via the construction of metrical tunnels between these two spaces.

To build metrical tunnels between qvbpCpXq, H8, D8q and qvbpCpXnq, Hn, Dnq, choose an

ϵ ą 0. Since X is a piecewise C1-fractal curve, there exists N1 P N such that if n ě N1, then

HausdnpXn, Vnq ă ϵ
4 . The existence of an approximation sequence Bpnq for X guarantees

there exists N2 P N such that if n ě N2, then Hausd8
pX,Vnq ă ϵ. Since pH8, x¨, ¨yH8

,C, 0q

is the underlying metrized quantum vector bundle for qvbpCpXq, H8, D8q and pHn, x¨, ¨yHn ,

C, 0q is that for qvbpCpXq, H8, D8q, metrical tunnels will be built using modular tunnels of

the form µn,ϵ. The previous lemma demonstrates there exists N3 P N such that if n ě N3,

then χpµn,ϵq ď ϵ
2 ă ϵ. Fix some choice of n ě N :“ N1 `N2 `N3. The pairing pµn,ϵ, τn,ϵ{4q

will be shown to be a metrical tunnel between qvbpCpXq, H8, D8q and qvbpCpXnq, Hn, Dnq.

To check the modular Leibniz inequality, recall that the Lip-norm properties of

Ln,ϵ{4 are specified on a dense subspace of sapAnq. Let pf, gq P CpXn,Rq ‘ CpX,Rq. Set

arbitrary choices of η P dompDNnq and ξ P dompDN8q. Then

DNn,ϵppf, gqpη, ξq “ DNn,ϵpfη, gξq “ max
!

DNnpfηq,DN8pgξq,
1

ϵ
||gξ ´ fη||H8

)

ď max
!

p||f ||CpXnq ` LDnpfqDNnpηq,

p||g||CpXq ` LD8
pgqqDN8pξq,

1

ϵ
||gξ ´ fη||H8

)

ď max
!

p||pf, gq||An ` Ln,ϵ{4pf, gqqDNn,ϵpη, ξq,

1

ϵ
||gξ ´ fη||H8

)

.
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Since Hn can be viewed as a subspace of H8, π8pgqη is well-defined. Let g|Xn denote the

restriction of g to Xn. In particular,

π8pgqη “ gη “ g|Xnη “ πnpg|Xnqη.

Consequently,

1

ϵ
||gξ ´ fη||H8

ď
1

ϵ

´

||gξ ´ gη||H8
` ||gη ´ fη||H8

¯

ď ||g||CpXq

´1

ϵ
||ξ ´ η||H8

¯

`
1

ϵ
|| g|Xnη ´ fη ||Hn

ď ||pf, gq||AnDNn,ϵpη, ξq `
1

ϵ
|| g|Xn ´ f ||CpXnq||η||Hn

ď ||pf, gq||AnDNn,ϵpη, ξq `
1

ϵ
|| g|Xn ´ f ||CpXnqDNn,ϵpη, ξq.

To show that 1
ϵ || g|Xn ´f ||CpXnq is bounded by Ln,ϵ{4pf, gq, let x be some point in Xn. Then

n ě N implies there exists v P Vn such that dnpx, vq ă ϵ
4 and d8px, vq ă ϵ

4 . Together with

the definition of Ln,ϵ{4, these inequalities yield

ˇ

ˇ

ˇ
g|Xnpxq ´ fpxq

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ
g|Xnpxq ´ g |Xnpvq

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
g|Xnpvq ´ fpvq

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
fpvq ´ fpxq

ˇ

ˇ

ˇ

ď dnpv, xqLdnpg|Xnq ` || g|n ´ f |n ||CpXnq ` dnpv, xqLdnpfq

ď dnpv, xqLd8
pgq ` || g|n ´ f |n ||CpXnq ` dnpv, xqLDnpfq

ă
ϵ

4
LD8

pgq `
ϵ

4
Ln,ϵ{4pf, gq `

ϵ

4
LDnpfq

ď
ϵ

4
Ln,ϵ{4pf, gq `

ϵ

4
Ln,ϵ{4pf, gq `

ϵ

4
Ln,ϵ{4pf, gq

ă ϵLn,ϵ{4pf, gq.

The Lip-norm belonging to τ and the D-norm component coming from µ therefore together

obey the modular Leibniz inequality.
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A metrical tunnel also includes left module morphisms. Because the representation

of An is as left multiplication operators on Hn ‘H8, pθn,Πnq and pθ8,Π8q are left module

morphisms. More precisely, πn and πθ are unital ˚-morphisms and Πn and Π8 are linear

maps such that for every pf, gq in An and every pη, ξq in Hn ‘H8,

Πnppf, gqpξ, ηqq “ Πnppfη, gξq “ fη “ θnpf, gqΠnpξ, ηq,

Π8ppf, gqpξ, ηqq “ Π8ppfη, gξq “ fη “ θ8pf, gqΠ8pξ, ηq.

Thus pHn‘H8, when viewed as a left An-module, encodes the left-CpXnq module structure

of Hn and the left-CpXq module structure of H8. Furthermore, pµn,ϵ, τn,ϵ{4q is a metrical

tunnel between qvbpCpXq, H8, D8q and qvbpCpXnq, Hn, Dnq. Recall from the calculation

of the dual propinquity between pCpXq, LD8
q and pCpXnq, LDnq that χpτn,ϵ{4q ă 3ϵ

4 . Con-

sequently,

Λ˚metpqvbpCpXq, H8, D8q, qvbpCpXnq, Hn, Dnqq ď χpµn,ϵ, τn,ϵ{4q “ maxtχpµn,ϵq, χpτn,ϵ{4qu

ď max
!

ϵ,
3ϵ

4

)

“ ϵ.

■

4.4 Metric Approximation of Lapidus-Sarhad Spectral Triples

For a metric spectral triple like the Lapidus-Sarhad spectral triple on a piecewise

C1-fractal curve, the action of the Dirac operator on the Hilbert space can be captured by

approximations in the spectral propinquity. These approximating spectral triples will be

metric spectral triples defined on finite sub-graphs of the piecewise C1-fractal curve. This

sequence of finite sub-graphs also converges to the piecewise C1-fractal curve in the Haus-
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dorff distance. The corresponding Lapidus-Sarhad spectral triples will be shown to also

converge in the spectral propinquity to the Lapidus-Sarhad spectral triple on the piece-

wise C1-fractal curve when that sequence of finite graphs exhibits the geometric properties

encoded in the definition of an approximation sequence for that fractal curve.

Theorem 31. Let X be a piecewise C1-fractal curve with parameterization pRjqjPN. If

there exists an approximation sequence Bpnq of X compatible with this parameterization,

then

ΛspecnÑ8p pCpXq, H8, D8q, pCpXnq, Hn, Dnq q “ 0.

Proof. Bounds on the spectral propinquity between two metric spectral triples

can be obtained via the construction of ϵ-covariant metrical tunnels. To build an ϵ-

covariant metrical tunnel between pCpXq, H8, D8 and pCpXnq, Hn, Dnq, choose an ϵ ą 0.

As shown in the calcuation of the metrical propinquity between qvbpCpXq, H8, D8q and

qvbpCpXnq, Hn, Dnq, there exists N P N such that if n ě N , then χpµn,ϵ, τn,ϵ{4q ď ϵ. An ϵ-

covariant metrical tunnel between pCpXq, H8, D8q and pCpXnq, Hn, Dnq can be built from

a metrical tunnel between qvbpCpXq, H8, D8 and qvbpCpXnq, Hn, Dnq if there exists an

ϵ ´ iso ´ iso from R to R. Consider pidR, idRq as a candidate for such a map. For every

x, y, z P

”

1
ϵ ,

1
ϵ

ı

,

ˇ

ˇ

ˇ
|idRpxq ` idRpyq ´ z| ´ |px` yq ´ idRpzq|

ˇ

ˇ

ˇ
ď ϵ.

Moreover, idRp0q “ idRp0q “ 0. Thus pµn,ϵ, τn,ϵ{4, idR, idRq is an ϵ-covariant metrical tunnel

between pCpXq, H8, D8q and pCpXnq, Hn, Dnq. Moreover, pµn,ϵ, idR, idRq is an ϵ-covariant

tunnel. For every n P N Y 8 and each t P R, let

Unptq “ exppitDnq.
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Then the ϵ-covariant modular reach of pµn,ϵ, idR, idRq is given by

ρmppµn,ϵ, idR, idRqq “ max
tj,kuPtn,8u

sup
ωPHj ,DNjpωqď1

inf
ω1PHk,DNkpω1qď1

sup
|t|ď 1

ε

sup
pη,ξqPHn‘H8, DNn,ϵpη,ξqď1

ˇ

ˇ

ˇ
xUjptqη,Πjpω, ω

1qyHj ´ xUkptqξ,Πkpω, ω1qyHk

ˇ

ˇ

ˇ
.

To bound ρmppµn,ϵ, idR, idRqq, recall that Hn can be viewed as a subspace of H8. Then for

every η P Hn, Dnη “ D8η. In particular, Unptqη “ U8ptqη. Furthermore, DNnpωq ď 1

implies DN8pωq ď 1. Thus for every pη, ξq P Hn ‘H8 with DNn,ϵpη, ξq ď 1,

ˇ

ˇ

ˇ
xUnptqη,Πnpω, ωqyHn ´ xU8ptqξ,Π8pω, ωqyH8

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ
xUnptqη,Πnpω, ωqyH8

´ xU8ptqξ,Π8pω, ωqyH8

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ
xUnptqη, ωyH8

´ xU8ptqξ, ωyH8

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ
xUnptqη ´ U8ptqξ, ωyH8

ˇ

ˇ

ˇ

ď ||Unptqη ´ U8ptqξ ||H8
||ω||H8

ď ||Unptqη ´ U8ptqξ ||H8

ď ||Unptqη ´ U8ptqη ||H8
` ||U8ptqη ´ U8ptqξ ||H8

ď ||U8ptqη ´ U8ptqη ||H8
` ||U8ptqη ´ U8ptqξ ||H8

ď 0 ` || η ´ ξ ||H8

ď ϵDNn,ϵpη, ξq ď ϵ,

where the first inequality follows from the Cauchy Schwartz Inequality and the second

inequality from the choice of the graph norm of the Dirac operator as the D-norm. Conse-
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quently,

ϱp pµn,ϵ, τn,ϵ{4, idR, idRq q “ max
!

χpτn,ϵ{4q, χpµn,ϵq, ρmppµ, idR, idRqq

)

“

!

χpτn,ϵ{4, µn,ϵq, ρmppµn,ϵ, idR, idRqq

)

ď max
!

ϵ, ϵ
)

“ ϵ.

Hence

Λspecp pCpXq, H8, D8q, pCpXnq, Hn, Dnq q ď ϵ,

as desired. ■

Recall that the Dirac operator defines the geometry of a Riemannian manifold.

Since the spectral propinquity between two metric spectral triples with unitarily equivalent

Dirac operators is trivial, this metric gives a notion of closeness for the actions of these

operators on their respective Hilbert spaces. Therefore, if two metric spectral triples on a

fractal curve are “close” for the spectral propinquity, then the two geometries determined

on the fractal curve by these two metric spectral triples can also be viewed as “close.”
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Chapter 5

Conclusions

As the context for the construction of spectral triples, Lapidus and Sarhad’s piece-

wise C1-fractal curve framework is a crucial step towards the development of differential

structures on fractals beyond the prototypical settings of the Sierpinski gasket and the

harmonic gasket. As detailed in [41] and in this thesis, the application of the spectral

propinquity to the metric approximation of Lapidus-Sarhad spectral triples is an important

test case for demonstrating the possibility of combining elements from both noncommuta-

tive metric geometry and noncommutative Riemanninan geometry to the study of fractals.

With a metric on spectral triples in hand, a natural direction for future work would be

identification and study of a class of almost piecewise C1-fractal curves for which the same

construction yields a spectral triple. Although the stretched Sierpinski gasket is not a piece-

wise C1-fractal curve, Andrea Arauza Rivera demonstrated in [38] that the Lapidus-Sarhad

construction gives a spectral triple that recovers the geodesic distance. In [39], Patricia

Alonso Ruiz and Uta Freiburg show that the stretched Sierpinski gasket converges to the
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Sierpinski gasket for the Hausdorff distance when its defining parameter goes to zero. Com-

parison via the spectral propinquity of Lapidus-Sarhad spectral triples on both SG and

SGα for various value of α could yield insights about how to extend this spectral triple

construction or build other spectral triples on other types of fractals. Such work could

also inform the definition and study of generalized notions of manifolds that include fractal

spaces.

Perceiving fractals through the lens of noncommutative geometry can lead to new

expressions of the geometry of a fractal. Because of Gelfand duality, any homeomorphism

invariant of the compact Hausdorff X can be reframed as an algebraic invariant of the C˚-

algebra CpXq. For example, X is a totally disconnected compact metric space if and only

if CpXq is a unital commutative approximately finite dimensional algebra. Furthermore,

C˚-algebras within the framework of this duality remain to be identified for other fractals

like the Sierpinski gasket. Such an investigation could therefore begin to form the basis for

a classification program of C˚-algebras on fractal spaces. Another avenue for exploration

would be to study fractals through C˚-algebras that arise in dynamical settings. Since

symbolic dynamics is an important tool for studying fractal sets, C˚-symbolic dynamical

systems could be useful in the definition and study of noncommutative fractals. Since

some fractals can be viewed as infinite graphs with self-similarity conditions and higher-

rank graphs are a generalization of directed graphs, C˚-algebras associated to higher-rank

graphs could be another promising source of noncommutative fractality.

Progress in noncommutative fractal geometry can lead to new insights about frac-

tality. Expanding the formalism of fractal geometry to include the mathematical language
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of quantum theory would also give both mathematicians and physicists the tools to gain

insights about quantum behaviors in solids and any new materials made possible by these

phenomena. The 2016 Nobel Prize in Physics was awarded for work on Hofstadter’s but-

terfly [13], which is a fractal that describes for theoretical condensed matter physicists the

allowed energy levels for electrons confined to a crystalline atomic lattice as a function of

the magnetic field applied to the system. Since many questions in noncommutative geom-

etry are motivated by problems in quantum mechanics, the emergence of fractal patterns

at the quantum level necessitates theoretical advances in both fractal geometry and non-

commutative geometry. Development of a noncommutative fractal geometry is motivated

by the exploration of new ways to describe, understand, and even define fractals. Since

the dual Gromov-Hausdorff propinquity metric and its extensions are defined on various

classes of noncommutative C˚-algebras, a closed class of quantum compact metric spaces

or a complete class of metric spectral triples could be equipped with a finite collection of

maps that are contractions for the corresponding propinquity metric. An advancement in

this direction would then allow us to detect and examine examples of fractality that can

only arise in a quantum setting. Given the wealth of natural phenomena where fractality

has been observed, research in noncommutative fractal geometry enhances our ability to

continue to meet new scientific and industrial challenges.
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