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nonlinear optical
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Abstract. Advancing the practical utility of nonlinear opti-
cal microscopy requires continued improvement in imag-
ing depth and contrast. We evaluated second-harmonic
generation (SHG) and third-harmonic generation images
from ex vivo human skin and showed that a sub-40 fs,
1060-nm Yb-fiber laser can enhance SHG penetration
depth by up to 80% compared to a >100 fs, 800 nm Ti:sap-
phire source. These results demonstrate the potential of
fiber-based laser systems to address a key performance
limitation related to nonlinear optical microscopy (NLOM)
technology while providing a low-barrier-to-access alterna-
tive to Ti:sapphire sources that could help accelerate the
movement of NLOM into clinical practice. © The Authors.
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In vivo, label-free nonlinear optical microscopy (NLOM) of
human skin is under investigation for a broad range of
clinical applications spanning from skin cancer detection and
diagnosis1–4 to characterizing and understanding keratinocyte
metabolism,5 skin aging,6,7 pigment biology,8,9 and cosmetic
treatments.10–12 NLOM signals are derived from several sources
including cellular cofactors, melanin, and extracellular matrix
proteins. Although exceptionally rich in both anatomic and
functional contrast, NLOM has relatively limited penetration
depth in turbid materials. This is due to the fact that multiple

light scattering diminishes the instantaneous excitation intensity
and nonlinear signal generation in the focused laser beam. As
a result, there is considerable interest in exploring how light
source performance can be optimized to improve imaging depth.
Ti:sapphire lasers, commonly used in NLOM imaging, are gen-
erally able to access the superficial dermis of human skin to
depths of 150 to 200 μm. Penetration depth primarily depends
on the material scattering length at the excitation wavelength,
the efficiency of the nonlinear excitation process, the excitation
average power, repetition rate, pulse width, and the detection
geometry.13,14 Adjusting these parameters in order to improve
the penetration depth has been explored in several studies
using Ti:sapphire and optical parametric oscillator-based femto-
second lasers as excitation light sources.15–21 Sun et al. have
shown that reduced light scattering using a Cr:Forsterite 1230 to
1250 nm source can increase penetration depth up to 300 μm for
harmonic generation imaging of human skin.22 Improvements in
penetration depth can also be achieved when using shorter laser
pulse widths.16 Depth resolved imaging studies require higher
average laser powers and thermal damage to tissue becomes
an issue of concern.23,24 Photothermal absorption of tissue
is wavelength dependent, and so is the damage threshold.
Heating following laser exposure at 800 nm is five times greater
than at 1060 nm, and the damage threshold at 800 nm is three
times lower than at 1060 nm.25 With the development of next-
generation fiber lasers, it is possible to imagine combining
these technical features with more compact, portable, and in-
expensive light sources that could facilitate clinical translation
of NLOM technology.

Fiber-based laser sources have been used for NLOM imaging
of thin tissue cross-sections,26–28 mouse brain,29 and human skin
tissue30 using fluorescence labeling. In this work, we evaluate
the performance of a sub-40 fs, 1060-nm Yb-fiber laser for
label-free NLOM imaging of human skin. The effect of excita-
tion wavelength and pulse width on penetration depth in thick,
turbid tissues is determined by comparing the fiber laser to an
800 nm Ti:sapphire laser source. We employ the depth-depen-
dent decay of second-harmonic generation (SHG) signals as
a standard metric for evaluating performance.

The excitation laser sources used were a Ti:sapphire oscilla-
tor (MIRA 900; Coherent Inc.; 220 fs, 76 MHz, 600 mWoutput
power, tuning wavelength 720 to 980 nm) tuned to 800 nm for
this study and a Yb-fiber laser (BioPhotonic Solutions Inc.,
1060 nm, sub-40 fs, 39.2 MHz, 200 mW compressed output
power). The prototype Yb-fiber laser, with self-similar pulse
evolution,28 has an integrated adaptive phase-amplitude pulse
shaper (MIIPS-HD, BioPhotonic Solutions Inc.) based on a 4f
configuration with a two-dimensional spatial light modulator.
The purpose of the pulse shaper was to control high-order
phase distortions introduced by the high numerical-aperture
(NA) objective and other dispersive elements in the beam
path. The 1060-nm pulses were compressed to nearly transform
limited duration using multiphoton intrapulse interference phase
scan (MIIPS),31 and their full-width half maximum duration
was measured by interferometric autocorrelation using the
microscope detection unit (BioPhotonic Solutions Inc.) at the
focal plane. Each of the two excitation beams (800 and
1060 nm) was directed toward our home-built laser-scanning
microscope and focused into the sample by an Olympus objec-
tive (XLPL25XWMP, 25× ∕1.05 NA water). The nonlinear
signals from the sample were epi-collected and directed toward
two photomultiplier tubes (R3896, Hamamatsu) by a dichroic
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mirror (Semrock, Inc., 510 LP). The dichroic mirror was used to
split the emission signal into two spectral channels defined
by the emission filters: 440 SP; 375∕110 BP and 720 SP;
535∕150 BP (Semrock Inc.). We used discarded human skin tis-
sue (fixed in formalin) to test the effect of sub-40 fs, 1060-nm
excitation laser pulses on depth penetration in this sample.
For each excitation wavelength (800 and 1060 nm), we acquired
five stacks of images as optical sections of ∼430 × 430 μm2

(512 × 512 pixels) at different depths ranging from 0 to 200 μm
(2 μm step). In the sample studied in this work, the main
contrast mechanisms for 800-nm excitation are based on two-
photon excited fluorescence (TPEF) signals from keratin, mela-
nin, and elastin fibers and on SHG signals from collagen
fibers. When using 1060 nm as excitation, the epidermis is visu-
alized by third-harmonic generation (THG) contrast derived
from refractive index discontinuities at interfaces, while dermal
contrast is derived from collagen fiber SHG.

Figure 1 shows merged images of human skin acquired at
the same depth with 800- and 1060-nm excitation. THG imag-
ing of the keratinocyte structure in human skin epidermis using
1230 nm as excitation has been reported by Sun et al. in
several studies.6,22 THG is not generated by elastin fibers in
human dermis, although signals from elastic cartilage have been
observed.32

Figure 2 shows representative images corresponding to
one of the stacks acquired in the same location of the sample
by using 800 and 1060 nm as excitation. The images in
Figs. 2(a)–2(c) and 2(f)–2(h) represent en-face (x-y plane)
images acquired at different depths. The cross-sectional (x-z
plane) images shown in Figs. 2(d) and 2(e) were obtained

from three-dimensional (3-D) image reconstruction of en-face
stacks using Amira (FEI Inc.).

To compare the penetration depth attained by each excitation
wavelength, we adjusted the laser powers (40 mW for 800 nm
and 20 mW for 1060 nm) such that the average intensity of the
SHG signal corresponding to the sample surface (z ¼ 0) was
similar for both wavelengths. The laser power and all the
other experimental parameters were kept the same during the
data acquisition. The SHG signals measured in the dermis of
the skin sample are plotted versus depth in Fig. 2 on log scale.
The signal calculated at each depth represents the average of
the pixel intensities in the SHG images at that particular
depth. The SHG intensity decay curve was normalized to the
maximum intensity value for each wavelength.

The SHG intensity decays as a function of depth z according
ISHG ∼ expð−AzÞ, where A is the attenuation coefficient that
includes the sample absorption and scattering properties at
both the excitation and emission wavelengths. The inverse of A
yields a 1∕e attenuation length of 49 μm for 800 nm and 88 μm
for 1060 nm, an increase of ∼80% for the Yb-fiber laser source.
Similar results were obtained for all five stacks acquired in
the sample, which shows that 1060 nm, sub-40 fs pulses can
provide deeper penetration in highly scattering samples, such
as skin.

In summary, these results demonstrate the potential of fiber-
based laser systems to be used as excitation light sources for
NLOM imaging of highly turbid media. Despite their current
lack of tunability, short-pulse, >1 μm wavelength fiber lasers
can provide a low-barrier-to-access alternative to conventional
Ti:sapphire lasers. They are of particular interest in applications

Fig. 1 Multimodal nonlinear optical microscopy (NLOM) images of human skin acquired with 800- and
1060-nm excitation wavelengths at the same depth. (a) Epidermal-dermal junction in human skin imaged
by third-harmonic generation (THG) (blue) and second-harmonic generation (SHG) (red) using 1060 nm
and by two-photon excited fluorescence (TPEF) (green) using 800 nm as excitation wavelengths
(z ¼ 35 μm). TPEF signal originates from keratin in the epidermal keratinocytes and from elastin fibers
(arrows) in the superficial papillary dermis, while THG signal highlights the keratinocytes only; SHG sig-
nal originates from collagen fibers. (b) Multimodal NLOM image corresponding to the inset in (a) repre-
senting contribution from three channels: (c) TPEF signal from keratinocytes and elastin fibers (arrows),
(d) THG signal from keratinocytes, and (e) SHG signal from collagen fibers. Scale bar is 50 μm.
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related to in vivo imaging of human skin as they can deliver up
to 80% improvement in SHG imaging depth compared to con-
ventionally used Ti:sapphire lasers. An additional benefit for
in vivo human skin imaging is related to the THG contrast
mechanism which, unlike TPEF, does not involve absorption
and might allow for the use of higher excitation powers. With
continued development of expanded wavelengths, powers, and
pulse characteristics, these systems are expected to increase in

use, particularly in skin studies where assessment of 3-D
morphology is important.
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