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Abstract

Detection and Optimization Algorithms for Cyber-Physical Systems

by

Pedro Ivo Bastos Hespanhol

Doctor of Philosophy in Engineering- Industrial Engineering and Operations Research

University of California, Berkeley

Professor Anil Jayanti Aswani, Chair

Cyber-Physical Systems (CPS) play an ubiquitous role in operation and control in many
different domains: power systems, finance, robotics, and automation. The complex interplay
between cyber components such as software, communication protocols, computer servers and
physical components, such as sensors and pieces of dedicated hardware, requires advanced
and sophisticated methods and algorithms that ensure safe and efficient operation. In this
thesis we tackle both safety and efficiency: We develop novel detection algorithms that are
able to identify malicious attacks, sensor corruption and faulty measurements. Our detection
mechanisms have provable guarantees based on rigorous asymptotic and non-asymptotic
statistical analysis and can be readily implemented in CPS, such as robotic systems and
autonomous vehicles. In addition, we developed collusion detection mechanisms that can be
used to identify whether two or more CPS are colluding or not. We also design a mechanism
that is able to induce selfish systems/agents to behave cooperatively. We showcase the
performance of our algorithms with several different case studies. In our analyses, we place
emphasis on algorithms that can be implemented in real-time, that is can be used while the
system is under operation in the real-world. On the efficiency side, we developed real-time
non-linear Model Predictive Control (MPC) Methods that can provide optimal solutions to
the Optimal Control problem faced by the CPS during operation. Our algorithm exploits the
control structure and is tailored for implementation in embedded hardware and can operate
both with memory and computation time constraints. We showcase the performance of
our algorithm with a C/C++ implementation and we compare to several current state-
of-the-art Optimal Control solvers. We also extend our methodology to be used together
with Pseudo-spectral Methods and Hybrid Systems, developing an integrated Mixed-Integer
MPC algorithm that can handle complex non-linear dynamics and both continuous and
discrete variables. With this thesis, our goal is to provide real-time practical algorithms
that have provable guarantees in performance both in the detection task and in the optimal
control task. Our algorithms are based on rigorous theoretical analysis and display very
good performance and can be readily implemented in practical Cyber-Physical Systems.
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Chapter 1

Introduction

Cyber-Physical Systems (CPS) are ubiquitous in modern day operation of power systems,
finance, robotics, and communication networks. The interplay between cyber components,
that is software, computer servers, communication protocols, and physical components, hard-
ware, actuators, and sensors, has become complex and it’s analysis of utmost importance
in designing reliable, efficient, and safe systems. With the technological improvement of the
previous decade, the operation of physical systems are increasingly reliant on fast real-time
sensor measurements, information-sharing and fast-response to breaches in security and in
performance. In power systems, country-wide power grids are operated minute-by-minute
by using information systems to best control the grid. In addition, advanced algorithms are
implemented in specialized software in order to provide operational policies that are resilient
to uncertainty and future potential disturbances. On finance, more and more quantitative
firms rely on high-frequency trading algorithms, that trade large volumes of assets in real-
time, using complex Machine Learning and Statistical Inference tools in order to provide
them with leverage at the time of trade. These algorithms can only perform at a high level if
implemented in specific hardware that is able to provide extremely fast computation power
and communication speed. This is a very good example where both cyber and physical
components need to be top-notch and need to be resilient and reliable. Lastly, the exciting
area of autonomous vehicles and autonomous drones flight, represent the current frontier of
challenges in integrating software, parallelizable algorithms, efficient communication proto-
cols, with the latest state-of-the-art hardware architectures, such as massive GPU/FPGA
frameworks, distributed LIDAR sensing and Machine Learning based prediction algorithms.

In all aforementioned areas the widespread use of those new technologies bring with them
challenges in both the security and in the performance side. Security (or in other words,
safety in operation) is central when automated systems are involved (this is evident in me-
dia discussion about self-driving cars and their role in pedestrian and driver safety). The
discussion often revolves about the question of how to “prove” that a given CPS is safe and
resilient, to say, other systems (for example like other vehicles on the street) or sensor fail-
ure due to unforeseen circumstances (like abrupt rain or snow). Another area of discussion
lies in how to mitigate external threats to the system, for example due to malicious agents
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tampering with sensor measurements or the communication channels, and how to ensure
that the effects of these attacks are not only detected quickly but also mitigated effectively.
Real-time operation of CPS requires real-time detection methods that can be carried in an
automated way by the system and are amenable to remote supervision and control. As
technology improves, the complexity and sophistication of external attacks and malicious
disturbances increases and the game of “cat-and-mouse” between security methods and at-
tacks that are designed to bypass such methods, reaches high-level of technical sophistication
and thus requires advanced theoretical and practical tools in order to analyze the perfor-
mance of defense mechanism, in order to provide provable guarantees on their efficacy in face
of the potential threats the CPS might face. Lastly we state another thread of discussion
which lies on the problem of collusion and competition between CPS. These systems often
rely on algorithms that leverage both computational power and inference systems in order
to make control decisions. When two or more of such systems interact the outcome can be
unpredictable. A significant body of work in the literature focuses on studying such interac-
tions and try to design detection methods that are able to indicate whether these automated
systems are colluding or not. The main practical examples lie in automated pricing between
airline companies, which are increasingly reliant on Machine Learning aided method in order
to set their prices for travel flights. Recently, it has been found out that these algorithms are
implicitly colluding in order to set prices higher that “fair” competition prices. This is done
often without knowledge of the companies deploying such algorithms. This example illus-
trates the necessity of advanced detection and inference algorithms that are able to reliably
detect and mitigate the collusion phenomenon when it occurs.

On the performance side, the challenge lies in guaranteeing performance in face of un-
foreseen disturbances and uncertain future scenarios, a key example being how autonomous
vehicles should behave when predicting the movement of pedestrians and other vehicles. The
introduction of uncertainty makes the control problem faced by a CPS extremely challenging.
In addition, in practice there often are regulatory and technical constraints that introduce
limitations in designing an efficient control policies. State-of-the art algorithms that rely on
Constrained Optimization and Optimal Control need to be implemented in specific hard-
ware, such as FPGA’s or GPU’s, in other to output control solutions in real-time in face
of such uncertainties. In practice, such control decisions need to be updated every a couple
hundred of milliseconds as new information arrives to the system, via the sensor hardware or
the communication channels. Another key aspect lies in handling discrete set of events (such
as the decision whether to lane change or not by an autonomous vehicle). These events need
to be modelled using adequate techniques such as Integer Programming or Hybrid Systems
formulations and require dedicated software that is able to find the best possible solution in
real-time.

In this thesis we develop novel advances in the area of security and efficiency of CPS. In
the area of security, we focus our attention in how to provide resilient and robust techniques
that can identify external threats to the system and can provide effective mitigation measures
against them. These threats can take the form of third-party malicious agents attempting
to breach security protocols, DDOS-type of attacks on the communication channels, or even
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inside-personnel tampering with sensor measurements. In a world that is increasingly re-
liant on CPS, such as drone surveillance, automated manufacturing and sensor-based power
systems operations, providing provable effective algorithms with detection guarantees is es-
sential in justifying the employment of this systems.

On this regard we build upon the large body of literature of attack detection mechanisms
and safe system identification. Often, attack detection schemes heavily rely on estimation
procedures, usually computing quantitative indices in order to claim that an attack or system
corruption is under way. These procedures are called “passive”, because the controller, that
is the agent responsible for the safe operation of the CPS, can only collect data and does
not actively interfere in the operation in order to detect or to mitigate the impact of the
attack. In our work, we go in a different direction: even though we heavily rely on statistical
properties and probabilistic guarantees, we provide an active defense mechanism where the
controller has the power and the agency to interfere, in a non-disruptive manner, in the
system in order to detect attacks and check for faulty behavior. This defense mechanism is
called Dynamic Watermarking and it is one of the foundations of this thesis work.

The idea of Watermarking comes from the Compute Science literature in order to in-
crease security in file-sharing channels: documents, or files, would be watermarked with an
encrypted code, which only the intended receiver would be able to remove it without de-
stroying the contents of the document. This idea provides an additional, and effective, layer
of security in sharing sensitise information via channels that may be compromised. Trans-
lating this idea to CPS, Dynamic Watermarking is based on introducing a mark (which is
essentially a small disturbance or perturbation) to the system, be it by injecting some noise
in the cyber components, or by injecting some perturbation on the actuators in the physical
components. This mark needs to be carefully designed in order to not degrade the system
performance by a critical amount. However, the key benefit is that it provides the controller
agency in using such designed watermark in order to make inferences in the system behavior
and it allows the operators, be them engineers in a control room, or an AI that operates
the system, to answer questions such as: is the system being attacked? are the sensor mea-
surements being corrupted? Is the environment affecting any information gathered by the
system? In our work on the subsequent chapters we provide algorithms and techniques that
use Dynamic Watermarking as their foundation to answer those and many more questions.
We justify our methods by rigorous statistical analysis and asymptotic and non-asymptotic
probability guarantees. The analysis presented in the subsequent chapters include Hypoth-
esis Testing, Finite-time Concentration Bounds, System Identification, and more. We illus-
trate our methodology with a vast array of examples, which range from simple autonomous
robots maneuvers, to self-driving vehicles applications; ranging from single-agent systems to
distributed systems.

We also analyze the interaction between CPS: namely we provide detection algorithms
that are able detect collusion between the operating systems in an efficient fashion. These
algorithms are based on rigorous statistical properties and are given based some solution
concept that characterizes the agent’s behavior. Often, this solution concept boils down to a
Nash Equilibrium of a game that is induced by the agents behavior. We present our detection
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algorithms under this notion of equilibrium and we derive key results regarding detection and
testing of collusion on this environment. This line o research tries to address key questions
posed in the recent literature regarding collusion between AI-controlled system, an we see
our contributions as a significant step in direction of developing provably efficient detection
mechanism. We also study the opposite problem, where instead of detecting a potential
collusion between agents, we establish mechanisms that induce cooperation between selfish
agents. We differentiate our contributions from the body of work of Mechanism Design by
focusing our analysis on low-communication mechanisms which are amenable to real-time
implementation and can be leverage by the hardware typically used in CPS.

The second body of contributions of these thesis lies in developing new real-time optimal
control algorithms that are capable to provide the operator of CPS with high-quality solutions
for the control problem. We frame the decision-making problem faced by the CPS as an
Optimal Control problem, which is an non-linear constrained optimization problem with
a particular structure. Our algorithms actively exploit this structure in order to produce
optimal solutions in a memory efficient fashion in very fast computation times. By “real-time
algorithms” we explicitly mean algorithms that are meant to be use as the system is under
operation in real time. Typically, the system is allotted a couple of hundred milliseconds to
output a solution that needs to executed immediately after. This real-time nature of the
operation falls naturally under the Model-Predictive Control (MPC) framework, which is
an advanced control technique that relies on Approximate Dynamic Programming ideas to
compute optimal control policies in a successive fashion, warm-starting every iteration with
information computed on the previous iterations. All algorithms we study fall under this
framework and can be readily applied to CPS which requires real-time computations. We
illustrate our methodologies again with a series of experiments and test cases, from simple
to complex examples that showcase the algorithms performance. We present rigorous (local)
convergence analyses of the algorithms and prove their consistency and establish their rates
of convergence. Model-Predictive Control is a well-established control technique and our
contribution builds on top of the existing literature by expanding and generalizing existing
methods as well establishing new ones. As with the detection schemes, our focus is also on
real-time implementation which is of utmost importance if any MPC-type method is to be
practically useful.

We also present an algorithm that is able to handle discrete set of events and Hybrid Sys-
tems (that is systems with many discrete modes of operation). We leverage our Operations
Research and Integer Programming background to equip our developed real-time optimal
control algorithm with a framework, similar to the classical Branch-and-Bound algorithm,
that is able to handle discrete decision variables. We embed this framework in the MPC-style
of computation, and we provide a series of examples of how the integrated framework can
be used in relevant applications, ranging from self-driving vehicles to automated satellite
orbital control.

All of our contributions share the core thread of real-time practical applicability: Our
methods and algorithms are developed with the goal of practical use in an environment where
decisions and information flow in real-time across different pieces of software and hardware.
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We base our developments in rigorous proofs of correctness and justify their application by
showcasing computational experiments. In the modern day, Cyber-Physical Systems require
efficient and reliable algorithms in order to provide the best quality of service to humanity.

Summary

On Chapter 2 we begin our analysis of detection algorithms that rely on Dynamic Wa-
termarking. On this chapter we lay the foundations of the methodology and analyze their
application on both single-agent systems and distributed systems. Our analyses start with
general linear time-invariant (LTI) systems. We illustrate the application of our detec-
tion algorithms on both types of systems with a set of test case studies which showcase
their numerical performance and compare our approach with other state-of-the-art detection
mechanisms. The contents of this chapter are based on our work in [132, 133].

On Chapter 3 we generalize our analyses by focusing on non-asymptotic variations of the
Dynamic Watermarking detection algorithms. The non-asymptotic detection schemes are of
crucial important when we cannot safely rely on the asymptotic behavior of the underling
probability distributions to “kick in”. We focus on the key example of Cyber-Physical
Systems with sensor switching, where the automated system is equipped with more than
one sensor and can switch between them. Sensor switching is used together with Dynamic
Watermarking to provide a provably safe and reliable detection mechanisms that can not only
identify when an attack or sensor corruption has taken place, but can also design a policy to
mitigate their effect by smartly using the sensor switching. We illustrate our methodology
with a numerical case study that showcases the role of both sensor switching and Dynamic
Watermarking in the detection and mitigation tasks of the CPS. We conclude the chapter
with a related problem of establishing estimation consistency of switched linear systems,
and we provide a set-membership estimator that is consistent when used to identify different
modes of the system. The developments in this chapter follows our work in [131, 125]

On Chapter 4 we turn our focus to the interaction between CPS’s. We provide a detection
mechanism that is able to detect collusion among systems. Our mechanism is based on the
notions of Nash Equilibrium and Variational Inequalities. We present the foundations for
both and present the statistical properties of our algorithm. We also study the opposite
problem: we also design an algorithm that induce selfish agents to act cooperatively. This
time, our analyses is based on Mechanism Design literature and we focus on providing
a low-dimension communication protocol that can be implemented efficiently in real-time
applications of the subsequent chapters. This chapter is based on our work presented in
[124, 126]

On Chapter 5 we study real-time Model Predictive Control Algorithms for CPS. In
particular we provide a an efficient structure-exploiting algorithm that is capable of handling
constrained convex Optimal Control problems. Our adjoint-based block-structure algorithm
leads to a Solver that can be implemented in embedded hardware, such as FPGA, or specific
GPU’s architecture, to achieve real-time computation speeds. We provide full proofs and
convergence analysis, based on convex set analysis and non-linear constrained optimization.
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We illustrate the performance of this algorithm based on a C/C++ implementation on
embedded hardware and report the numerical performance against state-of-the-art Optimal
Control Solvers. This chapter materials are based on our work in [127, 121]

On Chapter 6 we generalize our real-time MPC Algorithm to different applications: On
the first we apply algorithm in conjunction with Pseudospectral methods, which are methods
that are able to efficiently handle complex set of non-linear dynamics to a high degree of
accuracy. Pseudospectral methods can be naturally combined with non-linear MPC and our
novel algorithm handles it in a efficient manner producing a highly competitive Optimal Con-
trol Algorithm for complex Cyber-Physical Systems. Lastly, we incorporate Hybrid Systems
on our analyses, which introduce discrete set of controls and state variables. The integer
nature of those variables makes to Optimal Control problem considerably more difficult. We
use Branch-and-Bound techniques in conjunction with our structure-exploiting MPC solver
to establish a real-time Mixed-Integer MPC solver, that can handle both continuous and
discrete variables by exploiting the problem structure together with the Branch-and-Bound
tree in order to achieve real-time computations We illustrate both lines of extension with
numerical case studies that highlight the applicability of our proposed algorithm for both
types of environments. The materials presented in this chapter are based on our work in
[129, 128]

Lastly on Chapter 7, we present a discussion and outlook of future direction of research
and how do we envision the field of safety and performance of CPS for the future and how we
can contribute more in the design and analysis of probably safe and efficient Cyber-Physical
Systems.
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Chapter 2

Dynamic Watermarking in
Cyber-Physical Systems

The secure and resilient control of cyber-physical systems (CPS) requires safe operation
in the face of malicious attacks that can occur on either the physical layer (e.g., sensors
and actuators) or the cyber layer (e.g., communication and computation capabilities)[226].
Real-life incidents like the Maroochy-Shire incident [3], the Stuxnet worm [149], and others
[63] illustrate the importance of concerns about CPS security.

One approach to secure control has been to focus on cybersecurity of CPS [192, 145, 251,
141], but this does not fully exploit the physical aspects of CPS. An alternative is attack
identification and detection considering the interplay between the cyber and physical parts
of CPS [12, 63, 64, 193]. More specifically, these methods focus on monitoring measure-
ments sent to controllers at the physical layer. While mitigating the effects of denial of
service (DOS) attacks poses several challenges [12], detecting such attacks is not an issue for
relatively reliable networks. However, false data injection (FDI) attacks, which aim to alter
measurements, can be made especially stealthy by replaying recorded measurements [172,
130, 92, 215] or exploiting vulnerable subspaces of the physical layer’s dynamics [238]. Many
approaches for detecting FDI attacks are static (i.e., do not consider system dynamics) [106]
or passive (i.e., do not actively control system to identify malicious nodes and sensors) [26,
90, 91].

In contrast, dynamic watermarking is an active defense technique that injects perturba-
tions into the system control in order to detect attacks [252, 172, 171, 98]. More specifically,
this method applies a private excitation to the system, which is a disturbance only known
to the controller. Then it uses consistency tests to detect attacks by checking for correlation
between sensor measurements and the private excitation. The goal is to be able to detect
all sensor attacks whose magnitude exceeds some prespecified amount. More recently, the
work done in [223] and [130] attempts to bridge this gap by providing statistical guarantees
for complex types of attacks for general LTI systems.

While both papers address a general MIMO LTI system, the set of assumptions are
somewhat different: the former assumes open-loop stability of the LTI system, and the
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latter restricts the attack form. In particular, in [130], the tests provided are able to detect
if a general MIMO LTI system is under a fairly general type of attack. In particular, it
considers additive attacks that can dampen/amplify the system measurements, can replay
the system from a different initial condition, or can do both. This form of attack, while
arguably simple, encompasses many of the types of attacks reported in real-life incidents
(e.g., replay attacks [149]) as well as compensate for external disturbances not accounted by
the system model (e.g., wind when represented via internal model principle [130]).

Research on dynamic watermarking can be divided into two main areas of contribution:
The first is the development of statistical hypothesis testing that tries to detect corrupted
measurements by observing correlations between sensor outputs and the dynamic watermark
[172, 174, 171, 252, 173]. This set of techniques apply to general LTI systems, but cannot
ensure the zero-average-power property for general attack models. The second line of work
[222, 143] considers general attack models and develop tests able to ensure that only attacks
which add a zero-average-power signal to the sensor measurements can remain undetected,
but constrain their analysis to LTI systems with specific structure on their dynamics. Our
first contribution in this chapter is to partially bridge the gap between these two techniques
by developing a method that applies to general LTI systems under specific attack models
and that ensures the zero-average-power property for attacks.

Detecting attacks in control systems is an important aspect of designing secure and
resilient control systems. Recently, a dynamic watermarking approach was proposed for de-
tecting malicious sensor attacks for SISO LTI systems with partial state observations and
MIMO LTI systems with a full rank input matrix and full state observations; however, these
previous approaches cannot be applied to general LTI systems that are MIMO and have par-
tial state observations. This paper designs a dynamic watermarking approach for detecting
malicious sensor attacks for general LTI systems, and we provide a new set of asymptotic
and statistical tests. We prove these tests can detect attacks that follow a specified attack
model (more general than replay attacks), and we also show that these tests simplify to
existing tests when the system is SISO or has full rank input matrix and full state observa-
tions. The benefit of our approach is demonstrated with a simulation analysis of detecting
sensor attacks in autonomous vehicles. Our approach can distinguish between sensor attacks
and wind disturbance (through an internal model principle framework), whereas improperly
designed tests cannot distinguish between sensor attacks and wind disturbance.

On section 2.1 we start our analysis with the general LTI system model (i.e., MIMO
systems with partial observations) and specifies our attack model. We provide intuition on
why existing dynamic watermarking approaches cannot by used on a general LTI system. We
construct a detection consistent dynamic watermarking approach for general LTI systems
under our attack model, and our term detection consistent test is used to refer to a test that
ensures the zero-average-power property (described above) for attacks. Next, we describe
how our asymptotic tests can be converted into statistical tests, and we show how our tests
are special cases of those in [222] for the SISO case or the MIMO case with full rank input
matrix and full state observations. On section 2.2 we conduct simulations of an autonomous
vehicle: Our tests are able to distinguish between sensor attacks and wind disturbances when
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including wind disturbance in the system dynamics using the internal model principal, while
improperly designed tests cannot distinguish between attacks and wind.

On section 2.3 we extend the Dynamic Watermarking methodology to distributed sys-
tems. Often in practice, the entire cyber-physical system is neither controllable nor observ-
able by a single subcontroller, communication of sensor measurements is required to ensure
closed-loop stability. The possibility of attacking the communication channel has not been
explicitly considered by previous watermarking schemes, and requires a new design. In 2.3,
we derive a statistical watermarking test that can detect both sensor and communication at-
tacks. A unique (compared to the non-networked case) aspect of the implementing this test
is the state-feedback controller must be designed so that the closed-loop system is control-
lable by each sub-controller, and we provide two approaches to design such a controller using
Heymann’s lemma and a multi-input generalization of Heymann’s lemma. The usefulness of
our approach is demonstrated in 2.4 with a simulation of detecting attacks in a platoon of
autonomous vehicles. Our test allows each vehicle to independently detect attacks on both
the communication channel between vehicles and on the sensor measurements. We show
that our approach is able to detect the presence or absence of sensor attacks and attacks on
the communication channel between vehicles.

2.1 Dynamic Watermarking in MIMO LTI Systems

On this section, we design a dynamic watermarking approach for detecting malicious
sensor attacks for general LTI systems, and has two main contributions: First, we generalize
the watermarking approach developed in [222] for SISO LTI systems with partial state ob-
servations and MIMO LTI systems with a full rank input matrix and full state observations
under an arbitrary attack, and our generalization applies to general LTI systems under a
specific attack model that is more general than replay attacks [252].

The design of intelligent transportation systems (ITS) is receiving increased attention
[143, 107, 15, 255, 243, 175, 69], and one significant area for further study is the design of
methods to ensure the safe and resilient operation of ITS. One recent work [143] considered
the use of dynamic watermarking to detect sensor attacks in a network of autonomous vehicles
coordinated by a supervisory controller; the watermarking approach was successfully able
to detect attacks. However, large-scale deployments of ITS must be resilient in the face
of persistent disturbances from environmental and human factors. Wind is an example of
such a persistent disturbance. A second contribution of this work is from the perspective
of modeling: We show that persistent disturbances such as those from wind can invalidate
watermarking approaches, and we propose an internal model principle-based approach to
handle persistent disturbances. This motivates our generalization of dynamic watermarking
to general MIMO LTI systems with partial observations, since internal model states are not
directly observed.
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LTI System and Attack Model

Let [r] = {1, . . . , r}, and consider a MIMO LTI system xn+1 = Axn + Bun + wn with
partial observations yn = Cxn + zn + vn, where x ∈ Rp, u ∈ Rq, and y, z, v ∈ Rm. The
vn should be interpreted as an additive measurement disturbance added by an attacker,
while wn represents zero mean i.i.d. process noise with a jointly Gaussian distribution and
covariance ΣW , and zn represents zero mean i.i.d. measurement noise with a jointly Gaussian
distribution and covariance ΣZ . We further assume the process noise is independent of the
measurement noise, that is wn for n ≥ 0 is independent of zn for n ≥ 0.

If (A,B) is stabilizable and (A,C) is detectable, then a stabilizing output-feedback con-
troller can be designed when vn ≡ 0 using an observer and the separation principle. Let
K be a constant state-feedback gain matrix such that A + BK is Schur stable, and let L
be a constant observer gain matrix such that A+ LC is Schur stable. The idea of dynamic
watermarking in this context will be to superimpose a private (and random) excitation signal
en known in value to the controller but unknown in value to the attacker. As a result, we
will apply the control input un = Kx̂n + en, where x̂n is the observer-estimated state and en
are i.i.d. Gaussian with zero mean and constant variance ΣE fixed by the controller.

Let x̃T =
[
xT x̂T

]
, and define BT =

[
BT BT

]
, C =

[
C 0

]
, DT =

[
I 0

]
, LT =[

0 −LT
]
, and

A =

[
A BK
−LC A+BK + LC

]
(2.1)

Then the closed-loop system with private excitation is given by x̃n+1 = Ax̃n +Ben +Dwn +
L(zn + vn). If we define the observation error δ = x̂ − x, then with the change of variables
x̌T =

[
xT δT

]
we have the dynamics x̌n+1 = Ax̌n + Ben + Dwn + L(zn + vn), where

BT =
[
BT 0

]
, DT =

[
I −I

]
, L = L, and

A =

[
A+BK BK

0 A+ LC

]
. (2.2)

Recall that A is Schur stable whenever A+BK and A+ LC are both Schur stable.
Since the controller is fixed, we can suppose the attacker chooses vn = α(Cxn + zn) +

Cξn + ζn for some fixed α ∈ R, where ξn+1 = (A + BK)ξn + ωn, ζn are i.i.d. Gaussian with
zero mean and constant variance ΣS fixed by the attacker, and ωn are i.i.d. Gaussian with
zero mean and constant variance ΣO fixed by the attacker. The idea underlying this attack
model is that the attacker allows some fraction of the true output Cxn + zn to be measured
by the controller, and at the same time also incorporates the measurement of a false state
ξn that evolves according the dynamics that would be expected under the controller.

Intuition for Designing a New Test

To better understand how to design a new test, it is instructive to apply existing dynamic
watermarking schemes and the associated tests [222] to particular LTI systems. Such an
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exercise provides intuition that we use to design new tests. Our main example is an LTI
system with

A =

[
1 1
0 1

]
, B =

[
0
1

]
, and C =

[
1 0

]
. (2.3)

Suppose the attacker chooses vn = −(Cxn + zn) + Cξn + ζn with ΣS = ΣZ and ΣO = ΣW ,
meaning the output measurement yn = Cξn + ζn has no component from the actual system.
This is a SISO (i.e., m = q = 1) system with partial state measurement, and the tests in
[222] pass for this example, even though the sensor has been compromised by an attacker.
The problem in this example is that the test

as-limN
1
N

∑N−1
n=0 L(Cx̂n − yn)eTn−1 = 0 (2.4)

from [222] correlates the innovations process L(Cx̂n − yn) with the private excitation only
one step back in time en−1; however, it takes two time steps for the control input to enter
into the output in this example. And so when designing a new test for general LTI systems,
we need to take into consideration that there is generally some delay between when some
private excitation is applied to when it is observed.

Detection Consistent Test

Now let ΣX be the positive semidefinite matrix that solves the following

ΣX = AΣXA
T +BΣEB

T +DΣWD
T + LΣZL

T. (2.5)

Note that ΣX = as-limN
1
N

∑N−1
n=0 x̌nx̌

T
n . Similarly let Σ∆ be the positive semidefinite matrix

that solves the following

Σ∆ = (A+ LC)Σ∆(A+ LC)T + ΣW + LΣZL
T. (2.6)

Note Σ∆ = as-limN
1
N

∑N−1
n=0 δnδ

T
n and Σ∆ = MΣXM

T, where M =
[
0 I

]
. Recall that ΣX

and Σ∆ exist because the above are Lyapunov equations with matrices A, (A+LC) that are
Schur stable.

Lemma 2.1.1. We have that

ArB =

[
(A+BK)rB
(A+BK)rB

]
(2.7)

for all r ≥ 0

Proof. The result holds for r = 0 since A0 = I and (A+ BK)0 = I. Now suppose the result
holds for r: We prove that it holds for r + 1. In particular, note that

Ar+1B = A

[
(A+BK)rB
(A+BK)rB

]
=

[
(A+BK)r+1B
(A+BK)r+1B

]
, (2.8)

where the first equality holds by the inductive hypothesis, and the second equality follows
by calculation of the matrix multiplication. Hence the result follows by induction.
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Proposition 2.1.2. Let A(α) = A+ αH with

H =

[
0 0
−LC 0

]
, (2.9)

and define k′ = min{k ≥ 0 | C(A + BK)kB 6= 0}. Then we have that A(α)kB = AkB for
0 ≤ k ≤ k′.

Proof. If k′ = 0, then the result holds trivially. So assume k′ ≥ 1. We have that A(α)0B =
A0B = B since A(α)0 = A0 = I. Now suppose A(α)kB = AkB for 0 ≤ k ≤ k′− 1. But using
Lemma 2.1.1 implies that

A(α)k+1B = Ak+1B + αH

[
(A+BK)kB
(A+BK)kB

]
= Ak+1B + α

[
0

−LC(A+BK)kB

]
= Ak+1B,

(2.10)
where we have used that LC(A + BK)kB = 0 since k < k′. And so the result follows by
induction.

Now let k′ = min{k ≥ 0 | C(A+BK)kB 6= 0}, and consider the following tests

as-limN
1

N

N−1∑
n=0

(Cx̂n − yn)(Cx̂n − yn)T = CΣ∆C
T + ΣZ (2.11)

as-limN
1

N

N−1∑
n=0

(Cx̂n − yn)eTn−k′−1 = 0 (2.12)

Theorem 2.1.3. Suppose (A,B) is stabilizable, (A,C) is detectable, ΣE is full rank, and
k′ = min{k ≥ 0 | C(A+BK)kB 6= 0} exists. If the test (2.11)–(2.12) holds, then

as-limN
1

N

N−1∑
n=0

vTnvn = 0, (2.13)

meaning that vn asymptotically has zero power.

Proof. Observe that the dynamics for x̃ are given by

x̃n+1 = A(α) · x̃n +Ben +Dwn + L((1 + α)zn + Cξn + ζn), (2.14)

where A(α) = A+ αH with H given in (2.9). Next note that a basic calculation gives

x̃n = A(α)kx̃n−k +
k−1∑
k′=0

A(α)k−k
′−1
(
Ben+k′−k +Dwn+k′−k + (1 + α) · Lzn+k′−k+

LCξn+k′−k + Lζn+k′−k
)

(2.15)
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If we define C =
[
−C C

]
, then Cx̂n − yn = Cx̃n − α · Cx̃n − (1 + α) · zn − Cξn − ζn, and

so for k ∈ [p] we have

1

N

N−1∑
n=0

E
(
(Cx̂n − yn)eTn−k

)
= (C − α · C) · A(α)k−1BΣE. (2.16)

Note that k′ ≤ p− 1 by the Cayley-Hamilton theorem. So combining Proposition 2.1.2 with
(2.16) implies

1

N

N−1∑
n=0

E
(
(Cx̂n − yn)eTn−k′−1

)
= (C − α · C) · Ak′BΣE = −α · C · Ak′BΣE (2.17)

where the second equality holds by by Lemma 2.1.1 and the definition of C. Because the test
(2.12) holds, the quantity (2.17) should equal 0. But since ΣE is full rank by assumption,
Sylvester’s rank inequality implies C · Ak′BΣE 6= 0 since

C · Ak′B =

[
0

C(A+BK)k
′
B

]
6= 0 (2.18)

where the first equality holds by Lemma 2.1.1 and the definition of C. Thus we must have
α = 0.

Next consider the expression

1

N

N−1∑
n=0

(Cx̂n − yn)(Cx̂n − yn)T =
1

N

N−1∑
n=0

(Cx̂n − (1 + α) · (Cxn + zn)− Cξn − ζn)×

(Cx̂n − (1 + α) · (Cxn + zn)− Cξn − ζn)T (2.19)

We showed above that α = 0, and so the expectation of the above expression is

CΣ∆C
T + ΣZ + ΣS +

1

N

N−1∑
n=0

E
(
Cξnξ

T
nC

T
)

+
1

N

N−1∑
n=0

C(A+BK)N−1x0(C(A+BK)N−1ξ0)T.

(2.20)

Since (A+BK) is Schur stable, the associated property of exponential stability implies

lim
N

1

N

N−1∑
n=0

C(A+BK)N−1x0(C(A+BK)N−1ξ0)T = 0 (2.21)

by combining the Cauchy-Schwartz inequality with the exponential stability. However from
the test (2.11), the expectation must equal CΣ∆C

T + ΣZ in the limit. Since all the terms in
the above expectation (2.20) are positive semidefinite or have zero limit, this implies

ΣS + as-limN
1

N

N−1∑
n=0

E
(
Cξnξ

T
nC

T
)

= 0. (2.22)
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Finally, consider the expression

1

N

N−1∑
n=0

vnv
T
n =

1

N

N−1∑
n=0

(
(α(Cxn + zn) + Cξn + ζn

)
×
(
α(Cxn + zn) + Cξn + ζn)T

)
. (2.23)

Since α = 0, the expectation of the above expression is

ΣS +
1

N

N−1∑
n=0

E
(
Cξnξ

T
nC

T
)

+
1

N

N−1∑
n=0

C(A+BK)N−1x0(C(A+BK)N−1ξ0)T. (2.24)

Combining (2.21)–(2.24) implies as-limN
1
N

∑N−1
n=0 vnv

T
n = 0. However, vTnvn equals the sum

of the diagonal entries of vnv
T
n . Thus we have as-limN

1
N

∑N−1
n=0 v

T
nvn = 0.

Existence of k′ = min{k ≥ 0 | C(A + BK)kB 6= 0} is easy to verify because Cayley-
Hamilton implies k′ ≤ p− 1 or it does not exist, but we also give sufficient conditions.

Corollary 2.1.4. Suppose (A,B) is controllable, (A,C) is observable, and ΣE is full rank.
If the test (2.11)–(2.12) holds, then

as-limN
1

N

N−1∑
n=0

vTnvn = 0, (2.25)

meaning that vn asymptotically has zero power.

Proof. We claim that, under the conditions stated, k′ = min{k ≥ 0 | C(A+BK)kB 6= 0} ≤
p− 1 exists. Indeed, since (A,B) is controllable we have that: (A+BK,B) is controllable,
and the controllability matrix

C =
[
B (A+BK)B . . . (A+BK)p−1B

]
(2.26)

has rank(C) = p. And so by Sylvester’s rank inequality, we have rank(CC) ≥ rank(C) +
rank(C)− p = rank(C). But (A,C) is observable, and so the observability matrix

O =


C
CA

...
CAp−1

 = diag(C, . . . , C)


I
A
...

Ap−1

 (2.27)

has rank(O) = p. Again applying Sylvester’s rank inequality implies p rank(C) ≥ rank(O) =
p, or equivalently that rank(C) ≥ 1. Combining this with the earlier inequality gives
rank(CC) ≥ 1, and so CC 6= 0. This means k′ ≤ p − 1 exists since CC is a block ma-
trix consisting of the blocks C(A+BK)kB. Thus the result follows by Theorem 2.1.3.



CHAPTER 2. DYNAMIC WATERMARKING IN CYBER-PHYSICAL SYSTEMS 15

Statistical Version of Test

For the purpose of implementation, we can also construct a statistical version of our test
(2.11)–(2.12). Our approach is similar to [222] in that we construct a hypothesis test by
thresholding the negative log-likelihood. Before defining the test, we make the following
useful observation:

Proposition 2.1.5. Let ψT
n =

[
(Cx̂n − yn)T eTn−k′−1

]
. The test (2.11)–(2.12) holds if and

only if the following test holds:

as-limN
1

N

N−1∑
n=0

ψnψ
T
n =

[
CΣ∆C

T + ΣZ 0
0 ΣE

]
. (2.28)

Moreover, if the test (2.11)–(2.12) holds or equivalently the test (2.28) holds, then we have
that as-limn E(ψn) = 0.

Proof. The equivalence between (2.11)–(2.12) and (2.28) follows from the definition of ψn and
of the tests. Next suppose either (equivalent) test holds: Using the dynamics on x̌ we have
E(x̌n+1) = AE(x̌n)+LE(vn). But we have vn = C(A+BK)nξ0+C

∑n−1
k=0(A+BK)n−k−1ωk+ζn

since α = 0 as shown in the proof of Theorem 2.1.3, and so E(vn) = C(A + BK)nξ0. Since
(A+BK) is Schur stable, we have limn E(vn) = 0 and hence limn E(x̌n) = A limn E(x̌n). This
means that limn E(x̌n) = 0 since I − A is full rank (which can be seen by recalling that A
is Schur stable, so cannot have any eigenvalue of exactly one, and thus det(sI − A) 6= 0 for
s = 1). Since Cx̂n− yn =

[
0 C

]
x̌n, we have that E(Cx̂n− yn) = 0. This implies E(ψn) = 0

since E(en−k′−1) = 0 by construction.

This result implies that asymptotically the summation Sn = 1
`

∑n+`
n+1 ψnψ

T
n with ` ≥ m+q

has a Wishart distribution with ` degrees of freedom and a scale matrix that matches (2.28),
and we use this observation to define a statistical test. In particular, we check if the negative
log-likelihood

L(Sn) = (m+ q + 1− `) · log detSn + trace

([
(CΣ∆C

T + ΣZ)−1 0
0 Σ−1

E

]
× Sn

)
(2.29)

corresponding to this Wishart distribution and the summation Sn is large by conducting the
hypothesis test {

reject, if L(Sn) > τ(α)

accept, if L(Sn) ≤ τ(α)
(2.30)

where τ(α) is a threshold that controls the false error rate α. A rejection corresponds to the
detection of an attack, while an acceptance corresponds to the lack of detection of an attack.
This notation emphasizes the fact that achieving a specified false error rate α (a false error
in our context corresponds to detecting an attack when there is no attack occurring) requires
changing the threshold τ(α).
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Relationship to Existing Tests

It is interesting to compare our test (2.11)–(2.12) to those tests designed in [222]. More
specifically, [222] designed a related sequence of tests adapted to different (and less complex)
assumptions about the model dynamics. We will show that our test is closely related to (and
generalizes) these previous tests developed under assumptions of less complex dynamics.

The simplest test in [222] was designed for systems with direct state measurement (i.e.,
C = I), no measurement error (i.e, zn ≡ 0), and full rank input matrix (i.e, rank(B) = p).
The SISO (i.e., m = p = q = 1) and MIMO cases were considered separately in [222], though
the SISO case is a special case of the MIMO case. If we choose L = −A, then we have that:
yn = xn + vn, xn+1 = Axn +BKx̂n +Ben +wn, x̂n+1 = Ayn +BKx̂n +Ben, Σ∆ = ΣW , and
k′ = 1 since rank(CB) = p. So our test (2.11)–(2.12) simplifies to

as-limN
1

N

N−1∑
n=0

(yn+1 − Ayn −BKx̂n −Ben)× (yn+1 − Ayn −BKx̂n −Ben)T = ΣW (2.31)

as-limN
1

N

N−1∑
n=0

(yn+1 − Ayn −BKx̂n −Ben)× eTn = 0. (2.32)

This exactly matches the test designed in [222] for LTI systems with the above described
properties.

A more complex test in [222] was designed for SISO (i.e., m = q = 1) systems with
partial state measurement. In our notation, the tests in [222] for this case simplify to

as-limN
1

N

N−1∑
n=0

L(Cx̂n − yn)(Cx̂n − yn)TLT = L
(
CΣ∆C

T + ΣZ

)
LT (2.33)

as-limN
1

N

N−1∑
n=0

L(Cx̂n − yn)eTn−1 = 0. (2.34)

But k′ = 1 since B is a nonzero vector and rank(CB) = 1 in this case. So the test (2.33)–
(2.34) from [222] essentially matches our test (2.11)–(2.12), but with the difference that the
test in [222] considers quantities with L(Cx̂n−yn), while our test directly considers quantities
with Cx̂n − yn; this is a negligible difference since Cx̂n − yn is a scalar in this SISO case.

2.2 Simulations: Dynamic Watermarkig for

Autonomous Vehicle

A standard model [241] for error kinematics of lane keeping and speed control has
xT =

[
ψ y s γ v

]
and uT =

[
r a
]
, where ψ is heading error, y is lateral error, s is tra-

jectory distance, γ is vehicle angle, v is vehicle velocity, r is steering, and a is acceleration.
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Linearizing about a straight trajectory and constant velocity v0 = 10, and then performing
exact discretization with sampling period ts = 0.05 yields

A =


1 0 0 1

10
0

1
2

1 0 1
40

0
0 0 1 0 1

2

0 0 0 1 0
0 0 0 0 1

 B =


1

400
0

1
2400

0
0 1

800
1
20

0
0 1

20

 (2.35)

with C =
[
I 0

]
∈ R3×5. We used process and measurement noise with ΣW = 10−8 and

ΣW = 10−5, respectively. Our simulations used the wind model: dn+1 = 0.9dn+χn, where χn
are i.i.d. zero mean Gaussians with σ2

χ = 2× 10−6, and the wind state d entered additively
into the y dynamics.
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-2

-1
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10-4 Test (11) with Wind Model

Un-Attacked
Attacked

Figure 2.1: Deviation of (2.11) in Simulation of Autonomous Vehicle

We applied our tests using a dynamic watermark with variance ΣE = 1
2
I, where K and

L were chosen to stabilize the closed-loop system without an attack. We conducted four
simulations: Un-attacked and attacked simulations were conducted with a test computed
without wind in the system model, and un-attacked and attacked simulations were conducted
with a test computed with wind in the system model.

In both attack simulations, we chose an attacker with α = −0.6, ξ0 = 0, ΣO = 10−8, and
ΣS = 10−8. Fig. 2.1 shows ‖ 1

N

∑N−1
n=0 (Cx̂n − yn)(Cx̂n − yn)T −CΣ∆C

T −ΣZ‖, and Fig. 2.2
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Figure 2.2: Deviation of (2.12) in Simulation of Autonomous Vehicle

shows ‖ 1
N

∑N−1
n=0 (Cx̂n − yn)eTn−k′−1‖. If the test is detection consistent, then these values go

to zero. The plots show dynamic watermarking cannot detect the presence or absence of an
attack when wind affects the system dynamics but is not included in the test, while our test
sdetect the presence or absence of an attack when a model of wind is included in the test.
Fig. 2.3 shows the results of applying our statistical test (2.29), and the same behavior is
seen.
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Figure 2.3: Value of (2.29) for Simulation of Autonomous Vehicle, with a Negative Log-
Likelihood Threshold for α = 0.05 False Detection Error Rate

2.3 Statistical Watermarking for Networked Control

Systems

On this section, we develop a statistical watermarking approach for detecting malicious
sensor and communication attacks on networked LTI systems. Our first contribution is to
design a watermarking test using null hypothesis testing [172, 174, 171, 252, 173], and this
requires characterizing the statistics of states and private watermarking signals under the
dynamics of multiple subcontrollers within the networked system. A unique feature (as
compared to the non-networked setting) of the watermarking scheme is it requires the state-
feedback control to be such that the closed-loop system is controllable by each subcontroller,
because otherwise a subcontroller could not independently verify the lack of an attack.
Our second contribution is to provide two approaches to constructing such a state-feedback
control, and this partly involves deriving a multi-input generalization of Heymann’s lemma
[134, 120].

Most watermarking [172, 174, 171, 252, 173, 130] is for LTI systems with a centralized
controller, and only the approaches of [222, 143] can be used with networked LTI systems;
however, the approaches [222, 143] require full state observation, which is not the case for
many systems.
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Our first contribution is to develop watermarking for networked LTI systems with partial
state observation.[143, 107, 15, 255, 243, 175, 69] may benefit from watermarking. For
instance, [143] considered the use of dynamic watermarking to detect sensor attacks in a
network of autonomous vehicles coordinated by a supervisory controller; the watermarking
approach was successfully able to detect attacks. However, large-scale deployments of ITS
must be resilient in the face of partial state observations and partially distributed control
structures. For example, vehicle platoons are susceptible to malicious interference of GPS
and the communication channel between vehicles [228, 185, 54]. Our third contribution is
to conduct a simulation that shows the efficacy of our watermarking scheme in detecting
attacks on a vehicle platoon.

We first provide a model of the networked LTI system we consider, and specifies a model
for communication and sensor attacks. Next, we present an example to give intuition about
the new challenges with designing watermarking for networked systems. We construct a
statistical watermarking test which allows each subcontroller to independently check for the
presence of communication or sensor attacks. Our tests require a state-feedback controller
such that the closed-loop system is controllable by each subcontroller, and we provide two
methods for constructing such a controller.

Networked LTI System and Attack Modalities

We study a setting with κ subcontrollers. The subscripts i or j denote the i-th or j-th
subcontroller, and the subscript n indicates time. Consider the LTI system with dynamics

xn+1 = Axn +
∑κ

i=1Biui,n + wn, (2.36)

where x ∈ Rp is the state, ui ∈ Rqi is the input of the i-th subcontroller, and w ∈ Rp is a
zero mean i.i.d. process noise with a jointly Gaussian distribution and covariance ΣW . Each
subcontroller steers a subset of the actuators, and each subcontroller makes the partial state
observations

yi,n = Cixn + zi,n + vi,n, (2.37)

where yi ∈ Rmi is the observation of the i-th subcontroller, zi ∈ Rmi is zero mean i.i.d.
measurement noise with a jointly Gaussian distribution and covariance ΣZ,I , and vi ∈ Rmi

should be interpreted as an additive measurement disturbance that is added by an attacker.

Network Communication Model

The LTI system here is networked in the following sense: The dynamics and partial
observations are such that for

B =
[
B1 · · · Bκ

]
(2.38)

CT =
[
CT

1 · · · CT
κ

]
(2.39)
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we have that (A,B) is stabilizable and (A,C) is detectable. In general, (A,Bi) is not
stabilizable for some (or all) i, and similarly (A,Ci) is not detectable for some (or all) i.
Thus coordination is required between subcontrollers to ensure closed-loop stability, and
networking arises because we assume each subcontroller communicates its own partial state
observations to all other subcontrollers. (Our setting assumes communication has zero cost.)
Consider the values

si,j,n = yj,n + νi,j,n, (2.40)

where si,j ∈ Rmj is the value communicated to subcontroller i of the measurement made
by subcontroller j, and νi,j,n ∈ Rmj should be interpreted as an additive communication
disturbance added by an attacker. Clearly νi,i,n ≡ 0 for all i, since the i-th subcontroller
already has its own measurement.

Controller and Observer Structure

The idea of statistical watermarking in this context will be to superimpose a private (and
random) excitation signal ei,n known in value to only the i-th subcontroller but unknown
in value to the attacker or to the other subcontrollers. We will apply the control input
ui,n = Kix̂i,n + ei,n, where x̂i,n is the observer-estimated state (the subscript i here indicates
that each subcontroller operates its own observer, and that x̂i,n is the state estimated by the
observer of the i-th subcontroller) and ei,n are i.i.d. Gaussian with zero mean and constant
variance ΣE,I fixed by the subcontrollers.

Now let Ki be constant state-feedback gain matrices such that A +
∑κ

i=1 BiKi is Schur
stable, and let Li be constant observer gain matrices. It will be useful to define

KT =
[
KT

1 · · · KT
κ

]
, L =

[
L1 · · · Lκ

]
(2.41)

Then the closed-loop system with private excitation is

xn+1 = Axn +
κ∑
j=1

Bj(Kjx̂j,n + ej,n) + wn

x̂i,n+1 = (A+
κ∑
j=1

BjKj+
κ∑
j=1

LjCj)x̂i,n −
κ∑
j=1

LjCjxn +Biei,n −
κ∑
j=1

Lj(zj,n + vj,n + νi,j,n)

(2.42)
These equations represent the fact that each subcontroller has its own observer using the
measurements that it has received. It is not clear a priori that this closed-loop system is
stable since each observer may start at a different initial condition. This concern is resolved
by the following result:

Proposition 2.3.1. Let Ki and Li be constant state-feedback and observer gains such that
A + BK, A + LC, and A + BK + LC are Schur stable. The closed-loop system (2.42) is
Schur stable with no private excitation ej,n ≡ 0, process noise wn ≡ 0, measurement noise
zj,n ≡ 0, measurement attack vj,n ≡ 0, and communication attack νi,j,n ≡ 0.
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Proof. Consider the change of variables from the states x, x̂i to the states x, δ1, di where
δ1 = x̂1 − x and di = x̂i − x̂1 for i = 2, . . . , κ. Then inserting this change of variables into
(2.42) gives

xn+1 = (A+
κ∑
j=1

BjKj)xn + (
κ∑
j=1

BjKj)δ1,n +
κ∑
j=2

BjKjdj,n

δ1,n+1 = (A+
κ∑
j=1

LjCj)δ1,n −
κ∑
j=2

BjKjdj,n

di,n+1 = (A+
κ∑
j=1

BjKj +
κ∑
j=1

LjCj)di,n, for i = 2, . . . , κ

(2.43)

If we put x, δi into a single vector x̌, then the dynamics x̌n+1 = Ǎx̌n are such that Ǎ is a
block upper-triangular matrix with A + BK, A + LC, and A + BK + LC on the diagonal.
This means Ǎ is Schur stable since we assumed A + BK, A + LC, and A + BK + LC are
Schur stable.

Remark 2.3.2. This result implies that the separation principle does not hold. Fortunately,
this is not a substantial impediment from the standpoint of design. Given a K such that
A + BK is stable, we can solve an LMI formulation [56, 187] to choose (when feasible) an
L such that both A+ LC and A+BK + LC are Schur stable. In particular, suppose there
exists a positive definite matrix Q � 0 and general matrix R such that the following two
LMI’s [

Q ATQ+ CTR
QTA+RTC Q

]
� 0[

Q (A+BK)TQ+ CTR
QT(A+BK) +RTC Q

]
� 0

(2.44)

are satisfied. Then choosing L = Q−1RT ensures that A+LC and A+BK +LC are Schur
stable. Convex optimization can be used to determine if these LMI’s have a solution, and
compute a solution if possible.

For the purpose of designing our test, it will be useful to define another change of variables
on the states. Consider the change of variables from the states x, x̂i to the states x, δi where
δi = x̂i−x for i = 2, . . . , κ. If there is no measurement attack vj,n ≡ 0 and no communication
attack νi,j,n ≡ 0, then a straightforward calculation gives

xn+1 = (A+BK)xn +
κ∑
j=1

Bj(Kjδj,n + ej,n) + wn

δi,n+1 =(A+BK + LC)δi,n +Biei,n −
κ∑
j=1

Ljzj,n −
κ∑
j=1

Bj(Kjδj,n + ej,n)− wn
(2.45)
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If we define ∆T =
[
δT1 · · · δTκ

]
and ET =

[
eT1 · · · eTκ

]
, then the above dynamics for the

δi can be written as

∆n+1 = A∆n + blkdiag(B1, . . . , Bκ)En −
[
1 · · · 1

]T ⊗ (−wn +
κ∑
j=1

Ljzj,n +Bjej,n

)
(2.46)

where ⊗ is the Kronecker product, blkdiag(B1, . . . , Bκ) is the block diagonal matrix with
B1, . . . , Bκ on the diagonals, and A is the corresponding matrix defined to make the above
equivalent to (2.45). This will be used to define our test.

Intuition for Watermarking Design

Watermarking for networked systems faces new challenges not encountered in the non-
networked setting. To illustrate the new difficulty, consider the networked LTI system with

A =

[
1 1
0 1

]
B1 =

[
1
0

]
B2 =

[
0
1

]
C1 =

[
1 0

]
C2 =

[
0 1

] (2.47)

In this example, (A,B1) is not stabilizable and (A,C2) is not detectable. And so coordination
is required between the subcontrollers to stabilize the system.

For instance, the choice K = −1
2
I makes A + BK Schur stable, and implementing the

corresponding output-feedback controller requires communication of partial observations be-
tween the two subcontrollers. In this case, the design is such that the first subcontroller
cannot inject any watermarking signal into the second state, while the second subcontroller
cannot inject any watermarking signal into the first state. This is problematic because this
means each subcontroller cannot verify the accuracy of the communicated state information.

However, suppose we instead choose

K = −1

2

[
1 1
1 1

]
(2.48)

Then A + BK is Schur stable. More importantly, (A + BK,B1) and (A + BK,B2) are
controllable with this K. Thus each subcontroller can inject a private watermarking signal
known only to the subcontroller, and such that this signal can be used to verify the accuracy
of the communicated state information and of the partial observations.

This example shows that designing watermarking differs in the networked and non-
networked cases. The networked case requires designing both the state-feedback controller
and the corresponding tests to detect attacks; whereas watermarking in the non-networked
case only requires designing the the corresponding tests to detect attacks [172, 174, 171, 252,
173, 130].
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Specification of Statistical Test

Though watermarking for networked systems requires designing both the state-feedback
controller and watermarking tests, we first focus on the latter. We construct a statistical
test using the framework of null hypothesis testing, after assuming the existence of a state-
feedback controller satisfying:

Condition 1. Let k′i,j = min{k ≥ 0 | Cj(A + BK)kBi 6= 0}. For each i and j, there exists a
k′i,j ≤ p− 1

This condition is itself nontrivial because it may be that Cj(A + BK)kBi ≡ 0 for all
k ≥ 0. Approaches to synthesize a state-feedback controller K to ensure the above condition
holds will be shown in the next section. This property is important because it means the
watermarking signal of the i-th subcontroller is seen in the j-th output when the system is
controlled by perfect-information state-feedback.

Variable Definitions

Now before specifying the test, it is useful to define some variables. Suppose we have K,
L such that A+BK, A+ LC, and A+BK + LC are Schur stable. Let Σ∆ be the positive
semidefinite matrix that solves the Lyapunov equation

Σ∆ = AΣ∆A
T + blkdiag(B1, . . . , Bκ)ΣEblkdiag(B1, . . . , Bκ)

T+

−

1 · · · 1
...

...
...

1 · · · 1


T

⊗
(

ΣW +
κ∑
j=1

LjΣZ,J(Lj)
T +BjΣE,J(Bj)

T
)

(2.49)

where ΣE = blkdiag(ΣE,1, . . . ,ΣE,κ). A solution exists because the above is a Lyapunov
equation and since Proposition 2.3.1 ensured stability. Note by construction

Σ∆ = as-limN
1

N

N−1∑
n=0

∆n∆T
n (2.50)

when there is no attack (i.e., vi,n ≡ 0 and νi,j,n ≡ 0 for all i, j, n). If we divide Σ∆ ∈ Rκp×κp

into sub-matrices with dimension p× p, then define DI ∈ Rp×p to be the i× i-th sub-matrix
of Σ∆.

Lastly, we consider the matrix dynamics

E(∆n+1e
T
i,t) = AE(∆ne

T
i,t)) + fi ⊗ BiΣE,I · 1(t = n)−

[
1 · · · 1

]T ⊗ (BiΣE,I) · 1(t = n),

(2.51)

where 1(·) is an indictor function, and the vector fi has a one in the i-th position and is zero
otherwise. This means

Σ∆,I,k := E(∆ne
T
i,n−k−1) = Akfi ⊗BiΣE,I − Ak

[
1 · · · 1

]T ⊗ (BiΣE,I) (2.52)
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If we divide Σ∆,I,k ∈ Rκp×qi in sub-matrices of size p × qi, then let QI,J,k ∈ Rp×qi be the
j-th sub-matrix of Σ∆,I,k.

Definition of Test

Our statistical watermarking test will involve the (second-order) statistical characteriza-
tion of the vectors defined as

ψn,i,j =

[
ei,n−k′i,j−1

Cjx̂i,n − si,j,n

]
, (2.53)

and this characterization will be used to specify the distribution corresponding to the null
hypothesis of no attack.

Theorem 2.3.3. If we have that vi,n ≡ 0 and νi,j,n ≡ 0, then as-limN
1
N

∑N−1
n=0 ψnψ

T
n = RI,J ,

where

RI,J =

[
ΣE,I QT

I,J,k′i,j
CT
j

CjQI,J,k′i,j
CjDiC

T
j + ΣZ,J

]
. (2.54)

Moreover, we have that as-limn E(ψn) = 0.

Proof. First note that we have as-limn E(δi,n) = 0 by the stability from Proposition 2.3.1.
But Cjx̂i,n − si,j,n = Cjδi,n − zj,n, and so E(Cjx̂i,n − si,j,n) = CjE(δi,n). This implies
as-limn E(Cjx̂i,n − si,j,n) = 0, which proves as-limn E(ψn) = 0 since the ei have zero mean.

Next observe the upper block triangle of (2.54) is correct by construction of QI,J,k′i,j
and

by definition of the ei, and so we only have to prove that the lower-right block is correct. In
particular, note that E((Cjδi,n − zn)(Cjδi,n − zn)T) = E((Cjδi,n)(Cjδi,n)T) + ΣZ,I since zi,n is
independent of δi,n by (2.45). This implies that we have that as-limn E((Cjδi,n− zn)(Cjδi,n−
zn)T) = CjDiC

T
j + ΣZ,I .

This result means that asymptotically the summation Si,j = 1
`

∑n+`
n+1 ψn,i,jψ

T
n,i,j with

` ≥ (mi + qi) has a Wishart distribution with ` degrees of freedom and a scale matrix that
matches (2.54), and we use this to define a statistical test. In particular, we check if the
negative log-likelihood

L =
κ∑
j=1

(1− `+mi + qi) · log detSn,i,j +
κ∑
j=1

trace
(
R−1
I,J · Sn,i,j

)
(2.55)

corresponding to this Wishart distribution and the summations of Sn,i,j is large by conducting
the hypothesis test {

reject, if L(Sn) > τ(α)

accept, if L(Sn) ≤ τ(α)
(2.56)

where τ(α) is a threshold that controls the false error rate α. A rejection corresponds to the
detection of an attack, while an acceptance corresponds to the lack of detection of an attack.
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This notation emphasizes the fact that achieving a specified false error rate α (a false error
in our context corresponds to detecting an attack when there is no attack occurring) requires
changing the threshold τ(α).

Designing the State-Feedback

We provide two approaches for designing a state-feedback controller that satisfies Condi-
tion 1. The first applies when B is square (i.e.,

∑k
i=1 qi = p); though it generalizes to skinny

B (i.e.,
∑k

i=1 qi < p) in some cases, we do not prove this. The first approach relies upon a
multi-input generalization (which we construct and prove) of Heymann’s lemma [134, 120].
The second approach applies to B of arbitrary size where the range spaces of Bi have a
nonempty intersection.

Algorithm 1 Compute State-Feedback K for Proposition 2.3.5

x1 := b1
‖b1‖

for all k ∈ {1, . . . , p− 1} do

xk+1 := λk bk+1

‖bk+1‖
uk := B−1

(
xk+1 − Axk

)
end for
xp+1 := λp b1

‖b1‖
up := B−1

(
xp+1 − Axp

)
X :=

[
x1 · · · xp

]
, U :=

[
u1 . . . up

]
, K := UX−1

Multiple Input Heymann’s Lemma

Heymann’s lemma [134, 120] is used to prove arbitrary pole placement of controllable,
multiple input LTI systems by allowing a reduction to the case of arbitrary pole placement
of a controllable, single input LTI system. Formally, it says

Lemma 2.3.4 (Heymann’s Lemma). If (A,B) is controllable, then for any b = Bv 6= 0
there exists K (that depends on b) such that (A+BK, b) is controllable.

We need a multiple input generalization of Heymann’s Lemma. Let bi denote the i-th
column of the matrix B. Then

Proposition 2.3.5. If B is full rank and square-shaped (i.e., B ∈ Rp×p); then there exists
a single K such that A+BK is Schur stable and (A+BK, bi) is controllable for all i.

Proof. We prove this result stepwise. Since B is full rank and square-shaped, its columns
are linearly independent. Consider any λ with 0 < |λ| < 1, and define x1 = b1

‖b1‖ and



CHAPTER 2. DYNAMIC WATERMARKING IN CYBER-PHYSICAL SYSTEMS 27

xn+1 = Axn + Bun. Now suppose there exists u1, . . . , uk−1 such that xi = λi−1 bi
‖bi‖ for

i = 1, . . . , k. If k < p, then there exists a uk satisfying λk bk+1

‖bk+1‖
−λk−1A bk

‖bk‖
= Buk since B is

full rank. Hence by definition of the dynamics on x there exists uk such that xk+1 = λk bk+1

‖bk+1‖
.

If k = p, then there exists a up satisfying λp b1
‖b1‖ − λ

p−1A bp
‖bp‖ = Bup since B is full rank. So

by definition of the dynamics on x there exists up such that xp+1 = λp b1
‖b1‖ .

Next define the matrices

U =
[
u1 · · · up

]
(2.57)

R =
[

b1
‖b1‖ · · ·

bp
‖bp‖

]
(2.58)

Λ = diag
(
1, λ, . . . , λp−1

)
(2.59)

and K = UR−1Λ−1. The matrices Λ and R are invertible by construction since 0 < |λ| < 1
and B is invertible. Note that by definition U = KΛB. Finally, note for any i we have

‖bi‖ ·
[

bi
‖bi‖ · · ·

bp
‖bp‖

b1
‖b1‖ · · ·

bi−1

‖bi−1‖

]
· Λ =

[
bi (A+BK)bi · · · (A+BK)p−1bi

]
(2.60)

The left side has full rank by the assumptions on B, and the right side is the observability
matrix for the (A + BK, bi). This proves (A + BK, bi) is observable for all i since we have
shown that the observability matrix has full rank.

We conclude by proving that the above designed K makes A+BK Schur stable. Consider
any x ∈ Rp, and observe that by the assumptions on B there exists z ∈ Rp such that
x = Rz. But, as in (2.60), by construction (A + BK)p bi

‖bi‖ = λp bi
‖bi‖ for all i. Hence

(A + BK)px = (A + BK)pRz = λpRz = λpx for all x. This means all the eigenvalues
of (A + BK)p are λp, and using the spectral mapping theorem implies the eigenvalues of
A + BK are roots of λp. Thus the magnitude of the eigenvalues of A + BK are |λ|, which
means that A+BK is Schur stable since 0 < |λ| < 1.

Though the above is an existence result, a state-feedback matrix K satisfying Proposition
2.3.5 can be computed using Algorithm 1. The correctness of this algorithm follows from the
construction used in the proof of Proposition 2.3.5. Also, the next result proves that this K
satisfies Condition 1.

Corollary 2.3.6. Suppose Cj 6= 0 for all j. If B is full rank and square-shaped (i.e.,
B ∈ Rp×p); then there exists a K such that A + BK is Schur stable and that Condition 1
holds.

Proof. Consider any i ∈ {1, . . . , κ}, and choose s to be any index such that the s-th column
in B belongs to Bi. Proposition 2.3.5 says (A + BK, bs) is controllable. This means the
controllability matrix

C′ =
[
bs (A+BK)bs . . . (A+BK)p−1bs

]
(2.61)



CHAPTER 2. DYNAMIC WATERMARKING IN CYBER-PHYSICAL SYSTEMS 28

has rank(C′) = p, and so the controllability matrix

C =
[
Bi (A+BK)Bi . . . (A+BK)p−1Bi

]
(2.62)

also has rank(C) = p since the columns of C are a superset of the columns of C′. Thus by
Sylvester’s rank inequality, we have rank(CjC) ≥ rank(Cj) + rank(C) − p = rank(C). But
rank(Cj) ≥ 1 since Cj 6= 0. Combining this with the earlier inequality gives rank(CjC) ≥ 1,
and so CjC 6= 0. This means k′i,j ≤ p− 1 exists since CjC is a block matrix consisting of the
blocks Cj(A+BK)kBi.

Algorithm 2 Compute State-Feedback K for Proposition 2.3.7

choose any v such that Bv ∈ ∩κi=1 range(Bi)
compute K ′ satisfying Heymann’s lemma for Bv
compute G such that A+BK ′ +BvG is Schur stable
K := K ′ + vG

Nonempty Intersection of Inputs

We next consider B with arbitrary shape, such that the range spaces of Bi have a
nonempty intersection. Our Algorithm 2 designs a K for this case, and it uses Heymann’s
lemma [134, 120]. The next result proves its correctness.

Proposition 2.3.7. Suppose Cj 6= 0 for all j and that we have ∩κi=1 range(Bi) 6= ∅. If (A,B)
is controllable, then Algorithm 2 computes a K such that A + BK is Schur stable and that
Condition 1 is satisfied.

Proof. First note that v exists by assumption, and so we can compute K ′ by Heymann’s
lemma. This means (A + BK ′, Bv) is controllable, which implies that we can compute G
such that A + BK ′ + BvG is Schur stable. This proves that A + BK is Schur stable since
K = K ′ + vG. Next consider any i ∈ {1, . . . , κ}. Since (A + BK ′, Bv) is controllable,
this means that (A + BK ′ + BvG,Bv) is controllable. (This uses the well known fact that
state-feedback does not affect controllability.) As a result, we have

C′ =
[
Bv (A+BK)Bv . . . (A+BK)p−1Bv

]
(2.63)

has rank(C′) = p. But by assumption, there exists vi such that Bivi = Bv. So if we define

C =
[
Bi (A+BK)Bi . . . (A+BK)p−1Bi

]
, (2.64)

then we have that C′ = C blkdiag(vi, . . . , vi). Thus p ≥ rank(C) ≥ rank(C′) = p. Thus by
Sylvester’s rank inequality, we have rank(CjC) ≥ rank(Cj) + rank(C) − p = rank(C). But
rank(Cj) ≥ 1 since Cj 6= 0. Combining this with the earlier inequality gives rank(CjC) ≥ 1,
and so CjC 6= 0. This means k′i,j ≤ p− 1 exists since CjC is a block matrix consisting of the
blocks Cj(A+BK)kBi.
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2.4 Simulation: Autonomous Vehicle Platooning

We apply a standard model [242] for error kinematics of speed control of vehicles to
generate a model for a three car platoon. The state vector for the three car platoon is
xT =

[
e1 d1 e2 d2 e3 d3

]
, where ei is deviation from the desired velocity for car i, and di is

deviation from the desired following distance between car i and car i + 1. The discretized
dynamics for a timestep of 0.05 seconds are then:

A =


1 0 0 0 0
− 1

20
1 1

20
0 0

0 0 1 0 0
0 0 − 1

20
1 1

20

0 0 0 0 1

 (2.65)

and

B1 =


1
20

− 1
800

0
0
0

 B2 =


0
1

800
1
20

− 1
800

0

 B3 =


0
0
0
1

800
1
20

 . (2.66)

Assuming each car measures its own velocity and the distance to the car in front of it, we
have

C1 =
[
1 0 0 0 0

]
C2 =

[
0 1 0 0 0
0 0 1 0 0

]
C2 =

[
0 0 0 1 0
0 0 0 0 1

] (2.67)

We assume that the process and measurement noise had variance ΣW = 5× 10−5 · I and
ΣZ,I = 10−3 · I, respectively.

We applied our statistical test (2.55) with each car using a watermarking signal with
variance ΣE,I = 0.2, where

K1 =
[
−1 0.1 0 0 0

]
K2 =

[
1 −1 −2 0.1 0

]
K3 =

[
0.5 −0.5 0.5 −1 −2

] (2.68)

and

L1 =


−0.5

0
0
0
0

 L2 =


0.05 0
−0.5 0

0 −0.5
0 0
0 0

 L3 =


0 0
0 0

0.05 0
−0.5 0

0 −0.5

 (2.69)
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Figure 2.4: Value of (2.55) for Simulation of Vehicle Platoon, with a Negative Log-Likelihood
Threshold for α = 0.05 False Detection Error Rate

We conducted two simulations, where the platoon was un-attacked and attacked. In the
attack simulations, the attacker chose v1,n and ν2,3,n to be zero mean i.i.d. jointly Gaussian
random variables with variance 0.5 and 0.2 · I, respectively. Fig. 2.4 shows the results of
applying our statistical test (2.55), and the plots show that our statistical watermarking test
can detect the presence or absence of an attack.
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Chapter 3

Switching in Cyber-Physical Systems:
Finite-time consistency tests and
estimation

Control system security is enhanced by the ability to detect malicious attacks on sensor
measurements. As presented in the previous Chapter, Dynamic watermarking can detect
such attacks on linear time-invariant (LTI) systems. However, existing theory focuses on
attack detection and not on the use of watermarking in conjunction with attack mitigation
strategies. In this chapter, we study the problem of switching between two sets of sensors:
One set of sensors has high accuracy but is vulnerable to attack, while the second set of sen-
sors has low accuracy but cannot be attacked. Though the design and analysis of intelligent
transportation systems (ITS) has drawn renewed interest [143, 107, 15, 255, 243, 175, 69],
there has been less work on secure control of ITS. One recent work considered the use of
dynamic watermarking to detect sensor attacks in a network of autonomous vehicles coor-
dinated by a supervisory controller[143], while [132] considered a platoon of vehicles where
attacks happen not only on the sensors but also on the communication channel.

A particular feature of ITS is the possibility of redundancy in sensing. For instance,
one can use a highly accurate satellite-based sensor (susceptible to external attack) and an
on-board infrared sensor (not susceptible to external attack) in order to obtain spatial data.
Then, one way of safeguarding a system susceptible to attacks is to switch from the high
accuracy sensor to the on-board sensor when an attack is detected [170]. This approach
naturally leads to systems with distributed observers with dynamic switching decision rules
[36, 169]. In this scenario, it is crucial to design hypothesis tests that are able to detect
attacks while having a decision rule that correctly selects which observer is to be used.
Because control switching occurs at finite instances in time, the previous asymptotic results
of dynamic watermarking cannot be used for this purpose. The reason, which is subtle,
is that hypothesis tests based on characterization of asymptotic distributions will not have
the correct theoretical properties in order to ensure proper control of the false alarm rate.
Consequently, new finite sample hypothesis tests need to be constructed.
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The problem is then to design a sensor switching strategy based on attack detection by
dynamic watermarking. This requires new theory because existing results are not adequate
to control or bound the behavior of sensor switching strategies that use finite data. To
overcome this, we develop new finite sample hypothesis tests for dynamic watermarking in
the case of bounded disturbances, using the modern theory of concentration of measure for
random matrices. Our resulting switching strategy is validated with a simulation analysis in
an autonomous driving setting, which demonstrates the strong performance of our proposed
policy.

In Sect. 3.1, analyze Dynamic Watermarking applied to systems with switching. We also
present the random matrix concentration inequalities that we use to perform our finite sample
analysis. Next, we present our general LTI framework with switching observers. Then,
we apply the concentration inequalities to the LTI setting in order to obtain appropriate
concentration for the matrices involved. We present the finite sample consistency tests and
a simple threshold that relates the attack magnitude to the power of our test. Next, in
Sect. 3.2 we provide some numerical results demonstrating our approach on an autonomous
vehicle application.

Consistency in Switched Linear Systems

Learning-based control has seen a resurgence in the past few years [16, 166, 189, 1] because
of recent advances in system identification using machine learning and artificial intelligence.
When the system has unknown dynamics, it becomes paramount to identify the underlying
dynamics so that an appropriate controller can be computed in order to make the system
stable [156]. System identification has become a central field of research lying in between
control and statistics.

On section 3.3, we consider a fully observed switched autonomous linear system with
bounded process noise. Each linear system is unknown to us, but we control switching
between different linear dynamics. This departs from the existing literature on switched
system identification, where the switching control is fixed and must also be estimated, such
as in the work by [247, 99, 150]. Here, a control decision needs to be chosen together with
the system identification. The dynamics for a single system may have a mix of stable or
unstable modes and repeated eigenvalues. Identification can be done via estimation of the
transition matrices [144, 231], and identification of transition matrices for stable systems has
been studied [156, 232, 31, 256].

The identification problem in our setup is particularly challenging because the switching
can cause stability/instability independent of the eigenvalues of each linear system [35]. The
study of system identification for unstable systems is not as prolific as work on the stable
case. Existing work for the unstable case of identification of a single linear system requires
strong assumptions on repeated eigenvalues in order to prove asymptotic convergence [147],
derive associated limiting distributions of the estimates of the model parameters [59, 60],
and in order to generalize the result to other classes of transition matrices [146, 184, 182].
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Recent work [86, 230, 229, 190] has shown the difficulty of identification for unstable linear
systems when state observations are restricted to a single trajectory: Ordinary least squares
(OLS) is statistically inconsistent when the dynamics have repeated unstable dynamics [183,
195], and this causes poor estimation when the dynamics have unstable modes with close
eigenvalues. This can be partly overcome using instrumental variables, but this cannot
handle systems matrices with eigenvalues both inside and outside the unit circle [195].

The set-membership estimator [39, 165, 17] exploits boundedness of the noise vector. This
estimator has been studied in [73, 155] which provided a bounding ellipsoidal algorithm to
obtain consistent estimators. Our work is related to previous studies where such estimators
are applied, as in fault detection tests [47], regularized regression [32], robust estimation
[100, 239], and kernel-based methods [66]. The work in [191] provides a greedy algorithm
that uses a set-membership estimator to identify input-output models.

We defines our problem setup in refsec:Wald. Then we provide our proposed estimator
and prove its statistical consistency. Next we consider an application of stabilizing a fully
observed switched autonomous linear system with bounded process noise and unknown (to
us) dynamics in each linear system.

3.1 Sensor Switching Control Under Attacks

Detectable by Finite Sample Dynamic

Watermarking Tests

As we saw in Chapter 1, we designed a dynamic watermarking consistency test for the
MIMO LTI system with partial observations

xn+1 = Axn +Bun + wn

yn = Cxn + zn + vn
(3.1)

for some measurement noise zn, system disturbance wn, and attack vector vn and where
(A,B) is stabilizable, (A,C) is detectable. Where is the following holds

as-limN
1

N

N−1∑
n=0

ψnψ
>
n =

[
CΣ∆C

> + ΣZ 0
0 ΣE

]
(3.2)

where
ψ>n =

[
(Cx̂n − yn)> e>n−k′−1

]
, (3.3)

for some specific matrices Σ∆,ΣE,ΣZ , then all attack vectors vn following a particular
model [130] are constrained in power

as-limN
1

N

N−1∑
n=0

v>n vn = 0. (3.4)
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where we use as-lim to denote the “almost sure limit”, meaning that the given limit as
N goes to infinity holds with probability one. Though these tests only provide asymptotic
guarantees, that is enough to construct a statistical version of the test, similar to [222] where
a hypothesis test is constructed by thresholding the negative log-likelihood. It follows that
under a Gaussianity assumption for process and sensor noise, the matrix in (3.2) follows a
well-behaved Wishart distribution. While that approach allows us to construct hypothesis
tests using known distributions, the dependency of subsequent samples make finite sums
display more complex behavior. Then it is up to the designer of the watermark to specify a
threshold that controls the false error rate. In this framework a rejection of the hypothesis
test corresponds to detection of an attack, while an acceptance corresponds to the lack of
detection of an attack. This notation emphasizes the fact that achieving a specified false
error rate requires changing the threshold.

The first contribution of this work is to provide finite-time guarantees on attack detection
via dynamic watermarking, which to the best of our knowledge has not been done before.
Namely, we provide statistical tests that provide finite-time guarantees on attack detection,
instead of relying of asymptotic behavior of sums of random matrices. We also relate the
magnitude of an attack to our test power, by describing the inherent trade-off between the
test capability of triggering true detection, and the magnitude of the attacks that are allowed
to remain undetected in the long run. The finite sample analysis of dynamic watermarking
requires the use of random matrix concentration inequalities, which are useful in analyzing
the matrices involved in the evolution of LTI system dynamics. The second major contri-
bution of this paper is to provide finite sample concentration-based tests, which allow us to
detect attacks and allow switching decisions based on such tests to correctly report attack
detection infinitely often. Namely, if there is no attack, we develop a finite sample test that
falsely reports attacks only a finite number of times. This is a crucial feature because it also
implies that in the long-run the switching rule based on such a test is correctly selecting
which observer is active infinitely often.

Lastly, we highlight the fact our switching rule provide a layer of mitigation of the attacks:
By appropriately switching sensors, when an attack is detected, the system is still able to
behave properly, until the attack presence is no longer detected. This measure of protection
is key when coupled with the finite-time detection strategy, which is a novel contribution, to
the best of our knowledge.

Preliminaries

In this section, we define all relevant notation concerning the random matrix analysis
done throughout the paper. We also define the key concepts of Stein’s Method [234, 159]
applied to matrices and the relevant matrix concentration inequalities that will be used.
This method turns out to be key to our finite sample analysis of dynamic watermarking, as
it involves analyzing sums of inter-temporal dependent matrices. The importance of Stein’s
method lies precisely in obtaining finite-time bounds for a sequence of dependent random
matrices, when the dependency follows a certain structure. The intuition behind it lies in the
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“concentration of randomness”, where the “average” of random matrices has probability tail
behavior that can be bounded by appropriate expressions. The Stein’s method for random
matrices provide exactly such expressions in order to bound those summations.

We use the symbol ‖·‖ for the spectral norm of a matrix, which is the largest singular
value of a general matrix. The space of d×d Hermitian real-valued matrices is denoted byHd.
Moreover, the symbols λmax(A), λmin(A) are respectively the maximum and the minimum
eigenvalues of a Hermitian matrix A ∈ Hd. The symbol � refers to the semidefinite partial
order, namely A � B if and only if B − A is positive semi-definite (p.s.d). For a matrix A,
we let (A)ij denote the (ij)-th element of A. We let tr(·) denote the trace operator.

We also define a master probability space (Ω,F ,P) and a filtration {Fk} contained in
the master sigma algebra:

Fk ⊂ Fk+1 and Fk ⊂ F ,∀k ≥ 0. (3.5)

Note that the non-italicized P(·) will refer to the probability measure. Given such filtration
we also define the conditional expectation Ek[·]. We also let ε denote a Radamacher random
variable, that takes values in {−1, 1} with equal probability. The random matrix concentra-
tion inequalities involved in this work are derived using the method of exchangeable pairs
based on the Stein’s Method [234]. Let Z and Z ′ be random vectors taking values in a space
Rd. We say that (Z,Z ′) is an exchangeable pair if it has the same distribution as (Z ′, Z).
Next, we define a matrix Stein pair:

Definition 3.1.1. Let Z and Z ′ be an exchangeable pair of random vectors taking values
in a space Z, and let ψ : Z → Hd be a measurable function. Define the random Hermitian
matrices

X = ψ(Z) and X ′ = ψ(Z ′). (3.6)

We say that (X,X ′) is a matrix Stein pair if there is a constant β ∈ (0, 1] for which E[X −
X ′|Z] = βX a.s..

Note it follows from the above definition that E[X] = 0. Also, β is called the scale factor
of the pair (X,X ′).

Lastly, we present the concept of dilations, which are used to derive our results. A
symmetric dilation of a real-valued rectangular matrix B is

D(B) =

[
0 B
B> 0

]
(3.7)

Note that D(B) is always symmetric, and it satisfies the following useful property:

D(B)2 =

[
0 BB>

B>B 0

]
(3.8)

Moreover, observe that the norm of the symmetric dilation has a useful relationship with
the norm of the original matrix λmax(D(B)) = ‖D(B)‖ = ‖B‖. We will construct bounds
for symmetric matrices and then we will extend those bounds to non-symmetric matrices by
using dilations.
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Matrix Concentration Inequalities

In order for us to develop finite sample tests we require matrix concentration inequalities.
The random matrices involved in this paper are not independent in the general case. We
first present a version of matrix Hoeffding inequality for conditionally independent sums of
random matrices, that is random matrices that become independent after conditioning on
another matrix. This theorem, and the following theorems about concentrations, were first
introduced by [159], as generalizations of the (respective) independent cases.

Proposition 3.1.2. [159] Consider a finite sequence (Yk)(k≥1) of random matrices in Hd

that are conditionally independent given an auxiliary random matrix Z and finite sequences
(Pk)k≥1 and (Qk)k≥1 of deterministic matrices in Hd. Assume that

E[Yk|Z] = 0, Y 2
k � P 2

k , E[Y 2
k |(Yj)j 6=k] � Q2

k a.s.∀k, (3.9)

then for all t ≥ 0 we have

P

(
λmax

(∑
k=0

Yk

)
≥ t

)
≤ d · e−t2/2σ2

(3.10)

where σ2 = 1
2
‖
∑

k P
2
k +Q2

k‖.

Next we present a version of the McDiarmid inequality for self-reproducing random ma-
trices.

Proposition 3.1.3. [159] Let z = (Z1, ..., Zn) be a random vector taking values in a space
Z, and, for each index k, let Z ′k and Zk be conditionally i.i.d. given (Zj)j 6=k. Suppose that
H : Z → Hd is a function that satisfies the self-reproducing property

n∑
k=1

(H(z)− E[H(z)|(Zj)j 6=k]) = s · (H(z)− E[H(z)]) a.s. (3.11)

for a parameter s > 0, as well as the bounded difference property

E
[
(H(z)−H(Z1, ..., Z

′

k, ..., Zn))2|z
]
� P 2

k (3.12)

for each index k a.s., where Pk is a deterministic matrix in Hd. Then, for all t ≥ 0,

P(λmax(H(z)− E[H(z)]) ≥ t) ≤ d · e−st2/L (3.13)

for L = ‖
∑n

k=1 P
2
k ‖.

Now we provide an essential property that is called symmetrization, which is a general-
ization for summation of the symmetrization property presented in [159] for a single matrix:
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Lemma 3.1.4. Let {Xi}ni=1 be a sequence of random Hermitian matrices with E[Xi] = 0.
Then

E
[
tr
(

e
∑n

i=1Xi

)]
≤ E

[
tr
(

e2
∑n

i=1 εiXi

)]
(3.14)

where {εi}ni=1 are i.i.d. Radamacher random variables.

Proof. First, we construct a sequence of copies {X ′i}ni=1 independent from {Xi}ni=1, and let
E′ denote the expectation with respect to {X ′i}ni=1. So we have

E
[
tr
(

e
∑n

i=1Xi

)]
= E

[
tr
(

e
∑n

i=1Xi−E′[X′i]
)]
≤ E

[
tr
(

e
∑n

i=1Xi−X′i
)]

= E
[
tr
(

e
∑n

i=1 εi(Xi−X′i)
)]

(3.15)

where we have sequentially used Jensen’s inequality and then the symmetry of (Xi − X ′i).
Now we finish the proof by noting

E
[
tr
(

e
∑n

i=1Xi

)]
≤ E

[
tr
(

e
∑n

i=1 εi(Xi−X′i)
)]
≤ E

[
tr
(

e
∑n

i=1 εiXie−
∑n

i=1 εiX
′
i

)]
≤ (3.16)

E

[
tr
(

e2
∑n

i=1 εiXi

)1/2

tr
(

e−2
∑n

i=1 εiX
′
i

)1/2
]

= E
[
tr
(

e2
∑n

i=1 εiXi

)]
(3.17)

where we have sequentially used the Golden-Thompson inequality, the Cauchy-Schwartz
inequality two times, and the fact that both factors are identically distributed. (See [42] for
the definition of those properties.)

LTI System with Switching

We consider a MIMO LTI system that allows the controller to switch between two sets
of sensors, and we will assume that both the measurement and process noise have stochastic
distributions with a bounded support. Namely, we will assume that the noise vectors have
bounded norm almost surely.

Consider a MIMO LTI system with partial observations and switching in the sensing

xn+1 = Axn +Bun + wn

yn = C(αn)xn + zn(αn) + αnvn
(3.18)

where x ∈ Rp, u ∈ Rq, y, z, v ∈ Rm, and αn ∈ {0, 1}. The wn represents zero mean i.i.d.
process noise with covariance ΣW . Moreover, we have

Cn = C(αn) = αnC1 + (1− αn)C2

zn(αn) = αnζn + (1− αn)ηn
(3.19)

where ζn and ηn represent zero mean i.i.d. measurement noise with covariance matrices
Σζ � Ση, respectively. Note that αn ∈ {0, 1} should be interpreted as the switching control
action that selects between the observability matrices C1 or C2. The vn is as an additive
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measurement disturbance added by an attacker, which can only affect the observations made
when the mode α = 1 is selected. The idea of this model is that C1 corresponds to a more
accurate set of sensors than C2, but conversely that some subset of sensors within C1 are
susceptible to an attack whereas the set of all sensors within C2 are not susceptible to an
attack. (Our results also apply when the sensors within C2 are a strict subset of the sensors
in C1, with the only change being that Ση � Σζ .)

We further assume the process noise is independent of the measurement noise, that is
wn for n ≥ 0 is independent of ζn, ηn for n ≥ 0. Lastly we assume both measurement and
disturbance noises are bounded in magnitude. Namely, we assume that both measurement
noise and systems disturbances are given by i.i.d. bounded random vectors: ‖wk‖ ≤ Kw and
‖zk‖ ≤ Kz,∀k ≥ 0.

If (A,B) is stabilizable and both (A,C1) and (A,C2) are detectable, then an output-
feedback controller can be designed when vn ≡ 0 using an observer and the separation
principle; the stability of this scheme is proved in Proposition 3.1.5. Let K be a constant
state-feedback gain matrix such that A + BK is Schur stable, and let Li be a constant
observer gain matrix such that A+ LiCi is Schur stable for i ∈ {1, 2}. The idea of dynamic
watermarking in this context will be to superimpose a private (and random) excitation signal
en known in value to the controller but unknown in value to the attacker. As a result, we
will apply the control input un = Kx′n + en, where x′n is the observer-estimated state and
en are i.i.d. random vectors on a bounded support, such that ‖ek‖ ≤ Ke,∀k ≥ 0, with zero
mean and constant variance ΣE fixed by the controller. Let

L(α) = αL1 + (1− α)L2

Ln = L(αn)

L(α)> =
[
0 −L(α)>

] (3.20)

Moreover, let x̃> =
[
x> x′>

]
, and define:

B> =
[
B> B>

]
, D> =

[
I 0

]
, and

A(α) =

[
A BK

−L(α)C(α) A+BK + L(α)C(α)

]
.

(3.21)

Then the closed-loop system with private excitation is given by:

x̃n+1 = A(αn)x̃n +Ben +Dwn + L(αn)(zn(αn) + αnvn). (3.22)

If we define the observation error δ′ = x′−x, then with the change of variables x̌> =
[
x> δ′>

]
we have the dynamics

x̌n+1 = A(αn)x̌n +Ben +Dwn + L(αn)(zn(α) + αvn) (3.23)

where we further define the following matrices

B> =
[
B> 0

]
, D> =

[
I −I

]
, L(α) = L(α),

and A(α) =

[
A+BK BK

0 A+ L(α)C(α)

]
.

(3.24)
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Recall that A(α) is Schur stable whenever A+BK and A+L(α)C(α) are both Schur stable.
We present an schematic representation of the LTI system with switching in figure 1,

highlighting the presence of the switching decision and the attack presence which affects
only the sensor with low variance.

Figure 3.1: Schematic representation of the LTI system with switching: At every stage n, the
controller can opt between using the high-variance sensor (αn = 0) or using the low-variance
sensor (αn = 1). If they opt for the low-variance sensor, then there is a possibility than
an attacker will affect the sensor measurement by adding an additive disturbance vector vn.
Afterwards, a system state estimate x̂n is formed and used by the actuator to compute the
control input un.

There is one technical point that needs to be addressed before proceeding: Since there
is switching between observers, the closed-loop system will not necessarily be stable even
though A + BK and A + L(α)C(α) are both Schur stable. One approach to resolving this
issue is limiting the rate of switching. The intuition is that if we wait a certain number of
time periods before performing a switch, that will be enough to make sure the “energy” of
the system decreases. We make this state formal in Proposition 3.1.5.

Proposition 3.1.5. Let P be the positive definite solution of the Lyapunov equation

A(1)>PA(1)− P = −I, (3.25)

where I is the identity matrix. Then there exists a smallest positive integer τ such that

(A(0)t)>PA(0)t − P � −I, for all t ≥ τ. (3.26)

And the closed-loop system with no process noise (i.e. wk = 0, ∀k ≥ 0) is asymptotically
stable under switching policies where: whenever we switch from α = 1 to α = 0 we maintain
α = 0 for at least τ time steps before any possible switching occurs to α = 1.

Proof. A proof for stability of general discrete-time nonlinear and switched systems has been
given in [8] using non-monotonic Lyapunov Functions. We provide a different proof more
tailored to our problem.
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We first shows that τ exists. Since the matrix A(0) is Schur stable it follows that for any

x̌ ∈ R2p, A(0)kx̌→ 0 as k →∞. Hence it follows that x̌>(A(0)k)>PA(0)kx̌→ 0 as k →∞,

by the continuity of the function f(y) = y>Py. Now let λ̄ be the smallest eigenvalue of
A(1)>PA(1) and λk be the largest eigenvalue of (A(0)k)>PA(0)k. We observe that λk →
0 as k → ∞, again by Schur stability of A(0). Then let τ ≥ 0 be the scalar where λt ≤ λ̄,
for all t ≥ τ . For this choice of τ the following inequality holds:

(A(0)t)>PA(0)t � A(1)>PA(1), for all t ≥ τ. (3.27)

Then using (24) we obtain

(A(0)t)>PA(0)t − P � −I, for all t ≥ τ, (3.28)

which is exactly (25).
Now let P and τ be as defined in the hypothesis. Consider the function V (x̌) = x̌>Px̌.

We first analyze the behavior of V (·) for a given pairs of states, given different switching
decisions. If the switching decision αk = 1, then we can write

V (x̌k+1) = x̌>k+1Px̌k+1 = x̌>k A(1)>PA(1)x̌k. (3.29)

Using (1), for any x̌k 6= 0, we have

V (x̌k+1)− V (x̌k) = (3.30)

x̌>k A(1)>PA(1)x̌k − x̌>k Px̌k = −||x̌k||22 < 0 (3.31)

So for the decision αk = 1, the function V (x̌) decreases after one time step. Now let’s suppose
αk = 0, and we do not switch for t ≥ τ time periods (that is αj = 0 for j ∈ {k, ..., k + t}).
Then we can write

V (x̌k+t) = x̌>k+tPx̌k+t = x̌>k (A(0)τ )>P (A(0)τ )x̌k, (3.32)

and using (25), for any x̌k 6= 0 we have

V (x̌k+t)− V (x̌k) = (3.33)

x̌>k (A(0)t)>P (A(0)t)x̌k − x̌>k Px̌k ≤ −||x̌k||22 < 0 (3.34)

So under this switching decision rule the function V (x̌) decreases after t steps.
Now consider the sequence {V (x̌k)}∞k=0, under arbitrary switching generated by a policy

where whenever we switch from α = 1 to α = 0 we maintain α = 0 for at least τ time
steps before any possible switching occurs to α = 1. Consider subsequence {V1, V2, ...} =
{Vj for j ∈ J}, where

J =


{k : αk−1 = 1, αk = 0}

⋃
{k : αk−1 = 1, αk = 1}

⋃
{k : αk−1 = 0, αk = 1}

(3.35)
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We observe that this subsequence is decreasing. To see this note that

Vj+1 − Vj < 0 (3.36)

holds for the above five possible cases:

(j, (j + 1)) :



if j and (j + 1) both belong to

{k : αk−1 = 1, αk = 1},
if j ∈ {k : αk−1 = 1, αk = 1} and

(j + 1) ∈ {k : αk−1 = 1, αk = 0},
if j ∈ {k : αk−1 = 0, αk = 1} and

(j + 1) ∈ {k : αk−1 = 1, αk = 0},
if j ∈ {k : αk−1 = 0, αk = 1} and

(j + 1) ∈ {k : αk−1 = 1, αk = 1}
if j ∈ {k : αk−1 = 1, αk = 0} and

(j + 1) ∈ {k : αk−1 = 0, αk = 1}

(3.37)

where the first four cases hold due to (24) and the last case holds due to (25). That covers all
possible cases of pairs of elements in the subsequence. Hence the subsequence is decreasing.
We observe that if J is a finite set, that means that there exists an index k̄ such that
αk = 0 for k ≥ k̄, then in this case the whole sequence {V (x̌k)} will converge to zero, since
A(0) is Schur stable. Therefore we will focus on the case that the set J is infinite.

Now, since each V (x̌) > 0 for ‖x̌‖2 > 0, then this subsequence converge to some constant
c ≥ 0. By continuity of V (x̌), it follows that c = 0. We show this by contradiction: Suppose
that c 6= 0 and consider any ∆ = {x̌ ∈ R2p : d ≤ ||x̌||2 ≤ r}, with, 0 < d < r such that
{x̌ ∈ R2p : V (x̌) = c} ⊆ ∆. Such d and r exist because V (x̌) = x̌>Px̌ is a strictly convex
function, for positive definite matrix P . And we note that we can pick an r such that every
state trajectory of the subsequence lies in the the ball Br = {x̌ ∈ R2p : ‖x̌‖2 < r} The set ∆
is a compact set and contains {x̌ ∈ R2p : V (x̌) = c}. Now consider the following

γ0 = min
x̌∈∆

sup
t≥τ

V (x̌)− V (A(0)tx̌) (3.38)

γ1 = min
x̌∈∆

V (x̌)− V (A(1)x̌) (3.39)

where both γ1 and γ0 exists, again by positive definiteness of matrix P and V (x̌) = x̌>Px̌.
Now since limj→∞ Vj = c and V is continuous then there exists an index j̄ such that for all
j > j̄ and indices q(j) such that Vj = V (x̌q(j)) ≤ c+ γ, with γ < min{γ0, γ1} and x̌q(j) ∈ ∆.
But then it must hold that

V (x̌q(j))− V (A(0)tx̌q(j)) ≥ γ0, for all t ≥ τ (3.40)

V (x̌q(j))− V (A(1)x̌q(j)) ≥ γ1 (3.41)
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But then it follows that V (A(0)tx̌q(j)) ≤ c+ γ − γ0 < 0 and V (A(1)x̌q(j)) ≤ c+ γ − γ1 < 0.
This implies that the next point in the series after j̄ will bring the function value of V strictly
below c, which is a contradiction. Hence we conclude that Vj → 0.

Now observe that the set of indices {k : αk−1 = 0, αk = 0} is the only remaining set
not included in (36). We proceed to show that those elements also converge to zero, hence
showing that the entire sequence {V (x̌k)} converge to zero. Since we found a convergent
subsequence of Vj for j ∈ J , there exists an index j and an index q(j) and a scalar ε > 0
such that:

Vj = V (x̌q(j)) ≤ ε (3.42)

Now for every l = 1, ..., τ , we define δl(ε):

δl(ε) = max
x̌>P x̌≤ε

{
x̌>(A(0)l)>P (A(0)l)x̌

}
. (3.43)

Observe that δl(ε) → 0 as ε → 0. Moreover it follows that for all indices k ∈ {k : αk−1 =
0, αk = 0} that come after index q(j), it holds that

V (x̌k) ≤ max
l∈{1,...,τ}

{
δl(ε)

}
for k ∈ {k : αk−1 = 0, αk = 0, k ≥ q(j)}. (3.44)

Then it follows that those elements will go to zero as ε goes to zero. Hence it follows that

V (x̌k) ≤ max
{
δ1(ε), ..., δτ (ε), ε

}
for k ≥ q(j) (3.45)

Then elements of the sequence {V (x̌k)} will go to zero as ε→ 0. Hence the function V (·) is a
proper Lyapunov function for the system, as established in [117], under the desired switching
rule, which implies that the closed-loop system is asymptotically stable.

Lastly, we note that such a τ exists because A(0) is Schur stable.

Matrix Inequalities for General LTI Systems

We will now apply the abstract concentration inequalities presented in Sect. 3.1 to our
LTI setting with switching. We will begin our analysis considering that the system is under
no attack. Under no attack we would like to keep using the most accurate sensor – that is
keeping our switching control αn ≡ 1 for all n ≥ 0. However, as it is usually observed for any
kind of tests based on random quantities, we are susceptible to commit what is commonly
known as false positive or type I errors. Hence our goal is to provide finite sample tests based
on matrix concentration of measure such that type I errors happen only a finite number of
times throughout the evolution of the system. This would imply that those tests report
correctly that there is no attack infinitely often. To that end, we will utilize two observers:
The first observer obtain system measurements from the switched system, using C(αn);
The second observer never switches and keeps measuring the system using the vulnerable
sensor, using C1. The finite-time statistical tests and the concentration inequalities analysis
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presented in this section are referring to quantities associated with the second observer. For
ease of notation and presentation we drop the subscript of the analysis define C = C1 and
L = L1. Moreover, for the second observer we define: x̂n and δn to denote the estimate state
and observation error:

x̂n+1 = (A+BK)x̂n + LC(x̂n − xn) +Ben − Lzn (3.46)

and δn = x̂n − xn. Then by the same type of variable substitution, using 3.23:

δn+1 = (A+ LC)δn − wn +−Lzn (3.47)

We will start by bounding the vector Cδn − zn:

Theorem 3.1.6. Let δn = x̂n − xn. Assume that both measurement noise and systems
disturbances are given by i.i.d. bounded random vectors: ‖wk‖ ≤ Kw and ‖zk‖ ≤ Kz,∀k ≥ 0.
Then when vn ≡ 0 for all n ≥ 0 we have

‖Cδn − zn‖ ≤ K̄n (3.48)

where K̄n = Kz +
∑n−1

k=0

∥∥CD̄k

∥∥Kw +
∥∥CL̄k∥∥Kz and

(Cδn − zn)(Cδn − zn)> � K̄2
nI. (3.49)

Moreover, it follows that

E[(Cδn − zn)(Cδn − zn)>] = C

(
n−1∑
k=0

D̄kΣwD̄
>
k + L̄kΣzL̄

>
k

)
C> + Σz (3.50)

where
D̄k = −(A+ LC)n−1−k

L̄k = −(A+ LC)n−1−kL>.
(3.51)

Proof. Recall our definition of δn (3.47) we can write

δn = (A+ LC)nδ0 −
n−1∑
k=0

(A+ LC)n−1−k(Iwk + L>zk). (3.52)

Assuming δ0 = 0, we have that

δn =
n−1∑
k=0

D̄kwk + L̄kzk. (3.53)

Now, we can define the following:

Cδnδ
>
nC
> =

(
n−1∑
k=0

D̄kwk + L̄kzk

)(
n−1∑
k=0

D̄kwk + L̄kzk

)>
C>, (3.54)
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and obtain the expectation directly:

E[(Cδn − zn)(Cδn − zn)>] =

C

(
n−1∑
k=0

D̄kΣwD̄
>
k + L̄kΣzL̄

>
k

)
C> + Σz,

(3.55)

since zn and δn are independent for all n. Moreover, both system disturbances and measure-
ment noise are independent. Under our key assumption that both measurement noise and
systems disturbances are given by i.i.d. bounded random vectors we have that

‖δn‖ ≤
n−1∑
k=0

∥∥D̄k

∥∥Kw +
∥∥L̄k∥∥Kz, (3.56)

and that

‖Cδn − zn‖ ≤ Kz +
n−1∑
k=0

∥∥CD̄k

∥∥Kw +
∥∥CL̄k∥∥Kz = K̄n. (3.57)

So we have (Cδn − zn)(Cδn − zn)> � K̄2
nI.

Now consider the matrix (3.2) that was used in the introduction to define the asymptotic
tests. But now, instead of letting n go to infinity, we keep it finite and then analyze the
finite summation of matrices. Let k′ = min{k ≥ 0 | C(A + BK)kB 6= 0}. The existence of
such k′ is guaranteed (see [130]). Moreover, define

ψ>n =
[
(Cx̂n − yn)> e>n−k′−1

]
. (3.58)

Then we have:

1

N

N−1∑
n=0

ψnψ
>
n =

1

N

[∑N−1
n=0 (Cx̂n − yn)(Cx̂n − yn)>

∑N−1
n=0 (Cx̂n − yn)e>n−k′−1∑N−1

n=0 en−k′−1(Cx̂n − yn)>
∑N−1

n=0 en−k′−1e
>
n−k′−1

]
(3.59)

It suits our purposes to make sure that the above matrix is centered (that is have zero
expected value). In order to achieve this, we construct the matrix

1

N

N−1∑
n=0

Ψn =
1

N

N−1∑
n=0

ψnψ
>
n −

1

N

[∑N−1
n=0 E[(Cδn − zn)(Cδn − zn)>] 0

0 NΣe

]
(3.60)

Note that it follows that: E[Ψn] = 0,∀n ≥ 0, since Cx̂n− yn = Cδn− zn. We wish to control
the singular values of the above matrix. We will do so by analyzing each individual block.
To ease the notation we define

ΦN =
1

N

N−1∑
n=0

Ψn (3.61)
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and we define each submatrix

Φ
(1)
N =

1

N

N−1∑
n=0

(Cx̂n − yn)(Cx̂n − yn)> − 1

N

N−1∑
n=0

E[(Cx̂n − yn)(Cx̂n − yn)>] (3.62)

Φ
(2)
N =

1

N

N−1∑
n=0

(Cx̂n − yn)e>n−k′−1 (3.63)

Φ
(3)
N =

1

N

N−1∑
n=0

(en−k′−1e
>
n−k′−1 − Σe) (3.64)

such that

ΦN =

[
Φ

(1)
N Φ

(2)
N

(Φ
(2)
N )> Φ

(3)
N

]
. (3.65)

Our next step is to bound the norm of Φ
(1)
N .

Theorem 3.1.7. If vn ≡ 0 for all n ≥ 0, then the following concentration inequality holds
for all N ≥ 1 and all t:

P

(∥∥∥Φ
(1)
N

∥∥∥ ≥ t

)
≤ m · e−N2t2/c

(1)
N (3.66)

where c
(1)
N = 8

∥∥∥∑N−1
k=0

(
K̄4
k I
)∥∥∥.

Proof. We start by defining the matrix Yn as

Yn = (Cδn − zn)(Cδn − zn)> − E[(Cδn − zn)(Cδn − zn)>]. (3.67)

Now define a vector of independent i.i.d. Radamacher random variables {εn}N−1
n=0 . Now we

define a filtration Z = (Yn)n≥1 where Wn = εnYn, n ≥ 1. Then we see that each summand
Wn is conditionally independent given Z, because the Radamacher random variables are
all i.i.d. This allows us to use the Hoeffding Bound for conditionally independent sums to
obtain

P

(∥∥∥∥∥ 1

N

N−1∑
n=0

Yn

∥∥∥∥∥ ≥ t

)
≤ d · e−N2t2/8σ2

(3.68)

for σ2 =
∥∥∥∑N−1

k=0

(
K̄4
k I
)∥∥∥. The inequality follows from applying the Laplace transform method

and using the symmetrization property (Lemma 1):

E
[
tr
(

e
1
N

∑N
n=0 Yn

)]
≤ E

[
tr
(

e
2
N

∑N−1
n=0 εiYn

)]
(3.69)

In addition, we have used the fact W 2
k � K̄4

k I for all k, and the fact that

1

2

∥∥∥∥∥∑
k

K̄4
k I + E[W 2

k |(Wj)j 6=k]

∥∥∥∥∥ ≤
∥∥∥∥∥∑

k

(
K̄4
k I
)∥∥∥∥∥ (3.70)
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since E[W 2
k |(Wj)j 6=k] = E[Y 2

k |(Wj)j 6=k] � K̄4
k I.

Next, we provide a bound on the norm of Φ
(2)
N . But before that we need the following

proposition:

Proposition 3.1.8. Let e = (e1, ..., ek, ..., en) be a sequence of random vectors taking values
in a space Z. Now construct an exchangeable pair e′ = (e1, ..., e

′
k, ..., en) where ek and e′k are

conditionally i.i.d. given (ej)j 6=k and k is an independent coordinate drawn uniformly from
{1, ..., n}. We define

H(e) =

[
0

∑N−1
n=0 (dn)e>n−k′−1∑N−1

n=0 en−k′−1(dn)> 0

]
(3.71)

where dn = (Cδn − zn). If vn ≡ 0 for all n ≥ 0, then the function H(e) satisfies the bounded
differences property

E[(H(e)−H(e′))2|e] � P̄ 2
n (3.72)

for P̄ 2
n = max{P 2

n , P
′2
n }I with positive constants P 2

n , P
′2
n :

P
′2
n = K̄2

n(K2
e + ‖ΣE‖) (3.73)

P 2
n =

(
K2
e + tr(ΣE

)
)×

∥∥∥∥∥C
(
n−1∑
k=1

D̄kΣwD̄
>
k + L̄kΣzL̄

>
k

)
C> + Σz

∥∥∥∥∥ (3.74)

Proof. Let qn = dne
>
n−k′−1 − dne

′>
n−k′−1 and observe that

E[(H(e)−H(e′))2|e] = E

[ [
0 qn
q>n 0

]2

|e
]

= E

[ [
Qn 0
0 Q′n

]
|e
]

(3.75)

where we have defined

Qn = dne
>
n−k′−1en−k′−1d

>
n + dne

′>
n−k′−1e

′

n−k′−1d
>
n

Q′n = en−k′−1d
>
n dne

>
n−k′−1 + e

′

n−k′−1d
>
n dne

′>
n−k′−1

(3.76)

Now we have

E[Qn|e] = E[dne
>
n−k′−1en−k′−1d

>
n + dne

′>
n−k′−1e

′

n−k′−1d
>
n |e] = (3.77)

(e>n−k′−1en−k′−1)E[dnd
>
n |e] + E[e

′>
n−k′−1e

′

n−k′−1|e]E[dnd
>
n |e] (3.78)

Recalling that ‖ek‖ ≤ Ke ∀k ≥ 0 and (3.55), it follows that

‖E[Qn|e]‖ ≤
(
K2
e + tr(ΣE

)
)×

∥∥∥∥∥C
(
n−1∑
k=1

D̄kΣwD̄
>
k + L̄kΣzL̄

>
k

)
C> + Σz

∥∥∥∥∥ = P 2
n . (3.79)
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Moreover, it follows that

‖E[Q′n|e]‖ = en−k′−1d
>
n dne

>
n−k′−1 + e

′

n−k′−1d
>
n dne

′>
n−k′−1 =

(E[(d>n dn)|e])en−k′−1e
>
n−k′−1 + (E[d>n dn|e])E[e

′

n−k′−1e
′>
n−k′−1|e] (3.80)

So we get
‖E[Q′n|e]‖ ≤ K̄2

n(K2
e + ‖ΣE‖) = P

′2
n (3.81)

Hence it follows that ∥∥E[(H(e)−H(e′))2|e]
∥∥ ≤ max{P 2

n , P
′2
n } (3.82)

So it follows that
E[(H(e)−H(e′))2|e] � P̄ 2

n (3.83)

where P̄ 2
n = max{P 2

n , P
′2
n }I.

Now we are ready to provide our theorem.

Theorem 3.1.9. If vn ≡ 0 for all n ≥ 0, then the following concentration inequality holds
for all N ≥ 1 and all t:

P

(∥∥∥Φ
(2)
N

∥∥∥ ≥ t

)
≤ (m+ p) · e−N2t2/c

(2)
N (3.84)

where c
(2)
N =

∥∥∥∑N−1
n=0 P̄

2
n

∥∥∥ for P̄ 2
n = max{P 2

n , P
′2
n }I, where

P 2
n =

(
K2
e + tr(ΣE

)
)×

∥∥∥∥∥C
(
n−1∑
k=1

D̄kΣwD̄
>
k + L̄kΣzL̄

>
k

)
C> + Σz

∥∥∥∥∥ (3.85)

P ′2n = K̄2
n(K2

e + ‖ΣE‖). (3.86)

Proof. We wish to provide bounds on the operator norm of

Φ
(2)
N =

1

N

N−1∑
n=0

(Cδn − zn)e>n−k′−1 (3.87)

To achieve that, we will use the concept of matrix Stein pairs as defined previously. Let
E = (e1, ..., ek, ..., en) be a sequence of random vectors taking values in a space Z. Now
construct an exchangeable pair E ′ = (e1, ..., e

′
k, ..., en) where ek and e′k are conditionally i.i.d.

given (ej)j 6=k and k is an independent coordinate drawn uniformly from {1, ..., n}. We define
H(e) as in Proposition 3.1.8:

H(e) =

[
0

∑N−1
n=0 bne

>
n−k′−1∑N−1

n=0 en−k′−1b
>
n 0

]
(3.88)
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where bn = Cδn − zn. Since E(H(e)) = 0, this means H(e) satisfies the self-reproducing
property

N∑
n=1

H(e)− E[H(e)|(ej)j 6=(n−k′−1)] = H(e) (3.89)

for the choice of parameter s = 1 (see (3.11) for the definition of s), since for all n ∈ {1, ..., N}
we have

H(e)− E[H(e)|(ej)j 6=(n−k′−1)] =

[
0 (Cδn − zn)e>n−k′−1

en−k′−1(Cδn − zn)> 0

]
(3.90)

Next, we use Proposition 3.1.8 to state that H(e) also satisfies the bounded differences
property. So we have

E[(H(e)−H(e′)2|e] � P̄ 2
n (3.91)

for P̄ 2
n = max{P 2

n , P
′2
n }I. Hence, we apply the McDiarmid inequality to the dilation H(e) ∈

Hm+p to obtain

P

(∥∥∥∥ 1

N
H(e)

∥∥∥∥ ≥ t

)
= P

(∥∥∥∥∥ 1

N

N−1∑
n=0

(Cδn − zn)e>n−k′−1

∥∥∥∥∥ ≥ t

)
≤ (m+ p) · e−N2t2/L (3.92)

for L =
∥∥∥∑N−1

n=0 P̄
2
n

∥∥∥.

Now we focus on bounding the last submatrix Φ
(3)
N (3.64), which is related only to the

watermark vector.

Theorem 3.1.10. The following concentration inequality holds for all N ≥ 1 and all t:

P

(∥∥∥Φ
(3)
N

∥∥∥ ≥ t

)
≤ 2q · e−N2t2/c

(3)
N (3.93)

where c
(3)
N =

∥∥∥∑N−1
k=0 (K̄2

e I− Σe)
2 + E[(ene

>
n )4]− Σ2

e

∥∥∥.

Proof. We wish to provide a bound on the norm of

Φ
(3)
N =

1

N

N−1∑
n=0

(en−k′−1e
>
n−k′−1 − Σe) (3.94)

Define Ēn = en−k′−1e
>
n−k′−1 − Σe. We apply the Hoeffding bound for the independent sum

to obtain

P

(∥∥∥∥∥ 1

N

N−1∑
n=0

Ēn

∥∥∥∥∥ ≥ t

)
≤ d · e−N2t2/2σ2

(3.95)
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for σ2 = 1
2

∥∥∥∑N−1
k=0

(
K̄2
e I− Σe

)2
+ E[(ene

>
n )4]− Σ2

e

∥∥∥, since

Ē2
n �

N−1∑
k=0

(
K̄2
e I− Σe

)2
(3.96)

and by the definition of expectation we have that E
[
Ē2
n

]
= E[(en−k′−1e

>
n−k′−1)4]− Σ2

e.

Finite Sample Tests for General LTI Systems

In this section, we provide our finite sample tests based on dynamic watermarking for
general LTI Systems with switching. In the previous section, we obtained concentration
inequalities for each of the submatrices of ΦN (3.65). Note Φ

(3)
N is the private excitation

matrix we get to design, and so it is in our power to choose the dynamic watermark to
display a desired concentration behavior.

We are now ready to state the main theorem of this work, which characterizes the behavior
of a switching rule based on the finite-time concentration inequalities. Our switching rule
is constructed by thresholding the block submatrices Φ

(1)
N and Φ

(2)
N using the measurements

of the second observer ((3.46) and (3.47)) and applying the switch on the first observer
once those thresholds are violated, and then we switch back when violations disappear. We
remark that the second observer is assumed to be not susceptible to attacks, and hence its
measurements can be used to constructed the required matrices and also enjoy the guarantees
provided in the previous section. Let S be a positive constant such that max{c(1)

N , c
(2)
N , c

(3)
N } ≤

NS; such an S exists when (A + BK) and (A + LnCn) are Schur stable provided that the
switching rule satisfies the condition specified in Proposition 3.1.5.

Theorem 3.1.11. Recall the closed-loop MIMO LTI system (3.18) with αn being our switch-
ing control action that chooses between two different observation matrices. Define the thresh-
old tN =

√
(1 + ρ)S logN/N , where ρ > 0. Let Φ

(1)
N and Φ

(2)
N be defined using the measure-

ments from (3.46) and (3.47). Let αN be the switching decision rule with

• we choose the switching input αN = 0 when we have
∥∥∥Φ

(1)
N

∥∥∥ < tN or
∥∥∥Φ

(2)
N

∥∥∥ < tN

• we switch from αN−1 = 0 to αN = 1 when αN−i = 0 for i ∈ {1, . . . , τ} and
∥∥∥Φ

(1)
N

∥∥∥ ≥ tN

and
∥∥∥Φ

(2)
N

∥∥∥ ≥ tN .

Moreover, let EN for all N ≥ 1 denote the event

EN =

[∥∥∥Φ
(1)
N

∥∥∥ > tN
⋃∥∥∥Φ

(2)
N

∥∥∥ > tN

]
(3.97)

Then if vN ≡ 0 for all N ≥ 0, we have that

P(lim sup
N→∞

EN) = 0. (3.98)
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That is, under no attacks our switching rule incorrectly switches the system only a finite
number of times.

Proof. Recall that we previously proved the following matrix concentration inequalities for
each submatrix:

P

(∥∥∥Φ
(1)
N

∥∥∥ ≥ tN

)
≤ m · e−N2t2N/c

(1)
N (3.99)

P

(∥∥∥Φ
(2)
N

∥∥∥ ≥ tN

)
≤ (m+ p) · e−N2t2N/c

(2)
N (3.100)

for the constants c
(1)
N and c

(2)
N . Summing over all N , we have

∞∑
k=1

P

(∥∥∥Φ
(j)
k

∥∥∥ ≥ tk

)
≤ (m+ p)

∫ ∞
1

1

k1+ρ
dk <∞. (3.101)

Hence the Borel-Cantelli Lemma implies that for the event

E
(j)
N =

[∥∥∥Φ
(j)
N

∥∥∥ ≥ tN

]
(3.102)

we have
P(lim sup

N→∞
E

(j)
N ) = 0, ∀j = {1, 2, 3}. (3.103)

Now, if we define the event

EN =

[∥∥∥Φ
(1)
N

∥∥∥ > tN
⋃∥∥∥Φ

(2)
N

∥∥∥ > tN

]
, N ≥ 1, (3.104)

then it follows that

P(EN) ≤ P

(
2⋃
j=1

E
(j)
N

)
≤

2∑
j=1

P
(
E

(j)
N

)
, N ≥ 1. (3.105)

So summing once more for all N gives

∞∑
k=1

P(Ek) ≤
∞∑
k=1

2∑
j=1

P
(
E

(j)
N

)
< 2(m+ p)

∫ ∞
1

1

k1+ρ
dk <∞. (3.106)

We obtain by applying Borel-Cantelli lemma that

P

(
lim sup
N→∞

EN

)
= 0, (3.107)

which is the desired result.
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The result of this theorem implies that if there is no attack to the system, the operator
norm of the matrices involved can have “large” deviations only a finite number of times, hence
we obtain that a switching rule based on tests derived from the concentration inequalities
defined previously will trigger attack alerts only a finite number of times. In addition, we
note that the having a second observer to compute the finite tests is the key to ensure that
the concentration inequalities are consistent with the obtained measurements. On the other
hand, the first observer measurements with switching plays the role in the control synthesis.

Lastly, we observe that we do not need to enforce the test on
∥∥∥Φ

(3)
3

∥∥∥ since this submatrix is

only composed of the watermarking signal, and the attacks do not have the power to affect
the watermarking imposed by the controller.

Attack Magnitude Thresholding

The previous section gives a finite sample test that works properly when there is no
attack. Our goal here is to determine the trade-off between our test’s statistical power and
the attack magnitude. Intuitively, the power of the statistical test is related to the capability
of detecting attacks, and a test with higher power can detect attacks with smaller magnitude.
The trade-off is that by increasing the test’s statistical power we also increase the rate of
false-positives in our detection strategy. Namely, the power of our test is directly related to
right-hand side of our finite sample tests, the threshold quantities tN and we analyze their
relation to the magnitude of the attack vectors. To do so, we consider the first observation
matrix under a FDI attack yn = Cxn + zn + vn, where vn is chosen by the attacker. First
we consider the case where vn is a small perturbation that does not necessarily follow any
particular form. Then we consider a more structured case where vn takes the form explored
in [130]. Note we have again omitted the subscript of the observation matrix for clarity.

Perturbation Attacks

The first attack we analyze is when vn consists of a small perturbation that could be
determinstic and/or stochastic. To begin our analysis, let δ̄n be the measurement error when
the system is under attack, and observe that

δ̄n+1 = (A+ LC)δ̄n − Iwn − L>zn − L>vn. (3.108)

Expanding this expression gives that

δ̄n = (A+ LC)nδ̄0 −
n−1∑
k=0

(A+ LC)n−1−k(Iwk + L>zk + L>vk) (3.109)

where δ̄0 = δ0 = 0. So we can rewrite the above as

δ̄n =
n−1∑
k=0

D̄kwk + L̄kzk + L̄kvk = δn +
n−1∑
k=0

L̄kvk. (3.110)
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Next we define Vn = C
∑n−1

k=0 L̄kvk − vn, and observe that the quantity Vn is determined
by the attacker since it depends upon the values of vk. Qualitatively, we note that the
magnitude of Vn is related to the attack magnitude, since if there is no attack then Vn ≡ 0
for all n. Intuitively Vn is an “accumulation” of the attack from time period 0 to period n,
and the accumulation is done via the filters L̄k, k ∈ {0, ..., n − 1}. We proceed to analyze
the quantity Vn instead of each individual vector vn since it is not possible to decouple the
effects of each vk by the detection system.

Theorem 3.1.12. Consider the closed-loop MIMO LTI system (3.18) with αN , tN , EN as
defined in Theorem 3.1.11, and suppose the attacker chooses the perturbation attack described
above. If the attack values vk are such that there exists a positive constant G with

1

N

N−1∑
k=0

‖Vk‖ ≤
G

N
. (3.111)

then we have that P(lim supN→∞EN) = 0. That is, under a perturbation attack with the
above specifications the attack is detected only a finite number of times.

Proof. We begin by considering

Φ
(1)
N =

1

N

N−1∑
n=0

(Cx̂n − yn)(Cx̂n − yn)> − 1

N

N−1∑
n=0

E[(Cx̂n − yn)(Cx̂n − yn)>] =

1

N

N−1∑
n=0

(Cδ̄n − zn − vn)(Cδ̄n − zn − vn)> − 1

N

N−1∑
n=0

E[(Cx̂n − yn)(Cx̂n − yn)>] =

1

N

N−1∑
n=0

(Cδn − zn)(Cδn − zn)> +Dn +D>n +Mn −
1

N

N−1∑
n=0

E[(Cx̂n − yn)(Cx̂n − yn)>]

(3.112)

where δn is the measurement error under no attack, and

Dn =
1

N

N−1∑
n=0

(Cδn − zn)V >n

Mn =
1

N

N−1∑
n=0

VnV
>
n

(3.113)

Now using Theorem 3.1.7, we have that

P(
∥∥∥Φ

(1)
N

∥∥∥ ≥ tN) ≤ P

(
‖ 1

N

N−1∑
n=0

(Cδn − zn)(Cδn − zn)>−

1

N

N−1∑
n=0

E[(Cx̂n − yn)(Cx̂n − yn)>]‖ ≥ tN − 2 ‖DN‖ − ‖MN‖
)
≤ m e

−N2(tN−2‖DN‖−‖MN‖)2

c
(1)
N

(3.114)



CHAPTER 3. SWITCHING IN CYBER-PHYSICAL SYSTEMS: FINITE-TIME
CONSISTENCY TESTS AND ESTIMATION 53

Next observe that

2
∥∥D̄N

∥∥+ ‖MN‖ ≤
2K̄N

N

N−1∑
n=0

‖Vn‖+
1

N

N−1∑
n=0

‖Vn‖2 ≤ 2K̄NG

N
+
G2

N
(3.115)

Since (A + LC) is Schur stable, then from the definition of K̄N we immediately get that
there exists a positive constant S̄ such that K̄N ≤ S̄ for all N ≥ 1. Combining this with the
above implies that

∞∑
k=1

P(
∥∥∥Φ

(1)
k

∥∥∥ ≥ t
(1)
k ) <∞, (3.116)

and so the Borel-Cantelli lemma implies that
∥∥∥Φ

(1)
N

∥∥∥ ≥ t
(1)
N only finitely many times. Our

next step considers

Φ
(2)
N =

1

N

N−1∑
n=0

(Cx̂n − yn)e>n−k′−1 =
1

N

N−1∑
n=0

(Cδ̄n − zn − vn)e>n−k′−1 =

1

N

N−1∑
n=0

(Cδn − zn)e>n−k′−1 +Hn (3.117)

where

HN =
1

N

N−1∑
n=0

Vne
>
n−k′−1. (3.118)

Now using Theorem 3.1.9, we have that

P(
∥∥∥Φ

(2)
N

∥∥∥ ≥ tN) ≤ P

(
‖ 1

N

N−1∑
n=0

(Cδn − zn)e>n−k′−1‖ ≥ tN − ‖HN‖
)
≤ 2m e

−N2(tN−‖HN‖)2

c
(2)
N .

(3.119)

Next observe that

‖HN‖ ≤
Ke

N

N−1∑
k=0

‖VN‖ ≤
KeG

N
. (3.120)

Combining this with the above implies that
∞∑
k=1

P(
∥∥∥Φ

(2)
k

∥∥∥ ≥ tk) <∞, (3.121)

and so the Borel-Cantelli lemma implies that
∥∥∥Φ

(2)
N

∥∥∥ ≥ tN only finitely many times. The

remainder of the proof follows similarly to that of the last steps of Theorem 3.1.11.

Our analysis in this subsection is capable of only providing a simple relation between
the power of our detection scheme and the magnitude of Vn. An analysis that translates
to the bounds of each individual vn is more involved because it depends explicitly on the
structure/behavior of the matrix (A+ LC).
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Replay Attacks

The second attack type we analyze is when

vn = Cξn + ζn − (Cxn + zn) (3.122)

where ξn+1 = (A + BK)ξn + ωn and ωn is a bounded disturbance. This is a replay attack
[149], since it subtracts the real sensor measurements and substitutes these with a replay of
the dynamics starting from a different initial condition. In fact, we will perform our analysis
for a more general attack

vn = Cξn + ζn − γ · (Cxn + zn), (3.123)

where γ ∈ R. This attack also allows for dampening or amplifying the true sensor measure-
ments (Cxn + zn).

Theorem 3.1.13. Consider the closed-loop MIMO LTI system (3.18) with αN , tN , EN as
defined in Theorem 3.1.11, and suppose the attacker chooses the attack (3.123). If the
attack is not trivial (i.e., a trivial attack has vN ≡ 0 for all N ≥ 0), then we have that
P(lim supN→∞ ¬EN) = 0. That is, under the attack with the above specifications the attack
is not detected only a finite number of times.

Proof. Suppose γ 6= 0. Then the proof of Theorem 1 in [130] shows that limN→∞Φ
(2)
N exists

almost surely and is not equal to 0. This means that P(lim supn→∞ ¬E
(2)
N ) = 0. Now consider

the case γ = 0. Then the proof of Theorem 1 in [130] shows that limN→∞Φ
(1)
N exists almost

surely and is not equal to 0. This means that P(lim supn→∞ ¬E
(1)
N ) = 0. The remainder of

the proof by repeating the last steps of Theorem 3.1.11 for the two cases, after noting that
¬EN = ¬E(1)

N ∨ ¬E
(2)
N by De Morgan’s laws.

This result is stronger than Theorem 3.1.12 in that it says all replay attacks, and more
generally attacks of the form (3.123), will not be detected by the finite sample tests only
a finite number of times. In fact, this result is analagous to the zero-average-power results
(3.4) of past work on dynamic watermarking for LTI systems with general structure [130],
since this result says that only (trivial) replay attacks with zero-average-power cannot be
detected.

3.2 Experimental Results: Finite-time switching with

Autonomous vehicles

To further demonstrate the effectiveness of this method, we return to the lane keeping
example used in [130] which is based off of the standard model for lane keeping and speed
control [241]. In this model the state vector takes the form xT = [ψ y s γ v] and input vector
uT = [r a], where ψ is heading error, y is lateral error, s is trajectory distance, γ is vehicle
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Figure 3.2: Average Time to Detect Replay Attack using Submatrix
∥∥∥Φ

(1)
n

∥∥∥ with Threshold

Parameter ρ(1) (a) and Submatrix
∥∥∥Φ

(2)
n

∥∥∥ and Threshold Parameter ρ(2) (b); Number of Un-

Attacked Trials that Result in Switching using Submatrix
∥∥∥Φ

(1)
n

∥∥∥ with Threshold Parameter

ρ(1) (c) and Submatrix
∥∥∥Φ

(2)
n

∥∥∥ and Threshold Parameter ρ(2) (d)

angle, v is vehicle velocity, r is steering, and a is acceleration. Linearizing about a straight
trajectory at a velocity of 10 m/s and step size of 0.05 seconds gives us an LTI system:

A =


1 0 0 1

10
0

1
2

1 0 1
40

0
0 0 1 0 1

2

0 0 0 1 0
0 0 0 0 1

B =


1

400
0

1
2400

0
0 1

800
1
20

0
0 1

20

 (3.124)

with C1 = C2 = [I, 0] ∈ R3×5. The process noise and watermark take the form of uniform
random variables such that w ∈ [−2.5 × 10−4, 2.5 × 10−4]5 and e ∈ [−2, 2]2. Similarly
the measurement noise for each sensor is also estimated as uniform random variables where
ζ ∈ [−1 × 10−2, 1 × 10−2]3 and η ∈ [−2 × 10−2, 2 × 10−2]3. For this example we can
think of the ζ measurements as localization using visual or lidar based localization with high
definition mapping, and η as GPS localization. Finally controller and observer gains K and
L1 = L2 were chosen to stabilize the closed loop system.
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Figure 3.3: Switching Decision Values Based on the Submatrices ‖Φ(1)
n ‖ and ‖Φ(2)

n ‖ in Sim-
ulation of Autonomous Vehicle with Switching Disabled

For this system it was found that

c(1)
n ≤ 6.7502× 10−5n (3.125)

c(2)
n ≤ 0.0968n. (3.126)

Using the threshold structure defined in Theorem 3.1.11 results in

τ (1)
n =

√
(1 + ρ(1))(6.7502× 10−5) log(n)/n (3.127)

τ (2)
n =

√
(1 + ρ(2))(0.968) log(n)/n. (3.128)

While the finite switching guarantee given by Theorem 3.1.11 only applies for ρ(1), ρ(2) > 0,
due to the conservative nature of the bounds in (3.125)-(3.126) in addition to the desire to
also maintain a sufficiently quick detection we instead heuristically tune these values to find
the desired balance.

For our analysis of this system, we once again consider the two forms of attack discussed
previously. The perturbation attack takes the form of random noise pulled from a uniform
distribution such that vn ∈ [−0.150.15]3 The replay attack is described in (3.122) where
ξ0 = 0 and ζ and ω are uniformly distributed such that ζ ∈ [−2.5× 10−4, 2.5× 10−4]3 and
ω ∈ [−2.5× 10−4, 2.5× 10−4]5.

Each attacked system, along with an un-attacked system were simulated 1000 times for
10,000 discrete time steps. While the perturbation attack is detected and switching occurs
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Figure 3.4: Performance Comparison of Simulated Autonomous Vehicle Lane Keeping with
and without Switching Policy for Perturbation Attack (top) and Replay Attack (bottom)

almost immediately for ρ(1), ρ(2) < 1, the replay attack can take a much longer time to be
detected. Figure 3.2 shows the average time to detection for each of our switching conditions
in addition to the number of trials that result in switching for the un-attacked case plotted
against the corresponding value of ρ(1) or ρ(2). While the number of switching simulations for
the un-attacked system under switching condition 2 appear to be quite large even when the
average time to detect is relatively large, it is important to note that many of the unwanted
switches occur in the first four discrete steps which can be mitigated in practice by ignoring
the first four values.

Choosing values of ρ(1) = ρ(2) = −0.98 to balance the possibility of false alarms while
maintaining the ability to quickly detect attacks, each attack was again simulated this time
for 1000 discrete time steps both with and without the switching policy. Figure 3.3 shows
the value of ‖Φ(1)

n ‖ and ‖Φ(2)
n ‖ for both normal operation and under each of the attacks when

the switching policy is not being used. The plot shows that for both attack 1 and attack
2 the switching policy will result in an almost immediate and consistent transfer from the
attacked sensor to the protected sensor. Furthermore, when the system is un-attacked the
values of ‖Φ(1)

n ‖ and ‖Φ(2)
n ‖ remain below the switching threshold. Figure 3.4 compares the

performance of the lane keeping algorithm for each attack with respect to the un-attacked
performance both with and without the switching policy. This plot shows that for both
attacks the switching policy is able to transfer to the protected sensor before significant
deviation can occur. This switch allows the vehicles performance to gracefully degrade while
avoiding total failure.
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3.3 Statistical Consistency of Set-Membership

Estimator for Linear Systems

Learning-based control has seen a resurgence in the past few years [16, 166, 189, 1] because
of recent advances in system identification using machine learning and artificial intelligence.
When the system has unknown dynamics, it becomes paramount to identify the underlying
dynamics so that an appropriate controller can be computed in order to make the system
stable [156]. System identification has become a central field of research lying in between
control and statistics.

Here, we consider a fully observed switched autonomous linear system with bounded
process noise. Each linear system is unknown to us, but we control switching between
different linear dynamics. This departs from the existing literature on switched system
identification, where the switching control is fixed and must also be estimated [247, 99, 150].
Here, a control decision needs to be chosen together with the system identification. The
dynamics for a single system may have a mix of stable or unstable modes and repeated
eigenvalues. Identification can be done via estimation of the transition matrices [144, 231],
and identification of transition matrices for stable systems has been studied [156, 232, 31,
256].

The identification problem in our setup is particularly challenging because the switching
can cause stability/instability independent of the eigenvalues of each linear system [35]. The
study of system identification for unstable systems is not as prolific as work on the stable
case. Existing work for the unstable case of identification of a single linear system requires
strong assumptions on repeated eigenvalues in order to prove asymptotic convergence [147],
derive associated limiting distributions of the estimates of the model parameters [59, 60],
and in order to generalize the result to other classes of transition matrices [146, 184, 182].

Recent work [86, 230, 229, 190] has shown the difficulty of identification for unstable linear
systems when state observations are restricted to a single trajectory: Ordinary least squares
(OLS) is statistically inconsistent when the dynamics have repeated unstable dynamics [183,
195], and this causes poor estimation when the dynamics have unstable modes with close
eigenvalues. This can be partly overcome using instrumental variables, but this cannot
handle systems matrices with eigenvalues both inside and outside the unit circle [195].

The set-membership estimator [39, 165, 17] exploits boundedness of the noise vector. This
estimator has been studied in [73, 155] which provided a bounding ellipsoidal algorithm to
obtain consistent estimators. Our work is related to previous studies where such estimators
are applied, as in fault detection tests [47], regularized regression [32], robust estimation
[100, 239], and kernel-based methods [66]. The work in [191] provides a greedy algorithm
that uses a set-membership estimator to identify input-output models.

Our main contribution is to prove (strong) statistical consistency of the set-membership
estimator for switched linear autonomous systems, where measurements are not sequential
and the system modes may be unstable. In past work, either the measurements were assumed
to be sequential or statistical consistency was not proved. We use the idea behind Wald’s
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Theorem [249] to develop a novel consistency proof, in a way not done in other works [165,
32]; however, Wald’s Theorem itself does not apply to set-membership estimation, which
imposes one constraint for each measurement, and only holds for estimators that minimize
a lower semicontinuous loss.

To show a setting where the set-membership estimator is useful, we present a control
policy that uses this estimator on a switched linear system. Our policy is a greedy bandit
algorithm that uses the set-membership estimator to identify in finite-time the stable mode
of the linear system. Our analysis is similar to recent work on greedy bandits [86, 230]. The
key difference in our setting is the state observations for each controller are not sequential,
and so this means that OLS is not consistent for the matrix estimates in this setting.

Preliminaries and Problem Setup

Throughout this section, we use ‖·‖ to denote the spectral norm of a matrix, which is the
largest singular value of a matrix. We use the function ρ(A) to denote the spectral radius of
a matrix A. For a matrix A we let (A)ij denote the (ij)-element of A. For two sets A and
B, we denote their Minkowski sum by A⊕B. Furthermore, the volume of set A is vol(A).

For matrix A ∈ Rd×d, let v(A) ∈ Rd
2

be a vectorization that stacks elements of A into a
vector. For vector u ∈ Rd

2
, let m(u) ∈ Rd×d be a matricization that folds elements of u into

a matrix. We assume that m ◦ v(A) = A and v ◦m(u) = u. Let R+ = R+ ∪ {+∞} be the
extended nonnegative real line. A function f : D → R is lower semicontinuous (lsc) at x if
and only if lim infx→x f(x) ≥ f(x).

Next, we construct a compactification of Rn by defining An = Sn−1 × R+, which directly
compactifies Sn−1 × R+. Note An can be shown to be equivalent to the cosmic closure of
Rn, as defined in [214]. To see why An is a compactification, note we can think of the
Sn−1 = {v ∈ Rn : ‖v‖2 = 1} component as a direction of a vector and the R+ component as a
length of the vector. Thus our idea is to formally use {λv : (v, λ) ∈ An} as a compactification
of Rn. We define the expectation E[·]. For a given probability event G, we let IG ∈ {0, 1} be
an indicator random variable associated with the event G. We use a.s. to denote “almost
surely”, and we use i.i.d. to denote “independent and identically distributed”.

Consider a fully observed switched linear system

Xt+1 = AαtXt + wt (3.129)

where Xt ∈ Rd is the state, wt ∈ Rd is the i.i.d. process noise, and αt ∈ {1, ..., q} is the control
input that selects one of the (unknown to us) state dynamics matrices A1, ..., Aq. We assume
wt lies in a (known to us) compact, convex set W ⊂ Rd that has a strict interior. Also, the
wt has a (potentially unknown to us) p.d.f wt ∼ f(w), where E[wt] = 0 and f(w) > 0 for all
w ∈W; this assumption is mild for set-based estimation [17] and ensures the existence of a
nonzero lower bound on the p.d.f.

Our goal is to estimate the matrices A1, ..., Ap, and we consider the situation where a
subset of the matrices is unstable. In practical control applications, it is important to be able
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to precisely characterize the dynamics of each matrix so as to be able to design a stabilizing
controller. Moreover, we wish to do the estimation without resetting the system (i.e., using
a single state trajectory) and be able to do so given any arbitrary switching control input
sequence {αt}t≥0.

Given an arbitrary (known to us) sequence of switching control inputs {α0, ..., αT−1} of
length T , we collect the state measurements {x0, x1, ..., xT}. In order for the problem to
be well-posed, we assume each linear system is selected at least d times. Notationally, we
organize measurements into groups where measurement pairs from the same linear system
are grouped together: For each system p, we define the sequence of measurement pairs
{(Y (p)

i , X
(p)
i )}np

i=1, where np is the number of measurement pairs associated with system p. It

is essential to note that for any p, a pair (Y
(p)
i , X

(p)
i ) is composed of successive observations

of the system
Y

(p)
i = ApX

(p)
i + wi. (3.130)

Note {(Y (p)
i , X

(p)
i )}np

i=1 are generally not successive since X
(p)
i+1, Y

(p)
i are usually not the same

because there may be an arbitrary number of switches between observations. Past consis-
tency proofs for unstable systems (see for instance [146]) require sequential measurements:
These proofs separate the state dynamics into stable and unstable modes and then invert
the unstable modes so that all the necessary quantities in the proof remain finite. When
there is arbitrary switching, it is no longer possible to separate stable and unstable modes.

Proposed Estimator and Consistency Proof

Nonsequential observations makes system identification more challenging than estima-
tion of autoregressive models. One naive approach is to use OLS for each group of data.
This approach is inconsistent for general A matrices [183, 195], specifically A with multiple
geometric roots in the eigenvalue structure of the unstable matrix. Here, we provide an
estimator that uses the boundedness of the disturbance vectors to overcome past issues. We
prove consistency by adapting a celebrated argument by Wald [249], which is substantially
different than typical analysis [86, 230, 229].

Set-Membership Estimator

We focus our analysis on a single group p, and so we drop the superscript for ease of
notation. Let {(Yi, Xi)}ni=1 be our sequence of measurements We let the associated true
dynamics matrix Ap be labeled as A0. Hence it follows that

Yi = A0Xi + wi, for i ∈ {1, ..., n}. (3.131)

Once again, we note the measurements pairs (Yi, Xi) and (Yi+1, Xi+1) are neither independent
nor consecutive (in time) for any i, in general. We propose to estimate A0 by the minimizer
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to

Â ∈ arg min
A∈Rd×d

1

n

n∑
i=1

l(Xi, Yi, A)

s.t. Yi − AXi ∈W, for i ∈ {1, ..., n}
(3.132)

where l(·) is a loss function. For example, we may choose l(Xi, Yi, A) = ‖Yi−AXi‖2
2. Observe

that when l(·) ≡ 0 this simply becomes a feasibility problem. We will first prove consistency
of the feasibility version of this problem, which will imply consistency for well-behaved loss
functions.

This is a set-membership estimator and has been studied from the deterministic perspec-
tive [39, 165]. It uses the a priori knowledge that process noise belongs to a compact convex
set, in order to enforce constraints associated with each measurement pair. Here, we prove
statistical consistency for this estimator when applied to this general setting of nonsequential
and non-independent sequence of measurements pairs. In particular, by compactifying the
domain of the optimization problem we are able to analyze the estimator by considering the
statistics at only a finite number of points.

Local Identifiability of Problem Setup

We begin by explicitly writing the feasibility version of the estimation but over a com-
pactified domain:

Â ∈ arg min
A

1

n

n∑
i=1

δW(Yi − AXi)

s.t. A ∈ {λ ·m(v) : (v, λ) ∈ Ad2}
(3.133)

where we define δW : Rn → R to be the indicator

δW(u) =

{
0, if u ∈W

+∞, otherwise
(3.134)

As discussed in the next subsection, this compactification is required for the proof technique
we use. For notation, let L(Xi, Yi, A) = δW(Yi − AXi). We also need to specify arithmetic
[214] for points (v,+∞) ∈ Ad2 . For any (X,Y ) and A ∈ {λ ·m(v) : (v, λ) ∈ Sd

2−1×{+∞}},
define

L(X,Y ,A) = lim inf
(X,Y,A)→(X,Y ,A)

L(X, Y,A). (3.135)

Next, for each subset S ⊆ Ad2 we define

h(X, Y, S) = inf L(X, Y,A)

s.t. A ∈ {λ ·m(v) : (v, λ) ∈ S}
(3.136)

We begin by characterizing the function L(X, Y,A).
Lemma 3.3.1. Function L(X, Y,A) is lower semicontinuous.
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Proof. Fix (X,Y ) and choose A ∈ Rd×d. The function Y − AX is continuous, and δW(u) is
lower semicontinuous [214]. Thus L(·) is lower semicontinuous at (X,Y ,A) since

L(X, Y,A) = δW ◦ (Y − AX). (3.137)

Next fix (X,Y ) and choose any A ∈ {λ·m(v) : (v, λ) ∈ Sd
2−1×{+∞}}. Lower semicontinuity

holds at this point by the definition (3.135).

Next define the extended real-valued function

V (A) =

{
0, if A = A0

+∞, otherwise
(3.138)

and define E(S) = inf(v,λ)∈S V (λ ·m(v)). Proving statistical consistency requires verifying
that some identifiability condition holds [43], which means the underlying distributions are
such that incorrect estimates are detected by measurements. If we define the mapping

Bn(A) =
1

n

n∑
i=1

L(Xi, Yi, A)

Hn(S) =
1

n

n∑
i=1

h(Xi, Yi, S)

(3.139)

then we can prove a local identifiability condition holds.

Proposition 3.3.2. For any A there is an open neighborhood O(v, λ) ⊂ Ad2, where (v, λ) ∈
Ad2 satisfies A = λ ·m(v), such that limn→∞Hn(O(v, λ)) = E(O(v, λ)) a.s.

Proof. Let (v0, λ0) ∈ Ad2 be such that λ0 · m(v0) = A0. Then h(Xi, Yi, O(v0, λ0)) ≡ 0 for
any open neighborhood O(v0, λ0). This means that we immediately get that

lim
n→∞

Hn(O(v0, λ0)) = 0 = E(O(v0, λ0)) a.s. (3.140)

Now consider any A 6= A0, and let ti be the time of measurement i for i ≥ 2. Note
Yi − AXi = (A0 − A)Xti + wti , and Xti = Aαti−1Xti−1 + wti−1. Thus

Yi − AXi = (A0 − A)(Aαti−1Xti−1 + wti−1) + wti . (3.141)

Let κ = minw∈W f(w), and note κ > 0. The distribution of Yi − AXi has support W ⊕
(A0 − A)W⊕ Zi for Zi = (A0 − A)Aαti−1Xti−1. The key observation is that ⊕Zi translates

the set W ⊕ (A0 − A)W. Let N = {(u, v) ∈ Rd × Rd : u + (A0 − A)v = 0}, and define
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V(S) = (S⊕N) ∩ (W×W). Thus we have

P[L(Xi, Yi, A) = +∞|T ] =

∫
x

P[L(Xi, Yi, A) = +∞|Xti−1 = x, T ]g(x)dx ≥∫
x

[ ∫
(u,v)∈Vi(A)

κ2dudv

]
g(x)dx ≥

∫
x

[ ∫
(u,v)∈V(J(A))

κ2dudv

]
g(x)dx ≥∫

(u,v)∈V(J(A))

κ2dudv := c(A) (3.142)

for any event T independent of (wt−1, wt), where

Vi(A) = {(u, v) ∈W×W : u+ (A0 − A)v + Zi /∈W} (3.143)

and

J(A) ∈ arg min
S⊆W×W

{vol(V(S)) | vol(
[
I (A0 − A)

]
S) = vol(W⊕ (A0 − A)W)− vol(W)}

(3.144)
and g(·) is the p.d.f. of Xti−1 conditioned on T . Now define

B′n(A) =
1

n/2− 1

n/2∑
k=2

L(X2k−1, Y2k−1, A) (3.145)

and note that by construction (wt2k−1, wt2k) is independent of all (X2k′−1, Y2k′−1) for
k′ < k. Thus for n ≥ 2 we have

P(Bn(A) = 0) ≤ P(B′n(A) = 0) =

P[L(X2bn/2c−1, Y2bn/2c−1, A) = 0|B′n−1(A) = 0]× P(B′n−1(A) = 0) ≤
(1− c(A)) · P(B′n−1(A) = 0) ≤ . . . ≤ (1− c(A))bn/2c−1 (3.146)

Noting vol(W ⊕ (A0 − A)W) > vol(W), since A 6= A0 and W has a strict interior, then
Fredholm’s theorm for linear algebra implies vol(V(J(A))) > 0. Hence c(A) > 0 and∑∞

n=2(1 − c(A))bn/2c−1 < +∞. Thus the Borel-Cantelli lemma implies Bn(A) = 0 only
finitely often. This proves limn→∞Bn(A) = V (A) = +∞ a.s.

Consider the same A 6= A0, and define (v, λ) so λ · m(v) = A. Then for an open
neighborhood O(v, λ) we have Z(v, λ) = ∩(u,µ)∈O(v,λ)V(J(µ ·m(u))) and

P[h(Xi, Yi, O(v, λ)) = +∞|T ] ≥
∫

(u,v)∈Z(v,λ)

κ2dudv := d(O(v, λ)). (3.147)

By the Monotone Convergence Theorem, the open neighborhood O(v, λ) can be chosen so
(v0, λ0) /∈ O(v, λ) and so d(O(v, λ)) > 0. By a similar argument as before we have that
P(Hn(O(v, λ)) = 0) ≤ (1− d(A))bn/2c−1. So since

∑∞
n=2(1− d(A))bn/2c−1 < +∞, the Borel-

Cantelli lemma implies Hn(O(v, λ)) = 0 only finitely often. This proves that

lim
n→∞

Hn(O(v, λ)) = E(O(v, λ)) = +∞ a.s. (3.148)
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The above proposition establishes a local identifiability condition for our setup, namely a
setting with nonsequential measurements and linear dynamics. The key intuition is that for
any matrix A the sample average Hn(·) converges to its “expectation” E(·) on some open
neighborhood of A.

Strong Statistical Consistency

We are now in a position to prove our main theorem, which adapts the argument from the
classical Wald Consistency Theorem [249] and relies on the compactification of the feasible
region. To understand the intuiton of why we compactify, recall that one definition of a
compact set is a set where each of its open covers has a finite subcover. This is important
for proving statistical consistency because, when parameters being estimated belong to a
compact set, it allows us to perform an analysis only at a finite number of points in order
to understand the global behavior. Compactification is important because it enables us to
exploit this insight.
Theorem 3.3.3. The feasibility estimator (3.133) is strongly consistent, meaning

lim
n→∞

Â = A0 a.s. (3.149)

or equivalently that P(limn→∞ Â = A0) = 1.

Proof. Fix an open neighborhood U around the matrix A0. Because A0 ∈ Rd×d, the set U
can be represented as U = {λ ·m(v) : (v, λ) ∈ S} for some S ⊂ Sd

2−1 × R+. Recalling the
definition of V (·), we know there exists ε > 0 such that V (A) ≥ 3ε + V (A0) for A ∈ C(S),
where

C(S) = {λ ·m(v) : (v, λ) ∈ Ad2 \ S}. (3.150)

For the next step, consider any fixed point (v, λ) in Ad2 \S. Let {Nk(v, λ)}k≥1 be a sequence
of open balls that shrink to (v, λ) as k → ∞. Since L(X, Y,A) is lower semicontinuous, it
follows from the definition of h(·) that limk→∞ h(X, Y,Nk(v, λ)) = L(X, Y, λ ·m(v)). Since
A ∈ Ad2 \ S, the Monotone Convergence Theorem says there is an open neighborhood
N(v, λ) ⊆ O(v, λ) with

E(N(v, λ)) ≥ V (A)− ε ≥ V (A0) + 2ε. (3.151)

Now, since Ad2 \S has been compactified then by one definition of a compact set there exists
a finite subcover B1, . . . ,Bz of neighborhoods N(v, λ) centered around (v1, λ1), . . . , (vz, λz).
This means Ad2 \ S ⊆

⋃z
k=1 Bk, and

e inf
A∈C(S)

Bn(A) ≥ min
k

1

n

n∑
i=1

h(Xi, Yi,Bk). (3.152)

Using Proposition 3.3.2 with (3.151) and (3.152) implies

lim
n→∞

inf
A∈C(S)

Bn(A) ≥ V (A0) + 2ε a.s. (3.153)
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By definition of (3.133) and Bn(·), Â minimizes Bn(·); hence, for almost all sample paths ω
it follows that there exists N such that for all n > N we have

Bn(Â) ≤ Bn(A0) < V (A0) + ε < inf
A∈C(S)

Bn(A). (3.154)

This implies that Â ∈ U for all n > N . We complete the proof by letting the neighborhood
U shrink to {A0}.

The above theorem proves consistency of the feasibility estimator (3.133). Consistency
of the general estimator (3.132) follows as a direct corollary for well-behaved loss functions.

Corollary 3.3.4. Suppose the loss function l(X, Y,A) is continuous. Then the general esti-

mator (3.132) is strongly consistent, meaning limn→∞ Â = A0 a.s..

Proof. Since l(X, Y,A) is continuous, any A feasible for (3.132) is feasible for (3.133). Also,
A0 is feasible for (3.132).

3.4 Numerical Experiments: Set-membership

estimator

We demonstrate consistency of our estimator (3.132) through two experiments. The first
compares (3.132) to OLS on identification for a dynamics matrix where OLS is inconsistent.
The second uses (3.132) to construct a switching control policy that identifies the stable
mode of a switched linear system.

Comparison to OLS

Our first numerical experiment uses a single (i.e., no switching) state dynamics matrix
that is given by

A2 =


0 1.1 0 0
1.1 0 0 0
0 0 1.1 0
0 0 0 1.1

 (3.155)

This matrix is unstable since it has ρ(A2) = 1.1. Moreover, the eigenvalue 1.1 has a geometric
multiplicity of three. This means OLS is inconsistent when estimating A2 from Xt even in
the absence of switching [183, 195]. In contrast, our estimator (3.132) is consistent by
Corollary 3.3.4. This is verified by Fig. 3.5, which shows results of a simulation with
process noise that has uniform distribution with support W = [−1, 1]4. The estimation
error of OLS remains nonzero, whereas the estimation error of (3.132) using the loss function
l(Xi, Yi, A) = ‖Yi − AXi‖2

2 rapidly converges towards zero.



CHAPTER 3. SWITCHING IN CYBER-PHYSICAL SYSTEMS: FINITE-TIME
CONSISTENCY TESTS AND ESTIMATION 66

0 20 40 60 80 100

10-10

100

OLS

Estimator (6)

Figure 3.5: Estimation Error From Trajectory by A2 Without Switching

Greedy Bandit Policy

We next consider the setup in the beginning of this section, constrained so that there
exists s ∈ {1, . . . , q} with ρ(As) < 1 and ρ(Ap) > 1 for all p ∈ {1, . . . , q} \ {s}. We
specifically exclude the case ρ(Ap) = 1. Though (3.132) is consistent when ρ(Ap) = 1, the
policy we construct requires this assumption. We construct a policy that inputs the sequence
X0, . . . , Xt and α0, . . . , αt−1 and chooses a control action αt ∈ {1, . . . , q} that identifies the
stable mode while maintaining stability of the closed-loop system. This problem can be
interpreted as a multi-armed bandit [148, 2, 168], which involves a tradeoff between choices
that: explore to learn more about the relevant distributions, and exploit by choosing the
optimal (according to current estimates) actions. However, under specific assumptions a
greedy algorithm can be (asymptotically) optimal [105, 164].

Our procedure is Algorithm 3, and we use the loss function l(Xi, Yi, A) = ‖Yi−AXi‖2
2 for

(3.132). We wish to identify the stable dynamics in finite time, because then the system can
be brought to a stochastic equilibrium by selecting only the stable dynamics. The key idea
is to use our estimator, which is consistent for all possible structures of A, once we group
measurements as discussed previously. Note this algorithm greedily selects an arm with
estimated spectral radius strictly smaller than 1. If at any given time t, no such arm exists,
then we randomly select an arm and update the estimates. We can prove this algorithm
maintains closed-loop stability:



CHAPTER 3. SWITCHING IN CYBER-PHYSICAL SYSTEMS: FINITE-TIME
CONSISTENCY TESTS AND ESTIMATION 67

Algorithm 3 Greedy Bandit Algorithm

Input: set {1, ..., q} of candidate systems. initial state X0

1: for systems p ∈ {1, ..., q}: do
2: select system p
3: obtain new measurement X

(p)
(1)

4: set np ← 1

5: compute estimate Âp using (3.132)

6: compute estimate of spectral radius: ρ̂p = ρ(Âp)
7: end for
8: for each time instant t > q: do
9: if minp{ρ̂p} ≥ 1 then
10: randomly select a system p
11: obtain new measurement X

(p)
(np+1)

12: set np ← np + 1

13: compute estimate Âp using (3.132)

14: compute estimate of spectral radius: ρ̂p = ρ(Âp)
15: else
16: select any system p such that ρ̂p < 1.

17: obtain new measurement X
(p)
(np+1)

18: set np ← np + 1

19: compute estimate Âp using (3.132)

20: compute estimate of spectral radius: ρ̂p = ρ(Âp)
21: end if
22: end for

Proposition 3.4.1. Algorithm 3 chooses the dynamics matrix As infinitely many times and
chooses the dynamics matrices Ap for p ∈ {1, . . . , q} \ {s} only finitely many times.

Proof. We prove this by contradiction. Suppose there is a p ∈ {1, . . . , q} \ {s} such that the
unstable dynamics Ap is chosen infinitely many times. Since spectral radius is a continuous
function [138], combining the Continuous Mapping Theorem [43, 17] with Corollary 3.3.4
implies limn→∞ ρ̂p = ρp > 1 a.s.; hence ρ̂p < 1 only finitely many times. Thus by construction
of the algorithm, this means Ap can be chosen by line 16 of the algorithm only finitely
many times. So if Ap is chosen infinitely often, this means it must be chosen by line 10
infinitely often. However, if this occurs then we must have that ρ̂s > 1 infinitely often.
However, again combining the Continuous Mapping Theorem with Corollary 3.3.4 implies
limn→∞ ρ̂s = ρs < 1 a.s. This is a contradiction.

We conducted a numerical simulation to demonstrate the stabilizing behavior of our
Algorithm 3. In the scenario we simulated, the process noise had a uniform distribution
with support W = [−1, 1]4. In addition to A2 as defined in (3.155), we used the state
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dynamics matrices

A1 =


0.76 0 1.6 1.6
0 0.78 0 1.6
0 0 0.79 0
0 0 0 0.79

 (3.156)

A3 =


0.91 0.7 0 0
0.7 0 0 0
0 0 0.28 0
0 0 0 1.05

 (3.157)

A4 =


0 0 0.98 0
0 0 0 0.77
0.98 0 0.56 0
0 0.84 0 0.14

 (3.158)

Note ρ(Ā1) = 0.7900, ρ(Ā2) = 1.1000, ρ(Ā3) = 1.2899, and ρ(Ā4) = 1.2992. This means A1

is Schur stable while the other matrices A2, A3, A4 are not Schur stable. However, ‖Ā1‖ =
2.9136, whereas ‖Ā2‖ = 1.1000, ‖Ā3‖ = 1.2899, and ‖Ā4‖ = 1.2992. This shows the
importance of working with the spectral radius rather than using the spectral norm.

Numerical results of one simulation run are shown in Figures3.6-3.8. Our other simulation
runs had behavior that was qualitatively similar to the results we present here. At the
beginning, the algorithm tries different arms. After a certain amount of tries of the different
arms, the algorithm is able to identify which arm corresponds to the stabilizing mode. When
the algorithm is trying different arms, the state grows at an exponential rate; however, once
the stabilizing arm is found then the state fluctuates about the origin because of the process
noise and the stabilizing action of that arm.
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Figure 3.6: Estimation Error Using Our Estimator (3.132)
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Chapter 4

Detection Algorithm in Competitive
Environments

In this chapter we study another type of inference problem that ties hypothesis testing
and decision making analysis. In particular we consider a Cyber-Physical System (CPS)
where agent’s are strategic and can behave selfishly to detriment of the whole system. We
also study the opposite problem, where agents who are supposed to be competitive, are in
fact colluding.

In section 4.1 we study the latter problem first. We consider a platform where agent’s
interact and we focus on the question how can we detect whether the agents are competing
or colluding. The problem is particularly challenging when agent’s do not have complete
information on their environment and even when competing agent’s may not behave exactly
according to some equilibrium concept. Our analysis focus in establishing and proving the
efficacy of hypothesis testing in this type of problems.

On section 4.2 we provide a computational case study that illustrate our proposed hy-
pothesis testing methodology in a special type of Bertrand-type environment. In this setting,
agents are utility-maximizing and competitive, making decisions that jointly affect their en-
vironment, for example, by setting prices of items, which in turn jointly affect the overall
demand. A regulator, with no knowledge of the agent’s utility function, has access only to
the agents’ strategies (i.e., pricing decisions) and external shock values in order to decide if
agents are behaving in competition according to some equilibrium problem. We leverage the
formulation of such a problem as an inverse variational inequality and design a hypothesis
test under a minimal set of assumptions.

On the following section, 4.3, we study the former problem: agent’s who should be
cooperating are in fact competing. Instead of a hypothesis testing framework, we provide a
Mechanism Design framework that is able to provide appropriate incentives to the agent’s
in order to induce an efficient solution as a Nash Equilibrium of a particular game. In this
setting, only the coordinating platform applies control inputs, however, it must do so based
on information provided by the agents. One major challenge is that if the platform is not
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correctly designed then the agents may provide false information to the coordinator in order
to achieve improved outcomes for themselves at the expense of the overall system efficiency.
Here, we design an interaction mechanism between the agents and the coordinator such that
the mechanism: ensures agents truthfully report their information, has low communication
requirements, and leads to a control action that achieves efficiency by achieving a Nash
equilibrium. We illustrate our proposed mechanism in a model predictive control (MPC)
application involving heating, ventilation, air-conditioning (HVAC) control by a building
manager of an apartment building on section 4.4.

4.1 Hypothesis Testing Approach to Detecting

Collusion in Competitive Environments

There is growing concern about the possibility for tacit collusion using algorithmic pric-
ing, and regulators need tools to help detect the possibility of such collusion. Algorithmic
pricing [55, 65] is increasingly used in many cyber-physical domains due to the growth of
internet sales channels, but there is concern that the use of such algorithms will lead to tacit
collusion that harms consumers [221, 84, 62, 61]. The current situation is unique in that,
though it poses challenges for regulators because of the difficulty in detecting tacit collusion
by algorithms, there is a large amount of real-time pricing and purchase data available for
analysis by regulators. On this section we attempt to answer this pressing issue, where de-
tection algorithm need to be implemented to detect irregularities not from external attackers
(Chapter 1), but from the agent’s behaviors themselves. As the focal case study, we apply
our methodology to a type of Bertrand competition game, where agent’s interact via some
platform by setting prices. Our results are a initial step towards answering the question of
how a regulator may be able to detect algorithmic collusion from a large corpus of pricing
and purchase data.

The most closely related literature comes from economics and looks at collusion within
auction bidding [198, 30, 194, 28]. One line of work [198, 194] conducts a statistical analysis
of bidding data from situations where collusion is known to have occurred, and their results
find that collusion (relative to competitive bidding) leads to less aggressive bidding, higher
prices for consumers, and increased correlation in bids. Another line of work [198, 30, 28]
uses econometrics to detect collusion, and is derived using analyses that assume (perfect)
equilibrium behavior. However, assuming perfect equilibrium behavior is too stringent and
so these approaches generally lead to too many false positives when trying to detect collu-
sion. Such an assumption is too strong because it requires no model mismatch between the
econometrics method and the bidders, and it requires bidders to be exactly accurate in the
optimality of their bids.

The significant difference in our work is that we allow the agents to not be in perfect
equilibrium. Instead, we presuppose that agents typically choose actions close (but not
exactly equal) to equilibrium but that they will also occasionally choose actions far from
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equilibrium. This weaker assumption partially mitigates model mismatch because it does
not require any data without collusion to exactly match the equilibrium, and it also eliminates
the need for agents to be exactly accurate in the optimality of their strategies. These ideas
will be made more precise when we present our mathematical model.

Estimation in Equilibrium Models and Coalition Detection

Many competitive and cooperative environments where agents interact can be analyzed
using equilibrium models, where solution concepts such as the Nash equilibrium are com-
monly used to study the agents’ strategic behavior [179, 89]. Those models typically contain
primitives – such as agents’ private information, utility functions, and strategy spaces – that
often are not known to an outside regulator or designer who then needs to estimate those
elements in order to, for example, design a mechanism of interaction in order to induce a
particular behavior or outcome. Throughout this paper we use strategy space and action
space interchangeably. A common goal in the mechanism design literature is to precisely
design such systems where the induced equilibrium maximizes social welfare [139], and a well
known example is the VCG-mechanism [246, 67, 115].

However, the estimation of such primitives in equilibrium problems is quite challenging.
In this work, we will only consider the case where the agents’ actions are observed by the
regulator and their strategy spaces are known. Hence the estimation problem lies solely
on the agents’ utility functions and personal information. One line of work is of structural
estimation methods [11, 27, 217], which seeks to estimate parametric utility functions by
observing agents acting in equilibrium. In those approaches, it is common to assume a
“ground-truth” form of the utility function, and the methods derive necessary conditions
based on constrained optimization in order to formally derive estimators of the parameters.
Another related line of work is of using surrogate methods [254, 137, 87] that, while not
strictly estimation methods, elicit information from the agents themselves about sensitivities
over strategies (that is about derivatives of their utility functions with respect to strategies)
by providing the agents with a common surrogate function. Those methods are able to
induce the appropriate equilibrium behavior even though the agents’ utility functions are
not known.

Lastly, the estimation problem can be formulated as an inverse variational inequality
problem [119, 40]. Such methods leverage the fact that equilibrium problems are a special
case of variational inequalities, in order to pose an inverse optimization problem [9] where
the solutions (i.e., the equilibrium strategies) are provided via samples, and the goal is to
estimate the problem’s parameters that generate such solutions. This approach is powerful
as it does not require a “ground-truth” model, and under some technical conditions are
shown to produce good approximate equilibrium behavior even when the parametric form of
the utility functions is misspecified. However, these methods based on inverse optimization
can encounter difficulties when the data gathered is noisy [19, 18], which is what happens in
most applications.
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We build on the framework of [40]. However, we will not assume that the equilibrium ac-
tions are provided to the regulator via samples. Instead, we develop a method that given some
arbitrary samples of actions is able to identify whether these samples came from agents act-
ing in (approximate) equilibrium or not. Hence our work is more tied to coalition-detection
in equilibrium games, in the field of economics, and to hypothesis testing in statistics.

It is common to assume that agents behave in equilibrium, either in total cooperation or
in total competition; however this is not what is observed in several applications [37]. In fact,
agents often collude, exchange information, and form sub-groups – instead of cooperating as
a whole [233, 108]. This poses a serious problem in estimation methods, which often assume
the observed strategies come from an specific type of behavior (e.g., total cooperation or
competition). The work done in [219, 218] provides a formal characterization of coalitions in
games in a series of different environments and provides conditions where the establishment
or not of coalitions can be tested. However the problem of coalition formation can also
appear where agents play imperfectly and are learning the primitives of the environment
while acting on it. Work done by [153] gives evidence that when agents employ learning
algorithms in a competitive environment, such algorithms “learn” to implicitly collude, even
if collusion is not part of the agents’ plans.

In the following, we formulate the problem of identifying whether or not the observed
actions come from agents in total competition or not. Instead of identifying the coalition
itself based on structural properties of the game, we instead use a data-driven approach
where a Kolmogorov-Smirnov hypothesis test [162, 154] is used in order to accept or reject
the hypothesis that the strategies observed by the regulator come from agents in equilibrium.
This novel approach is powerful in the sense that is independent of the type of utility func-
tions considered and makes very mild assumptions on the a priori behavior of the agents,
leveraging both the variational inequality formulation and the power of hypothesis testing.

Problem Setting and Model Description

We start by describing the agents’ model under consideration and the estimation setting
that the regulator faces as it observes the actions taken by the agents. We also present our
hypothesis testing framework for detecting collusion.

We will focus on a setting where two agents are engaged in a Bertrand-type game, com-
peting over prices of certain items (e.g., products or airline tickets). In this scenario, we let
pi ∈ Rq be the price vectors of agent i ∈ {1, 2} over {1, ..., q} items. Throughout the paper,
we will utilize the terms prices and strategies interchangeably, as the strategy of each agent
consist solely on the prices over the items. We assume the strategy space of each agent is
denoted Pi and has the form

Pi = {p ∈ Rq : Ap = b, p ∈ K} (4.1)

where A is a m×q matrix, b is a m-vector, and K is a closed convex cone. Hence the strategy
space is a cone given in standard form. In addition, each agent has their own utility function

Ui(p1, p2, µ; θi) = piDi(p1, p2, µ; θi) (4.2)
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where Di(p1, p2, µ; θi) is the agent’s demand function, which depends on both price vectors
and is parametrized by the vector θi ∈ Rd, which we assume to be the private information of
each agent. Lastly, the demand function also depends on µ, which is a common shock value
disturbance that we assume to be a bounded disturbance with small magnitude (to be made
precise in next subsection). The goal of this shock vector is to represent uncertainties that
may affect the demand and are outside of the agents’ control.

The goal of each agent is to select a feasible price pi ∈ Pi such that its utility function is
maximized. We focus our analysis to the Nash equilibrium of the resulting game:

Definition 4.1.1. A strategy profile (p∗1, p
∗
2) is a Nash equilibrium if each agent plays the

“best-response” to the other, namely if

p∗i ∈ arg max
pi∈Pi

Ui(p1, p
∗
2, µ; θi), for i ∈ {1, 2} (4.3)

The (pure-strategy) Nash Equilibrium may not be an adequate solution concept for this
constrained environment of the Betrand-type game, as it may not exist [83]. However, we will
focus on the case where each agent plays imperfectly. Namely, we assume that before playing
the game, a gap value ε is sampled from a (known to the agents and regulator) parametric
distribution D(φ) with (unknown to the regulator but known to the agents) parameter φ.
Next, both agents pick a strategy vector (p1, p2) that is an ε-approximate Nash equilibrium
of the Bertrand game. To formalize this notion of approximate equilibrium, we will use the
characterization based on variational inequalities presented in [40].

Definition 4.1.2. Given a function f : Rq →: Rq and a non-empty set F ∈ Rq, the problem
of finding the point p∗ such that

f(p∗)>(p− p∗) ≥ 0, for p ∈ F (4.4)

is called the variational inequality problem V I(f,F).

It turns out that several problems can be formulated as variational inequalities (We refer
to [119] for an in-depth characterization). In particular, if we let F = P1 × P2 and we let

f(p) =

[
f1(p1, p2)
f2(p1, p2)

]
=

[
−∇1U1(p1, p2, µ; θ1)
−∇2U2(p1, p2, µ; θ2)

]
(4.5)

where ∇i is the gradient w.r.t. pi, then solving V I(f,F) from (4.4) is equivalent to finding
the Nash equilibrium (4.3). With this is mind, we can establish the following definition for
approximate Nash equilibrium:

Definition 4.1.3. A strategy profile (p̄1, p̄2) is an ε-approximate Nash equilibrium if and
only if

f(p̄)>(p− p̄) ≥ −ε, for p ∈ F . (4.6)
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It will suit our purposes to formulate the above approximate variational inequality prob-
lem as a (convex) optimization problem. This can be done under technical regularity condi-
tions that ensure constraint qualification holds (e.g., Slater’s condition).

Theorem 4.1.4. [40] Let F = P1 × P2, where Pi is given by (4.1), for i ∈ {1, 2}. Let
f be given by (4.5). If F satisfies constraint qualification (e.g., Slater’s condition), then a
strategy profile (p̄1, p̄2) is an ε-approximate Nash equilibrium if and only if

∃y1, y2 ∈ Rm :

{
A>i yi ≤C fi(p̄1, p̄2), for i ∈ {1, 2}∑2

i=1 fi(p̄1, p̄2)>p̄i − b>i yi ≤ ε
(4.7)

where we use the symbol “≤C” to denote conic inequalities.

Next we assume that given some ε ∼ D(φ), the agents solve the above feasibility problem
in order to select the prices. In particular, we assume that the agents solve the above problem
where the second inequality is replaced by an equality constraint – that is the selected
strategies satisfy condition (4.6) with equality. We will not focus on how such prices are
achieved, that is, how the agents learn to play the ε-approximate Nash Equilibrium strategies
(we refer to [153] for a discussion about learning in cooperative games). Instead, we will
focus on the following estimation problem faced by an external regulator: Given a sequence
of observed prices and shocks {(pj1, p

j
2, µ

j)}Nj=1, the regulator would like to ascertain whether
or not agents are playing according to ε-approximate Nash Equilibrium or not. In this setup,
the private information vectors (θ1, θ2) of each agent are so-called nuisance parameters for
the regulator (i.e., they require estimation even though they are not of primary interest).
To that end, the regulator will construct estimates (θ̂1, θ̂2) of the private information vectors
and residual estimates ε̂j for each observation tuple j ∈ {1, ..., N} by solving the inverse
variational problem given by

min
θ̂,y,ε̂

L(ε̂1, ..., ε̂N) (4.8)

s.t. A>i y
j
i ≤C fi(p

j
1, p

j
2), for i ∈ {1, 2}, j ∈ {1, ..., N} (4.9)

2∑
i=1

fi(p
j
1, p

j
2)>pji − b>i y

j
i = ε̂j, for j ∈ {1, ..., N} (4.10)

where L(ε̂1, ..., ε̂N) is some loss function over the residual estimates. We assumed that the
regulator knows the distribution D(φ), but does not know φ. Hence the loss function can
be written, for example, as the negative log-likelihood as a function of φ [225]. We note in
this optimization problem, the prices are given by our N samples, and we seek to select a
θ̂ such that the resulting utilities form an approximate Nash equilibrium for every sample
collected, where the computed ε̂j are our residual estimates of ε.

Lastly, in order to make a decision as to whether or not the observed prices are in approx-
imate Nash equilibrium, the regulator will formulate a hypothesis test over the computed
residuals.
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Hypothesis Testing Framework

In order to formalize the hypothesis testing framework, we begin by describing the tem-
poral sequence of events under consideration:

1. Both agents and regulator observe µ, the shock variable.

2. The agents solve the feasibility problem (4.7) for some ε ∼ D(φ). The strategies (p1, p2)
are selected to exactly be an ε-approximate Nash Equilibrium.

3. The regulator observes the strategies (p1, p2) and records it.

4. Steps 1-3 are repeated N times, on which the regulator collects the sample tuples
{(pj1, p

j
2, µ

j)}Nj=1.

5. The regulator solves the inverse variational problem (4.8) for some parametric utility
functions and computes the estimated residuals ε̂1, ..., ε̂N .

6. The regulator uses those residuals to perform a Kolmogorov-Smirnov test (to be defined
next).

We note that the regulator does not know the true utility functions of the agents. Im-
portantly, our approach is partially amenable to parametric form misspecification because
non-colluding agents are not required to be in perfect equilibrium. In other words, some
amount of the εj are meant to capture model misspecification.

Step 6 is conducted as follows: The regulator will use the computed estimated residuals
to perform a hypothesis test to determine if the ε̂1, ..., ε̂N come from the distribution D(φ).
However, even though the regulator knows the distribution’s parametric form, they do not
know the underlying parameter φ. Hence, hypothesis tests such as the standard Kolmogorov-
Smirnov test are not applicable since they require knowing the true underlying parameters
of the distribution under the null hypothesis. Therefore, we we will resort to the Lilliefors
variation of the Kolmogorov-Smirnov test [154]. We first compute the empirical cumulative
distribution function

F̂N(d) =
1

N

N∑
j=1

I(ε̂j ≤ d) (4.11)

where I(·) is an indicator function. Then the regulator computes some estimate φ̂ =
g(ε̂1, ..., ε̂N) and computes the cumulative distribution function

F̄N(d) = FD(φ̂)(d) (4.12)

where FD(φ̂)(d) is the cumulative distribution function of a random variable of distribution

D(φ̂). Lastly, the regulator computes the test statistic

D∗ = max
d
|F̂N(d)− F̄N(d)| (4.13)
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The null H0 and alternative H1 hypotheses for our test are

H :


H0 : The agents are behaving in an ε-approximate

equilibrium where ε ∼ D(φ)

H1 : Otherwise

(4.14)

And the decision of whether to accept or reject the null hypothesis is made using the decision-
rule {

reject H0 : if D∗ ≥ τ(N)

accept H0 : if D∗ < τ(N)
(4.15)

where τ(N) is some threshold from the Lilliefors variation of the Kolmogorov-Smirnov test
[154] and which is based on the number of samples collected and the desired significance
level α.

Primal-Dual Algorithm to Generate Approximate Equilibrium Prices

A key part of our numerical simulations is to generate prices that are ε-approximate
equilibrium. In the general case, we need to solve the variational inequality formulation in
4.7. That problem is hard to solve in general, but tailored algorithms do exist (we refer
to[103] for an overview of such methods). However, for our setting the feasible region P
contains only bounds on the prices. Hence the problem becomes to find prices (p1, p2) such
that

∃y1, y2 ≥ 0 :

{
yi ≥ Di(p1, p2.µ, θ̄i) + piθi,i, for i ∈ {1, 2}∑2

i=1 p̄yi − pi(Di(p1, p2.µ, θ̄i) + piθi,i) = ε
(4.16)

With that in mind, we are able to generate samples of (p1, p2) by designing an accepta-
tion/rejection of samples based on the shock values µ and nuisance parameters (η1, η2).
First, we sample µ and η1, η2 according to their specified distributions. Then we solve the
following system of nonlinear equations (via, for example, Newton’s Method):

piDi(p1, p2, µ, θ̄i) + (pi)
2θi,i =

−ε
2
, for i ∈ {1, 2}. (4.17)

After solving this system, if (p1, p2) ∈ P then it means they are ε-approximate solution to
the variational inequality problem (since we can set both y1 and y2 to zero), and we accept
the sample (p1, p2, µ). If p1 < 0 or p2 < 0, then we reject the sample. Now without loss of
generality, suppose that p1 > p̄. Then we can set p1 = p̄ and let y1 = D1(p̄, p2.µ, θ̄1) + p̄θ1,1.
Then by letting y2 = 0 we solve for p2

p2D2(p̄, p2, µ, θ̄i) + (p2)2θ2,2 = −ε. (4.18)

Lastly if p2 ≥ 0 and y1 ≤ 0, then we accept the sample (p1, p2, µ). In all other cases, we reject
the sample. With this simple method, we can generate sample prices that are ε-approximate
equilibrium. By repeating the above N times for each sampled εj, we can generate all the
samples necessary for the numerical simulation.
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4.2 Computational Experiments for Inverse

Hyposthesis Testing

We analyze the performance of our approach in a Bertrand competition environment.
We first detail the experiment setting and then proceed to the numerical experiments and
analysis. We showcase our method in a setting where two agents compete over a single item
and need to set their respective prices in the Bertrand-game environment. Each agent’s true
demand function has the following form:

D̄i(p1, p2, µ; θ̄i) = θ̄0,j +
2∑
j=1

pj θ̄i,j + θ̄i,3µ+ ηi (4.19)

where θ̄i is the agent’s private information vector, and we use the term ηi to encompass
unmodeled terms of the dynamics. Furthermore, we assume the set of feasible price vectors
belong to the polyhedral set

P = {(p1, p2) ∈ R2 : 0 ≤ p1 ≤ p̄, 0 ≤ p2 ≤ p̄} (4.20)

where p̄ is an upper-bound on each price. We consider the case where ε is drawn from an
exponential distribution ε ∼ exp(λ̄).

We assume that the regulator observes the shock µ but does not observe ηi. Hence, the
regulator forms the following demand estimate given some estimate θ̂:

Di(p1, p2, µ; θ̂) = θ̂0,j +
2∑
j=1

pj θ̂i,j + θ̂i,3µ (4.21)

Following the steps described in the previous section, the regulator collects the sample tuples
{(pj1, p

j
2, µ

j)}Nj=1 and forms the optimization problem (4.8) with the loss function L(ε̂1, ..., ε̂N)
being the negative log-likelihood of the underlying exponential distribution. Note that in
the negative log-likelihood the λ term is decoupled from the other terms because of the
particular mathematical form of the density of an exponential distribution. As a result, we
do not need to include λ in the inverse variational problem.

In order to make the presentation of the final optimization problem clear, we define the
marginal utility function for each agent (as considered by the regulator) to be

mi(p1, p2, µ; θ̂i) = pi
∂

∂pi
Di(p1, p2, µ; θi) + Di(p1, p2, µ; θi) = piθ̂i,i + θ̂0,j +

2∑
j=1

pj θ̂i,j + θ̂i,3µ.

(4.22)
In addition, we impose some structure to the fitted utility functions: (1) we normalize the
fitted utility functions; (2) we enforce that the marginal utilities of each agent decrease
as they increase their own prices (on the observed data); and (3) we enforce an additional
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constraint that sets the dual variable yji to zero if the observed price pji is strictly less than the
upper bound p̄. Recalling the definition of f(p) in (4.4), the optimization problem becomes

min
ε̂,y,θ1,θ2

N∑
j=1

ε̂j (4.23)

s.t. yji ≥ mi(p
j
1, p

j
2, µ

j, θ1), for i ∈ {1, 2}, j ∈ {1, ..., N} (4.24)

p̄

2∑
i=1

(yji )−
2∑
i=1

pjimi(p
j
1, p

j
2, µ

j, θi) = ε̂j, for j ∈ {1, ..., N} (4.25)

mi(1, 1, 0, θi) = mi(1, 1, 0, θ̄i), for i ∈ {1, 2} (4.26)

yji = 0, for i ∈ {1, 2}, j ∈ {1, ..., N} s.t. pji < p̄ (4.27)

θi,i ≤ 0, for i ∈ {1, 2} (4.28)

ε̂j ≥ 0, for j ∈ {1, ..., N} (4.29)

yj = (yj1, y
j
2) ≥ 0, for ∀j ∈ {1, ..., N} (4.30)

where (4.26) are the normalization constraints, in which the marginal utility of both agents
when there is no external shock and the prices are set to unity is equal to the true marginal
at that point. (Note we could have set these normalization constraints to any other suitable
positive value without affecting the results). Different normalization may yield different
models that can be used to explain the same observed data. This phenomenon is common
in inverse optimization problems, as discussed in detail in [40, 19].) Equation (4.28) ensures
that the fitted marginal functions decrease as the agents increase their own prices. (This
constraint is obtained after some arithmetic by requiring that m1(p1, ·, ·; θi) and m2(·, p2, ·; θi)
decrease as p1 and p2 increase, respectively, on the observed data.) The “dual” vector y is
associated with the constraints 4.20), and (4.29) ensures that if the the observed prices are
not on the boundary of the feasible region P then the associated dual variable is set to
zero. We note that (4.29) has a very subtle implication in the optimization problem above:
The very natural notion that dual variables are zero once their associated constraint is non-
binding is not enforced at all by the original formulation in (4.8). If the prices are sampled
in perfect Nash equilibrium (that is ε = 0), then as argued in [40] the formulation in (4.8) is
able to recover exactly the true parameters θi and the computed residuals are exactly zero.
However, in our scenario prices are obtained in approximate equilibrium (i.e., ε > 0). Hence
if complimentary slackness (4.29) is not enforced explicitly then the computed residuals will
present bias – namely they will be “shrunk” since the formulation (4.8) could achieve smaller
values for the residuals by setting the dual variables to be positive, even though the sampled
prices are in the interior of the feasible region.

Recall that the objective function follows from the negative log-likelihood of exponential
distribution, where we dropped the term N/λ since it does not impact the optimization.
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After solving the problem above, we compute the MLE estimate of λ

λ̂MLE =
N∑N
j=1 ε̂j

(4.31)

Then we let F̄N(d) be defined as

F̄N(d) = Fexp(λ̂MLE)(d) (4.32)

and conduct the Lilliefors hypothesis test (4.15). To illustrate the performance of the hy-
pothesis testing we will simulate the process under two scenarios:

Scenario 1: Agents are competing over prices, i.e.: they solve the feasibility
problem (4.7) after observing the shock variable µ and the value of ε.

Scenario 2: Agents are colluding, i.e.: instead of solving the feasibility problem
(4.7), they maximize the sum of both utility functions up to a ε optimality gap.

Hence for Scenario 2, prices are generated after solving the following optimization prob-
lem:

(pj1, p
j
2) = arg max

(p1,p2)∈P

2∑
i=1

piDi(p1, p2, θi, µj), for j ∈ {1, ..., N} (4.33)

In the next subsection, we present numerical simulations of these two scenarios and show
how the regulator rejects/does not reject the null hypothesis as the agents change their
behavior from competition to collusion.

Computational results

For the numerical simulations, we let λ̄ = 20. We chose θ̄1 = [10,−1, 0.5, 1] and
θ̄2 = [8, 0.4,−3.0, 1] to be the agents’ true private information vectors. The shock values
were generated according to N (5, 1), and we fix the upper-bound p̄ = 8.0 on the prices.
Furthermore, we fix our significance level α = 0.05. The threshold τ(N) for the hypothesis
testing is obtained by the table presented in [154]. Lastly, we let ηj for j = {1, 2} be sampled
from N (0, 1). For the first scenario, the approximate equilibrium prices need to be generated
by solving (4.7). That is hard problem in general, but in our test case we are able to generate
approximate equilibrium prices via a primal-dual algorithm described in the appendix. The
results for Scenario 1 are summarized in Table 4.1.

It can be observed that when agents are competing (i.e., acting under the specifications
of the null hypothesis), a false positive (i.e., decision of collusion occurring) was not seen in
the experiments. This is not surprising because we set α = 0.05 and each row in the table
corresponds to a single numerical experiment. If we were to run a large number of repeated
experiments, we would expect to see a close to α fraction of them report a false positive.
In addition, we can observe that we are able to recover the correct estimate of λ for the
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Table 4.1: Numerical Results for Scenario 1 (Competing)

N D∗ τ(N) λ̂ Decision

10 0.317 0.325 33.7 Competing
20 0.206 0.234 27.93 Competing
30 0.120 0.192 20.83 Competing
40 0.069 0.168 21.43 Competing
50 0.089 0.150 19.99 Competing
100 0.070 0.106 18.80 Competing
200 0.031 0.075 18.62 Competing
500 0.022 0.047 20.01 Competing
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Figure 4.1: Comparing CDF’s of Residuals For Scenario 1

underlying distribution generating the residuals. This is highlighted in Figure 4.1, where we
plot the ε′js samples from exp(20) and the computed residual estimates ε̂′js by the regulator
after solving the optimization problem, for sample size equal to 50.

Now for the second scenario, we generate the prices by solving an aggregate problem
where we sum both agents’ utilities in order to compute the prices. In Table 4.2, we can
see that the null hypothesis is rejected (i.e., decision of collusion occurring) for moderate
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Table 4.2: Numerical Results for Scenario 2 (Colluding)

N D∗ τ(N) λ̂ Decision

10 0.261 0.325 0.12 Competing
20 0.263 0.234 0.11 Colluding
30 0.222 0.192 0.22 Colluding
40 0.300 0.168 0.26 Colluding
50 0.301 0.150 0.22 Colluding
100 0.322 0.106 0.28 Colluding
200 0.301 0.075 0.30 Colluding
500 0.335 0.047 0.30 Colluding

and large sample sizes. In addition, the MLE estimate of λ̄ is inaccurate as well since the
agents are not behaving in approximate equilibrium. In Figure 4.2, for N = 50 we plot the
empirical CDF of residual estimates ε̂′js by the regulator in this scenario. We can observe
that when agents are cooperating instead of competing, the computed residuals are vastly
different then their true values (we omit plotting the true cdf of exp(20) since the computed
residuals are very large for this scenario). The null hypothesis that the agents are competing
in equilibrium is rejected for almost all sample sizes, indicating that our method is able
to identify when agents are not behaving in competition. We stress that rejecting the null
hypothesis is not proof that agents are colluding, but rather gives some statistical evidence
that suggests collusion is occurring.

4.3 Surrogate Optimal Control for Strategic

Multi-Agent Systems

On his section we study how to design a platform to optimally control constrained multi-
agent systems with a single coordinator and multiple strategic agents. Many systems have
dynamics influenced by agents, including power systems [245], communication networks [140],
water systems [180], and heating, ventilation, and air-conditioning (HVAC) automation [20].
These systems are characterized by information flows and the order of computations. For
cooperative agents, various distributed model predictive control (MPC) schemes have been
designed. A system-level control policy was obtained by aggregating locally-computed inputs
[88, 10], and central platforms that compute a control based upon information sent by agents
have also been designed [93].

Distributed control with strategic agents is less well-studied. The competitive nature
of agents and asymmetries of information reward tactical behavior, ultimately leading to
instability or poor performance [244, 212, 167, 136]. We focus our attention on the case
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Figure 4.2: Comparing CDF’s of Residuals For Scenario 2

where equilibrium behavior can be described as a Nash equilibrium of some non-cooperative
game [179] that may be inefficient [68]. A common way to overcome such inefficiencies is
to force agents to coordinate their goals with the system-wide goal [161], [152]. However,
this approach requires strong assumptions that the agents’ utility functions are common
knowledge and/or agents are honest when transmitting information [237]. Another line
of work [210, 72] provides pricing schemes to induce or manage agents’ behavior in the
equilibrium.

Low-dimensional communication in Mechanism Design

In this section, we study the case of strategic agents under weaker assumptions than
past work like [227, 237]. In particular, the agents exchange information only with a central
platform that is responsible for the control decision. Our goal is to design the interaction
mechanism to ensure not only efficiency of the resulting control policy but also honest re-
porting from the agents. Originally, the study of such mechanisms [139] was concerned with
the design of incentives to ensure efficient allocation of commodities amongst market par-
ticipants, whilst ensuring truthfulness. The classical VCG mechanisms [246, 67, 115] are
an example of such. Our first contribution lies in providing a mechanism that enjoy those
properties when applied to an optimal control setting.

A major hurdle in implementing such mechanisms is their steep communication needs
[254, 136, 87]. But, minimal strategy spaces that elicit efficient Nash equilibrium in convex
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environments have been developed [213]. A second contribution of our work is to provide
communication protocols that are of low complexity order: We avoid communicating the
entire utility function by the agents and instead resort to vector-valued messages inspired
by surrogate optimization [254], [137]. Hence, our goal in this paper is to provide a platform
where (i) agents provide low-dimensional information, (ii) agents are honest, and (iii) an
efficient control policy is implemented in the Nash equilibrium.

Lastly, we demonstrate the practical usefulness of our designed platform by conducting
a simulation analysis of HVAC automation [158]. The situation we consider involves an
apartment building where each apartment has its own preferences on desired room temper-
ature versus the amount of energy consumption. The thermal dynamics of each apartment
are coupled, and more efficient control is possible through coordination. Our simulations
quantify the performance improvement possible through the use of our central platform in
coordinating agents. In fact, this HVAC setup is similar to the setup in [72]. However, a
major difference is that in [72] the central platform knows each agents’ utility function and
can set prices on the control inputs to induce agents’ behavior. In contrast, we allow the
agents to be strategic with respect to how they communicate information about their utility
function to the central platform.

We first define the system model and the mechanism and how agents interact with it.
Next, we provide a Nash equilibrium characterization of the agents’ equilibrium behavior,
rigorously establishing the existence of the Equilibrium solution and how it can be obtained.

System Model

Consider a system which obeys linear dynamics

xk+1 = Axk +Buk (4.34)

where xk ∈ Rn is the state vector, and uk ∈ Rm is the input signal. Suppose this system
is composed of I interconnected and non-overlapping subsystems that are each associated
to an agent. Let [I] denote the set {0, ..., I}. We let x

(i)
k ∈ Rni denote the state vector of

subsystem i at period k. Then we have xk = (x
(1)
k , ..., x

(I)
k ) and

∑I
i=1 ni = n. In addition, we

can also partition the inputs where u
(i)
k ∈ Rmi . Note it follows that uk = (u

(1)
k , ..., u

(I)
k ) and∑I

i=1mi = m.
The diagonal block Aii of A gives the subsystem dynamics for the i-th agent. Influence

by other agents is described by off-diagonal blocks Aij of A when subsystem j impacts i.
We assume agent i’s input only affects states in their subsystem; hence, the input matrix
B = diag(B1, ..., BI) is block-diagonal. Let Ni be the set of neighboring subsystems of
subsystem i. Then the dynamics for the i-th subsystem is

x
(i)
k+1 = Aiix

(i)
k +Biu

(i)
k +

∑
j∈Ni

Aijx
(j)
k . (4.35)

So we recover Eq.(4.34) by stacking Eq.(4.35) for all agents. We assume each agent only

knows their own local dynamics Aii and Bi. Since agents do not know the
∑

j∈Ni
Aijx

(j)
k
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part of their dynamics, a central platform is needed through which each agent can receive
this information.

Each subsystem has state Xi = {G(i)
x x(i) ≤ g

(i)
x } and input constraints Ui = {G(i)

u u(i) ≤
g

(i)
u } that are polytopes containing the origin. Here, {G(i)

x , G
(i)
u }Ii=1, {g

(i)
x , g

(i)
u }Ii=1 are matrices

and vectors with appropriate dimensions, respectively. Lastly, each agent i has their own
cost function

Vi(x
(i), u(i))) = gi(x

(i)
T ) +

T−1∑
k=0

li(x
(i)
k , u

(i)
k ) (4.36)

where li(·, ·) and gi(·) are stage and terminal costs, and T is control horizon. We assume
each agent’s stage and terminal costs are strictly convex, differentiable, and take their min-
imum at the origin. The cost function is the agents private information, and their goal is to
minimize it. Next we define the Principal, which is the plataform/regulator with which the
agents interact and communicate.

Principal Model

The central platform is operated by a coordinator that we call the principal. We assume
the principal has complete knowledge about the dynamics of the system (i.e., matrices A and
B) and constraints (i.e., the sets Xi,Ui,∀i ∈ [I]), and importantly the principal is who gets
to apply a control input to the entire system (restated, the agents do not directly provide
control inputs). In this framework, if the principal knew the objective function of each agent,
then they could compute a control sequence by solving the following convex optimal control
problem (OCP-T):

min
x,u

∑M
i=1(gi(x

(i)
T ) +

∑T−1
k=0 li(x

(i)
k , u

(i)
k ))

s.t. xk+1 = Axk +Buk, ∀k ∈ [T − 1]

x
(i)
k ∈ Xi, u

(i)
k ∈ Ui, ∀i ∈ [I], k ∈ [T ]

x
(i)
0 = x̄

(i)
0 , ∀i ∈ [I]

(4.37)

Throughout the paper we let (x∗, u∗) denote the optimal solution of (OCP-T), which we
call the efficient trajectory. However, solving this problem is not possible for the principal,
since it does not know the objective functions of each agent. It then needs to elicit infor-
mation from each agent. The need of information gives birth to two major issues, which are
the central focus of this work: (1) The agents may not be able/not desire to transmit their
entire cost functions to the principal, as each cost function is infinite-dimensional and their
private information; (2) The agents are strategic and may not tell the truth. Therefore in
order for the principal to solve (OCP-T) it also needs to design a mechanism that provides
incentives to each agent to tell the truth. Hence, the principal is faced with both an optimal
control problem and a mechanism design problem.
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Mechanism Specification

As described in the previous section, the principal’s goal is to solve (OCP-T). Towards
that goal, the principal resorts to approximate the objective function based on a finite
number of parameters that the agents can report, and then the principal will minimize this
approximated function.

Let a mechanismM be a tuple (M1, ...,MI , z, p), whereMi is the set of allowable messages
agent i can send to the principal, and z(·) is the outcome function that determines the
outcome z(m) for any message profile m = (m1, ...,mI) ∈M1 × ...×MI . Here, the outcome
function maps a message profile m to a state/input trajectory (x, u):

z(m) : (M1 × ...×MI)→ Rn×(T+1) × Rm×T (4.38)

where zi(m) refers to the state/input trajectory associated with agent’s i subsystem.
Next, we define p(m) to be a non-negative vector of “fees” for each agent.

The mechanismM together with the cost functions of each agents (Vi)
I
i=1 induce a game

N = (M, (Vi)
I
i=1) among the agents. We define the Nash equilibrium (NE) of this game as

a message profile m∗ such that

Vi(zi(m
∗
i ,m

∗
−i)) + pi(m

∗
i ,m

∗
−i) ≤ Vi(zi(mi,m

∗
−i)) + pi(mi,m

∗
−i), (4.39)

for all mi ∈ Mi and i ∈ [I], where the compact notation m∗−i denotes the vector of
messages from all agents except i. The fee pi increases costs for agent i, which is undesirable
since agents are minimizing. The goal of the principal is to design the mechanism such that
the efficient trajectory (x∗, u∗) can be implemented as the Nash equilibrium of the game
N. Implementation means that the trajectory corresponding to the Nash equilibrium of the
game induced by the mechanism is equal to the efficient trajectory.

Low-Communication Mechanism

We specify our low-communication mechanism as follows: Each agent i reports messages
mi ∈Mi of the form

mi = (v(i), w(i), λ̃i, J̃ (i), x̃(i)) (4.40)

where v(i) ∈ Rni×(T+1) are weights for every state of subsystem i for each stage; w(i) ∈
Rmi×T are weights for every control input of subsystem i for each stage; λ̃i ∈ Rni×T are weights
representing the “sensitivity” of agent i dynamics in cost function for each stage; J̃ (i) =
({x(i)

k , x̄
(i)
k }Tk=0, {u

(i)
k , ū

(i)
k }Tk=0) is vector of bounds for states/inputs; and x̃(i) = (x̃

(i)
0 , ..., x̃

(i)
T )

is a reference trajectory for the states of subsystem i. Restated, each agent provides some
open-loop trajectory coupled with state and input bounds, as well as scalars measuring the
”impact” of states, inputs, and dynamics in its cost function. We highlight the fact that the
message sent by the agents is a vector of finite dimension instead of a function, which is in
line with previous work on low-communication mechanisms [87].
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In addition, the principal announces a single real-valued function f : R × R → R to all
agents to be used as a surrogate function for their cost functions. Namely, for each agent i
the principal forms the surrogate function

fi(v
(i)
k , w

(i)
k , x

(i)
k , u

(i)
k ) =

mi∑
j=1

(f(x
(i)
j,k; v

(i)
j,k) + f(u

(i)
j,k;w

(i)
j,k)) for k ∈ [T − 1] (4.41)

as an approximation of the agent’s stage cost li(·, ·). The notation f(·; ·) indicates the
second argument is a parameter of the function and not a variable. We further only consider
functions f(·; v) that are strictly convex for all possible parameters v ∈ R. Lastly, for
simplicity we let the principal announce the same function for both states and inputs. But
one could consider different functions for states and inputs – the key property being that it
is the same function for all agents. Then the principal forms the surrogate function

Fi(v(i)T , x
(i)
T ) =

mi∑
j=1

f(x
(i)
j,T ; v

(i)
j,T ) (4.42)

as an approximation of agent’s terminal cost gi(·). Based on a message profilem, the principal
formulates the following surrogate optimal control problem (OCP-S):

min
x,u

I∑
i=1

(Fi(v(i)T , x
(i)
T ) +

T−1∑
k=0

fi(v
(i)
k , w

(i)
k , x

(i)
k , u

(i)
k ))

s.t. xk+1 = Axk +Buk, ∀k ∈ [T − 1]

x
(i)
k ∈ Xi, u

(i)
k ∈ Ui, ∀i ∈ [I], k ∈ [T ]

(x
(i)
k , u

(i)
k ) ∈ J̃ (i)

k , ∀k ∈ [T ]

x
(i)
0 = x̄

(i)
0 , ∀i ∈ [I]

(4.43)

where we explicitly consider the desired operational bounds reported by each agent J̃
(i)
k for

every stage k.
Since f is strictly convex, this optimization problem has an unique solution that we call

(x(y∗), y∗). Note that this notation means the y∗ are the optimal inputs for OCP-S. Then,
given a message profile m, we have that z(m) = (x(y∗), y∗). That is, the outcome function
of the mechanism z(m) outputs exactly the state/input trajectory of the optimal solution of
OCP-S. We also define λ∗(i) to be the optimal lagrange multipliers associated with Eq.(4.35)
for every agent i. Now, suppose the principal solved OCP-S once successfully. The principal
sends the following reference trajectory c(i) to agent i:

c
(i)
k =

∑
j∈Ni

Aijx̃
(j)
k ,∀k ∈ [T − 1] (4.44)
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where x̃(j) is part of the message mj as per (4.40). Observe that the reference trajectory
sent to agent i does not depend upon solving OCP-S. Moreover the principal will assign the
following fees to each agent:

pi =
T−1∑
k=0

Λ>−i,k(x
(i)
k (y∗)− x̂(i)

k (c(i))) + ||x̃(i) − x(i)(y∗)||22 + ||λ̃(i) − λ∗(i)||22 (4.45)

where x̂(i)(c(i)) is a state reference trajectory computed by the principal for agent i given
that the other agents behave according to c(i). For example, the principal can solve another
round of OCP-S but now excluding agent i’s contribution to the objective function in order
to obtain x̂(i)(c(i)) (in a way akin to VCG mechanisms [115]). The key observation here is
that the reference trajectory x̂(i)(c(i)) does not depend on the message sent by agent i. The
first term of the fee penalizes deviations of the computed optimal state trajectory x(i)(y∗)
from x̂(i)(c(i)). The second term penalizes mismatches between the reported x̃(i) and the
optimal state trajectory x(i)(y∗). The third term penalizes deviations from the reported
sensitivity vector λ̃(i) and the optimal lagrange multipliers λ∗(i) of OCP-S associated with
the dynamics of agent i. Lastly the vectors Λ−i,k are computed by the principal as follows:

Λ>−i,k =
∑
j:i∈Nj

λ̃
(j)>
k Aji, ∀k ∈ [T − 1] (4.46)

where we, once again, note that this vector does not depend on the message sent by
agent i. We highlight the special purpose of the terms c(i): The only way agent i can infer
the impact of it’s neighbours in their subsystem is by the reported c(i) via the principal.
Likewise that information is used by the principal in computing the fees imputed to agent
i. The passing of not only ”monetary transfers” but also ”trajectory information” by the
principal to the agents is essential in proving the implementability of the Nash equilibrium
in the next section. For clarity, we stress that the reference trajectoty c(i) sent to agent i
does not depend on the message sent by agent i.

Equilibrium Characterization

With the mechanism defined, we can now characterize the equilibrium behavior of agents
interacting via this mechanism. The goal of this section is to characterize the Nash equi-
librium (NE) of the resulting game, which is a message profile m∗. Our analysis begins by
showing that in a NE m∗, each agent i reports a specific type of state reference trajectories
to the principal.

Lemma 4.3.1. Let m∗ = (v∗, w∗, λ̃∗, J̃∗, x̃∗) be a NE of the game induced by the mechanism.
Then every agent i ∈ I reports x̃(i)∗ = x(i)(y∗) and λ̃(i)∗ = λ(i)∗. In addition, the principal
sends the following references to the agents:

c
∗(i)
k =

∑
j∈Ni

Aijx
(j)
k (y∗), ∀k ∈ [T − 1] (4.47)
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Proof. Suppose all agents adhere to the message profile m∗, except agent i which reports
some message mi = (v(i), w∗(i), λ̃(i), J∗(i), x̃(i)). Since m∗ is a NE, this deviation should give
a higher cost for agent i, that is:

Vi(zi(mi,m
∗
−i)) + pi(mi,m

∗
−i) ≥ Vi(zi(m

∗
i ,m

∗
−i)) + pi(m

∗
i ,m

∗
−i) (4.48)

Now, observe that the outcome function z(m) only depends on the (v∗, w∗, J̃∗) compo-
nents of the message m∗. Then substituting into (4.45) gives that

||λ̃(i) − λ∗(i)||22 + ||x̃(i) − x(i)(y∗))||22 ≥ ||λ̃∗(i) − λ∗(i)||22 + ||x̃∗(i) − x(i)(y∗))||22

for all possible sensitivities and state trajectory reports (λ̃(i), x̃(i)). Hence (λ̃∗(i), x̃∗(i)) is
the solution of the following minimization problem:

min
(λ̃∗(i),x̃∗(i))

{||λ̃(i) − λ∗(i)||22 + ||x̃(i) − x(i)(y∗)||22} (4.49)

which achieves the minimum when (λ̃∗(i), x̃∗(i)) = (λ∗(i)x(i)(y∗)). Then by definition of c(i)

it directly follows that

c
∗(i)
k =

∑
j∈Ni

Aijx
(j)
k (y∗), ∀k ∈ [T − 1] (4.50)

Next, observe that each agent can only “measure” the impact of other subsystems in its
dynamics via the reference signal c(i) that is sent by the principal. We say an state/input
sequence (x̌(i), ǔ(i)) is feasible for agent i if it is feasible for the agent’s subsystem given the
reference c(i). We proceed to show that given the reference c(i), any feasible state/input
sequence (x̌(i), ǔ(i)) can be achieved by agent i. That is, agent i can send a message that
makes the principal compute the input y∗(i) = ǔ(i) and x(i)(y∗) = x̌(i) as it solves the problem
OCP-S, given that OCP-S is feasible.

Lemma 4.3.2. For any agent i, given a feasible state/input sequence (x̌(i), ǔ(i)) there exists
a message m̄i such that zi(m̄i,m−i) = (x̌(i), ǔ(i)) for all possible messages of the other agents
m−i, given that the resulting optimization problem (OCP-S) is feasible for (m̄i,m−i).

Proof. Fix some agent i and a feasible state/input sequence (x̌(i), ǔ(i)). We prove this lemma

by constructing the message m̄i. Specifically, suppose agent i chooses x
(i)
k = x̄

(i)
k = x̌

(i)
k

and u
(i)
k = ū

(i)
k = ǔ

(i)
k . This choice constrains OCP-S to require that y∗(i) = ǔ(i) and

x(i)(y∗) = x̌(i). Then for any message m−i, OCP-S is either infeasible or returns the desired
solution for agent i, regardless of the message of other agents.

What this lemma implies is that given the Nash equilibrium message profile m∗, agent i
can unilaterally deviate in such a way that the principal will compute (x̌(i), ǔ(i)) as part of
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the optimal solution, as long as OCP-S is feasible. We proceed in writing the agent’s optimal
control problem (OCP-A) in equilibrium:

min
x(i),u(i)

gi(x
(i)
T ) +

∑T−1
k=0 li(x

(i)
k , u

(i)
k ) + p∗i (x

(i))

s.t. x
(i)
k+1 = Aiix

(i)
k +Biu

(i)
k + c

∗(i)
k , ∀k ∈ [T − 1]

x
(i)
k ∈ Xi, u

(i)
k ∈ Ui, ∀k ∈ [T ]

x
(i)
0 = x̄

(i)
0

(4.51)

where the equilibrium fee, according to Lemmas 1 and 2 is given by:

p∗i (x
(i)) =

T−1∑
k=0

Λ∗>−i,k(x
(i)
k − x̂

(i)
k (c(i))) (4.52)

where Λ∗>−i,k =
∑

j:i∈Nj
λ
∗(j)>
k Aji, ∀k ∈ [T − 1].

Thus in order for a message profile m∗ to be a NE, we must have that the optimal solution
(x(y∗), y∗) for OCP-S must also be an optimal solution for each agents’ OCP-A. Since both
OCP-S and OCP-A are convex problems, it is enough to require that (x∗(i)(y∗), y∗(i)) satisfy
the KKT conditions for OCP-A for every agent i. Next we present our main theorem, which
shows that the efficient trajectory (x∗, u∗) can be implemented as a Nash equilibrium of the
game induced by the mechanism:

Theorem 4.3.3. (Implementability): Let (x∗, u∗) be the unique efficient trajectory. Let
m∗ be a message satisfying the following:

f ′(x
∗(i)
j,k ; v

∗(i)
j,k ) =

∂li(x
∗(i)
k , u

∗(i)
k )

∂x
(i)
j,k

, ∀i, j, k

f ′(x
∗(i)
j,T ; v

∗(i)
j,T ) =

∂gi(x
∗(i)
T )

∂x
(i)
j,T

, ∀i, j

f ′(u
∗(i)
h,k ;w

∗(i)
h,k ) =

∂li(x
∗(i)
k , u

∗(i)
k )

∂u
(i)
h,k

, ∀i, h, k

x̃(i) = x∗(i), λ̃(i) = λ∗(i) ∀i
J̃ (i) = ({−∞,+∞}Tk=0, {−∞,+∞}Tk=0), ∀i

(4.53)

where f ′(·) denotes the derivative of f(·). Then (x∗, u∗) can be supported as a Nash equilib-
rium of the game induced by the mechanism, that is (x(y∗), y∗) = (x∗, u∗). In addition m∗ is
the equilibrium message sent by the agents.

Proof. First, note OCP-T is an “aggregation” of each agent’s problem: Instead of optimizing
each agent separately with references c(i) for the neighbors, we optimize all agents at once.
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The KKT stationarity conditions for multipliers (ν, γx, γu) of OCP-T, associated with the
dynamics, state and input constraints respectively, are

∂li(x
∗(i)
k , u

∗(i)
k )

∂x
(i)
j,k

+ ν
(i)>
k Aii,j − ν

(i)
k−1,j + γ(i)>

x G
(i)
x,j,k +

∑
`∈Ni

ν
(`)>
k A`i,j = 0

∂gi(x
∗(i)
T )

∂x
(i)
j,k

− ν(i)
T−1,j + γ(i)>

x G
(i)
x,j,T = 0

∂li(x
∗(i)
k , u

∗(i)
k )

∂u
(i)
h,k

+ ν
(i)>
k Bii,h + γ(i)>

u G
(i)
u,h,k = 0

(4.54)

for all j ∈ {1, . . . , ni}, h ∈ {1, . . . ,mi} and k ∈ {1, ..., T − 1}. On the above we use the
notation Ali,j to denote the column j of matrix Ali. In addition we let Bii,h denote the
column h of Bii. Similarly, G·,j,k represents the column j of the stage k constraints matrix
G·,k. Now, if the messages follow (4.53), then it is easy to see that (x∗, u∗) satisfy the KKT
conditions of OCP-S:

f ′(x
∗(i)
j,k ; v

∗(i)
j,k ) + λ

(i)>
k Aii,j − λ

(i)>
k−1,j + β(i)>

x G
(i)
x,j,k +

∑
`∈Ni

λ
(`)>
k A`i,j = 0

f ′(x
∗(i)
j,T ; v

∗(i)
j,T )− λ(i)

T−1,j + β(i)>
x G

(i)
x,j,T = 0

f ′(u
∗(i)
h,k ;w

∗(i)
h,k ) + λ

(i)>
k Bii,h + β(i)>

u G
(i)
u,h,k = 0

(4.55)

for all j ∈ {1, . . . , ni}, h ∈ {1, . . . ,mi}, k ∈ {1, ..., T − 1} and for λ = ν, γx = βx and
γu = βu. But in the equilibrium, Lemma 1 says that the reference trajectory c∗(i) sent to
each agent is exactly the one that would be obtained if each agent applied the input sequent
y∗(i). Hence (x∗, u∗) solves, not only OCP-S, but also each agent’s problem when c∗(i) is sent

to the agents (OCP-A). This can be seen directly by using the multipliers λ(i), γ
(i)
x and γ

(i)
u

for every agent’s subproblem and verifying that (x∗(i), u∗(i)) solves the KKT conditions of
OCP-A. As a result, no agent has incentive to deviate from m∗i . Hence m∗ will be a Nash
equilibrium of the game induced by the mechanism.

The above theorem can be viewed as follows: The mechanism is nash incentive com-
patible, as truthful reporting of the agent’s own subsystem trajectory and marginal utility
information is a nash equilibrium strategy. We finish this section with some remarks on
Theorem 1:

At equilibrium, each agent reports the largest possible bounds J̃∗(i) so that OCP-S is
always feasible at equilibrium. One may argue why do we include such reports in the message
vector? Their presence is key to establishing Lemma 2, as they provide a “credible threat” to
the mechanism (and thus to other agents). This forces that the solution (x(y∗), y∗) of OCP-S
must solve each agent’s subproblem at equilibrium. A similar argument with a numerical
example is given in [87] in the context of routing.
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Figure 4.3: Room Configuration with Heat Exchange Vectors highlighted

Lastly, OCP-S may be infeasible outside of equilibrium, since an agent could report an
infeasible operational range. This issue can be overcome by assuming that the principal may
apply some feasible control input if OCP-S ends up being infeasible. More importantly, in
order for the agents to behave according to the equilibrium strategies, they need to know
the optimal solution (x∗, u∗) for OCP-T. This means that the agents need to “learn” the
equilibrium by replaying the game and refining their messages. In the next section, we will
provide one such simple learning process and, instead of theoretically proving its convergence
to the Nash equilibrium defined in Theorem 1, we will present a test case on HVAC control
in an MPC setting, where the game is replayed consecutively, but at each time, the initial
condition x̄0 is different. This showcases the potential use of our mechanism when a learning
protocol is used within the MPC framework.

4.4 HVAC Control Case Study

Consider a building manager who controls the HVAC system for four rooms. Each room
occupant is an agent. Let Tk = [T 1

k , T
2
k , T

3
k , T

4
k ]> the state be the room temperatures. The

building manager can heat/cool each individual room: Let uk = [u1
k, u

2
k, u

3
k, u

4
k]
> be the inputs

in each room. Fig. 4.3 shows the layout of the rooms with respect to each other. Using
standard HVAC models [21], the dynamics are

Tk+1 =


ρ1 −β −γ 0
−β ρ2 0 η
−γ 0 ρ3 −ν
0 −η −ν ρ4

Tk + µuk − α


T outk

T outk

T outk

T outk

 (4.56)

where ρ1 = 1 +α+ β+ γ; ρ2 = 1 +α+ β+ η; ρ3 = 1 +α+ γ+ ν; ρ4 = 1 +α+ η+ ν; and
β, γ, η, ν are the heat transmission coefficients between rooms; and α is the heat coefficient
with the outside. In addition, µ is the heat coefficient between the HVAC and each room.
Note we treat the outside temperature as an exogenous disturbance vector.
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Figure 4.4: Closed-Loop State Trajectories for P-MPC, M-MPC, and A-MPC

Now suppose each agent has the private cost function

Vi(T
(i), u(i)) =

λ(i)

2

N−1∑
k=0

(T
(i)
k − T

(i)
d )2 +

(1− λ(i))

2
e(γ(i)u

(i)
k )2 (4.57)

where the tuple (T
(i)
d , λ(i), γ(i)) is the agent’s private information, namely: their desired

room temperate and two scalars regulating the trade-off between comfort and energy usage.
Following the setup of our mechanism, the building manager does not know the agent’s
private information nor the shape of their objective functions. The manager broadcasts the
function f(T, u; v, w) = 1

2
(e − vTr)2 + 1

2
(wu)2, where Tr is a reference temperature for the

building manager.
We consider an MPC setting, where the principal’s receding horizon OCP-S at stage t is

given by

min
1

2

N−1∑
k=0

I∑
i=1

(T
(i)
t+k|t − v

(i)
t+k|tTr)

2 + (w
(i)
t+k|tu

(i)
t+k|t)

2

s.t. Tt+k+1|t = ATt+k|t +But+k|t + bt+k|t, ∀k ∈ [T − 1]

(T
(i)
t+k|tu

(i)
t+k|t) ∈ J̃

(i)
t ,∀k ∈ [N − 1], i ∈ [I] (4.58)

T
(i)
t|t = Tt , ∀i ∈ [I]

where A,B are given in (4.56) and bt+k|t is a prediction of −αT outt+k made at time t. Also,

we use u
(i)
t+k|t to denote the open-loop control input computed at stage t. Let (T ∗t , u

∗
t ) be

the optimal solution of (4.58). The manager uses the current open-loop trajectories sent by
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agents to compute references

c
(i)
t+k|t =

∑
i∈Ni

AijT̃
(j)
t+k|t, ∀k ∈ [T − 1] (4.59)

where the neighborhoods Ni match the room configurations. The principal also uses T
∗(i)
t

in order to compute the reference trajectory in the fee pi. After receiving such references,
each agent solves their own OCP-A with the computed fees pi in the objective, obtaining a
private solution vector (T̂

(i)
t , û

(i)
t ) and setting λ̃

(i)
t to be the lagrange multipliers associated

with the dynamics. Then each agent updates the remaining according to (4.53), which in
our case reduces to

v
(i)
t+k|t = ((1− λ(i))T̂

(i)
t+k|t + T

(i)
d )/Tr

w
(i)
t+k|t =

√
(1− λ(i))(γ(i))2e(γ(i)û

(i)
t+k|t)

2
(4.60)

after taking the associated derivatives. Lastly, J̃
(i)
t = ({−∞,+∞}Tk=0, {−∞,+∞}Tk=0)

and T̃
(i)
t+1 = T̂

(i)
t . When t = 0, all weights are initialized to unit values. All optimization

problems were solved using the optimization solver MOSEK [176]. We consider a optimal
control length T = 5 and an MPC horizon of N = 15. We compare our mechanism-based
MPC (M-MPC) with the perfect-information case (P-MPC), where the principal knows the
exact form of each Vi. We also consider a “consensus”-type case, where no weights are
updated and Tr is set to the average of the desired temperatures (A-MPC). Fig. 4.4 shows
the closed-loop state trajectory of the three approaches. It shows that our M-MPC closely
tracks the P-MPC trajectory.

Fig. 4.5 shows M-MPC recovers the P-MPC cost after a few time steps. Since we used
true costs to compute P-MPC, this shows our mechanism recovers the efficient trajectory.
In contrast, the case without information exchange behaves poorly. This example shows our
mechanism can be used with MPC: at each stage an optimal control problem is solved, the
first-stage control is applied, and agents update their messages based on knowledge received
from the principal.
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Chapter 5

Real-time MPC for Cyber-Physical
Systems

On this Chapter we will study algorithms that are used for the actual operation of
Cyber-Physical Systems (CPS). The decision-making problem faced by the CPS can be of-
ten framed as an Optimal Control problem, where control decisions need to be computed
in for a horizon a few seconds into the future. The nature of this decision-making problem,
as ”decisions taken across multiple time periods” lies in the center of the operation task of
CPS. These Optimal Control problems need to be solve in a timely fashion in order to make
sure the CPS can operate in real-time. We will develop optimization algorithms to solve the
Optimal Control that is faced by the CPS. In our setting, this amounts to solving non-linear
constrained optimization problem on a few hundred milliseconds intervals, for example in
operating autonomous vehicles or orbital maneuvers of satellite. We will focus on Nonlin-
ear model predictive control (NMPC) algorithm, which is an increasingly popular advanced
control method for CPS. Nonlinear model predictive control (NMPC) generally requires the
solution of a non-convex dynamic optimization problem at each sampling instant under strict
timing constraints, based on a set of differential equations that can often be stiff and/or that
may include implicit algebraic equations. We provide a local convergence analysis for the
recently proposed adjoint-based sequential quadratic programming (SQP) algorithm that
is based on a block-structured variant of the two-sided rank-one (TR1) quasi-Newton up-
date formula to efficiently compute Jacobian matrix approximations in a sparsity preserving
fashion. A particularly efficient algorithm implementation is proposed in case an implicit
integration scheme is used for discretization of the optimal control problem, in which matrix
factorization and matrix-matrix operations can be avoided entirely. The convergence analy-
sis results as well as the computational performance of the proposed optimization algorithm
are illustrated for two simulation case studies of NMPC.

We begin our analyses by introducing the direct multiple shooting based OCP problem
formulation as well as the proposed adjoint-based inexact SQP method that is based on
block-wise TR1 Jacobian updates in section 5.1. Section 5.2 presents the detailed conver-
gence analysis for the optimization method and contains the main theoretical results of the
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present paper. A numerically efficient implementation of the block-TR1 update formula
in combination with a lifted Newton-type method for direct optimal control with implicit
integration schemes such as, e.g., collocation methods, is then proposed and analyzed in
Section 5.3. Finally, Section 5.4 presents numerical results of the NMPC case studies which
illustrates the numerical performance of our proposed block-structure algorithm.

5.1 Adjoint-based SQP Method with Block-wise

quasi-Newton Jacobian Updates for Nonlinear

Optimal Control

Optimization based control and estimation techniques have attracted an increasing at-
tention over the past decades. They allow a model-based design framework, in which the
system dynamics, performance metrics and constraints can directly be taken into account.
Receding horizon techniques such as model predictive control (MPC) and moving horizon es-
timation (MHE) have been studied extensively because of their desirable properties [163] and
these optimization-based techniques have already been applied in a wide range of applica-
tions [94]. One of the main practical challenges in implementing such an optimization-based
predictive control or estimation scheme, lies in the ability to solve the corresponding nonlin-
ear and generally non-convex optimal control problem (OCP) under strict timing constraints
and typically on embedded hardware with limited computational capabilities and available
memory.

Let us consider the following continuous-time formulation of the optimal control problem
that needs to be solved at each sampling instant

min
x(·),u(·)

∫ T

0

`(x(t), u(t)) dt + m(x(T )) (5.1a)

s.t. x0 − x̂0 = 0, (5.1b)

0 = f(ẋ(t), x(t), u(t)), ∀t ∈ [0, T ], (5.1c)

π(x(t), u(t)) ≤ 0, ∀t ∈ [0, T ], (5.1d)

where T denotes the control horizon length, x(t) ∈ Rnx denotes the differential states and
u(t) ∈ Rnu are the control inputs. The function `(·) defines the stage cost, m(·) denotes
the terminal cost and the nonlinear dynamics are formulated as an implicit system of ordi-
nary differential equations (ODE) in (5.1c), which could be extended with implicit algebraic
equations. A common assumption is that the resulting system of differential-algebraic equa-
tions (DAE) is of index 1 [51]. The dynamic optimization problem is parametric, since it
depends on the state estimate x̂0 at the current sampling instant, through the initial value
condition in (5.1b). The path constraints are defined by the function π(·) in Eq. (5.1d) and,
for simplicity of notation, they are further assumed to be affine. Note that a similar problem
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as in (5.1) needs to be solved for optimization-based state and parameter estimation, without
the given initial state value.

In direct optimal control methods, one forms a discrete-time approximation of the con-
tinuous time OCP in (5.1) based on an appropriate parameterization of the state and control
trajectories over the time horizon t ∈ [0, T ], resulting in a tractable nonlinear program (NLP)
that needs to be solved. Popular examples of this approach include the direct multiple shoot-
ing method [50] and direct collocation [41, 46]. Note that these techniques often need to rely
on implicit integration methods in order to deal with stiff and/or implicit systems of differen-
tial or differential-algebraic equations [206]. The resulting constrained optimization problem
can be handled by standard Newton-type algorithms such as interior point methods [248] and
sequential quadratic programming (SQP) [53] techniques for nonlinear optimization [186].

Quasi-Newton optimization methods are generally popular for solving such a constrained
NLP. They result in computationally efficient Newton-type methods that solve the first order
necessary conditions of optimality, i.e., the Karush-Kuhn-Tucker (KKT) conditions, without
evaluating the complete Hessian of the Lagrangian and/or even without evaluating the Jaco-
bian of the constraints [186]. Instead, quasi-Newton methods are based on low-rank update
formulas for the Hessian and Jacobian matrix approximations [74]. Popular examples of
this approach include the Broyden-Fletcher-Goldfarb-Shanno (BFGS) [57] and the symmet-
ric rank-one (SR1) update formula [71] for approximating the Hessian of the Lagrangian.
Similarly, quasi-Newton methods can be used for approximating Jacobian matrices, e.g., of
the constraint functions, such as the good and bad Broyden methods [58] as well as the more
recently proposed two-sided rank-one (TR1) update formula [113].

For the purpose of real-time predictive control and estimation, continuation-based online
algorithms have been proposed that aim at further reducing the computational effort by
exploiting the fact that a sequence of closely related parametric optimization problems is
solved [51, 78]. One popular technique consists of the real-time iteration (RTI) algorithm
that performs a single SQP iteration per time step, in combination with a sufficiently high
sampling rate and a prediction-based warm starting in order to allow for closed-loop stability
of the system [77]. The RTI algorithm can be implemented efficiently based on (fixed-step)
integration schemes with tailored sensitivity propagation for discretization and linearization
of the system dynamics [206] in combination with structure-exploiting quadratic program-
ming solvers [94]. In addition, a lifted algorithm implementation has been proposed in [207]
to directly embed the iterative procedure of implicit integration schemes, e.g., collocation
methods, within a Newton-type optimization framework for optimal control.

Unlike standard inequality constrained optimization, nonlinear optimal control problems
typically result in a particular sparsity structure in the Hessian of the Lagrangian and in the
Jacobian matrix for the equality constraints. In direct optimal control methods, the objective
function is typically separable resulting in a block-diagonal Hessian matrix. This property
has been exploited in partitioned quasi-Newton methods that approximate and update each
of the Hessian block matrices separately, as proposed and studied in [111, 110, 135]. On
the other hand, the Jacobian matrix corresponding to the discretized system dynamics has
a block bidiagonal sparsity structure, because of the stage wise coupling of the optimization
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variables at subsequent time steps of the control horizon. For this purpose, the present article
analyzes a novel tailored quasi-Newton method for optimal control using a partitioned or
block-structured TR1-based Jacobian update formula. This adjoint-based SQP method for
nonlinear optimal control, based on a Gauss-Newton Hessian approximation in combination
with inexact Jacobian matrices, was proposed recently in [122].

We provide a complete presentation of the block-TR1 based SQP method for nonlinear
optimal control, including a detailed discussion of the lifted collocation type implementa-
tion, extending earlier work of the same authors in [122]. Unlike the latter publication, a
convergence analysis of this novel quasi-Newton type optimization algorithm is provided.
More specifically, we prove convergence of the block-structured quasi-Newton Jacobian ap-
proximations to the exact Jacobian matrix within the null space of the active inequality
constraints. Based on this result, under mild conditions, convergence of the overall inexact
SQP method can be guaranteed. Locally linear or superlinear convergence rates can be
shown, respectively, when using a Gauss-Newton or quasi-Newton based Hessian approxi-
mation scheme. In addition, it is shown how this convergence analysis extends to our lifted
collocation implementation that avoids any matrix factorization or matrix-matrix opera-
tions. These convergence analysis results as well as the computational performance of the
optimization algorithms are illustrated numerically for two simulation case studies of NMPC.

Block-wise TR1 based Sequential Quadratic Programming

A popular approach for direct optimal control is based on direct multiple shooting [50]
that performs a time discretization, based on a numerical integration scheme [118] to solve
the following initial value problem

0 = f(ẋ(τ), x(τ), u(τ)), τ ∈ [ti, ti+1], x(ti) = xi, (5.2)

on each of N shooting intervals that are defined by a grid of consecutive time points ti for
i = 0, . . . , N . For the sake of simplicity, we consider here an equidistant grid over the control
horizon, i.e., ti+1 − ti = T

N
, and a piecewise constant control parametrization u(τ) = ui for

τ ∈ [ti, ti+1) in (5.2). An explicit fixed-step integration scheme defines the discrete-time
system dynamics xi+1 = Fi(xi, ui) for the shooting interval [ti, ti+1]. For example, this can
correspond to the popular Runge-Kutta method of order 4 (RK4) as defined in [118]. Note
that explicit methods are only suitable in case the Jacobian ∂f

∂ẋ
(·) is non-singular. Otherwise,

implicit schemes need to be used for implicit differential or differential-algebraic equations.
Based on the explicit discretization scheme, the resulting block-structured optimal control
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problem reads as

min
X,U

N−1∑
i=0

li(wi) + lN(wN) (5.3a)

s.t. x̂0 = x0, (5.3b)

Fi(wi) = xi+1, i = 0, . . . , N − 1, (5.3c)

Piwi ≤ pi, i = 0, . . . , N, (5.3d)

where the affine path constraints (5.3d) have been imposed on each of the shooting nodes
and the compact notation wi := (xi, ui) for i = 0, . . . , N − 1 and wN := xN is defined.
Alternative discretization techniques exist with guaranteed constraint satisfaction [97, 200],
which remains outside the scope of the present paper. Note that the optimization variables
in (5.3) are directly the state X = [x>0 , . . . , x

>
N ]> and control trajectory U = [u>0 , . . . , u

>
N−1]>.

Lastly, we define the joint state-input trajectory w = [w>0 , . . . , w
>
N ]>.

SQP algorithm with inexact Jacobians

For a local minimum w∗ of the NLP in (5.3), for which the linear independence constraint
qualification (LICQ) holds, there must exist a unique set of multiplier values λ∗, µ∗ such
that the following Karush-Kuhn-Tucker (KKT) conditions are satisfied

∇wL(w∗, λ∗) + P Tµ∗ = 0 (5.4a)

F (w∗) = X∗1:N (5.4b)

P w∗ ≤ p (5.4c)

µ∗ ≥ 0 (5.4d)

µ∗j(Pw
∗ − p)j = 0, j = 1, . . . , np, (5.4e)

where F (·) and P are appropriate block-wise concatenations of the equality and inequality
constraints, respectively, in (5.3c) and (5.3d), and np denotes the total number of inequal-
ity constraints. Here, we define X1:N = [x>1 , . . . , x

>
N ]> and we include the initial condition

constraint as part of the matrix P since we can represent a linear equality as two linear in-
equality constraints. Lastly, L(w, λ) denotes the ‘truncated Lagrangian’, omitting inequality
constraints, and is therefore given by

L(w, λ) =
N−1∑
i=0

(
li(xi, ui) + λ>i (Fi(wi)− xi+1)

)
+ lN(xN). (5.5)

Given the set of indices A for the inequality constraints that are active at the local minimum,
the KKT system reduces to a nonlinear system of equations that can be solved directly by
a Newton-type method. In particular, we are interested in a quasi-Newton algorithm where
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we will approximate ∇2
wwL(wk, λk) by a matrix Hk and ∂F

∂w
(wk) by a matrix Ak. Namely, we

solve the following linearized system Hk Ak
> − E> P>A

Ak − E
PA

∆wk

∆λk

∆µkA

 = −

 g(wk, λk)
F (wk)−Xk

1:N

PAw
k − pA

 , (5.6)

where g(wk, λk) = ∇wL(wk, λk)+µk
>
A (PAw

k−pA) at each Newton-type iteration k. Note that
the matrix PA is defined as the part of P that corresponds to the inequality constraints (5.4c)
in the active set A, and E denotes the constant matrix corresponding to the right-hand side
of the equality constraints in (5.4b).

In order to efficiently solve the inequality constrained OCP in (5.3), let us consider the
adjoint-based SQP algorithm with Gauss-Newton type Hessian approximation and inexact
Jacobian information as introduced originally in [51, 253] for fast NMPC. Each SQP iteration
solves a convex QP subproblem

min
∆W

N∑
i=0

1

2
∆w>i H

k
i ∆wi + hk

>

i ∆wi (5.7a)

s.t. ∆x0 = x̂0 − xk0, (5.7b)

aki + Aki ∆wi = ∆xi+1, i = 0, . . . , N − 1, (5.7c)

Pi ∆wi ≤ pki , i = 0, . . . , N, (5.7d)

where the notation ∆w = [∆w>0 , . . . ,∆w
>
N ]> is used to denote the increments ∆wi := wi−wki ,

given the current solution guess Xk, Uk for the state and control trajectories at iteration k
of the adjoint-based SQP method. The function π(·) that defines the path constraint (5.1d)
was assumed to be affine and pki := pi − Piwki . Note that tracking formulations for NMPC
typically include a stage cost that is defined by a (nonlinear) least squares term li(xi, ui) =
1
2
‖R(xi, ui)‖2

2 for i = 0, . . . , N . The generalized Gauss-Newton (GGN) method from [49] uses
the block-structured Hessian approximation Hk

i := ∇R(wki )∇R(wki )
> ≈ ∇2

wiwi
L(·).

The matrix Aki ≈ ∂Fi

∂wi
(wki ) denotes the Jacobian approximation and aki := Fi(w

k
i ) − xki+1

for the discrete-time system dynamics in Eq. (5.7c). For real-time NMPC, such a Jacobian
approximation can be obtained by reusing information from a previous NLP solution [51,
253]. The gradient term in the objective (5.7a) reads as

hki := ∇wi
li(w

k
i ) +

(
∂Fi
∂wi

(wki )− Aki
)>

λki , (5.8)

for i = 0, . . . , N−1, in which λki denotes the current value of the Lagrange multipliers for the
nonlinear continuity constraints in (5.3c). Note that the linearized KKT conditions in (5.6)
correspond to the KKT optimality conditions for the QP in (5.7), for a fixed active set A.
In addition, each QP subproblem is convex because Hk � 0, e.g., for the Gauss-Newton
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Hessian approximation. A full-step inexact SQP method will sequentially solve each QP
subproblem (5.7) and perform the following updates:

wk+1 = wk + ∆wk and λk+1 = λk + ∆λk = λk+1
QP , (5.9)

where λk+1
QP denote the Lagrange multiplier values for Eq. (5.7c) at the QP solution. We do not

need to perform explicit updates for the Lagrange multipliers associated with the inequality
constraints, because they are assumed to be affine, hence not impacting any computation on
the QP formulation in (5.7).

Dynamic block-wise TR1 Jacobian updates

At each SQP iteration, we perform the block-wise two-sided rank-one (TR1) Jacobian
update, as proposed recently in [122]. Following the work in [113], given current Jacobian
approximations Aki for i = 0, . . . , N − 1, we would like that each updated approximation
matrix Ak+1

i satisfies the following two secant conditions

Adjoint Condition (AC): σk
>

i Ak+1
i = γk

>

i

Forward Condition (FC): Ak+1
i ski = yki ,

(5.10)

where we define the adjoint vector γki = ∂Fi

∂wi
(wk+1

i )>σki , given σk
>
i = (λk+1

i − λki )>, and the

difference in function evaluations yki = F (wk+1
i ) − F (wki ). Note that λk+1

i and λki , respec-
tively, denote the new and old Lagrange multipliers for the linearized equality constraints in
Eq. (5.7c). Similarly, wki := (xki , u

k
i ) and wk+1

i := wki + ∆wki denote, respectively, the old and
new primal variables, such that ski := wk+1

i −wki . Note that the gradient γki = ∂Fi

∂wi
(wk+1

i )>σki
can be computed efficiently using the backward or adjoint mode of algorithmic differentia-
tion (AD), e.g., see [109].

The proposed block-wise TR1 update formula then reads as follows

Ak+1
i = Aki + αki

(
yki − Aki ski

) (
γk
>

i − σk
>

i Aki

)
, (5.11)

for i = 0, . . . , N − 1 and where αki is a scalar that will be defined further. Aside from the
case where the function F (·) is affine, the two conditions in Eq. (5.10) are not consistent
with each other and they can therefore generally not both be satisfied by the updated matrix
Ak+1
i at each iteration. Thus, similar to the standard TR1 update in [113], the block-wise

update will only be able to satisfy one or the other. In the adjoint variant of the update,
the scaling value is defined as

αkA,i =
1

σk
>
i (yki − Aki ski )

, (5.12)

such that the adjoint condition in (5.10) is satisfied exactly and the forward condition holds
up to some accuracy. Similarly, this value reads as follows for the forward variant

αkF,i =
1

(γk
>
i − σk

>
i Aki ) s

k
i

, (5.13)
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where the forward condition is satisfied exactly. As discussed in [114], an additional damping
of the Jacobian updates can be introduced in order to avoid singularity. It is interesting to
note that, since we apply the block-wise TR1 update from (5.11) for each shooting interval
i = 0, . . . , N − 1, the resulting update for the complete constraint Jacobian matrix of the
QP in (5.7) corresponds to a rank-N update.

As in [113], we impose a skipping condition in order to avoid a potential blow-up of the
block-wise TR1 update when the denominator of the scaling factor becomes small or even
zero. For our purposes, the skipping condition itself depends on the type of formula that is
used. We update the block matrix Aki only if the following holds∣∣∣(γk>i − σk>i Aki )s

k
i

∣∣∣ ≥ c1

∥∥σki ∥∥ ∥∥yki − Aki ski ∥∥ , (5.14)

with c1 ∈ (0, 1) if αki = αkF,i in the forward TR1 update, and∣∣∣σk>i (yki − Aki ski )
∣∣∣ ≥ c1

∥∥ski ∥∥ ∥∥∥γki − Ak>i σki

∥∥∥ , (5.15)

with c1 ∈ (0, 1) if αki = αkA,i in the adjoint TR1 update. In addition to consistently choosing
either the forward or adjoint Jacobian update formula, we propose a more dynamic variant
of the algorithm that picks either αkF,i or αkA,i for each block matrix at any given iteration. It
may not be clear what is the best approach to select which type of update is to be executed
for each block matrix at a given iteration. However, in the next section, we prove the local
convergence properties of the algorithm under any arbitrary sequence of updates that satisfy
the skipping conditions in (5.14) and (5.15) for each block i at every iteration k.

Algorithm 4 One iteration of SQP method with block-wise TR1 Jacobian updates.

Input: wki = (xki , u
k
i ), λ

k
i and Aki for i = 0, . . . , N − 1.

Problem linearization and QP preparation

1: Formulate the QP in (5.7) with Jacobian matrices Aki , Gauss-Newton Hessian approxi-
mations Hk

i and vectors aki , p
k
i and hki in (5.8) for i = 0, . . . , N − 1.

Computation of Newton-type step direction

2: Solve the QP subproblem in Eq. (5.7) to update optimization variables:
wk+1
i ← wki + ∆wki and λk+1

i ← λki + ∆λki . . full step

Block-wise TR1 Jacobian updates

3: for i = 0, . . . , N − 1 do in parallel
4: Choose αki = αkF,i or αki = αkA,i via some decision rule.

5: Ak+1
i ← Aki + αki

(
yki − Aki ski

) (
γk
>
i − σk

>
i Aki

)
.

6: end for
Output: wk+1

i = (xk+1
i , uk+1

i ), λk+1
i and Ak+1

i for i = 0, . . . , N − 1.

The complete adjoint-based SQP method that uses parallelizable block-wise TR1 Jaco-
bian updates is summarized in Algorithm 4. Note that, for simplicity, the SQP algorithm is
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presented as a full-step method without any globalization strategies to ensure convergence
to a local minimum [186]. This is also further motivated by the use of online algorithms for
real-time NMPC as discussed in [78].

5.2 Convergence Results for Block-wise TR1-based

SQP Method

For the convergence analysis of sequential quadratic programming, it is standard to rely
on a result that the active set, i.e., the set of active inequality constraints in the QP subprob-
lems is stable in a neighbourhood around a local minimizer of the nonlinear program [186].
This allows us to study the local convergence properties of the block-TR1 based SQP method
under the assumption that the active set has already been fixed, resulting, locally, in an
equality constrained problem.

Stability of the active set and local convergence

Let us start by briefly repeating the result from [81] on the stability of the active set
in the QP subproblems near the NLP solution and the corresponding conditions on local
convergence properties for an adjoint-based SQP method with inexact Jacobians.

Theorem 5.2.1. (Stability of active set and local convergence) Let the NLP solution vectors
w∗, λ∗ be given and assume that:

(i) at w∗ LICQ holds, and there exist Lagrange multiplier values µ∗ such that (w∗, λ∗, µ∗)
satisfies the KKT conditions in (5.4).

(ii) at w∗ strict complementarity holds, i.e., the multipliers µ∗A of the active inequalities
PAw

∗ = pA satisfy µ∗A > 0, where PA is a matrix consisting of all rows of P that
correspond to the active inequalities at the NLP solution.

(iii) there are two sequences of uniformly bounded matrices (Ak, Hk), each Hk positive
semidefinite on the null space of Ak, such that the sequence of matrices

Jk :=

N>Hk N>Ak
>

Ak

PA

 ≈ ∂F
∂y

(yk), where F(y) :=

N>∇wL(w, λ)
F (w)−X1:N

PAw − pA

 ,
is uniformly bounded and invertible with a uniformly bounded inverse. Here, N is a
null space matrix with appropriate dimensions with orthonormal column vectors such
that N>N = 1 and PAN = 0.

(iv) there is a sequence of iterates yk := (wk, λk) generated according to

wk+1 = wk + ∆wk and λk+1 = λk + ∆λk = λk+1
QP ,
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where ∆wk is the primal solution of the QP subproblem in (5.7) and λk+1
QP denote the

Lagrange multipliers corresponding to the equality constraints (5.7c). Each iteration
can be written in compact form as yk+1 = yk − Jk−1F(yk).

(v) there exists κ < 1 such that, for all k ∈ N, it can be guaranteed that∥∥∥∥Jk+1−1

(
Jk − ∂F

∂y
(yk + t∆yk)

)
∆yk

∥∥∥∥ ≤ κ‖∆yk‖, ∀t ∈ [0, 1]. (5.16)

Then, there exists a neighbourhood N̄ of (w∗, λ∗) such that for all initial guesses (w0, λ0) ∈ N̄
the sequence (wk, λk) converges q-linearly towards (w∗, λ∗) with rate κ, and the solution of
each QP (5.7) has the same active set as w∗.

In addition to the latter result that guarantees a q-linear local convergence rate in a
neighbourhood of the NLP solution, the following theorem states a condition under which
q-superlinear local convergence can be obtained instead.

Theorem 5.2.2. (Superlinear convergence) If the equality

lim
k→∞

[
N>HkN N>Ak

>

AkN 0

]
=

[
N>∇2

wwL(w?, λ?)N N> ∂F
∂w

(w?)>
∂F
∂w

(w?)N 0

]
, (5.17)

holds in addition to the assumptions of Theorem 5.2.1, then the local convergence rate is
q-superlinear instead.

The proofs for both Theorem 5.2.1 and 5.2.2 can be found in [81] for an adjoint-based
SQP method with inexact Jacobians that matches our problem formulation.

Convergence of the block-wise TR1 Jacobian updates

Theorem 5.2.1 holds for a general class of constraint Jacobian and Hessian approximation
matrices (Ak, Hk). Therefore, we have to show that our block-wise TR1 updates produce
a sequence of block-structured matrices that converge to the exact Jacobian, which is itself
block-structured, projected onto the null space of the active inequality constraint matrix
PA. Namely, defining a null space matrix N as in Theorem 5.2.1, we need to prove that the
following holds

lim
k→∞

∥∥∥∥(Aki − ∂Fi
∂w

(w∗i )

)
Ni

∥∥∥∥ = 0, ∀i = 0, . . . , N − 1, (5.18)

where Ni is the projection of the null space matrix N in the variable space corresponding to
block i. The only non-zero entries that are inexact in the Jacobian approximation matrix
Ak are those corresponding to the block-TR1 matrices Aki , i = 0, . . . , N − 1.

Assumption 5.2.3. Let us make the following assumptions:
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(AS1) The Lagrangian function is twice continuously differentiable.

(AS2) The function ∇wF (w) is Lipschitz continuous, i.e., there exists a constant c3 such that
‖∇wF (w1)−∇wF (w2)‖ ≤ c3‖w1 − w2‖, for any w1, w2.

(AS3) Let {(wk, λk)} be a sequence of iterates generated by our block-TR1 based SQP method
in Algorithm 4, with a corresponding sequence of update parameters {αki }, while satis-
fying the skipping criteria in eqs. (5.14)-(5.15).

(AS4) The SQP iterates {(wk, λk)} converge to a limit point (w∗, λ∗).

(AS5) There is k0 such that the active set is stable for all iterates k ≥ k0.

(AS6) For each block i, the sequence of projections of {sk} on the subspace associated with
block i, namely {ski } is uniformly linearly independent in the projected null space Ni.
There exist c4 > 0 and l such that l ≥ qi, i = 0, . . . , N − 1, and for each ki ≥ k0, there

exist qi distinct indices kji with ki ≤ k1
i < . . . < kqii ≤ ki + l, s

kji
N,i ∈ Rqi, s

kji
i = Nis

kji
N,i,

j = 1, . . . , qi and the minimum singular value σmin(SkiNi
) of the matrix

SkiNi
=

[
s
k1i
N,i

‖s
k1
i

N,i‖
. . .

s
k
qi
i

N,i

‖s
k
qi
i

N,i‖

]
(5.19)

is bounded below by c4, i.e., σmin(SkiNi
) ≥ c4.

Note that the assumptions (AS1)-(AS5) are relatively mild and quite standard in the
Newton-type convergence analysis of SQP methods [81]. Especially, condition (AS5) holds
due to the local stability result in Theorem 5.2.1 for the active set near the NLP solution.
Even though (AS6) seems relatively strong, a very similar assumption is made in existing
convergence results for quasi-Newton type matrix update schemes [71, 81]. Here, we only
require uniform linear independence inside each block i.

We proceed now to prove the convergence of the quasi-Newton block-structured constraint
Jacobian approximation matrices, using ideas from [71] and [81]. We start by first showing
an intermediate result in the following lemma.

Lemma 5.2.4. Given (AS1)-(AS3) in Assumption 5.2.3, then the following holds for each
Jacobian block matrix approximation

∥∥yki − Aliski ∥∥ ≤ c3

c1

(
2

c2
1

+ 1

)l−k
ηl,ki ‖ski ‖, ∀l ≥ k + 1, (5.20a)∥∥∥γki − Al>i σki ∥∥∥ ≤ c3

c1

(
2

c2
1

+ 1

)l−k
ηl,ki ‖σki ‖, ∀l ≥ k + 1, (5.20b)

where i = 0, . . . , N − 1 and ηl,ki = max{‖wri − wsi ‖ | k ≤ s ≤ r ≤ l} is defined.
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Proof. Our proof follows closely the proof of Lemma 4.1 in [81] but extended to our block-
structured method and generalized to include both the forward and adjoint TR1 Jacobian
update formulas.

Step 1: Eq. (5.20a) based on forward Jacobian update
We start by showing the result of Eq. (5.20a) when αi = αF,i. The proof is by induction
on l for each block i = 0, . . . , N − 1. For l = k + 1, we know that yki − Aliski = 0 based on
the forward update. Assume that the result in (5.20a) holds for all {k+ 1, . . . , l}. Then, we
have the following

‖yki − Al+1
i ski ‖ =

∥∥∥yki − Aliski − αlF,i ρliτ l>i ski ∥∥∥ ≤ ‖yki − Aliski ‖+

∣∣∣∣(τ li , ski )(τ li , s
l
i)

∣∣∣∣ ‖ρli‖ (5.21)

where we use the notation (·, ·) to denote an inner product. In addition, τ li = γli−Al
>
i σ

l
i and

ρli = yli − Alisli such that αlF,i = 1
(τ li ,s

l
i)

. Then, using the result in Eq. (5.20a), we can write

∣∣(τ li , ski )∣∣ =
∣∣∣(γli − Al>i σli, ski )∣∣∣ ≤ ∣∣(γli, ski )− (σli, y

k
i )
∣∣+
∣∣(σli, yki )− (σli, A

l
is
k
i )
∣∣

≤
∣∣(γli, ski )− (σli, y

k
i )
∣∣+

c3

c1

(
2

c2
1

+ 1

)l−k
ηl,ki
∥∥σli∥∥∥∥ski ∥∥ . (5.22)

Using the mean-value theorem, it follows that

∣∣(γli, ski )− (σli, y
k
i )
∣∣ =

∣∣∣∣σl>i (∂Fi∂w
(wli + sli)−

∫ 1

0

∂Fi
∂w

(wki + t ski )dt

)
ski

∣∣∣∣
≤ c3 η

l+1,k
i

∥∥σli∥∥∥∥ski ∥∥ , (5.23)

based on the Lipschitz continuity in (AS2). From the skipping condition in (5.14), we know
that

∣∣(τ li , sli)∣∣ ≥ c1

∥∥σli∥∥ ∥∥ρli∥∥. In addition, given that ηl,ki ≤ ηl+1,k
i , we obtain

∥∥yki − Al+1
i ski

∥∥ ≤ c3

c1

(
2

c2
1

+ 1

)l−k
ηl,ki
∥∥ski ∥∥+(

c3η
l+1,k
i +

c3

c1

(
2

c2
1

+ 1

)l−k
ηl,ki

) ∥∥σli∥∥∥∥ski ∥∥∣∣(τ li , sli)∣∣ ∥∥ρli∥∥ ≤ c3

c1

(
2

c2
1

+ 1

)l+1−k

ηl+1,k
i

∥∥ski ∥∥ . (5.24)

Step 2: Eq. (5.20a) based on adjoint Jacobian update
Let us continue this proof by induction on l for Eq. (5.20a), based on the adjoint Jacobian
update formula. First, we derive the following error bound for the adjoint Jacobian update
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in case l = k + 1 in Eq. (5.20a)

∥∥yki − Ak+1
i ski

∥∥ =

∥∥∥∥yki − Aki ski − 1

(σki , ρ
k
i )
ρki τ

k>

i ski

∥∥∥∥ =

∥∥∥∥ρki − 1

(σki , ρ
k
i )
ρki τ

k>

i ski

∥∥∥∥
=

∣∣∣∣1− (τ ki , s
k
i )

(σki , ρ
k
i )

∣∣∣∣ ∥∥ρki ∥∥ =

∣∣∣∣∣(σki , yki − Aki ski )− (γki − Ak
>
i σki , s

k
i )

(σki , ρ
k
i )

∣∣∣∣∣ ∥∥ρki ∥∥
=

∣∣(σki , yki )− (γki , s
k
i )
∣∣∣∣(σki , ρki )∣∣ ∥∥ρki ∥∥ .

(5.25)

From the skipping conditions in (5.14)-(5.15), we know that
∣∣(σki , ρki )∣∣ ≥ c1

∥∥ski ∥∥ ∥∥τ ki ∥∥ and∥∥ρki ∥∥ ≤ |(τki ,ski )|
c1‖σk

i ‖
≤ ‖τ

k
i ‖‖ski ‖
c1‖σk

i ‖
holds. We can use these lower and upper bounds to rewrite the

latter expression as

∥∥yki − Ak+1
i ski

∥∥ =

∣∣(σki , yki )− (γki , s
k
i )
∣∣∣∣(σki , ρki )∣∣ ∥∥ρki ∥∥ ≤ ∣∣(σki , yki )− (γki , s

k
i )
∣∣

c1

∥∥ski ∥∥ ∥∥τ ki ∥∥ ∥∥ρki ∥∥
≤
∣∣(σki , yki )− (γki , s

k
i )
∣∣

c2
1

∥∥σki ∥∥
≤ c3

c2
1

∥∥ski ∥∥2
,

(5.26)

where we additionally used the result

∣∣(γki , ski )− (σki , y
k
i )
∣∣ =

∣∣∣∣σk>i (
∂Fi
∂w

(wk+1
i )−

∫ 1

0

∂Fi
∂w

(wki + t ski )dt

)
ski

∣∣∣∣
≤ c3

∥∥σki ∥∥∥∥ski ∥∥2
.

(5.27)

Note that ηk+1,k
i =

∥∥ski ∥∥ such that Eq. (5.20a) holds in case l = k + 1. Assume that the
result in (5.20a) holds for all {k + 1, . . . , l}. Then, we have the following

‖yki − Al+1
i ski ‖ =

∥∥∥yki − Aliski − αlA,i ρliτ l>i ski ∥∥∥
≤ ‖yki − Aliski ‖+

∣∣∣∣(τ li , ski )(σli, ρ
l
i)

∣∣∣∣ ‖ρli‖, (5.28)

for the adjoint Jacobian update formula in which αA,i = 1
(σl

i,ρ
l
i)

. From the skipping conditions

in (5.14)-(5.15), we know that
∣∣(σli, ρli)∣∣ ≥ c1

∥∥sli∥∥ ∥∥τ li∥∥ and
∥∥ρli∥∥ ≤ |(τ li ,sli)|c1‖σl

i‖
≤ ‖τ

l
i‖‖sli‖
c1‖σl

i‖
holds

such that
‖σl

i‖‖ρli‖
|(σl

i,ρ
l
i)|
≤ 1

c1

‖σl
i‖‖ρli‖
‖sli‖‖τ li‖

≤ 1
c21

. In addition, given eqs. (5.22) and (5.23) and given
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that ηl,ki ≤ ηl+1,k
i , we obtain∥∥yki − Al+1
i ski

∥∥ ≤
c3

c1

(
2

c2
1

+ 1

)l−k
ηl,ki
∥∥ski ∥∥+

(
c3η

l+1,k
i +

c3

c1

(
2

c2
1

+ 1

)l−k
ηl,ki

) ∥∥σli∥∥∥∥ski ∥∥∣∣(σli, ρli)∣∣ ∥∥ρli∥∥
≤ c3

c1

(
1

c1

+

(
1

c2
1

+ 1

)(
2

c2
1

+ 1

)l−k)
ηl+1,k
i

∥∥ski ∥∥
≤ c3

c1

(
2

c2
1

+ 1

)l+1−k

ηl+1,k
i

∥∥ski ∥∥ .
(5.29)

Note that the induction proof of step 1 and 2 implies that Eq. (5.20a) additionally
holds when switching between the forward and adjoint Jacobian update formulas. A similar
induction-based proof can be used to show the result of Eq. (5.20b) for the dynamic block-
TR1 Jacobian updates.

Now, we present the resulting theorem on the convergence of the Jacobian approximation
for the block-wise TR1 scheme under any sequence of decision rules that select the adjoint
or forward updates at every iteration k and for each block i = 0, . . . , N − 1.

Theorem 5.2.5. Given (AS1)-(AS6) in Assumption 5.2.3, then the following holds for each
Jacobian block matrix i = 0, . . . , N − 1

lim
k→∞

∥∥∥∥(Aki − ∂Fi
∂wi

(w∗i )

)
Ni

∥∥∥∥ = 0, (5.30)

such that the following holds for the complete Jacobian approximation

lim
k→∞

∥∥∥∥(Ak − ∂F

∂w
(w∗)

)
N

∥∥∥∥ = 0. (5.31)

Proof. Based on the inequality ‖wri −wsi ‖ ≤ ‖wri −w∗i ‖+ ‖wsi −w∗i ‖ and using the definition
ηl,ki = max{‖wri − wsi ‖ | k ≤ s ≤ r ≤ l}, one obtains

ηk+l+1,k
i ≤ 2 νki for νki = max{‖wsi − w∗i ‖ | k ≤ s ≤ k + l + 1}, (5.32)

for l ≥ qi and qi is defined as in Assumption 5.2.3. In addition, the following holds∥∥∥∥yji − ∂Fi
∂wi

(w∗i )s
j
i

∥∥∥∥ =

∥∥∥∥∥
(∫ 1

0

∂Fi
∂wi

(wji + tsji )dt

)
sji −

∂Fi
∂wi

(w∗i )s
j
i

∥∥∥∥∥ (5.33a)

=

∥∥∥∥∥
(∫ 1

0

∂Fi
∂wi

(wji + tsji )dt−
∂Fi
∂wi

(w∗i )

)
sji

∥∥∥∥∥ (5.33b)

≤ c3ν
k
i

∥∥sji∥∥ , (5.33c)
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at an iteration j, where k ≤ j ≤ k+ l, regardless of whether the forward or adjoint Jacobian
update formula has been used. Moreover, from Lemma 5.2.4, we have that

∥∥yji − Ak+l+1
i sji

∥∥ ≤ c3

c1

(
2

c2
1

+ 1

)k+l+1−j

ηk+l+1,j
i ‖sji‖, k ≤ j ≤ k + l,

≤ 2
c3

c1

(
2

c2
1

+ 1

)l+1

νki ‖s
j
i‖.

(5.34)

We use the triangle inequality to obtain∥∥∥∥∥
(
Ak+l+1
i − ∂Fi

∂wi
(w∗i )

)
sji∥∥sji∥∥
∥∥∥∥∥ ≤ 1∥∥sji∥∥

(∥∥yji − Ak+l+1
i sji

∥∥+

∥∥∥∥yji − ∂Fi
∂wi

(w∗i )s
j
i

∥∥∥∥) (5.35a)

≤

(
2
c3

c1

(
2

c2
1

+ 1

)l+1

+ c3

)
νki , (5.35b)

which holds for a sequence of indices j = k1
i , . . . , k

qi
i . Then, we use the linear independence

condition (AS6) in Assumption 5.2.3 that guarantees both existence of the inverse (SkiNi
)−1

and the upper bound ‖(SkiNi
)−1‖ ≤ 1/c4, such that∥∥∥∥(Ak+l+1

i − ∂Fi
∂wi

(w∗i )

)
Ni

∥∥∥∥ ≤ 1

c4

∥∥∥∥(Ak+l+1
i − ∂Fi

∂wi
(w∗i )

)
NiS

ki
Ni

∥∥∥∥ (5.36a)

≤ c5 ν
k
i , (5.36b)

where c5 = c3
c4

(
2
c1

(
2
c21

+ 1
)l+1

+ 1

)
√
qi has been defined. Lastly, the result in Eq. (5.30)

follows from the fact that assumption (AS4) implies that νki tends to zero. Note that
this asymptotic result holds regardless of which Jacobian update (adjoint or forward TR1
formula) is performed for each block i = 0, . . . , N − 1. The same convergence result then
holds for the complete Jacobian matrix in (5.31), based on separability of the active inequality
constraints and of the nonlinear constraint functions.

Local rate of linear convergence for Gauss-Newton based SQP

One iteration of the adjoint-based Gauss-Newton SQP method solves the linear system
in Eq. (5.6), which can be written in the following compact form

J̃IN(zk)∆z = −F(zk), (5.37)

where F(·) denotes the KKT optimality conditions in the right-hand side of Eq. (5.6). Let us
define regularity for a local minimizer z? := (w?, λ?, µ?) of the NLP, given a particular set of
active inequality constraints. For this purpose, we rely on the linear independence constraint
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qualification (LICQ) and the second order sufficient conditions (SOSC) for optimality, of
which the latter requires that the Hessian of the Lagrangian is strictly positive definite in
the directions of the critical cone [186].

Definition 5.2.6. A minimizer of an equality constrained NLP is called a regular KKT
point, if both LICQ and SOSC are satisfied at this KKT point.

The convergence of this Newton-type optimization method then follows the classical and
well-known local contraction theorem from [52, 75, 81, 188, 199]. We use a particular version
of this theorem from [80, 203], providing sufficient and necessary conditions for the existence
of a neighbourhood of the solution where the Newton-type iteration converges locally. Let
ρ(P ) denote the spectral radius, i.e., the maximum absolute value of the eigenvalues for the
square matrix P .

Theorem 5.2.7 (Local Newton-type contraction [188]). We consider the twice continuously
differentiable function F(z) from Eq. (5.6) and the regular KKT point F(z?) = 0 from
Definition 5.2.6. We then apply the Newton-type iteration in Eq. (5.37), where J̃IN(z) ≈ J(z)
is additionally assumed to be continuously differentiable and invertible in a neighbourhood of
the solution. If all eigenvalues of the iteration matrix have a modulus smaller than one, i.e.,
if the spectral radius satisfies

κ? := ρ
(
J̃IN(z?)−1J(z?)− 1

)
< 1, (5.38)

then this fixed point z? is asymptotically stable. Additionally, the iterates zk converge linearly
to the KKT point z? with the asymptotic contraction rate κ? when initialized sufficiently close.
On the other hand, the fixed point z? is unstable if κ? > 1.

A proof for Theorem 5.2.7 can be found in [80, 206], based on nonlinear systems theory.
Using this result, let us define the linear contraction rate for a Gauss-Newton method with
exact Jacobian information

κ?GN := ρ

 H (∂F
∂w
− E)> P>A

∂F
∂w
− E
PA

−1  ∇2
wL (∂F

∂w
− E)> P>A

∂F
∂w
− E
PA

− 1

 < 1, (5.39)

at the local solution point z? := (w?, λ?, µ?) of the KKT conditions. In what follows, we
show that the local contraction rate for the block-TR1 Gauss-Newton SQP method

κ?BTR1 := ρ

 H (A− E)> P>A
A− E
PA

−1  ∇2
wL (∂F

∂w
− E)> P>A

∂F
∂w
− E
PA

− 1

 < 1, (5.40)

coincides with the exact Jacobian based linear convergence rate in (5.39). The following
result states that the spectrum of the iteration matrix J̃IN(z?)−1J(z?)−1 at the solution point
z? := (w?, λ?, µ?) coincides with the spectrum of the iteration matrix J̃GN(z?)−1J(z?) − 1,
using the notation σ(P ) to denote the spectrum, i.e., the set of eigenvalues for a matrix P .
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Lemma 5.2.8. Given (AS1)-(AS6) in Assumption 5.2.3, for a regular KKT point z? :=
(w?, λ?, µ?), eigenvalues of the block-TR1 iteration matrix J̃IN(z?)−1J(z?)− 1 satisfy

σ
(
J̃IN(z?)−1J(z?)− 1

)
= σ

(
J̃GN(z?)−1J(z?)− 1

)
. (5.41)

Proof. Let us define the eigenvalues θ of the iteration matrix J̃IN(z?)−1J(z?)−1 as the zeros
of

det
(
J̃IN(z?)−1J(z?)− (θ + 1)1

)
= 0, (5.42)

which, given that the Jacobian approximation J̃IN is invertible, this is equivalent to

det
(
J(z?)− (θ + 1)J̃IN(z?)

)
= 0. (5.43)

This block matrix then reads as

J(z?)− (θ + 1)J̃IN(z?) =

 ∇2
wL − (θ + 1)H

(
∂F
∂w
− (θ + 1)A

)>
+ θE> −θP>A(

∂F
∂w
− (θ + 1)A

)
+ θE

−θPA

 .
(5.44)

The result follows from Theorem 5.2.5 that claims the following asymptotic result for the
block-TR1 based Jacobian approximation

lim
k→∞

(
Ak − ∂F

∂w
(w∗)

)
N =

(
A− ∂F

∂w
(w∗)

)
N = 0, (5.45)

where N is a null space matrix with appropriate dimensions and orthonormal column vectors
such that N>N = 1 and PAN = 0.

We rewrite Eq. (5.43) as follows

det
(
J(z?)− (θ + 1)J̃IN(z?)

)
=

(−θ)2nA det

 ∇2
wL − (θ + 1)H

(
∂F
∂w
− (θ + 1)A

)>
+ θE> P>A(

∂F
∂w
− (θ + 1)A

)
+ θE

PA

 .
(5.46)

It can be verified that det
(
J(z?)− (θ + 1)J̃IN(z?)

)
= 0 holds for θ = 0 with an algebraic

multiplicity of 2nA as well as for the values of θ that satisfy

det

([
N> 0
0 1

] [
∇2
wL − (θ + 1)H

(
∂F
∂w
− (θ + 1)A

)>
+ θE>(

∂F
∂w
− (θ + 1)A

)
+ θE 0

] [
N 0
0 1

])
= det

([
N>∆H N N>

(
∂F
∂w
− (θ + 1)A

)>
+ θN>E>(

∂F
∂w
− (θ + 1)A

)
N + θE N 0

])
= (−θ)2nF det

([
N>∆H N N>

(
∂F
∂w
− E

)>(
∂F
∂w
− E

)
N 0

])
= 0,

(5.47)
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in the limit for k →∞, where the compact notation ∆H := (∇2
wL − (θ + 1)H) has been used

for the Gauss-Newton Hessian approximation. Therefore, the eigenvalues of the iteration
matrix J̃IN(z?)−1J(z?) − 1 for the proposed block-TR1 approach, evaluated at a regular
KKT point, are equal to the eigenvalues of the iteration matrix J̃GN(z?)−1J(z?)− 1 for the
exact Jacobian based Gauss-Newton method. The latter can be verified by performing the

same sequence of transformations for the equation det
(
J(z?)− (θ + 1)J̃GN(z?)

)
= 0.

Corollary 5.2.9. Based on Lemma 5.2.8, the linear contraction rate for the block-TR1 based
optimization algorithm coincides with the linear contraction rate of the exact Jacobian based
Gauss-Newton method κ?BTR1 = κ?GN, when the iterates are sufficiently close to the regular
KKT point z? := (w?, λ?, µ?).

Superlinear convergence for SQP with quasi-Newton Hessian updates

Even though the majority of this article is focused on the generalized Gauss-Newton
method for nonlinear least squares type optimization problems that occur frequently in pre-
dictive control applications, note that superlinear convergence results can be recovered when
a block-structure preserving quasi-Newton method is additionally used to approximate the
Hessian of the Lagrangian. For example, let us consider the following lemma that repre-
sents a block-structured or partitioned version [111, 110] of the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) [14] or the symmetric rank-one (SR1) formula [71, 135] to approximate the
block-diagonal Hessian matrix.

Theorem 5.2.10. Given (AS1)-(AS6) in Assumption 5.2.3, then the following holds for
each Hessian block matrix approximation

lim
k→∞

∥∥(Hk
i −∇2

wiwi
L(w?i , λ

?
i )
)
Ni

∥∥ = 0, (5.48)

i = 0, . . . , N − 1, such that the following holds for the complete Hessian approximation

lim
k→∞

∥∥(Hk −∇2
wwL(w?, λ?)

)
N
∥∥ = 0. (5.49)

Theorem 5.2.10 on the convergence of a separable quasi-Newton type Hessian approxima-
tion method in combination with our main result in Theorem 5.2.5 on the block-structured
quasi-Newton type Jacobian update formula can be used directly to prove the following
result on convergence of the reduced KKT matrix.

Theorem 5.2.11. Given (AS1)-(AS6) in Assumption 5.2.3, the following holds

lim
k→∞

∥∥∥∥[N>HkN N>Ak
>

AkN 0

]
−
[
N>∇2

wwL(w?, λ?)N N> ∂F
∂w

(w?)>
∂F
∂w

(w?)N 0

]∥∥∥∥ = 0. (5.50)
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Based on Theorem 5.2.2, the above result ensures q-superlinear convergence of the SQP
iterates when using a quasi-Newton method to update both the block-structured Hessian and
Jacobian matrices. The proof for Theorem 5.2.11, based on the intermediate convergence
results in Theorem 5.2.5 and 5.2.10 can be found in [81].

5.3 Lifted Collocation Algorithm with Block-TR1

Jacobian Updates

As mentioned earlier, implicit integration schemes are often used in direct optimal con-
trol because of their relatively high order of accuracy and their improved numerical stability
properties [118]. More specifically, problem formulations based on a system of stiff and/or
implicit differential or differential-algebraic equations require the use of an implicit integra-
tion scheme. Collocation methods are a popular family of implicit Runge-Kutta methods.
This section presents a novel lifted collocation algorithm based on tailored block-TR1 Jaco-
bian updates. The standard lifted collocation method with exact Jacobian information was
proposed in [207] as a structure-exploiting implementation of direct collocation, even though
it shows similarities to multiple shooting.

Direct collocation for nonlinear optimal control

In direct transcription methods, such as direct collocation [41, 46], the integration scheme
and its intermediate variables are directly made part of the nonlinear optimization problem.
In this context, where the simulation routine is defined implicitly as part of the equality
constraints in the dynamic optimization problem, one typically relies on implicit integra-
tion schemes for their relatively high order of accuracy and improved numerical stability
properties. The discrete-time optimal control problem can generally be written as

min
X,U,K

N−1∑
i=0

li(xi, ui) + lN(xN) (5.51a)

s.t. x̂0 = x0, (5.51b)

xi +BiKi = xi+1, i = 0, . . . , N − 1, (5.51c)

Gi(xi, ui, Ki) = 0, i = 0, . . . , N − 1, (5.51d)

Piwi ≤ pi, i = 0, . . . , N, (5.51e)

where the additional trajectory K = [K>0 , . . . , K
>
N−1]> denotes the intermediate variables of

the numerical integration method. These variables are defined implicitly by the equations
in (5.51d), such that the continuity condition reads as in Eq. (5.51c). More specifically,
the Jacobian ∂Gi

∂Ki
(·) will generally be invertible for an integration scheme applied to a well-

defined set of differential equations in (5.1c). A popular approach of this type is better known
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as direct collocation [44]. It relies on a collocation method, a subclass of implicit Runge-
Kutta (IRK) methods [118], to accurately discretize the continuous time dynamics. In this
case, the equations in (5.51d) define the collocation polynomial on each control interval
i = 0, . . . , N − 1.

In a similar fashion as described in the previous section, the adjoint-based SQP method
can be applied directly to the direct collocation problem in (5.51) by solving the following
convex QP subproblem at each iteration

min
∆W,∆K

N∑
i=0

1

2
∆w>i H

k
i ∆wi + hc

>

i

[
∆wi
∆Ki

]
(5.52a)

s.t. ∆x0 = x̂0 − xk0, (5.52b)

eki + ∆xi +Bi ∆Ki = ∆xi+1, i = 0, . . . , N − 1, (5.52c)

cki +Dk
i ∆wi + Ck

i ∆Ki = 0, i = 0, . . . , N − 1, (5.52d)

Pi ∆wi ≤ pki , i = 0, . . . , N, (5.52e)

based on cki := Gi(w
k
i , K

k
i ), eki := xki + BKk

i − xki+1, and the Jacobian approximations
Dk
i ≈ ∂Gi

∂wi
(wki , K

k
i ) and Ck

i ≈ ∂Gi

∂Ki
(wki , K

k
i ). The corresponding gradient correction reads as

hci :=

∇wi
l(wki ) +

(
∂Gi

∂wi
(wki , K

k
i )−Dk

i

)>
ωki(

∂Gi

∂Ki
(wki , K

k
i )− Ck

i

)>
ωki

 , (5.53)

where ωki denotes the current value of the multipliers for the nonlinear constraints in (5.51d)
and λki again denotes the multipliers for the continuity constraints in (5.51c).

Tailored structure exploitation for direct collocation

As mentioned earlier, the Jacobian matrix ∂Gi

∂Ki
for the collocation equations needs to be

invertible. Therefore, given an invertible approximation Ck
i ≈ ∂Gi

∂Ki
(wki , K

k
i ), we can rewrite

the linearized expression in Eq (5.52d) as follows

∆Ki = −Ck−1

i

(
cki +Dk

i ∆wi
)
. (5.54)

By substituting the above expression for ∆Ki back into the direct collocation structured QP
in (5.52), one obtains the condensed but equivalent formulation

min
∆W

N∑
i=0

1

2
∆w>i H

k
i ∆wi + h̃c

>

i ∆wi (5.55a)

s.t. ∆x0 = x̂0 − xk0, (5.55b)

dki + ∆xi −BiC
k−1

i Dk
i ∆wi = ∆xi+1, i = 0, . . . , N − 1, (5.55c)

Pi ∆wi ≤ pki , i = 0, . . . , N, (5.55d)
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where dki = eki −BiC
k−1

i cki is defined and the condensed gradient reads as

h̃ci = ∇wi
l(wki ) +

(
∂Gi

∂wi
− ∂Gi

∂Ki

Ck−1

i Dk
i

)>
ωki , (5.56)

given the original gradient correction in (5.53).
Note that the resulting QP formulation in Eq. (5.55) is of the same problem dimen-

sions and exhibits the same sparsity as the multiple shooting structured QP subproblem in
Eq. (5.7). Therefore, state of the art block-structured QP solvers can be used, for which
an overview can be found in [94]. After solving the condensed QP in (5.55), the collocation
variables can be obtained from the expansion step in Eq. (5.54). Based on the optimal-
ity conditions of the original direct collocation structured QP in (5.52), the corresponding
Lagrange multipliers can be updated as follows

ωk+1
i = ωki − Ck−>

i

(
∂Gi

∂Ki

>
ωki +B>i λ

k+1
i

)
, (5.57)

where λk+1
i denote the new values of the Lagrange multipliers for the continuity conditions

in (5.55c) or in (5.52c).

Block-TR1 Jacobian update for lifted collocation

The block-TR1 update formula from Eq. (5.11) can be readily applied to the direct
collocation equations, resulting in

[Dk+1
i Ck+1

i ] = [Dk
i C

k
i ] + αki

(
yki − [Dk

i C
k
i ] ski

) (
γk
>

i − σk
>

i [Dk
i C

k
i ]
)
, (5.58)

where the quantities γk
>
i = σk

>
i

∂Gi

∂(wi,Ki)
(wk+1

i , Kk+1
i ) and σki = ωk+1

i − ωki are defined. In

addition, ski :=

[
wk+1
i − wki

Kk+1
i −Kk

i

]
and yki = Gi(w

k+1
i , Kk+1

i ) − Gi(w
k
i , K

k
i ) is defined. In order

to use this block-TR1 update formula in combination with the lifted collocation method,
one needs to be able to efficiently form the condensed QP in Eq. (5.55). For this purpose,
we need to avoid the costly computations of the inverse matrix Ck−1

i as well as the matrix-
matrix multiplication Ck−1

i Dk
i . In what follows, we present a procedure to directly obtain a

rank-one update formula for the inverse matrix Ck+1−1

i and for the corresponding product

Ek+1
i := Ck+1−1

i Dk+1
i .

Avoiding expensive matrix-matrix operations

Based on the Sherman-Morrison formula, one can directly update the matrix inverse

given the previous invertible approximation Ck−1

i ≈ ∂Gi

∂Ki

−1
. Let us first rewrite the block-

TR1 update from Eq. (5.58) as follows

Dk+1
i = Dk

i + αki ρ
k
i τ

k>

D,i and Ck+1
i = Ck

i + αki ρ
k
i τ

k>

C,i , (5.59)
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where ρki = yki − [Dk
i C

k
i ]ski and [τ k

>
D,i τ

k>
C,i ] = γk

>
i − σk

>
i [Dk

i C
k
i ]. The Sherman-Morrison

formula then reads as
Ck+1−1

i = Ck−1

i − αki βki Ck−1

i ρki τ
k>

C,iC
k−1

i , (5.60)

where βki = 1

1 +αk
i τ

k>
C,iC

k−1
i ρki

. Let us define ρ̃ki = Ck−1

i ρki such that we obtain the following

update for the condensed Jacobian

Ek+1
i = Ck+1−1

i Dk+1
i = Ck−1

i

(
Dk
i + αki ρ

k
i τ

k>

D,i

)
− αki βki Ck−1

i ρki τ
k>

C,iC
k−1

i

(
Dk
i + αki ρ

k
i τ

k>

D,i

)
= Ek

i + αki ρ̃
k
i τ

k>

D,i − αki βki ρ̃ki τ k
>

C,i(E
k
i + αki ρ̃

k
i τ

k>

D,i)

= Ek
i + αki ρ̃

k
i τ̃

k>

i ,
(5.61)

where τ̃ k
>

i = τ k
>

D,i−βki τ k
>

C,i(E
k
i +αki ρ̃

k
i τ

k>
D,i) has been defined. It is readily seen that the update

for Ek
i in Eq. (5.61) is a rank-one update for the condensed Jacobian matrix. An additional

damping, pivoting or splitting of the Jacobian updates [114, 160] can be introduced in order
to avoid singularity and/or blow-up of the matrix. As proposed in [123], corresponding
low-rank update formulas for the condensed Hessian can be obtained for a pseudospectral
method based on a global collocation polynomial.

Lifted collocation SQP method with block-TR1 Jacobian updates

It is important to stress that the novel block-TR1 update formula for the condensed
Jacobian matrix Ek+1

i = Ck+1−1

i Dk+1
i in Eq. (5.61) provides an efficient manner to directly

compute the rank-one update to the matrices in the condensed QP formulation of Eq. (5.55),
without the need for a matrix factorization, inversion and without any matrix-matrix multi-
plications. Instead, the proposed implementation merely requires matrix-vector multiplica-
tions and outer products, resulting in a quadratic instead of cubic computational complexity
with respect to the number of optimization variables within each control interval. However,
this comes at the cost of a slightly increased memory footprint, since additionally the ma-
trices C−1

i and Ei need to be stored from one iteration to the next. The implementation of
the lifted block-TR1 based SQP method for direct collocation is presented in Algorithm 5.

We observe that the TR1 Jacobian updates of the lifted collocation implementation are
equivalent to the updates of the direct collocation method. More specifically, the Jacobian
approximation matrices are the same at each SQP iteration, regardless of whether we perform
the condensing and expansion procedure for the collocation variables in the proposed lifted
implementation of Algorithm 5. Therefore, the convergence properties shown in the previous
section also hold for both the standard and lifted collocation based block-TR1 SQP method.

Corollary 5.3.1. If the assumptions of Theorem 5.2.1 and Assumption 5.2.3 hold, then the
lifted collocation SQP method with block-wise TR1 Jacobian updates in Algorithm 5, with a
Gauss-Newton Hessian approximation, produces iterates {wk, λk, µk} that converge q-linearly
within a neighbourhood around the KKT point (w∗, λ∗, µ∗) of the NLP.
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Algorithm 5 One lifted collocation SQP iteration with block-wise TR1 updates.

Input: wki = (xki , u
k
i ), K

k
i , λki , ω

k
i , Ck

i , Dk
i , C

k−1

i and Ek
i .

Problem linearization and QP preparation

1: Formulate the QP in (5.55) with Jacobian matrices Ek
i , Gauss-Newton Hessian approx-

imations Hk
i and vectors dki , p

k
i and h̃ci in (5.56) for i = 0, . . . , N − 1.

Computation of Newton-type step direction

2: Solve the QP subproblem in Eq. (5.55) to update optimization variables:
wk+1
i ← wki + ∆wki and λk+1

i ← λki + ∆λki . . full step

Block-wise TR1 Jacobian updates

3: for i = 0, . . . , N − 1 do in parallel
4: Choose αki = αkF,i or αki = αkA,i via some decision rule.

5: Kk+1
i ← Kk

i − Ck−1

i cki − Ek
i ∆wki ,

6: ωk+1
i ← ωki − Ck−>

i

(
∂Gi

∂Ki

>
ωki +B>i λ

k+1
i

)
,

7: Dk+1
i ← Dk

i + αki ρ
k
i τ

k>
D,i and Ck+1

i ← Ck
i + αki ρ

k
i τ

k>
C,i ,

8: Ck+1−1

i ← Ck−1

i − αki βki ρ̃ki τ k
>

C,iC
k−1

i ,

9: Ek+1
i ← Ek

i + αki ρ̃
k
i τ̃

k>
i .

10: end for
Output: wk+1

i , Kk+1
i , λk+1

i , ωk+1
i , Ck+1

i , Dk+1
i , Ck+1−1

i and Ek+1
i .

Proof. It follows from the equivalence of the SQP iterations between the direct and lifted
collocation formulation based on the numerical condensing and expansion of the collocation
variables in Eq. (5.54). In particular, the direct collocation QP subproblem (5.52) is a special
case of the QP formulation in (5.7), with additional intermediate variables and corresponding
equations. The block-TR1 Jacobian matrix convergence results of Theorem 5.2.5 therefore
hold for direct collocation as well as for the proposed lifted implementation in Algorithm 5.

5.4 Numerical Case Studies of Nonlinear Model

Predictive Control

In this section, we illustrate numerically how the proposed block-TR1 SQP method can be
used in the context of NMPC using an algorithm implementation based on the real-time iter-
ations (RTI), as proposed originally in [79] with exact Jacobian information. The approach is
based on one block-TR1 SQP iteration per control time step, and using a continuation-based
warm starting of the state and control trajectories from one time step to the next [122]. Each
iteration consists of two steps:

1. Preparation phase: discretize and linearize the system dynamics, linearize the remain-
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ing constraint functions, and evaluate the quadratic objective approximation to build
the optimal control structured QP subproblem.

2. Feedback phase: solve the QP to update the current values for all optimization variables
and obtain the next control input to apply feedback to the system.

The proposed block-wise TR1 based Jacobian updates in Algorithm 4 and 5 become part of
the preparation step, in order to construct the linearized continuity equations. Therefore, the
feedback step remains unchanged and the Jacobian updates do not affect the computational
delay between obtaining the new state estimate and applying the next control input value
to the system.

We validate the closed-loop performance of these novel block-TR1 based RTI algorithms
by presenting numerical simulation results for two NMPC case studies. Motivated by real
embedded control applications, we present the computation times for the proposed NMPC
algorithms using the ARM Cortex-A53 processor in the Raspberry Pi 3. The block-sparse
QP solution in the feedback phase will be carried out by the primal active-set method, called
PRESAS, that was recently presented in [204].

NMPC for a chain of spring-connected masses

In our first case study, the control task is to return a chain of nm masses connected with
springs to its steady state, starting from a perturbed initial configuration, without hitting
a wall that is placed close to the equilibrium state configuration. The mass at one end is
fixed, while the control input u(t) ∈ R3 to the system is the direct force applied to the mass
at the other end of the chain. The state of each free mass xj := [pj

>
, vj

>
]> ∈ R6 consists in

its position pj := [pjx, p
j
y, p

j
z]
> ∈ R3 and velocity vj ∈ R3 for j = 1, . . . , nm − 1, such that the

dynamic system can be described by the concatenated state vector x(t) ∈ R6(nm−1). Similar
to the work in [207], the nonlinear chain of masses can be used to validate the computational
performance and scaling of an optimal control algorithm for a range of numbers of masses
nm, resulting in a range of different problem dimensions. The nonlinear system dynamics
and the resulting optimal control problem formulation can be found in [253].

Local convergence: Gauss-Newton SQP with block-TR1 Jacobian updates

We illustrate the impact of the proposed block-wise TR1 Jacobian updates on the local
convergence rate of the resulting inexact adjoint-based SQP algorithm. Figure 5.1 shows
a comparison of the convergence between different SQP variants for the solution of the
nonlinear chain of masses OCP. In particular, the comparison includes the exact Jacobian-
based SQP method, the standard dense TR1 update [113], and the good and bad Broyden
update formulas [58]. For the proposed block-TR1 based SQP implementation, the figure
illustrates both the adjoint and forward variant by using, respectively, the scaling factor
in (5.12) and (5.13). The performance of the block-TR1 method is additionally illustrated
for an implementation where αi is chosen dynamically, depending on which of the two variants
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Figure 5.1: Local convergence analysis: comparison between different variants of the inexact
adjoint-based SQP method as described in Algorithm 5 based on lifted collocation, using
either the exact Jacobian or different quasi-Newton type Jacobian update formulas for the
nonlinear chain of 6 masses.

results in the largest denominator in order to avoid the need to skip a block-wise Jacobian
update.

It is known that an exact Jacobian-based SQP method with Gauss-Newton type Hessian
approximation results in locally linear convergence, for which the asymptotic contraction rate
depends on the optimal residual value in the least squares type objective [186]. It can be
observed in Figure 5.1 that all three variants of the proposed block-wise TR1 update formula
result in the same asymptotic rate of convergence as for the exact Jacobian based algorithm,
i.e., the rate of convergence appears to be the same close to the local solution of the NLP.
Note that this confirms numerically the result of Corollary 5.2.9. In addition, the block-wise
TR1 Jacobian updates result in a smaller total number of SQP iterations, compared to the
standard dense Jacobian update formulas for the particular example in Figure 5.1. In the
latter case, the direct application of a standard rank-one update formula destroys the block
sparsity in the QP subproblems and is therefore computationally unattractive.

Computational timing results for block-TR1 based lifted collocation

Figure 5.2 illustrates the computation times of both the preparation and feedback steps
of an NMPC implementation for a chain of nm = 2, . . . , 8 masses, using the lifted collo-
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Figure 5.2: Comparison of the average preparation and feedback computation times (in ms, loga-
rithmic scale): block-TR1 versus exact Jacobian based lifted collocation SQP method. 1

Table 5.1: Average computation times (in ms) for NMPC on a chain of nm = 6 masses, i.e.,
30 differential states (4 Gauss collocation nodes versus 10 steps of RK4).

Explicit (RK4 in Alg. 4) Implicit (GL4 in Alg. 5)

exact block-TR1 exact block-TR1

Linearization 32.36 5.33 16% 291.37 35.99 12%
QP solution 23.22 37.82 26.33 27.86

Total RTI step 56.39 43.99 78% 318.58 64.69 20%

cation based SQP method in Algorithm 5. It can be observed that the preparation time
scales quadratically with the number of states for the block-TR1 implementation, instead
of the cubic computational complexity when using the exact Jacobian. More specifically,
the Jacobian evaluation, the factorization and matrix-matrix multiplications are replaced by
adjoint differentiation sweeps and matrix-vector operations in Algorithm 5. On the other
hand, the feedback time remains essentially the same because, after the linearization and QP
preparation, both approaches lead to the solution of a similarly structured QP in Eq. (5.7)
or (5.55).

Table 5.1 provides a more detailed comparison between the exact Jacobian and the pro-
posed block-TR1 variant of the real-time iterations for NMPC, using a sequential algorithm
implementation on an ARM Cortex-A53 processor. The table shows these results for both
the explicit Runge-Kutta method of order 4 (RK4) in combination with Algorithm 4 and

1The computation times in Figure 5.2 have been obtained using a sequential algorithm implementation
on an Intel i7-7700k processor @ 4.20 GHz on Windows 10 with 64 GB of RAM.
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Figure 5.3: Closed-loop NMPC performance of two double lane changes at a vehicle speed of
10 m/s on snow-covered road conditions, using model parameters from [38] in the nonlinear
OCP formulation [201]. These time trajectories of Y and vy, respectively, denote the position
and velocity along the Y-axis.

using the implicit 4-stage Gauss-Legendre (GL4) method within Algorithm 5. The pro-
posed block-TR1 algorithm results in a computational speedup of about factor 6− 8 for the
problem linearization step. In order to obtain a relatively fair comparison, the number of
integration steps for RK4 has been chosen such that the numerical accuracy is close to that
of the 4-stage GL method. However, since the system dynamics for the chain of masses are
non-stiff, an explicit integration scheme should instead typically perform better in terms of
computational efficiency.

NMPC for vehicle control on a snow-covered road

Our second case study considers NMPC for real-time vehicle control as motivated by
automotive applications in autonomous driving. The nonlinear optimal control problem for-
mulation is based on single-track vehicle dynamics with a Pacejka-type tire model [201]. The
experimentally validated model parameters can be found in [38]. As often the case in prac-
tice, these vehicle dynamics are rather stiff such that an implicit integration scheme should
preferably be used. Therefore, it forms an ideal case study for the proposed lifted colloca-
tion based RTI method of Algorithm 5. Let us perform the closed-loop NMPC simulations
as presented in [201], but using the proposed block-TR1 based RTI implementation. We
carried out numerical simulations for two successive double lane changes on snow-covered
road conditions. The resulting closed-loop trajectories for both the exact Jacobian and the
block-TR1 method are indistinguishable from each other, as illustrated in Figure 5.3.

The corresponding computation times for a sequential algorithm implementation on the
ARM Cortex-A53 processor are illustrated in Table 5.2. Because of the relatively stiff system
dynamics, the proposed block-TR1 lifted collocation method from Algorithm 5 becomes
attractive and additionally provides a computational speedup of about factor 3 over the
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Table 5.2: Average computation times (in ms) for vehicle control based on a single-track
vehicle model within NMPC (4 Gauss collocation nodes versus 30 steps of RK4).

Explicit (RK4 in Alg. 4) Implicit (GL4 in Alg. 5)

exact block-TR1 exact block-TR1

Linearization 106.73 75.78 71% 52.22 18.27 35%
QP solution 4.46 4.51 4.59 4.72

Total RTI step 111.79 80.94 72% 57.43 23.64 41%

standard exact Jacobian based implementation. Note that, even though the Raspberry Pi 3
is not an embedded processor by itself, it uses an ARM core of the same type as those
that are used by multiple high-end automotive microprocessors. Therefore, the proposed
algorithm implementation as well as the corresponding numerical results form a motivation
for real-time embedded control applications that involve a relatively large, implicit and/or
stiff system of differential equations.
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Chapter 6

Advanced applications of Real-time
MPC

In this Chapter we will develop two extensions of the real-time MPC algorithm we pre-
sented on the preceding chapter. First we will focus on pseudospectral methods which
are special type of direct method to solving continuous-time optimal control problems, in
comparison to collocation methods discussed so far. Second, we will extend our non-linear
MPC to the mixed-Integer environment, that is to optimal control problems where some
states/controls are discrete decision variables (that is take integer values). This environ-
ment is typical Hybrid Systems formulations and we will leverage our structure exploiting
algorithm in order to design an efficient mixed-integer optimal control solver.

Pseudospectral and collocation methods form a popular direct approach to handling and
solving continuous-time optimal control problems. Lifted Newton-type algorithms have been
proposed as a computationally efficient way to implement online pseudospectral methods for
nonlinear model predictive control (NMPC). The present paper extends this work based on
a rank-one Jacobian update formula for the nonlinear system dynamics. In addition, we
describe an algorithm implementation where this rank-one Jacobian update can be used
directly to compute a low-rank update to the condensed Hessian, resulting in an overall
quadratic computational complexity for each iteration. A preliminary C code implementation
is shown to allow considerable numerical speedups for the optimal control case study of the
nonlinear chain of masses.

Mixed-integer model predictive control (MI-MPC) requires the solution of a mixed-integer
quadratic program (MIQP) at each sampling instant under strict timing constraints, where
part of the state and control variables can only assume a discrete set of values. Several
applications in automotive, aerospace and hybrid systems are practical examples of how such
discrete-valued variables arise. We utilize the sequential nature and the problem structure
of MI-MPC in order to provide a branch-and-bound algorithm that can exploit not only the
block-sparse optimal control structure of the problem but that can also be warm started by
propagating information from branch-and-bound trees and solution paths at previous time
steps. We illustrate the computational performance of the proposed algorithm and compare
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against current state-of-the-art solvers for multiple MPC case studies, based on a preliminary
implementation in and C code.

The chapter is organized as follows: On section 6.1 we summarize collocation schemes
and their use in direct optimal control methods, from the previous chapter. Then we extend
the lifted Newton implementation of a pseudospectral method with quasi-Newton Jacobian
updates and low-rank Hessian updates. The proposed algorithms are illustrated based on
numerical results of NMPC for the chain of masses in Section 6.2. Then, on section 6.3
we present the basic idea of branch-and-bound methods for mixed-integer programming
and presolve techniques in the context of mixed-integer optimal control. The resulting MI-
MPC algorithm and its tailored warm-starting strategies are discussed in Section 6.4 and its
performance is illustrated based on multiple numerical case studies in Section 6.5.

6.1 Quasi-Newton Jacobian and Hessian Updates for

Pseudospectral based NMPC

There has been an increasing interest in using dynamic optimization for real-time ap-
plications, i.e., in the context of model predictive control (MPC) and moving horizon es-
timation (MHE) [211]. For this purpose, an optimal control problem (OCP) needs to be
solved at each time instant, under strict timing constraints. Tailored continuation based on-
line optimization algorithms have been developed for real-time optimal control as discussed
in [78]. A popular example is the real-time iteration (RTI) algorithm [79], an online variant
of sequential quadratic programming (SQP) for nonlinear MPC (NMPC) applications.

Again our aim is at solving the following OCP formulation in continuous time

min
x(·), u(·)

∫ T

0

‖F (x(t), u(t))‖2
2 dt (6.1a)

s.t. 0 = x(0)− x̂0, (6.1b)

0 = f(ẋ(t), x(t), u(t)), ∀t ∈ [0, T ], (6.1c)

0 ≥ h(x(t), u(t)), ∀t ∈ [0, T ], (6.1d)

0 ≥ r(x(T )), (6.1e)

where x(t) ∈ Rnx denote the differential states and u(t) ∈ Rnu are the control inputs at time
t. The objective in Eq. (6.1a) consists of a nonlinear least squares type Lagrange term. The
problem depends on the parameter value x̂0 through the initial condition of Eq. (6.1b). The
nonlinear dynamics in Eq. (6.1c) are described by an implicit system of ordinary differential
equations (ODE), even though this can generally be extended to differential-algebraic equa-
tions (DAE) of index 1. Respectively, Eqs. (6.1d) and (6.1e) denote the path and terminal
inequality constraints.

A popular direct technique for solving the optimal control problem in (6.1) is based
on orthogonal collocation, where a distinction is made between the use of local and global
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collocation polynomials [209]. In local collocation, also referred to as direct collocation [41,
46], one uses piecewise polynomials which are typically of a fixed degree. Pseudospectral
methods form an extreme case of such an approach, by mainly increasing or decreasing the
degree of a global collocation polynomial. Given a smooth and well-behaved optimal control
solution, this approximation is known to converge at an exponential rate [209]. Another
reason for their popularity is that any collocation method can readily be applied to problems
involving stiff or implicit systems of differential equations. Orthogonal collocation methods
are typically used, based on the roots of Chebyshev or Legendre polynomials. We focus
on Legendre collocation methods, which employ a quadrature rule based on either Gauss,
Radau or Lobatto points [118].

It has been shown how collocation schemes can be used within a lifted Newton-type imple-
mentation, which bridges the gap between direct collocation and direct multiple shooting [48]
as discussed in [208]. Recently, a lifted Newton-type optimization algorithm for pseudospec-
tral based NMPC has been proposed in [202], based on a tailored Jacobian approximation
technique and the inexact Newton method with iterated sensitivities (INIS) from [203]. In
addition, adjoint based quasi-Newton Jacobian update schemes for constrained optimiza-
tion [82, 112] have effectively been applied to the lifted collocation algorithm in [122].

Our work extends both the work in [202] and in [122] by proposing a tailored quasi-
Newton type Jacobian and Hessian update scheme with numerical condensing and expan-
sion of the collocation variables, resulting in a pseudospectral based NMPC algorithm with
an overall quadratic computational complexity. Because of our focus on real-time NMPC
applications, this work does not aim to compete directly with general-purpose state of the
art nonlinear optimization solvers, such as Ipopt [248] or SNOPT [104].

Direct Optimal Control Methods

Direct optimal control [48] tackles the continuous time OCP (6.1) by forming a discrete
approximation and solving the resulting NLP. We adopt the differential formulation of a
collocation method [45], to be consistent with the notation in [202] on lifted Newton-type
collocation and with the literature on Runge-Kutta methods.

Collocation based Numerical Simulation

In order to arrive at a compact notation, we consider a collocation polynomial of degree
N for the parametrization of both the state and control profile. Let us define the time
transformation τ := t

T
, such that τ ∈ [0, 1] for t ∈ [0, T ]. The polynomial approximation for

the differential state can then be obtained as follows

px(c) = x0 + T

N∑
i=1

ki

∫ c

0

`i(τ) dτ, (6.2)

where `i(τ) denote the Lagrange interpolating polynomials, given a set of collocation nodes
0 ≤ ci ≤ 1 for i = 1, . . . , N and the corresponding stage values ki and ui, respectively, for the
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state derivatives and the control inputs. Note that the parametrized control profile reads as
pu(c) =

∑N
i=1 `i(c)ui such that pu(ci) = ui, for i = 1, . . . , N . The collocation variables ki are

defined by imposing the system dynamics in Eq. (6.1c):

G(x0, U,K) =

 f(k1, x0 + T
∑N

j=1 a1jkj, u1)
...

f(kN , x0 + T
∑N

j=1 aNjkj, uN)

 = 0, (6.3)

which denotes the nonlinear system of collocation equations and where aij =
∫ ci

0
`j(τ) dτ is

defined. The numerical simulation result at the end of the interval reads as

x(T ) ≈ xT (K) = x0 + T
N∑
i=1

biki = px(1), (6.4)

where bi =
∫ 1

0
`i(τ) dτ . All collocation schemes belong to the family of implicit Runge-

Kutta (IRK) methods, which are often defined based on their Butcher tableau.

Pseudospectral Optimal Control

Based on the same Gaussian quadrature rule as used for the collocation scheme in (6.4),
let us define a discretization for the least squares type objective in (6.1a):∫ T

0

‖F (x(t), u(t))‖2
2 ≈ T

N∑
i=1

bi‖F (xi, ui)‖2
2, (6.5)

where xi(K) = x0 + T
∑N

j=1 aijkj. Direct transcription, of which pseudospectral methods
form a special subclass, is then based on including the additional variables and equations (6.3)
directly into the discrete time OCP formulation. Based on the discretized cost and by
imposing the path constraints in (6.1d) at the collocation nodes, the resulting dense nonlinear
program (NLP) reads as

min
x0,U,K

T
N∑
i=1

bi‖F (xi(K), ui)‖2
2 (6.6a)

s.t. 0 = x0 − x̂0, (6.6b)

0 = f(ki, xi(K), ui), i = 1, . . . , N, (6.6c)

0 ≥ h(xi(K), ui), i = 1, . . . , N, (6.6d)

0 ≥ r(xT (K)), (6.6e)

where the stage values U = [u>1 , . . . , u
>
N ]> ∈ RNnu and K = [k>1 , . . . , k

>
N ]> ∈ RNnx are defined.
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Gauss-Newton based SQP Method

An adjoint based Gauss-Newton SQP algorithm for the NLP in (6.6) relies on the solution
of a quadratic program (QP) approximation in each iteration:

min
∆U,∆K

T

N∑
i=1

bi‖Fi + Jxi ∆xi + Jui ∆ui‖2
2 (6.7a)

+ ω̄>
[(

∂G
∂U
−D

) (
∂G
∂K
− C

)] [∆U
∆K

]
(6.7b)

s.t. 0 = g +D∆U + C∆K, (6.7c)

0 ≥ a+ Au∆U + Ak∆K, (6.7d)

where Fi := F (x̂0 + T
∑N

j=1 aij k̄j, ūi), ∆xi = T
∑N

j=1 aij∆kj and g := G(x̂0, Ū , K̄) are
defined. Note that the initial state variable x0 = x̂0 has been eliminated to arrive at a
more compact notation. The values Ū , K̄ denote the current linearization point and ω̄
denotes the current values for the Lagrange multipliers ω ∈ RNnx corresponding to the
collocation equations in (6.6c). The Jacobian matrices read Jxi = ∂Fi

∂xi
and Jui = ∂Fi

∂ui
for

the objective. The constraint Jacobian approximations D ≈ ∂G
∂U

(·) and C ≈ ∂G
∂K

(·) will
be discussed in the following. Given these constraint Jacobian approximations, the gradient
correction for the adjoint based SQP method [253] is defined as in Eq. (6.7b). The inequality
constraints in (6.7d) denote an exact linearization of the path and terminal constraints
in (6.6d) and (6.6e).

In embedded NMPC applications, one needs to solve the nonlinear OCP of Eq. (6.6) at
each sampling instant under strict timing constraints. For this purpose, we instead use the
real-time iteration (RTI) scheme [78, 79] for nonlinear MPC, which is a continuation based
variant of a fixed-step SQP method. More specifically, by warm-starting the algorithm
based on the (approximate) solution to the OCP at a previous time instant, only one QP
subproblem of the form in (6.7) needs to be solved at each time step. The general idea is that
one prefers to obtain new measurement information from the system, rather than iterating
until convergence for an optimization problem that is becoming outdated.

Lifted Newton-Type Optimization wih Rank-one Jacobian
Updates

Let us describe the proposed lifted Newton-type optimization algorithm for pseudospec-
tral based NMPC, using a quasi-Newton type rank-one Jacobian update formula. One
efficient way to solve the QP subproblem in (6.7) is based on the combination of condensing
and expansion. This corresponds to a numerical elimination of the collocation variables, by
defining the following quantities

∆K̃ = −C−1g and E = −C−1D, (6.8)
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such that ∆K = ∆K̃ + E∆U . Based on the inexact Newton step in (6.8), the subproblem
can be reformulated as the following dense QP

min
∆U

1

2
∆U>Hc ∆U + h>c ∆U (6.9a)

s.t. 0 ≥ ac + Ac∆U, (6.9b)

where the vectors ac = a + Ak∆K̃ and hc =
[
1 E>

]
h are defined and the condensed

matrices read as Ac = Au + AkE and Hc = E>HE. The condensed Gauss-Newton based
objective is defined, using the Hessian matrix H and gradient vector h for the objective
function in Eq. (6.7a) including the gradient correction in Eq. (6.7b).

Based on the solution of the condensed QP subproblem in (6.9), the inexact Newton (IN)
method requires the additional computation of the Lagrange multipliers corresponding to
the collocation equations in (6.6c). For this purpose, we use λ to denote the Lagrange
multipliers for the inequality constraints in (6.9b), which are equal to those for the inequality
constraints in (6.7d). Based on the optimality conditions for the QP in Eq. (6.7), using the
Jacobian approximation C ≈ ∂G

∂K
(·), this results in the following Newton-type update for

these multipliers:

∆ω = −C−>
(
hk +

∂G

∂K

>
ω̄ + A>k λ̄

+

)
, (6.10)

where hk ∈ RNnx denotes the gradient of the QP objective term in (6.7a) with respect to
the collocation variables. The updated multiplier values read as ω̄+ = ω̄o + ∆ω and the
collocation variables are updated as follows K̄+ = K̄o + ∆K̃ + E∆U , given the multiplier
values λ̄+ and solution vector ∆U? from solving the dense QP (6.9).

Quasi-Newton Jacobian Update Formula

Unlike standard Broyden type methods [57], a two-sided rank-one (TR1) update formula
has been proposed in [82, 112] as a generalization of the symmetric rank-one (SR1) update
scheme in [70] for constrained optimization. The TR1 formula enjoys several benefits over
classical methods, such as heredity and linear transformation invariance [112].

Let us apply the TR1 update formula to the Jacobian approximation
[
D C

]
≈ ∂G(·)

∂(U,K)
.

The key ingredient of the TR1 method is that it aims to simultaneously satisfy the direct
secant condition [

D+ C+
]
s = y, (6.11)

and the adjoint or transposed secant condition

σ>
[
D+ C+

]
= µ>, (6.12)

where we define the adjoint µ> = σ> ∂G
∂(U,K)

(x̂0, U
+, K+), given σ = ω+ − ωo, the difference

in function evaluations y = G(x̂0, U
+, K+)−G(x̂0, U

o, Ko) and s :=

[
U+ − U o

K+ −Ko

]
. Note that
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the gradient σ> ∂G
∂(U,K)

(·) can be computed efficiently using the backward mode of algorithmic

differentiation (AD) [109]. The TR1 based Jacobian update formula then reads as

[D+ C+] = [Do Co] + α (y − [Do Co]s)
(
µ> − σ>[Do Co]

)
, (6.13)

where the scalar α can be defined differently for different variants of the update scheme.
Aside from the case where the function G(·) is affine, the two secant conditions in Eq. (6.11)
and (6.12) are not consistent with each other and they can therefore not both be satisfied
by the updated matrix

[
D+ C+

]
. In the adjoint variant of the TR1 update, the value

αA = 1/(σ>y−σ>[Do Co]s) is defined such that the adjoint secant condition (6.12) is satisfied
exactly and the forward condition holds up to some accuracy. Similarly, the forward variant
is based on αF = 1/(µ>s−σ>[Do Co]s) and instead satisfies the direct secant condition (6.11)
exactly.

Real-Time Iteration Scheme for NMPC

In order to use the TR1 Jacobian update formula (6.13) within a lifted Newton-type
optimization algorithm, one needs to be able to efficiently form the condensed QP in (6.9).
For this purpose, the work in [122] described how to directly update the condensed matrix
E = −C−1D in Eq. (6.8) from one iteration to the next. Let us write the rank-one update
formula from Eq. (6.13) as follows

D+ = Do + αuv>D and C+ = Co + αuv>C , (6.14)

where u = y− [Do Co]s and [v>D v>C ] = µ>−σ>[Do Co]. The Sherman-Morrison formula can

be used to update the matrix inverse approximation Co−1 ≈ ∂G
∂K

−1
as

C+−1

= Co−1 − αβ u1v
>
CC

o−1

, (6.15)

where u1 = Co−1
u and β = 1

1+αv>Cu1
. It can be shown that the rank-one update formula then

reads as

E+ = −C+−1

D+ = Eo + u1v
>
1 , (6.16)

where v>1 = αβv>C (Eo + αu1v
>
D)− αv>D .

This rank-one update for the matrix E+ = −C+−1
D+ in Eq. (6.16) provides an efficient

manner to directly compute the matrices in the condensed QP (6.9), without the need for
a matrix factorization, matrix inversion and without any matrix-matrix multiplications. In-
stead, the proposed algorithm merely requires matrix-vector multiplications and outer prod-
ucts, resulting in an overall quadratic O (N2m2) instead of cubic O (N3m3) computational
complexity, where m = (nx + nu) denotes the number of state and control variables. The
resulting implementation of the real-time iteration (RTI) scheme with TR1 based Jacobian
updates for pseudospectral based nonlinear MPC is presented in Algorithm 6.
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Algorithm 6 Pseudospectral Method with TR1 Jacobian Updates within a Real-Time
Iteration Scheme for NMPC.

Input: U o, Ko, λo, ωo, Co, Do, Co−1
and Eo.

Problem linearization

1: Formulate the dense QP in (6.9) with Ac = Au + AkE
o and condensed Hessian Hc =

Eo>HEo.

Computation of step direction

2: Obtain current state estimate x̂0. . from system
3: Evaluate the vectors ac, hc and solve the QP (6.9):
U+ ← U o + ∆U? and λ+ ← λ?.

4: Apply new control input value. . to system

TR1 Jacobian update

5: K+ ← Ko + ∆K̃ + Eo∆U?,

6: ω+ ← ωo − C−>
(
hk + ∂G

∂K

>
ω̄ + A>k λ̄

+
)
,

7: D+ ← Do + αuv>D and C+ ← Co + αuv>C ,
8: C+−1← Co−1 − αβ u1v

>
CC

o−1
and E+ ← Eo + u1v

>
1 .

Output: U+, K+, λ+, ω+, C+, D+, C+−1
and E+.

Remark 6.1.1. The new input value can be applied to the controlled system in step 4 of Alg. 6.
A pseudospectral method provides a continuous time control profile that is represented by
the polynomial pu(c) =

∑N
i=1 `i(c)ui. This continuous time trajectory can more or less

accurately be applied to the system, depending on the particular actuation in the control
application and its sampling frequency. For simplicity, let us further assume a piecewise
constant actuation, where we use the value pu(

Ts
T

) of the collocation polynomial in which Ts
denotes the MPC sampling time and T the control horizon length.

Quasi-Newton-type Update Scheme for the condensed Hessian

The TR1 Jacobian update scheme has quadratic computational complexity of O (N2m2).
Constructing the condensed Hessian Hc = E>HE and computing a matrix factorization or
inverse for the condensed Hessian however requires a cubic computational complexity of
O (N3m3) in general. Given the condensed Hessian and its inverse or matrix decomposition,
the runtime computational cost for solving the dense QP (6.9) can be made of quadratic
complexity O (N2m2) instead, e.g., using a dense variant of the active-set method from [205].
Let us focus on how to avoid the operations with cubic complexity in case of a constant
Hessian approximation or when using a quasi-Newton type update scheme.
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Constant Hessian Approximation: Gauss-Newton

Note that the Gauss-Newton type Hessian approximation in Eq. (6.7a) corresponds to a
constant matrix H, in case of a quadratic objective (6.6a) in the original NLP formulation.
This is rather common in practical applications of MPC when tracking a reference for a linear
output function of the state and control variables. Let us look at the condensed Hessian Hc,
given the constant matrix H and a rank-one Jacobian update as in (6.16).

Lemma 6.1.2 (SR2). Given a rank-one update to the condensed Jacobian E+ = Eo +u1v
>
1 ,

the condensed Hessian matrix Hc = E>HE can be computed using the following symmetric
rank-two update:

H+
c = Ho

c + ũ1v
>
1 + v1

(
ũ>1 + β1 v

>
1

)
. (6.17)

Proof. This follows directly from the expression for the updated condensed Hessian matrix

H+
c = E+>HE+ =

(
Eo + u1v

>
1

)>
H
(
Eo + u1v

>
1

)
= Ho

c + Eo>Hu1v
>
1 + v1u

>
1 HE

o + v1u
>
1 Hu1v

>
1

= Ho
c + ũ1v

>
1 + v1

(
ũ>1 + β1 v

>
1

)
,

(6.18)

where β1 := u>1 Hu1 and ũ1 := Eo>Hu1, such that the symmetric update is readily identified
to be of rank 2.

Note that the symmetric rank-two (SR2) update (6.17) can alternatively be represented
as follows[101]:

H+
c = Ho

c +

(
1

β̃1

ũ1 + β̃1v1

)(
1

β̃1

ũ1 + β̃1v1

)>
− 1

β1

ũ1ũ
>
1 , (6.19)

where β̃1 :=
√
β1 given that β1 = u>1 Hu1 > 0. This means that the condensed Hessian matrix

can be updated, from one iteration to the next, using the SR2 update or using two consecutive
symmetric rank-one updates as in Eq. (6.19). Similarly, the Cholesky factorization, or the
matrix inverse using the Sherman-Morrison-Woodbury formula, can be updated directly
for the condensed Hessian. The resulting algorithm implementation, with overall quadratic
computational complexity based on the TR1 and SR2 update formulas, for pseudospectral
based nonlinear MPC is presented in Algorithm 7.

Quasi-Newton Type Hessian Approximation

We can construct a similar update formula for the condensed Hessian in case that a quasi-
Newton type method is used instead of a constant Hessian approximation. For simplicity, let
us consider the symmetric rank-one (SR1) update formula [70] to approximate the Hessian
of the Lagrangian. This results in the STR1 update procedure as described in [82].
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Lemma 6.1.3 (SR3). Given a rank-one update to the condensed Jacobian E+ = Eo + u1v
>
1

and a symmetric rank-one Hessian update H+ = Ho+α2 u2u
>
2 , the condensed Hessian matrix

Hc = E>HE can be computed using the symmetric rank-three update:

H+
c = Ho

c + α2 ũ2ũ
>
2 + v1

(
ũ>1 + β3 ũ

>
2 + β4 v

>
1

)
+ (ũ1 + β3 ũ2 + β4 v1) v>1 .

(6.20)

Proof. It follows from the expression for the updated condensed Hessian matrix

H+
c = E+>H+E+

=
(
Eo + u1v

>
1

)> (
Ho + α2 u2u

>
2

) (
Eo + u1v

>
1

)
= Ho

c + ũ1v
>
1 + v1ũ

>
1 + β1 v1v

>
1 + α2 ũ2ũ

>
2

+ α2 β2 ũ2v
>
1 + α2 β2 v1ũ

>
2 + α2 β

2
2 v1v

>
1 ,

(6.21)

where β1 := u>1 Hu1, β2 := u>2 u1, ũ1 := Eo>Hu1 and ũ2 := Eo>u2. This can be further
simplified to

H+
c = Ho

c + α2 ũ2ũ
>
2 + v1

(
ũ>1 + β3 ũ

>
2 + β4 v

>
1

)
+ (ũ1 + β3 ũ2 + β4 v1) v>1 ,

(6.22)

where β3 := α2 β2 and β4 :=
β1+α2 β2

2

2
, such that the symmetric update is readily identified to

be of rank 3.

In a similar manner as for the symmetric rank-two update from Lemma 6.1.2, an alter-
native representation of the symmetric rank-three (SR3) formula (6.20) can be constructed
as a sequence of three consecutive symmetric rank-one updates. In addition, the Cholesky
factorization, or the matrix inverse using the Sherman-Morrison-Woodbury formula, can be
computed directly for the condensed Hessian based on this update scheme. Algorithm 7 de-
scribes an implementation of pseudospectral based NMPC, using the TR1 and SR3 update
formulas, respectively, for the condensed Jacobian and Hessian approximations.

6.2 NMPC Case Study: Chain of Masses

We consider the chain mass problem as a benchmark example for nonlinear MPC, which
allows one to intuitively change the number of masses and therefore the state dimension in
the problem. For reasons of brevity, we do not repeat the complete optimal control problem
formulation here but we instead refer the reader to [208, 253]. The control task is to return
a chain of nm masses connected with springs to its steady state, starting from a perturbed
initial configuration. The mass at one end is fixed, while the control input u ∈ R3 to the
system is the direct force applied to the mass at the other end of the chain. This dynamic
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Algorithm 7 Pseudospectral Method with TR1 Jacobian and SR2/SR3 condensed Hessian
Updates for NMPC.

Input: U o, Ko, λo, ωo, Co, Do, Co−1
, Eo, Ho and Ho

c .
Problem linearization

1: Formulate the dense QP in (6.9) with Ac and Ho
c .

2: Computation of step direction: line 2-4 in Alg. 6

3: TR1 Jacobian update: line 5-9 in Alg. 6

Option 1: SR2 condensed Hessian update

4: H+ ← Ho.
5: H+

c ← Ho
c + ũ1v

>
1 + v1

(
ũ>1 + β1 v

>
1

)
.

Option 2: SR3 condensed Hessian update

6: H+ ← Ho + α2 u2u
>
2

7: H+
c ← Ho

c + α2 ũ2ũ
>
2 + v1

(
ũ>1 + β3 ũ

>
2 + β4 v

>
1

)
+ (ũ1 + β3 ũ2 + β4 v1) v>1 .

Output: U+, K+, λ+, ω+, C+, D+, C+−1
, E+, H+, H+

c .

system can be described by a state vector x ∈ R6(nm−1), which is governed by the set of
nonlinear differential equations in [208, 253].

Our aim is to validate the computational performance for Algorithm 6 and 7, using
a lifted Newton-type optimization method with TR1 based Jacobian and corresponding
condensed Hessian updates, in comparison with the standard RTI scheme based on exact
Jacobian evaluations, similar to the pseudospectral based optimal control setup in [202].
The preliminary software implementation of the presented algorithms consists of C code
for the TR1 and SR2 update formulas, in combination with a dense variant of the PRESAS

active-set QP solver [205] and code generated evaluations of the system dynamics and the
adjoint derivatives using CasADi [13]. In addition, we include a comparison with the direct
collocation based RTI scheme with block-TR1 Jacobian updates as presented in [122].

Pseudospectral versus Direct Collocation Methods

The condensing procedure in a classical lifted Newton optimization algorithm for pseu-
dospectral based optimal control requires a factorization of the exact Jacobian matrix at
each iteration, resulting in a computational complexity of O (N3m3). The proposed TR1 Ja-
cobian update scheme with numerical condensing in Algorithm 6 avoids all cubic operations
for the Jacobian approximation and Algorithm 7 additionally avoids such costly operations
for the condensed Hessian, resulting in an overall computational complexity of O (N2m2).
The block-TR1 Jacobian update formula itself has a computational complexity of O (Nsm

2)
for direct collocation [122], where Ns denotes the number of collocation intervals. However,
the cost of solving the block-structured QP subproblems is typically O (Nsm

3). For exam-
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Figure 6.1: Average computation time per RTI step and overall closed-loop cost of NMPC
based on direct collocation (with N = 2) versus a pseudospectral method, respectively, for
a varying number Ns of shooting intervals or varying number N of collocation nodes.

ple, the sparsity exploiting PRESAS active-set QP solver [205] enjoys a setup computational
complexity of O (Nsm

3) and a per iteration complexity of O (Nsm
2).

On the other hand, a pseudospectral method converges exponentially to a smooth con-
tinuous time optimal control solution [209] for an increasing degree N of the collocation
polynomial. Alternatively, a piecewise constant control parametrization is typically used in
combination with direct multiple shooting [48] or direct collocation [46]. Figure 6.1 shows
the resulting trade-off between closed-loop control performance and computational cost, us-
ing an increasing number of collocation intervals Ns (direct collocation) or an increasing
polynomial degree N (pseudospectral), for NMPC on the chain with nm = 3 or 5 masses.
The results for direct collocation are based on a Gauss-Legendre (GL) method with N = 2
nodes for each interval. Figure 6.1 shows the performance for both the exact Jacobian and
the TR1 based Newton-type optimization algorithms.

Note that an alternative NMPC implementation could be based on a N -degree polyno-
mial, for both the state and control parametrization, over each of the Ns collocation intervals
in order to combine the advantages from both approaches for optimal control, such as in a
spectral patching [85] or in a pseudospectral knotting method [216].

Table 6.1 shows the average computation times of the closed-loop NMPC simulation
results using N = 8 Gauss collocation nodes for the chain of nm = 3, 5 and 7 masses. The
table shows the detailed timing results for pseudospectral based NMPC, using either the
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Table 6.1: Average timing results (in ms) of pseudospectral based NMPC for the chain of
masses using N = 8 Gauss collocation nodes.

Gauss-Newton with TR1
nm = 3, nx = 12 Exact Alg. 6 (TR1) Alg. 7 (TR1-SR2)

Linearization 0.474 0.093 0.084
Dense QP solution 0.020 0.021 0.016

Total RTI step 0.539 0.161 0.124

Gauss-Newton with TR1
nm = 5, nx = 24 Exact Alg. 6 (TR1) Alg. 7 (TR1-SR2)

Linearization 4.856 0.295 0.296
Dense QP solution 0.023 0.042 0.019

Total RTI step 4.961 0.419 0.355

Gauss-Newton with TR1
nm = 7, nx = 36 Exact Alg. 6 (TR1) Alg. 7 (TR1-SR2)

Linearization 15.403 0.628 0.609
Dense QP solution 0.024 0.024 0.018

Total RTI step 15.560 0.782 0.682

exact Jacobian or the TR1 based Jacobian update scheme. It can be observed that the
computation time for the problem linearization and condensing procedure can be reduced
significantly based on the TR1 method, resulting in a speedup of about factor 4, 10 and
20, respectively, for the chain of nm = 3, 5 and 7 masses. On the other hand, the closed-
loop NMPC performance is indistinguishable for the exact Jacobian and the TR1 based RTI
scheme as shown earlier in Figure 6.1. Note that the additional speedup of using Algorithm 7
instead of 6 is small for this particular case study, given the small number of control inputs
nu = 3 and therefore the relatively small dimension of the dense QP in (6.9), compared to
the amount of state variables nx = 6(nm − 1).
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6.3 A Structure Exploiting Branch-and-Bound

Algorithm for Mixed-Integer Model Predictive

Control

Optimization based control and estimation techniques, such as model predictive con-
trol (MPC) and moving horizon estimation (MHE), allow a model-based design framework
in which the system dynamics and constraints can directly be taken into account [163]. This
framework can be further extended to hybrid systems [33], providing a powerful technique to
model a large range of problems, e.g., including dynamical systems with mode switchings or
quantized control, problems with logic rules or no-go zone constraints. However, the result-
ing optimization problems are highly non-convex because they contain variables that only
take integer values. When using a quadratic objective in combination with linear system
dynamics and linear inequality constraints, the resulting optimal control problem (OCP) can
be formulated as a mixed-integer quadratic program (MIQP).

We aim to solve MIQP problems of the following form:

min
X,U

1

2

N−1∑
i=0

x>i Qixi + u>i Riui + x>NPxN (6.23a)

s.t. x0 − x̂0 = 0, (6.23b)

Aixi +Biui + ai = xi+1, i ∈ {0, . . . , N − 1}, (6.23c)

lci ≤ Cixi +Diui ≤ uci , i ∈ {0, . . . , N − 1}, (6.23d)

Fiui ∈ {0, 1}, i ∈ {0, . . . , N − 1}, (6.23e)

lcN ≤ CNxN ≤ ucN , (6.23f)

where the optimization variables are the state X = [x>0 , . . . , x
>
N ]> and control trajectory

U = [u>0 , . . . , u
>
N−1]>. The set of constraints (6.23e) are binary equality constraints, since

the left-hand side needs to be equal to either 0 or 1. For simplicity of notation, we further
consider only binary control variables instead of more general integer constraints for an affine
function of both state and control variables. MPC for several classes of hybrid systems can be
straightforwardly formulated as in (6.23). Notable examples are mixed logical systems [33],
where auxiliary continuous and discrete variables can be added to the input vector. Moreover,
in combination with the binary constraints (6.23e), the affine inequalities (6.23d) can model
various complicated but practical restrictions on the feasible region, such as no-go zones and
disjoint polyhedral constraints for states and inputs.

A hybrid MPC controller aims to solve the MIQP (6.23) at every sampling time instant.
This is a difficult task, given that mixed-integer programming is NP-hard in general, and
several methods for solving such a sequence of MIQPs have been explored in the litera-
ture. These approaches can be divided into heuristic techniques, which seek to efficiently
find sub-optimal solutions to the problem, and optimization algorithms which attempt to
solve the MIQPs to optimality. Examples of the former include rounding and pumping
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schemes [4, 5], approximate optimization algorithms [76, 178], and approximate dynamic
programming [235]. The downside of fast heuristic approaches is often the lack of guaran-
tees for finding an optimal or even an integer-feasible solution. Heuristic rounding-based
approaches to mixed-integer nonlinear OCPs can be found, e.g., in [142, 220].

As for solving these problems to optimality, most of the optimization algorithms for
MIQPs are based on the classical branch-and-bound (B&B) technique [95]. For the purpose
of mixed-integer MPC, the standard B&B strategy has been combined with various meth-
ods for solving the relaxed convex QPs. For example, a B&B algorithm for mixed-integer
MPC (MI-MPC) has been proposed in combination with a dual active-set solver in [24],
with an interior point algorithm in [96], dual projected gradient methods in [23, 178], a
nonnegative least squares solver in [34], and the alternating direction method of multipli-
ers (ADMM) in [236]. Branch-and-bound methods for solving mixed-integer nonlinear OCPs
have also been studied, e.g., in [102].

Another important research topic focuses on general pre-processing and modeling tech-
niques to reduce the size and strengthen the mixed-integer problem formulations [181]. These
presolve techniques are vital to the good performance of current state-of-the-art mixed-
integer solvers [7], such that these methods can often solve seemingly intractable problems
in practice. Lastly, the branch-and-bound method itself has been extensively studied with
several improvements in branching and variable selection techniques [6, 151], including recent
developments in applying machine learning techniques in order to learn “better” branching
rules [29]. Finally, the branch-and-bound strategy has been generalized further, e.g., using
cutting planes to tighten the convex problem relaxations, resulting in branch-and-cut or
branch-and-price variants of the algorithm [95, 181]. Unlike state-of-the-art mixed-integer
solvers, e.g., GUROBI [116] and MOSEK [177], our aim is to propose a tailored algorithm and its
solver implementation for fast embedded MI-MPC applications, i.e., running on microproces-
sors with considerably less computational resources and available memory. The optimization
algorithm should be relatively simple to code with a moderate use of resources, while the
software implementation is preferably compact and library independent.

In this section, we propose a branch-and-bound based MPC algorithm, which exploits the
features of the structure-exploiting primal active-set solver called PRESAS [204]. The latter
algorithm is tailored to efficiently solve QPs with a block-sparse optimal control structure.
Our second contribution is to bring various mixed-integer programming techniques, such as
bound strengthening, domain propagation, and advanced branching rules, to the context of
MI-MPC. In particular, we present an algorithm that exploits the sequential nature of MPC,
in order to warm-start the branch-and-bound search tree and to re-use information gathered
at previous time steps. A similar type of approach was proposed recently by [34], but in this
work we provide not only a warm-start procedure for the integer variables but we also show
how to improve the branching strategy by warm starting and how to efficiently combine
this with presolving techniques for MI-MPC. Finally, the computational performance of the
proposed algorithm, for a preliminary implementation in Matlab and C code, is illustrated
and compared against current state-of-the-art solvers for multiple MPC case studies.
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Figure 6.2: Illustration of the branch-and-bound method as a binary search tree. A selected
node can be either branched, resulting in two partitions for each bound value in (6.23e), or
pruned based on feasibility or the current upper bound.

Mixed-Integer Quadratic Programming

We first introduce some of the basic concepts in mixed-integer programming based on
branch-and-bound methods, such as convex relaxations and branching strategies. A standard
approach to solve the MIQP (6.23) is to create convex relaxations of this problem (by either
dropping some constraints or by re-formulating the problem and providing an approximation
scheme) and then solve the relaxations in order to approach the solution to the original MIQP.
A straightforward idea is to obtain convex QP relaxations by dropping the binary equality
constraints (6.23e) and instead enforcing the affine inequality constraints 0 ≤ Fiui ≤ 1.
Other convex relaxations for MIQPs have been studied in the literature such as moment
or SDP relaxations that are often tighter than QP relaxations [157, 25], but they can be
relatively expensive to solve for larger problems.

For the purpose of this paper, we will focus our attention on QP relaxations where we
allow the binary variables to take on real values. The main reason for choosing this relax-
ation is that we utilize a tailored structure exploiting active-set solver, called PRESAS [204],
proposed recently for efficiently solving the convex QP relaxations. The latter solver has
been shown to be competitive with state-of-the-art QP solvers for embedded MPC, and it
benefits strongly from warm-starting, which can be exploited when solving the sequence of
QPs within the branch-and-bound strategy. Note that the relaxations need to be convex,
i.e., the weight matrices Qi, Ri and P need to be positive (semi-) definite in (6.23a) such
that each solution to a QP relaxation is globally optimal.
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Branch-and-Bound Algorithm

The main idea of the branch-and-bound (B&B) algorithm is to sequentially create par-
titions of the original problem and then attempt to solve those partitions. While solving
each partition may still be challenging, it is fairly efficient to obtain local lower bounds on
the optimal objective value, by solving relaxations of the mixed-integer program or by using
duality. If we happen to obtain an integer-feasible solution while solving a relaxation, we
can then use it to obtain a global upper bound for the solution to the original problem.
This may help to avoid solving or branching certain partitions that were already created,
i.e., these partitions or nodes can be pruned. The general algorithmic idea of partitioning is
better illustrated as a binary search tree, see Figure 6.2.

A key step in this approach is how to create the partitions, i.e., which node to choose
and which binary variable to select for branching. Since we solve a QP relaxation at every
node of the tree, it is natural to branch on one of the binary variables with fractional values
in the optimal solution of the QP relaxation. Therefore, if a variable, e.g., ui,k ∈ {0, 1} has a
fractional value in a given QP relaxation, then we create two partitions where we respectively
add the equality constraint ui,k = 0 and ui,k = 1. Another key step is how to choose the
order in which the created subproblems are solved. These two steps have been extensively
explored in the literature and various heuristics are implemented in state-of-the-art tools [6].
We provide next a brief description of strategies that we implemented in our B&B solver.

Tree Search: Node Selection Strategies

A common implementation of the branch-and-bound method is based on a depth-first
node selection strategy, which can be readily implemented using a last-in-first-out (LIFO)
buffer. The next node to be solved is selected as one of the children of the current node and
this process is repeated until a node is pruned, i.e., the node is either infeasible, optimal or
dominated by the upper bound, which is followed by a backtracking procedure. Instead, a
best-first strategy selects the node with the lowest local lower bound so far. In what follows,
we will employ a combination of the depth-first and best-first node selection approach. This
idea is motivated by aiming to find an integer-feasible solution quickly at the start of the
branch-and-bound procedure (depth-first) to allow for early pruning, followed by a more
greedy search for better feasible solutions (best-first).

Reliability Branching for Variable Selection

The idea of reliability branching is to combine two powerful concepts for variable selection:
strong branching and pseudo-costs [6]. Strong branching relies on temporarily branching,
both up (to higher integer) and down (to lower integer), for every binary variable that has
a fractional value in the solution of a QP relaxation in a given node, before committing to
the variable that provides the highest value for a particular score function. The increase in
objective values ∆+

i,k, ∆−i,k are computed when branching the binary variable ui,k, respectively,
up and down. Given these quantities, a simple scoring function score(·, ·) is computed for
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each binary variable. For instance, based on the product [151]:

Si,k = score(∆−i,k,∆
+
i,k) = max(∆+

i,k, ε) · max(∆−i,k, ε), (6.24)

given a small positive value ε > 0. This branching rule has been empirically shown to
provide smaller search trees in practice [6]. The downside is that this procedure is relatively
expensive since several QP relaxations are solved in order to select one variable to branch
on.

The idea of pseudo-costs aims at approximating the increase of the objective function to
decide which variable to branch on, without having to solve additional QP relaxations. This
can be done by keeping statistic information for each binary variable, i.e., the pseudo-costs
that represent the average increase in the objective value per unit change in that particular
binary variable when branching. Every time that a given variable is chosen to be branched
on, and the resulting relaxation is feasible, then we update each corresponding pseudo-cost
with the observed increase in the objective, divided by the distance of the real to the binary
value, in the form of a cumulative average. Therefore, each variable has two pseudo-costs,
φ−i,k when the variable was branched “down” and φ+

i,k when it was branched “up”. Given the
solution to a QP relaxation, one can then use the pseudo-costs to select the binary variable
with the highest score value to be branched on next:

Si,k = score(ūi,k φ
−
i,k, (1− ūi,k)φ+

i,k), (6.25)

given a fractional value ūi,k in the QP relaxation.
This way, we select variables based on their past behavior throughout the branch-and-

bound tree. However, at the beginning of the algorithm, the pseudo-costs are not yet initial-
ized, which is when branching decisions typically impact the tree size the most. Reliability
branching uses strong branching to initialize the pseudo-costs until a certain condition of
reliability is satisfied, e.g., one switches to using pseudo-costs only once that particular vari-
able has been branched on a specified number ηrel of times [6]. The resulting branching rule
is summarized in Algorithm 8. Note that reliability branching coincides with pseudo-cost
branching if ηrel = 0, with strong branching if ηrel = ∞, but typically a value 1 ≤ ηrel ≤ 4
is chosen.

This rule can be further augmented by implementing a look ahead limit in the number
of candidates, as well as a limit in the number of iterations for each QP relaxation in the
strong branching step. Note that many other branching rules exist such as, e.g., “most
infeasible” branching which selects the binary variable with fractional part that is closest
to 0.5. Even though the latter rule is used quite often, e.g., in [34], it generally does not
perform very well in practice [6]. Extensive empirical experiments with different branching
strategies are beyond our scope. We next detail how can presolve techniques be used for
general Mixed-Integer Optimal Control problems.
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Algorithm 8 Reliability Branching Strategy

Input: ηrel, set C of candidate variables for branching.
1: for candidate variables ui,k in C do
2: if #branch(ui,k) ≤ ηrel then
3: Strong branching on ui,k to compute score Si,k.
4: Update pseudo-costs φ−i,k and φ+

i,k.
5: else
6: Si,k = score(ūi,k φ

−
i,k, (1− ūi,k)φ+

i,k).
7: end if
8: end for

Output: Select variable with highest score S∗ = max
i,k

Si,k.

Presolve Techniques for Mixed-Integer Optimal Control

As mentioned earlier, presolve techniques are often crucial in making convex relaxations
tighter such that typically fewer nodes need to be explored, sometimes to such an extent that
seemingly intractable problems become tractable. Next, we briefly describe some of these
concepts with a focus on domain propagation for bound strengthening and its implementation
for mixed-integer optimal control.

Domain Propagation for Condensed QP Subproblem

Several strengthening techniques are implemented as part of “presolve” routines in com-
mercial solvers [7]. One particular technique that is suitable to mixed-integer optimal control
is based on domain propagation, in which the goal is to strengthen bound values based on the
inequality constraints (6.23d)-(6.23f) in the problem. However, the results of such a strategy
are rather weak when directly applied to the block-sparse QP in (6.23), because the stage-
wise coupling of the state variables (6.23c) needs to be taken into account. Therefore, we
use instead the equivalent dense QP formulation in which the state variables are numerically
eliminated, such that stronger bounds can be obtained for the control variables. Hence, we
can use the block-structured sparsity to efficiently solve the QP relaxations, while we use
the equivalent but dense format to effectively perform domain propagation.

Let us concatenate all state variables in a vector X and all control variables in the vector
U , such that Eqs. (6.23b)-(6.23c) can be written more compactly as

ĀX = B̄U + b+ E0x̂0, (6.26)
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where we define the block-sparse matrices

Ā =


I
−A1 I

. . . . . .

−AN−1 I

 , (6.27)

B̄ = blkdiag(B0, . . . , BN−1) , E0 = [A>0 , 0, . . . , 0]>. (6.28)

The matrix Ā is invertible such that we can write:

X = Ā−1B̄U + Ā−1(b+ E0x̂0). (6.29)

Now, we can substitute the latter expression for the state vector in OCP (6.23) to obtain
the condensed form

min
U

1

2
U>HcU + h>c U (6.30)

s.t. l̄c ≤ DcU ≤ ūc (6.31)

Fiui ∈ {0, 1}, i ∈ {0, . . . , N − 1}, (6.32)

where the condensed matrices and vectors read as

Hc = (Ā−1B̄)>QĀ−1B̄ +R, Dc = CĀ−1B̄ +D,

hc = (Ā−1b̄)>QĀ−1B̄,

l̄c = lc − CĀ−1b̄, ūc = uc − CĀ−1b̄, (6.33)

where b̄ := b+ E0x̂0 is defined and given

Q = blkdiag(Q1, . . . , QN−1, P ), R = blkdiag(R0, . . . , RN−1), (6.34)

and lc = [lc
>

1 , . . . , lc
>
N ]> and uc = [uc

>
1 , . . . , uc

>
N ]>.

Given the condensed problem formulation, which can be computed offline and which is
parametric in the current state value x̂0, we can then apply the following bound strengthening
procedure, which is explained next for a single affine constraint lb ≤

∑
i diui ≤ ub in (6.31).

This constraint can be used to try and tighten bound values for all control variables ui for
which di 6= 0, where ui denotes a single control variable in the vector U . Let ūi, ui be the
current upper/lower bounds for ui such that

diui ≤ ub −
∑
j 6=i

djuj ≤ ub −
∑

j 6=i,dj>0

djuj −
∑

j 6=i,dj<0

djūj︸ ︷︷ ︸
=:ūb,i

, (6.35)

in which we divide by di in order to obtain

ui ≤
ūb,i
di
, if di > 0 or ui ≥

ūb,i
di
, if di < 0. (6.36)
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Algorithm 9 Domain Propagation for Bound Strengthening

Input: Inequality constraints (6.31), variable bounds ūi, ui.
1: while stopping criterion == False do
2: for every row of Dc do
3: for every ui ∈ U, di 6= 0 do
4: Obtain bound values ūb,i, l̄b,i using Eq. (6.36).
5: Update variable bounds using (6.37) or (6.38).
6: end for
7: end for
8: end while

Output: Updated bounds ūi, ui for all control variables.

This results, respectively, in the updated bound values

ūi = min(ūi,
ūb,i
di

), or ui = max (ui,
ūb,i
di

), (6.37)

or, in case ui is an integer or binary variable,

ūi = min(ūi,

⌊
ūb,i
di

⌋
), or ui = max (ui,

⌈
ūb,i
di

⌉
). (6.38)

where b·c and d·e are the floor and ceiling operations, respectively. Thus, this can result
in strengthening of bound values for both continuous and integer/binary control variables.
The procedure can be executed for each control variable and each inequality constraint in
an iterative manner, see Algorithm 9, since bound strengthening for one variable can lead
to strengthening for other variables [7]. The process is typically stopped when the bound
values do not sufficiently change or a certain limit on the computation time is met.

Domain propagation can lead to considerable reductions in the amount of explored nodes,
e.g., because variables are fixed, when ūi = ui, or because of infeasibility detection, when
ūi < ui, without the need to solve any QP relaxations. In addition, the updated bound
values for all control variables can be used to strengthen QP relaxations in the future.
Lastly, we can use domain propagation in order to improve and generalize Hessian-based
fixing strategies, such as the one proposed in [22]. Hessian-based fixing typically can only be
applied to unconstrained problems, since it fixes the variables solely based on the objective.
Here, we propose to use domain propagation to compute the feasibility impact of certain
variable fixings. More specifically, a particular variable can be fixed based on optimality, if
and only if this fixing does not induce feasibility-based fixings.

Probing Strategies and Cutting Planes

Probing [224] is a classical technique that can be incorporated in any branch-and-bound
method to derive stronger inequalities or better bounds. It consists of tentatively trying
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to fix some variables and to derive potential logical implications on other variables. We do
not further describe probing strategies in detail, but we refer to [7] for an overview. The
computational cost and performance of probing can be greatly improved by relying on some
of the other techniques that were discussed earlier. For example, the pseudo-costs can be
used in order to choose the bound value for each binary variable that is likely to result in
a low objective value. In turn, the QP relaxations that are solved in the probing procedure
can be used to update the pseudo-cost values. In addition, domain propagation and other
variable fixing strategies can be used to reduce the amount of QP relaxations that need to
be solved.

Other presolving techniques such as cut generation can be applied using the condensed
problem, and can be fully transferred to the original OCP formulation. In the present paper,
we refrain from using cut generation techniques as they produce inequalities that potentially
couple variables across stages. Such coupling between stages is not desirable as we rely on a
block-sparsity exploiting QP solver.

Resulting MIQP Algorithm for Optimal Control

Algorithm 10 describes the most important steps in our proposed B&B method for solving
the MIQP in (6.23). It solves a block-structured QP relaxation using PRESAS [204] at every
node and utilizes reliability branching (Algorithm 8) to decide the branching variables. As
discussed earlier, the node selection strategy is based on a depth-first search followed by a
best-first search as soon as an integer-feasible solution has been found. Note that the upper
bound value UB provided to Alg. 10 can be based on an integer-feasible solution guess or it
can be set to +∞. Because of space limitations, the present paper will not further discuss
all parameter choices in the algorithm such as, e.g., the reliability branching parameters,
presolving frequency, memory usage, etc.

6.4 Mixed-Integer MPC Algorithm

In embedded applications of mixed-integer MPC, one needs to solve an MIQP (6.23) at
each sampling instant under strict timing constraints. We can leverage the fact that we
solve a sequence of similar problems (parametrized by the initial condition x̂0), in order to
warm-start the B&B-algorithm. We refer to our proposed warm-starting procedure as tree
propagation, because the main goal is to “propagate” the B&B tree forward by one time
step. We describe this process in detail below. Then, we present the resulting mixed-integer
MPC algorithm.

Warm Starting based on Tree Propagation

The warm-starting procedure aims to use knowledge of one MIQP, i.e., the search tree
after solving the problem, in order to improve the B&B search for the next MIQP. Our idea
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Algorithm 10 B&B Method for the MIQP-OCP in (6.23)

Input: Upper bound UB, tolerance ε.
1: LB=−∞ and initialize L = {P0} with root node.
2: Select current node Pc ← P0.
3: while UB − LB > ε do
4: Apply domain propagation to Pc using Alg. 9.
5: Solve resulting QP relaxation with PRESAS.
6: if QP is feasible and J(X̄, Ū) ≤ UB then
7: if QP solution is not integer-feasible then
8: LB ← minP∈LJ(P ).
9: Select branching variable v using Alg. 8.
10: Create subproblems Pu “up” and Pl “down”.
11: Append {Pl, Pu} to L if (1− v̄)φ+

v < v̄φ−v
or append {Pu, Pl} to L, otherwise.

12: else
13: UB ← J(X̄, Ū) and (X∗, U∗)← (X̄, Ū).
14: end if
15: end if
16: Remove current node Pc from to-do list in L.
17: Select next node based on depth-first (last node

in list L) or based on best lower bound.
18: end while
Output: MIQP solution vector (X∗, U∗).
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Figure 6.3: Illustration of the tree propagation technique from one time point to the next in
the MI-MPC algorithm: index i denotes the order in which each node Pi is solved.



CHAPTER 6. ADVANCED APPLICATIONS OF REAL-TIME MPC 147

is to store the path from the root to the leaf node where the optimal solution to the MIQP
was found, as well as the branching order of the variables. We can then perform a shifting
of this path in order to obtain a “warm-started tree” to start our search to solve the MIQP
at the next time step. We illustrate this procedure in Figure 6.3, where the optimal path at
the current time step is denoted by the sequence of nodes P1 → P2 → P4 → P6 → P7. Let
us consider a corresponding sequence of variables u2 → u3 → u0 → u1 that we branched on
in order to create such optimal path. After shifting by one time step, all branched variables
in the first control interval can be ignored, e.g., resulting in a shifted and shorter path of
variables u1 → u2 → u0.

At the subsequent time step, after obtaining the new state estimate, we execute all
presolving techniques and we solve the QP relaxation corresponding to the root node. After
removing from the warm-started tree the nodes that correspond to branched variables which
are already integer feasible in the relaxed solution at the root node, we proceed by solving
all the leaf nodes on the warm-started path. As we solve both children of a node on this
path, we do not have to solve the parent node itself and therefore reduce computations by
solving less QP relaxations. Hence, we go over the tree in the order depicted by the index of
each node in Fig. 6.3. After the warm-started branch has been explored, we resume normal
procedure of the B&B method. Algorithm 11 summarizes the proposed tree propagation
technique.

Algorithm 11 Tree Propagation for Warm-Started B&B

Input: Optimal path P from root to leaf node.
1: Shift index of branched variables by 1 stage along path.
2: Solve root node of shifted path P , including presolve.
3: for (branched variables on stage −1 after shifting)
‖ (variables are integer feasible in root node)
‖ (variables without pseudo-costs) do

4: remove associated node from the path P .
5: end for
6: Shift the QP relaxation solution on every node of the path and store it as a warm start

for the QP solver.
7: Re-order sequence of branched variables by scoring based on warm-started pseudo-cost

information.
8: Initialize the B&B tree along the shifted path P , creating nodes along the path and their

respective children.
9: Create the warm-started list L, excluding parent nodes.

Output: Warm-started tree for next MIQP, given by list L.

The sequential nature of the problem also allows to shift and re-use the pseudo-cost
information from one MPC time step to the next. This idea has the potential of producing
smaller search trees as the MPC progresses, without the need to perform strong branching
at every MPC step. The propagation of pseudo-costs can be coupled with an update of
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the reliability parameters to improve the overall performance. For example, the reliability
number should be reduced for each variable from one time step to the next, in order to force
strong branching for variables that have not been branched on in a sufficiently long time.
In addition, nodes can be removed from the warm-started path in case they correspond
to branched variables for which there is no pseudo-cost information or it is not sufficiently
reliable, in an attempt to avoid bad branching decisions. Finally, these warm-started pseudo-
costs can also be used to re-order the warm-started tree, in order to result in smaller search
tree sizes.

The proposed tree propagation technique, with the additional re-use of pseudo-cost in-
formation, has been summarized in Algorithm 11. This procedure can improve the overall
performance of the B&B method in multiple ways. First of all, the optimal path and pseudo-
cost information is re-used to make better branching decisions for the mixed-integer program
at the next time step, because the search trees are often similar for two subsequent prob-
lems. Also, the computational cost can be reduced by solving less QP relaxations to explore
the warm-started tree. In addition, the shifted optimal path can be used in an attempt to
efficiently obtain an integer-feasible solution, and therefore an important upper bound in
the B&B algorithm, for the MPC problem at the next time step. Lastly, one can store the
relaxed QP solutions on the optimal path, shift them by one time step and use them to
warm-start the QP solver for nodes on the shifted optimal path.

MI-MPC Algorithm Implementation

Algorithm 12 summarizes the proposed MI-MPC algorithm. It solves a sequence of
MIQPs where the branch-and-bound tree is warm-started at every time step, as well as the
pseudo-cost and QP condensing information. As mentioned earlier, the B&B strategy and the
additional presolve, warm-start and heuristic branching techniques have been implemented
in Matlab, based on a C code implementation of the PRESAS algorithm [204] to solve
each QP relaxation. In Section 5.4, we illustrate the computational performance of the
presented MI-MPC algorithm, including these presolving and warm-starting techniques, for
two numerical case studies of mixed-integer MPC. A self-contained C code implementation
is part of ongoing work, in order to illustrate the computational efficiency of the proposed
algorithmic techniques.

Note that, in practice, the proposed warm-starting strategies often allow one to obtain
an integer-feasible solution in a computationally efficient manner. However, even if the
tree propagation immediately provides the globally optimal solution to the MIQP (6.23),
a branch-and-bound algorithm still needs to perform relatively many iterations to prove
optimality by pruning remaining nodes in the search tree. This motivates the use of a
maximum number of B&B iterations in order to meet strict timing requirements of the
embedded control application. Even if the algorithm does not terminate within this specified
number of iterations, a feasible or even optimal solution may be available. This and other
heuristic strategies for real-time implementation of MI-MPC are straightforward but outside
the scope of this paper.
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Algorithm 12 Warm-Started B&B Algorithm for MI-MPC

Input: Current state x̂0, list of nodes L and pseudo-costs.
Solve MIQP

1: Update condensing information, given current state x̂0.
2: Formulate MIQP (6.23) and solve it using Algorithm 10.
3: Apply new control input u?0 to the system.

Propagation Step

4: Warm-start and shift pseudo-cost information.
5: Perform tree propagation to warm-start node list L for the next MI-MPC time step (see

Algorithm 11).

6.5 Case Studies: Mixed-Inter MPC

We report two numerical case studies to illustrate the computational performance of our
MIQP-based MPC algorithm: a hybrid MPC test example and a satellite orbit re-centering
application with a no-go zone in the orbital path. Our branch-and-bound algorithm has
been implemented in Matlab in conjunction with the PRESAS active-set solver in C. To
evaluate the performance, we compare our algorithm with the state-of-the-art GUROBI [116]
and MOSEK [177] solvers for mixed-integer programming. It is important to emphasize that all
advanced presolve and heuristic options have been activated for both software tools, resulting
in fair computational comparisons.

Hybrid MPC: Benchmark Example

The first case study is a hybrid MPC problem from [33], with the default settings as in
bm99sim.m, which is a part of the Hybrid Toolbox for Matlab. This demo example has been
used also more recently for numerical comparisons in [34]. The system is modeled using the
HYSDEL toolbox [240] to obtain the mixed logical dynamical (MLD) system formulation.
Figure 6.4 illustrates the average and worst-case CPU times taken by our algorithm, GUROBI
and MOSEK for a range of control horizon lengths N .

Table 6.2 presents a detailed comparison for this test example, including additional tim-
ing results for the MI-NNLS solver that are taken directly from [34]. The latter computational
results can serve only as a reference since they have been obtained on a different computer,
with respect to the one used here with a 2.80 GHz Intel Xeon E3-1505M v5 processor and
32 GB of RAM. An important feature of our method is that its worst-case computation
time is often rather close to the average performance in closed-loop MI-MPC simulations.
This highlights the effectiveness of our tree propagation warm-starting procedure, such that
consecutive branch-and-bound trees have approximately the same size. In addition, it can
be observed from Table 6.2 that our proposed BB-PRESAS solver is either competitive with,
or is a factor 2 or 3 times faster than GUROBI. The computational speedup is much larger
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Figure 6.4: Computational results for closed-loop mixed-integer MPC of the bm99 example:
BB-PRESAS versus GUROBI and MOSEK solvers for varying control horizon length N .

when compared with other state-of-the-art tools such as MOSEK, our solver can be more than
10 times faster in this particular MI-MPC test example. It shall be noted that GUROBI

is a heavily optimized and fairly large software, which is unlikely to be amenable for em-
bedded microprocessors, due to its code size, memory requirements, and software library
dependencies.

Satellite Station Keeping with No-Go Zones

The second case study is motivated by a real-world application, namely, orbit control
of a satellite in a circular low earth orbit, 400km from earth surface. The satellite propul-
sion system is composed of two on/off thrusters, one on each of the in-track faces of the
satellite, with gimbals rotating along the vertical axis and subject to angle constraints [250].
Thus, the propulsion system is controlled by two binary and two continuous control signals.
The satellite dynamics are formulated by relative motion equations (HCW) with respect
to the target position along the orbit, and the cone constraints of the thrust forces are
approximated as simplexes [250]. Here, we consider a re-centering maneuver in which the
satellite, previously drifting, is re-centered close to the target position along the orbit. Fur-
thermore, the error coordinates from the target position are constrained in a station keeping
window (−300 ≤ X ≤ 300,−150 ≤ Y ≤ 150).

Thus, our problem is simplified from [250], by considering only the orbital dynamics in
the orbital plane, i.e., ignoring the out-of-orbital-plane and attitude dynamics, and as a
consequence using a simpler propulsion system with only two thrusters.
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Table 6.2: Timing results (ms) per sampling step of hybrid MPC test problem for different
horizon lengths N . Computation times for MI-NNLS solver are taken directly from [34].

N BB-PRESAS GUROBI MOSEK MI-NNLS

(mean/max) (mean/max) (mean/max) (mean/max)

2 0.1/0.2 0.7/1.4 2.1/4.0 2.0/2.6
3 0.2/0.3 1.0/2.3 15.1/24.7 2.5/4.8
4 0.4/0.9 1.7/4.6 21.7/35.5 3.1/6.9
5 0.9/1.7 2.5/4.9 28.7/39.3 3.9/13.0
6 1.5/3.5 3.2/7.5 36.8/58.8 5.1/18.3
7 2.3/4.9 4.0/6.9 51.8/109.3 6.4/30.2
8 3.5/7.6 5.1/10.0 70.4/185.8 8.1/43.4
9 5.1/10.3 6.6/12.5 98.7/347.1 11.1/69.8
10 6.8/14.3 8.4/16.1 126.7/465.3 14.4/103.2
11 8.8/22.1 9.8/17.2 168.2/587.8 20.6/179.1
12 11.3/23.7 11.6/20.5 219.2/765.0 26.9/263.4
13 15.0/31.6 14.3/29.5 276.3/996.0 35.5/384.9
14 17.8/35.1 16.4/44.6 334.1/1241.9 46.3/562.4
15 21.0/41.6 21.9/71.6 450.8/1606.8 61.7/766.9

To better highlight the potential of the MI-MPC method, we add an exclusion zone in
the station keeping window, i.e., an area that must be avoided, which makes the allowed
region of positions to be non-convex. This additional constraint is modeled using standard
integer programming techniques (see, e.g., [181]), resulting in three additional binary vari-
ables for each prediction step of the mixed-integer OCP to implement the logical exclusion
zone constraints.

In Figure 6.5, we show the trajectory of the satellite in relative coordinates, where the
origin is the desired satellite position along the orbit, for the simulation of the satellite
controlled by the mixed-integer MPC. The depicted area in the figure corresponds to the
station keeping window, in which the satellite should be kept, and the shaded area is the
exclusion zone that must be avoided, at least pointwise in time. The computational timing
results for this particular closed-loop MPC simulation can be found in Figure 6.6. One can
observe that our proposed algorithm has a very competitive runtime at every MPC time
step, when compared to the commercial GUROBI solver. Most importantly, the BB-PRESAS

algorithm appears to perform at least as good for this particular case study in terms of
worst-case computation times.
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Figure 6.5: MPC state evolution for satellite station keeping around the origin: rectangular
no-go zone is depicted in red.
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Figure 6.6: Closed-loop results of mixed-integer MPC for satellite station keeping: compar-
ison between BB-PRESAS versus GUROBI solver.
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Chapter 7

Conclusion and Outlook

This thesis, in Chapters 2 and 3 we constructed a dynamic watermarking approach for
detecting malicious sensor attacks for general LTI systems, and the two main contributions
were: to extend dynamic watermarking to general LTI systems under a specific attack model
that is more general than replay attacks, and to show that modeling is important for design-
ing watermarking techniques by demonstrating how persistent disturbances can negatively
affect the accuracy of dynamic watermarking. Our approach to resolve this issue was to incor-
porate a model of the persistent disturbance via the internal model principle. We extended
our methodology to detect sensor and communication attacks on networked LTI systems.
Unlike the non-networked case, watermarking in the networked case requires a K so that
A+BK is controllable with respect to each Bi. This ensures the private watermarking signal
of each subcontroller is seen in the output of all subcontrollers. We provided two algorithms
to compute such a controller. The efficacy of our watermarking approach was demonstrated
by a simulation of a three car platoon. One possible direction for future work is to explore
the performance of our watermarking test under specific types of attacks, such as replay
attacks or network disturbances. Future work includes generalizing the attack models that
can be detected by our approach, for example network disturbances that change the com-
munication structure itself, rather than it;s measurements. Another line of related work is
the work done by [197, 196], which extends our ideas of Dynamic Watermarking to linear
time-varying (LTV) systems, while maintaining all the statistical properties and guarantees.
An additional direction for future work is to study the problem of robust controller design
in the regime of when an attack is detected. Lastly, we proved statistical consistency of the
set-membership estimator for identification of switched linear systems, and we demonstrated
the consistency properties through two examples: one consisting of a comparison to OLS
(which is inconsistent) and the other the construction of an algorithm that identifies the
stable mode under additional assumptions.

In Chapter 4 we proposed a hypothesis testing framework in order to decide whether
agents are behaving competitively or not. In our setting, a regulator formulates an inverse
variational problem in order to estimate the unknown private information vectors as well
as estimate the residuals of the approximate equilibrium that arises from the agents’ com-
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petition. Our setting is flexible as the regulator only require access to prices and shock
values. The assumption of common knowledge on the shock can be relaxed, leading to a new
set of challenges in the residual estimation. A future direction of work is to derive precise
theory about consistency of our estimates in the context of inverse optimization. We demon-
strated our method in a simple two-player game with a polyhedral feasible action space.
We stress that our setting is more general and allows for any number of players with arbi-
trarily conic-representable sets, as long as they satisfy some regularity condition. Another
exciting direction of future research is to employ our estimation method and hypothesis
testing framework in the context of problem studied in [62, 153], where groups of agents
employ machine learning-based methods, and those algorithms “learn” to collude instead
of competing. This problem is more challenging but can be explored in the light of inverse
variational problems and our estimation formulation. we also studied a dynamical system
with several non-cooperative strategic agents. We proposed a mechanism where the agents
interact via a platform and characterized the equilibrium strategies. We provided an HVAC
control test case to highlight the need of designing mechanisms that have low-communication
requirements in an MPC setting. Our goal for future research is to rigorously find a learning
process that allow agents to converge their messages to the equilibrium behavior and to
explore conditions such that we can strengthen Theorem 1 toward strong implementability
and uniqueness of the resulting equilibrium.

In Chapter 5 and 6, we proposed a block-wise sparsity preserving two-sided rank-one Ja-
cobian update (TR1 update) for an adjoint-based inexact SQP method to efficiently solve the
nonlinear optimal control problems arising in NMPC. We proved local convergence for the
block-structured quasi-Newton type Jacobian matrix updates. In case of a Gauss-Newton
based SQP implementation, we additionally showed that the asymptotic rate of contraction
remains the same. We also presented how this approach can be implemented efficiently in
a tailored lifted collocation framework, in order to avoid matrix factorizations and matrix-
matrix multiplications. Finally, we illustrated the local convergence properties as well as
the computational complexity results numerically for two NMPC case studies. The effect
of the presented contraction properties on the convergence and closed-loop stability of the
block-TR1 based real-time iterations is an important topic that is part of ongoing research.
In addition, we proposed a lifted Newton-type optimization method for pseudospectral based
nonlinear model predictive control, using a rank-one Jacobian update formula in combina-
tion with numerical condensing and expansion of the collocation variables. We showed how
the condensed Hessian can be updated directly, using either a symmetric rank-two or a rank-
three update, in case that a quasi-Newton type method is used to additionally approximate
the Hessian of the Lagrangian. The proposed pseudospectral optimization algorithm has a
quadratic computational complexity of O (N2m2), compared to the typical complexity of
O (Nm3) for sparsity exploiting optimal control algorithms based on direct collocation. A
preliminary C code implementation has shown to allow considerable numerical speedups for
the NMPC case study of the nonlinear chain of masses. Lastly, we proposed a branch-and-
bound algorithm for mixed-integer MPC that exploits the optimal control problem structure
to strengthen variable bounds, re-use pseudo-costs and warm-start the search tree at every
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MPC time step. More specifically, tailored domain propagation and tree propagation strate-
gies have been presented. We showed preliminary results that illustrate the computational
performance of our algorithm for two different MI-MPC case studies. A compact, efficient,
but self-contained C code implementation of the proposed algorithm is under development
to enable real-time embedded applications of hybrid MPC.

The future is promising for research in Cyber-Physical Systems. The new technologies
and specialized hardware allow engineers and researchers to design efficient and reliable
algorithms and methods to provide secure and resilient systems that operate in high perfor-
mance. Our thesis is but a step in this exciting direction. Several challenges still lay ahead,
in particular the human-robot interactions (for example of human drivers and self-driving
vehicles) where the algorithms will need to make inference on the behavior of not only other
CPS bu also of humans. Statistical tests, such as Dynamic Watermarking, provide as a
quantitative method that contains finite-time guarantees in detection and in inference. Our
analysis and methodology based on Concentration Inequalities and Stein’s Method can be
potentially extended to inference problems where instead of detecting attacks on the CPS
we try to detect some specific behavior of other (possibly human) agents. On the perfor-
mance side, our Mixed-Integer MPC is able to handle both continuous and discrete state
and control variables and efficiently exploits the optimal control structure. However there
are still several scenarios that require further infestation, such as what happens when there
two different operational modes, each with it’s on sets of constraints and performance eval-
uation criterion. For example, how the self-driving vehicle should behave when comparing
trajectories that come from different modes, where one mode for example is overtaking and
another is lane-following. These two modes are vastly different and it is still not clear how a
CPS should react when faced with uncertainty and external agent’s behavior. But it is clear
that real-time algorithms such as the Adjoint-Based TR1 algorithm presented here will play
key role in developing extremely fast decision-making software for specialized applications.
All in all, the future is brimming with potential for Cyber-Physical Systems.
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