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Enhanced corrections near holographic
entanglement transitions: a chaotic case study
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ABSTRACT: Recent work found an enhanced correction to the entanglement entropy
of a subsystem in a chaotic energy eigenstate. The enhanced correction appears near a
phase transition in the entanglement entropy that happens when the subsystem size is
half of the entire system size. Here we study the appearance of such enhanced correc-
tions holographically. We show explicitly how to find these corrections in the example
of chaotic eigenstates by summing over contributions of all bulk saddle point solutions,
including those that break the replica symmetry. With the help of an emergent rota-
tional symmetry, the sum over all saddle points is written in terms of an effective action
for cosmic branes. The resulting Renyi and entanglement entropies are then naturally
organized in a basis of fixed-area states and can be evaluated directly, showing an en-
hanced correction near holographic entanglement transitions. We comment on several
intriguing features of our tractable example and discuss the implications for finding a
convincing derivation of the enhanced corrections in other, more general holographic
examples.
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1 Introduction

Entanglement and Renyi entropies of subsystems are important quantities that encode
key properties of a quantum system as a whole. In suitable limits where the number of
relevant degrees of freedom becomes large, entanglement and Renyi entropies become
analytically tractable and have been studied in (at least) two classes of examples. The
first involves energy eigenstates in the thermodynamic limit of a chaotic system [1—
3]. The second involves holographic states whose entanglement entropy in the large- N
limit is given by the Ryu-Takayanagi (RT) or Hubeny-Rangamani-Takayanagi (HRT)
formula in terms of the area of a bulk extremal surface [4-6], and whose Renyi entropies
are determined from similar areas of appropriate cosmic branes [7].!

As the size of the subsystem is varied, entanglement and Renyi entropies can expe-
rience phase transitions in the limit of a large number of degrees of freedom, signifying
major rearrangements of the entanglement structure. Such phase transitions can be
understood as the exchange of dominance between two saddle point solutions. In the

LA hybrid of these two classes of examples combining the thermodynamic limit and large-N limit
was studied in [8].



first class of examples involving chaotic eigenstates, the phase transition happens when
the volume of the subsystem reaches half of the volume V' of the entire system. Inter-
estingly, a universal correction to the entanglement entropy that scales like vV was
found near the phase transition point [9, 10]. This correction is parametrically larger
than the expected corrections away from the transition point, and we will refer to it as
the enhanced correction near the entanglement transition.

The primary goal of this paper is to study the appearance of such enhanced correc-
tions in holographic theories near entanglement transitions where two competing HRT
surfaces have about the same area. In the holographic limit N — oo or (Gy — 0 with
Gy being the gravitational constant), we expect the enhanced corrections to scale like
GJ_Vl/ % in general. To find such corrections, one would in principle need to first calculate
Renyi entropies

1
Sn = 1 log Tr p" (1.1)

-n
at integer n > 2 holographically by summing over contributions of all bulk saddle
points satisfying replicated boundary conditions, and then analytically continue to
n = 1 carefully to find the entanglement or von Neumann entropy. The reason that we
need to sum over all saddle points, instead of only keeping the most dominant one, is
because there could be effects that scale like e~ ("=1)*/Cn resulting from summing over
subdominant, exponentially suppressed saddle points at integer n > 2 but becoming
non-negligible in the n — 1 limit for the entanglement entropy. As we will see, enhanced
corrections near entanglement transitions have precisely this kind of behavior in the
Renyi index n.

Practically speaking, the aforementioned task of summing over all bulk saddle
points and then analytically continuing is generally very difficult to accomplish. One
important reason is that in principle we need to include replica non-symmetric saddle
points — bulk solutions that break the Z,, replica symmetry on the boundary. The
number of replica non-symmetric saddle points depends on n, and therefore we cannot
hope to simply continue each one of them analytically; we need to sum over them and
then analytically continue, which is difficult in general.

Despite this general difficulty, we find that in the example of chaotic eigenstates,
the corresponding holographic calculation of summing over all saddle points can di-
rectly be carried out in the thermodynamic limit. This is a hybrid of the two classes of
examples mentioned earlier, combining the thermodynamic limit and the holographic
limit. In this case, the calculation is possible due to an approximate rotational sym-
metry that emerges in the thermodynamic limit. All bulk saddle point solutions —
including replica-nonsymmetric ones — enjoy this emergent rotational symmetry. We
will therefore be able to sum over all bulk saddle points explicitly and express the



resulting Renyi entropies in terms of an effective action for cosmic branes. The full
gravitational path integral for the Renyi entropies is then naturally organized in a ba-
sis of fixed-area states introduced in [11-13], with a final integral over the area. The
integral can be analytically continued to n = 1 and the resulting entanglement entropy
shows an enhanced correction near the entanglement transition, in precise agreement
with Ref. [10].2

As we will see, our tractable example seems to teach us some “lessons” which we
briefly summarize here and will discuss in more detail in later sections. The “honest”
calculation involves summing over all saddle points in the gravitational path integral.
This is difficult, but we can rewrite the result by postponing until the very end the
integrals over the areas of the two competing HRT surfaces. The other integrals are
therefore calculated in fixed-area states and given by summing over saddle points that
satisfy fixed-area constraints — which we call fixed-area saddle points. In our tractable
example, we can explicitly sum over all fixed-area saddle points due to the emergent
rotational symmetry and find the enhanced correction, but we can also get correct
result (with subleading errors of order 1) by simply keeping only the most dominant
fixed-area saddle point (for each fixed area)®. The dominant fixed-area saddle point
is replica-symmetric. There are two replica-symmetric saddle points that are relevant
near an entanglement transition (corresponding to two competing HRT surfaces), and
which one dominates depends on the fixed areas. A surprise worth pointing out is the
following. We might try to “improve” the calculation by summing over both replica-
symmetric fixed-area saddle points (instead of handpicking the dominant one), letting
the path integral decide which one dominates “dynamically”. We might hope that this
could be a step towards summing over all saddle points and should be no worse than
handpicking the dominant one. However, this “improved” calculation does not work
and in fact would not give an enhanced correction. This failure may appear puzzling,
but we should remember that the honest calculation involves summing over all saddle
points, and there is no particular reason why summing over a subset — consisting of
the replica-symmetric saddle points — should be better than keeping only the most
dominant one.

Even though the enhanced corrections were first found in the von Neumann entropy,

2 Another holographic example where an analogous enhanced correction was recently discussed is
the 2d gravity model in Ref. [14].

3This is not in contradiction with our earlier statement below Eq. (1.1) that we need to sum over
all saddle points and not just the most dominant one, because here we are discussing fized-area saddle
points before the final integral over the areas is to be performed. It turns out that this final integral
is the one that does not have a controlled saddle point approximation near entanglement transitions
(when analytically continued to n = 1), and by performing it directly one finds the enhanced correction.



we expect them to appear also in Renyi entropies when the Renyi index n is sufficiently
close to 1. We find this explicitly in chaotic eigenstates without using holography in
Section 2, after we briefly review the structure of these states and then calculate the
Renyi entropies carefully by summing over all disorder Wick contractions (with help
from Appendix A)%.

In Section 3, we turn to the holographic calculation for chaotic eigenstates. We
first formulate the boundary value problem and find the relevant bulk saddle point
solutions. With the help of the emergent rotational symmetry, we explicitly sum over
the saddle points and calculate the result in the fixed-area basis. We conclude in
Section 4 with discussions on the interpretation and outlook of our results, including
the very interesting open question of how to find a convincing derivation of the enhanced
corrections in other, more general holographic examples.

Closely related work has been done independently by Don Marolf, Shannon Wang,
and Zhencheng Wang. We have arranged with these authors to coordinate submission
of our papers.

2 Chaotic high energy eigenstates

In this section, we begin by studying the enhanced correction to the entanglement of
subsystem A in chaotic high energy eigenstates, as in [10]. Instead of looking at the

von Neumann entropy S, we focus on the manifestation of such enhanced corrections

ent?
directly in the Renyi entropy S?'. The proposal for the chaotic high energy eigenstates
takes the form :
|E) = >, Cig|Ei)alEg) 4 (2.1)
E-A<E+E;<E+A
where |E;)4 and |Ej) ;1 are eigenstates of the subsystem Hamiltonians {H 4, H 5} with
eigenvalues { E;, E; } respectively. The coefficients ¢;; are un-correlated random variable
with unit variance.

CigCiryr = 04ir0 10 (2-2)

where the over-line represent averaging over the randomness. One can also replace the
constraint £ — A < E; + E; < E + A by a smooth Gaussian prefactor, and in order to
make (2.1) an eigenstate of the total system, we should introduce an interaction term
to the total Hamiltonian as in [10]:

H=H,+ Hji+ Hin (2.3)

4This is the analogue of summing over all saddle points, whereas the calculation in Ref. [10] is
analogous to keeping only the most dominant fixed-area saddle point.



such that

(E|HL,|E) < A? (2.4)
In this work we are mainly interested in enhanced corrections that occur near the en-
tanglement transition. They are not qualitatively affected by finite A. In the following,

we will work in the A — 0 limit and neglect any subtleties associated with finite A. It
is easy to work out the un-normalized reduced density matrix:

pPA = Z ( Z CiJCjJ> |Ei>A<Ej |A (25)

EZ—2A<E]<E1+2A E—E,—A<E;<E—E;+A

This is “stripe” diagonal with width 2A. Upon averaging we have:

Pa= ZJ(E — Ei)|Ei) a(Ei] a (2.6)

E;

and the normalization factor for p4 is given by:

N =Y d(E)d(E - E;) (2.7)

where d (£) and d(€') are the number of states |E)4 and |E') s withE—A < E < £+ A
and & — A < E' < & + A respectively. Similarly the n-th power of reduced matrix is
equal to:

m=n

pz - Z Z CinJm Cim+1Jm |Ei1>A<Ein+1|A

Ei; \%2int15J1,0Jn m=1

> = .. > > (2.8)

12,000yin+13J1,..,Jn E-E;,, *A<EJM<E7EZ'm +A E¢m72A<E¢m+1 <Eim+2A

This is also a stripe diagonal matrix, albeit with width 2nA. The broadening should
not be significant in the limit A — 0 while keeping n finite.
To compute the averaged n-th power of the reduced density matrix, one can neglect

the difference between In [trp?/ (trpa)”] and In tr(p’;‘)/(trﬁA)n], and compute:

tl"pz - E , < E , Cay,by Caz,b1 Caz by Cas bz "'7Can7bnca17bn> (29)

( a1,..,an;bi,...,bn

Using (2.2), it receives contributions from all choices of Wick contractions between
the random variables ¢;;. We work out the details of summing over dominant Wick
contractions in Appendix A. One can understand different choices of Wick contraction



as producing different saddles in the microstate calculation. This is done explicitly and
one obtains that:

gk = YD d(ENI(E — ) Gu(E)

d(E — E)" 5F, [1 —n, —n; 2; LB ] L d(E) < d(E - E))

Gu(E;) = _ ) dB=ED - 2.10
(&) d(E)™ 1 oF, [1 g 2 d%ﬁ”] , d(E) > d(E - E)) (2.10)

In the thermodynamic limit, we can replace the sum over states by integral over density
of states:

trp’ o /dé’ eSaE)H9aE=E) 1 (€)

(n—1)Sz(E-€) F,l1— —n: 92 Sa(&)—-Sz(E-E) SA(E S:(E—&
Gn(E) _ € 241 [ n,—m; 4; € ] ) A( ) < A( )(211)
e(n=15a(&) [1—n,—n; 2; eSA(E_g)_SA(g)] , Sa(E) > Sz (E-€)

Therefore we can write the averaged microstate® Renyi entropy S, and the Renyi
entropy Sy'C for the global micro-canonical ensemble p = > 5 A _popoalE)(E'| as

Si——m {N—" / dE 54 E)T8a(EE) Gn(S)}

1—n
1

MC _
S, =
-n

In {N—n/dg €SA(8)+TLSA(E—5)}7 N — /dg esA(5)+SA(E_5) (212)

Based on the assumption of ergodicity, we take the following ansatz for the sub-
system entropies:

su@=1vs (i) saE-o=0-0vs(7—p) @

where V' is the total system size and f = V,/V is the subsystem fraction, furthermore

s(e) is the entropy density of the system as a function of the energy density e. From
this we can write Eq. (2.12) in terms of two exponent functions Fj(x), Fa(x) as:

= _guo_ 1 J dE exp [Fy(€)]
Sp =5, = 1—n1 {fdé' exp[F2(5)]}

Fi(€) = fVs (i) +(1-f)Vs (E—_g> +InG,(f,€)

Vf V(1—=f)
ey - 1vs (&) ot s (£5 ) 2

5From now on we shall refer to quantities of this type simply as “microstate” without specifying
the averaged nature explicitly.



where G, (f,€) simply means replacing S4(€) and Sz (E — &) in G,,(€) using the
ansatz Eq. (2.13). In generic cases, the exponent F(x) has two local maximum (z¢, 2°)
satisfying:

z* <min(f,1 — f)E < max(f,1 — f)E < 2° (2.15)

while Fy(x) has only one. The saddle point equations take the form:
o(B) v (L8 - 2are
Vf V(—f) Gn(f,&1)

where & and & are the saddle points for F} and F; respectively.

In the remaining of the section we will compute (2.14) using the saddle point
approximation and consider the fluctuations. At the transition point f = 1/2, we shall
also see the transition in the nature of the saddle point calculation as n is tuned towards
n=1.

2.1 Away from f=1/2

Before focusing on the vicinity of f = 1/2, we first check what happens away from it.
When the subsystem is smaller than half of total system size by a non-infinitesimal
amount: f < 1/2. For generic (non-stringy) system, one expects that s(z) o< z%,0 <
a < 1, so §'(z) is a monotonous decreasing function, so for n > 1 we have:

& < Ef (2.17)

Since s(x) is monotonously increasing, from Eq. (2.17) we can deduce that for
f < 1/2, we have:

Sa(E) = Vs (f—;) <(1— Vs (%) S (E—&) (2.18)

As mentioned before, Fi(€) has two local maximum £F < fE < (1 — f)E < &)
In this case the smaller one & is the dominant saddle, around which G,, is given by
the first line branch of Eq. (2.11). By assuming that S4(&y) < Sz (E — &}), we can
approximate the hypergeometric function in G,, as:

(n—1)n
2

and the saddle point equation can then be approximated by

oF1[1—n,—n; 2; 2] =~ 1+ r, <1 (2.19)



where

eSa ()
= —. 2.21
G Sa(E-p) (2:21)
This differs from the saddle point equation for & in (2.16) only by terms of order (7,

i.e. exponentially suppressed. So we can replace (; by (, = %, and expand the
e

solution &} around &s:
Lt = 1)f(1- s (&) :
2
15 (E555) - (1= s (&)
Therefore for f < 1/2, £ is close to & up to exponentially small parameter (; <

1. This is also self-consistent with the assumption that Sa(Ef) < Sz (E —&f). The
difference between microstate and micro-canonical ensemble Renyi entropy can thus be

51%524-

(2.22)

computed via the saddle point approximation by:

— Fi(&) — Fy (&) + 5 In [F(&)/F'(&1)]

S, — SMC ~ x O(G) ~e (2.23)

1—n
This shows that for smaller-than-half subsystems, the microstate and micro-canonical
ensemble agree in terms of Renyi entropy up to corrections suppressed exponentially.
When the subsystem becomes larger than half of the total system size f > 1/2, the
microstate result is no longer close to that of the micro-canonical ensemble. Technically,
the global maximum of Fj(x) becomes the larger one x5 of the two local maximum
x1 < 3. Unlike x1, which is exponentially close to the global maximum of Fy(z), x5 is
not related to that of F»(z). As aresult, the saddle point approximations for [ d€ e &)
and [ dE eF 2(8) will thus yield deviations that is of finite fraction. Since both terms

scale with the total volume, the deviation is also volume-law:
S, —SMC o OV), f>1/2 (2.24)

2.2 Transition point f =1/2
We now focus on what happens at, or very close to, the transition point f = 1/2. To
clarify the details of calculation, we decompose F} into two parts:

Fi(E) = Faom (£) + FA (€)

Faom (&) = Sa(E)+ S5 (E—=&)+ (n—1)max{S4 (£),S1 (E - &)}
FAa(€) =In (2F1 [1 —n,—n; 2; e"sA(g)’SA(E’S)‘]) (2.25)

We can interpret Fyo, as the contribution from choosing the dominant Wick contrac-
tion®, while Fa encodes the corrections from the subdominant Wick contractions. As

6This ansatz of picking only the dominant term was proposed in Ref. [10]; see Eq. (11) there.



mentioned before, we can think of different Wick contractions as corresponding to dif-
ferent “saddles” in the full calculation. This becomes more apparent in the context of
AdS/CFT (see Sec. 3). However, we should distinguish them from with the stationary-
points & » when evaluating (2.12) in this section.

At f =1/2, the exponent F} (&), as well as its decomposition Fyon (€) and Fa (£),
have a reflection symmetry: £ <+ E — &£, so the saddles appear in pairs (£, F — &)
and make equal contributions, and we can write:

o 1 E/2
Sp=1—Mn N2 x/o dE eFaomE)+Fa(®) (2.26)

—n

At the transition point, as we are mainly interested in the enhanced correction
proportional to vV in S, — SMC it would be helpful to strip away factors that only
cause (1) corrections to simplify computations. Let us define:

1 E/2
Sdom — In ¢ N ™" 2 x / d€ eFdom(® (2.27)
1—n 0
and observe that striped-out factor e = ,F [l —n,—n; 2;2],2 = e 1¥a=%l jg
bounded within O(1) factors for 0 < z < 1:

wCsc(2mn) n—1

1< FA(5)<Cn Cn:_ -1
ST S Uy 2T+ nl2+n) |

+O(n —1)* (2.28)

Therefore we have that:
E/2 E/2 E/2
/ dE efaom(®) < / dE eFaomEFTFA(E) < / d€ efaom© (1, (2.29)
0 0 0

We can therefore conclude that:

1
n—1

dom
n

InC, <8, < gdom (2.30)

The bound is independent of V' for all n, and in the n — 1 limit it becomes:
1 —
Gdom 5+ O(n—1) < 8§, < gdom (2.31)

At this step, we can already see that the potential O (\/V ) enhanced correction for

Sp — SMC should be entirely captured by the dominant-term ansatz:

S, — SMC — gdom _ gMC 4 (1) (2.32)



So in the following, we shall instead focus on S9°™ it is a good proxy for the microstate
Renyi entropy S,,.

For generic n away from n = 1, the saddle point & for Fy in (2.16) is smaller than
E/2:

E
0< &< B) (2.33)
Furthermore, Fyom (£) = F» (€) for 0 < £ < E/2, which fully encloses the saddle point

&>, so we have that:

E/2 E
/ dE€ efaom®) ~ / € e (2.34)
0 0
up to exponentially suppressed corrections. As a result we will get that:
In2
Gdom _ GMC = 2.35
dom _ G0 5 = (2:35)

which is O(1) and not enhanced.

However, there is a caveat for this analysis near n = 1. We have implicitly assumed
that the contributions to S°™ from the saddle point & can be approximated by twice
of the standard full Gaussian integral:

E/2 dg Fd (S) ~ F2(52) > d 1F// S 2 _ Fz(gz) 27T 2
i efdom(®) v ¢ | dvexp|—5 b (E)x” | =e (&) (2.36)

o0

This is valid when the range of the integration around & ~ &, is much larger than
the variance of the Gaussian: 1/1/[|Fy(&)|], i.e. the saddle & is well separated from
E/2. On the other hand, we know that & — FE/2 as n — 1. In other words, the
two symmetric saddles (€, F — &) of Fyom in the full range 0 < £ < E collide as
n — 1. When this happens, (2.36) is no longer a good approximation, i.e. dominant
contributions to S%°™ do not consist of two independent full Gaussian integrals. As a
result, (2.35) breaks down.

Let us expand around this limit in terms of § = (n—1). The saddle point equation
for Fy(x) is easily solved to leading order by:

_E _VSEN)

E = 5 ZWHO((S?) (2.37)

Notice that in general we expect s”(E/V) < 0. As a result the integration range for

Sgom around &, has the positive side cut-off at order % ‘:j,(gf/ /‘3

to the leading order in § the full Gaussian integral approximation (2.36) is valid if:

J (see Figure 1). Therefore

Vs(E/V)5>> 1 S > 2 |s"(E/V)]

I9EV)” JEE) T S(EV) (2.38)

— 10 —



Below this range, we should instead proceeds as:

v _s'(@B/V) &

E/2 T E V)]
2/ d€ exp [Faom(E)] =~ 2/
0

—00

1
d& exXp |:F2((92) + §F2”(52)52:|

V)5

= Lo 2 T \:/l’(ﬁf//vn
= d€ exp | F5(&) + §F2 (&)E7| +

Vv _s'(E/V)
—o0 T w0

B o 27 Fy (&) V S'(E/V)
= exp [F5(&2)] {\/|F2”(52)| + \/FQ" (EQ)Erf< 5 Z| (E/V)|6> }

o [V SEY) JIFE/Y) ,
|} (&) ( T BV 50 +0(0 )) (2.39)

where in the last step we used the approximation to the error function: Erf(x) =
\2/—97% + O(z?%). Therefore:

1
d€ exp |:F2((€2) + —Fé’(&)é’g]

2

= exp [F2(&2)]

dom MC
Sn - Sn

J dE exp [Fuom(E)]
1—nln{ J dE exp [F3(E)] }

= Vv S(E/V) O 2.40
s 0O (240)

This is the O <\/V ) enhanced correction at the transition point f = 1/2, now man-
ifested directly in Renyi entropy for Renyi index n satisfying (2.38). We point out
that although Fgom (£) has a “cusp” singularity at £ = FE/2, it is regularized by the
correction term Fa (&), making F; (£) a smooth function across it; when the O (\/V >
enhanced correction appears, Fa fills the cusp dip between the two colliding saddles of
Fy, creating an approximate flat interval of width O(n — 1) between the saddles (see
Figure 1). In some sense, one may understand the enhanced correction as due to the
effective “soft mode” associated with the flat interval.

The result is expressed in terms of a general density of states. For illustration we
can plug in the Cardy formula for 2 dimensional CFTs:

/c [cE [cE

The correction to microstate Renyi entropy takes the form:
Sp — SMC = _\/VTc+ O(0) (2.42)
for § < (cLo)~'/*, where T is the effective temperature of the global state through the

Lo

c -

relation TV

- 11 -



(&)

Fdom (f,')

Fl(g) Fiom (8)

E./2 E/2

Figure 1. F; (£) and Fyom (€) for different regimes of Renyi index n. Left: n—1> 1/y/Cy,
the saddle points are well separated, there is no enhanced correction; Right: n—1 ~ 1/4/Cy,

the saddle points are close within the curvature scale of Fi, an O (\/V ) enhanced correction

appears, and an approximate flat interval for F; (£) emerges between the saddles.

More generally, we notice that the enhanced correction and its regime of validity
are both controlled by a characteristic (dimensionless) ratio:

Vs'(E/V
, = VSEV) (2.43)
VIs"(E/V)]
Using standard thermodynamic relations: % = %, Cy = 3—?, we find that this ratio

is indeed simply the square root of specific heat: v = /Cy. We conclude that for
n—1 < 1/4/Cy, the microstate Renyi entropy differs from the micro-canonical ensemble

by:
5= S = =52 +00) (2.44)

This is consistent with the enhanced correction to the von Neumann entropy computed
in [10].

3 Black hole microstates in AdS/CFT

In the previous section, starting from the ansatz (2.1) for chaotic high energy eigen-
states, we have analyzed the emergence of O <\/V ) enhanced correction to the Renyi
entropy near the entanglement transition V4/V = 1/2. In this section, we study the
same phenomenon in the context of AdS/CFT, where entanglement entropy can be
computed geometrically by the RT surface area [4, 5] and its dynamical HRT gener-
alization [6]. The phenomenon corresponds to the enhanced correction near the phase
transition in the RT surface [15-17] in high energy/temperature black hole microstates.

- 12 —



3.1 Boundary Euclidean path-integrals

We begin with the assumption that a black hole microstate can be represented by a

typical random state built from superposition of eigenstates in a narrow energy window
around E:

By > dIE) (3.1)

E-A<E;<E+A

We put in an additional label ¢ to denote a particular random choice of ¢ for the

microstate. To proceed, let us be more explicit about the Euclidean path-integral repre-

sentation for the reduced density matrix on the subsystem A in the chaotic microstate:

pa(€) = trg|E, &) (E, ¢ (3.2)

This can be represented by a Euclidean path-integral on a stripe with open slit
along A, where the random parameters ¢ are specified at the boundary, see Figure 2.
Averaging over a pair of randomness amounts to the replacement:

étop ébottom — Z |Ei>top<Ei|bottom% ]l’H (33)
E—-A<E;<E+A

pa(é) XeooooIzzooiz

Figure 2. Left: Euclidean path-integral for the reduced density matrix p4(¢) from a partic-
ular chaotic microstate; right: emergent KMS condition for averaged pa

This line might require a little clarification. Strictly speaking, for a random state
taken from the energy window around F, disorder average via Wick contraction only
gives rise to a projection operator into the energy window: Ciop Chottom — FPg, 1.€.

— 13 —



micro-canonical ensemble, instead of the full identity 14. The agreement between Py
and 14 is optimized by evolving the chaotic state in Euclidean time:

E,é) — e 21|B,¢) (3.4)
and do the random averaging. Then we have:

PPy Y eI B (E = M1y, (3.5)
El

where [ is the effective temperature fixed by the Laplace transformation from micro-
canonical ensemble to canonical ensemble. In other words, if one wish to replace the dis-
order Wick contraction by an identity operator that glues the Euclidean path-integrals,
the corresponding width needs to be dynamically fixed, see Figure 2. This is how KMS
condition emerges for a chaotic high energy pure state.

Let us now compute the trace of powers of the pure state density matrix:

trply = tra {tral B, &) (B, e} (3.6)

This can be represented by the Euclidean path-integral on the branched manifold
with open boundaries Mg, 4, . s, (see Figure 3), where ¢;,i = 1,...,2n are 2n copies
of the random variables specified at the boundaries of Euclidean path-integrals for the
n bra’s |E, ¢) and the n ket’s (E, ¢|. Upon disorder averaging, these random variables
will pair-up into n approximately identity operators (after appropriate evolution in
Euclidean time) that sew the corresponding boundaries. After the gluing, different
ways of pairing up the random variables give rise to path-integrals on different branched
manifolds that are all closed. Schematically:

Zn

tplh = . 2= / Do e Mo ) 5 5 / D e 'rMd)(3.7)
1 M;

They correspond to the different terms when performing Wick contraction in Sec. 2
with the chaotic ansatz, see Eq. A.1. Similar to there, the dominant contributions come
from the “planar” contractions.

For each M, obtained from “planar” contractions, if we re-arrange the orders of
the gluing procedures, we can translate all M;’s into “canonical” representations (see
Figure 4), where the Wick contractions become the same: they only pair up adjacent
“bra” and “ket” boundaries, i.e:

B, &)(E, el — e 1y o p(B) (3.8)
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Figure 3. The four closed manifolds M;,7 = 1,..,5 that emerge after disorder averaging ¢
in p"(¢é) for n = 3.

To compensate for this uniformity in contraction patterns, the branching struc-
ture is different for different M,’s. For example, the contraction (1 < 2)...(2n —
1 <> 2n) coincides with the canonical one, so the branching structure is the same:
(14_11 — 14_12) (Agn_l — /_12”) on A and (A, <+ A3) ... (A, <> A;) on A; on the other
hand, the contraction (2 <> 3)...(2n <> 1) gives rise to the following branching struc-
ture after changing into the canonical representation: (Az > /_13) (Agn > fll) on A
and (A; <> Ag) ... (A1 > Asy) on A see Mj in Figure 4. The notations should be
self-explanatory. The later contraction gives rise to a path-integral that computes the
thermal Renyi entropy for A, this term is responsible for the second part of the pure
state “Page curve”, and is analogous to the replica wormholes studied in [14, 18]. It
is easy to see that for contractions other than the two special cases, the canonical
representation will contain “mixed” branch structures, see Mj 34 in Figure 4.

3.2 Bulk Euclidean saddle points

Now let us extend into the bulk in AdS/CFT. Before disorder average, the boundary
state |E, ¢) is expected to be dual to a high energy black hole microstate with an end-
of-world (EoW) brane inserted behind the horizon. The boundary conditions on the
EoW brane is specified by the random variables ¢. After disorder average, the gluing
on the boundary is extended into bulk, i.e. the EoW branes are also glued pairwise.
As a result, each of the boundary Euclidean path-integrals on M; is dominated by a
corresponding bulk saddle point B; with 0B; = M;, there is no more EoW branes.

In general, finding the bulk solutions filling the interior of M,’s subject to boundary
conditions is difficult. Fortunately, we are considering the high energy density limit,
as a result the bulk Euclidean saddles are characterized by a small radial extension

— 15 —



-----

4
_ Bf r B}
A A T A
[ :Ioiniiiiic * :::é::::g ninx
By By
v .
B i Bf
A A v i A v A
————————— ¢ » Y ::::::::::ﬁj:::::X::::::::::é-\
By By
ke’ )
i Bf B i Bf
A\ 4 & A
Y oo Y A >¢::::4:::‘:'::
: \.j
By & : By
"""" Mz ~ Mz ~ My My ~ M3z~ My
" . .
C T Y, =
A A
A—x::::::::::: sIiniIIziiziiiiiiiix Y
By By
Bf B
A—)C::é:::y o » ::::::‘.'::::1‘:1::::::::>< 4 ?
By By
~ Bf By
v A
A—x:fz:;::;;: soinnIzizziiiiiiiix Y
= &\/ \/} =
P M; Ms T

Figure 4. “Canonical” representations of My ~ M3 ~ My and M5 for n = 3.

compared to the system size {0 < r < [},6 < V4, Vi We allow the radius to
be position dependent in general. Furthermore, we focus only on features that scale
with (powers of) the subsystem volume V4. This allows us to construct bulk solutions
simply by gluing portions of (possibly distinct) black hole geometries whose asymptotic
boundaries coincide with A and A respectively, this is similar to the approach taken in
[8]. The matching details at the junctions are not important for our purposes.

For the contractions (2 <> 3)...(2n <> 1) and (1 < 2)...(2n — 1 < 2n), there
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is only a unique black hole geometry along each copy of A and A respectively, and
replica-symmetry is preserved in these saddles; for other choices of Wick contractions,
replica-symmetry is broken and there may be multiple choices of black hole geometries
along different copies of A and A; see examples of n = 3 in Figure 5.

By ~ B3 ~ B,

Figure 5. “Kinematics” of the bulk saddles B;’s corresponding to M;’s. Green and red
arrows indicate how the three bulk time-slices are glued together for each configuration. The
dotted circles represent the horizons.

Having specified the “kinematic” part of the bulk solutions, we need to understand
the dynamics, i.e. satisfying the bulk equations of motion. In the ansatz we are
working with, i.e. gluing black hole geometries, the equations of motion take the form of
matching conditions. There are two related perspectives for such matching conditions.
We can label the black hole geometries by the corresponding inverse temperature [,
then the matching condition is then simply the micro-canonical boundary condition:
total energy of the microstate is E. For example, the matching equation of motion for
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the saddles corresponding to M;,i = 1,..., 5 for computing n = 3 are:”

M, ngg + (1 — f)Eﬁ =F
Moza: [Ep s, + (1= f)Es = fEs4p, + (1 — [)Egyip, = fEgs + (1 — f)Epyp, = E
M5 : ng + (1 - f)Egg =F (39)

where Ej is the total ADM energy of the black hole at inverse temperature 3. Corre-
spondingly we can also label the black hole solutions by the total energy E’, now the
matching condition corresponds to imposing that the total Euclidean width on A and

S b)Y = B (%) (3.10)

where S(E') is the inverse temperature of black hole having total ADM energy E’. For

A must be equal:

example when n = 3 we have:

s o) =35 (57
M2’374 . 2ﬁ<El> = Qﬁ (Evl%ffy)
Ms: 33(E) =2 (El%ffEI> (3.11)

Imposing these matching conditions ensures the absence of conical defects in the full
bulk geometries M;,7 = 1,2, 3. This is the only remaining content of Einstein’s equa-
tions in the regime and ansatz we are working with. Indeed they would correspond to
the saddle point equations we could impose on each term individually in the expansion
Eq. 2.11.

3.3 Re-summing saddles: cosmic brane effective action

As has been observed in Sec. 2, in order to study the details near the transition point
we should consider all the replica-nonsymmetric configurations, re-sum them into an
effective action which we then compute semi-classically as a whole. By now we have
understood what these configurations correspond to holographically, let us proceed with
the re-summation in the context of AdS/CFT.

We leave the subsystem energies unfixed, but still impose the boundary condition
for the total energy E4 + E; = E. Holographically this means that we do not fix the

"One might find out that the solution for Ma 3 4 corresponds to 81 = B3 = B(E), B2 = 0. This
does not give a singular manifold, since the corresponding thermal circle for 85 does not close; it only
serves to connect.
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black hole geometries involved for the M;’s. Denote the portion of the black hole geom-
etry extending along A by B4(E’), and the corresponding semi-classical contribution
to the Euclidean action by®

IA(E,) = /B =) (‘CEH + Lmatter) +/A£HG (312)

where the bulk Lagrangian densities {Lg ., Limatter; Lr.c} are evaluated at the sad-
dle point geometry B4(E’), as well as matter field configurations not specified here.
Consequently, let us also denote the portion of black hole geometry and semi-classical
Euclidean action along A by By (EI%J}E/> and [z (EI%J}E/> respectively, this is obtained
after imposing the total energy conditions.

Using these ingredients, the total semi-classical Euclidean action for each of the

M,’s takes the form:

n . ! E— fE/ /
This corresponds to M; obtained from gluing m copies of black hole portion Ba(E")

with (n+1—m) copies of B <El%ff/> ; see the top of Figure 6. We have not specified the

boundaries of B4(E’) or Bj (E —J E/) in the bulk, and in general directly gluing them

1-f
would result in discontinuous junctions across these boundaries. As commented before,

these issues do not enter in the limit we are interested. We label the boundary and bulk
manifolds by {M,,} and {B,,} respectively. This is not a one-to-one correspondence
between the label m and the original label for the contractions i, because there are in
general multiple ways to junction m and (n+ 1 —m) portions of black hole geometries
by gluing the original EoW branes. For this reason we include a curly bracket to
indicate that each {M,,} and {B,,} represent the class of all contraction or gluing
choices resulting in the same m.

For each class {M,,}, the bulk saddles in {B,,} can be constructed in a way
analogous to the cosmic brane prescription in [7]. We describe the construction as
follows. For each {B,,}, the saddle consists of n identical wedges By,

Bo = Bu/Z, (3.14)

Each wedge B,, is then constructed by inserting in the original black hole state | E Y puik
a pair of defects consisting of two cosmic branes ¥4 and Xz, homologous to A and A

8Defining the holographic action for a bulk subsystem is very subtle; however for the regime and
limit of our interest here, such subtlety is subdominant.
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respectively. For a particular m their brane tensions Ty and T'; take the values:

_n—m T m—1
N 4nG N’ N 4TLGN
respectively. Backreaction from these defects will result in conical singularities with

angular extensions:

T

(3.15)

1—
Ady =2 Agy— 2t T M (3.16)

n n
for the portions of B,, along A and A respectively. The union B,, of n such wedges
will therefore be smooth and satisfy the junction condition that computes (3.13). We

name it the double-defect construction (see Figure 6).

(n+1—m)—

Figure 6. Top-left: a generic planar M; € {M,,}. Top-right: a generic bulk saddle B,
for {M,,}. Bottom: the quotient geometry B,, = By,/Z,, obtained by the double-defect
construction.

Let us make a few comments regarding the double-defect construction. It may
appear that we have proposed a procedure based on the replica-symmetry among the
n wedges B,,. However, we can do this only because there is an effective U(1) rotation-
symmetry along the bulk thermal circle that emerges in the limit of our interest: high
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energy £/ > 1 and ignoring boundary effects near dA. It allows the division of the circle
into n equal wedges that are therefore replica-symmetric under Z,, C U(1), justifying
our construction. The origin for this emergent rotation-symmetry can be traced to two
ingredients. Firstly, the m copies of black hole portions along A are all the same (and
similarly for A), we assume this to be the dynamically favored configuration. More
importantly, we are approximating each of the m black hole portions as “featureless”
and thus invariant under rotation along the bulk thermal circle. This is certainly not
true in the exact solution. For example, solving the matching equations will in general
give a set {f, ..., B} that are not all equal; see top-left of Figure 6. Once we include
the details arising from gluing and smoothening across 0 A, they will produce “features”
along the thermal circles that generically breaks the rotation-symmetry. Apart from
this, these features also distinguish between the bulk saddles B;’s in the same class
{B,.}, because different contractions ¢ will in general give different sets for {51, .., 8.},
and thus different gluing and smoothening effects. Since these features are localized
near 0A, in the high energy limit they only affect the radial-going portion of the bulk
defects that we have ignored. It is interesting to consider the corrections they induce
to the cosmic brane picture, we leave this for future investigations.

One way to represent the double-defect construction is to simply add the corre-
sponding brane source terms into the bulk action. The total on-shell action Iy (B,y,)
can be divided into n quotient on-shell actions:

Thuix (Bm> = n]bulk([;)m) (3~17)

with the quotient on-shell action Ibulk(l’;’m) given by a quotient path integral in the
saddle point approximation:

eflbulk(ém) _ /D9D¢D2ADEA e—[bulk(9,¢7E)_4T::GT; Ibrane(EA)_Jv?CGJV Kyrane(24) (318)

where Iy (g, ¢, E) is the bulk Euclidean action with boundary conditions specified
by the original state |E), and lyrane (24), Tbrane (2,3) are the Nambu-Goto actions for
cosmic branes located on X 4, X 7 respectively:

Torane (X4) = /

XA

A"y, Torane (Z2) = /E A1y /7. (3.19)
A
Here 7 is the induced metric on the brane. Although not shown explicitly, Ij;ane depends
implicitly on the spacetime metric g. In Eq. (3.18), DX 4 denotes a path integral over
the location of the brane.
Extremizing over {g, ¢, ¥ 4, ¥ 5} solves for the backreacted geometry for a particular
saddle B,,. As was alluded to, our strategy is to re-sum all the saddle configurations

- 921 —



before extremizing. Before proceeding, we point out that while (3.18) computes the
action of the Z,, quotient B,, of the “parent space” B,,, it is the full action of the parent
space B,, that we need to re-sum. In the semi-classical limit, we can simply write the
latter as

eflbulk(Bm) _ /,DQDQbDEADEA efnfbulk(gyib,E)*ﬁIbrane(EA)*ﬁ[brane(EA) (320)

using Eqs. (3.17) and (3.18).
Comparing with the combinatorics factors worked out in Appendix A, we find that

out of all the contractions i’s, there are N(n,m) = % <n) ( " 1> number of “micro-
m/) \m —

configurations” for the class {M,,}. So we can re-sum all the contractions and obtain
the full replicated partition function Z,,:

n n—m m—1 _
Zy =) N(nm) / DgDGDY DY ; ¢ "oulk0:0H) 5 forane(24)=iG Torane(*4)
m=1

= /DqubDZADZA e_n[bulk(97¢7E) Z N(TL, m) e_ﬁlbrane(zf‘)_ﬁ[brane(zé)

m=1

= / DgD¢DY 4D 4 e "oukl@t DG (3,5 5)
= / DgD¢DY DYz e Ibulk( 90 E) Lo (Xa.24.m) (3.21)

where we have defined

o cored| (2a)
_ 2hranel e 4Gy brane Ajb <0

Gn (X4, X1) = oF4 [1 —n,—n; 2 e N ] X9 om0 Ag
e 4Gy 'branel~A 7 AIbrane > (

(3.22)
with
AIbrame = [brane (EA) - Ibrane (EA> 5 (323)
and we have extracted a total “effective action” for the cosmic branes
[eff (EA,EA,TL) = —lnGn (EA,EA)
Alhrane
%]brane(zfx) - ln 2F1 1 - n,—n, 2; e 46N ’ A]brame <0
- _ Alyrane (324>

%Ibrane<zg) —1In 2F1 1 - n, —n; 27 e N )7 A[brane >0

The first term in the effective action corresponds to that of a single cosmic brane in the
dominant configuration; the second term re-sums the (semi-classical) corrections from
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the subdominant configurations. They correspond to the decomposition into Fy,, and
FA in Sec. 2. The resulting I.¢ has a modified dynamics in terms of brane dynamics
and backreactions on the bulk geometry. The bulk physics near the transition point is
encoded in such modifications, which we turn to study next.

3.4 Computation in fixed-area basis

Let us now solve the dynamics of the effective action for the cosmic branes Eq. (3.24),
which is our main result out of re-summing the saddles in the AdS/CFT calculations.
After re-summation the effective-action becomes very non-local, i.e. it does not repre-
sent local insertion of defect sources. Computationally, it is therefore easiest to work
in the basis of fixed-area states [11-13]. We quickly review the main ingredients below.
In general, assuming time-reflection symmetry we can decompose a holographic bulk
state schematically as follows:

|¢>bulk = Zoa,ij|aai>a|a7j>& (325)
a,i,]

where {a,a} with da = Ygr U A, 0a = Ygr U A is a partition of the bulk Cauchy
slice across the RT surface. The label a denotes data specified on Xgr, including the
induced metric on it, and a conformal structure in the normal plane. They correspond
to the “central” degrees of freedom when decomposing the bulk Hilbert space H oge in
terms of the partition H, and Hg:

%code = @aHa(a) & Ha(Oé) (326)

In particular, one of the operators in the center algebra is the “area operator” /l, whose
eigenvalue is part of what « specifies. From this we can repackage the decomposition
Eq. (3.25) into fixed-area states as:

) but = Z Z Cojijla Yol j)a | = Z [9.4) (3.27)
A

A a,i,j:A[a]z.A

These states as defined are orthogonal but not normalized, we can then define the
normalized states:

[04) = V/P(A) [h4), (Waltba) =0an (3.28)
where the normalization factor can be computed by the original bulk Euclidean path-

integral projected into geometries g having fixed extremal surface area /l[g] = A, and
the original state is a weighted sum of these normalized fixed-area states:

) bulk = Z VP(A) [a), P(A)=N"! /DquS’ ¢~ Toulk(9:6.E) (3.29)
A

Algl=A
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where A is the normalization constant for 1))y, itself:
N = /Dngb e Tbulk(9:0.E) (3.30)

There are cases where there are more than one extremal surfaces sharing the same
boundaries, e.g. the state is mixed or A is not connected. For simplicity, say there are
two such extremal surfaces (X1, 35) such that:

0%, = 05, = A (3.31)

For regular geometries the two extremal surfaces do not intersect except at the bound-
aries. As a result, the bulk Cauchy surface can be partitioned into three parts (a, b, ¢)
such that:

anNb=%;, bNec=1%, (3.32)

Similar to the case of bi-partition, we can decompose the bulk Hilbert space into:

Hcode - ®a75%a(a> ® Hb(a7 B) & Hc(ﬁ) (333)

where a and [ denote the induced metrics on ¥»; and s respectively, together with
the conformal structures in the normal planes. Proceeding further we can decompose
the bulk state into fixed-area states labeled by two numbers:

W = > VP (A1, A) [tha,.4)- (3.34)

A1, Az

Although we have been summing fixed-area states over the areas, these sums can also
be written as integrals.

Now let us continue the bulk computation of the Renyi entropy for the high energy
black hole microstate, starting from Eq. (3.21):

Z, = / DyD¢DY DYz e ouk(9:6:E)~lei(Ea.Ban) (3.35)

This path integral can be performed by postponing the integrals over the areas Ag, A i
of the cosmic branes ¥ 4, ¥ 7 until the very end. This amounts to first doing the other
integrals in the fixed-area state |14 1) where the areas Ay, Aj are fixed to the values
A, A, and then doing the final integrals over the areas A, A. Therefore, we rewrite
Eq. (3.35) as

Z = / dAdA P,(A, A)elor(AAn) (3.36)
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where we have defined

Pu(AA) = / DgD¢

e Mbulk(9:9:5) (3.37)
Aalgl=A, A zlg)=A

and I.g (.A, A, n) is determined by evaluating Eq. (3.24) in the fixed-area state:

n—1 . oL %
mA—ln 2F1 1—n,—n, 2,6 N >,AA<O

[eff (A7 A7 n) = - _ AL
%A—ln oF1 |1 —n,—n;2;e 4GN]>, AA>0

(3.38)
with
AA=A- A (3.39)

In the saddle point approximation, we can rewrite Eq. (3.37) and express it in
terms of P(A, A) that we saw earlier:

P.(A,A) =N"P(A, A" (3.40)

where
e~ Toulk(9:0.5) (3.41)
Aalgl=A, Azlg)=A

Plugging Eq. (3.40) into Eq. (3.36), we find

P(AA) :N—I/Dgpqs

Zy=N" / dAdA P(A, A)reor(AAn) (3.42)

For chaotic high energy eigenstates, P(A, A) is highly peaked on a codimension-one
trajectory:’

P(A,A) = P(A)d 1 aa) (3.43)

where A (A) denotes a function of A. More specifically, A (A) is given by the area of
the extremal surface homologous to A evaluated in the saddle point geometry g with
fixed extremal area A, [g] = A, i.e., the saddle point solution for the Euclidean path
integral

e~ Touik(9:0:5) (3.44)

P(A)=N"! / DgD
(A) 9P|
For our interests, |t))pux is dual to a high temperature black hole. Correspondingly,
the dominant saddle point solution B(.A) for Eq. (3.44) can be obtained by gluing two

portions of black hole geometries Ba(E;) and B;(Es) along A and A, and whose ADM

9This peak becomes exactly a delta function in the limit that we are interested in.
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masses are 7 and Es respectively, constrained by requiring that the total ADM mass

of B is fixed to be E:
B(A) = BA(Ey) UBA(Ey), By = f'6(A)f), Es=E — fE, (3.45)

where £(A) is the f-fractional ADM mass of a black hole with total horizon area A.
In d 4+ 2 dimensional bulk it is given by

£54d <A>H5 . o't

E(A) = —~L— — S4 = . 3.46
(4) 167G LY s () (3.46)

Sd

Using the relation between horizon area and entropy, it is easy to derive

et ), - [

v
where fV and (1— f)V are the subsystem volumes V4 and Vj, and s(e) is the boundary
entropy density at energy density e. At this step it is easy to switch the integration
variable from A to £ (A/f) and rewrite Eq. (3.42) as

(3.47)

Zy=N" / deP(E)" e tenlIVelfr =NVl ), (3.48)
To evaluate this integral, we identify the arguments in Il with the subsystem
entropies:
& E-£&
Vs|—=|=54&), 1= f)Vs | ——=| =51(L£ - E&). 3.49
s | go| = a-pvs [y = saE-e. ey
We also rewrite Eq. (3.45) as
NP(E) = / DgD¢| . e~ Toulk(9:9:5) 3.50
) 29| = sace (3:50)

where A (€) is the inverse of £(A), and in particular fA (£) = S4(£). In the saddle
point approximation, we find simply

NP(E) x 5aE)+5a(E-E) (3.51)

Putting these together, we arrive at
Zn _ /dg ensA(5)+7’LSA(E_5)_IGH(SA(5)7SA(E_5)771)‘ (352)

Plugging the form of I.g from Eq. (3.38) into this equation, we find that it exactly
reproduces Eq. (2.11) which we derived from the chaotic ansatz and already calculated
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in Sec. 2. In other words, we have re-derived Eq. (2.11) using a holographic calculation.
The enhanced correction proportional to /V near the transition f = 1 /2 therefore
follows from the analysis in Sec. 2.

Let us quickly summarize the main steps in this section. We have shown that for
black hole microstates, averaging over randomness gives rise to different gluing bound-
ary conditions {M,,} for computing trp?%, which are filled by different bulk saddle
point geometries {B,,}, most of which break replica-symmetry. However, we argued
that when working in the high energy limit and neglecting boundary effects, an ap-
proximate U(1) rotation-symmetry emerges for each saddle. Utilizing this symmetry
then allows us to construct the quotient geometry of each saddle Bm = B,,/Z,, where
Z, C U(1), using the double-defect construction, i.e. inserting two segments of cosmic
branes covering A and A and with brane-tensions (T4, Tj) respectively. The double-
defect insertions for distinct saddles can be re-summed into a (non-local) effective action
I.g for the cosmic branes. The effective action can be evaluated in the fixed-area ba-
sis, which for the black hole microstates is conveniently associated with the subsystem
energy eigenstates. Performing this calculation then reproduces exactly our results in
Sec. 2.

4 Discussion

In this paper, we studied the details of entanglement transition in subsystem Renyi
entropy S2 in the context of high energy eigenstates. Our analysis started with the
chaotic ansatz (2.1), and is later repeated for the high energy black hole states in
AdS/CFT. We focused on the O <\/V ) enhanced correction to the microstate Renyi
entropy near the transition as we tune the sub-system size V4 = fV towards half-point
f =1/2. We found that such enhanced corrections emerge in the Renyi entropy when
the Renyi index n is sufficiently close to 1, i.e., if n — 1 < 1/4/Cy,. It is consistent and
connects with previous results for von Neumann entropy in [10]. Below, we remark and
discuss a few points regarding our analysis, as well as general lessons our computation
seems to be suggesting.

Let us revisit the proposed chaotic ansatz (2.1), especially the nature of the ran-
dom variables c;;. We implicitly assumed that they are independent Gaussian variables.
This assumption shows up (see Appendix A) when computing the disorder average, in
the form of only including contributions from Wick contractions ©¢. There is no “in-
teraction” contributions, e.g. Tl Technically, this made the calculation tractable and
one could obtain explicit result, e.g. G, in (2.10), that allows for analytic continua-
tion in n. Being independent Gaussian variables is a fairly strong assumption on ¢;;.
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However, the analysis in Sec. 2 for the enhanced correction is highly independent of
the specific functional form of G,, as long as it smoothly connects the two colliding
saddle points in the limit n — 1, thus providing an approximately flat interval. This
suggests that the enhanced correction is insensitive to the precise random distribu-
tion of ¢;;. In AdS/CFT, the independent Gaussian distribution for the randomness
¢ manifests in the type of boundary manifolds M,, that emerges after averaging, in
particular the gluing options for M,,,. Only pairwise gluing between upper and lower
boundaries of the Euclidean path integral for p is included. “Interaction” among the ¢
s would result in gluing using a “multi-way junction”. It is likely that in holography;,
bulk saddles resulting from such gluing is suppressed in G, making the independent
Gaussian distribution natural at the leading order in Gy. We leave these for future
investigations.

An important part in our analysis is the treatment of “intermediate” saddles that
do not show replica-symmetry explicitly. In general they are very difficult to study,
especially in holography. As a result these saddles are usually ignored under the belief
that even if exist, they do not play important roles. However, such attitude becomes
questionable near entanglement transitions. In our case, we were able to construct and
calculate these replica-nonsymmetric saddles B,, explicitly thanks to the emergent U(1)
rotation-symmetry in the high energy limit. This gave us the opportunity to examine
how they participate in the relevant physics, i.e. enhanced correction to the microstate
Renyi entropy, close to the transition. Recall that in Sec. 2 we have shown that the
enhanced correction can be entirely captured by simply including only the dominant
replica-symmetric configuration:

/d&' 1) ~ /dé' eFdom(®) (4.1)

where
eFaom(E) — pSa(@+Sa(E=€) 1 {e(n—l)SA(g)’ e(n—l)SA(E—g)} ) (4.2)

There we observed that the remaining saddle point configurations only give up to O (1)
correction to S9°m. This supports the approach of only keeping the dominant replica-
symmetric saddle point contribution, taken in Ref. [10] to find the enhanced correction.
On the other hand, one may hope to “dynamically” implement the prescription of
picking the dominant replica-symmetric saddle. A natural guess might be simply adding
up contributions from both replica-symmetric saddle points, and consider:

Feym(€)

. = SAEVHSAE=E) [o(rm1)S(E=E) | (n=D)SA(E)]
= exp [Fuom (€) + FR™ (£)]
FY™(E) = In (1 + e~ (7 HISal®)=Sa(E=E)) (4.3)
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where we have decomposed it into a dominant-saddle part Fy., and a correction part
FJ™, similar to the case of Fi. Intuitively one may expect Fiyy, to be a good “proxy”
for Fyom and thus also for F;. However, one can immediate see that this is not the case.
Due to the reflection symmetry at f = 1/2, we have that:

/dé' efoym(®) = 9 /dé’ ef2® (4.4)

Therefore the correction S — SMC = 12 “independent of the total volume V' for
all n. In terms of separating into the dominant part and correction part, FX™ is still

bounded by V-independent constants:
0<FY™(€) <In2 (4.5)

However, the bound does not shrink towards F™ =~ 0 as n — 1, which is what
happened for Fa of Fy, and hence the difference between S»™ and Sd°™ becomes
large. In this sense, Fiyy, is no longer a good proxy to both Fy,, and Fj in the regime
of enhancement. In summary, it suggests that to capture the enhanced correction
near transition, it is sufficient to include only the dominant replica-symmetric saddle,
which gives S9°™; however, we would miss such effect by simply adding up the two
replica-symmetric saddles and hoping it “dynamically” mimics S9™. Re-summing
over the replica-nonsymmetric saddles is important for the purpose of implementing
the prescription of Sdom.

Our holographic calculation in Sec. 3 for black hole microstates have a similar
feature: instead of summing over all fixed-area saddle points, we can simply choose
to keep only the dominant replica-symmetric one, but we should not try to sum over
both replica-symmetric saddle points. Concretely speaking, the replicated partition
function Z, for calculating Renyi entropies is given by Eq. (3.42) and involves an
effective action I.¢ that includes the contributions from all fixed-area saddle points,
but we could replace it by the dominant replica-symmetric contribution and write
Eq. (3.42) approximately up to O(1) errors as

Zy = N" / dAdA P(A, Ayreter(A44n) o ppn / dAdA P(A, A)e laom(A4n)
(4.6)
where instead of Eq. (3.38) we have used only the on-shell action of the dominant
fixed-area saddle

_ —1 _
Taom (A, A, n) = "= min {4, A} . (4.7)
4G N
From this, we can take the n — 1 limit and find the von Neumann entropy

__ min {A,fl}

S / dALA P(A AT (4.8)
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It would be very interesting to understand to what extent our results for black hole
microstates apply to more general holographic states with HRT entanglement transi-
tions, such as the simple example of two intervals in the vacuum state of AdS;/CFTs.
In these general examples, if we can similarly replace the effective action I.g from sum-
ming over all fixed-area saddle points with the dominant replica-symmetric contribution
Lqom, we would by the same steps find enhanced corrections to the holographic entan-
glement entropy from evaluating Eq. (4.8). For our example of the high energy black
hole microstates, we argued that such a replacement is a legitimate approximation,
by computing explicitly the correction due to re-summing other saddles and showing
it remains O(1) near transition as n — 1. We can ask if similar arguments can be
made for more general holographic examples such as the two-interval subsystem, by
re-summing and analyzing the contributions from replica-nonsymmetric saddles'’. In
terms of topology, the gluing prescription for constructing these saddles can proceed in
ways that are analogous to the high energy black hole case (see Figure 7). However,
due to the additional region ¥,y between the two extremal surfaces, we can no longer
take the replica-symmetric quotient for each of the saddles as we did for the black hole
microstates'!. One might instead consider the two-interval subsystem in an excited
global state, whose bulk geometry is deformed such that ¥, shrinks to being negligi-
ble, i.e. the two competing extremal surfaces almost touch each other. However, the
emergent U(1) rotation-symmetry we had for the black hole states is still missing, as
the symmetry-breaking features resulting from gluing will in this case affect the bulk
defects extensively (though it is possible that a discrete Z,, symmetry may survive, we
leave this possibility for future considerations). In any case, it is difficult to re-sum
their contributions into an explicit effective action I.g in terms of cosmic brane defects.
For this reason we cannot make a concrete argument for neglecting the corrections from
the replica-nonsymmetric saddles to the dominant one near transitions. As remarked
before, the explicit form of I.g is not crucial for our analysis of the enhanced correction,
as long as we include all saddles and not just the replica-symmetric ones. Hopefully
the lack of explicit results can be accommodated by such flexibility, and the validity
of neglecting these corrections even near transitions can be extended to more generic
cases in AdS/CFT.

We end this paper with a few future directions. Firstly, for the black hole mi-
crostates calculation, the emergence of additional saddles can be understood as com-

190ne detailed difference is that in a typical holographic example such as the two-interval case, the
bulk saddles being summed over all have the same replica-symmetric boundary, whereas in our black
hole example, the bulk saddles B; have different boundaries M; each of which might not respect the
replica symmetry.

1 Such regions Y, are absent or negligible in high energy black hole geometries (see Figure 5).
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Figure 7. In the case of two-interval subsystem A in AdS3;/CFTs, the topology for a
replica-nonsymmetric saddle for n = 3.

ing from averaging over the randomness. Certain chaotic effects will manifest semi-
classically in Euclidean path-integral after this, as is usually the case. It would be
interesting to investigate how the same effects manifest in individual state without
averaging. The emergence of these saddles break the topological obstruction for the
RT surface due to the event horizon, understanding them for individual states would
therefore shed light on probing the interior of black holes. Secondly, in this paper we
solved the effective action I.g for cosmic branes in the fixed-area basis, which then
reduced the calculations to the analysis in Sec. 2. It would be interesting to solve I,
or at least extract the relevant physics in I.g responsible for the enhanced corrections,
in terms of possibly non-perturbative dynamics between the cosmic brane defects. By
doing this, the cosmic brane defects may reveal themselves as objects with intrinsic
dynamics, this may lead to new perspectives in entanglement calculations. Lastly, it
would be very interesting and important to make concrete arguments for the order of
corrections the replica-nonsymmetric saddles produce near transitions. We can phrase
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this problem in terms of properties of a correction term similar to Fa in Sec. 2. No
doubt this will be very difficult, especially to extract its general properties and at the
same time analytically continue the Renyi index n — 1. One possible route is to ap-
ply the resolvent trick as in [14] and translate properties one can infer at integer n to
general values of n. We plan to pursue such investigations in future works.
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A Disorder Wick contraction

In computing the microstate Renyi entropy disorder-averaged, one needs to evaluate
the following sum:

g Cay by Zaz by Zaz by Cas by s -5 Can.bn Zay.bn = g (all Wick contractions). (A.1)

a1,e.5Qn3b1,e.bn

Let us examine in more details the structure of contractions. We can label each random
variable ¢, by a circular dot with two legs extending out, with a lower leg representing
the a index and an upper leg representing the b index. The summation Zal by

suggests to pairwise connect these indices. For illustration we connect the a indices
using red lines, and b indices using green lines. The contraction proceeds by

| — |
CabCal b = 5a,a/5b,b/ (A2)

We can therefore represent each contraction c,pcq iy graphically by a pair red and
green lines connecting (a,a’) and (b, V') respectively. They then combine with the red
and green lines coming from ) ,, to form closed loops (see Figure 8). Each

red loop contributes a factor of e54; each green loop contributes a factor of e%4. where

al»“-yan;bly"':

eS4 e%4 are the rank of vector spaces associated with the indices a and b respectively.
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Figure 8. An example of contractions (left) producing loop diagrams (right) for the case of

n=3

From the standard loop counting, we can conclude that the dominant contributions
come from “planar” contractions, i.e. those that produce planar loop diagrams. It
is easy to see that the planar contractions are characterized by non-intersection. For
example, the following is a planar contraction:

I 1
T 1 r 1 254 ,(n—1)S;
Cay,by Caz,b1Caz,bs Casz,ba -+ Can,bnCar by ™ € € (AS)

while the following is a non-planar contraction:

Sagn=1)84 (A.4)

I 1 1
Cay,by Icaz,bl Cas,ba cas,b2l -+ CapnbpCay by, ™ €

In order to sum over all planar contractions, we need to work out the details relating
contraction patterns and the loop factors, and it is a very complicated combinatorics
exercise to directly do this. One way to get around this and proceed is to follow [14]
and consider the resolvent operator, which is defined by:

A - n 7
RO = (1=5) =M+ A ), (A.5)
ij

n=1

We can focus on the disorder averaged version of the resolvent:

RNy = A0y + Y A" (7)), (A.6)

n=1
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From now on we simply write R()\) as R(A). It is given by the sum over all planar
contractions for all n dressed by factors of A, with the first and last index (a; =
i,an41 = j) left un-contracted in each term; see top of Figure 9. Due to the planar
nature of the contractions, there is a recursive structure that allows one to write down
a self-consistent Schwinger-Dyson equation, graphically represented by the bottom of
Figure 9:

)\€SA R()\)l]

R(N)ij = A0ij + Ae3 > " R(A)"R(N)yj = A\i; + TR

n=0

(A7)

where R(\) = R(\);; is the trace of the resolvent.

- C1 CQ C3Cyq + e = + 0[12 +
A& A rooA

C1 C2 C3Cy — + ')'\'01 C2 C3Cy C5Ce —— +

Figure 9. Schwinger-Dyson equation for the resolvent R(\);; from summing planar contrac-

tions.

Taking the trace of the Schwinger-Dyson equation gives us:

R()\) = Xe¥4 + AleiA—g((:)) (A.8)
whose solution is simply*?
1+ (e —e¥1) X — \/[1 + (€54 — eSa) \]* — 4eSa )
R(\) = 5 (A.9)
With a little re-packaging, we can write it as
R(X) = A1 G (Ae¥1,e52754) 4 \eSa
Glent) = L—2(t+1)— /1 —22(t+ 1)+ 22(t — 1)2 (A.10)

2tz

2There is another branch of the solution but its expansion is not inconsistent with Eq. (A.5).
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G(z,t) is the generating function for the so-called Narayana numbers N (n,m):

G(z,t) = > N(n,k)z"t""! (A.11)

In combinatorics, N(n, k) is equal to the number of planar contractions among n pairs
that contain k distinct nestings, and is given by:

N(n,m) = % (:;) (m”_ 1) (A.12)

We can compare the expansions:
R(A) = Xe 4+ A (7)
n=1

= A £ A5 ) N " N(n, k) (Ae4)" ek D(Sa=54) (A.13)

n=1 k=1

and extract the following closed-form expression:

tr (ﬁ) = eatnSa Z N(n, k:)e(k_l)(sfi_sf‘)
k=1

B {esAe”SA oF1 (1 —n,—n; 2; eSA’SA) , 9S4 < S3

(A.14)
eSienda ,F (1 —n,—n; 2; eSﬁ_SA) , Sa> 83

This result is symmetric upon switching Sy <> Sz;. When n is an integer, the two
piece-wise branches coincide for all {S4, S5}
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