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RESEARCH

Point‑of‑care prediction model of loop 
gain in patients with obstructive sleep apnea: 
development and validation
Christopher N. Schmickl1*  , Jeremy E. Orr1, Paul Kim2, Brandon Nokes1, Scott Sands3, Sreeganesh Manoharan1, 
Lana McGinnis1, Gabriela Parra1, Pamela DeYoung1, Robert L. Owens1 and Atul Malhotra1 

Abstract 

Background:  High loop gain (unstable ventilatory control) is an important—but difficult to measure—contributor to 
obstructive sleep apnea (OSA) pathogenesis, predicting OSA sequelae and/or treatment response. Our objective was 
to develop and validate a clinical prediction tool of loop gain.

Methods:  A retrospective cohort of consecutive adults with OSA (apnea–hypopnea index, AHI > 5/hour) based on 
in-laboratory polysomnography 01/2017–12/2018 was randomly split into a training and test-set (3:1-ratio). Using a 
customized algorithm (“reference standard”) loop gain was quantified from raw polysomnography signals on a con-
tinuous scale and additionally dichotomized (high > 0.7). Candidate predictors included general patient characteristics 
and routine polysomnography data. The model was developed (training-set) using linear regression with backward 
selection (tenfold cross-validated mean square errors); the predicted loop gain of the final linear regression model was 
used to predict loop gain class. More complex, alternative models including lasso regression or random forests were 
considered but did not meet pre-specified superiority-criteria. Final model performance was validated on the test-set.

Results:  The total cohort included 1055 patients (33% high loop gain). Based on the final model, higher AHI 
(beta = 0.0016; P < .001) and lower hypopnea-percentage (beta = −0.0019; P < .001) predicted higher loop gain 
values. The predicted loop gain showed moderate-to-high correlation with the reference loop gain (r = 0.48; 95% CI 
0.38–0.57) and moderate discrimination of patients with high versus low loop gain (area under the curve = 0.73; 95% 
CI 0.67–0.80).

Conclusion:  To our knowledge this is the first prediction model of loop gain based on readily-available clinical data, 
which may facilitate retrospective analyses of existing datasets, better patient selection for clinical trials and eventually 
clinical practice.

Keywords:  Clinical decision rules, Sleep apnea, obstructive, Respiration, Precision medicine

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Approximately one billion people worldwide have 
obstructive sleep apnea (OSA), which is characterized 
by a repetitive collapse of the upper airway during sleep 
[1, 2], and associated with severe neurological (e.g., day-
time sleepiness, traffic/work accidents) and cardiovas-
cular (e.g., myocardial infarction, stroke) sequelae [2]. 
OSA is increasingly recognized as a mechanistically 
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heterogeneous disease, explaining much of the variability 
in response to clinical and investigational therapies [3, 4].

Individuals with a predisposition to upper airway col-
lapse can develop OSA via several different mechanisms 
(endotypes) including an unstable ventilatory control 
(high loop gain) which plays an important pathogenetic 
role in one third of OSA patients [5]. Loop gain is an engi-
neering term used to describe an individual’s propensity 
for fluctuation in ventilation in response to a disturbance. 
An individual with high loop gain tends to have periodic 
drops in respiratory drive which result in reduced activa-
tion of upper airway dilators and thus can directly lead 
to repetitive respiratory events (i.e., OSA). Importantly, 
patients with the high loop gain endotype may also have 
a phenotype (clinical expression of disease) that includes 
increased risk of cardiovascular sequelae from OSA, and 
respond poorly to CPAP, hypoglossal nerve stimulation, 
or upper airway surgeries [6–10]. Conversely, high loop 
gain patients are more likely to benefit from loop gain-
lowering interventions such as oxygen or acetazolamide 
[11–14].

Loop gain can be measured from flow signals obtained 
during overnight sleep studies using a customized algo-
rithm programmed in MATLAB or Python [11, 15, 16]. 
However, this technique requires the availability of the 
raw data (including staging, arousal, and respiratory 
event annotations), some technical skills, and 20–40 min 
of computing time. To support efforts towards a person-
alized medicine approach for OSA our objective was to 
develop and validate a prediction model of loop gain, 
based on readily available clinical data allowing point-of-
care assessments.

Methods
We assembled a retrospective cohort of consecu-
tive adults with OSA based on an apnea–hypopnea 
index (AHI, hypopnea-definition: peak flow reduction 
by ≥ 30% for ≥ 10  s associated with a ≥ 3% desaturation 
or cortical arousal) [17, 18] > 5events/hour on an in-lab-
oratory polysomnography at UCSD between 01/2017 
and 12/2018 (UCSD HRPP #182136XL; requirement 
for informed consent was waived in accordance with 45 
CFR46.116(d)).

Using a customized MATLAB-algorithm (“reference 
standard”) loop gain was quantified from polysomnogra-
phy data on a continuous scale (0 to infinity, dimension-
less) [11]. Loop gain was additionally dichotomized (high 
vs. low) based on an established cut-off of 0.7 [11, 19].

Candidate predictors were chosen primarily based on 
prior knowledge [8, 10, 11, 13, 19–24]. Predictor data 
were abstracted from medical record notes/reports 
(available at the time of the polysomnography) without 
knowledge of the loop gain data:

•	 Demographics: age (years), sex (female/male), body 
mass index (kg/m2), race (White/Black/Asian/Other)

•	 Routine polysomnography results: AHI (/h), SpO2 
nadir (%), SpO2 mean (%), percentage of hypopneas 
(0–100%), log-transformed AHIREM/NREM-ratio, total 
arousal index (/h)

•	 Miscellaneous: Hypertension (yes/no), heart failure 
(yes/no), atrial fibrillation (yes/no), prior stroke (yes/
no); Supplemental oxygen use (yes/no); Ticagre-
lor use (yes/no); Family history of OSA (yes vs. no/
unclear); current smoking or alcohol use (yes vs. no/
unclear)

Recognizing the potential risks [25] of including race as 
a predictor, we considered it as a candidate because prior 
data [12, 19] suggested a physiological relationship with 
loop gain.

We excluded subjects with central sleep apnea (small 
subgroup in which predictors of loop gain may differ 
from those in OSA patients), missing loop gain (unable to 
retrieve raw data, or insufficient signal data for the algo-
rithm to estimate loop gain) or missing predictor data 
(missingness was minimal thus we chose a complete-case 
analysis over imputation methods).

Analysis
The dataset was randomly split into a training versus test-
set (3:1-ratio). All feature selection and model compari-
son procedures were performed on the training-set. The 
performance of the final model was assessed on the test-
set. All analyses were performed in R (3.6.1); key pack-
ages included leaps (backward selection), glmnet (lasso), 
randomForest and pROC. The analytical approach and 
reporting followed recently published expert-recommen-
dations, guidelines and the TRIPOD-checklist [25–27].

Objective 1: to predict loop gain as a continuous outcome
Training‑set
For model building we primarily focused on linear 
regression given its widespread use and high interpret-
ability. Features were selected in a three-step process: i) 
backward selection to create p (p = number of potential 
predictors) candidate models (with 1, 2,…, p − 1, p pre-
dictors); ii) for each of the p candidate models the test 
error (mean square error, MSE) was directly estimated 
using tenfold cross validation (CV); iii) to balance predic-
tive power with parsimony and avoid overfitting, the final 
linear regression model was selected based on the lowest 
CV-MSE applying the one-standard error rule [26]. The 
need for polynomials or interaction terms was assessed 
similarly.

Using the final linear regression model as a benchmark, 
we assessed if more complex modelling approaches 
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would yield superior predictive accuracy based on the 
following criterion:

The first alternative model which we considered, was 
a linear regression model with feature selection based 
on lasso (selecting the tuning parameter lambda based 
on the lowest CV-MSE applying the one-standard error 
rule). The second alternative model was based on a ran-
dom regression forest (NTrees = 500, considering p/3 pre-
dictors at each split). The estimated test errors for these 
two alternative models were based on the tenfold CV-
MSE and the “out-of-bag” MSE, respectively.

Test‑set
We assessed the performance of the final prediction 
model based on the root mean square error (RMSE), 
Pearson r, and visual inspection of a regression of the pre-
dicted on the reference loop gain values. This approach 
was chosen over Bland–Altman analyses, because the 
latter implicitly assumes that the “true loop gain” lies 
between the estimates from both methods [28], whereas 
our goal was to provide a precise and accurate prediction 
of the reference standard.

Objective 2: to predict loop gain as a binary outcome (high 
vs. low)
Training‑set
For simplicity, we primarily used the predicted loop gain 
value of the final linear regression model to predict loop 
gain class (i.e., using different cut-offs of the predicted 
loop gain value to classify subjects as having high vs. 
low loop gain). We estimated the discriminative value of 
this approach using tenfold CV to estimate directly the 
test area under the receiver operating curve (AUC) and 
its standard error. Using the linear regression model as a 
benchmark, we then assessed if more complex modelling 
approaches would yield superior predictive performance 
based on the following criterion:

The alternative models were based on logistic regres-
sion using backward selection or lasso for feature 
selection, and a random forest classifier (NTrees = 500, 
considering p0.5 predictors at each split).

Test‑set
The performance of the final classifier model was pri-
marily quantified by the AUC. Additionally, sensitivity, 

Estimated testMSEAlternative.Model

< [CV-MSE−1 standard error]Final.Linear.Regression.Model

Estimated test AUCAlternative.Model

> [CV-AUC+ 1 standard error]Final.Linear.Regression.Model

specificity, and positive/negative predictive values 
(+ bootstrapped 95% confidence intervals) were calcu-
lated for a range of potential threshold values.

Sample size
There are no generally accepted approaches for sample 
size calculations for prediction studies, thus we used all 
available data to maximize power and generalizability 
[27]. Of note, our training-set exceeded 10 “events” (i.e., 
“high” loop gain) per candidate predictor, which is often 
used as a rule of thumb to assess adequacy of sample size 
for the development of classifier models [27].

Results
We included 1055 subjects into the analysis (Fig.  1). 
Table  1 provides details of the cohort, which was nota-
ble for a broad age range (mean 55 years [standard devia-
tion 15]), including 44% women and > 40% non-Whites. 
One third of subjects had high loop gain based on the 
signal analysis (reference standard). Compared with 
patients who had low loop gain, high loop gain patients 
were older, more likely male, had more severe OSA, and 
shorter respiratory events. Of note, almost all subjects 
on ticagrelor had high loop gain, but the total number of 
subjects taking this medication was small (N = 6).

Predicting continuous loop gain
Based on backward selection using tenfold-CV MSE 
the optimal linear regression model contained only two 
predictors, the AHI and the percentage of hypopneas 
(E-Appendix 1).

The lasso regression model selected the same two 
predictors (E-Appendix  2), which were also identi-
fied as the two most important predictors by the ran-
dom forest model (E-Appendix  3). Neither the lasso 
regression model nor the random forest model met 
our criteria for superiority compared to the less com-
plex standard linear regression model (Additional file 1: 
Fig. S1) which was thus selected as the final prediction 
model (Table 2). Based on this model, a higher AHI and 
a lower percentage of hypopneas predicted a higher 
loop gain.

On the test set, the RMSE (“average prediction error”) 
was 0.19 and there was a moderate-to-high [29] cor-
relation based on Pearson’s r = 0.48 (95% CI 0.38–0.57) 
between the predicted and the reference-loop gain. Fig-
ure 2 visualizes the spread of actual reference loop gains 
for a given predicted loop gain, demonstrating that there 
was no substantial bias across the range of predicted loop 
gain values (i.e., 95% interval of the least-squares mean 
of the reference loop gain includes the line of identity 
throughout).
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Predicting categorical loop gain (high vs. low)
The logistic regression models based on backward 
selection (E-Appendix  4) and lasso (E-Appendix  5) 
selected 3 (age, percent-hypopneas, mean event dura-
tion) and 5 predictors (AHI, percent-hypopneas, age, 
ticagrelor, mean event duration) for the optimal model, 
respectively. Despite the larger number of predic-
tors, the alternative models which further included 
a random forest classifier model (E-Appendix  6) did 
not meet criteria for superiority relative to the simple 
2-predictor linear regression model (Additional file  1: 
Fig. S2) which was thus also selected as the final classi-
fier model (Table 2).

On the test set, the linear model demonstrated mod-
erate discrimination (AUC = 0.73; 95% CI 0.67–0.80; 
Fig.  3). Sensitivity and specificity, as well as positive/
negative predictive values for various cut-off values are 
shown in Table 3. In patients with a predicted “low” loop 
gain (cut-offYouden’s Index = 0.682), the mean reference loop 
gain was 0.60 (95% CI 0.58–0.63) compared with 0.79 
(95% CI 0.73–0.85) in those predicted to have “high” loop 
gain, suggesting clinically meaningful separation by the 
model.

Lastly, we explored if there may be better models to 
predict loop gain in the subgroup of patients with mod-
erate/severe OSA (i.e., AHI > 15/h). However, these 
exploratory analyses suggest that the final linear model 
developed from the full cohort is also the optimal model 
for—and performs well in—the subgroup of patients with 
moderate/severe OSA (Additional file 1: E-Appendix 7).

Discussion
Using state-of-the art methodology we developed and 
internally validated a point-of-care model to predict 
(high) loop gain in patients with OSA, which showed 
moderate predictive performance. We note several 
important findings:

First, while we considered a broad range of candidate 
features—somewhat surprisingly, but similar as in other 
recent studies aiming to predict OSA traits [24, 30]—we 
found that most of the predictive information is con-
tained in just two polysomnographic variables, the AHI 
and the percentage of hypopneas. Importantly, a high 
percentage of hypopneas (i.e., hypopneas > apneas) is 
often considered a marker for OSA with only a mild-
moderate anatomical collapsibility in which non-anatom-
ical traits such as a low arousal threshold play a greater 
pathophysiological role [9, 30, 31]. Thus, interventional 
studies targeting non-anatomical traits are increasingly 
considering a high percentage of hypopneas as an inclu-
sion criterion (e.g., NCT04639193). However, our results 
suggest that for studies targeting the non-anatomical trait 
loop gain (e.g., via acetazolamide/oxygen) this approach 
may exclude the very patients expected to be most 
responsive (i.e., patients with high loop gain) [11–13] 
Similarly, our model further suggests that using the AHI 
alone may be a poor selection criterion for such studies. 
Instead, we propose consideration of our prediction score 
applying a threshold that provides the desired sensitivity/
specificity (Table 3).

Fig. 1  Study flowchart
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Second, while the performance of our model may be 
adequate for certain research/clinical scenarios, there 
was much variability in reference-loop gain values 
which was not explained by routinely available data. 
This finding suggests that the raw flow signals encode 

some important physiological information not readily 
captured by routine clinical data, thus emphasizing the 
importance of continued efforts to increase scalability 
and portability of such analyses [11, 15, 16, 32].

Third, some may consider loop gain estimates based on 
the pressure drop technique during a specialized research 
study as a more appropriate reference standard to develop 
a prediction model [24, 33]. However, due to the labor-
intensive nature of this technique, datasets are typically 
small posing a power challenge for the development of pre-
diction models [24]. More importantly, one may argue that 
there is no real “gold standard” to measure loop gain, but 
the primary purpose of loop gain estimation is typically to 
match OSA patients with personalized treatments. As such, 

Table 1  General characteristics of included subjects

All characteristics (other than loop gain) were considered candidate predictors
1 Mean (SD); n (%)
2 Welch Two Sample t-test; Fisher’s exact test
3 If REM sleep was absent, then AHIREM was assumed to equal AHINREM; if the log-transformed REM/NREM-AHI-ratio was—infinity [i.e., AHIREM = 0], then—infinity was 
imputed as the smallest observed value of 3.91

Characteristic Based on loop gain > 0.7

Overall N = 10551 Low N = 711 (67%)1 High N = 344 (33%)1 p-value2

Loop gain (dimensionless) 0.65 (0.21) 0.54 (0.11) 0.88 (0.16)  < 0.001

Demographics, social and family history

Age (y) 55 (15) 54 (15) 58 (14)  < 0.001

Female sex 465 (44%) 332 (47%) 133 (39%) 0.014

BMI (kg/m2) 33 (9) 33 (9) 33 (8) 0.8

Race 0.5

 White 617 (58%) 410 (58%) 207 (60%)

 Black 76 (7.2%) 48 (6.8%) 28 (8.1%)

 Asian 88 (8.3%) 64 (9.0%) 24 (7.0%)

 Other/unclear 274 (26%) 189 (27%) 85 (25%)

Current smoking 69 (6.5%) 47 (6.6%) 22 (6.4%)  > 0.9

Current alcohol use 456 (43%) 304 (43%) 152 (44%) 0.7

OSA family history 104 (9.9%) 68 (9.6%) 36 (10%) 0.7

Co-morbidities and medications

Hypertension 488 (46%) 315 (44%) 173 (50%) 0.075

Heart failure 65 (6.2%) 41 (5.8%) 24 (7.0%) 0.5

Arial fibrillation 74 (7.0%) 48 (6.8%) 26 (7.6%) 0.6

Prior stroke 32 (3.0%) 23 (3.2%) 9 (2.6%) 0.7

Oxygen use 45 (4.3%) 29 (4.1%) 16 (4.7%) 0.7

Ticagrelor 6 (0.6%) 1 (0.1%) 5 (1.5%) 0.016

Data from the polysomnography-report

AHI (/h) 35 (29) 29 (26) 46 (32)  < 0.001

SpO2 nadir (%) 80 (9) 81 (9) 79 (11) 0.001

SpO2 mean (%) 93.50 (2.53) 93.7 (2.41) 93.1 (2.75) 0.002

Percent hypopneas (%) 70 (27) 75 (24) 59 (29)  < 0.001

Mean event duration (s) 24 (6) 24 (6) 22 (6)  < 0.001

Total arousal index (/h) 30 (24) 26 (20) 37 (28)  < 0.001

Log-AHIREM/NREM-ratio3 0.20 (1.18) 0.29 (1.25) 0.01 (1.00)  < 0.001

Table 2  Final linear regression model

Estimate Standard Error t value p-value

(Intercept) 0.72290 0.02531 28.56  < 0.001

Apnea Hypopnea 
Index (/h)

0.00159 0.00026 6.12  < 0.001

Percentage of Hypo-
pneas (%)

 − 0.00186 0.00027  − 6.76  < 0.001
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the ideal benchmark to assess the (criterion) validity for any 
loop gain model is the prediction of clinically important 
outcomes (e.g., response to surgeries or drug therapies), 
which is increasingly well documented for the reference 
standard that we used [6, 7, 9, 11, 14, 34] Interestingly, a 
“self-similarity” metric has been recently shown to predict 
residual central events (a clinical consequence of high loop 
gain), but this technique requires advanced signal analyses, 
and has not yet been externally validated or shown to pre-
dict other loop gain related outcomes [35].

Fourth, using a tree-based machine learning approach 
and loop gain from the pressure drop technique Dutta 
et  al. [24] were able to predict the traits “anatomical 
collapsibility” and “arousal threshold” with moderate 
accuracy from clinical data on highly selected research 
subjects with and without OSA; but their predictive accu-
racy of loop gain was similar to chance. Using a different 
“reference standard” (see above) we were able to assemble 
a development cohort of general sleep clinic patients that 
was > 15 times larger thus providing greater power and 
generalizability. Thus, to our knowledge we present here 
the first applicable clinical prediction model of loop gain. 
We anticipate that his model may serve a similar role as 
the clinical prediction score for the arousal threshold by 
Edwards et al. which has enabled several retrospective 
analyses of existing OSA cohorts thus generating impor-
tant clinical insights [30, 36–38]. We further note, that in 
some settings it may be desirable to identify patients who 
have both a mild anatomical collapsibility and high loop 
gain, which could well be achieved by applying the model 
from Dutta et al. together with ours [24].

Strengths of our study include the large cohort of 
patients which are reflective of the target population, and 
the consideration of a wide range of advanced statistical 
techniques including a non-linear random forest model 
to ensure that simple linear modelling did not result in 
an excessive loss of predictive performance. Further, the 
similar results across the various candidate models (e.g., 
feature selection) suggests robustness of our results.

As discussed above, a major limitation is the lack of a 
clear gold standard for loop gain and the lack of external 
validation. Other limitations include the potential depend-
ence of our model performance on the scoring definition 
for hypopneas that we used [17, 18], and that our findings 
may not generalize to patients whose OSA was diagnosed 
based on a home sleep apnea test (HSAT) as such data/
patients were not included in the present study. However, 
we note that many HSATs include information on a sur-
rogate AHI as well as the percentage of hypopnea, thus 
it may be possible to “calibrate” the estimates from our 
model for this setting. Importantly, we have previously 
demonstrated that loop gain can be estimated from the 
HSAT flow signals in a similar manner as from polysom-
nography, which could thus serve as the reference stand-
ard for such a calibration attempt in the future [15].

Conclusions
Together, the AHI and the percentage of hypopneas 
allow clinical prediction of loop gain with moderate 
accuracy. This prediction model may facilitate better 
patient selection for clinical trials: patients predicted 
to have “high” loop could be preferentially selected 
for studies of loop gain lowering interventions (i.e., 

Fig. 2  Predicted loop gain (linear regression model) versus the 
reference loop gain (raw signal analysis) based on the test set 
data. The blue solid line shows the mean reference loop gain for a 
predicted loop gain and its 95%-confidence interval, which includes 
the dotted line of identity (i.e., no bias). The red dashed lines show the 
95%-prediction interval

Fig. 3  AUC of the final classifier model (i.e., the linear regression 
model shown in Table 2). Select thresholds are marked by an “x” 
followed by the “threshold value (specificity, sensitivity)”. For more 
details about various thresholds see Table 3
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acetazolamide, oxygen), but be excluded from inter-
ventions that target other traits such as anatomy (i.e., 
upper airway surgery, oral appliance, hypoglossal nerve 
stimulation). Importantly, the provided information 
about sensitivities/specificity for various threshold val-
ues (Table  3) allows a highly flexible implementation 
according to individual contexts and needs.

Abbreviations
AHI: Apnea-hypopnea index; AUC​: Area under the receiver operating char-
acteristic curve; CV: Cross-validation; (R)MSE: (Root) mean square error; OSA: 
Obstructive sleep apnea.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12890-​022-​01950-y. 

Additional file 1. Online Supplement.

Acknowledgements
Not applicable.

Author contributions
Study design: CS, JO, PK, AM, RO; Data acquisition: CS, JO, SS, SM, LM, GP, PDY; 
Data Analysis: CS, JO, PK; Data interpretation: all; Draft: CS; Revisions: all. All 
authors read and approved the final manuscript.

Funding
Christopher Schmickl is supported by NIH T32 Grant HL134632, and ATS 
ASPIRE Fellowship. Paul Kim is supported by American Heart Association 
Career Development Grant #18CDA34110250/Paul J. Kim, MD/2018. Dr. Nokes 
is supported by the NIH T32 Grant HL134632, Sleep Research Society Career 
Development Award, as well as the American Thoracic Society ASPIRE Fellow-
ship. Dr Sands is supported by the NIH R01HL146697. Funding bodies played 
no role in the design of the study and collection, analysis, and interpretation 
of data and in writing or decision to publish the manuscript.

Availability of data and materials
The data that support the findings of this study are available from the corre-
sponding author upon reasonable request and approval of the UCSD Human 
Research Protections Program.

Table 3  Performance characteristics for varying thresholds

95% confidence intervals (CI) were estimated based on a bootstrap procedure (Nsamples = 2000)

PPV positive predictive value, NPV negative predictive value

Threshold Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI)

0.55 0.98 (0.95–1) 0.02 (0.01–0.05) 0.36 (0.36–0.37) 0.67 (0.25–1)

0.56 0.94 (0.89–0.98) 0.10 (0.06–0.15) 0.37 (0.36–0.39) 0.75 (0.55–0.9)

0.57 0.92 (0.85–0.97) 0.20 (0.14–0.26) 0.39 (0.37–0.42) 0.81 (0.69–0.91)

0.58 0.90 (0.83–0.95) 0.29 (0.22–0.36) 0.42 (0.39–0.45) 0.83 (0.74–0.92)

0.59 0.89 (0.82–0.95) 0.38 (0.31–0.46) 0.45 (0.42–0.48) 0.85 (0.78–0.92)

0.60 0.84 (0.77–0.92) 0.45 (0.38–0.52) 0.47 (0.43–0.51) 0.84 (0.76–0.9)

0.61 0.81 (0.73–0.89) 0.51 (0.42–0.58) 0.48 (0.44–0.53) 0.82 (0.76–0.89)

0.62 0.73 (0.65–0.81) 0.56 (0.48–0.63) 0.49 (0.43–0.54) 0.78 (0.73–0.84)

0.63 0.67 (0.57–0.76) 0.65 (0.57–0.72) 0.52 (0.46–0.59) 0.78 (0.72–0.83)

0.64 0.65 (0.55–0.74) 0.68 (0.6–0.75) 0.54 (0.47–0.6) 0.77 (0.72–0.82)

0.65 0.60 (0.51–0.71) 0.74 (0.67–0.8) 0.57 (0.5–0.65) 0.77 (0.72–0.82)

0.66 0.56 (0.46–0.66) 0.77 (0.7–0.83) 0.58 (0.51–0.66) 0.76 (0.71–0.8)

0.67 0.54 (0.45–0.65) 0.79 (0.72–0.85) 0.59 (0.51–0.68) 0.75 (0.71–0.8)

0.68 0.53 (0.44–0.64) 0.83 (0.76–0.88) 0.64 (0.55–0.73) 0.76 (0.71–0.8)

0.69 0.46 (0.35–0.56) 0.85 (0.79–0.9) 0.64 (0.54–0.74) 0.73 (0.7–0.77)

0.70 0.43 (0.33–0.53) 0.89 (0.83–0.93) 0.68 (0.58–0.79) 0.73 (0.7–0.77)

0.71 0.42 (0.32–0.52) 0.90 (0.85–0.94) 0.70 (0.59–0.81) 0.73 (0.7–0.76)

0.72 0.41 (0.31–0.51) 0.91 (0.86–0.95) 0.72 (0.61–0.84) 0.73 (0.7–0.76)

0.73 0.39 (0.29–0.49) 0.92 (0.88–0.96) 0.74 (0.62–0.85) 0.72 (0.69–0.76)

0.74 0.33 (0.24–0.43) 0.94 (0.9–0.97) 0.76 (0.64–0.88) 0.71 (0.68–0.74)

0.75 0.29 (0.2–0.39) 0.95 (0.92–0.98) 0.78 (0.65–0.9) 0.70 (0.68–0.73)

0.76 0.27 (0.19–0.36) 0.97 (0.94–0.99) 0.84 (0.7–0.96) 0.70 (0.67–0.73)

0.77 0.24 (0.16–0.32) 0.98 (0.95–0.99) 0.86 (0.71–0.97) 0.69 (0.67–0.72)

0.78 0.21 (0.12–0.29) 0.98 (0.95–0.99) 0.84 (0.68–0.97) 0.68 (0.66–0.71)

0.79 0.17 (0.09–0.24) 0.98 (0.95–0.99) 0.81 (0.61–0.96) 0.67 (0.65–0.69)

0.80 0.12 (0.06–0.2) 0.98 (0.96–1) 0.80 (0.57–1) 0.66 (0.65–0.68)
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