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Abstract

Recent progress in artificial intelligence has renewed interest in
building machines that learn like animals. Almost all of the
work comparing learning across biological and artificial systems
comes from studies where animals and machines received
different training data, obscuring whether differences between
animals and machines emerged from differences in learning
mechanisms versus training data. We present an experimental
approach—a “newborn embodied Turing Test”—that allows
newborn animals and machines to be raised in the same
environments and tested with the same tasks, permitting direct
comparison of their learning abilities. To make this platform, we
first collected controlled-rearing data from newborn chicks, then
performed “digital twin” experiments in which machines were
raised in virtual environments that mimicked the rearing
conditions of the chicks. We found that (1) machines (deep
reinforcement learning agents with intrinsic motivation) can
spontaneously develop visually guided preference behavior, akin
to imprinting in newborn chicks, and (2) machines are still far
from newborn-level performance on object recognition tasks.
Almost all of the chicks developed view-invariant object
recognition, whereas the machines tended to develop
view-dependent recognition. The learning outcomes were also
far more constrained in the chicks versus machines. Ultimately,
we anticipate that this approach will help researchers develop
embodied Al systems that learn like newborn animals.

Keywords: development; object recognition; Turing test;
controlled rearing; newborn; reverse engineering; chick

Introduction

Since the birth of artificial intelligence (AI), scientists
have attempted to build machines that can learn like
biological systems. Early Al research laid the foundation for
biologically inspired, neurally mechanistic models, and
recent progress in deep learning has renewed interest in
building scalable Al systems that learn like animals. For
instance, a new ‘reverse engineering” paradigm in
computational neuroscience involves comparing neural and
behavioral measurements across animals and artificial
systems performing the same tasks. Reverse engineering has
revolutionized our algorithmic understanding of vision
(Yamins & DiCarlo, 2016), audition (Kell et al., 2018),
olfaction (Wang et al., 2021), and visually-guided action
(Michaels et al, 2020), while also informing our
understanding of higher-level cognitive abilities—including
language (Schrimpf et al., 2021), navigation (Whittington et
al., 2022), and memory (Nayebi et al., 2021).

Ultimately, how will we know when we have succeeded
in building machines that learn like animals? To address this
question, we argue that an experimental platform must have
two core features: (1) the animals and machines must be
raised in the same environments; (2) the animals and

machines must be tested with the same tasks. The first
requirement follows from the observation that behavior
depends both on the learning mechanisms and the fraining
data on which the mechanisms operate. Any observed
differences in behavior across animals and machines could
be due to differences in learning mechanisms, training data,
or some combination of the two. Thus, evaluating whether
machines learn like animals requires giving machines the
same training data (experiences) as animals. The second
requirement follows from the observation that evaluations of
intelligence and learning are task-dependent. Accordingly,
biological and artificial systems must be evaluated with the
same tasks to ensure that any observed differences are not
due to differences in the tasks themselves.

While these two requirements may seem straightforward,
building an experimental platform that meets both
requirements has not previously been possible. Controlling
the training data across animals and machines requires
performing parallel controlled-rearing experiments on
animals and machines. However, most newborn animals
cannot be raised in controlled environments from birth,
preventing researchers from controlling the training data
presented to animals. Accurate comparison between animals
and machines also requires measurements with a high
signal-to-noise ratio, where a subject’s behavior in response
to a particular stimulus (e.g., an image) can be reliably
estimated. However, most prior controlled-rearing studies
collected data with a low signal-to-noise ratio and focused
on group-level analyses across coarse experimental
conditions. As a result, the field lacked the high-precision
data needed to make accurate comparisons across newborn
animals and machines. Finally, the field lacked an
experimental platform for raising machines in the same
environments as newborn animals, preventing researchers
from matching the training data across biological and
artificial systems.

Here we present an experimental approach that overcomes
these barriers, allowing newborn animals and machines to
be raised in the same environments and tested with the same
tasks (Figure 1). We used newborn chicks as a model system
because they are mobile on the first day of life and can be
raised in strictly controlled environments from the onset of
vision (Wood & Wood, 2015). As a starting point, we
focused on building machines that can mimic the imprinting
behavior of newborn chicks. We focused on imprinting
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Figure 1. Experimental approach for comparing the learning abilities of newborn chicks and machines. The animals and
machines are raised in the same visual environments and tested with the same tasks. This “newborn embodied Turing test”
evaluates whether animals and machines develop the same visual behaviors when provided with the same training data.

because (a) it is one of the earliest forms of visual learning
that can be studied with high precision in a biological
system (Wood & Wood, 2015), (b) it produces powerful
(invariant) representations that support object recognition
across new viewing situations (Wood, 2013; Wood & Wood,
2021), and (c) it emerges spontaneously during an animal’s
early interactions with the world, driven by self-organized
learning mechanisms. There is growing demand in Al for
self-organizing systems that can learn from sparse data.
Imprinting is therefore a promising target for reverse
engineering the development of visual intelligence in
embodied systems.

In this paper, we tested whether machines can mimic the
imprinting and object recognition behavior of newborn
chicks. Specifically, we focused on the controlled-rearing
experiments from Wood (2013). Wood raised newborn
chicks in controlled visual environments containing a single
virtual object, then measured the chicks’ imprinting
response and view-invariant recognition performance. To
obtain data with a high signal-to-noise ratio, Wood (2013)
used an automated controlled-rearing method that measured
the chicks’ behavior continuously (24/7). In the current
study, we created digital twins (virtual environments) of the
animal chambers in a video game engine and raised
autonomous machines in those virtual chambers. By raising
animals and machines in the same visual environments, we
could measure whether they spontaneously develop

common visually guided behaviors. We compared newborn

chicks and machines on two measures:

e Object Preference Behavior. To mimic the chicks, the
machines should develop a preference for the imprinted
object, without any explicit rewards or supervision. The
machines must also develop knowledge of their location
and direction in space (ego-motion), so that they can
navigate to their imprinted (preferred) object.

e Object Recognition Behavior. To mimic the chicks, the
machines should learn to recognize the imprinted object
across novel views (Figure 2). This requires learning
view-invariant object features in impoverished visual
environments containing a single object seen from a
limited range of views, using a purely self-supervised
learning strategy (i.c., no supervised labels or rewards).

Animal Experiments

In the study, chicks were hatched in darkness, then raised
singly in automated controlled-rearing chambers for the first
two weeks of life. The chambers contained two display
walls (LCD monitors) for displaying object stimuli (Figure
1). The chambers did not contain any objects other than the
virtual objects projected on the display walls. Thus, the
chambers provided full control over all visual object
experiences available to the chicks from the onset of vision.
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During the Training Phase, the chicks were reared with a
single 3-D object rotating through a 60° viewpoint range.
The object rocked back and forth every 6s. The chicks were
reared with one of two possible objects, and the object was
presented from a front or side viewpoint range (Figure 3A).
The chicks were raised in this environment for one week,
allowing the critical period on filial imprinting to close.

During the Test Phase, the chambers measured the chicks’
imprinting response and object recognition performance.
The “imprinting trials” measured whether the chicks
developed an imprinting response. During these trials, the
imprinting stimulus was presented on one display wall and
the other display wall was blank. If the chicks developed an
imprinting response, then they should have spent more time
by the display wall showing the imprinting stimulus than the
blank display wall. The “test trials” measured the chicks’
view-invariant recognition performance. During these trials,
the imprinted object was presented on one display wall and
an unfamiliar object was presented on the other display
wall. Across trials, the imprinted object was presented from
12 viewpoint ranges (11 novel, 1 familiar). Conversely, the
unfamiliar object (which was the same size and color as the
imprinted object) was presented from the same viewpoint
range as the imprinted object from the input phase (for
details see Wood, 2013). Consequently, on most of the test
trials, the unfamiliar object was more similar to the
imprinting stimulus than the imprinted object was to the
imprinting stimulus (from a pixel-wise perspective). To
recognize their imprinted object, the chicks therefore needed
to generalize across large, novel, and complex changes in
the object’s appearance. This meets a reasonable operational
definition of “invariant object recognition” established with
mature animals (Zoccolan et al.,, 2009). If the chicks
developed view-invariant recognition, then they should have
spent more time by the display wall showing the imprinted
object than the display wall showing the unfamiliar object.

Table 1: Hyperparameters

Policy Network (PPO) Intrinsic Motivation Networks

vis_encode_type: 2 convolutional layers  vis_encode_type: 2 convolutional layers
num_layers: 2

hidden_units: 128

num_layers: 2
hidden_units: 128

learning_rate: 0.0003 learning_rate: 0.0003

batch_size: 500 strength: 1.0
buffer_size: 2048 gamma: 0.99
beta: 0.01

epsilon: 0.2

lambda: 0.95

learning_rate schedule: linear

max_steps: 1000000

Machine Experiments

Our primary goal was to raise and test animals and
machines under parallel conditions. This required (1)
machines that can learn from raw sensory inputs and
perform actions, akin to real animals, and (2) virtual
environments for machines that mimic the visual
environments of the chicks.

Pixels-to-Actions Machines. Newborn animals learn
from raw sensory inputs and perform actions, driven by
self-supervised learning objectives. Thus, to directly
compare animals and machines, we used ‘pixels-to-actions’
machines that learn from raw sensory inputs and perform
actions, driven by self-supervised learning objectives (e.g.,
intrinsic motivation).

We created the machines by embodying self-supervised
learning algorithms (Figure 3D) in virtual bodies. Each body
measured 3.5 units (height) by 1.2 units length (radius) and
received visual input (96x96 pixel resolution images)
through an invisible forward-facing camera attached to its
head. The machines could move forward or backwards,
rotate left or right, or remain stationary. The actions were
represented as a pair of discrete variables: translation
forward/backward and rotation around the vertical axis.

As a starting point, we built the machine brains using a
simple 2-layer convolutional visual encoder and a standard
reinforcement  learning  system: Proximal  Policy
Optimization (PPO; Schulman et al., 2017). During the
Training Phase, the PPO algorithm was optimized for
rewards generated by one of three intrinsic motivation
algorithms: Intrinsic Curiosity (Pathak et al., 2017),
Random Network Distillation (Burda et al., 2018), or
Contrastive Curiosity (Nguyen et al., 2021) adapted from
the SImCLR learning algorithm (Chen et al., 2020). Each
algorithm takes batches of inputs and produces rewards. The
batch and reward are then used to train the PPO network.

All three of the intrinsic motivation algorithms produced
rewards based on the “novelty” of the input, with more
unique inputs generating greater rewards. The Intrinsic
Curiosity algorithm generated rewards based on the
machine’s ability to predict the next state given the current
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Figure 3. (A) The imprinting stimuli presented to the chicks and machines in the four rearing conditions. The object
rocked back and forth through a 60° viewpoint range. (B) Imprinting performance of the chicks and machines. Mean chick
performance is shown as a red line with a “noise band” (red band) reflecting the average deviation of the chicks from the
mean chick performance. Mean machine performance is shown in the bars with standard error across machines. Mean
performance of individual machines is shown as dots (the mean standard error for individual machines was 7% for
imprinting and 3% for object recognition). If the machines developed similar learning outcomes as the chicks, then the
mean machine behavior should fall within the noise band. There was a large gap between the imprinting performance of
the chicks and machines. (C) Object recognition performance of the chicks and machines. For three of the four rearing
conditions, there was a large gap between the object recognition performance of the chicks and machines. (D) Architecture
of the Intrinsic Curiosity PPO learning algorithm. The blue boxes denote visual encoders (CNNs), the green box denotes
the curiosity module (intrinsic reward), and the red box denotes the policy network used to select actions.

state and action. The Random Network Distillation
algorithm generated rewards based on whether the machine
could predict the embedding generated by an input in a
random network. And the Contrastive Curiosity algorithm
generated rewards based on the distance (in the embedding
space) between current inputs and prior inputs, using a
contrastive learning scheme. We created our agents using
Unity ML-Agents Toolkit v. 2.10.1 (Juliani et al., 2018).
Virtual Environments for Machines. To simulate the
visual environments of the chicks in Wood (2013), we raised
(trained) the machines in realistic digital twins of the
controlled-rearing chambers, using a video game engine
(Unity 3D; Figure 1). We then tested the machines in the
virtual chambers, presenting the same stimuli and tasks to
the machines that were presented to the chicks. For each of
the four rearing conditions in Wood (2013), we trained and
tested 26 machine subjects for each intrinsic motivation
algorithm. All machines had the same network architecture:
2-layer CNN connected to a multilayer perceptron (see
Table 1 for hyperparameters). However, each machine’s
neural network started with a different random initialization
of connection weights, and each machine’s connection
weights were updated based on its own particular
experiences during the Training Phase. Like chicks, the
machines received no external rewards from the

environment. The actions were motivated entirely by the
rewards from their intrinsic motivation algorithm.

At the beginning of each training episode, the machines
were spawned at a random position and orientation within
the chamber. The training episodes lasted 1,000 time steps.
We trained the machines for 1,000 episodes. The machines
were trained to optimize the sum of their intrinsic
motivation reward using PPO.

After the Training Phase, the network weights were
frozen for the Test Phase (i.e., the machines did not receive
any rewards during the Test Phase, and learning was
discontinued). This freezing mimics the critical period of
filial imprinting in chicks, in which chicks stop learning
about their imprinted object after the first few days of life.
Each machine performed 480 test trials (40 trials for each of
the 12 viewpoint ranges presented to the chicks). Each test
trial consisted of 1,000 time steps. At every time step, we
recorded the position of the machine in X,Y coordinates. As
with the chicks, we measured whether the machines spent a
greater proportion of time with the imprinted object than the
unfamiliar object. Since we only considered position and not
head orientation in our measure, we also confirmed that the
agents tended to look where they moved by analyzing the
difference between their head orientation and movement
direction. All three of the algorithms tended to look where
they moved.
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Results

Imprinting results. Figure 3B shows chick and machine
performance on the imprinting trials. On the group level, the
chicks spent significantly more time by the imprinting
stimulus than the blank screen (M = 88%, SD = 7%, #(22) =
25.74, p < .0001). On the individual level, all of the chicks
successfully learned to imprint (range 72% to 97%, chance
performance = 50%).

Likewise, on the group level, the machines spent
significantly more time by the imprinting stimulus than the
blank screen (all machines: M = 59%, SD = 17%, #(311) =
9.22, p < .0001; Contrastive Curiosity: M = 50%, SD =
15%, #(103) = 0.13, p = .90; Intrinsic Curiosity: M = 67%,
SD = 15%, #(103) = 11.41, p < .0001; Random Network
Distillation: M = 59%, SD = 16%, #(103) =5.93, p <.0001).
Some of the machines developed an imprinting response,
spontaneously learning to seek out the imprinting stimulus.
However, on the individual level, imprinting was far less
robust in the machines compared to the chicks. While 100%
of the chicks learned to imprint, only a minority (37%) of
the machines learned to imprint. Some intrinsic motivation
algorithms produced imprinting behavior more often than
others, but no algorithm produced consistent imprinting. In
all cases, the machines developed markedly different
imprinting responses from one another, despite the machines
starting with the same learning mechanisms and learning in
the same visual environment. In contrast, the newborn
chicks universally developed robust imprinting behavior,
indicating that there is more variation in the development of
machines versus animals.

Object recognition results. Figure 3C shows overall
chick and machine performance on the test trials. The large
majority of chicks (87%) developed view-invariant object
recognition (Ps < .05), successfully recognizing their
imprinted object across novel views. Thus, newborn chicks
can learn to recognize objects across large, novel, and
complex changes in the object’s appearance (Wood, 2013).
A small handful of the machines (5%) also developed
view-invariant recognition, demonstrating that it is possible
for machines to learn the same task as newborn chicks.
However, it was more common (21%) for the machines to
develop view-dependent recognition, favoring the novel
object presented on the test trials (which was a closer match
to the imprinting stimulus from a pixel-level perspective).
To visualize the recognition differences between the chicks
and machines across the 12 viewpoint ranges, we plotted a
t-SNE embedding (Hinton & Roweis, 2002). The t-SNE
algorithm revealed substantial differences in learning
outcomes across chicks and machines (Figure 4). The chicks
(red dots) were largely clustered in the same part of the
space, indicating that chicks developed similar recognition
behavior as one another. Conversely, all three of the
machine-learning algorithms (blue dots) generated highly
variable recognition performance, highlighting the
considerable gap in object recognition behavior across the
animals and machines.

Animal-Machine Performance Gap. To quantify the gap
in performance between the chicks and machines, we
computed a “noise band” around the mean performance of
the chicks (Figures 3B & 3C). The noise band reflects the
average deviation of the chicks from mean chick
performance. This defines a clear noise ceiling to judge
prediction accuracy (Cao & Yamins, 2021). Noise ceilings
capture the idea that the accuracy of a machine in predicting
chick behavior can only be as good as the accuracy of a
chick in predicting chick behavior (e.g., due to measurement
error and individual differences across chicks). If average
machine performance reaches the noise band, then the
machines can be said to be “predictively adequate” of chick
development (i.e., the learning algorithms in machines
generate similar learning outcomes as the learning
algorithms in chicks). This was not the case: there were
large gaps in imprinting and object recognition performance
across the chicks and machines.

Discussion

We performed digital twin experiments, in which
newborn chicks and machines were raised and tested in the
same visual environments. This approach permits direct
comparison of whether animals and machines learn the
same behaviors when provided with the same experiences
(training data). In this paper, we explored whether
self-supervised machines can spontaneously learn visual
preferences (i.e., imprinting) and view-invariant object
recognition, mimicking the early emerging behaviors of
newborn chicks.

We found that imprinting can emerge in deep
reinforcement learning machines equipped with intrinsic
motivation. However, unlike newborn chicks, only a subset
of the machines successfully imprinted. Object recognition
performance also differed significantly across the chicks and
machines. A large majority of the chicks developed
view-invariant recognition, successfully recognizing their
imprinted object across large, novel, and complex changes
in the object’s appearance. In contrast, many of the
machines developed view-dependent recognition, preferring
the visual stimulus that was the closest match (from a
pixel-level perspective) to the imprinting stimulus. These
results indicate that while deep reinforcement learning and
intrinsic  motivation are sufficient for developing
rudimentary forms of imprinting and object recognition, a
large gap still exists between the visual learning abilities of
newborn chicks and machines.

How might we close this gap? Prior work shows that
artificial visual systems (self-supervised CNNs like the
visual encoders we used here) can successfully learn
view-invariant object features in these visual environments
(Lee, Pak, & Wood, 2021; Lee, Gujarathi, & Wood, 2021).
This finding suggests that the CNN ‘front-end’ (visual
system) of our agents is not the cause of this performance
gap. We suspect that closing the gap between animals and
machines will require innovations on the ‘back end’ of the
algorithm (e.g., dynamical processes related to memory,

29383
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Figure 4. Two-dimensional t-SNE embedding of the
object recognition behavior across the chicks (red dots)
and machines (blue dots). Recognition behavior was
measured in a 12-dimensional space, with each
dimension reflecting the agent’s performance on one of
the 12 viewpoint ranges. The machines developed a wide
variety of object recognition behaviors, despite having
identical neural architectures. Conversely, the chicks
developed common object recognition behavior, with
most of the chicks developing view-invariant object
recognition. These results indicate that the learning
mechanisms in newborn chicks, but not those in the
machines, constrain visual learning to adaptive parts of
the parameter space.

decision making, action, and agency). Our experimental
approach should be useful for exploring these possibilities,
enabling researchers to systematically test whether Al
algorithms can learn visually-guided behaviors as rapidly
and efficiently as newborn chicks. For example, researchers
might explore how different architectures, objective
functions, and learning rules perform on this task (Richards
et al.,, 2019). Since our approach focuses on embodied
agents, researchers might also explore how changes in
embodiment (e.g., action space, morphology, sensor types)
and learning dynamics (e.g., type of intrinsic motivation,
metabolic pressures, network dynamics, lifelong learning)
influence the behaviors learned by machines.

These results also suggest that reverse engineering
newborn intelligence will require comparing the variation of
learning outcomes produced by biological versus artificial
systems. The biological algorithms produced view-invariant
learning outcomes in most (87%) of the chicks, whereas the
artificial algorithms produced view-invariant learning
outcomes in a small fraction (5%) of the machines. Thus,
the learning outcomes were far more constrained in the
chicks versus machines (Figure 4). We emphasize that the
machines developed a wide variety of behaviors despite (1)
having identical neural architectures and (2) being raised in
the same simple visual environments (i.e., environments
with four white walls and a single virtual object). We
speculate that a core signature of biological intelligence is
that it contains developmental programs that produce
constrained learning outcomes in populations of agents.

Reverse engineering embodied learning systems. Our
general contribution is to introduce an experimental

approach for reverse engineering visual intelligence in a
newborn model system. This approach has much in common
with the reverse-engineering approach that revolutionized
the neuroscience of perception, including a reliance on
precise (high signal-to-noise ratio) data from biological
systems and a shared goal of building neurally mechanistic,
image computable models of visual intelligence (Schrimpf
et al., 2020). While we did not focus on internal (neural)
measurements here, future research could expand this digital
twin approach to include neural measurements from
newborn animals.

Our approach also prioritizes different dimensions of the
reverse-engineering problem. We focus on newborn animals
(rather than mature animals) in order to study the core
learning mechanisms that power visual intelligence. We
focus on controlled rearing (rather than animals raised in
natural worlds) in order to understand how core learning
mechanisms and visual experience interact to produce visual
intelligence. And we focus on embodied (rather than
disembodied) Al systems, embracing the possibility that
much of visual intelligence might emerge from an agent’s
interactions with the world, allowing learning systems to
ground knowledge in real-world experiences and interact
with the environment in purposeful ways. Our approach thus
extends the call from a large group of scientists arguing for
“embodied Turing tests” that involve benchmarking and
comparing how animals versus machines learn and interact
with the world (Zador et al., 2023).

Conclusion

We have shown how advances from diverse fields can be
linked for comparing newborn animals and machines
side-by-side in the same learning settings: (1) automated
controlled rearing allows precise data to be collected from
newborn animals; (2) video game engines allow machines to
be raised in realistic visual environments; (3) Al provides
scalable and embodied (pixels-to-actions) learning systems;
and (4) computational neuroscience offers a reverse
engineering framework for interpreting parallel studies of
biological and artificial systems. By combining advances
across fields, we can explore which learning mechanisms
are necessary and sufficient to mimic the powerful and
flexible learning capacities of newborn animals.

Ultimately, we anticipate that a machine with the same
learning mechanisms (brain and body) and training data
(environment) as newborn chicks should pass this newborn
embodied Turing test, developing the same visual
preferences and object recognition abilities as newborn
chicks. Our hope is that this approach will empower
researchers to build machines (and engineering-level
scientific models) that learn like newborn animals.

Acknowledgments
Funded by NSF CAREER Grant BCS-1351892 and a James
S. McDonnell Foundation Understanding Human Cognition
Scholar Award.

2984



References

Burda, Y., Edwards, H., Storkey, A.J., & Klimov, O. (2018).
Exploration by Random Network Distillation. arXiv,
abs/1810.12894.

Cao, R., & Yamins, D.L. (2021). Explanatory models in
neuroscience: Part 1 - taking mechanistic abstraction
seriously. arXiv, abs/2104.01490.

Chen, T., Kornblith, S., Norouzi, M., & Hinton, G.E.
(2020). A simple framework for contrastive learning of
visual representations. arXiv, abs/2002.05709.

Hinton, G.E., & Roweis, S.T. (2002). Stochastic neighbor
embedding. Advances in Neural Information Processing
Systems 15.

Juliani, A., Berges, V. P, Teng, E., Cohen, A., Harper, J.,
Elion, C., ... & Lange, D. (2018). Unity: A general
platform for intelligent agents. arXiv, arXiv:1809.02627.

Kell AJE, Yamins DLK, Shook EN, Norman-Haignere SV,
McDermott JH. (2018). A task-optimized neural network
replicates human auditory behavior, predicts brain
responses, and reveals a cortical processing hierarchy.
Neuron, 98(3):630-644.¢16.

Lee, D., Gujarathi, P, & Wood, J. N. (2021).
Controlled-rearing studies of newborn chicks and deep
neural networks. arXiv, arXiv:2112.06106.

Lee, D., Pak, D., & Wood, J.N. (2021). Modeling object
recognition in newborn chicks using deep neural
networks. arXiv, abs/2106.07185.

Michaels, J. A., Schaffelhofer, S., Agudelo-Toro, A., &
Scherberger, H. (2020). A goal-driven modular neural
network predicts parietofrontal neural dynamics during
grasping. Proceedings of the National Academy of
Sciences, 117(50), 32124-32135.

Nayebi, A., Attinger, A., Campbell, M., Hardcastle, K.,
Low, I, Mallory, C. S., ... & Yamins, D. (2021).
Explaining heterogeneity in medial entorhinal cortex with
task-driven neural networks. Advances in Neural
Information Processing Systems, 34, 12167-12179.

Nguyen, T., Luu, TM., Vu, T., & Yoo, C.D. (2021).
Sample-efficient Reinforcement Learning Representation
Learning with Curiosity Contrastive Forward Dynamics
Model. IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 3471-3477.

Pathak, D., Agrawal, P., Efros, A. A., & Darrell, T. (2017).
Curiosity-driven  exploration by  self-supervised
prediction.  International —Conference on Machine
Learning, 2778-2787.

Richards, B. A., Lillicrap, T. P., Beaudoin, P., Bengio, Y.,
Bogacz, R., Christensen, A., ... & Kording, K. P. (2019).
A deep learning framework for neuroscience. Nature
Neuroscience, 22(11), 1761-1770.

Schulman, J.,, Wolski, F., Dhariwal, P., Radford, A., &
Klimov, O. (2017). Proximal policy optimization
algorithms. arXiv, arXiv:1707.06347.

Schrimpf, M., Blank, I. A., Tuckute, G., Kauf, C., Hosseini,
E. A., Kanwisher, N., ... & Fedorenko, E. (2021). The
neural architecture of language: Integrative modeling

2985

converges on predictive processing. Proceedings of the
National Academy of Sciences, 118(45), €2105646118.

Schrimpf, M., Kubilius, J., Lee, M. J., Murty, N. A. R,
Ajemian, R., & DiCarlo, J. J. (2020). Integrative
benchmarking to advance neurally mechanistic models of
human intelligence. Neuron, 108(3), 413-423.

Wang PY, Sun Y, Axel R, Abbott LF, Yang GR. (2021).
Evolving the olfactory system with machine learning.
Neuron, 109(23):3879-3892.¢e5.

Whittington, J.C.R., McCaffary, D., Bakermans, J.J.W. et al.
(2022). How to build a cognitive map. Nature
Neuroscience 25, 1257-1272.

Wood, J. N. (2013). Newborn chickens generate invariant
object representations at the onset of visual object
experience. Proceedings of the National Academy of
Sciences, 110(34), 14000-14005.

Wood, S. M., & Wood, J. N. (2015). A chicken model for
studying the emergence of invariant object recognition.
Frontiers in Neural Circuits, 9, 7.

Wood, S. M., & Wood, J. N. (2021). One-shot object parsing
in newborn chicks. Journal of Experimental Psychology:
General, 150(11), 2408.

Yamins, D., DiCarlo, J. (2016). Using goal-driven deep
learning models to understand sensory cortex. Nature
Neuroscience, 19, 356-365.

Zador, A., Escola, S., Richards, B. et al. (2023). Catalyzing
next-generation Artificial Intelligence through NeuroAl.
Nature Communication, 14, 1597.

Zoccolan, D., Oertelt, N., DiCarlo, J. J., & Cox, D. D.
(2009). A rodent model for the study of invariant visual
object recognition. Proceedings of the National Academy
of Sciences, 106(21), 8748-8753.





