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SURFACE TENSION PHENOMENA UNDER LOW- AND ZERO-GRAVITY CONDITIONS I. 

1. Introduction 

We report here on the first portion of our study concerning low­

gravity capillary free-surface phenomena and related possible Spacelab 

experiments. The study has three components, mathematical, computational, 

and experimental, and has been focused primarily on equilibrium capillary 

surfaces in cylindrical containers (of general cross-section) in the 

absence of gravity. Central questions are whether or not such surfaces 

can exist, what their properties are, and what experimental means can be 

used to observe and to measure them quantitatively. 

This study is a continuation of some of our earlier work, which has 

led to ground-based low-gravity experiments that have been performed in 

drop towers and in conventional laboratories during the past several years. 

Although these ground-based experiments have been scientifically produc­

tive -- in some ways strikingly so -- they were necessarily limited as to 

duration of the low-gravity period and controllability of environmental 

conditions. Some important qualitative features of behavior were observed, 

but a number of questions were left unanswered. Our recent work has led 

strongly into areas that require long-term experiments in a carefully con­

trolled low-gravity environment, in order to resolve mathematical uncer­

tainties and provide a precise understanding of the physical phenomena. 

2. Existence of menisci in capillary tubes 

Our study has centered on equilibrium liquid-vapor free surfaces in 

cylindrical containers in the absence of gravity, as determined by the 



equations 

(1) 

(2) 

where 
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div Tu = const. in Q 

Tu· V = cos y on L, 

Tu = V'u 

Here, Q is a section of the cylindrical container, L is the boundary of 

Q, v is the exterior normal, and u(x,y) is the (single-valued) height of 

the surface above a point (x,y) on a reference section. The quantity y 

is the contact angle, assumed constant. 

In our earlier work we found conditions under which such equilibrium 

surfaces cannot exist. The conditions depend in general upon an interrela-

tionship involving the local curvature of L, some global properties of 

Q, and y. When applied to certain particular cases the conditions pre-

dicted a discontinuous dependence of the solution on the boundary data (see 

§ 4); this behavior was later verified experimentally at the NASA Lewis 

Research Center Zero-gravity Facility. For example, for a cylinder with 

hexagonal cross-section an equilibrium meniscus (solution of (1),(2» will 

exist for wetting liquids with contact angles n/6 ~ y ~ n/2 (in this case 

the meniscus is simply a spherical cap); however, if 0 ~ y < n/6, then no 

solution u(x,y) of (1),(2) is possible. Figure 9 depicts some NASA Lewis 

drop-tower experiments illustrating this phenomenon. For case (b) the fluid 

presumably rises to the top of the container, filling in edges and corners. 
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(a) (b) 

~BB 142. - 70 J 

Figure 9. Equilibrium free surface at zero-gravity 
in a hexagonal cylinder. (a) y = 48°, 
(b) Y = 25°. 
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More recently we have found a new set of conditions for existence and 

for non-existence, which apply to very general cross-sections. For the 

above case of the hexagonal cylinder, the height at a vertex can be shown 

to change discontinuously at the critical contact angle. For more general 

sections, such as the trapezoid discussed in § 4, there remain unresolved 

important details of the behavior of the capillary surface as the critical 

configuration is traversed. For example, for a rectangular cross section 

with a side ratio of 12.5 to lour new condition implies the critical angle 

is i = n/4 (as it would be for a square); but if the cross section is 

altered by reducing the length of one of the shorter sides corresponding 

to a change in the interior angles of only 0.8°, as in § 4, then no free 

surface u(x,y) can exist for contact angles even as large as 57°. As 

the critical configuration is traversed, there is the question of whether 

or not the solution surface is bounded. For the trapezoid phenomenon the 

breakdown in existence apparently occurs for different reasons than for 

the hexagonal or rectangular cylinders and may not involve a discontinuous 

change in surface height. This subject is discussed in more detail in § 4. 

To investigate the trapezoid and other phenomena experimentally we 

believe that an in-space experiment is necessary. Because of the much 

greater sensitivity to boundary perturbations, controlled conditions are 

required that are not possible to achieve in a drop-tower or other ground­

based experiment. Spacelab has promise of providing a suitable environment 

for exploring these phenomena. 
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3. Capillary surface experiments 

Experiments to investigate equilibrium capillary surface properties 

would involve basically the measurement of the position of surfaces of 

varying complexity in a number of configurations. For example, for the 

trapezoid phenomenon the zero-gravity equilibrium surface in cylindrical 

containers would need to be determined for configurations surrounding the 

critical one. The height as a function of position would have to be meas­

ured, allowing for the possiblity that the height may be multiple valued. 

The photographic ~ecording of position, such as in Fig. 9, would in general 

not be adequate, since the transition from configurations of existence to 

non-existence may be complex and require precise determination of the sur­

faces over most of the cross section. Photographing surface projections 

on the cylinder walls, as in Fig. 9, can indicate gross qualitative 

behavior of the surface, but is only suggestive of the actual capillary 

surface over the interior. Most likely advanced optical methods will be 

required. 

During the completion of our justification study we may find other 

configurations suitable for Spacelab experiments. One such possible con­

figuration is discussed in § 5. Another would involve the behavior of 

capillary surfaces under a controlled low- (but non-zero) gravity environ­

ment, which might be achieved through rotation of the experiment. 
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4. Progress in first year's study 

4.1. In our first year of study progress has been made toward characteriz-

ing mathematically the geometrical conditions on a cylindrical container of 

general cross section, which determine whether there can be a capillary sur-

face in the container making prescribed angle y, 0 ~ y ~ rr/2, with the 

bounding walls. To this purpose, the following result concerning (1),(2) 

has been proved: 

A capillary surface will exist in ~ with boundary angle y, if and 

only if there is a vector field ~(x,y) in such that div ~ in 

~, v· ~ = 1 on E, and max Iwl ~ sec y. 
~uL: -

To prove the result, consider any subdomain * ~ as in figure 1. If 

* a vector- field of the indicated type exists, we integrate div ~ over ~ 

to obtain 

(3) 
* * 

I iL - .L I cos y < I­n L: L: 

This is exactly the condition shown by Concus and Finn [1] to be necessary 

Figure 1 

for the existence of a solution, and 

later by Giusti [2] to be also suffi-

cient. Thus, whenever ~(x) exists, 

so does a capillary surface. 

Conversely,if a capillary surface 

u(x,y) exists, then the vector field 

w(x) = sec y Vu has exactly the 
- v' 1+1 Vu 12 
required properties. 
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The question of finding a capillary surface in a container with section 

n is thus reduced to that of finding a vector field !(x) with the spec i-

fied properties. (Nonexistence can manifest itself physically in various 

ways, some of which have already been observed experimentally.) 

For a triangle or parallelogram, the desired vector field can be con-

structed explicitly when it exists. For example, for a parallelogram with 

sides of length 2m inclined with inclination A to horizontal sides of 

length 2t, we may choose the origin of coordinates to be the intersection 

point of the diagonals, and set ! = (u,v) with 

u = 

v = 
v'1+f2 

Am y 

and conclude there is a solution whenever the smaller interior angle 2a 

satisfies a + y ~ n/2. If a + y < n/2, we observe from dimensional con-

siderations that in the indicated neighborhood of the angle 2a (figure 2), 

Figure 2 

there holds 

'* '* I nn - 1:1: I cos y > 1:. 
1: 

whenever r is close enough to the 

r vertex, hence by our earlier results 

there can be no solution. Since 

this condition is essentially local 

in nature, we shall refer to it as 

the local angle condition. The sur-

face exists whenever a + y ~ n/2, 
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then it disappears discontinuously if either a or y is made smaller. 

We obtain a similar result for a section n as shown in figure 3. Again, 

there is a solution exactly in those configurations for which a + y ~ n/2, 

regardless of the side ratios. 

< __ S: 
Figure 3 

Applying the parallelogram local-angle-condition result to a rectangle, 

we find there is a solution exactly when y ~ n/4, again regardless of the 

side ratios. 

One might thus expect a similar criterion to hold for a trapezoid. Con-

sider however a trapezoid of base lengths a and b > a, and smaller vertex 

angle 2a, as shown. Choosing for r the segment half-way up and applying 

* 
a 

* n 

r 

b 

Figure 4 

the divergence theorem to n, we 

obtain after some manipulation 

cos y < 
2(b+a)2 cos 2a 

""'1-:-(b---a-:-)+~(7-"b~+=a)~c-o-s-2:-a-r1 (b-a) 

whenever a solution surface exists. 

From this relation one sees easily 

that for any y in 0 < Y < n/2, one 

can choose a as close to n/4 as 

desired, and then choose a and b 

in such a way that there will be no 
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solution. Thus, solutions now fail to exist in configurations that are 

well within the range for which the local angle condition a + y ~ TI/2 is 

satisfied. 

The situation is at least partly clarified by the result that if the 

two non-parallel sides of the trapezoid are extended to form with each 

other an acute angle 2a, then there exists a solution in the trapezoid 

whenever TI 2" - a < y E;;; TI/2. Thus, the original local angle condition again 

enters, in an extended sense. In this case the solution can, however, 

continue to exist also for smaller values of y. 

4.2. The question of what happens as a configuration is continuously changed 

from one in which a solution exists to one in which there is no solution 

seems of considerable interest. For the local angle phenomenon of the tri-

angle and parallelogram the surface changes discontinuously. To shed light 

on what happens in the case of the trapezoid (figure 4) we have carried out 

some numerical computations for particular cases. 

It can be shown that the sharpest result corresponding to (3) can be 

obtained by using for r a circular arc, instead of the horizontal line 

shown in figure 4. There will occur I~ul = 00 everywhere on the ·circular 

arc in the extremal situation. Thus the breakdown in existence apparently 

occurs differently in this case than for the case of transition from 

a + y ~ TI/2 to a + y < TI/2 in the neighborhood of a vertex, such as that 

depicted in figure 2. 

A particular case that we investigated numerically is the trapezoid for 

which a = 1. 3 , b = 2, and the altitude is 25, for which 2a = 89.2°. 

For this case it was found that y , the extremal value of y, occurs in (3) 
c 
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n for the circular arc r of radius == 1.444 intersecting the slant 
1: cosYc 

edges of the trapezoid a distance 7.62 along the slant edges from the top. 

Thus one expects a capillary surface to exist in the trapezoid (for wetting 

liquids) for contact angles y greater than y == 57.6° but not for contact c 

angles y less than 57.6°. Note that the local condition a + y ~ n/2 at 

the base angle vertex would give information in this case only that a capil-

lary surface would not exist for contact angles y less than 45.4°. 

To investigate the behavior of the capillary surface as the critical 

condition is approached, (1) and (2) were solved numerically for a sequence 

of values of a and of y. A finite element method was used with reduced 

biquadratic polynomial basis functions. Because of symmetry, the problem 

was solved only on the half trapezoid 0 ~ x ~ 1 - 0.014y, 0 ~ y ~ 25, with 

boundary condition au/ax = 0 on x = O. Both 4 x 50 and 7 x 75 meshes were 

used, with good consistency between their results. 

The results are depicted in figures 5-7, normalized by the addition of 

a constant so that u(O,O) = 10. In figure 5 the surface height u(O,y) 

along the symmetry line is shown for several contact angles y. The behav-

ior of the solution along other mesh lines in the "y direction" differs very 

little from that along u(O,y). 

In figure 6, the variation of the surface height with x is depicted 

for several values of y for the case y = 58°. Note that the optimal 

curve r, along which the solution surface would become vertical for the 

critical contact angle 57.6°, is a circular arc of radius 1.444 intersecting 

the symmetry line x = 0 of the trapezoid at y == 17.6 and the slant edge 

at y== 17.4. 
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Figure 5 

u(O,y) vs. y for contact angles 75°, 60°, 59° 
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u(x,Y i ) VB. X for Yi = 0,9,15, 17.5,20,25; -y = 58° 
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F~gure 7 

u(O,y) VS. y for a" 2, 1.5, 1.4, 1.3; Y B 58 0 
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In figure 7 are depicted the surface heights u(O,y) for a sequence 

of trapezoids ranging from the rectangle (a = 2) to the almost-critical 

one (a = 1.3), for y = 58°. The tendency toward verticality is notice-

able as criticality is approached. 

4.3. The main objective of our current experimental research is to develop 

optical methods for. measuring the position of a capillary surface. The 

research at present has two components. 

One component is to find a working fluid that has satisfactory 

properties with respect to: (1) surface tension, (2) contact angle, (3) 

index of refraction, (4) toxicity, (5) flammability, and (6) viscosity. 

Item (2) interacts with the choice of the container material, as does item 

(3) if the material is transparent. Information on the listed properties is 

now being assembled for various fluids. 
OJ 

The other component concerns the optical methods themselves. Optical 

methods being considered include reflection, refraction, schlieren, shadow-

graph, and interferometry (direct or holographic). Recording may be photo-

graphic or electronic and in the latter case may involve discrete detectors 

or closed-circuit television. 

Under the present contract, work on finding a satisfactory fluid did 

not begin until about April, when a suitable student was found. Work on the 

optical methods is in the conceptual stage and is concentrating on estimates 

of the relative difficulty and sensitivity of various optical methods. An 

important element in any decision will be the existing capability of the NASA 

Fluids Experiment System (FES; see NASA Announcement of Opportunity No. OSTA 

80-1) to provide schlieren, holographic, and (with some lens modifications) 
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shadowgraph records. .The volume of the test cell of the FES is adequate 

for present purposes .. Experiments using one or two of the more atractive 

optical methods will be carried out during the coming summer as part of 

the first portion of our study. Work will also be begun on techniques for 

measuring the dependence of contact angle on physical variables such as 

surface treatment and fluid modification by additives. 

5. Proposed second year's study 

We propose that our study continue. The trapezoid configuration pro­

vides a well-defined basis for examining the feasibility of an in-space 

experiment, and mathematical, computational, and experimental work can pro­

ceed in this direction. In addition, justification of related configura­

tions can be investigated simultaneously. 

An example of continued interest is the case of a cylinder cross 

section consisting of two intersection circles Ll ,L2• Our mathematical 

results indicate that if the respective radii Rl ,R2 are equal, then there 

is always a solution of the capillary equation for any y in 0 ~ y ~ TI/2, 

regardless of the size of the "opening" between the circles. 

However, if the radii are unequal, and if the opening is sufficiently 

small, then a solution will fail to exist. 

The seemingly anomolous behavior is apparently not caused by the infi­

nite curvature at the intersection points of the circles. Whenever Rl ~ R2 , 

it is evidently possible to join the circles by a "neck" region in which 

the curvatures are as small as desired, as shown in figure 8, but is never­

theless such that no solution will exist. 
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Figure 8 
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We propose to continue investigaLing the "two-circle" configuration and 

to consider non-zero gravity problems as adjuncts to completing the ana1yti-

cal and numerical study of the trapezoid. After the summer's experimental 

results are available, we propose to begin planning the substantially 

expanded experimental work that will be required in the subsequent phases of 

our study, with [3] as a useful point of departure. For this purpose we pro-

pose to be joined by A. Hesse1ink, an associate of D. Coles at Ca1tech and 

authority on optical experimental methods suitable for our experiments. Our 

results will be embodied in a report that contains a description of the plans 

developed for the next phase of our study. 
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